
The Embedded I/O Company

TIP903-SW
Linux Device D

3 Channel Extended C

Version 1.2.x

User Manu

Issue 1.2.3

November 20

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
-82
river

AN Bus IP

al

10

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TIP903-SW-82 - Linux Device Driver Page 2 of 40

TIP903-SW-82

Linux Device Driver

3 Channel Extended CAN Bus IP

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2004-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue October 2, 2002

1.1 Support for DEVFS and SMP February 25, 2004

1.2.0 Introduction and installation description modified April 05, 2006

1.2.1 UDEV description added December 11, 2007

1.2.2 Carrier Driver description added July 7, 2008

1.2.3 General revision, Address TEWS LLC removed
Avoiding undefined symbols warning note

November 25, 2010

TIP903-SW-82 - Linux Device Driver Page 3 of 40

Table of Contents

1 INTRODUCTION... 4

1.1 Device Driver ...4

1.2 IPAC Carrier Driver ...5

2 INSTALLATION.. 6

2.1 Build and install the device driver...7

2.2 Uninstall the device driver ...7

2.3 Install device driver into the running kernel ..8

2.4 Remove device driver from the running kernel ...8

2.5 Change Major Device Number ...9

2.6 Receive Queue Configuration..9

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 10

3.1 open() ...10

3.2 close()...12

3.3 read() ..13

3.4 write() ...16

3.5 ioctl() ..19

3.5.1 T903_IOCSBITTIMING...21
3.5.2 T903_IOCSSETFILTER..23
3.5.3 T903_IOCGGETFILTER...25
3.5.4 T903_IOCBUSON...27
3.5.5 T903_IOCBUSOFF ...28
3.5.6 T903_IOCFLUSH..29
3.5.7 T903_IOCGCANSTATUS...30
3.5.8 T903_IOCSDEFRXBUF..31
3.5.9 T903_IOCSDEFRMTBUF ...33
3.5.10 T903_IOCSUPDATEBUF ...35
3.5.11 T903_IOCTRELEASEBUF..37

4 DEBUGGING.. 39

TIP903-SW-82 - Linux Device Driver Page 4 of 40

1 Introduction

1.1 Device Driver

The TIP903-SW-82 Linux device driver allows the operation of TIP903 IPAC modules on Linux
operating systems.

Because the TIP903 device driver is stacked on the TEWS TECHNOLOGIES IPAC carrier driver, it’s
necessary to install also the appropriate IPAC carrier driver. Please refer to the IPAC carrier driver
user manual for further information.

The TIP903 device driver includes the following features:

 Transmission and receive of Standard and extended Identifiers
 Up to 15 receive message queues with user defined size
 Variable allocation of receive message objects to receive queues
 Separate task queues for each receive queue and transmission buffer message object
 Standard bit rates from 20 kbit up to 1.0 Mbit and user defined bit rates
 Message acceptance filtering
 Definition of receive and remote buffer message objects
 Transmission and receive of Standard and extended Identifiers
 Designed as Linux kernel module with dynamically loading (modprobe).
 Supports shared IRQ’s.
 Creates devices with dynamically allocated or fixed major device numbers.

The TIP903-SW-82 supports the modules listed below:

TIP903-10 3 channel extended CAN bus IndustryPack (IndustryPack®)

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TIP903 User manual

TIP903 Engineering Manual

Architectural Overview of the Intel 82527 CAN controller (part of TIP903 Engineering Manual)

CARRIER-SW-82 IPAC Carrier User Manual

TIP903-SW-82 - Linux Device Driver Page 5 of 40

1.2 IPAC Carrier Driver

IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of different
carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-82 is part of this TIP903-SW-82
distribution. It is located in directory CARRIER-SW-82 on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-82 User Manual for a detailed description how to install and setup
the CARRIER-SW-82 device driver, and for a description of the TEWS TECHNOLOGIES IPAC Carrier
Driver concept.

TIP903-SW-82 - Linux Device Driver Page 6 of 40

2 Installation
The directory TIP903-SW-82 on the distribution media contains the following files:

TIP903-SW-82-1.2.3.pdf This manual in PDF format
TIP903-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
ChangeLog.txt Release history
Release.txt Release information

The GZIP compressed archive TIP903-SW-82.tar.gz contains the following files and directories:

tip903/tip903.c Driver source code
tip903/tip903def.h Driver include file
tip903/tip903.h Driver include file for application program
tip903/I82527.h Intel 82527 CAN controller definitions
tip903/makenode Script to create device nodes on the file system
tip903/Makefile Device driver make file
tip903/example/tip903exa.c Example application
tip903/example/Makefile Example application make file
tip903/include/config.h Kernel independent header file
tip903/include/tpmodule.h Kernel independent library header file
tip903/include/tpmodule.c Kernel independent library source code file

In order to perform an installation, extract all files of the archive TIP903-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TIP903-SW-82-SRC.tar.gz’ will extract the files into
the local directory.

Before building a new device driver, the TEWS TECHNOLOGIES IPAC carrier driver must be
installed properly, because this driver includes the header file ipac_carrier.h, which is part of
the IPAC carrier driver distribution. Please refer to the IPAC carrier driver user manual in the
directory path CARRIER-SW-82 on the separate distribution media.

TIP903-SW-82 - Linux Device Driver Page 7 of 40

2.1 Build and install the device driver

 Login as root

 Change to the target directory

 Copy file tip903.h to /usr/include/ to allow user application access

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

For Linux kernel 2.6.x, there may be compiler warnings claiming some undefined ipac_*
symbols. These warnings are caused by exported symbols of the IPAC carrier driver,
which are unknown during compilation of this TIP driver.

These warnings can be ignored or avoided by defining the path where the symbol
definitions can be found (works only for kernel versions >2.6.28).

To avoid these warnings the symbol KBUILD_EXTRA_SYMBOLS can be added to the
make command line and must specify the absolute path where the symbols of the IPAC
carrier driver can be found. For example:

make install KBUILD_EXTRA_SYMBOLS=/usr/ipac_carrier/class/Module.symvers

 Also after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load the correct IPAC carrier driver modules.

depmod –aq

2.2 Uninstall the device driver

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Update kernel module dependency description file

depmod –aq

TIP903-SW-82 - Linux Device Driver Page 8 of 40

2.3 Install device driver into the running kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tip903drv

 After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TIP903 CAN channel found. The first
TIP903 channel can be accessed using device node /dev/tip903_0, the second TIP903 channel with
device node /dev/tip903_1, the third channel TIP903 with device node /dev/tip903_2 and so on.

The allocation of device nodes to physical TIP903 modules depends on the search order of the IPAC
carrier driver. Please refer to the IPAC carrier user manual.

Loading of the TIP903 device driver will only work if kernel KMOD support is installed,
necessary carrier board drivers already installed and the kernel dependency file is up to date.
If KMOD support isn’t available you have to build either a new kernel with KMOD installed or
you have to install the IPAC carrier kernel modules manually in the correct order (please refer
to the IPAC carrier driver user manual).

2.4 Remove device driver from the running kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe tip903drv –r

If your kernel has enabled devfs or sysfs (udev), all /dev/tip903_x nodes will be automatically removed
from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tip903drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TIP903-SW-82 - Linux Device Driver Page 9 of 40

2.5 Change Major Device Number

The TIP903 driver use dynamic allocation of major device numbers by default. If this isn’t suitable for
the application it’s possible to define a major number for the driver. If the kernel has enabled devfs the
driver will not use the symbol TIP903_MAJOR.

To change the major number edit the file tip903drv.c, change the following symbol to appropriate
value and enter make install to create a new driver.

TIP903_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means dynamic
number allocation.

Example:

#define TIP903_MAJOR 122

2.6 Receive Queue Configuration

Received CAN messages will be stored in receive queues. Each receive queue contains a FIFO and a
separate task wait queue. The number of receive queues and the depth of the FIFO can be adapted
by changing the following symbols in tip903.c.

NUM_RX_QUEUES Defines the number of receive queues for each device (default = 3). Valid
numbers are in range between 1 and 15. To support multitasking and
multiprocessing the driver allows only one thread per queue. So
NUM_RX_QUEUES is the same as the maximum amount of concurrent
threads during reading.

RX_FIFO_SIZE Defines the depth of the message FIFO inside each receive queue (default =
100). Valid numbers are in range between 1 and MAXINT.

TIP903-SW-82 - Linux Device Driver Page 10 of 40

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tip903_0”, O_RDWR);

if (fd == -1)

{

/* handle error condition */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TIP903-SW-82 - Linux Device Driver Page 11 of 40

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP903-SW-82 - Linux Device Driver Page 12 of 40

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)

{

/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP903-SW-82 - Linux Device Driver Page 13 of 40

3.3 read()

NAME

read() – read from a device

SYNOPSIS

#include <unistd.h>

ssize_t read(int filedes, void *buffer, size_t size)

DESCRIPTION

The read function reads a CAN message from the specified receive queue. A pointer to the callers
message buffer (T903_MSG_BUF) and the size of this structure are passed by the parameters buffer
and size to the device.

The T903_MSG_BUF structure has the following layout:

typedef struct

{

unsigned long identifier;

long timeout;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char status;

unsigned char msg_len;

unsigned char data[8];

} T903_MSG_BUF, *PT903_MSG_BUF;

identifier

Receives the message identifier of the read CAN message.

timeout

Specifies the amount of time (in ticks) the caller is willing to wait for execution of read. A value of
0 means wait indefinitely.

rx_queue_num

Specifies the receive queue number from which the data will be read. Valid receive queue
numbers are in range between 1 and n. In which n depends on the definition of
NUM_RX_QUEUES (see also 2.6).

extended

Receives TRUE for extended CAN messages.

TIP903-SW-82 - Linux Device Driver Page 14 of 40

status

Receives status information about overrun conditions either in the CAN controller or
intermediate software FIFO’s.

T903_SUCCESS No messages lost

T903_FIFO_OVERRUN One or more messages was overwritten in the
receive queue FIFO. This problem occurs if the
FIFO is too small for the application read interval.

T903_MSGOBJ_OVERRUN One or more messages were overwritten in the
CAN controller message object because the
interrupt latency is too large. Keep in mind Linux
isn’t a real-time operating system. Use message
object 15 (buffered) to receive this time critical CAN
messages, reduce the CAN bit rate or upgrade the
system speed.

T903_RAW_FIFO_OVERRUN One or more messages was overwritten in the FIFO
between the interrupt service routine and post-
processing in the driver (bottom half).

msg_len

Receives the number of message data bytes (0...8).

data

This buffer receives up to 8 data bytes. data[0] receives message data 0, data[1] receives
message data 1 and so on.

EXAMPLE

#include <tip903.h>

int fd;

ssize_t NumBytes;

T903_MSG_BUF MsgBuf;

MsgBuf.rx_queue_num = 1;

MsgBuf.timeout = 200;

NumBytes = read(fd, &MsgBuf, sizeof(MsgBuf));

if (NumBytes > 0)

{

/* process received CAN message */

}

TIP903-SW-82 - Linux Device Driver Page 15 of 40

RETURNS

On success read returns the size of structure T903_MSG_BUF. In the case of an error, a value of –1
is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if
either the size of the message buffer is too small, or
the specified receive queue is out of range.

EFAULT Invalid pointer to the message buffer.

ECONNREFUSED The controller is in bus off state and no message is
available in the specified receive queue.
Note, as long as CAN messages are available in
the receive queue FIFO, bus off conditions were not
reported by a read function. This means you can
read all CAN messages out of the receive queue
FIFO during bus off state without an error result.

EAGAIN Resource temporarily unavailable; the call might
work if you try again later. This error occurs only if
the device is opened with the flag O_NONBLOCK
set.

ETIME The allowed time to finish the read request is
elapsed.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP903-SW-82 - Linux Device Driver Page 16 of 40

3.4 write()

NAME

write() – write to a device

SYNOPSIS

#include <unistd.h>

ssize_t write(int filedes, void *buffer, size_t size)

DESCRIPTION

The write function writes a CAN message to the device with descriptor filedes. A pointer to the callers
message buffer (T903_MSG_BUF) and the size of this structure are passed by the parameters buffer
and size to the device.

The write function dynamically allocates a free message object for the transmit operation. The search
begins at message object 1 and ends at message object 14. The first found free message object is
used. If currently no message object is available the write operation is blocked until any message
object becomes free or a timeout occur.

If your application performs write operations you should left at least one message object free for
transmit, preferably the first message object.

The T903_MSG_BUF structure has the following layout:

typedef struct

{

unsigned long identifier;

long timeout;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char status;

unsigned char msg_len;

unsigned char data[8];

} T903_MSG_BUF, *PT903_MSG_BUF;

identifier

Contains the message identifier of the CAN message to write.

timeout

Specifies the amount of time (in ticks) the caller is willing to wait for execution of write. A value
of 0 means wait indefinitely.

rx_queue_num

This parameter is unused for this control function.

TIP903-SW-82 - Linux Device Driver Page 17 of 40

extended

This parameter is TRUE (1) for extended CAN messages.

status

This parameter is unused for this control function.

msg_len

Contains the number of message data bytes (0...8).

data

This buffer contains up to 8 data bytes. Data[0] contains message data 0, data[1] contains
message data 1 and so on.

EXAMPLE

#include <tip903.h>

int fd;

ssize_t NumBytes;

T903_MSG_BUF MsgBuf;

MsgBuf.identifier = 1234;

MsgBuf.timeout = 200;

MsgBuf.extended = TRUE;

MsgBuf.msg_len = 2;

MsgBuf.data[0] = 0xaa;

MsgBuf.data[1] = 0x55;

NumBytes = write(fd, &MsgBuf, sizeof(MsgBuf));

if (NumBytes > 0)

{

/* CAN message successful transmitted */

}

RETURNS

On success write returns the size of structure T903_MSG_BUF. In the case of an error, a value of –1
is returned. The global variable errno contains the detailed error code.

TIP903-SW-82 - Linux Device Driver Page 18 of 40

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the message buffer is too small.

EFAULT Invalid pointer to the message buffer.

ECONNREFUSED The controller is in bus off state and unable to
transmit messages.

EAGAIN Resource temporarily unavailable; the call might
work if you try again later. This error occurs only if
the device is opened with the flag O_NONBLOCK
set.

ETIME The allowed time to finish the write request is
elapsed. This occurs if currently no message object
is available or if the CAN bus is overloaded and the
priority of the message identifier is too low.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP903-SW-82 - Linux Device Driver Page 19 of 40

3.5 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tip903.h:

Symbol Description

T903_IOCSBITTIMING Setup new bit timing

T903_IOCSSETFILTER Setup acceptance filter masks

T903_IOCGGETFILTER Get the current acceptance filter masks

T903_IOCBUSON Enter the bus on state

T903_IOCBUSOFF Enter the bus off state

T903_IOCFLUSH Flush one or all receive queues

T903_IOCGCANSTATUS Returns the CAN controller status

T903_IOCSDEFRXBUF Define a receive buffer message object

T903_IOCSDEFRMTBUF Define a remote transmit buffer message object

T903_IOCSUPDATEBUF Update a remote or receive buffer message object

T903_IOCTRELEASEBUF Release an allocated message buffer object

See behind for more detailed information on each control code.

To use these TIP903 specific control codes the header file tip903.h must be included in the
application

TIP903-SW-82 - Linux Device Driver Page 20 of 40

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TIP903 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TIP903-SW-82 - Linux Device Driver Page 21 of 40

3.5.1 T903_IOCSBITTIMING

NAME

T903_IOCSBITTIMING - Setup new bit timing

DESCRIPTION

This ioctl function modifies the bit timing register of the CAN controller to setup a new CAN bus
transfer speed. A pointer to the callers parameter buffer (T903_BITTIMING) is passed by the
argument argp to the driver.

Keep in mind to setup a valid bit timing value before changing into the Bus On state.

The T903_BITTIMING structure has the following layout:

typedef struct

{

unsigned short timing_value;

unsigned short three_samples;

} T903_BITTIMING, *PT903_BITTIMING;

timing_value

This parameter holds the new values for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 20 kBit per second and 1.0 MBit per
second. The include file 'tip903.h' contains predefined transfer rate symbols (T903_20KBIT ...
T903_1_0MBIT).
For other transfer rates please follow the instructions of the Intel 82527 Architectural Overview,
which is also part of the engineering kit TIP903-EK.

three_samples

If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

Use one sample point for faster bit rates and three sample points for slower bit rate to make
the CAN bus more immune against noise spikes.

TIP903-SW-82 - Linux Device Driver Page 22 of 40

EXAMPLE

#include <tip903.h>

int fd;

int result;

T903_BITTIMING BitTimingParam;

BitTimingParam.timing_value = T903_100KBIT;

BitTimingParam.ThreeSamples = FALSE;

result = ioctl(fd, T903_IOCSBITTIMING, &BitTimingParam);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp

SEE ALSO

tip903.h for predefined bus timing constants

TIP903-SW-82 - Linux Device Driver Page 23 of 40

3.5.2 T903_IOCSSETFILTER

NAME

T903_IOCSSETFILTER - Setup acceptance filter masks

DESCRIPTION

This ioctl function modifies the acceptance filter masks of the specified CAN controller device.

The acceptance masks allow message objects to receive messages with a larger range of message
identifiers instead of just a single message identifier. A "0" value means "don't care" or accept a "0" or
"1" for that bit position. A "1"-value means that the incoming bit value "must-match" identically to the
corresponding bit in the message identifier.

A pointer to the callers parameter buffer (T903_ACCEPT_MASKS) is passed by the parameter argp to
the driver.

The T903_ACCEPT_MASKS structure has the following layout:

typedef struct

{

unsigned long message_15_mask;

unsigned long global_mask_extended;

unsigned short global_mask_standard;

} T903_ACCEPT_MASKS, *PT903_ACCEPT_MASKS;

message_15_mask

This parameter specifies the value for the Message 15 Mask Register. The Message 15 Mask
Register is a local mask for message object 15. This 29 bit identifier mask appears in bit 3...31
of this parameter. The Message 15 Mask is "ANDed" with the Global Mask. This means that any
bit defined as "don't care" in the Global Mask will automatically be a "don't care" bit for message
15. (See also Intel 82527 Architectural Overview).

global_mask_extended

This parameter specifies the value for the Global Mask-extended Register. The Global Mask-
extended Register applies only to messages using the extended CAN identifier. This 29 bit
identifier mask appears in bit 3...31 of this parameter.

global_mask_standard

This parameter specifies the value for the Global Mask-Standard Register. The Global Mask-
Standard Register applies only to messages using the standard CAN identifier. The 11 bit
identifier mask appears in bit 5...15 of this parameter.

The TIP903 device driver copies the parameter directly into the corresponding registers of the
CAN controller, without shifting any bit positions. For more information see the Intel 82527
Architectural Overview.

TIP903-SW-82 - Linux Device Driver Page 24 of 40

EXAMPLE

#include <tip903.h>

int fd;

int result;

T903_ACCEPT_MASKS AcceptMasksParam;

/* Standard identifier bits 0..3 don't care */

AcceptMasksParam.global_mask_standard = 0xfe00;

/* extended identifier bits 0..3 don't care */

AcceptMasksParam.global_mask_extended = 0xffffff80;

/* Message object 15 identifier bits 0..7 don't care */

AcceptMasksParam.message_15_mask = 0xfffff800;

result = ioctl(fd, T903_IOCSSETFILTER, &AcceptMasksParam);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

TIP903-SW-82 - Linux Device Driver Page 25 of 40

3.5.3 T903_IOCGGETFILTER

NAME

T903_IOCGGETFILTER - Get the current acceptance filter masks

DESCRIPTION

This ioctl function returns the current acceptance filter masks of the specified CAN Controller.

A pointer to the callers parameter buffer (T903_ACCEPT_MASKS) is passed by the parameter argp to
the driver.

The T903_ACCEPT_MASKS structure has the following layout:

typedef struct

{

unsigned long message_15_mask;

unsigned long global_mask_extended;

unsigned short global_mask_standard;

} T903_ACCEPT_MASKS, *PT903_ACCEPT_MASKS;

message_15_mask

This parameter receives the value for the Message 15 Mask Register. The Message 15 Mask
Register is a local mask for message object 15. This 29 bit identifier mask appears in bit 3...31
of this parameter.

global_mask_extended

This parameter receives the value for the Global Mask-extended Register. The Global Mask-
extended Register applies only to messages using the extended CAN identifier. This 29 bit
identifier mask appears in bit 3...31 of this parameter.

global_mask_standard

This parameter receives the value for the Global Mask-Standard Register. The Global Mask-
Standard Register applies only to messages using the standard CAN identifier. The 11 bit
identifier mask appears in bit 5...15 of this parameter.

The TIP903 device driver copies the masks directly from the corresponding registers of the
CAN controller into the parameter buffer, without shifting any bit positions. For more
information see the Intel 82527 Architectural Overview.

TIP903-SW-82 - Linux Device Driver Page 26 of 40

EXAMPLE

#include <tip903.h>

int fd;

int result;

T903_ACCEPT_MASKS AcceptMasksParam;

result = ioctl(fd, T903_IOCGGETFILTER, &AcceptMasksParam);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

TIP903-SW-82 - Linux Device Driver Page 27 of 40

3.5.4 T903_IOCBUSON

NAME

T903_IOCBUSON - Enter the bus on state

DESCRIPTION

This ioctl function sets the specified CAN controller into the Bus On state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the Bus Off state. This control function resets the init bit in the control register. The
CAN controller begins the busoff recovery sequence and resets transmit and receive error counters. If
the CAN controller counts 128 packets of 11 consecutive recessive bits on the CAN bus, the Bus Off
state is exited.

The optional argument can be omitted for this ioctl function.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

EXAMPLE

#include <tip903.h>

int fd;

int result;

result = ioctl(fd, T903_IOCBUSON);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

This ioctl function returns no function specific error codes.

TIP903-SW-82 - Linux Device Driver Page 28 of 40

3.5.5 T903_IOCBUSOFF

NAME

T903_IOCBUSOFF - Enter the bus off state

DESCRIPTION

This ioctl function sets the specified CAN controller into the Bus-Off state. After a successful execution
of this control function the CAN controller is completely removed from the CAN bus and cannot
communicate until the control function T903_IOCBUSON is executed. Note: It’s not possible to set the
device bus off during a write operation of another concurrent process.

The optional argument can be omitted for this ioctl function.

Execute this control function before the last close to the CAN controller channel.

EXAMPLE

#include <tip903.h>

int fd;

int result;

result = ioctl(fd, T903_IOCBUSOFF);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EBUSY Device busy. Another concurrent process is writing
to the device at the moment. Try it again later.

TIP903-SW-82 - Linux Device Driver Page 29 of 40

3.5.6 T903_IOCFLUSH

NAME

T903_IOCFLUSH - Flush one or all receive queues

DESCRIPTION

This ioctl function flushes the message FIFO of the specified receive queue(s).

The optional argument argp passes the receive queue number to the device driver on which the
FIFO’s to be flushed. If this parameter is 0 the FIFO’s of all receive queues of the device will be
flushed, otherwise only the FIFO of the specified receive queue will be flushed.

EXAMPLE

#include <tip903.h>

int fd;

int result;

/* flush all receive queues */

result = ioctl(fd, T903_IOCFLUSH, (int)0);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EINVAL Invalid argument. This error code is returned if the
specified receive queue is out of range.

TIP903-SW-82 - Linux Device Driver Page 30 of 40

3.5.7 T903_IOCGCANSTATUS

NAME

T903_IOCGCANSTATUS - Returns the CAN controller status

DESCRIPTION

This ioctl function returns the actual contents of the CAN controller status register for diagnostic
purposes. A pointer to the callers status buffer (T903_STATUS) is passed by the parameter argp to
the driver.

The T903_STATUS structure has the following layout:

typedef struct

{

unsigned char control_reg;

unsigned char status_reg;

} T903_STATUS, PT903_STATUS;

control_reg

This parameter receives the content of the controllers control register.

status_reg

This parameter receives the content of the controllers status register.

EXAMPLE

#include <tip903.h>

int fd, result;

T903_STATUS CanStatus;

result = ioctl(fd, T903_IOCGCANSTATUS, &CanStatus);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the unsigned char variable which
receives the contents of the CAN status register.
Please check the argument argp.

TIP903-SW-82 - Linux Device Driver Page 31 of 40

3.5.8 T903_IOCSDEFRXBUF

NAME

T903_IOCSDEFRXBUF - Define a receive buffer message object

DESCRIPTION

This ioctl function defines a CAN message object to receive a single message identifier or a range of
message identifiers (see also Acceptance Mask). All CAN messages received by this message object
are directed to the associated receive queue and can be read with the standard read function (see
also 3.3).

Before the driver can receive CAN messages it’s necessary to define at least one receive message
object. If only one receive message object is defined at all preferably message object 15 should be
used because this message object is buffered.

A pointer to the caller’s message description (T903_BUF_DESC) is passed by the argument argp to
the driver.

The T903_BUF_DESC structure has the following layout:

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} T903_BUF_DESC, *PT903_BUF_DESC;

identifier

This parameter specifies the message identifier for the message object to be defined.

msg_obj_num

Specifies the number of the message object to be defined. Valid object numbers are in range
between 1 and 15.

rx_queue_num

Specifies the associated receive queue for this message object. All CAN messages received by
this object are directed to this receive queue. The receive queue number is one based; valid
numbers are in range between 1 and n. In which n depends on the definition of
NUM_RX_QUEUES (see also 2.6).

extended

Set to TRUE for extended CAN messages.

TIP903-SW-82 - Linux Device Driver Page 32 of 40

msg_len

This parameter is unused for this control function.

data

This parameter is unused for this control function.

It’s possible to assign more than one receive message object to one receive queue.

EXAMPLE

#include <tip903.h>

int fd;

int result;

T903_BUF_DESC BufDesc;

BufDesc.msg_obj_num = 15;

BufDesc.rx_queue_num = 1;

BufDesc.identifier = 1234;

BufDesc.extended = TRUE;

/* Define message object 15 to receive the extended */

/* message identifier 1234 and store received messages */

/* in receive queue 1 */

result = ioctl(fd, T903_IOCSDEFRXBUF, &BufDesc);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if
either the message object number, or the specified
receive queue is out of range.

EADDRINUSE The requested message object is already occupied.

TIP903-SW-82 - Linux Device Driver Page 33 of 40

3.5.9 T903_IOCSDEFRMTBUF

NAME

T903_IOCSDEFRMTBUF - Define a remote transmit buffer message object

DESCRIPTION

This ioctl function defines a remote transmission CAN message buffer object. A remote transmission
object is similar to normal transmission object with exception that the CAN message is transmitted
only after receiving of a remote frame with the same identifier.

This type of message object can be used to make process data available for other nodes which can
be polled around the CAN bus without any action of the provider node.

The message data remain available for other CAN nodes until this message object is updated with the
control function T903_IOCSUPDATEBUF or cancelled with T903_IOCTRELEASEBUF.

A pointer to the caller’s message description (T903_BUF_DESC) is passed by the argument argp to
the driver.

The T903_BUF_DESC structure has the following layout:

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} T903_BUF_DESC, *PT903_BUF_DESC;

identifier

This parameter specifies the message identifier for the message object to be defined.

msg_obj_num

Specifies the number of the message object to be defined. Valid object numbers are in range
between 1 and 14.

Keep in mind that message object 15 is only available for receive message objects.

rx_queue_num

Unused for remote transmission message objects. Set to 0.

extended

Set to TRUE for extended CAN messages.

TIP903-SW-82 - Linux Device Driver Page 34 of 40

msg_len

Contains the number of message data bytes (0...8).

data

This buffer contains up to 8 data bytes. data[0] contains message data 0, data[1] contains
message data 1 and so on.

EXAMPLE

#include <tip903.h>

int fd;

int result;

T903_BUF_DESC BufDesc;

BufDesc.msg_obj_num = 10;

BufDesc.identifier = 777;

BufDesc.extended = TRUE;

BufDesc.msg_len = 1;

BufDesc.data[0] = 123;

/* Define message object 10 to transmit the extended */

/* message identifier 777 after receiving of a remote */

/* frame with the same identifier */

result = ioctl(fd, T903_IOCSDEFRMTBUF, &BufDesc);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if the
message object number is out of range.

EADDRINUSE The requested message object is already occupied.

EMSGSIZE Invalid message size. msg_len must be in range
between 0 and 8.

TIP903-SW-82 - Linux Device Driver Page 35 of 40

3.5.10 T903_IOCSUPDATEBUF

NAME

T903_IOCSUPDATEBUF - Update a remote or receive buffer message object

DESCRIPTION

This ioctl function updates a previous defined receive or remote transmission message buffer object.

To update a receive message object a remote frame is transmitted over the CAN bus to request new
data from a corresponding remote transmission message object on other nodes.

To update a remote transmission object only the message data and message length of the specified
message object is changed. No transmission is initiated by this control function.

A pointer to the caller’s message description (T903_BUF_DESC) is passed by the argument argp to
the driver.

The T903_BUF_DESC structure has the following layout:

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} T903_BUF_DESC, *PT903_BUF_DESC;

identifier

This parameter is unused for this control function.

msg_obj_num

Specifies the number of the message object to be updated. Valid object numbers are in range
between 1 and 14.

Keep in mind that message object 15 is available only for receive message objects.

rx_queue_num

This parameter is unused for this control function.

extended

Set to TRUE for extended CAN messages.

msg_len

Contains the number of message data bytes (0...8). This parameter is used only for remote
transmission object updates.

TIP903-SW-82 - Linux Device Driver Page 36 of 40

data

This buffer contains up to 8 data bytes. data[0] contains message data 0, data[1] contains
message data 1 and so on.

This parameter is used only for remote transmission object updates.

EXAMPLE

#include <tip903.h>

int fd;

int result;

T903_BUF_DESC BufDesc;

/* Update a receive message object */

BufDesc.msg_obj_num = 14;

result = ioctl(fd, T903_IOCSUPDATEBUF, &BufDesc);

if (result < 0)

{

/* handle ioctl error */

}

/* Update a remote message object */

BufDesc.msg_obj_num = 10;

BufDesc.msg_len = 1;

BufDesc.data[0] = 124;

result = ioctl(fd, T903_IOCSUPDATEBUF, &BufDesc);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if
either the message object number is out of range or
the requested message object is not defined.

EMSGSIZE Invalid message size. msg_len must be in range
between 0 and 8.

TIP903-SW-82 - Linux Device Driver Page 37 of 40

3.5.11 T903_IOCTRELEASEBUF

NAME

T903_IOCTRELEASEBUF - Release an allocated message buffer object

DESCRIPTION

This TIP903 control function releases a previous defined CAN message object. Any CAN bus
transactions of the specified message object become disabled. After releasing the message object
can be defined again with T903_IOCSDEFRXBUF and T903_IOCSDEFRMTBUF control functions.

A pointer to the caller’s message description (T903_BUF_DESC) is passed by the argument argp to
the driver.

The T903_BUF_DESC structure has the following layout:

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} T903_BUF_DESC, *PT903_BUF_DESC;

msg_obj_num

Specifies the number of the message object to be released. Valid object numbers are in range
between 1 and 15.

All other parameters are not used and could be left blank.

TIP903-SW-82 - Linux Device Driver Page 38 of 40

EXAMPLE

#include <tip903.h>

int fd;

int result;

T903_BUF_DESC BufDesc;

BufDesc.msg_obj_num = 14;

result = ioctl(fd, T903_IOCTRELEASEBUF, &BufDesc);

if (result < 0)

{

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if the
message object number is out of range.

EBADMSG The requested message object is not defined.

EBUSY The message object is currently busy transmitting
data.

TIP903-SW-82 - Linux Device Driver Page 39 of 40

4 Debugging
For debugging output see tip903drv.c. You will find the two following symbols:

#undef TIP903_DEBUG_INTR

#undef TIP903_DEBUG_VIEW

To enable a debug output replace “undef” with “define”.

The TIP903_DEBUG_INTR symbol controls debugging output from the ISR.

TIP903 : interrupt entry

TIP903 : IACK[0] vector = 0005

The TIP903_DEBUG_VIEW symbol controls debugging output from the remaining part of the driver.

TIP903 - 3 Channel extended CAN Bus IP - version 1.2.3 (2010-11-25)

TIP903 : Probe new TIP903 mounted on <TEWS TECHNOLOGIES - (Compact)PCI
IPAC Carrier> at slot A

TIP903 : IP MEM Memory Space

00000000 : 01 00 61 61 01 00 FF FF FF FF FF F8 00 00 00 00

00000010 : 95 55 74 A0 00 20 00 00 00 00 00 00 00 00 00 00

00000020 : 56 55 02 00 24 00 00 80 40 00 00 00 00 00 40 00

00000030 : 56 55 00 05 04 00 00 00 00 00 02 00 00 00 00 00

00000040 : 55 55 00 34 95 40 00 00 00 00 00 00 00 00 00 00

00000050 : 56 55 00 00 00 00 08 00 80 00 00 82 00 00 00 00

00000060 : 55 55 00 10 00 00 40 00 08 00 00 02 00 00 00 FF

00000070 : 95 59 02 00 02 00 00 00 40 00 20 00 00 00 00 FF

00000080 : 55 55 12 00 02 10 00 00 40 00 00 00 00 42 40 FF

00000090 : 55 55 00 80 20 50 00 00 00 00 00 00 20 00 80 00

000000A0 : 55 55 08 08 00 00 08 04 00 00 00 00 00 00 00 00

000000B0 : 55 55 32 01 04 00 00 00 00 00 00 00 90 00 00 00

000000C0 : 55 65 61 34 10 40 08 00 00 00 00 04 80 00 00 FF

000000D0 : 55 55 A8 62 20 00 00 00 08 00 00 00 00 01 00 00

000000E0 : 55 69 00 34 00 40 04 00 00 00 00 00 40 00 00 00

000000F0 : 95 55 1D A4 07 20 00 00 00 04 10 00 00 00 00 FF

TIP903 : IP MEM Memory Space

00000100 : 01 00 61 61 01 00 FF FF FF FF FF F8 00 00 00 00

...

000001F0 : 95 55 40 53 D1 18 40 00 00 00 00 00 00 00 00 FF

TIP903 : IP MEM Memory Space

00000200 : 01 00 61 61 01 00 FF FF FF FF FF F8 00 00 00 00

...

000002F0 : 95 55 8E 96 AC 48 00 00 00 20 20 00 00 80 10 FF

TIP903-SW-82 - Linux Device Driver Page 40 of 40

If you have trouble with the driver please enable the debug output and send us a copy of the results.
The kernel context output is generated with “printk” and is appended to /var/log/messages or wherever
it’s piped in your system.

For debugging please run

tail –f /var/log/messages

at first and then install the driver.

	Introduction
	1.1	Device Driver
	1.2	IPAC Carrier Driver

	2	Installation
	2.1	Build and install the device driver
	2.2	Uninstall the device driver
	2.3	Install device driver into the running kernel
	2.4	Remove device driver from the running kernel
	2.5	Change Major Device Number
	2.6	Receive Queue Configuration

	3	Device Input/Output functions
	3.1	open()
	3.2	close()
	3.3	read()
	3.4	write()
	3.5	ioctl()
	3.5.1	T903_IOCSBITTIMING
	3.5.2	T903_IOCSSETFILTER
	3.5.3	T903_IOCGGETFILTER
	3.5.4	T903_IOCBUSON
	3.5.5	T903_IOCBUSOFF
	3.5.6	T903_IOCFLUSH
	3.5.7	T903_IOCGCANSTATUS
	3.5.8	T903_IOCSDEFRXBUF
	3.5.9	T903_IOCSDEFRMTBUF
	3.5.10	T903_IOCSUPDATEBUF
	3.5.11	T903_IOCTRELEASEBUF

	4	Debugging

