
Extending INFORMIX-
Universal Server:

User-Defined Routines

®

Version 9.1
March 1997
Part No. 000-3803

ii Extending INFORMIX-
Published by INFORMIX Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025-1032

Copyright 1981-1997 by Informix Software, Inc. or their subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

INFORMIX; INFORMIX-OnLine Dynamic Server; DataBlade

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

Adobe Systems Incorporated: PostScript

Sun Microsystems, Inc.: Solaris

All other marks or symbols are registered trademarks or trademarks of their respective owners.

Documentation Team: Diana Chase, Abby Knott, Dawn Maneval, Patrice O’Neill, Virginia Panlasigui

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
Universal Server: User-Defined Routines

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Organization of This Manual 3
Types of Users 4
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Database 5

Major Features 5
Documentation Conventions 5

Typographical Conventions 6
Icon Conventions 7

Additional Documentation 8
On-Line Manuals 8
Printed Manuals 9
Error Message Files 9
Documentation Notes, Release Notes, Machine Notes 10

Compliance with Industry Standards 10
Informix Welcomes Your Comments 11

Chapter 1 Overview of User-Defined Routines
What Is a User-Defined Routine? 1-3
Tasks That You Can Perform with UDRs 1-5

Encapsulate Multiple SQL Statements 1-6
Extend Functions for Built-In Data Types 1-7
Support New Data Types 1-10
Use as a Triggered Action 1-13
Restrict Access to a Table 1-14
Enforce Business Rules 1-14

Ways to Invoke User-Defined Routines 1-15

iv Extend
Chapter 2 Routine Overloading and Routine Resolution
What Is Routine Overloading? 2-3

The Routine Signature 2-4
The Routine-Resolution Process 2-7

Candidate List of Routines 2-8
Precedence List of Data Types 2-9

Built-In SQL Functions That You Can Overload 2-17
Operator-to-Function Binding 2-19

Chapter 3 Designing a User-Defined Routine
Designing the Routine Source 3-3

Naming Your Routine 3-4
Number of Arguments 3-5
Coding Standards 3-5

Shared Object Libraries 3-6
Creating a Shared Library 3-6
Loading a Shared Library into Memory 3-7
Replacing a Shared Object File 3-9

Registering External Routines 3-11
Registering an External Function 3-11
Registering an External Procedure 3-13
Registering an External Routine with Modifiers 3-14

Returning Multiple Values from External Functions 3-15
OUT Parameters and Statement Local Variables 3-15
Iterator Function 3-17

Privileges for Registering a Routine 3-19
Privileges for Executing a Routine 3-19
Privileges on Objects Associated with a Routine 3-21
Executing a Routine as DBA 3-22

Chapter 4 Debugging User-Defined Routines
Invoking a Routine 4-3

Invoking a Function with the EXECUTE statement 4-3
Invoking a Procedure with the EXECUTE statement 4-5
Invoking a Function with the CALL Statement 4-5
Invoking a Procedure with the CALL Statement 4-5
Invoking a Function in an Expression. 4-6

Private Installation 4-8
Installing and Registering DataBlade Modules 4-8
Debugging a DataBlade Module 4-9

Connecting to the Server from a Client 4-9
Loading the DataBlade Module 4-9
ing INFORMIX-Universal Server: User-Defined Routines

Identifying the Server Process 4-10
Starting the Debugger 4-11
Setting Breakpoints 4-11
Symbols in Shared Object Files 4-12

Chapter 5 Performance Considerations
SPL Considerations 5-3

SPL Compilation 5-4
SPL Execution 5-5
SPL Optimization 5-5
Updating Statistics for a UDR 5-7

Choosing a Virtual-Processor Class 5-8
CPU Virtual-Processor Class 5-8
User-Defined Virtual-Processor Class 5-9

Considerations for Parallel Execution of SPL Routines 5-11
Number of Virtual Processors (VPCLASS) 5-12

Memory Considerations 5-12
Stack-Size Considerations 5-12
Setting Stack Sizes for User-Defined Routines 5-13
Virtual-Memory Cache for Routines. 5-13

I/O Considerations 5-14
Isolate System Catalogs 5-15
Balance the I/O Activities 5-15

Index
Table of Contents v

Introduction

Introduction
About This Manual 3
Organization of This Manual 3
Types of Users 4
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Database 5

Major Features . 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Comment Icons 7
Feature and Product Icons. 7
Compliance Icons 8

Additional Documentation 8
On-Line Manuals 8
Printed Manuals 9
Error Message Files 9
Documentation Notes, Release Notes, Machine Notes 10

Compliance with Industry Standards 10

Informix Welcomes Your Comments 11

2 Extend
ing INFORMIX-Universal Server: User-Defined Routines

R ead this introduction for an overview of the information
provided in this manual and for an understanding of the documentation
conventions used.

About This Manual
Extending INFORMIX-Universal Server: User-Defined Routines explains how to
define your own functions and procedures for use in an INFORMIX-Universal
Server database. It describes common considerations for SPL routines and
external routines.

Organization of This Manual
This manual includes the following chapters:

■ This Introduction provides an overview of the manual and describes
the documentation conventions used.

■ Chapter 1, “Overview of User-Defined Routines,” describes user-
defined routines.

■ Chapter 2, “Routine Overloading and Routine Resolution,”
describes how you can define routines with the same name and how
Universal Server determines which routine to execute.

■ Chapter 3, “Designing a User-Defined Routine,” describes how to
create and register external user-defined routines.

■ Chapter 4, “Debugging User-Defined Routines,” describes how to
invoke and debug your routines.

■ Chapter 5, “Performance Considerations,” describes performance
considerations for user-defined routines.
Introduction 3

Types of Users
Types of Users
This manual is written for the experienced application developer who might
be creating application-specific routines for application end-users. This
developer should have more understanding of database theory than a client-
application developer.

This reader should have a thorough grasp of database theory, UNIX, C, and
SQL.

Software Dependencies
This manual assumes that you are using INFORMIX-Universal Server,
Version 9.1, as your database server.

In this manual, all instances of Universal Server refer to INFORMIX-Universal
Server.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the ISO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale(s). For instructions on
how to specify a nondefault locale, additional syntax, and other consider-
ations related to GLS locales, see the Guide to GLS Functionality.
4 Extending INFORMIX-Universal Server: User-Defined Routines

Demonstration Database
Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. Sample
command files are also included.

Many examples in Informix manuals are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.

The script that you use to install the demonstration database is called
dbaccessdemo7 and is located in the $INFORMIXDIR/bin directory. For a
complete explanation of how to create and populate the demonstration
database on your database server, refer to the DB-Access User Manual.

Major Features
The Introduction to each Version 9.1 product manual contains a list of major
features for that product. The Introduction to each manual in the Version 9.1
Informix Guide to SQL series contains a list of new SQL features.

Major features for Version 9.1 Informix products also appear in release notes.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix
manuals.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions
Introduction 5

Typographical Conventions
Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of feature-, product-, platform-,
or compliance-specific information.
6 Extending INFORMIX-Universal Server: User-Defined Routines

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Feature and Product Icons

Feature and product icons identify paragraphs that contain feature-specific
or product-specific information.

Icon Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.

Icon Description

Identifies information that is valid only if you are using
Informix Stored Procedure Language (SPL).

Identifies information that is specific to the
INFORMIX-ESQL/C.

SPL

E/C
Introduction 7

Additional Documentation
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature- or product-specific
information.

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ Error message files

■ Documentation notes, release notes, and machine notes

On-Line Manuals
A CD that contains Informix manuals in electronic format is provided with
your Informix products. You can install the documentation or access it
directly from the CD. For information about how to install, read, and print on-
line manuals, see either the installation guide for your product or the instal-
lation insert that accompanies the documentation CD.

Icon Description

Identifies information that is specific to an ANSI-compliant
database.

ANSI
8 Extending INFORMIX-Universal Server: User-Defined Routines

Printed Manuals
The documentation set that is provided on the CD describes Universal Server,
its implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

Printed Manuals
The Universal Server documentation set describes Universal Server, its
implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com.

Please provide the following information:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number

Error Message Files
Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To read the error messages in the
ASCII file, Informix provides scripts that let you display error messages on
the screen (finderr) or print formatted error messages (rofferr). For a detailed
description of these scripts, see the Introduction to the Informix Error Messages
manual.
Introduction 9

Documentation Notes, Release Notes, Machine Notes
Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following on-line files, located in
the $INFORMIXDIR/release/en_us/0333 directory, supplement the infor-
mation in this manual.

Please examine these files because they contain vital information about
application and performance issues.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992, on INFORMIX-Universal Server. In addition, many features
of Universal Server comply with the SQL-92 Intermediate and Full Level and
X/Open SQL CAE (common applications environment) standards.

On-Line File Purpose

EXTUDRDOC_9.1 The documentation-notes file describes features that are not
covered in this manual or that have been modified since
publication.

SERVERS_9.1 The release-notes file describes feature differences from earlier
versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

IUNIVERSAL_9.1 The machine-notes file describes any special actions that are
required to configure and use Informix products on your
computer. Machine notes are named for the product described.
10 Extending INFORMIX-Universal Server: User-Defined Routines

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send email, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:

415-926-6571

We appreciate your feedback.
Introduction 11

1
Chapter
Overview of User-Defined
Routines
What Is a User-Defined Routine? 1-3

Tasks That You Can Perform with UDRs 1-5
Encapsulate Multiple SQL Statements 1-6

Simplify Writing Programs 1-6
Improve Performance of Multiple SQL Statements 1-6

Extend Functions for Built-In Data Types 1-7
SQL-Invoked Functions 1-7
Casting functions 1-8
Operator Class Functions 1-8

Support New Data Types 1-10
SQL-Invoked Functions 1-10
Support Functions 1-10
Operator Class Functions 1-11
Casting Functions 1-12
Operator Binding. 1-13

Use as a Triggered Action 1-13
Restrict Access to a Table 1-14
Enforce Business Rules 1-14

Ways to Invoke User-Defined Routines 1-15

1-2 Exte
nding INFORMIX-Universal Server: User-Defined Routines

This chapter introduces user-defined routines (UDRs) and covers the
following topics:

■ What is a user-defined routine?

■ Tasks that you can perform with UDRs

■ Ways to invoke UDRs

What Is a User-Defined Routine?
A user-defined routine (UDR) is a routine that you create and register in the
system catalog tables and that you invoke within an SQL statement or
another routine.

A UDR can be either a function or a procedure. A function is a routine that
optionally accepts a set of arguments and returns a set of values. A function
can be used in SQL expressions. A procedure is a routine that optionally
accepts a set of arguments and does not return any values. A procedure
cannot be used in SQL expressions because it does not return a value.
Overview of User-Defined Routines 1-3

What Is a User-Defined Routine?
Figure 1-1 shows the different types of user-defined routines.

Figure 1-1
Types of User-Defined Routines

Procedures

Routines

Functions

User-defined routines

SPL functions

C functions

SPL procedures

C procedures

SPL routines External routines
1-4 Extending INFORMIX-Universal Server: User-Defined Routines

Tasks That You Can Perform with UDRs
The database server provides the following kinds of routines:

■ Informix Stored Procedure Language (SPL) routines

The body of an SPL routine contains SQL statements and flow control
statements for looping and branching. SPL provides the flow control
extensions to SQL.

Because routines written in SQL are parsed, optimized as far as
possible, and then stored in the system catalog tables in executable
format, consider using an SPL routine for SQL-intensive tasks. For
more information on how to write an SPL routine, refer to the
Informix Guide to SQL: Tutorial.

■ External routines

The body of an external routine contains statements from a
supported language (for example, C language) other than SPL.
External routines typically perform operations on user-defined data
types. For more information on how to write an external routine,
refer to the DataBlade API Programmer’s Manual.

SPL routines can execute routines written in C or other external languages,
and external routines can execute SPL routines.

Tasks That You Can Perform with UDRs
You can write user-defined routines to accomplish the following tasks:

■ Encapsulate multiple SQL statements

■ Extend functions on built-in data types

■ Support new data types

■ Create triggered actions for multiple applications

■ Restrict who can read data, change data, or create objects

Routines also can accomplish tasks that address new technologies, including
the following:

■ Manipulate large objects

■ Facilitate interactive multimedia publication
Overview of User-Defined Routines 1-5

Encapsulate Multiple SQL Statements
■ Collect data from Internet and Intranet end users

■ Search graphical data

Encapsulate Multiple SQL Statements
You create an SPL routine to simplify writing programs or to improve perfor-
mance of SQL-intensive tasks.

Simplify Writing Programs

An SPL routine can batch frequently performed tasks that require several SQL
statements. SPL offers program control statements that extend what SQL can
accomplish alone. You can test database variables in an SPL routine and
perform the appropriate actions for the values the routine finds.

By encapsulating several statements in a single routine that the database
server can call by name, you reduce program complexity. Different programs
that use the same code can execute an SPL routine or external routine, so you
need not include the same code in each program. The code is stored in only
one place, eliminating duplicate code.

SPL routines are especially helpful in a client/server environment. If a change
is made to application code, it must be distributed to every client computer.
An SPL routine resides on the server computer, so the change is made in only
one location.

 Instead of centralizing database code in client applications, you create SPL
routines to move this code to the database server. This separation allows
applications to concentrate on user-interface interaction, which is especially
important if multiple types of user interfaces are required. ♦

Improve Performance of Multiple SQL Statements

Because an SPL routine contains native database language that the database
server parses and optimizes as far as possible when you create the routine,
rather than at runtime, SPL routines can improve performance for some tasks.
SPL routines can also reduce the amount of data transferred between a client
application and the database server.

SPL
1-6 Extending INFORMIX-Universal Server: User-Defined Routines

Extend Functions for Built-In Data Types
For more information on performance considerations for SPL routines, refer
to Chapter 5, “Performance Considerations.”

Tip: Not all the encapsulated SPL that you created as SPL procedures in earlier
Informix products has the properties currently associated with procedures. If the SPL
routine returns a value, you now refer to it as an SPL function. If the SPL routine does
not return a value, you still refer to it as an SPL procedure.

Extend Functions for Built-In Data Types
Universal Server provides the following types of routines for built-in data
types:

■ SQL functions

■ Casting functions

■ Operator class functions

SQL-Invoked Functions

An SQL-invoked function is a routine that end users can specify within an
SQL statement to operate on a data type. SQL-invoked functions on built-in
data types can be one of the following:

■ Operator functions

An operator function is a user-defined function that has a corre-
sponding operator symbol (such as '=' and '+'). These operator
symbols are used within expressions in an SQL statement. For more
information on operator functions, refer to Chapter 2 of Extending
INFORMIX-Universal Server: Data Types.

■ Built-in functions such as cos(), sin(), and tan()

Universal Server provides built-in functions that provide some basic
mathematical operations. Universal Server provides versions of the
built-in functions that handle the built-in data types. You can write a
new version of a built-in function to allow the function to operate on
your new data type.

For more information on the built-in functions, see the Expression
segment in Chapter 1 of the Informix Guide to SQL: Syntax.
Overview of User-Defined Routines 1-7

Extend Functions for Built-In Data Types
Casting functions

Universal Server provides system-defined casts that perform automatic
conversions between certain built-in data types. For more information on
these system-defined casts, refer the Informix Guide to SQL: Reference.

You cannot create user-defined casts to allow conversions between two built-
in data types for which a system-defined cast does not currently exist. For
more information on when you would want to write new casting functions,
refer to“Casting Functions” on page 1-12.

Operator Class Functions

An operator class is the set of operators that Universal Server associates with
a secondary access method for query optimization and building the index. A
secondary access method (sometimes referred to as an index access method) is
a set of server functions that build, access, and manipulate an index structure
such as a B-tree, an R-tree, or an index structure that a DataBlade module
provides.

Two types of functions make up the operator class for the secondary access
method:

■ Strategy functions

Strategy functions are functions that end users can invoke within an
SQL statement to operate on a data type. End users can invoke a
strategy function by its operator symbol (such as > or =) or by its
name (such as contains or within).

■ Support functions

Support functions are functions that the secondary access method uses
internally to build and search the index.
1-8 Extending INFORMIX-Universal Server: User-Defined Routines

Extend Functions for Built-In Data Types
You can write new operator class functions if you want to do the following:

■ Use a different ordering scheme than the order provided by the
default operator classes

Universal Server provides the strategy and support functions for the
default operator class (sometimes referred to as an opclass) for the B-
tree index access methods. For more information on the syntax to
register operator classes, refer to the CREATE OPCLASS statement in
Chapter 1 of the Informix Guide to SQL: Syntax.

If a DataBlade module provides an index access method, it might
also provide a default operator class with the strategy and support
functions. For more information on functions that a specific
DataBlade module provides, refer to the user guide for that
DataBlade module.

■ Use a set of operators that is different from any existing opclasses
with an index access method

The query optimizer uses an operator class to determine if an index
can be considered in the cost analysis of query plans. The query
optimizer can consider use of the index for the given query when the
following conditions are true:

❑ An index exists on the particular column or columns in the
query.

❑ For the index that exists, the operation on the column or columns
in the query matches one of the strategy functions in the operator
class associated with the index.

For more information on optimizing queries with user-defined
routines, refer to “SPL Optimization” on page 5-5.

For more information on operator classes, refer to Chapter 3 of Extending
INFORMIX-Universal Server: Data Types.
Overview of User-Defined Routines 1-9

Support New Data Types
Support New Data Types
When you create a new data type, you must provide the following:

■ SQL-invoked functions that users specify explicitly in SQL statements

■ Support routines that the database server invokes implicitly to
operate on these types

■ Cast routines that the server can invoke implicitly or that users can
specify explicitly in SQL statements to convert data from one type to
another

■ Operator class functions if you want to use a different ordering
scheme than the order that the default operator class provides.

SQL-Invoked Functions

An SQL-invoked function is a routine that end users can specify within an
SQL statement to operate on a data type. SQL-invoked functions can be one of
the following:

■ Operator functions that have a symbol (such as = and +)

■ Built-in functions (such as cos(), sin(), and tan())

■ Function names that you use in an SQL statement to operate on one
or more data columns (such as contains)

Support Functions

If you define a new opaque data type, you also provide support routines that
enable the server to operate on the type. Universal Server requires some
routines, and others are optional. The following list shows the standard
routines that you define to support opaque data types:

■ Text input and output routines

■ Binary Send and Receive routines

■ Text Import and Export routines

■ Binary Import and Export routines

■ LessThan routine
1-10 Extending INFORMIX-Universal Server: User-Defined Routines

Support New Data Types
■ Hash routine

■ Assign and Destroy routines

For more information on the support routines for opaque data types, refer to
Extending INFORMIX-Universal Server: Data Types.

Operator Class Functions

“Operator Class Functions” on page 1-8 explains what an operator class is
and describes the functions associated with an operator class.

When you create a new opaque data type, you write new operator class
functions to do the following:

■ Order the new data type with the ordering scheme that the default
operator class provides.

Because of routine overloading, these functions can have the same
name as the functions in the default operator class. For more infor-
mation on routine overloading, refer to “What Is Routine
Overloading?” on page 2-3.

■ Tell the query optimizer which user-defined functions that appear in
an SQL statement can be processed with a given secondary access
method

These functions are called the strategy functions for the operator class.

For more information on the routines for operator classes, refer to Extending
INFORMIX-Universal Server: Data Types.
Overview of User-Defined Routines 1-11

Support New Data Types
Casting Functions

You can create user-defined casts to perform conversions between most data
types, including opaque types, distinct types, row types, and built-in types.
For example, you can define casts for any of the following user-defined data
types:

■ Opaque data types. Developers of opaque data types must define
cast functions to handle conversions between the internal and
external representations of the opaque type. For information about
how to create and register casts for opaque data types, see the
Extending INFORMIX-Universal Server: Data Types manual.

■ Distinct data types. A routine cannot directly compare a distinct
type to its source type. However, Universal Server automatically
registers explicit casts from the distinct type to the source type and
vice versa. Although a distinct type inherits the casts and functions
of its source type, the casts and functions that you define on a distinct
type are not available to its source type.

You can create user-defined casts on distinct types. For information
and examples that show how to create and use casts on distinct
types, see the Informix Guide to SQL: Tutorial.

■ Named row types. You can create casts to convert a named row data
type to another type. For information about casting between named
row types and unnamed row types, see the Informix Guide to SQL:
Tutorial.

In addition, you might want to define a new casting function to do the
following:

■ Ensure that the database server invokes the correct routine for the
data type that a user might specify when invoking an overloaded
function

For more information on casting and routine resolution, refer to
“Routine Resolution with Casts” on page 2-14.

■ Ensure that the query optimizer considers an index defined on
column that might be specified in the filter of a query

For more information on how to create and register casts on extended data
types, refer to the Extending INFORMIX-Universal Server: Data Types manual.
1-12 Extending INFORMIX-Universal Server: User-Defined Routines

Use as a Triggered Action
Operator Binding

Operator binding is the implicit invocation of an operator function when an oper-
ator symbol is used in an SQL statement. Universal Server implicitly maps a
built-in operator function name to a built-in operator.

For example, suppose you create a data type that represents Scottish names,
and you want to order the data type in a different way than the U.S. English
collating sequence. You might want the names McDonald and MacDonald to
appear together on a phone list. The default operators (for example, =) for
character strings do not achieve this ordering.

To order Mc and Mac in the same way, you must create external functions that
contain code that treats Mc and Mac the same. You can use the same function
names as in the default operator class, btree_ops, so that the SQL user does
not need to specify one function name to handle regular names and a
different function name for Scottish names.

Function overloading is the ability to use the same name for multiple functions
to handle different data types. Universal Server uses the external function
because the CREATE TABLE statement specifies the Scottish names data type
for the column. For more information on function overloading, refer to
“What Is Routine Overloading?” on page 2-3.

Use as a Triggered Action
An SQL trigger is a database mechanism that executes an action automatically
when a certain event occurs. The event that can trigger an action can be an
INSERT, DELETE, or UPDATE statement on a specific table. The table on which
the triggered event operates is called the triggering table.

An SQL trigger is available to any user who has permission to use it. When the
trigger event occurs, the database server executes the trigger action.The
actions can be any combination of one or more INSERT, DELETE, UPDATE,
EXECUTE PROCEDURE, or EXECUTE FUNCTION statements.

Because a trigger resides in the database and anyone who has the required
privilege can use it, a trigger lets you write a set of SQL statements that
multiple applications can use. It lets you avoid redundant code when
multiple programs need to perform the same database operation. By
invoking triggers from the database, a DBA can ensure that data is treated
consistently across application tools and programs.
Overview of User-Defined Routines 1-13

Restrict Access to a Table
You can use triggers to perform the following actions as well as others that
are not found in this list:

■ Create an audit trail of activity in the database

For example, you can track updates to the orders table by updating
corroborating information in an audit table.

■ Implement a business rule

For example, you can determine when an order exceeds a customer’s
credit limit and display a message to that effect.

■ Derive additional data that is not available within a table or within
the database

For example, when an update occurs to the quantity column of the
items table, you can calculate the corresponding adjustment to the
total_price column.

For more information on triggers, refer to the Informix Guide to SQL: Tutorial.

Restrict Access to a Table
SPL routines offer the ability to restrict access to a table. For example, if an
administrator grants insert permissions to a user, that user can insert a row
using INFORMIX-Connect, DB-Access, or an application program. This
situation could be a problem if an administrator wants to enforce any
business rules (see the next section).

Rather than granting insert privileges, an administrator can force users to
execute a routine to perform the insert.

Enforce Business Rules
Using the extra level of security that SPL routines provide, you can enforce
business rules. For example, you might have a business rule that a row must
first be archived before it is deleted. You can write an SPL routine that accom-
plishes both tasks and prohibits users from directly accessing the table.
1-14 Extending INFORMIX-Universal Server: User-Defined Routines

Ways to Invoke User-Defined Routines
Ways to Invoke User-Defined Routines
You can execute an external procedure and an SPL procedure using the
EXECUTE PROCEDURE statement from the following:

■ SPL

■ DB-Access

■ ESQL/C

You cannot use a procedure in an SQL expression because a procedure does
not return a value.

You can execute an external function and an SPL function from the following:

■ SPL

■ DB-Access

■ ESQL/C by using the EXECUTE FUNCTION statement

■ An SQL expression (in the SELECT clause or WHERE clause).

The database server can invoke a UDR implicitly for two reasons:

■ Built-in operator binding

■ Implicit casting

For more information on how to invoke user-defined routines, refer to
“Invoking a Routine” on page 4-3.
Overview of User-Defined Routines 1-15

2
Chapter
Routine Overloading and
Routine Resolution
What Is Routine Overloading? 2-3
The Routine Signature 2-4

Specifying a Routine During Creation 2-5
Using the Optional Specific Name 2-6
Specifying Overloaded Routines During Invocation 2-7

The Routine-Resolution Process 2-7
Candidate List of Routines 2-8
Precedence List of Data Types 2-9

Routine Resolution Within a Type Hierarchy 2-10
Routine Resolution with Distinct Data Types 2-11
Precedence List for Built-In Data Types 2-13
Routine Resolution with Casts 2-14
Null Arguments in Overloaded Routines 2-15

Built-In SQL Functions That You Can Overload 2-17

Operator-to-Function Binding 2-19

2-2 Exte
nding INFORMIX-Universal Server: User-Defined Routines

This chapter discusses the following topics:

■ Routine overloading

■ Routine resolution

■ Specifying arguments in overloaded routines

■ Built-in SQL functions that you can overload

■ Operator to function binding

What Is Routine Overloading?
Routine overloading refers to the ability to assign one name to multiple
routines and specify different types of arguments on which the routines can
operate. The advantage of routine overloading is that you do not need to
invent a different name for a function that performs the same task for
different arguments.

With Universal Server, you can have more than one routine with the same
name but different parameter lists, as in the following situations:

■ You create a routine with the same name as a built-in function (such
as equal()) to process a new user-defined data type.

■ You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

■ You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit functions from their source types.
Routine Overloading and Routine Resolution 2-3

The Routine Signature
For example, you might create each of the following routines to calculate the
area of different data types (each data type represents a different geometric
shape):

CREATE FUNCTION area(arg1 circle) RETURNING DECIMAL...
CREATE FUNCTION area(arg1 rectangle) RETURNING DECIMAL....
CREATE FUNCTION area(arg1 polygon) RETURNING DECIMAL....

In this way, you can overload a routine so that you have a customized area()
routine for every data type that you want to evaluate. When a routine has
been overloaded, the database server can execute different routines that have
the same name. However, the database server cannot uniquely identify an
overloaded routine by its name alone.

The Routine Signature
Due to routine overloading, the database server might not be able to uniquely
identify a routine by its name alone. The database server uniquely identifies
an overloaded routine by its signature. The routine signature includes the
following information:

■ The type of routine (procedure or function)

■ The routine name

■ The number of parameters

■ The data types of the parameters

■ The order of the parameters

■ The owner name (ANSI database only)

You use the routine signature in SQL statements when you perform DBA tasks
(DROP, GRANT, REVOKE, and UPDATE STATISTICS) on routines. The signature
identifies the routine on which to perform the DBA task.
2-4 Extending INFORMIX-Universal Server: User-Defined Routines

The Routine Signature
For example, the statement shown in Figure 2-1 uses a routine signature.

Important: The signature of a routine does not include return types. Consequently,
you cannot create two functions that have the same signature but different return
types.

In a database that is not ANSI compliant, the routine signature must be
unique within the entire database, irrespective of the owner. If you explicitly
qualify the routine name with your owner name, the signature includes your
owner name as part of the routine name.

In an ANSI-compliant database, the routine signature must be unique within
the user’s name space. The routine name always begins with the owner, in
the format <owner>.<routine name>. ♦

Specifying a Routine During Creation

You establish the routine signature when you create a function or procedure
with the CREATE FUNCTION or CREATE PROCEDURE statements. When you
create a function or procedure, you also specify the argument names.

For example, the following CREATE FUNCTION statement registers an
equal() function that was written to take two arguments, arg1 and arg2, of
data type udtype1 and return a single value of the data type BOOLEAN:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)
RETURNING BOOLEAN
EXTERNAL NAME
"/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)"
LANGUAGE C
END FUNCTION;

Figure 2-1
Example of Routine Signature

DROP PROCEDURE append (SET, INT)

Type of routine Routine name Parameter order and data type

ANSI
Routine Overloading and Routine Resolution 2-5

The Routine Signature
Using the Optional Specific Name

You can assign a specific name to a particular signature of a routine. You can
use the unique specific name as a shorthand identifier to refer to a particular
overloaded variation of a routine. You can use the specific name instead of
the full signature in the following SQL statements:

■ DROP

■ GRANT

■ REVOKE

■ UPDATE STATISTICS

A specific name can be up to 18 characters long and is unique in the database.
Two routines in the same database cannot have the same specific name, even
if they have different owners. To assign a unique name to an overloaded
routine with a particular data type, use the SPECIFIC keyword when you
create the routine. You specify the specific name, in addition to the routine
name, in the CREATE PROCEDURE or CREATE FUNCTION statement.

Figure 2-2 shows how to define the specific name eq_udtype1 in a CREATE
FUNCTION statement that creates the equal() function.

Figure 2-2
CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)
RETURNING BOOLEAN

SPECIFIC eq_udtype1
EXTERNAL NAME
"/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)"
LANGUAGE C
END FUNCTION;

Now you can refer to the routine defined in Figure 2-2 with either the routine
signature or the specific name. The following sample DDL statement specifies
the routine by its signature:

GRANT EXECUTE ON equal(udtype1, udtype1) to mary

The following example specifies the routine defined in Figure 2-2 with the
SPECIFIC keyword and the specific name:

GRANT EXECUTE ON SPECIFIC eq_udtype1 to mary
2-6 Extending INFORMIX-Universal Server: User-Defined Routines

The Routine-Resolution Process
Specifying Overloaded Routines During Invocation

When you invoke an overloaded routine, you must specify an argument list
for the routine. If you invoke an overloaded routine by the routine name only,
the routine-resolution process fails because the database server cannot
uniquely identify the routine without the arguments

For example, the following SQL statement shows how you can invoke the
equal function for a new data type, udtype1:

SELECT ... FROM employee
WHERE equal(col1_udtype1,col2_udtype1) ...

You can also invoke the equal function as in the following examples:

EXECUTE FUNCTION equal(arg1_udtype1,arg2_udtype1) INTO result
CALL equal(arg1_udtype1,arg2_udtype1) RETURNING boolean...

For more information on invoking a routine through an SQL expression, the
EXECUTE statement, and the CALL statement, refer to “Invoking a Routine”
on page 4-3.

Alternatively, you can invoke the equal function with an argument on either
side of the function symbol. For more information, refer to “Operator-to-
Function Binding” on page 2-19.

The Routine-Resolution Process
Routine resolution refers to the process in which the database server deter-
mines which routine to execute when you overload a routine. The database
server invokes routine resolution implicitly when a routine is invoked by a
user or another routine. You need to understand the routine-resolution
process to:

■ obtain the data results that you expect from a routine.

■ avoid corrupting data if the wrong routine executes.

■ understand when you need to write an overloaded routine.
Routine Overloading and Routine Resolution 2-7

Candidate List of Routines
When a user or another routine invokes a routine, the database server
searches for a signature that matches the routine name and arguments. If the
database contains a routine with a matching signature, the database server
executes this routine. If no exact match exists, the database server searches for
a routine to substitute.

When several arguments are passed to a routine, the database server first
tries to match the leftmost argument. The database server checks for a
candidate routine that has the same data type as the leftmost argument. If no
exact match exists for the first argument, the database server searches the
candidate list of routines using a precedence order of data types.

The database server continues matching the arguments from left to right.

Candidate List of Routines
The database server finds a list of candidate routines from the sysprocedures
system catalog that match the following:

■ Invoked routine name

■ Routine type (function or procedure)

■ Number of arguments

Important: The candidate list contains only routines for which the current session
has EXECUTE permission.

In an ANSI-compliant database, the candidate list contains only routines that
belong to the current user and the user informix.♦

ANSI
2-8 Extending INFORMIX-Universal Server: User-Defined Routines

Precedence List of Data Types
Precedence List of Data Types
To determine which routine in the candidate list might be appropriate to an
argument type, the database server builds a precedence list of data types for
the argument.The routine-resolution process uses the following precedence
order to match the data types of arguments in the list of candidate routines:

1. Data type of the argument passed to a routine

2. If an argument passed to a routine is a subtype in a type hierarchy,
Universal Server checks up the type hierarchy tree for a routine to
execute. For more information, refer to “Routine Resolution Within a
Type Hierarchy” on page 2-10.

3. If an argument passed to a routine is a distinct type, Universal Server
checks the source type for a routine to execute. If the source type is
itself a distinct type, Universal Server checks the source type of that
distinct type. For more information, refer to “Routine Resolution
with Distinct Data Types” on page 2-11.

4. If an argument passed to a routine is a built-in type, Universal Server
checks the candidate list for a data type in the built-in data type
precedence list for the passed argument. For more information on
the precedence of each built-in data type, refer to “Precedence List
for Built-In Data Types” on page 2-13.

If a match exists in this built-in data type precedence list, the
database server searches for an implicit cast function.

5. The database server adds implicit casts of the data types in steps 1
through 4 to the precedence list, in the order that the data types were
added.

For more information, refer to “Routine Resolution with Casts” on
page 2-14.

6. If an argument passed to a routine is a collection type, Universal
Server adds the generic type of the collection to the precedence list
for the passed argument.

If no qualifying routine exists, the database server returns an error message.

-674: Routine routine-name not found.
Routine Overloading and Routine Resolution 2-9

Precedence List of Data Types
If the routine-resolution process locates more than one qualifying routine, the
database server returns an error message.

-9700: Routine routine-name cannot be resolved.

Routine Resolution Within a Type Hierarchy

A type hierarchy is a relationship that you define among named row types in
which subtypes inherit representation (data fields) and behavior (routines,
operators, rules) from a named row above it (supertype) and can add
additional fields and routines. The subtype can add additional data attributes
and behavior to those inherited from the supertype.

Figure 2-3 shows the CREATE statements to define a sample hierarchy.

Figure 2-3
Sample Data Type Hierarchy

CREATE ROW TYPE emp
(name varchar(30),
 age int,
 salary numeric(10,2));

CREATE ROW TYPE trainee UNDER emp ...
CREATE ROW TYPE student_emp (gpa float) UNDER trainee;

When a data type in the argument list does not match the data type of the
parameter in the same position of the routine signature, the database server
searches for a routine with a parameter in the same position that is the closest
supertype of that argument.

For example, suppose you create an overload function, bonus(), for the
sample type hierarchy in Figure 2-3. You create the bonus() function on the
root supertype and a subtype and invoke the bonus() function with the
following statements:

CREATE FUNCTION bonus (emp,int) RETURNS numeric(10,2) ...
CREATE FUNCTION bonus(trainee,float) RETURNS numeric(10,2)...
EXECUTE FUNCTION bonus(student_emp, int);
2-10 Extending INFORMIX-Universal Server: User-Defined Routines

Precedence List of Data Types
The routine-resolution process goes through the following steps:

1. Processes the leftmost argument first.

a. Looks for a candidate routine named bonus with a row type
parameter of student_emp.

No candidate routines exist with this parameter, so the database
server continues with the next data type precedence, as
described in “Precedence List of Data Types” on page 2-9.

b. Because student_emp is a subtype of trainee, the database
server looks for a candidate routine with a parameter of type
trainee in the first position.

The second function, bonus(trainee,float), matches the first
argument in the routine invocation.

2. The database server processes the second argument next.

a. Looks for a candidate routine with a second parameter of data
type integer.

The matching candidate routine from step 1b above has a second
parameter of data type float. Therefore, the database server
continues with the next data type precedence as described in
“Precedence List of Data Types” on page 2-9.

b. Because the second parameter is a built-in data type, the
database server goes to the precedence list in Figure 2-5 on
page 2-13.

The database server searches the candidate list of routines for a
parameter that matches one of the data types listed in prece-
dence list for the integer data type.

c. Because a built-in cast exists from the integer to float data types,
the database server casts the integer argument to float before the
execution of the bonus function.

3. Because of the left-to-right rule for processing the arguments, the
database server executes the second function, bonus(trainee,float).

Routine Resolution with Distinct Data Types

A distinct data type has the same internal storage representation as an existing
data type, but it has a different name and cannot be compared to the source
type without casting. Distinct types inherit functions from their source types.
Routine Overloading and Routine Resolution 2-11

Precedence List of Data Types
When a distinct data type in the argument list does not match the data type
of the parameter in the same position of the routine signature, the database
server searches for a routine that accepts the source type in the position of
that argument. If the source type is itself a distinct type, the database server
checks the source type of that distinct type.

The candidate list can contain a routine with an argument that is the source
type of the invoked routine argument. However, if the source type is not in
the precedence list for that data type, then the routine-resolution process
eliminates that candidate.

For example, suppose you create the following distinct data types and table:

CREATE DISTINCT TYPE pounds AS int;
CREATE DISTINCT TYPE stones AS int;
CREATE TABLE test(p pounds, s stones);

Figure 2-4 shows a sample query that an SQL user might execute.

Figure 2-4
Sample Distinct Type Invocation

SELECT * FROM test WHERE p=s;

Although the source data types of the two arguments are the same, this query
fails because p and s are different distinct data types.

Important: The routine-resolution process cannot match two different distinct
types.

The database server chooses the built-in equals function when you explicitly
cast the arguments, as the following query shows:

SELECT * FROM test WHERE p::int = s::int;

You can also write and register the following additional functions to allow
the SQL user to use the SELECT statement in Figure 2-4:

■ An overloaded function equals(pounds,stones) to handle the two
distinct data types. The advantage of creating an overloaded equals
function is that the SQL user does not need to know that these are
new data types that require explicitly casting.

■ Implicit cast functions from the data type pounds to stones and
stones to int.
2-12 Extending INFORMIX-Universal Server: User-Defined Routines

Precedence List of Data Types
Precedence List for Built-In Data Types

If a routine invocation contains a data type that is not included in the
candidate list of routines, the database server tries to find a candidate routine
that has a parameter contained in the precedence list for the data type.
Figure 2-5 lists the precedence for the built-in data types when an argument
in the routine invocation does not match the parameter in the candidate list.

Figure 2-5
Precedence of Built-In Data Types

Data Type Precedence List

CHAR VARCHAR, LVARCHAR

VARCHAR LVARCHAR

NCHAR NVARCHAR

NVARCHAR None

SMALLINT INT, INT8, DECIMAL, SMALLFLOAT, FLOAT

INT INT8, DECIMAL, SMALLFLOAT, FLOAT, SMALLINT

INT8 DECIMAL, SMALLFLOAT, FLOAT, INT, SMALLINT

SERIAL INT, INT8, DECIMAL, SMALLFLOAT, FLOAT, SMALLINT

SERIAL8 INT8, DECIMAL, SMALLFLOAT, FLOAT, INT, SMALLINT

DECIMAL SMALLFLOAT, FLOAT, INT8, INT, SMALLINT

SMALLFLOAT FLOAT, DECIMAL, INT8, INT, SMALLINT

FLOAT SMALLFLOAT, DECIMAL, INT8, INT, SMALLINT

MONEY DECIMAL, SMALLFLOAT, FLOAT, INT8, INT, SMALLINT

DATE None

DATETIME None

INTERVAL None

BYTE None

TEXT None
Routine Overloading and Routine Resolution 2-13

Precedence List of Data Types
Figure 2-6 shows sample overloaded test functions and a query that invokes
the test function. This query invokes the function with a DECIMAL argument,
test(2.0). Because a test function for a DECIMAL argument does not exist, the
routine-resolution process checks for the existence of a test function for each
data type shown in the precedence list in Figure 2-5 on page 2-13.

Figure 2-6 shows the order in which the database server performs a search for
the overloaded function, test(). The database server searches for a qualifying
test() function that takes a single argument of type INT.

Routine Resolution with Casts

If the candidate list does not contain a routine with the same data type as an
argument specified in the routine invocation, the database server might
convert the argument to a different data type. The database server checks for
the existence of cast routines that implicitly can convert the argument to a
data type of the parameter of the candidate routines.

Figure 2-6
Example of Data Type Precedence During Routine Resolution

 test(x INTEGER)

 test(x INT8)

test(x SMALLFLOAT)

Start routine search.

End routine search.

CREATE FUNCTION test(arg1 INT) RETURNING INT...
CREATE FUNCTION test(arg1 MONEY) RETURNING MONEY....
CREATE TABLE mytab

(a real, ...
SELECT * FROM mytab

WHERE a=test(2.0);

test(x FLOAT)
2-14 Extending INFORMIX-Universal Server: User-Defined Routines

Precedence List of Data Types
For example, suppose you create the following two casts and two routines:

CREATE IMPLICIT CAST (foo AS bar)
CREATE IMPLICIT CAST (bar AS foo)
CREATE FUNCTION g(foo, foo) ...
CREATE FUNCTION g(bar, bar) ...

Suppose you invoke function g with the following statement:

EXECUTE FUNCTION g(foo, bar);

The database server considers both functions as candidates. The routine-
resolution process selects the function g(foo,foo) because of the left-to-right
rule. The database server executes the second cast, cast(bar AS foo), to
convert the second argument before the function g(foo,foo) executes.

Because the database server performs implicit casts during routine
resolution, a different routine than the one that the user expects might
execute. For example, suppose the database has the following two routines
named func():

func(arg1 INT)
func(arg1 DECIMAL)

If a user wants to invoke func(10.0) but accidentally invokes func(10), the
func() routine that accepts an INT argument executes instead of the func()
that accepts a DECIMAL argument. The value returned from the function for
INT might corrupt the user’s data.

Tip: Consider the order in which the database casts data and resolves routines as part
of your decision to overload a routine.

Null Arguments in Overloaded Routines

The database server might return an error message when you call a routine
and both of the following conditions are true:

■ The argument list of the routine contains a null value.

■ The routine invoked is an overloaded routine.
Routine Overloading and Routine Resolution 2-15

Precedence List of Data Types
Suppose you create the following functions in SPL or C language. (If the
functions are external functions, you must use the HANDLESNULLS modifier
to specify that each function can handle null arguments.)

CREATE FUNCTION foo(arg1 INT, arg2 INT) RETURNS BOOLEAN...
CREATE FUNCTION foo(arg1 MONEY, arg2 INT) RETURNS BOOLEAN...
CREATE FUNCTION foo(arg1 REAL, arg2 INT) RETURNS BOOLEAN...

The following statement creates a table, new_tab:

CREATE TABLE new_tab (col_int INT);

The following query is successful because the database server locates only
one foo() function that matches the function argument in the expression:

SELECT *
FROM new_tab
WHERE foo(col_int, NULL) = "t";

The null value acts as a wildcard for the second argument and matches the
second parameter type for each function foo() defined. The only foo()
function with a leftmost parameter of type INT qualifies as the function to
invoke.

If more than one qualifying routine exists, the database server returns an
error. The following query returns an error because the database server
cannot determine which foo() function to invoke. The null value in the first
argument matches the first parameter of each function; all three foo()
functions expect a second argument of type INT.

SELECT *
FROM new_tab
WHERE foo(NULL, col_int) = "t";

To avoid ambiguity, use null values as arguments carefully.
2-16 Extending INFORMIX-Universal Server: User-Defined Routines

Built-In SQL Functions That You Can Overload
Built-In SQL Functions That You Can Overload
Universal Server provides special built-in SQL functions that provide some
basic mathematical operations. You can overload most built-in SQL functions.
For example, you might want to create a sin() function on a new data type
that represents complex numbers.

Figure 2-7 provides the full list of built-in SQL functions that you can
overload. A user might create a function with the same name as one from this
table, but its routine signature must be unique in the database (non-ANSI) or
the schema (ANSI). For more information on a routine signature, refer to “The
Routine Signature” on page 2-4.

Figure 2-7
Built-In SQL Functions That You Can Overload

Built-In SQL
Function Names

Number of
Parameters Parameter Types

abs() 1 real number

mod() 2 real number expression,
real number expression

pow() 2 real number expression,
real number expression

root() 1 or 2 real number expression
[, real number expression]

round() 1 or 2 expression, [literal integer]

sqrt() 1 real number expression

trunc() 1 or 2 expression, literal integer

exp(), log(), logn() 1 positive real expression

cos(), sin(),tan() 1 numeric expression

 (1 of 2)
Routine Overloading and Routine Resolution 2-17

Built-In SQL Functions That You Can Overload
These built-in SQL functions appear as UDRs and have entries in the
sysprocedures system catalog table. The language for these entries are C or
BUILTIN, depending on the internal implementation. Informix strongly
recommends that you do not update or delete these entries.

Universal Server does not handle the following built-in SQL functions as
UDRs. Therefore, you cannot overload these built-in SQL functions:

■ user

■ sitename, dbservername

■ today

■ current

■ extend

■ trim

■ hex

■ date

■ mdy

■ day, month, weekday, year

■ dbinfo

In general, Universal Server does not treat these functions as UDRs because
the syntax that you use to call them does not conform to the syntax that you
use to invoke UDRs.

asin(), acos(),
atan()

1 numeric expression

atan2 2 numeric expression,
numeric expression

length(),
octet_length(),
char_length(),
character_length()

1 character string

Built-In SQL
Function Names

Number of
Parameters Parameter Types

 (2 of 2)
2-18 Extending INFORMIX-Universal Server: User-Defined Routines

Operator-to-Function Binding
Operator-to-Function Binding
Operator binding is the implicit invocation of an operator function (such as
equal) when an operator symbol (such as =) is used in an SQL statement with
user-defined data types.

This implicit mapping of operator function names to built-in operators facil-
itates writing SQL expressions with user-defined data types. When you
overload an operator function, the SQL user does not need to specify
anything different in the SQL statement. The SQL user can invoke the routine
with an argument on either side of the operator symbol, as is normally done
with built-in data types.

For example, the following sample SQL statements show how you can invoke
the equal function for a new data type, ScottishName, that treats the strings
“Mc” and “Mac” the same:

CREATE TABLE employee
(emp_name ScottishName,
 emp_phone char(10)
...

SELECT emp_name, emp_phone FROM employee
WHERE emp_name = 'McDonald'::ScottishName;

The SQL user does not need to invoke the user-defined equal function as in
the following example:

SELECT * FROM employee
WHERE equal(emp_name,'McDonald'::ScottishName);

Figure 2-8 lists the operator symbol and the built-in function name to which
the database server maps implicitly.

Figure 2-8
Operator-Symbol To Operator-Function Binding

Operator Symbol Operator Function
Number of
Arguments Return Type

= equal 2 Boolean

<>,!= notequal 2 Boolean

> greaterthan 2 Boolean

 (1 of 2)
Routine Overloading and Routine Resolution 2-19

Operator-to-Function Binding
< lessthan 2 Boolean

>= greaterthanorequal 2 Boolean

<= lessthanorequal 2 Boolean

like like 2 or 3 Boolean

matches matches 2 or 3 Boolean

- minus 2 Any type

+ plus 2 Any type

/ divide 2 Any type

* times 2 Any type

|| concat 2 Any type

+ positive 1 Any type

- negate 1 Any type

Operator Symbol Operator Function
Number of
Arguments Return Type

 (2 of 2)
2-20 Extending INFORMIX-Universal Server: User-Defined Routines

3
Chapter
Designing a User-Defined
Routine
Designing the Routine Source 3-3
Naming Your Routine 3-4
Number of Arguments 3-5
Coding Standards 3-5

Shared Object Libraries 3-6
Creating a Shared Library 3-6
Loading a Shared Library into Memory 3-7
Replacing a Shared Object File 3-8

Registering External Routines 3-10
Registering an External Function. 3-10
Registering an External Procedure 3-12
Registering an External Routine with Modifiers 3-13

Modifiers for External Functions 3-13
Modifiers for External Procedures 3-14

Returning Multiple Values from External Functions 3-14
OUT Parameters and Statement Local Variables 3-14

Referencing OUT Parameters in User-Defined Routines . . . 3-16
Iterator Function 3-16

Writing an Iterator Function 3-17
Registering an Iterator Function. 3-17
Invoking an Iterator Function 3-17

Privileges for Registering a Routine 3-18
Privileges for Executing a Routine 3-18

Granting and Revoking the Execute Privilege 3-19
Privileges on Objects Associated with a Routine 3-20
Executing a Routine as DBA 3-21

Effect of DBA Privileges on Objects and Nested Routines . . . 3-22

3-2 Exte
nding INFORMIX-Universal Server: User-Defined Routines

This chapter describes how to create external routines. It covers the
following topics:

■ Designing the routine source

■ Writing the routine source

■ Creating object libraries

■ Registering external routines

■ Granting permissions on routines

■ Returning multiple values from external functions

Although the SQL statements that you use to define SPL routines and external
routines are the same, the specific clauses and modifiers that you can use
with the SQL statements differ somewhat. For this reason, SPL routines and
external routines are documented separately.

For information about how to create and use SPL routines, see Chapter 15,
“Creating and Using SPL Routines,” in the Informix Guide to SQL: Tutorial.

Designing the Routine Source
When you design a user-defined routine, you must consider the following:

■ Naming your routine

■ Number of arguments

■ Coding standards
Designing a User-Defined Routine 3-3

Naming Your Routine
Naming Your Routine
Choose sensible names for your routines. The routine name should be easy
to remember and succinctly describe what the routine does. Because
Universal Server supports polymorphism, you can have multiple routines
with the same name that take different arguments. This is contrary to
programming practice in some high-level languages. For example, a C
programmer might be tempted to create functions with the following names
that return the larger of their arguments:

bigger_int(integer, integer)
bigger_real(real, real)

In SQL, these routines are better defined in the following way:

bigger(integer, integer)
bigger(real, real)

Using the naming in the second example allows users to ignore the types of
the arguments when they call the routine. They simply remember what it
does and let Universal Server choose which supporting routine to call based
on the argument types. This makes the user-defined routine simpler to use.

Routine overloading refers to the ability to assign one name to multiple
routines and specify different types of arguments on which the routines can
operate. For more information on routine determination, refer to “The
Routine-Resolution Process” on page 2-7.

You should consider the following questions about routine naming and
design:

■ Are any of my routines modal?

■ Can I describe what each type and routine does in two sentences?

■ Do any of my routines take more than three arguments?

■ Have I used polymorphism effectively?
3-4 Extending INFORMIX-Universal Server: User-Defined Routines

Number of Arguments
Number of Arguments
User-defined routines should take a small number of arguments and should
not include arguments that make them modal. For example, the following
statements show alternative routine calls to compute containment of spatial
values:

Containment(polygon, polygon, integer);

Contains(polygon, polygon)
ContainedBy(polygon, polygon)

The first example determines whether the first polygon contains the second
polygon or whether the second contains the first. The caller supplies an
integer argument (for example, one or zero) to identify which value to
compute. This is modal behavior; the mode of the routine changes depending
on the third argument.

The second example is better in that the routine names clearly explain what
computation is performed. Always construct your routines to be nonmodal,
as in the second example.

Coding Standards
The SQL/PSM standard is available for UDR development. In addition,
Informix publishes a collection of standards for DataBlade module devel-
opment. These standards are available from the DataBlade Developers
Program. The most important rules govern the naming of data types and
routines. DataBlade modules share these name spaces, so you must follow
the naming guidelines to guarantee that no problems occur when you
register multiple DataBlade modules in a single database.

In addition, the standards for 64-bit clean implementation, safe function-
calling practices, thread-safe development, and platform portability are
important. Adherence to these standards ensures that UDR modules are
portable across platforms.

You should ask the following questions:

■ Do I obey all naming standards?

■ Is my design 64-bit safe and portable across platforms?

■ Is my design thread-safe?
Designing a User-Defined Routine 3-5

Shared Object Libraries
Shared Object Libraries
This section contains information about creating, loading, and replacing
shared object libraries with the database server.

Creating a Shared Library
When you create external routines, you put them into a shared library that
the database server can access.

Shared object files must be owned by the user ID that runs the database
server. In a production installation, Universal Server runs as user informix
and shared object files are owned by user informix.

To create a shared library

1. Compile the source file into an object file with the C compiler.

Include any necessary header files that the file needs, such as the
library where the DataBlade API functions reside.

The following sample compile command can be used on Solaris
systems:
/compilers/bin/cc -I $INFORMIXDIR/incl -I $INFORMIXDIR/incl/esql -c abs.c

2. Create a shared object library (.so file extension on Solaris systems)
and load the object file(s) for the external routine(s).

Put related routines into the same shared library. The following
sample command loads the object file into the shared library:

/compilers/bin/cc -K abs.o -o abs.so

3. Put the shared library in a directory that is readable by user informix
and set the permissions to 755 or 775 so that only the owner can write
to the shared object files.

chmod 755 /usr/code/abs.so

If a shared object file has write permission set to all, and someone
tries to execute a routine in the shared object file, the database server
issues error -9793 and writes a message in the log file.

4. Specify the path of the shared library in the CREATE FUNCTION (or
CREATE PROCEDURE) statement when you register the external
routine.
3-6 Extending INFORMIX-Universal Server: User-Defined Routines

Loading a Shared Library into Memory
CREATE FUNCTION abs_eq(integer, integer)
RETURNS boolean
EXTERNAL NAME

'/usr/code/abs.so(abs_equal)'
LANGUAGE C NOT VARIANT;

Loading a Shared Library into Memory
When an application or the database server invokes one of the UDRs in a
shared library, the database server performs the following tasks:

1. If the routine is overloaded, determines which UDR to execute, based
upon the arguments specified in the routine invocation

For more information on routine resolution, refer to “The Routine-
Resolution Process” on page 2-7.

2. Locates the shared library that contains the UDR from the path
column in the sysprocedures system catalog table

3. Loads this shared library into memory, if the library is not already
loaded

Use the onstat command-line utility with the -g dll option to view the
dynamically loaded libraries in which your user-defined routines reside.
Once the database server has loaded a shared library into memory, this
library remains in memory until one of the following situations occurs:

■ All functions in the shared library are dropped with the DROP
FUNCTION, DROP ROUTINE, or DROP PROCEDURE statement.

Once all user-defined routines are dropped, the database server
automatically unloads the shared library from memory.

■ The database server is shut down.

All memory that the database server uses is released when the
database server shuts down.
Designing a User-Defined Routine 3-7

Replacing a Shared Object File
Replacing a Shared Object File
You can explicitly replace a shared library without bringing down the
database server. You use one of the following user-defined functions that
Informix provides to upgrade a shared library:

■ To replace a loaded shared library with a new version that has the
same name and location
ifx_reload_module

("module path", "language name")

In this syntax, module path is a character string that lists the full
path of the shared library, and language name is either ‘c’ or ‘spl’.

For example, to reload a new version of the circle.so shared library
that resides in the /usr/app/opaque_types directory, you can use the
EXECUTE FUNCTION statement to execute the ifx_reload_module()
function as follows:

EXECUTE FUNCTION
ifx_reload_module

("/usr/apps/opaque_types/circle.so", "c")

■ To replace a loaded shared library with a new version that has a new
name or location

ifx_replace_module ("old module path",
"new module path", "language name")

In this syntax, <old module path> and <new module path> are each
character strings that list the full path of a shared library, and
language name is either ‘c’ or ‘spl’.

For example, to replace the circle.so shared library that resides in the
/usr/app/opaque_types directory with one that resides in the
/usr/app/shared_libs directory, you can use the EXECUTE FUNCTION
statement to execute the ifx_replace_module() as follows:
EXECUTE FUNCTION
ifx_replace_module("/usr/apps/opaque_types/circle.so",

"/usr/apps/shared_libs/circle.so", "c")

This ifx_replace_module function updates the sysprocedures
system catalog with the new name or location.

These functions return one of the following integer values:

■ Zero indicates success.

■ A negative value indicates an error message number.
3-8 Extending INFORMIX-Universal Server: User-Defined Routines

Replacing a Shared Object File
You can also execute these functions in a SELECT statement. For example, the
following SELECT statement executes the ifx_reload_module() statement:

SELECT
ifx_reload_module("/usr/apps/opaque_types/circle.so", "c")

FROM customer
WHERE customer_id = 100;

If you do not want the shared library replaced multiple times with this
SELECT statement, ensure that the SELECT statement returns only one “row”
of values.

 When you execute these functions from within an INFORMIX-ESQL/C appli-
cation, you must associate the EXECUTE FUNCTION statement with a
function cursor. For more information on writing ESQL/C applications, refer
to the INFORMIX-ESQL/C Programmer’s Manual. ♦

Important: Do not overwrite a shared object file on disk while it is loaded in memory
because you might cause the database server to stop functioning when the
overwritten module is accessed or unloaded. Use the ifx_replace_module function
to replace the shared object file.

To unload a module without restarting the database server, you must drop all
routines in the module using the SQL DROP statement. After you drop all
routines in the module and all instances of the routines finish executing, the
database server removes the module from the memory map and records a
message in the log file to indicate that the module is unloaded. After the
module is unloaded, you can replace the shared object file and re-create its
user-defined routines in the database.

E/C
Designing a User-Defined Routine 3-9

Registering External Routines
Registering External Routines
Routines can be functions or procedures. You use different SQL statements to
register each type of routine.

Registering an External Function
When you want a routine to return a value, you must create that routine as a
function. To create an external function, write the body of the function in a
language other than SPL, then use the CREATE FUNCTION statement to
register the function.

Important: To register an external UDR that is a function, you must use the CREATE
FUNCTION statement. You cannot use the CREATE PROCEDURE statement to
create an external function.

The following example registers an external function of the name equal in the
database server and specifies the library where the function object module is
stored. The equal() function takes two arguments of the data type udtype1
and returns a BOOLEAN value.

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)
RETURNING BOOLEAN;
EXTERNAL NAME
"/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)"
LANGUAGE C
END FUNCTION;
3-10 Extending INFORMIX-Universal Server: User-Defined Routines

Registering an External Function
When you register an external function, the END FUNCTION keywords are
optional. Registration for an external routine requires two special clauses that
help the database server locate the routine:

■ The EXTERNAL NAME clause specifies the path to the C library
where the function is stored. By default, the entry point in that
library is the routine name that follows the keywords CREATE
FUNCTION. You can specify a different entry point with the
EXTERNAL NAME clause. To specify an entry point in the EXTERNAL
NAME clause, put the appropriate C module name in parentheses
after the library file.

For more information about the EXTERNAL NAME clause, see the
External Reference segment in Chapter 1 of the Informix Guide to SQL:
Syntax.

In the preceding example, the entry point udtype1_equal() replaces
the default entry point, equal(). The C routine udtype1_equal() is
invoked whenever an equal() function with two arguments of
udtype1 data type is called.

If the creator of the routine does not indicate an entry point in the
EXTERNAL NAME clause as shown in the following example, the
database server searches the C library for a routine named equal()
(whose parameters match the arguments of the calling function):

EXTERNAL NAME "/usr/lib/udtype1/lib/libbtype1.so()"

■ The required LANGUAGE clause specifies the language in which the
body of the function is written.

For more information, see the CREATE FUNCTION statement in Chapter 1 of
the Informix Guide to SQL: Syntax.
Designing a User-Defined Routine 3-11

Registering an External Procedure
Registering an External Procedure
When you do not want your routine to return a value, you must create that
the routine as a procedure. To create an external procedure, write the body of
the procedure in a language other than SPL, then use the CREATE
PROCEDURE statement to register the procedure. The following example
shows how to register an external procedure:

CREATE PROCEDURE log_compare (arg1 udtype2,
arg2 udtype2)

EXTERNAL NAME
"/usr/lib/udtype1/lib/libbtype2.so(compare_n_insert)"

LANGUAGE C
END PROCEDURE;

The EXTERNAL NAME and LANGUAGE clauses work the same way for
external procedures as is explained for external functions on page 3-10.

In the preceding example, the actual body of the procedure is named
compare_n_insert and is located in the C-language library
/usr/lib/udtype1/lib/libbtype2.so. If the EXTERNAL NAME clause does not
specify an entry point within the library, the database server invokes the
module at the default entry point, log_compare().

The following example also includes the SPECIFIC keyword to create a
function alias, basetype2_lessthan. Once you use the SPECIFIC keyword to
create a routine alias, you can use that alias in DROP statements.

For information about the CREATE PROCEDURE statement, see the CREATE
PROCEDURE statement in Chapter 1 of the Informix Guide to SQL: Syntax.
3-12 Extending INFORMIX-Universal Server: User-Defined Routines

Registering an External Routine with Modifiers
Registering an External Routine with Modifiers
When you create an external routine, you can specify optional modifiers that
help optimize how the database server executes the routine. The following
example shows how to use the WITH clause to specify a set of modifiers when
you create an external function:

CREATE FUNCTION lessthan (arg1 basetype2, arg2 basetype2)
RETURNING BOOLEAN;
SPECIFIC basetype2_lessthan
WITH (HANDLESNULLS,
NOT VARIANT)
EXTERNAL NAME
"/usr/lib/basetype2/lib/libbtype2.so(basetype2_lessthan)"
LANGUAGE C
END FUNCTION;

Following the WITH keyword, the modifiers that you want to specify are
enclosed within parentheses and separated by commas. The handlesnulls
modifier indicates that the basetype2_lessthan() function (in the library
/usr/lib/basetype1/lib/libbtype1.so) is written so that it can recognize when
an SQL NULL argument is passed.

External functions support a different set of modifiers than external
procedures.

Modifiers for External Functions

The database server supports the following modifiers for external functions:

■ CLASS

■ HANDLESNULLS

■ INTERNAL

■ ITERATOR

■ STACK

■ VARIANT and NOT VARIANT

For more information on the syntax of these modifiers, see the CREATE
FUNCTION statement in Chapter 1 of the Informix Guide to SQL: Syntax.
Designing a User-Defined Routine 3-13

Returning Multiple Values from External Functions
Modifiers for External Procedures

The database server supports the following modifiers for external
procedures:

■ HANDLESNULLS

■ CLASS

■ STACK

■ INTERNAL

For a list of the supported modifiers for external procedures, see the CREATE
PROCEDURE statement in Chapter 1 of the Informix Guide to SQL: Syntax.

Returning Multiple Values from External Functions
The database server provides two methods for external functions to return
multiple values:

■ OUT keyword and Statement Local Variable to return multiple
values with a single invocation of the function

■ ITERATOR modifier to return a value multiple times through the
automatic repeated execution of the function by the database server

OUT Parameters and Statement Local Variables
The database server supports external functions that return more than one
value. Use the OUT parameter in the CREATE FUNCTION statement to pass a
pointer to the address to which the function can write extra values.
3-14 Extending INFORMIX-Universal Server: User-Defined Routines

OUT Parameters and Statement Local Variables
To return extra values from an external function with the OUT parameter

1. Write an external function that returns more than one value to the
caller.

The function must accept an extra parameter that is a pointer to the
address to which the function can write. This pointer must be the last
parameter.

For example, the following declaration of a C-language function
allows you to return extra information through the y parameter:

 int my_func(int x, int *y);

2. Register the function with the OUT keyword to indicate that the
function returns extra values.

The OUT keyword indicates that the last parameter passes a pointer.

For example, the following statement shows how you might register
the my_func() function, which uses the y parameter of the function
argument to return extra values:

CREATE FUNCTION my_func(x INT, OUT y INT)
RETURNING INT
EXTERNAL NAME "/usr/lib/local_site.so"
LANGUAGE C
END FUNCTION;

3. Create a Statement Local Variable (SLV) to use the OUT parameter
when you invoke the external function in an SQL expression.

Each SLV gives a variable name to one of the values dereferenced
from the OUT pointer.

To use an OUT parameter in SQL expressions, you create a Statement
Local Variable (SLV). The SLV is statement-local because it provides a
temporary name that a single statement can manipulate. An SQL
statement uses each SLV to transmit the output from a single function
to other parts of the SQL statement.

To show that a variable is an SLV, follow the variable with a # sign
and its data type. For example, the following statement has an SLV y
that is typed as an INT:

SELECT ...WHERE my_func(x, y # INT) < 100 AND (y = 3)

Important: An SLV is valid only for the life of a single statement.
Designing a User-Defined Routine 3-15

Iterator Function
Referencing OUT Parameters in User-Defined Routines

Each SLV argument in an SQL statement has a unique name. You can use the
SLV name to dereference a return value multiple times within that statement.
While each function can pass only one OUT, a single SQL statement in the
calling routine can invoke multiple functions with OUT parameters. For
example, the following partial statement receives pointers from two
functions with OUT parameters, which are referenced with the SLV names
out1 and out2:

SELECT... WHERE func_2(x, out1 # INT) < 100
AND (out1 = 12 or out1 = 13)
AND func_3(a, out2 # FLOAT) = "SAN FRANCISCO"
AND out2 = 3.14159;

The calling function does not pass any data values to the OUT parameter. At
the time the function is called, the SLV does not reference any actual values.
The calling routine passes only a pointer to some space where the function
can store values. An external function cannot retrieve values from the
reserved space. By contrast, a pointer passed by a pure C-language program
can point to a valid value, and the function can examine the current value
before it modifies and returns the pointer.

Important: The function that receives the pointer should not try to read from this
address because the value is meaningless.

If the function that sources the SLV is not executed in an iteration of the
statement, the SLV has a value of NULL. SLV values do not persist across itera-
tions of the statement. At the start of each iteration, the SLV value is set to
NULL.

Because an SLV shares the name space with procedure variables and columns
names of the table involved in the statement, a priority has been established
to determine which one takes precedence in ambiguous situations. Procedure
variables have the highest precedence, and SLVs have the lowest precedence.

Iterator Function
An iterator function returns more than one row of values. The database server
automatically invokes the function repeatedly, one for each row of return
values. An iterator function is similar to an SPL function that contains the
RETURN WITH RESUME statement.
3-16 Extending INFORMIX-Universal Server: User-Defined Routines

Iterator Function
Writing an Iterator Function

When you write an iterator function, you use DataBlade API functions (such
as mi_fp_setisdone() and mi_fp_request()) to handle each return row. For
more information on writing an iterator function, refer to the DataBlade API
Programmer’s Manual.

Registering an Iterator Function

By default, an external function is not an iterator. To define an iterator
function, you must register the function with the ITERATOR modifier.

The following sample CREATE FUNCTION statement shows how to register
the function TopK as an iterator function:

CREATE FUNCTION TopK(integer, integer)
RETURNS integer not null
WITH (ITERATOR)
AS EXTERNAL NAME
'/usr/lib/extend/misc/topkterms.so(topk_integers)'
LANGUAGE C NOT VARIANT

Invoking an Iterator Function

You can invoke an iterator function with one of the following methods:

■ With the EXECUTE FUNCTION statement from:

❑ DB-Access

❑ In a prepared cursor in ESQL/C

❑ In an SPL FOREACH loop

■ With an EXECUTE FUNCTION statement as part of an INSERT
statement from:

❑ DB-Access

❑ In a prepared cursor in ESQL/C

❑ In an SPL FOREACH loop
Designing a User-Defined Routine 3-17

Privileges for Registering a Routine
Privileges for Registering a Routine
To register a routine in the database, a qualified user issues a CREATE
FUNCTION or CREATE PROCEDURE statement. The following users qualify to
register a new routine in the database:

■ Any user with the DBA privilege can register a routine with or
without the DBA keyword in the CREATE statement.

For an explanation of the DBA keyword, see “Executing a Routine as
DBA” on page 3-21.

■ A non-DBA user needs the Resource privilege to create an external
routine. The creator has owner privileges on the routine.

A user who does not have the DBA privilege cannot use the DBA
keyword to register the routine.

A DBA must grant the Resource privilege required for any other user
to create a routine. The DBA can revoke the Resource privilege,
preventing the revoke from creating further routines.

A DBA and the routine owner can cancel the registration with the DROP
FUNCTION or DROP PROCEDURE statement.

Privileges for Executing a Routine
The Execute privilege enables users to invoke a routine. The routine might be
invoked by the EXECUTE or CALL statements or by using a function in an
expression. The following users have a default Execute privilege, which
enables them to invoke a routine:

■ By default, any user with the DBA privilege can execute any routine
in the database.

■ If the routine is registered with the qualified CREATE DBA FUNCTION
or CREATE DBA PROCEDURE statements, only users with the DBA
privilege have a default Execution privilege for that routine.
3-18 Extending INFORMIX-Universal Server: User-Defined Routines

Privileges for Executing a Routine
■ If the database is not ANSI compliant, user public (any user with
Connect database privilege) automatically has the Execute privilege
to a routine that is not registered with the DBA keyword.

■ In an ANSI-compliant database, the procedure owner and any user
with the DBA privilege can execute the routine without receiving
additional privileges. ♦

Granting and Revoking the Execute Privilege

Routines have the following GRANT and REVOKE requirements:

■ The DBA can grant or revoke the Execute privilege to any routine in
the database.

■ The creator of a routine can grant or revoke the Execute privilege on
that particular routine. The creator forfeits the ability to grant or
revoke by including the AS grantor clause with the GRANT EXECUTE
ON statement.

■ Another user can grant the Execute privilege if the owner applied the
WITH GRANT keywords in the GRANT EXECUTE ON statement.

A DBA or the routine owner must explicitly grant the Execution privilege to
non-DBA users for the following conditions:

■ A routine in an ANSI-compliant database

■ A database with the NODEFDAC environment variable set to yes

■ A routine that was created with the DBA keyword

An owner can restrict the Execution privilege on a routine even though the
database server grants that privilege to public by default. To do this, issue the
REVOKE EXECUTION ON....PUBLIC statement. The DBA and owner still can
execute the routine and can grant the Execute privilege to specific users, if
applicable.

A user might receive the Execute privilege accompanied by the WITH GRANT
option authority to grant the Execute privilege to other users. If a user loses
the Execute privilege on a routine, the Execute privilege is also revoked from
all users who were granted the Execute privilege by that user.

ANSI
Designing a User-Defined Routine 3-19

Privileges on Objects Associated with a Routine
The following example shows an equal() function defined for a user-defined
data type and the GRANT statement to enable user mary to execute this
variation of the equal() function:

CREATE FUNCTION equal (arg1 udtype1, arg2 udtype1)
RETURNING BOOLEAN
EXTERNAL NAME
"/usr/lib/udtype1/lib/libbtype1.so(udtype1_equal)"
LANGUAGE C
END FUNCTION;

GRANT EXECUTE ON equal(udtype1, udtype1) to mary

User mary does not have permission to execute any other user-defined
routine named equal().

For more information, see the GRANT and REVOKE statements in Chapter 1
of the Informix Guide to SQL: Syntax.

Privileges on Objects Associated with a Routine
The database server checks the existence of any referenced objects and
verifies that the user invoking the routine has the necessary privileges to
access the referenced objects. For example, if a user executes a routine that
updates data in a table, the user must have the Update privilege for the table
or columns referenced in the routine.

Objects referenced by a routine include:

■ Tables and columns

■ User-defined data types

■ Other routines executed by the routine

When the owner of a routine grants the Execute privilege, some privileges on
objects automatically accompany the Execute privilege. A GRANT EXECUTE
ON statement confers to the grantee any table-level privileges that the
grantor received from a GRANT statement that contained the WITH GRANT
keywords.

The owner of the routine, and not the user who runs the routine, owns the
unqualified objects created in the course of executing the routine.
3-20 Extending INFORMIX-Universal Server: User-Defined Routines

Executing a Routine as DBA
Figure 3-1 shows an SPL procedure called promo() that creates two tables,
hotcatalog and libby.mailers.

Figure 3-1
CREATE PROCEDURE Example

CREATE PROCEDURE promo()

CREATE TABLE hotcatalog
(

catlog_num INTEGER
cat_advert VARCHAR(255, 65)
cat_picture BLOB

) PUT cat_picturein sb1;

CREATE TABLE libby.mailers
(

cust_num INTEGER
interested_in SET(catlog_num INTEGER)

);
END PROCEDURE;

Suppose the user tony executes the CREATE PROCEDURE statement in
Figure 3-1 to register the SPL promo() procedure. The user marty executes the
promo() routine with an EXECUTE PROCEDURE statement, which creates the
table hotcatalog. Because no owner name qualifies table name hotcatalog,
the routine owner (tony) owns hotcatalog. By contrast, the qualified name
libby.maillist identifies libby as the owner of maillist.

Executing a Routine as DBA
If a DBA creates a routine using the DBA keyword, the database server
automatically grants the Execute privileges only to other users with the DBA
privilege. A DBA can, however, explicitly grant the Execute privilege on a
DBA routine to a non-DBA user.

When a user executes a routine that was registered with the DBA keyword,
that user assumes the privileges of a DBA for the duration of the routine. If a
user who does not have the DBA privilege runs a DBA routine, the database
server implicitly grants a temporary DBA privilege to the invoker. Before
exiting a DBA routine, the database server implicitly revokes the temporary
DBA privilege.
Designing a User-Defined Routine 3-21

Executing a Routine as DBA
Effect of DBA Privileges on Objects and Nested Routines

Objects created in the course of running a DBA routine are owned by the user
who executes the routine unless a statement in the routine explicitly names
someone else as the owner. For example, suppose that tony registers the
promo() routine from Figure 3-1 on page 3-21 with the DBA keyword, as
follows:

CREATE DBA PROCEDURE promo()
EXTERNAL NAME create_mo_catalog

END PROCEDURE;

Although tony owns the routine, if marty runs it, then marty owns table
hotcatalog. User libby owns libby.maillist because her name qualifies the
table name, making her the table owner.

A called routine does not inherit the DBA privilege. If a DBA routine executes
a routine that was created without the DBA keyword, the DBA privileges do
not affect the called routine.

If a routine that is registered without the DBA keyword calls a DBA routine,
the caller must have Execute privileges on the called DBA routine. Statements
within the DBA routine execute as they would within any DBA routine.

The following example demonstrates what occurs when a DBA and non-DBA
routine interact. Procedure dbspace_cleanup() executes procedure
cluster_catalog(). Procedure cluster_catalog() creates an index. The C-
language source for cluster_catalog() includes the following statements:

strcopy(statement, “CREATE INDEX stmt”);
EXEC SQL
create cluster index c_clust_ix on catalog (catalog_num);

DBA procedure dbspace_cleanup() invokes the other routine with the
following statement:

EXECUTE PROCEDURE cluster_catalog(hotcatalog)
3-22 Extending INFORMIX-Universal Server: User-Defined Routines

Executing a Routine as DBA
Assume tony registered dbspace_cleanup() as a DBA procedure, and
cluster_catalog() is registered without the DBA keyword, as follows:

CREATE DBA PROCEDURE dbspace_cleanup(loc CHAR)
EXTERNAL NAME ...
LANGUAGE C

END PROCEDURE
CREATE PROCEDURE cluster_catalog(catalog CHAR)

EXTERNAL NAME ...
LANGUAGE C
END PROCEDURE
GRANT EXECUTION ON dbspace_cleanup(CHAR) to marty;

User marty runs dbpace_cleanup(). Index c_clust_ix is created by a non-DBA
routine, so tony, who owns both routines, also owns c_clust_ix. By contrast,
marty owns index c_clust_ix if cluster_catalog() is a DBA procedure, as in the
follows registering and grant statements:

CREATE PROCEDURE dbspace_cleanup(loc CHAR)
EXTERNAL NAME ...
LANGUAGE C

END PROCEDURE
CREATE DBA PROCEDURE cluster_catalog(catalog CHAR)

EXTERNAL NAME ...
LANGUAGE C
END PROCEDURE
GRANT EXECUTION ON cluster_catalog(CHAR) to marty;

The dbspace_cleanup() procedure need not be a DBA procedure to call a DBA
procedure.
Designing a User-Defined Routine 3-23

4
Chapter
Debugging User-Defined
Routines
Invoking a Routine 4-3
Invoking a Function with the EXECUTE statement 4-3
Invoking a Procedure with the EXECUTE statement 4-5
Invoking a Function with the CALL Statement 4-5
Invoking a Procedure with the CALL Statement 4-5
Invoking a Function in an Expression 4-6

Explicitly Invoking a Function in an Expression 4-6
Implicitly Invoking a Function That Is Bound to an Operator . 4-6
Implicitly Invoking a Function for Casting 4-7

Private Installation 4-8

Installing and Registering DataBlade Modules 4-8

Debugging a DataBlade Module 4-9
Connecting to the Server from a Client. 4-9
Loading the DataBlade Module 4-9
Identifying the Server Process 4-10
Starting the Debugger 4-11
Setting Breakpoints 4-11
Symbols in Shared Object Files 4-12

4-2 Exte
nding INFORMIX-Universal Server: User-Defined Routines

This chapter describes how to invoke and test user-defined routines.
It includes the following topics:

■ Invoking UDRs

■ Installing a private server

■ Installing and registering a UDR

■ Debugging a UDR

Invoking a Routine
This section describes the following methods that you can use to invoke a
routine:

■ Use the EXECUTE statement.

■ Use the CALL statement.

■ Invoke a routine in an expression.

Invoking a Function with the EXECUTE statement
You can use the EXECUTE statement with the FUNCTION keyword to execute
a function from one of the following:

■ SPL

■ An ESQL/C program

■ DB-Access
Debugging User-Defined Routines 4-3

Invoking a Function with the EXECUTE statement
For example, suppose result is a function variable of type BOOLEAN. The
following EXECUTE statement invokes the equal() function:

CREATE FUNCTION equal (arg1 udtype2, arg2 udtype2)
RETURNING BOOLEAN;
SPECIFIC udtype2_lessthan
WITH (HANDLESNULLS,
NOT VARIANT)
EXTERNAL NAME "/usr/lib/udtype2.so(udtype2_lessthan)"
LANGUAGE C
END FUNCTION;

EXECUTE FUNCTION equal (arg1, arg2) INTO result

The INTO clause must always be present when you invoke a function using
an EXECUTE statement.

Important: You cannot use the EXECUTE statement to invoke a function that has an
OUT parameter.

As another example, suppose you create the following type hierarchy and
functions:

CREATE ROW TYPE emp
(name varchar(30),
 emp_num int,
 salary numeric(10,2));

CREATE ROW TYPE trainee UNDER emp ...
CREATE FUNCTION func1 (trainee) RETURNS row ...

The following EXECUTE statement invokes the func1() function, which has
an argument that is a query that returns a row type:

EXECUTE FUNCTION
func1 ((SELECT * from trainee where emp_num = 1234)) ...

Important: When you use a query for the argument of a function invoked with the
EXECUTE statement, ensure that you enclose the query in another set of parentheses.
4-4 Extending INFORMIX-Universal Server: User-Defined Routines

Invoking a Procedure with the EXECUTE statement
Invoking a Procedure with the EXECUTE statement
You can use the EXECUTE statement with the PROCEDURE keyword to
execute a procedure from within an SPL or ESQL/C program or DB-Access.
The following EXECUTE statement invokes the log_compare() function:

EXECUTE PROCEDURE log_compare (arg1, arg2)

The INTO clause is never present when you invoke a procedure with the
EXECUTE statement because a procedure does not return a value.

Invoking a Function with the CALL Statement
You can use the CALL statement to invoke a function from within an SPL
program only. The following statement invokes the equal() function:

CALL equal (arg1, arg2)
RETURNING result

When you invoke a function with the CALL statement, you must include a
RETURNING clause and the name of the value or values that the function
returns.

You cannot use the CALL statement to invoke a function that has an OUT
parameter.

You cannot execute the CALL statement from within an ESQL/C program or
the DB-Access utility.

Invoking a Procedure with the CALL Statement
You can use the CALL statement to invoke a procedure from within an SPL
program only. The following CALL statement invokes the log_compare()
procedure:

CALL log_compare (arg1, arg2)

A RETURNING clause is never present when you invoke a procedure with the
CALL statement because a procedure does not return a value.
Debugging User-Defined Routines 4-5

Invoking a Function in an Expression
Invoking a Function in an Expression
You can invoke a function in an expression either explicitly or implicitly. An
external procedure cannot be used in an expression because an external
procedure does not return a value. This section describes how you can invoke
functions explicitly and implicitly in an expression. The examples in the
following sections use the new_type1 and new_type2 distinct types and the
tab_1 table. Figure 4-1 shows the syntax that creates the distinct types and
table.

Figure 4-1
CREATE DISTINCT TYPE new_type1 AS DOUBLE PRECISION;
CREATE DISTINCT TYPE new_type2 AS INT;

CREATE TABLE tab_1
(

col_1 new_type1,
col_2 new_type1,
col_3 new_type2

);

Explicitly Invoking a Function in an Expression

You can invoke a function in an expression when the function returns a single
value. Suppose an equal() function exists to evaluate the equality of
new_type1 and new_type2 values. The following query invokes the appro-
priate equal() function in the WHERE clause of the SELECT statement:

SELECT *
FROM tab_1
WHERE equal (col_1, col_3)

Implicitly Invoking a Function That Is Bound to an Operator

Functions that are bound to specific operators get invoked automatically
without explicit invocation. Suppose an equal() function exists that takes two
arguments of new_type1 and returns a Boolean. If the equal operator (=) is
used for comparisons between col_1 and col_2, the equal() function gets
invoked automatically. For example, the following query implicitly invokes
the appropriate equal() function to evaluate the WHERE clause:

SELECT *
FROM new_table
WHERE col_1 = col_2
4-6 Extending INFORMIX-Universal Server: User-Defined Routines

Invoking a Function in an Expression
The preceding query evaluates as though it had been specified as follows:

SELECT *
FROM new_table
WHERE equal (col_1, col_2)

Implicitly Invoking a Function for Casting

Suppose you create the following external function to cast a value of
newtype2 to newtype1:

CREATE FUNCTION ntype2_to_ntype1 (arg1 newtype2)
RETURNING newtype1
EXTERNAL NAME "/usr/lib/btype1/lib/libntype2.so"
LANGUAGE C
END FUNCTION;

Suppose also that you register the function as an implicit cast, as follows:

CREATE IMPLICIT CAST (newtype2 AS newtype1 WITH
ntype2_to_ntype1)

The following query automatically invokes the cast to convert new_type2
values to newtype1 before it invokes the equal() function:

SELECT *
FROM tab
WHERE col_1 = col_3

The previous query is equivalent to the following statement:

SELECT *
FROM new_table
WHERE equal (col_1, CAST(col_3 AS newtype1))
Debugging User-Defined Routines 4-7

Private Installation
Private Installation
A private installation provides support for users who are developing
DataBlade modules and user-defined routines. It allows a developer to test
code extensions to Universal Server without affecting performance or the
work of other users.

Normally, the utility that starts Universal Server, oninit, runs with the privi-
leges of the user informix. Therefore, permitting a non-privileged user to
create new functions, dynamically link them with the server, and execute
them violates security. A private installation allows a developer to run
Universal Server without the privileges of the user informix or the privileges
of the user root to facilitate debugging DataBlade modules and user-defined
routines.

A private installation does not affect a conventional installation of Universal
Server. For information about creating a private-installation version of
Universal Server, refer to the INFORMIX-Universal Server Installation Guide.

Installing and Registering DataBlade Modules
Installing a DataBlade module places the files for the modules in a subdi-
rectory of the INFORMIXDIR/extend directory. Registering a DataBlade
module adds the module to a database.

Important: To debug a DataBlade module, the shared object file must be compiled
with the -g compiler option so that debugging symbols are available to the debugger.

For DataBlade modules that you create with the DataBlade Developers Kit,
you can copy the directory tree that BladePack generates into the module
subdirectory under INFORMIXDIR/extend. Then you use BladeManager to
register the DataBlade module in your test database. For instructions on
running BladeManager, refer to the BladeManager User’s Guide.

To install and register other DataBlade modules, such as the DataBlade
modules included with Universal Server, refer to the instructions that
accompany them.
4-8 Extending INFORMIX-Universal Server: User-Defined Routines

Debugging a DataBlade Module
Debugging a DataBlade Module
To debug your DataBlade module, use a debugger that can attach to the
active server process and access the symbol tables of dynamically loaded
shared object files. On Solaris, the debugger utility meets these criteria.

To attach to the server process, do the following:

■ Connect to the server from a client application, such as DB-Access.

■ Identify the server process that is executing the DataBlade module
code.

■ Start the debugger on the server process.

The following sections describe these steps.

Connecting to the Server from a Client
To connect to Universal Server, choose a client tool that allows you to submit
ad hoc queries. On Windows NT, you can use INFORMIX-SQL Editor. On
UNIX, you can use DB-Access.

For example, from UNIX, execute the following command, where database is
a database in which you registered the DataBlade module that you want to
debug:

dbaccess database

Loading the DataBlade Module
Before you can attach to the server process with the debugger, you need to
load the shared object file for your DataBlade modules into the server
address space. With the shared object file loaded, you can set breakpoints on
the entry points for the module and examine local storage provided by the
module functions.
Debugging User-Defined Routines 4-9

Identifying the Server Process
To load the DataBlade module into the server address space, execute one of
its functions. One technique is to define a routine in the DataBlade module
that you use to load the DataBlade module. The routine can be as simple as
the following:

mi_integer mod_load_bld()
{

return 0;
}

To prevent name conflicts, substitute the object prefix assigned to your
DataBlade module in place of mod.

To load the DataBlade module shared object file, execute the following
command in your client application:

select mod_load_bld()from informix.systables where tabid=1;

Identifying the Server Process
To find the CPU or EXT virtual process in which your DataBlade module is
loaded, execute the onstat command, as follows:

onstat -g glo

Figure 4-2 shows the last section of the output of this onstat command.

Find the CPU or EXT virtual processor that you want to debug and record its
process ID for the next step.

Individual virtual processors:
 vp pid class usercpu syscpu total
 1 3544 cpu 3.75 0.96 4.71
 2 3545 adm 0.05 0.03 0.08
 3 3546 lio 0.04 0.07 0.11
 4 3547 pio 0.05 0.03 0.08
 5 3548 aio 0.04 0.04 0.08
 6 3549 msc 0.39 0.19 0.58
 7 3550 aio 0.09 0.10 0.19
 8 3551 aio 0.03 0.07 0.10
 9 3552 aio 0.02 0.07 0.09
 10 3553 aio 0.04 0.04 0.08
 11 3554 aio 0.03 0.05 0.08
 tot 4.53 1.65 6.18

Figure 4-2
onstat -g glo Command

Output
4-10 Extending INFORMIX-Universal Server: User-Defined Routines

Starting the Debugger
Starting the Debugger
To start the debugger, enter the following command at the shell prompt,
where process_id is the PID of the CPU or EXT virtual process:

debugger - process_id

This command starts the debugger on the server virtual-processor process
without starting a new instance of the virtual processor.

You can set breakpoints, examine the stack, resume execution, or carry out
any other normal debugger command. For more information about available
debugger commands, see the debugger manual page.

Setting Breakpoints
You can set breakpoints in any function with an entry point known to
debugger, which includes internal server functions and your DataBlade
module functions. Universal Server is compiled with debugging support
turned off, so local storage and line number information is not available for
server routines. However, because you compiled the DataBlade module for
debugging, you can see line number information and local storage for your
functions.

The Universal Server routine that calls your DataBlade module functions is
called udr_execute(). You can set a breakpoint in this routine as follows:

stop in udr_execute
cont

When you enter a command in the client that calls one of your DataBlade
module functions, the debugger stops in the udr_execute() routine. Then you
can step through your function. Because your DataBlade module is compiled
with debugging support, you can view the local variables and stack for your
functions.
Debugging User-Defined Routines 4-11

Symbols in Shared Object Files
Symbols in Shared Object Files
Undefined symbols in a shared object file are resolved with the main
Universal Server module when the file is loaded. If a symbol is missing, the
load fails on the first execution of the user-defined routine, and a message is
written in the log file.

Symbols defined in two different shared object files are distinct entities and
do not resolve against each other.

A symbol defined in a shared object file and the Universal Server main
module behaves in one of two ways:

■ If the symbol referenced in the shared object file is in the same source
file that references it, the debugger accesses the symbol in the shared
object file, as expected.

■ If the shared object file includes more than one source file and a
cross-file symbol reference exists, the symbol is resolved to the
Universal Server main module.
4-12 Extending INFORMIX-Universal Server: User-Defined Routines

5
Chapter
Performance Considerations
SPL Considerations. 5-3
SPL Compilation 5-4
SPL Execution 5-5
SPL Optimization 5-5

Optimization Levels 5-5
When Optimization Occurs Automatically 5-6

Updating Statistics for a UDR 5-7

Choosing a Virtual-Processor Class 5-8
CPU Virtual-Processor Class 5-8
User-Defined Virtual-Processor Class 5-9

Defining an Extension Virtual-Processor Class. 5-9
Configuring an Extension Virtual-Processor Class 5-10
Using the noyield Option 5-10
Adding and Dropping User-Defined Virtual Processors in

On-Line Mode 5-11

Considerations for Parallel Execution of SPL Routines 5-11
Number of Virtual Processors (VPCLASS) 5-12

Memory Considerations 5-12
Stack-Size Considerations 5-12
Setting Stack Sizes for User-Defined Routines 5-13
Virtual-Memory Cache for Routines 5-13

System Catalog Cache 5-13
SPL Cache 5-14

I/O Considerations. 5-14
Isolate System Catalogs 5-15
Balance the I/O Activities 5-15

5-2 Exte
nding INFORMIX-Universal Server: User-Defined Routines

This chapter describes performance considerations for user-defined
routines and includes the following topics:

■ SPL considerations

■ Choosing a virtual processor class

■ Considerations for parallel execution of SPL routines

■ Memory considerations

■ I/O considerations

SPL Considerations
This section describes the compilation, execution, and optimization
processes of an SPL routine.

Tip: Not all the encapsulated SPL that you created as SPL procedures in earlier
Informix products has the properties currently associated with procedures. If the SPL
routine returns a value, you now refer to it as an SPL function. If the SPL routine does
not return a value, you still refer to it as an SPL procedure.
Performance Considerations 5-3

SPL Compilation
SPL Compilation
Universal Server compiles an SPL routine when you execute the CREATE
PROCEDURE or CREATE FUNCTION. The following activities occur in the
compilation process of the SPL routine:

■ Parse and optimize, if possible, all SQL statements

The database server puts the SQL statements into an execution plan.
An execution plan is a structure that enables the database server to
store and execute the SQL statements efficiently.

The database server optimizes each SQL statement within the SPL
routine and includes the selected query plan in the execution plan.
For more information on SPL routine optimization, refer to “SPL
Optimization” on page 5-5.

■ Build a dependency list

A dependency list contains items that the database server checks to
decide if an SPL routine needs to be reoptimized at execution time.
For example, the database server checks for the existence of all tables,
indexes, and columns involved in the query.

■ Parse SPL statements and convert to pcode

The term pcode refers to pseudocode that an interpreter executes
quickly

■ Convert the pcode, execution plan, and dependency list to ASCII
format

The database server stores these ASCII formats as character columns
in the system catalog tables, sysprocbody and sysprocplan.

■ Store general information about the procedure in the sysprocedures
system catalog table

■ Store permissions for the procedure in the sysprocauth system
catalog table
5-4 Extending INFORMIX-Universal Server: User-Defined Routines

SPL Execution
SPL Execution
When you execute an SPL routine with the EXECUTE FUNCTION, EXECUTE
ROUTINE, EXECUTE PROCEDURE, or CALL statement, the database server
performs the following tasks:

■ Retrieves the pcode, execution plan, and dependency list from the
system catalog and converts them to binary format

■ Parses and evaluates the arguments passed by the EXECUTE
FUNCTION, EXECUTE ROUTINE, EXECUTE PROCEDURE, or CALL
statement

■ Checks the dependency list for each SQL statement that will be
executed

If an item in the dependency list indicates that reoptimization is
needed, optimization occurs at this point.

If an item needed in the execution of the SQL statement is missing (for
example, a column or table has been dropped), an error occurs at this
time.

■ The interpreter executes the pcode instructions.

SPL Optimization
A query plan is a specific way that a query might be performed. A query plan
includes how to access tables, the order of joining tables, and the use of
temporary tables. During SPL optimization, the query optimizer evaluates
the possible query plans and selects the query plan with the lowest cost. The
database server puts the selected query plan for each SQL statement into an
execution plan for the SPL routine.

Optimization Levels

The current optimization level set in an SPL routine affects how the SPL
routine is optimized.

The algorithm that a SET OPTIMIZATION HIGH statement invokes is a
sophisticated, cost-based strategy that examines all reasonable query plans
and selects the best overall alternative. For large joins, this algorithm can
incur more overhead than desired. In extreme cases, you can run out of
memory.
Performance Considerations 5-5

SPL Optimization
The alternative algorithm that a SET OPTIMIZATION LOW statement invokes
eliminates unlikely join strategies during the early stages, which reduces the
time and resources spent during optimization. However, when you specify a
low level of optimization, the optimal strategy might not be selected because
it was eliminated from consideration during early stages of the algorithm.

For SPL routines that remain unchanged or change only slightly, you might
want to set the SET OPTIMIZATION statement to HIGH when you create the
routine. This optimization level stores the best query plans for the routine.
Then set optimization to LOW before you execute the routine. The routine then
uses the optimal query plans and runs at the more cost-effective rate if reopti-
mization occurs.

When Optimization Occurs Automatically

When you create an SPL routine, the database server attempts to optimize the
SQL statements within the routine at that time. If the tables cannot be
examined at compile time (they might not exist or might not be available), the
creation does not fail. In this case, the database server optimizes the SQL
statements the first time that the SPL routine executes. The database server
stores the optimized execution plan in the sysprocplan system catalog table
for use by other processes.

The database server uses the dependency list to keep track of changes that
would cause reoptimization the next time that an SPL routine executes. The
database server reoptimizes an SQL statement the next time that an SPL
routine executes after one of the following situations:

■ Execution of any Data Definition Language (DDL) statement (such as
ALTER TABLE, DROP INDEX, CREATE INDEX) that might alter the
query plan

■ Alteration of a table that is linked to another table with a referential
constraint (in either direction)

■ Execution of UPDATE STATISTICS FOR TABLE for any table involved
in the query

The UPDATE STATISTICS FOR TABLE statement changes the version
number of the specified table in systables.

The database server updates the sysprocplan system catalog table with the
reoptimized execution plan.
5-6 Extending INFORMIX-Universal Server: User-Defined Routines

Updating Statistics for a UDR
Updating Statistics for a UDR
The database server stores statistics about the amount and nature of the data
in a table in the systables, syscolumns, and sysindices system catalog tables.
The statistics that the database server stores include the following
information:

■ Number of rows

■ Maximum and minimum values of columns

■ Number of unique values

■ Indexes that exist on a table, including the columns and functional
values that are part of the index key

The query optimizer uses these statistics to determine the cost of each
possible query plan. Run UPDATE STATISTICS to update these values
whenever you have made a large number of changes to the table.

If you do not run UPDATE STATISTICS after the size or content of any table
changes, no SQL statements within the SPL routine are reoptimized. The next
time a routine executes, the database server reoptimizes its execution plan if
any objects that are referenced in the procedure have changed.

The various clauses on the UPDATE STATISTICS statement influence re-
optimization in the following ways:

■ UPDATE STATISTICS

When you specify no clauses, the database server reoptimizes SQL
statements in all SPL routines and changes the statistics for all tables.

■ UPDATE STATISTICS FOR TABLE table name

When you specify a table name in the FOR TABLE clause, the database
server changes the statistics for the specified table.This statement
does not reoptimize any SQL statements in SPL routines.

■ UPDATE STATISTICS FOR TABLE

When you specify the FOR TABLE clause without a table name, the
database server changes the statistics for all tables and does not
reoptimize any SQL statements in SPL routines.
Performance Considerations 5-7

Choosing a Virtual-Processor Class
■ UPDATE STATISTICS FOR routine statistics name

When you specify one of the following clauses with a name, the
database server reoptimizes SQL statements in only the SPL routine
listed:

❑ FOR FUNCTION routine name clause

❑ FOR PROCEDURE routine name clause

❑ FOR ROUTINE routine name clause

When you specify one of these clauses, the database server does not
update the statistics in the system catalog tables.

■ UPDATE STATISTICS FOR routine statistics

When you specify one of the following clauses without a name, the
database server reoptimizes SQL statements in all SPL routines:

❑ FOR FUNCTION clause

❑ FOR PROCEDURE clause

❑ FOR ROUTINE clause

When you specify one of these clauses, the database server does not
update the statistics in the system catalog tables.

The database server updates the sysprocplan system catalog table with the
reoptimized execution plan.

Choosing a Virtual-Processor Class
You must choose the virtual-processor (VP) class in which to run the user-
defined routine. User-defined routines run in the CPU VP by default.

CPU Virtual-Processor Class
Generally, user-defined routines perform best in the CPU VP because threads
do not have to migrate among operating-system processes during query
execution.
5-8 Extending INFORMIX-Universal Server: User-Defined Routines

User-Defined Virtual-Processor Class
However, CPU VP execution requires additional programming. You must
make sure that your code adheres to the following guidelines:

■ Yields the CPU on a regular basis to other threads

■ Does not use blocking operating-system calls

■ Does not allocate local resources

■ Does not modify the global VP state

User-Defined Virtual-Processor Class
You can designate user-defined classes of virtual processors, called Extension
(EXT) VPs, to run user-defined routines.

Running in an Extension VP relaxes some, but not all, of the programming
requirements. These routines can perform blocking operations, but they still
cannot perform local resource allocations because they might migrate among
the VPs.

Routines that run in a user-defined virtual processor class need not yield the
processor, and they might issue direct file-system calls that block further
processing by the virtual processor until the I/O is complete. Because virtual
processors are not CPU virtual processors, however, the normal processing of
user queries is not affected.

This option results in lower performance because queries normally execute
in the CPU VP, and the query thread must migrate to the EXT VP to evaluate
user-defined routines. Thus, you should use the EXT VP with caution.

Defining an Extension Virtual-Processor Class

You might want to define a user-defined class of virtual processors to run
DataBlade or user-defined routines. When you register a user-defined
routine or function, you assign it to a class of virtual processors with the
CLASS parameter of the CREATE FUNCTION statement. For example, the
following CREATE FUNCTION statement registers the user-defined routine,
GreaterThanEqual and specifies that calls to this routine should be executed
by the user-defined VP class named new:

CREATE FUNCTION GreaterThanEqual(ScottishName, ScottishName)
RETURNS boolean
WITH CLASS = new
Performance Considerations 5-9

User-Defined Virtual-Processor Class
Tip: You can use the CREATE FUNCTION statement to create routines or functions
that reference any user-defined class that you like, and the class need not exist when
the function is created. However, if you try to use a function that refers to a user-
defined class, the class must exist and have virtual processors assigned to it. If the
class does not have any virtual processors, you receive an SQL error.

Configuring an Extension Virtual-Processor Class

You configure new virtual-processor classes in the ONCONFIG file. When you
configure a new class of user-defined virtual processors to run user-defined
routines, you must ensure that the name of the class agrees with the name
that you assigned in the CREATE FUNCTION statement.

The following example creates the user-defined class new, for which the
database server starts three virtual processors initially:

VPCLASS new,num=3 # New VP class for testing

The database server executes user-defined routines that you register with the
CLASS = ‘new’ clause in the new virtual-processor class. The class name is
not case sensitive. It appears in the onstat -g glo output as a new process.

Important: If you create a new virtual-processor class, you must remove the
SINGLE_CPU_VP parameter from the ONCONFIG file.

Using the noyield Option

The noyield option causes a user-defined class of virtual processors to run
user-defined routines in a way that gives the routine exclusive use of the
virtual-processor class. In other words, user-defined routines that use a
noyield virtual-processor class run serially, and each routine runs to
completion before the next one begins.

You should assign a user-defined routine to a nonyielding class of virtual
processors if the routine has not been designed or coded to handle the
concurrency issues of multiprocessing. For example, if a user-defined routine
uses global variables and makes calls to database services, such as the smart-
large-object interface, you should assign it to a nonyielding class of user-
defined virtual processors. Similarly, a call to a database can cause the
processing thread to yield for I/O operations. Yielding allows another thread
to run the same code and change the states of variables that the original
thread assumes to be stable when it resumes processing.
5-10 Extending INFORMIX-Universal Server: User-Defined Routines

Considerations for Parallel Execution of SPL Routines
This option is ignored for pre-defined virtual-processor classes such as CPU,
AIO, and so on.

The following example specifies a user-defined class of virtual processors
called new, that run in noyield mode:

VPCLASS new,noyield,num=1

Adding and Dropping User-Defined Virtual Processors in On-Line
Mode

You can add or drop virtual processors in a user-defined class while
Universal Server is on-line. Use onmode -p to add virtual processors to the
class. The following command adds three virtual processors to the new class:

onmode -p +3 new

For more information on how to assign a user-defined routine to either CPU
or user-defined classes of virtual processors, refer to the CREATE FUNCTION
statement, and specifically to the CLASS parameter, in the Informix Guide to
SQL: Syntax.

Considerations for Parallel Execution of SPL
Routines
When you invoke an SPL routine with the EXECUTE or CALL statements, the
SQL statements within an SPL routine can take advantage of parallel
processing. The parallel database query (PDQ) feature of Universal Server
executes a single query with multiple threads in parallel. Another Universal
Server feature, table fragmentation, allows you to store the parts of a table on
different disks. PDQ delivers maximum performance benefits when the data
that is being queried is contained in fragmented tables.

The features of PDQ allow Universal Server to distribute the work for one
aspect of an SQL statement among several processors. For example, if an SQL
statement requires a scan of several parts of a table that reside on different
disks, multiple scans can occur simultaneously.
Performance Considerations 5-11

Number of Virtual Processors (VPCLASS)
For more information on the PDQ feature, refer to the INFORMIX-Universal
Server Administrator’s Guide. For more information on the performance impli-
cations of PDQ, refer to the INFORMIX-Universal Server Performance Guide.

Number of Virtual Processors (VPCLASS)
The dynamic, multithreaded nature of a Universal Server virtual processor
can perform parallel processing. Virtual processors of the CPU class can run
multiple session threads, working in parallel, for an SQL statement contained
within an SPL routine.

You can increase the number of CPU virtual processors by setting configu-
ration parameters in the ONCONFIG file. For example, the following
parameter specifies that the database server should start four virtual
processors for the cpu class:

VPCLASS cpu,num=4

Tip: Debugging is more difficult when you have more than one CPU because threads
can migrate between processes. The Universal Server communication mechanism
uses the SIGUSR1 signal. When you are debugging, you must avoid SIGUSR1 to
prevent server processes from hanging.

Memory Considerations
This section describes stack-size considerations and the virtual-memory
cache for routines.

Stack-Size Considerations
The database server allocates local storage in user-defined routines from
shared memory. As a result, a user-defined routine must not consume
excessive stack space, either through large local-variable declarations or
through excessively long call chains or recursion. A function that overruns
the shared-memory region allocated for its stack overwrites adjacent shared
memory, with unpredictable and probably undesirable results.
5-12 Extending INFORMIX-Universal Server: User-Defined Routines

Setting Stack Sizes for User-Defined Routines
In addition, any nonstack storage allocated by a thread must be in shared
memory. Otherwise, the memory is not visible when the thread moves from
one VP to another.

The database server dynamic function manager guarantees that a large stack
region is available to a thread before it calls a user-defined function, so stack
exhaustion is generally not a problem.

In addition, the DataBlade API provides memory-management routines that
allocate space from shared memory, rather than from process-private
memory. If you use the DataBlade API interfaces, memory visibility is not a
problem. For more information on the DataBlade API, refer to the DataBlade
API Programmer’s Manual.

Setting Stack Sizes for User-Defined Routines
When you specify a stack size for a user-defined routine, the server allocates
the specified amount of memory for every execution iteration of the routine.
If a routine does not need a stack larger than 32 kilobytes, do not specify a
stack size.

Virtual-Memory Cache for Routines
Universal Server caches the following items in the virtual portion of the
database server shared memory:

■ For SPL routines and external routines, information in the
sysprocedures system catalog table

■ For SPL routines only, the executable form of the routine

System Catalog Cache

When any session requires the use of an SPL routine for the first time, the
database server reads the sysprocedures system catalog tables and stores the
information in the virtual portion of shared memory for the database server.
The database server uses this information in shared memory if it is present
for subsequent sessions that invoke the SPL routine.

The database server keeps this sysprocedures system catalog information in
the virtual memory cache on a most recently used basis.
Performance Considerations 5-13

I/O Considerations
The sysprocedures table includes the following information:

■ Name of routine

■ Compiled size (in bytes) of return values

■ Compiled size (in bytes) of pcode for the routine

■ Number of arguments

■ Data types of parameters

■ Type of routine (function or procedure)

■ Location of external routine

■ Virtual processor class in which the routine executes

SPL Cache

When any session requires the use of an SPL routine for the first time, the
database server reads the system catalog tables to retrieve the code for the
SPL routine. The database server converts the pcode into an executable form.
The database server caches this executable form of the SPL routine in the
virtual portion of shared memory.

The database server keeps this executable format of an SPL routine in the
virtual-memory cache on a most recently used basis.

I/O Considerations
The database server stores user-defined routines and triggers in the following
system catalog tables:

■ sysprocbody

■ sysprocedures

■ sysprocplan

■ sysprocauth

■ systrigbody

■ systriggers
5-14 Extending INFORMIX-Universal Server: User-Defined Routines

Isolate System Catalogs
These system catalog tables can grow very large with heavy use of user-
defined routines in a database. You can tune the key system catalogs as you
would any heavily utilized data tables. To improve performance, use the
following methods:

■ Isolate system catalogs.

■ Balance the I/O activities.

Isolate System Catalogs
If your database server has multiple physical disks available, you can isolate
your system catalogs on a single device and place the tables for your appli-
cation in a separate dbspace that resides on a different device. This separation
reduces contention for the same device.

Balance the I/O Activities
If you have a large number of user-defined routines that span multiple
extents, you can spread the system catalog tables across separate physical
devices (chunks) within the same dbspace to balance the I/O activities.

To spread user-defined routine catalogs across devices

1. Create the dbspace for the user-defined routine system catalog tables
with several chunks. Create each chunk for the dbspace on a separate
disk.

2. Use the CREATE DATABASE statement with the IN dbspace clause to
isolate the system catalog tables in their own dbspace.

3. Load approximately one-half of your user-defined routines with the
CREATE PROCEDURE or CREATE FUNCTION statement.

4. Create a temporary table in the dbspace with an extent size large
enough to use the remainder of the disk space in the first chunk.

5. Load the remainder of the user-defined routines. The last half of the
routines should spill into the second chunk.

6. Drop the temporary table.
Performance Considerations 5-15

Index

Index
A
ANSI compliance

icon Intro-8
level Intro-10

ANSI-compliant database
routine resolution 2-8
routine signature 2-5

Argument
data type does not match

parameter data type 2-11, 2-12
data-type cast 2-15

Argument list
distinct data type in 2-11
modal 3-5
order of 2-8
prefered format 3-5
size 3-5

C
Cast

effect on routine resolution 2-15
Coding standards 3-5
Comment icons Intro-7
Compliance

icons Intro-8
with industry standards Intro-10

CPU virtual processor
adding and dropping in on-line

mode 5-11
CREATE FUNCTION

EXTERNAL NAME clause 3-11
OUT parameter 3-14

CREATE FUNCTION
statement 5-9

and VPCLASS 5-10
registering a function 3-10
routine overloading 2-3
SPECIFIC keyword with specific

name 2-6
CREATE PROCEDURE statement

SPECIFIC keyword with specific
name 2-6

D
Data type hierarchy, description

of 2-10
DataBlade API

memory management
routines 5-13

DataBlade module
debugging 4-8
loading into server address

space 4-9
dbaccessdemo7 script Intro-5
Debugging

starting the debugger 4-11
steps for 4-9

Default locale Intro-4
Demonstration database Intro-5
Distinct data type

description of 2-11
routine resolution and 2-11

Documentation conventions
icon Intro-7
typographical Intro-6

Documentation notes Intro-10

Documentation, types of
documentation notes Intro-10
error message files Intro-9
machine notes Intro-10
on-line help Intro-9
on-line manuals Intro-8
printed manuals Intro-9
release notes Intro-10

E
en_us.8859-1 locale Intro-4
Error message files Intro-9
Execute privilege

DBA keyword, effect of 3-21
objects referenced by a

routine 3-20
External function

registering 3-10
External procedure

registering 3-12
External routine

library entry point 3-11
module library, specifying 3-11
registering, with modifiers 3-13
specifying library location 3-11

F
Feature icons Intro-7
Features, product Intro-5
Function

invoking
in an expression 4-6
with CALL statement 4-5
with EXECUTE statement 4-3

Function overloading 1-13

G
Global Language Support

(GLS) Intro-4
GRANT statement

example using signature 2-6, 3-20
example using specific name 2-6

I
Icons

comment Intro-7
compliance Intro-8
feature Intro-7
product Intro-7

Industry standards, compliance
with Intro-10

INFORMIXDIR/bin
directory Intro-5

ISO 8859-1 code set Intro-4

L
Locale Intro-4

M
Machine notes Intro-10
Major features Intro-5
Modality, description of 3-5

N
Name space, shared by DataBlade

module objects 3-5
NODFDAC

effect on privileges granted to
public 3-19

Null value
argument for an overloaded

routine 2-16

O
On-line help Intro-9
On-line manuals Intro-8
Operator class

definition 1-8
OUT parameter 3-14

reading values of 3-16

P
Platform portability

coding standards for 3-5
Polymorphism 3-4
Printed manuals Intro-9
Private installation 4-8
Procedure

invoking
with CALL statement 4-5
with EXECUTE statement 4-5

Product icons Intro-7

Q
Query plan

description 5-5

R
Release notes Intro-10
Return value

multiple values 3-14
Routine

wildcard argument 2-16
Routine name

ANSI-compliant 2-5
Routine overloading

description 2-3, 3-4
routine signature 2-4

Routine resolution
ANSI-compliant database 2-8
candidate list 2-8
description of 2-7
distinct type 2-12
effect of inheritance 2-10, 2-11
effect of null value argument 2-15
order of arguments 2-11
order of casting 2-15
precedence list 2-8
type hierarchy 2-10

Routine signature
ANSI-compliant 2-5
description 2-4
use in CREATE statement 2-5
use in SQL statements 2-4
2 Extending INFORMIX-Universal Server: User-Defined Routines

S
Shared object file

loading into server address
space 4-9

Signature
components of 2-4

SLV
referencing return values

with 3-16
Software dependencies Intro-4
SPECIFIC keyword 2-6
Specific name

creating 2-6
naming conventions 2-6

Stack space
used by DataBlade module

routines 5-12
Statement local variable (SLV) 3-15

precedence of 3-16
stores7 database Intro-5
Strategy functions

definition 1-8
Structured Query Language (SQL)

CREATE FUNCTION
statement 2-4, 2-5

CREATE PROCEDURE
statement 2-5

statements using routine
signature 2-4

statements using specific
name 2-6

Subtype and supertype 2-10
Support functions

definition 1-8

T
Trigger

definition of 1-13
Triggered action

statements 1-13
Type hierarchy

description of 2-10

U
Universal Server

dynamic function manager 5-13
User-defined routine (UDR)

description of 1-3
invoking 4-3
routine overloading, description

of 3-4
routine resolution 2-7

V
Virtual processors

choosing for user-defined
routine 5-8

VPCLASS parameter
user-defined classes 5-9

W
Wildcard

argument for a routine 2-16

X
X/Open compliance

level Intro-10

Symbols
sign, SLV indicator 3-15
Index 3

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Major Features
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature and Product Icons
	Compliance Icons

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Files
	Documentation Notes, Release Notes, Machine Notes

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Overview of User�Defined Routines
	What Is a User-Defined Routine?
	Tasks That You Can Perform with UDRs
	Encapsulate Multiple SQL Statements
	Simplify Writing Programs
	Improve Performance of Multiple SQL Statements

	Extend Functions for Built-In Data Types
	SQL-Invoked Functions
	Casting functions
	Operator Class Functions

	Support New Data Types
	SQL-Invoked Functions
	Support Functions
	Operator Class Functions
	Casting Functions
	Operator Binding

	Use as a Triggered Action
	Restrict Access to a Table
	Enforce Business Rules

	Ways to Invoke User-Defined Routines

	Routine Overloading and Routine Resolution
	What Is Routine Overloading?
	The Routine Signature
	Specifying a Routine During Creation
	Using the Optional Specific Name
	Specifying Overloaded Routines During Invocation

	The Routine-Resolution Process
	Candidate List of Routines
	Precedence List of Data Types
	Routine Resolution Within a Type Hierarchy
	Routine Resolution with Distinct Data Types
	Precedence List for Built-In Data Types
	Routine Resolution with Casts
	Null Arguments in Overloaded Routines

	Built-In SQL Functions That You Can Overload
	Operator-to-Function Binding

	Designing a User-Defined Routine
	Designing the Routine Source
	Naming Your Routine
	Number of Arguments
	Coding Standards

	Shared Object Libraries
	Creating a Shared Library
	Loading a Shared Library into Memory
	Replacing a Shared Object File

	Registering External Routines
	Registering an External Function
	Registering an External Procedure
	Registering an External Routine with Modifiers
	Modifiers for External Functions
	Modifiers for External Procedures

	Returning Multiple Values from External Functions
	OUT Parameters and Statement Local Variables
	Referencing OUT Parameters in User-Defined Routine...

	Iterator Function
	Writing an Iterator Function
	Registering an Iterator Function
	Invoking an Iterator Function

	Privileges for Registering a Routine
	Privileges for Executing a Routine
	Granting and Revoking the Execute Privilege

	Privileges on Objects Associated with a Routine
	Executing a Routine as DBA
	Effect of DBA Privileges on Objects and Nested Rou...

	Debugging User-Defined Routines
	Invoking a Routine
	Invoking a Function with the EXECUTE statement
	Invoking a Procedure with the EXECUTE statement
	Invoking a Function with the CALL Statement
	Invoking a Procedure with the CALL Statement
	Invoking a Function in an Expression
	Explicitly Invoking a Function in an Expression
	Implicitly Invoking a Function That Is Bound to an...
	Implicitly Invoking a Function for Casting

	Private Installation
	Installing and Registering DataBlade Modules
	Debugging a DataBlade Module
	Connecting to the Server from a Client
	Loading the DataBlade Module
	Identifying the Server Process
	Starting the Debugger
	Setting Breakpoints
	Symbols in Shared Object Files

	Performance Considerations
	SPL Considerations
	SPL Compilation
	SPL Execution
	SPL Optimization
	Optimization Levels
	When Optimization Occurs Automatically

	Updating Statistics for a UDR

	Choosing a Virtual-Processor Class
	CPU Virtual-Processor Class
	User-Defined Virtual-Processor Class
	Defining an Extension Virtual-Processor Class
	Configuring an Extension Virtual-Processor Class
	Using the noyield Option
	Adding and Dropping User-Defined Virtual Processor...

	Considerations for Parallel Execution of SPL Routi...
	Number of Virtual Processors (VPCLASS)

	Memory Considerations
	Stack-Size Considerations
	Setting Stack Sizes for User-Defined Routines
	Virtual-Memory Cache for Routines
	System Catalog Cache
	SPL Cache

	I/O Considerations
	Isolate System Catalogs
	Balance the I/O Activities

	Index

