NightTrace Manual

(= concurrent 0890398-080
cggygngﬁm June 2002

Copyright 2002 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end-users. It may not be
reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “ Attention: Publications Depart-
ment.” This publication may not be reproduced for any other reason in any form without written permission of the
publisher.

The license management portion of this product is based on:

Elan License Manager
Copyright 1989-1994 Elan Computer Group, Inc.
All rights reserved.

NightTrace, Kernel Trace, NightView, NightStar, Power Hawk, RedHawk, and MAX Ada are trademarks of Concurrent Computer Corporation.
Elan License Manager is a trademark of Elan Computer Group, Inc.
PowerPC is atrademark of International Business Machines, Corp.

Motif, OSF, and OSF/Matif, X Window System and X are trademarks of The Open Group
PrintedinU. S. A.

Revision History: Level: Effective With:
Origina Release -- August 1992 000 NightTrace 1.0
Current Release -- June 2002 080 NightTrace 5.1

Scope of Manual

Preface

Thismanual is areference document and users guide for NightTrace™, a graphical, inter-
active debugging and performance analysis tool, and Kernel Trace™, atool that collects
and textually analyzes system performance.

Structure of Manual

A brief description of the chapters and appendixes in this manual follows:

Chapter 1 contains introductory material on NightTrace.

Chapter 2 gives the syntax and examples of NightTrace library calls.
Chapter 3 introduces the NightTrace Session Manager and its usage.
Chapter 4 describes the nt r aceudcommand line user daemon.
Chapter 5 describes how to invoke the nt r ace display utility.
Chapter 6 shows how to view trace event logswith nt r ace.
Chapter 7 illustrates nt r ace display objects and their creation.
Chapter 8 shows how to configure nt r ace display objects.

Chapter 9 defines NightTrace expressions.

Chapter 10 tells about NightTrace’s built-in tools.

Chapter 11 describes kernel tracing.

Thismanual also contains three appendixes, a glossary, and an index.

* Appendix A describes performance tuning.

* Appendix B describes graphical user interface (GUI) customization.

* Appendix C provides answers to common questions.

The glossary contains an alphabetical list of NightTrace, X™, and Motif™ words and
phrases used in this manual and their definitions. The index contains an aphabetical list of
topics, names, etc. found in the manual.

Man page descriptions of programs, system calls, subroutines, and file formats appear in
the system manual pages.

NightTrace Manual

Syntax Notation

The following notation is used throughout this guide:

italic

list bold

list

emphasis

window

{}

Books, reference cards, and items that the user must specify
appear in italic type. Specia terms and comments in code may
also appear initalic.

User input appears in | i st bol d type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in | i st bol d type.

Operating system and program output such as prompts and mes-
sages and listings of files and programs appearsin | i st type.
Keywords also appear inl i st type.

Words or phrases that require extra emphasis use emphasis type.

Keyboard sequences and window features such as button, field,
and menu labels and window titles appear in window type.

Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

Braces enclose mutually exclusive choices separated by the pipe
(]) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An élipsisfollows an item that can be repeated.

An arrow separates amenu bar item from a pull-down menu entry.

The window images in this manual come from a Motif environment. If you are using
another environment, your windows may differ slightly from those presented here.

Referenced Publications

The following publications are referenced in this document:

0830048
0830046
0890240
0890300
0890378
0890380
0890395
0890423
0890429

HN6200 Architecture Reference Manual
HN6800 Architecture Manual

hf77 Fortran Reference Manual

X Window® System User’s Guide

C: A Reference Manual

OSF/Motif™ Documentation Set (3 volumes)
NightView™?! User's Guide

PowerMAX OS™2 Programming Guide
System Administration Volume 1

1. NightView isatrademark of Concurrent Computer Corporation
2. PowerMAX OSis atrademark of Concurrent Computer Corporation

0890430
0890460
0890466
0890474
0890516
0891019
0891055
0891082

Preface

System Administration Volume 2

Compilation Systems Volume 2 (Concepts)
PowerMAX OS™ Real-Time Guide

NightTrace™ Pocket Reference

MAXAda™ Reference Manual

Concurrent C Reference Manual

Elan™3 License Manager Release Notes

Real-Time Clock and Interrupt Module User’s Guide

PowerPC™* 604 RISC Microprocessor User’s Manual (not avail-
able from Concurrent Computer Corporation)

3. Elan License Manager is atrademark of Elan Computer Group, Inc.
4. PowerPC is atrademark of Internationa Business Machines, Corp.

NightTrace Manual

Contents

Chapter 1 Introduction

OV VI BV .« . o ettt e e e e e e e e 1-1
What isNIightTrace?o e 11
Userand Kernel TraCing.o o et e e e 1-2
Timestamp Source Selection 1-2
Trace-Point Placement i 1-2
Languages SUPPOItedo e e 1-3
Processesand CPUS.ttt 1-3
Information Displayed 1-3
Searchesand SUMMANTESt e 1-3
Logging @and ANalYSiSot 1-3
The User Trace Event Logging Procedure, 1-4
The Kernel Trace Event Logging Procedure oot 1-5
The Trace Event AnalysisProcedure. ..., 1-6
Recommended Reading.« 1-7

Chapter 2 Adding Library Calls to Your Application

O VIV BN . . ottt et e e e e 2-1
Language-Specific Source Considerationfcs. 2-1
C e 2-1
Fortran 2-2
Ada. . 2-2
Inter-Process Communication and Library Routines 2-3
Understanding NightTraceLibrary Calls i... 2-3
trace begin(). 2-5
trace_open thread()t 2-9
trace event()and ItsVariants. 2-10
trace_enable(), trace disable(), and Their Variants 2-16
trace_flush() and trace trigger(). oo v 2-20
trace_close thread()t 2-22
trace end()o o 2-23
Disabling TraCingot 2-24
Compilingand Linking 2-24
CEXaMPIE . o 2-25
Fortran EXample. 2-25
AdaEXxample 2-25
Exercise: Instrumenting Codet 2-25

Chapter 3 NightTrace Session Manager

Using the NightTrace Session Managerot 3-1
NightTrace Session Manager MenuBar ..., 3-2
NIGhETIaCE. . . oo e e e 3-2

OPEN SESSION &« et ettt e 34

NightTrace Manual

SAVE SESSION. . o it 3-6
Unsaved Changes.o 3-8
DaEMONS . . . e 3-9
LOgiN 3-10

Enter Password. 311

Attach DaemoNSo 312

OPtIONS. . . ettt 314
Refreshinterval 314

TOO0IS o 314
HElD . o 3-16
Session Configuration FileNameAreat 3-17
Daemon DEtallS ATaottt 317
Daemon Control Ar€a. oot 3-20
Enable/Disable Trace Events.t 322
Daemon Definition Dialog.o ot 3-25
Import Daemon Definition 327
GEneral .. 3-28
Targel . .. 3-29
Trace EVENtSOULPULot e 331
USEr TraC. . .ottt e e e e e 3-33
Locking POlICIESo 3-34
Shared Memoryo 3-36
Timestamp Heartbeat. 3-36
UserBEventBuffer ... 3-37
EVentS . . o 3-37
Load EVENt NAMES. oottt ettt et 3-39
RUNLIME. . .o 341
SChedulingo 3-42
CPU BIaS. . ot 3-43
NUM A 3-43
POlICIES . . 3-44
SFEAMING . .o et 3-45
Streaming OPtioNS.o ottt e 3-45

Chapter 4 Generating Trace Event Logs with ntraceud

OV VI BV . . ottt e e e e e e e 4-1
Thentraceud DaemOont 4-1
The Default User Daemon Configuration iineennan. 4-2
Ntraceud MOOESo 4-4
ntraceud OPLIONS oot 4-5
Optionto Get Help (-help)o 4-7
Option to Get Version Information (-version), 4-8
Option to Disable the IPL Register (-ipldisable) 4-9
Option to Prevent Page Locking (-lockdisable) 4-11
Option to Establish File-Wraparound Mode (-filewrap). 4-12
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4-13
Option to Define Shared Memory Buffer Size (-memsize) 4-16
Option to Set Timeout Interval (-timeout) oot 4-17
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4-18
Option to Select Timestamp Source (-clock)t 4-19
Option to Reset the ntraceud Daemon (-reset) v, 4-20
Option to Quit Running ntraceud (-quit)c.ooiiiienann. 4-21

Contents

Option to Present Statistical Information (-stats).t 4-22
Option to Disable Logging (-disable). it 4-24
Optionto EnableLogging (-enable). 4-26
INVOKING NEraceudo e e e 4-28
Exercise: Logging TraCe EVeNntS.ot 4-29

Chapter 5 Invoking the ntrace Display Utility

OVEIVIBIWG . . o ettt et e et e e e e e e e e e e e e e e e e 5-1
X and NightTraceVocabulary e 51
SyStemM ENVIFONMENTot 5-2
INVOKING NEraCe . . . oo e e e 5-3
NrACE OPLIONS . . . oottt e e e e e e e 5-3
Ntrace ArgUMENTS.o e e e 5-8
Understanding Trace Event Files. 5-9
Understanding Event-Map Files.o 5-9
Understanding Page ConfigurationFiles. 5-11
Ntrace TableSo 5-12

SN Tables. . ..o 5-13

Pre-Defined String Tableso 514

Format Tables. 5-17

Pre-Defined Format Tables 5-20

Configuring Display Pageso et 5-20

ntrace User Interface oo 5-21
USINgthe MOUSE.o e 5-21
Understanding Pointer Shapes 5-22
Anticipating Window Layout. 5-22
ReSiZINGWINOWSo e 5-24
ntrace Notation CoNVENtioNS. v it e e 5-24
ntrace Global Window 5-25
Message Display Ar€ao oot 5-25
MenuBar 5-26
NightTrace Menu ltem e 5-26

New Page. 5-27

Default Page.o 5-28
OpenConfigFile. 5-30

Read Event-Map File. 5-31

Xt . 5-32

ToolsSMenuU Item 5-32
HelpMenultem e 5-33

The File Selection Dialog BOXo ittt 5-33
TypingintheExact FileName. o i 5-33
Scrolling Through Existing FileNames. oo, 5-34
Typing inaFilter (FileNamePattern)o .. 5-35
Exercise: Displaying TraCe EVeNnts. 5-35

Chapter 6 Viewing Trace Event Logs with ntrace

OV VI BV .« e 6-1
Mouse BUtton Operationsottt 6-3
The Grid. ... 6-4
VIBWING SIralEOY - . o oo v ettt e e e e e e 6-5
Thelnterval Scroll Bart e 6-7

NightTrace Manual

Thelnterval PUSh BULONS e 6-8
Thelnterval Control Areat e 6-11
Reading Fields 6-11
Editing Single Fields. 6-12
Editing Multiple Fields. 6-14
FIald Bditing.o 6-16
Editing Text Fields 6-16
Positioning Within Text Fields. 6-18

Chapter 7 Creating Display Objects

OV VI BV . . ottt et e e e e 7-1
TheDisplay Page.o 7-2
Display PAge MOUES.o 7-3
EditMOde. .. .o 7-4
VIBW MOOE . . o 7-4
Operationson Display Objects 7-4
Creating Display ODJeCtSo 7-5
Selecting Display Objects.o 7-6
Moving Display Objects. 7-7
Resizing Display ObjectSot 7-7
Display ObJECES . . . oot ot 7-8
GridLabel 7-12
DataBoX 7-12
COlUMIN . L 7-13
SAEGIaPN. . . o 7-14
BventGraph.o 7-15
DataGraph. . . oo 7-16
RUIEr 7-17
Editing OperationS.ot 7-17
Select AllL o 7-18
Desalect All. . .o 7-18
DE e . . 7-18
File Operations.ot e 7-18
SN . . i 7-18
S A et 7-19
Lo . o e 7-19

Chapter 8 Configuring Display Objects

10

OV VI BV . . ottt et e e e e e 8-1
Common Configuration Parameters.ot e 8-1
Display Object Nameo 8-4
BVent LISt . oo 8-4
- EXPrESSION. . o .ottt 8-4
THEN-EXPreSSIONottt et et e e 8-5
CPU List . oot 8-6
PID LSt oot e 8-7
TID LISt .ottt 8-8
NOGE LISt . e 8-9
Foreground ColOr oot 8-9
Background Color. o 8-9
FONt. . 8-9

Contents

TeXt JUSHITY . . 8-9
TEXE GraVity . . o oottt e e 8-10
Configuration Form PUsh BULLONS. 8-10
Specific Configuration Parameterst 8-11
GridLabel 8-12
DataBoX . ..o 8-13
SAEGIapN . o 814
BventGraph. 8-16
DataGraph. . . .ot 8-17
RUIEr . 8-19

Chapter 9 Using Expressions

OV VI BV .« . o ettt e e e e e e e 9-1
EXPressioNSMENUot 9-1
EXpression Dialog BOXES oo oot 9-2
Expression Configuration FOrmsSot 9-2
EXPrESSIONS .« o .ttt et 9-4
OPEIAIOISottt et 9-4
O ANAS. . . oot e 9-5
CONSIANTS . . .o 9-5
MaCrOS . .. 9-6
FUNCLIONS . . o 9-9
Function Parameters e 9-12
Function Terminologyo o e 9-13
Trace Event FUNCLIONS. 9-19

o P 9-19

o 9-20

arg dbl(). ..o 9-21
NUMLIGS() - e v v et e e e e e et e e e 9-21

PIA() - e 9-22
FAV_PIA() - vt 9-23

IWPI() - e 9-23

thread id()o 9-24

task id() ... e 9-25

1 [9-25

o0 9-26

Off SBE() « v oo 9-27

HME() . e 9-27

NOAe Td() -« ot 9-28

pid table name() 9-29

tid table name() ... 9-29

NOAE NAME(). . .« . vt et e e e 9-30

ProCeSS NAME() . . v vttt e e et e e e e 9-30
task_name() 9-31

thread name() 9-32
Multi-Event FUNCLIONS. 9-32
BVENE_GAD() -« - o et 9-32
event_matches()t 9-33

S@E FUNCLIONSo e 9-34
SAt FUNCLIONS 9-34

start Td() ..o 9-35

StArt Arg() - - e 9-35

NightTrace Manual

12

start_arg dbl(). 9-36
start_ NUM_args() -« ..o v e 9-37
Start_ Pid() ... 9-37
start_raw pid() ... 9-38
start_ Iwpid() ... 9-39
start_thread id() ..o 9-39
start_ task id()o 9-40
start tid(). ... 9-41
St CPU() - v oo e e 9-41
start_offset() 9-42
start time()o 9-42
start node id() ... 9-43
start_pid_table name() 9-44
start_tid table name(). 9-44
start node name(). 9-45
End FUNCLIONS.o 9-45
end id() . ..o o 9-46
ENA AG() - - o e 9-47
end arg dbl() ... 9-47
end_NUM_args(). - -« v v et 9-48
end Pid() . ..o 9-48
end raw _pid() 9-49
end Iwpid()o 9-50

end thread id(). ... 9-51
end task id(). 9-51
end tid() 9-52
ENA CPU() . - oo e ettt 9-52
end Off SEt() oo oo 9-53
end time() 9-54

end node id()o 9-54
end pid_table name(). 9-55
end tid table name() 9-55

end node Name() . ..ot e 9-56
Multi-State Functions. 9-56
S GAD() - - v e e 9-57
State dUr() ..o 9-57
state matches() 9-58
State StAUS() .« o o e 9-58
Offset FUNCLIONS.o 9-59
Off Bt Td() . . o vt 9-60
Offset_arg() ..o oo 9-60
offset_arg dbl() ... 9-61
offset_ NUM_args(). . . .« vv oo 9-61
offset_pid()o 9-62
offset_raw_pid()ooovni e 9-63
offset_Iwpid()o oo 9-63
offset_thread_id()........o oo 9-64
offset_task_id(). . ..o et 9-64
OffSEt_tid() ..ot 9-65
Off SEL_CPU(). « .« o oo 9-66
offset_time(). 9-66
offset_ node id() ..o 9-67
offset_pid table name().......... ... 9-67
offset tid table name() i 9-68

Contents

offset_ node name() 9-68
offset_process Name()ot 9-69
offset_task_name(). ... 9-69
offset_thread_ name() 9-70
Summary FUNCLIONS. e 9-70
MIN() . et e e 9-71

MAX() + v v e e e e e e 9-71

V() e 9-72

SUM() .« ettt e e e e 9-72
MIN_OffSEt()o 9-73
max_offset()o 9-73
summary_matches(). oo 9-74

Format and Table Functions 9-75

QL SIING() . - v et 9-75

0 1= L = 0) 9-77
get_format()o 9-79

format() 9-80
Qualified BVents.o 9-81
Qualified Stateso 9-83

Chapter 10 Using the Built-In Tools

OV IV B .« . ettt e e e e 10-1
Searching for Pointsof Interest. i 10-1
Search FoOrm Radio BULtONSo e 10-2
Search FOrm PUsh BULtONS. oo e e 10-3
Search Form Fields. 10-4
Summarizing Statistical Information. 10-5
Summarize Form RadioButtons 10-6
Summarize Form Fields. 10-6
Summarize FormPushButtons o i 10-8
MenuBar ... e 10-9

File Operationsottt e 10-9

Save TeXt . . 10-10

Save TEXt AS .. o 10-10

ClOSE. . ot 10-10

Summary Display Area 10-10
Event SUMMANiESottt e e e e e e e 10-11
At SUMIMAITES. . . o ottt et e e e e e 10-12
Exercise: UsingtheSearch Tool 10-14
Exercise: Using the Summarize Tool 10-15

Chapter 11 Tracing the Kernel

OV VI BV .« . o e et ettt e e e e 111
Default Kernel Trace POINtSot e 111
Context Switch Trace Event.t 11-2
Interrupt Trace Events 11-2
Exception TraCe EVENtS oot 11-3
Syscall TraCce BEVeNtS.o 11-4
Kernel Trace Points Not Enabled By Default, 11-5
Page Fault EVent.o 11-5
Protection Fault Event 11-5

13

NightTrace Manual

Viewing Kernel Trace Event Files. i 11-6
Kernel Display Pageso oo 11-6
RCIM Default Kernel Display Page 11-7

CPU Informationt 11-9
Running Process Informationcoo i 11-10

Node Information i 11-11

Context Switch Information i 11-11
Interrupt Information. 11-12
Exception Information. 11-13

Syscall Information 11-15

Color INformation 11-16

Kernel String Tables 11-16
Kernel Reference.o 11-18
INMteITUPES. . 11-19
Non-Device-Related Interrupts. 11-19
Device-Related Interruptso 11-20
EXCEPLIONS. . . oot 11-20
SYSCAllS . . 11-21

Appendix A Performance Tuning

OV IV BV . ottt e A-1
Preventing TraCe EVENtSLOSSo ittt e A-1
Ensuring Accurate TImMiNgS oot vttt A-3
Optimizing FileSystemand CPU USage.o oot A-3
Conserving DisSk SPaCe oo v ettt A-4
Conserving Memory and Acceleratingntrace A-4

Appendix B GUI Customization

Appendix C Answers

lllustrations

14

OV VI BV . . ottt et e e e e e B-1
Default X-Resource Settingsforntrace. B-2
EXaMPIES . . B-5
Exercise: Customizing Display COlOrS. B-5

to Common Questions

Figure 1-1. Exampleof InstrumentedCCodeccovviiiniinn .. 1-4
Figure 1-2. Example of a User Display Page with Display Objects. 1-6
Figure 2-1. Inter-Process Communication and Library Routines. 2-4
Figure 2-2. entry_exit.c Before Instrumentation 2-26
Figure 2-3. entry_exit.c After Instrumentation 2-29
Figure 3-1. NightTrace SessionManagerc.c.coviiiiiiinnnenn... 2-2
Figure3-2. NightTraceMenut 2-3
Figure3-3. Open Sessiondialogcouuiiiinii i 2-5
Figure3-4. Save Session didlogo v e 2-7
Figure 3-5. Unsaved Changesdialogcouiiiinii .. 2-8
Figure3-6. DaemONSMENUot e 2-9
Figure3-7. Logindialogoiiuiii 2-11
Figure3-8. Enter Password dialogoviiei 2-12

Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 3-25.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.

Contents

AttachDaemonsdialogt 2-12
OPtiIONSMENUot e 2-14
Refreshinterval dialog 2-14
TOOISMENU . ..o 2-15
HelpMenu ... 2-16
Session Configuration FileNameArea 2-17
Daemon DetallSArea ...ttt 2-18
Daemon Control Ar€ao ot 2-20
Enable/ Disable Trace Eventsdialog 2-22
Daemon Definitiondialog i 2-25
Import Daemon Definitiondialog 2-27
Daemon Definition dialog- General 2-29
Daemon Definition dialog-User Trace 2-34
Daemon Definition dialog- Events 2-38
Load Event Namesdialogooiiinnii i 2-40
Daemon Definition dialog- Runtime 2-41
Daemon Definition dialog- Streaming 2-45

Window COMPONENtScout et 2-24

Globa Window for aSingle Trace EventFile 2-25

Global Window FileMenu, 2-26

New Display Page 2-28

A Default Display Page ... 2-29

The Open Config FileDialog BOX, 2-31

The Read Event-Map File Dialog BoXoouu... 2-32

Global Window HelpMenu 2-33

A Display PageinViewMode 2-2

TheGrid 2-4

Deciding What to DoNextinViewMode 2-6

Thelnterval Scroll Bar i 2-7

Thelnterval PushButtons. oot 2-8

Thelnterval Control Area. ..., 2-11

Amount of Scrolling Dueto IncrementValue 2-14

Display Pagewith Display Objects, 2-1

Elementsof aDisplayPage i, 2-2

Edit and View ModeButtons it 2-3

Button FunctionsonaMouse 2-5

Create Display ObjectsMenu, 2-8

Display Object UseFlowchart 2-12

GridLabel Examples 2-12

DataBox Examples 2-12

ColumnExample 2-13
StateGraph Example 2-14
EventGraph Example i 2-15
DataGraph Examples ... 2-16
Ruler Example 2-17
EditMenu ... 2-17
FileMenu 2-18

ConfigureCommand Menu ..., 2-1

Left-, Center-, and Right-Justified Text 2-10

Topvs. Bottom Gravityt 2-10

Configuration Form Push Buttonsoooo... 2-10

GridLabel Configuration Form i 2-12

DataBox Configuration Formt 2-13

StateGraph Configuration Formo 2-14

15

NightTrace Manual

Screens

Tables

16

Figure 8-8. EventGraph Configuration Form 2-16
Figure 8-9. DataGraph ConfigurationForm 2-17
Figure8-10. Solidvs. NOFill 2-18
Figure 8-11. Maximumvs. MinimumValues 2-18
Figure 8-12. Ruler Configuration Form ..., 2-19
Figure 8-13. Mark and Lost Event Markers............................... 2-19
Figure 9-1. EXPressionSMenUttt 2-1
Figure9-2. MacroDialog BOX vviiii i 2-2
Figure 9-3. Configuration FormPushBuUttONS, 2-3
Figure 9-4. Macro Configuration Form i, 2-7
Figure 9-5. Function Terminology Illustrated 2-14
Figure9-6. Statesand EVENtSt 2-15
Figure 9-7. Qualified Event Configuration Form 2-82
Figure 9-8. Qualified State Configuration Form 2-84
Figure10-1. TOOISMENUt e 2-1
Figure10-2. TheSearch FOrm i 2-2
Figure 10-3. Summarize Form FileMenu 2-10
Figure 10-4. The Event Summarize Formco i, 2-12
Figure 10-5. The State Summarize Formot 2-14
Figure 11-1. Globa Window FileMenu, 2-6
Figure11-2. SampleKernel DisplayPage 2-7
Figure 11-3. Node SelectionDialog oo v et 2-8
Figure 11-4. Node Selection WarningDialog, 2-9
Figure 11-5. Per-CPU Information . ..ot 2-9
Figure 11-6. CPU BOXottt e e e 2-9
Figure 11-7. Running ProcessSBOXESot 2-10
Figure 11-8. NOEeBOX i ittt e e e 2-11
Figure 11-9. Context SwitchLines, 2-11
Figure 11-10. Last Interrupt Box and Interrupt Graph 2-12
Figure 11-11. Last Exception Box and ExceptionGraph 2-13
Figure 11-12. TR PAGEFLT_ADDR and TR_PROTFLT_ADDREvents....... 2-14
Figure 11-13. TR_SWITCHIN vs. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR

BVENtS. . 2-15
Figure 11-14. Last Syscall Box and Syscall Graph. 2-15
Figure 11-15. Color K&yt e 2-16
Screen 4-1. Sample Output from the ntraceud -help Option. 2-7
Screen 4-2. Sample Output from ntraceud -statsOption 2-23
Screen 5-1. Sample Output from the ntrace -help Option. 2-4
Screen 5-2. Example of ntrace -listing Output (with instr pagefault) 2-5
Screen 5-3. Example of ntrace -listing Output (with datapagefault) 2-6
Screen 5-4. Example of ntrace -filestatsOutputa... 2-6
Table 4-1. NightTrace Configuration Defaults.t 2-4
Table 4-2. Mode-Selection GUIEINESo 2-5
Table 4-3. NightTrace OperatingModes.t 2-5
Table 4-4. ntraceud Disable Sequence#1.t 2-25
Table 4-5. ntraceud Disable Sequence#2. 2-25
Table 4-6. ntraceud Enable Sequence#1 ... 2-27

Glossary

Index

Contents

Table4-7. ntraceud EnableSequence#2 2-27
Table 5-1. ntrace Pointer Shapesand TheirUsage. 2-22
Table 6-1. View-Mode Mouse Button Operationsoieeinann. 2-3
Table 6-2. Manipulating the Interval Scroll Bar. 2-8
Table6-3. Valid MultipleFidddChanges oo, 2-15
Table6-4. Making EditingChanges.t 2-16
Table 6-5. Positioning WithinaTextField. 2-18
Table 7-1. Edit-Mode Mouse Button Operations.c...ovieeenaan.. 2-5
Table 8-1. Common Configuration Parameterscooion.. 2-2
Table 8-2. Examples of If-EXpressions. 2-5
Table 8-3. Examples of Then-EXpressions.o.iiiiiieineenann. 2-5
Table 9-1. Time Unitsand Constant Suffixes. oot 2-6
Table 9-2. A Comparison of Functionsand Macros. 2-6
Table 9-3. NightTraceFunctions i, 2-10
Table 11-1. Example Logical CPUMaEPPINGo v e 2-10
Table 11-2. Non-Device-Related Interrupt Reference 2-19
Table 11-3. Device-Related Interrupt Referencet 2-20
Table 11-4. Exception Reference 2-21
Table B-1. Meanings of Common Subobjectsand Attributes B-2
Table B-2. Suggested Colorsfor X ReSOUrCes. oo vviiiie i e B-5

17

NightTrace Manual

18

1

Introduction

VIV BV .« . o ettt e e e e e e 1-1
What isNightTrace? e 1-1
Userand Kernel TraCing.o oot e i e e 1-2
Timestamp Source Selection 1-2
Trace-Point Placement 1-2
Languages SUPPOItedo et 1-3
Processesand CPUS.ttt 1-3
Information Displayed i 1-3
Searchesand SUMMANTESt e 1-3
Logging @and ANalYSISot 1-3
The User Trace Event Logging Procedure, 1-4
The Kernel Trace Event Logging Procedure i, 1-5
The Trace Event AnalysisProcedure. ..., 1-6
Recommended Reading.ot 1-7

NightTrace Manual

1
Introduction

Overview

This chapter provides an overview of NightTrace, steps involved in using the toolset, and
recommended readings.

What is NightTrace?

The NightTrace toolset is part of the NightStar™ family consisting of an interactive
debugging and performance analysis toal, trace data collection daemons, and an Applica-
tion Programming Interface (API) allowing user applications to log data values. Night-
Trace allows you to graphically display information about important events in your appli-
cation and the kernel, for example, event occurrences, timings, and data values.
NightTrace consists of the following parts:

NightTrace API Libraries and include files for use in user applications that log
trace events to shared memory

ntrace A graphical tool that controls daemon sessions and displays
user and kernel trace eventsin trace event file(s)

ntraceud A daemon program that copies user applications’ trace events
from shared memory to trace event file(s)

NightTrace is flexible. Asauser, you control:
* Selection of user tracing of your application or kernel tracing
¢ Selection of timestamp source
* Trace-point placement within your application
* The source language of the trace application
* The number of processes and CPUs you gather data on
¢ The amounts and types of information you display

* Trace event searches and summaries

11

NightTrace Manual

User and Kernel Tracing

If interactions are important, you can simultaneously capture event information from your
application and from the kernel. Alternatively, you can capture just user events or
pre-defined kernel events.

Timestamp Source Selection

By default, an architecture-specific timing source is utilized. For Intel-based machines,
the Intel Time Stamp Counter (TSC register); for Night Hawk 6000 series machine, the
interval timer; for PowerHawk and PowerStack series machines, the Time Base Register
(TBR). However, the Real-Time Clock and Interrupt Module (RCIM) can be also used as
atimestamp source.

The RCIM is an optional hardware module, attached to a single-board computer (SBC),
which contains atick clock that can be synchronized between several SBCs by way of an
interconnection cable. This synchronized tick clock can be used as a common time base
for both kernel-level tracing and user-level tracing across multiple SBCs. NightTrace sup-
ports using the RCIM synchronized tick clock to timestamp trace events and also supports
displaying trace data generated on multiple SBCs having the common time base. The
RCIM also contains a POSIX clock. However, the POSIX clock is not supported as a
timestamp source by NightTrace.

For more information about the RCIM, please see the cl ock_synchroni ze(1M,
rcim7),rcinconfig(1lM,andsync_cl ock(7) man pages.

Trace-Point Placement

1-2

A trace point is a place of interest in the source code. At each user trace point, you make
your application log some user-specified information along with a timestamp and some
additional system information. This logged information is collectively called a trace
event. In user traces, each trace event has a user-defined trace event ID number, and two
different trace event | Ds delimit the boundaries of a user-defined state.

Some typical user trace-point locationsinclude:
¢ Suspected bug locations
* Process, subprogram, or loop entry and exit points
* Timing points, especialy for clocking 1/0O processing
* Synchronization points/multi-process interaction
* Endpoints of atomic operations

* Endpoints of shared memory access code

Careful trace point placement allows you to easily identify patterns and anomalies in your
application’s behavior.

Introduction

Kernel trace points and trace events are pre-defined and embedded in the kernel source.

Languages Supported

The NightTrace library is callable from C, Fortran and Ada. This means that your
application can be written in any combination of these languages and still log trace events.

Processes and CPUs

A user daemon is responsible for actually recording the trace events logged by an applica-
tion to disk. It can interact with single-process and multi-process applications; the pro-
cesses may even run on different CPUs. When you log a trace event, NightTrace identi-
fies both the originating process and optionally the CPU. User daemons are initiated and
managed via the session manager in the nt r ace graphical tool or viathent r aceud
command line tool.

Information Displayed

Thent r ace display utility lets you examine some or al trace events. Data appear as
numerical statistics and as graphical images. You can create and configure the graphical
components called display objects or use the defaults. By creating your own display
objects, you can make the graphical displays more meaningful to you. You can customize
display objects to reflect your preferences in content, labeling, position, size, color, and
font.

Searches and Summaries

With the nt r ace display utility, you can perform searches and summaries. Searches let
you filter out unwanted data and zero-in on trouble spots and specific data. Summaries let
you define characteristics of the trace event data to be summarized in several different

ways.

Logging and Analysis

NightTrace supports two activities: trace event logging and trace event analysis.

1-3

NightTrace Manual

The User Trace Event Logging Procedure

The following text describes user trace event logging. Follow these steps in the order
shown:

1. Establish a suitable environment for running your application and captur-
ing trace data. Make sure you meet al the system requirements discussed
in the NightTrace Release Notes for the version you are running.

2. Select trace pointsin your source code. A trace point marksa point in your
application that isimportant to debugging or performance analysis.

3. Insert acall to aNightTrace trace event logging routine at each trace point
in your source code, so you can later see the trace event information graph-
ically in nt r ace. You can manually insert these calls into your source
code or insert them into the final executable with the NightView debugger.
See the NightView User’s Guide for moreinformation.

4. Insert calls at appropriate places in your application to initialize the Night-
Trace trace event logging library and terminate logging. This is necessary
for resource allocation and deallocation, file creation, and flushing trace
eventsto disk. Steps 3 and 4 are called instrumenting your code. Figure 1-1
shows instrumented C code.

#i ncl ude <ntrace. h>
#def i ne START 10
#def i ne END 20

mai n()

{
trace_begin("log", 0);
trace_open_thread("main_thread");
trace_event (START);

process();

trace_event(END);
trace_cl ose_thread();
trace_end();

exit(0);

Figure 1-1. Example of Instrumented C Code

5. Compile and link your application with the NightTrace trace event logging
library. For example:

$ cc main.c process.c -Intrace -lud # for Power MAX
$ cc main.c process.c -Intrace -lccur_rt # for RedHawk

1-4

Introduction

6. Start NightTrace and user the NightTrace Session Manager to define a dea-
mon session used to capture user and/or kernel data. For example:

$ ntrace -ngr &

In the NightTrace Session Manager window, select the Daemon -> New
menu item which brings up aDaemons Definition dialog. Click on the
User Application radio button to define this as a user daemon. Click on
the Stream checkbox to ensure it is now unchecked. Enter the filename
passed to thet r ace_begi n() routine in the text field for the Key File.
Click the OK button.

7. Start the user daemon by clicking on the Start button in the Session Man-
ager window. Once the state for the daemon changes to Paused, click
the Resume button.

8. Run your application. As NightTrace trace event logging routines execute,
they write trace event information into a shared memory buffer. Periodi-
cally, the user daemon copies this information to a trace event file on disk.
For example:

$ a.out

9. When the application completes, or when you have captured sufficient data
that you now wish to analyze, stop the daemon in the session manager by
pressing the Flush button followed by the Stop button.

10. Todisplay the data, press the Display button in the session manager.

The Kernel Trace Event Logging Procedure

Alternatively, to log and view kernel data, invoke the nt r ace command and follow these
steps:

$ ntrace -ngr &

1. Define a kernel daemon in the NightTrace Session Manager window by
selecting the Daemon -> New menu item which bringsup aDaemons
Definition dialog. Click on the Kernel radio button to define this as a
kernel daemon. Click on the Stream checkbox to ensure it is now
unchecked. Enter an output filename, such as/ t np/ ker nel -dat a in
the text field for Output File. Click the OK button.

2. Start the kernel daemon by clicking on the Start button in the NightTrace
Session Manager window. Once the state displayed in the session manager
for the daemon changes to Paused, click the Resume button.

3. Allow the daemon to capture data for a few seconds, then click on the
Flush button followed by the Stop button.

4. To display the kernel data, click on the Display button. Thiswill cause a
default kernel page to pop up. Repeatedly click on the Zoom Out button
on that page until you see datain the display pane. Note: if any display
page is aready open, clicking the Display button will not automatically

1-5

NightTrace Manual

create a kernel display page. In such a case, open a default kernel page
from the main NightTrace dialog.

The Trace Event Analysis Procedure

File Edit Create Configure Expressions Tools Help

~ Edit
Display Objects
. 6FE;at E
Display Page

" |Threads threadl (cap”B1570)

E User Events:

T
|
|
|
- Threads threadl N “~— | S
- |tgarcie’ 2059707 T .
- . | :
|
e |
-0, 1‘§

Tz . Y Tz .
B |||||||||||||||||||||||||||||||||.|||||||||||||||:

o [y -

Time Start[0,0000000s Time Length [4,2251336= Time End [4,8261896=
Event Start[o Event Count/[3 Event End |z
Zoom Factor[2,0 Increment |25, 00% Current Time [1.20854725

| | Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 1-2. Example of a User Display Page with Display Objects

5. lteratively locate and analyze significant data.

* Search for trace events of interest. You do this by controlling the
window that displays a portion of the trace event file. Thiswindow is
called theinterval. You can control the interval by zooming in or out,
scrolling, searching for specific trace events, or jumping to portions
of the trace event file.

* Display summary information. This information may be about your
entire trace session or the characteristics of particular trace events
and states in this trace session.

1-6

Introduction
Recommended Reading

Referenced publications appear in the front of this manual. Related text books that are
useful resources for general background information follow.

X Window System User’s Guide

This text book by Valerie Querciaand Tim O’Reilly is published by O'Reilly &
Associates, Inc. It is available under publication number 0890300. This text book
introduces X terminology and concepts. It also discusses several popular window
managers, the xt er mterminal emulator, X resources, and X desk accessories.

OSF/Motif Syle Guide

This text book is published by Prentice-Hall, Inc. It and its companion books
OSF/Motif User’s Guide and OSF/Motif Programmer’s Guide are packaged together
under publication number 0890380. This text book introduces Motif terminology
and concepts. It aso provides information about Motif features.

1-7

NightTrace Manual

1-8

2
Adding Library Calls to Your Application

O VIV BN . . oot e e e e 2-1
Language-Specific Source Considerationfcs. 2-1
C e 2-1
Fortran 2-2
Ada. . 2-2
Inter-Process Communication and Library Routines 2-3
Understanding NightTraceLibrary Calls 2-3
trace begin(). 2-5
trace_open thread()t 2-9
trace event()and ItsVariants. 2-10
trace_enable(), trace disable(), and Their Variants 2-16
trace_flush() and trace trigger().o 2-20
trace_close thread()t 2-22
trace end()o o 2-23
Disabling TraCing oot e 2-24
Compilingand Linking 2-24
CEXAaMPIE o 2-25
Fortran EXample. 2-25
AdaEXxample 2-25

Exercise: Instrumenting Codet 2-25

NightTrace Manual

2
Adding Library Calls to Your Application

Overview

This chapter describes language-specific considerations for using NightTrace with user
applications.

CAUTION

Donotcall cl ock_setti ne() fromyour application. Thissys-
tem call can corrupt both the system interval timer and Time Base
Register which NightTrace uses for trace event timings.

Language-Specific Source Considerationfcs

NightTrace applications must be written in C, Fortran, or Ada. For your applications to
trace events, you must edit your source code and insert NightTrace library routine calls
(unless you are using the NightView debugger). Thisis called instrumenting your code.
Before you begin this task, you should read the appropriate language section bel ow.

NightTrace applications written in C include the NightTrace header file
[usr/include/ntrace. h with the following line:

#i ncl ude <ntrace. h>
Thent r ace. h file contains the following:

¢ Function prototypesfor all NightTrace library routines
* Return valuesfor all NightTrace library routines
* C macros (described in “ Disabling Tracing” on page 2-24)

The library routine return values identify the type of error, if any, the NightTrace routine
encountered. If you think you may want to disable the NightTrace library routines in the
future without having to remove them from your source code, then you must include this
filein your application.

2-1

NightTrace Manual

Fortran

Ada

2-2

C programs that are multi-thread can aso be traced with the NightTrace library routines.
For multi-thread programs, a C thread identifier is stored in each trace event, uniquely
identifying which C thread was running at the time the trace event was logged.

For more information on C, see C: A Reference Manual and the Concurrent C Reference
Manual.

The Fortran version of the NightTrace library routines follow hf 77 function-naming and
argument-passing conventions. For more information on hf 77, see the hf77 Fortran
Reference Manual.

All NightTrace library routines return | NTEGERS, but because they begin with a“t”,
Fortran implicitly typesthem as REAL. You must explicitly type them as| NTEGER so that
they work correctly. For example, to explicitly typethet r ace_begi n routine, use the
following declaration:

i nteger trace_begin

Ada applications can access the NightTrace library routines via the Ada package
ni ght _trace_bi ndi ngs which isincluded with the MAXAda product (currently
only available on PowerMAX OS systems). The bindings can be found in the bi nd-
i ngs/ gener al environment in the sourcefileni ght _trace. a.

The ni ght _trace_bi ndi ngs package contains the following:

* An enumeration type consisting of the return values for al NightTrace
library routines

* The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These procedures
act as the corresponding functions, except they discard any error return values.

Ada programs that use tasking can also be traced with the NightTrace library routines. For
multitasking programs, an Ada task identifier is stored in each trace event, uniquely
identifying which Adatask was running at the time the trace event was logged.

For more information on Ada, see the section titled “NightTrace Binding” in the MAXAda
Reference Manual.

Adding Library Callsto Your Application
Inter-Process Communication and Library Routines

Your application logs trace events to the shared memory buffer. Later, a user daemon cop-
ies trace events from the shared memory buffer to the trace event file. The relationship
between your application and the user daemon and the sequence of library calls needed to
maintain this relationship appearsin Figure 2-1.

Understanding NightTrace Library Calls

ThereisaC, Fortran, and Ada version of each NightTrace library routine. These routines
perform the following functions:

* Initialize atrace

* Open the current thread for trace event logging
* | og trace eventsto shared memory

¢ Enable and disable specified trace events

¢ Copy trace events from shared memory to disk
* Close the current thread for trace event logging

* Terminate atrace

See the NightTrace Pocket Reference card for a syntax summary of these routines. The
next sections describe these routines in detail .

2-3

NightTrace Manual

Parent processes follow this sequence:

® trace_begin()

® trace_open_thread()

® |og trace events

e trace_close_thread()

e trace_end()

Process A

Thread 1
< Thread 2

Process B

Child processes follow this sequence:

® trace_open_thread()
® |og trace events
e trace_close_thread()

\

Child of B

T

Child of B

| P

Shared
Memory —P
Buffer

user
daenon

Process C

Task 1
<: Task 2

An application written in C can log trace events using:

e trace_event()

e trace_event_arg()

e trace_event_flt()

e trace_event_two_flt()

e trace_event_dbl()

e trace_event_two_dbl()
e trace_event_four_arg()

and it can control which trace events are logged and when they are written to disk using:

e trace_enable()

e trace_enable_range()
e trace_enable_all()

e trace_disable()

e trace_disable_range()
e trace_disable_all()

o trace_flush()
e trace_trigger()

Trace Event
File

Figure 2-1. Inter-Process Communication and Library Routines

2-4

Adding Library Callsto Your Application

trace _begin()

Thetrace_begi n() routine initializes the trace mechanism and acquires resources for
your process.

SYNTAX

C: int trace_begi n(char *key file
ntconfig_t * config);

Fortran: i nteger function trace_begi n(trace file)
character *(*) trace file
i nteger config(7)

Ada function trace_begi n(
trace file : string;
buffer_size : i nteger :=1024*16;
use_spl : bool ean : = true;
use resched : bool ean : = fal se;
lock_pages : bool ean : = true;
clock : ntclock t :=
NT_USE_ARCHI TECTURE_CLCOCK;
shmid_perm : i nteger := 8#666%#;
inherit : bool ean : = true)
return ntrace_error;

PARAMETERS

key file the user daemon logs trace events to an output file, key file. When
you invoke the user daemon, you must specify this file's name. For
the user daemon to log your process' trace events to this file, the
trace event file parameter inyour t r ace_begi n() call must corre-
spond to the key file value on the daemon invocation. The names do
not have to exactly match textually, but they do have to refer to the
same actual pathname; for example, one path name may begin at
your current working directory and the other may begin at the root
directory.

config For C and Fortran, either a NULL pointer, in which case the default
settings are used, or apointer toant confi g_t structure. For Ada,
the individual members of the structure are supplied directly as
parameters to the routine, with appropriate default values. Both the
user application and the user daemon associated with it must agree

2-5

NightTrace Manual

2-6

ntc_buffer_size

ntc_use spl

on the configuration settings (or indicate that the other’s settings may
be preferred).

The size of the shared memory buffer in units of trace events. The
user daemon default sizeis 1024* 16 events. The size must be greater
or equal to 4096.

Specifies that SPL preemption-control will be used (see
spl_request(3C)). Thisfeature is not available on RedHawk Linux
systemsand is automatically trandated to ntc_use resched. The user
daemon default value is TRUE for PowerMAX OS and FALSE for
RedHawk Linux.

ntc_use resched

Specifies that rescheduling variable preemption-control will be used
(See resched_cntl(2)). The user daemon default value is FALSE for
PowerMAX OS and TRUE for RedHawk Linux.

ntc_lock pages

Specifiesthat critical pages will be locked in memory. The user dae-
mon default valueis TRUE.

ntc_clock
Specifies which clock to use as atiming source. This value must be
one of NT_USE_ARCHI TECTURE_ CLOCK or
NT_USE_RCI M Tl CK_CLOCK. The user daemon default value is
NT_USE_ARCH TECTURE_CLQOCK.

ntc_shmid_perm

Specifies the permissions to use when creating the shared memory
segment. The user daemon default value is 0666.

ntc_daemon_preferred

DESCRIPTION

Specifies that if a user daemon already exists and the configuration
settings differ from these configuration settings, that the user daemon
settings are preferred and these values are ignored (athough the
value of ntc_buffer_size specified to this routine must not be larger
than the size set by the daemon).

Thetrace_begi n() routine performs the following operations:

* \Verifies that the version of the NightTrace library linked with the
application is compatible with the version used by the user daemon if
itisaready running

Adding Library Callsto Your Application

* \Verifies the supplied configuration settings are not in conflict with a
pre-existing daemon or defines the configuration with these settings
if the user daemon does not yet exist.

* \Verifies that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

¢ Attaches the shared memory buffer (after creating it if needed)
* I|nitialized the preemption control mechanism
¢ Lockscritical NightTrace library routine pages in memory

¢ |nitializes trace event tracing in this process

(PowerMAX Only) For more information on shared memory and the system’s inter-
rupt priority level (IPL) register, see the PowerMAX OS Real-Time Guide. For infor-
mation about page-locking privilege (P_PLOCK), seei ntr o(2) .

A process that results from the exec (2) system service does not inherit a trace
mechanism. Therefore, if that processisto log trace events, it must initialize the
tracewitht race_begi n() . Processesthat result from afork in aprocess that has
aready initialized thetrace need not call t race_begi n() .

Thet race_begi n() routine must be called only once per parent process (unless
atrace_end() call has been made).

For processes using C threads and PowerMAX OS Adatasks, all threads and tasks
will inherit the trace context of thet race_begi n() call that is made by any
thread or task of the process.

RETURN VALUES

Upon successful operation, thet race_begi n() routine returns NTNOERROR or
NTLISTEN; the latter in the case where no daemon has yet been started. A list of
trace_begi n() return codes follows.

[NTNCERRCR] A daemon has already been started that matches the filename
passed as key file. The application can begin to log trace
events after callingt r ace_open_t hr ead().

[NTLI STEN] All operations where successful, but no user daemon matching
the filename passed as key file could be found. The application
can continue to make NightTrace API calls but attempts to log
events will fail until a daemon is started, at which point log-
ging of eventswill succeed.

[NTALREADY] The application has aready initialized the trace without an
intervening t race_end() . Tracing can continue in spite of
this error. Solution: Remove redundant t race_begi n()
calls.

[NTBADVERSI ON] The calling application is linked with the static NightTrace
library and the static library is not compatible with the Night-
Trace library being used by the user daemon. Solution: Relink

2-7

NightTrace Manual

2-8

[NTMAPCL OCK]

[NTPERM SSI ON|

[NTMAPSPLREG

[NTPGLOCK]

[NTNOSHM D]

SEE ALSO

the application with the static library version which matches
the library version being used by the daemon.

The selected event timestamp source could not be attached.
Solution: If read access is lacking, see your system administra-
tor.

This can also occur if the RCIM synchronized tick clock is
selected as the event timestamp source but the tick clock is not
counting. Solution: Start the synchronized tick clock by using
thecl ock_synchroni ze(1M command and restart the
application.

The calling application lacks permission to attach the shared
memory buffer. Solution: Make sure that the same user who
started the user daemon is the current user logging trace events
in the application.

The system’s IPL register could not be attached. Solution: If
read or write access is lacking, see your system administrator
or set ntc_use spl to FALSE.

Permission to lock the text and data pages of the NightTrace
library routines was denied. If the user is not privileged to lock
pages, see your system administrator or set ntc_lock_pages to
FALSE.

This can occur if the size of the shared memory buffer exceeds
the system limit (SHMMAX) or the shared memory buffer
already exists but the size required by ntc_buffer_size (whichis
roughly ntc_buffer_size* si zeof (nt event _t)) exceedsthe
current size.

Related routinesinclude: trace_open_t hread(),trace_end()

Adding Library Callsto Your Application

trace_open_thread()

Thetrace_open_t hread() routine prepares the current process C thread or Adatask
for trace event logging.

SYNTAX
C int trace_open_thread(char *thread name);
Fortran: i nteger function trace_open_t hread(thread name)
character *(*) thread name
Ada function trace_open_t hread(
thread_name : string
3eturn ntrace_error;
PARAMETERS
thread name

In NightTrace every thread of execution to be traced (whether a sepa-
rate process, or a C thread or Ada task within a process) must be
associated with a name, thread_name, which may be null. Night-
Trace's graphical displays and textual summary information show
which threads logged trace events. If thet r ace_open_t hr ead()

thread nameisnull, the nt r ace display utility uses the global thread
identifier (TID) as alabel in these displays. For more information on
global thread identifierssee “TID List” on page 8-8.

Naming your threads can make the displays much more readable.
trace_open_t hread() letsyou associate ameaningful character
string name with the current threads’ more cryptic numeric TID. If
you provide a character string as the thread name, the nt r ace dis-
play utility usesit as alabel in itsdisplays. Because nt r ace may be
unable to display long strings in the limited screen space available,
keep thread names short. (Long thread names cause NightTrace to
log an NT_CONTI NUE overhead trace event.)

The following words are reserved in NightTrace and should not be
used in upper case or lower case as thread names: NONE, ALL,

ALLUSER, ALLKERNEL, TRUE, FALSE, CALC. See
“Pre-Defined String Tables” on page 5-14 for more information
about thread names.

NOTE
Thread names must begin with an al phabetic character and consist

solely of aphanumeric characters and the underscore. Spaces and
punctuation are not valid characters.

2-9

NightTrace Manual

DESCRIPTION

A NightTrace “thread” can be a process, C thread or Adatask. For ntrace
displays, t race_open_t hread() associates athread name with the process,
thread or task logging trace events. Each process, including child processes, that
logs trace events must haveitsownt race_open_t hread() call. In addition, C
threads and Adatasksmay call t race_open_t hr ead() individually to associate
unique thread names with their trace events. In this way, the different trace contexts
of multiple processes, threads and tasks can be easily distinguished from each other.

For more information on threads, see “Programming with the Threads Library” in
the PowerMAX OS Programming Guide.

A process that results from the exec(2) system service does not inherit a trace
mechanism. Therefore, if that processis to log trace events, it must call both
trace_begin() andtrace_open_t hread().

RETURN VALUES

Thetrace_open_t hread() routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A listof t race_open_t hr ead() error codes follows.

[NTI NI T] The NightTrace library routines were not initialized or they
were initialized but no user daemon has yet been initiated.
Ensureat race_begi n() call precedesthiscal. If the pre-
ceding t race_begi n() call returned NTLI STEN, then a
valueof NTI NI T isnot afailure condition and once a user dae-
mon is started, subsequent attempts at logging events will suc-
ceed.

[NTI NVALI D] An invalid thread name was specified. Solution: Choose a
thread name that meets the requirements mentioned earlier.

[NTRESQURCE] There are not enough resources to open this thread. Solution:
Ask your system administrator to increase the size of the pro-
cesstable.

[NTPGALOCK] Permission to lock the text and data pages of the NightTrace
library routines was denied. If the user has insufficient privi-
legesto lock pages, see the system administrator or specify that
page locking is not requested on thet r ace_begi n() call
and/or with the user daemon invocation.

SEE ALSO

Related routinesinclude: trace_begi n(),trace_cl ose_thread().

trace_event() and Its Variants

2-10

The following routines log an enabled trace event and possibly some arguments to the
shared memory buffer.

Adding Library Callsto Your Application

SYNTAX

C: int trace_event (int ID);
int trace_event_arg (int ID, |ong arg);
int trace_event_flt (int ID, float arg);
int trace_event_two_flt (int ID, float argl, float arg?);
int trace_event_dbl (int ID, double arg);
int trace_event_two_dbl (int ID, doubl e argl, double arg2);
int trace_event_four_arg (
int ID, long argl, |ong arg2,
long arg3, |ong argd
)

Fortran: integer function trace_event (ID)
integer ID
integer function trace_event_arg (ID, arg)
integer ID, arg
integer function trace_event_flt (ID, arg)
integer ID
real arg
integer function trace_event_two_flt (ID,argl, arg2)
integer ID
real argl, arg2
integer function trace_event_dbl (ID, arg)
integer ID
doubl e precision arg
integer function trace_event_two_dbl (ID,argl, arg2)
i nteger ID
doubl e precision argl, arg2
integer function trace_event_four_arg (ID,argl,arg2, arg3, argd)
i nteger ID,argl, arg2, arg3, arg4

Ada: type event _type is range 0.4095;

(procedures)

procedure trace_event (ID : event_type);

procedure trace_event (ID : event_type; arg : integer);

procedure trace_event (ID: event_type; arg: float);

21

NightTrace Manual

procedure trace_event (
ID : event_type;

argl : float; arg2 : float
)

procedure trace_event (ID : event_type; arg : long_float);

procedure trace_event (
ID : event_type;
argl : long_float; arg2 : |ong_fl oat

)

procedure trace_event (

ID : event_type;

argl : integer; arg2 : integer;
arg3 : integer; argd : integer

)

(functions)

function trace_event (ID : event_type)
return ntrace_error;

function trace_event (ID : event_type; arg : integer)
return ntrace_error;

function trace_event (ID: event_type; arg : float)
return ntrace_error;

function trace_event (
ID : event_type;

argl : float; arg2 : float
)

return ntrace_error;

function trace_event (ID : event_type; arg : |ong_float)
return ntrace_error;

function trace_event (
ID : event_type;
argl : long_float; arg2 : |ong_fl oat

)

return ntrace_error;

2-12

PARAMETERS

ID

argN

DESCRIPTION

Adding Library Callsto Your Application

function trace_event (

1D

© event _type;

argl : integer; arg2 : integer;
arg3 : integer; argd4 : integer

)

return ntrace_error;

Each trace event has a user-defined trace event ID, ID. ThisID isa
valid integer in the range reserved for user trace events (0- 4095,
inclusive). See “Pre-Defined String Tables” on page 5-14 for more
information about trace event 1Ds.

Sometimes it is useful to log the current value of a variable or
expression, arg, along with your trace event. The trace event logging
routines provide this capability. They differ by how many and what
types of numeric arguments they accept. Thet r ace_event () rou-
tinetakesno args. Thetrace_event _ar g() routine takes atype

long arg. The trace_event _flt () and
trace_event _two_f It routines take (floating point) type of
float args. The trace_event _dbl () and

trace_event _two_dbl () routinestake (floating point) type
doubleargs. Thetrace_event four_arg() routine takes four
type long args. If you want the nt r ace display utility to display
these trace event arguments in anything but decimal integer format,
you can enter the trace event in an event-map file. See “Understand-
ing Event-Map Files” on page 5-9 for more information on
event-map files and formats. Alternatively, you could call the f or -
mat () function. See “format()” on page 9-80 for details.

Every call totrace_event _four_arg() causes NightTrace to
log an NT_CONTI NUE overhead trace event.

A trace point is a place in your application’s source code where you call atrace
event logging routine. Usually this location marks aline that isimportant to debug-
ging or performance analysis. Ideally, trace events provide enough information to be
useful, but not so much information that it is overwhelming. Meeting these goals
requires careful trace-point planning.

TIP:

To save time re-editing, recompiling, and relinking your application, consider
beginning with afew too many trace pointsin the source code. You can dynamically
enable or disable specific trace events. You can also save time by using nt r ace
options to restrict which trace events are loaded for analysis. See “ntrace Options’
on page 5-3 for detalls.

Some typical trace pointsinclude the following:

¢ Suspected bug locations

* Process, subprogram, or loop entry and exit points

2-13

NightTrace Manual

2-14

* Timing points, especially for clocking I/O processing

Synchronization points / multi-process interaction
¢ Endpoints of atomic operations

* Endpoints of shared memory access code

Call one trace event logging routine at each of the trace points you have selected.
When you call this routine, it writes the trace event information (including timings
and any arguments) to a shared memory buffer. By default, if this write fills the
shared memory buffer or causes the buffer-full cutoff percentage to be reached, the
user daemon wakes up and copies the trace event to the trace event file on disk.

Usually each trace event logging routine logs adifferent trace event ID number. This
lets you easily identify which source line logged the trace event, how often that
source line executed, and what order source lines executed in. However, it is some-
times useful to log the same trace event ID in multiple places. Thismakesit possible
to group trace events from related, but not identical, activities. In this case, a change
of trace event ID usually separates or subdivides groups.

Probably the most common use of trace eventsis to identify states. Two different
trace event IDs delimit the boundaries of a state. Most applications log recurring
states with different time gaps (from the end of one instance of a state to the start of
another) and different state durations (from the start of one instance of a state to its
end).

TIP:

Consider putting related trace event IDs within arange. Library routines and user
daemon options let you manipulate trace events by using trace event ID ranges.

By default, al trace events are enabled for logging. The NightTrace library contains
routines that allow you to selectively or globally enable or disable trace events. The
user daemon has options that provide similar control. Attempting to log a disabled
trace event has no effect. See “trace_enable(), trace disable(), and Their Variants’
on page 2-16 for moreinformation.

TIP:

Consider using symbolic constants instead of numeric trace event IDs. Thiswould
make your calsto NightTrace routines more readable.

Once your application logs all of its trace events, you can look at them and their
arguments graphically with StateGraphs, EventGraphs, and DataGraphs in the
nt r ace display utility. See “ StateGraph” on page 7-14, “EventGraph” on page
7-15, and “DataGraph” on page 7-16 for more information about these display
objects.

RETURN VALUES

Thetrace_event(),trace_event_arg(),trace_event _dbl (), and
trace_event four_arg() routinesreturn azero value (NTNOERROR) on
successful completion. Otherwise, they return a non-zero value to identify the error
condition. A list of error codes for these routines follows.

[NTI NVALI D]

[NTI NI T]

[NTLOSTDATA]

SEE ALSO

Adding Library Callsto Your Application

An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the range 0-4095, inclusive.

The NightTrace library routines were not initialized or they
were initialized but no user daemon has yet been initiated.
Ensureatrace_begi n() andtrace_open_t hread()
call precede the trace event logging routine call. Once a user
daemon is started, subsequent attempts at logging events will
succeed.

The trace event was lost because the shared memory buffer
was full. This can occur if the user daemon cannot empty the
shared memory buffer quickly enough. Increase the priority of
the user daemon and/or schedule it on a CPU with less activity.
Additionally, the size of the shared memory buffer can be
increased.

Related routines include:

trace_flush(),trace_trigger(),
trace_enabl e(),trace_enabl e_range(),
trace_enable_all (), trace_disable(),
trace_di sabl e_range(),trace_di sable_all ()

2-15

NightTrace Manual

trace_enable(), trace_disable(), and Their Variants

2-16

By default, all trace events are enabled for logging to the shared memory buffer. The
trace_di sable(),trace_di sabl e _range(),andtrace_disable_all ()
routines respectively make your application ignore requests to log one or more trace
events. The trace_enable(), trace_enabl e_range(), and
trace_enabl e_al | () routines respectively make your application notice previously
disabled requests to log one or more trace events.

SYNTAX

C: int trace_enable (int ID);
int trace_enable_range (int ID_low, int ID_high);
int trace_enable_all ();
int trace_disable (int ID);
int trace_di sable_range (int ID_low, int ID_high);
int trace_disable_all ();

Fortran: integer function trace_enabl e (ID)
integer ID

integer function trace_enabl e_range (ID_low, ID_high)
integer ID_low, ID_high

integer function trace_enable_all ()

integer function trace_disable (ID)
integer ID

integer function trace_disable_range (ID_low, ID_high)
integer ID_low, ID_high

integer function trace_disable_all ()
Ada type event _type is range 0..4095;

(procedures)
procedure trace_enable (ID : event_type);

procedure trace_enabl e (
ID_low : event_type; ID_high : event_type
)

procedure trace_enabl e_all;

procedure trace_di sable (ID : event_type);

(functions)

PARAMETERS

ID

ID_low

ID_high

DESCRIPTION

Adding Library Callsto Your Application

procedure trace_di sabl e (
D_low : event_type; ID_high : event_type

)

procedure trace_di sabl e_al|;

function trace_enable (ID : event_type)
return ntrace_error;

function trace_enabl e (
ID_low : event _type; ID_high : event_type
)

return ntrace_error;

function trace_enabl e_al |
return ntrace_error;

function trace_disable (ID : event_type)
return ntrace_error;

function trace_disable (
ID_low : event _type; ID_high : event_type
)

return ntrace_error;

function trace_disable_all
return ntrace_error;

Each trace event has a user-defined trace event ID, ID. ThisID isa
valid integer in the range reserved for user trace event IDs (0- 4095,
inclusive). See “trace_event() and Its Variants” on page 2-10 for

more information.

It is possible to manipul ate groups of trace event IDs by specifying a
range of trace event IDs. ID_low is the smallest trace event ID in the

range.

It is possible to manipul ate groups of trace event IDs by specifying a
range of trace event IDs. ID_high is the largest trace event ID in the

range.

The enable and disable library routines allow you to select which trace events are
enabled and which are disabled for logging. A discussion of disabling trace events
appearsfirst because initially all trace events are enabled.

Sometimes, so many trace events that it is hard to understand the nt r ace display.
Occasionally you know that a particular trace event or trace event range is not inter-
esting at certain times but is interesting at others. When either of these conditions
exigt, it isuseful to disable the extraneous trace events. You can disable trace events

2-17

NightTrace Manual

2-18

temporarily, where you disable and later re-enable them. You can also disable them
permanently, where you disable them at the beginning of the process or at a later
point and never re-enabl e them.

NOTE

These routines enable and disable trace eventsin all processes that
rely on the same user daemon to log to the same trace event file.

All disable library routines make your application start ignoring requests to log trace
event(s) to the shared memory buffer. The disable routines differ by how many
trace events they disable. trace_di sabl e() disables one trace event ID.
trace_di sabl e_range() disablesarange of trace event IDs, including both
range endpoints. t r ace_di sabl e_al | () disablesall trace events. Disabling an
already disabled trace event has no effect.

All enable library routines let you re-enable a trace event that you disabled with a
disable library routine or user daemon. The effect is that your application resumes
noticing requests to log the specified trace event to the shared memory buffer. The
enable routines differ by how many trace events they enable. trace_enabl e()

enables one trace event ID. trace_enabl e_range() enables arange of trace
event IDs, including both range endpoints. trace_enabl e_al | () enablesall
trace events. Enabling an already enabled trace event has no effect.

TIP:

Consider invoking the user daemon with events disabled instead of calling the
trace_enabl e() andtrace_di sabl e() routines. Using these options saves
you from re-editing, recompiling and relinking your application.

TIP:

If you want to log only a few of your trace events, disable all trace events with
trace_di sabl e_al | () and then selectively enable the trace events of interest .

RETURN VALUES

The trace_disabl e(), trace_di sable_range(),
trace_disable all(),trace_enable(),trace_enable_range(),
andtrace_enabl e_al | () routinesreturn a zero value (NTNOERROR) on suc-
cessful completion. Otherwise, they return a non-zero value to identify the error
condition. A list of error codes for these routines follows.

[NTI NI T] The NightTrace library routines were not initialized. Solution:
Besureatrace_begin() andtrace_open_t hread()
call precede the call to the disable or enable routine.

[NTI NVALI D] An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the range 0- 4095, inclusive.

Adding Library Callsto Your Application

SEE ALSO
Related routines include:

trace_event (),trace_event_arg(),
trace_event _dbl (), trace_event four_arg()

2-19

NightTrace Manual

trace_flush() and trace_trigger()

Thetrace_flush() andtrace_trigger () routines asynchronously wake the user
and direct it to copy trace events from the shared memory buffer to the trace event file on
disk. Note: These routines do not wait for the copy to complete.

SYNTAX
C int trace_flush();
int trace_trigger();
Fortran: integer function trace_fl ush()
integer function trace_trigger()
Ada
(procedures)

procedure trace_flush;
procedure trace_trigger;

(functions)
function trace flush
return ntrace_error;

function trace_trigger
return ntrace_error;

DESCRIPTION

When the user daemon isidle, it leeps. The process of copying trace events from
the shared memory buffer to atrace event file is called flushing the buffer. The user
daemon wakes up and flushes the buffer when any of these conditions exist:

¢ the user daemon’s sleep interval elapses
¢ The buffer-full cutoff percentage is exceeded
* The shared memory buffer isfull of unwritten trace events

* Your application callstrace_flush(),trace_trigger(), or
trace_end()

* No event has been logged in a period of time in which the lower 32
bits of the timestamp source would roll over. It isimportant to detect
thisrollover so that proper ordering of trace events is maintained.

User daemon options let you set limits for the first three conditions above. When
you invoke a user daemon with one of these options and it detects the corresponding
condition, it automatically flushes the buffer. There is one key way that
trace flush() andtrace_trigger () differ from the flush control the user
daemon provides. withtrace_flush() andtrace_tri gger () you decide
when to asynchronously flush the shared memory buffer based on your program

2-20

Adding Library Callsto Your Application

flow, and with certain options the user daemon flushes the shared memory buffer
automatically.

If the shared memory buffer becomes full of trace events, trace events may be lost.
To keep this situation from occurring, configure the user daemon to flush the buffer
regularly. Thisis particularly good to do if your application will soon be busy.

Waking the user daemon to flush the buffer takes time and this overhead can distort
trace event timings. Therefore, call trace_fl ush() andtrace_tri gger ()
only in parts of your application wheretimeisnot critical.

TIP:

trace_trigger() is identical to trace_flush(), except
trace_trigger () worksonly in buffer-wraparound mode. Call
trace_trigger() instead of trace_fl ush() so that only buffer-wrap-
around’s performance is affected.

When you run in buffer-wraparound mode, you are telling NightTrace to intention-
ally discard older or less-vital trace events when the shared memory buffer gets full.
In buffer-wraparound mode, you must explicitly call trace_fl ush() or
trace_trigger (). Only then, does the user daemon copy the remaining trace
events from the shared memory buffer to the trace event file. However, do not call
trace flush() ortrace_trigger () too often or you will reduce the effec-
tiveness of this mode. See “Option to Establish Buffer-Wraparound Mode (-buffer-
wrap)” on page 4-13 for more information on buffer-wraparound mode.

RETURN VALUES

Thetrace_flush() andtrace_trigger() routines returnazerovalue
(NTNCERROR) on successful completion. Otherwise, they return a non-zero value
to identify the error condition. A list of trace_flush() and
trace_trigger () error codesfollows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem-
ory buffer. Solution: Verify the status of the user daemon; if
necessary, restart it and rerun the trace.

SEE ALSO
Related routines include:

trace_event (), trace_event_arg(),
trace_event _dbl (), trace_event four_arg()

2-21

NightTrace Manual

trace _close thread()

Thetrace_cl ose_t hread() routine disables trace event logging for the current
thread or process.

SYNTAX
C int trace_close_thread();
Fortran: integer function trace_cl ose_thread()
Ada: function trace_close thread return
ntrace_error;
DESCRIPTION

A NightTrace thread can be aprocess, C thread or Ada task. Each thread that C calls
trace_open_t hread() must haveitsowntrace_cl ose_t hread() call.
For more information on threads, see “Programming with the Threads Library” in
the Power MAX OS Programming Guide.

RETURN VALUES
Thetrace_cl ose_t hread() routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A listof trace_cl ose_t hread() error codesfollows.
[NTI NI T] The NightTrace library routines were not initialized. Solution:

Cdl trace_cl ose_t hread() only onceif you previously
caledtrace_open_t hread().

SEE ALSO

Related routinesincludeit r ace_open_t hread(),trace_end()

2-22

trace_end()

Adding Library Callsto Your Application

Thetrace_end() routine freesresources and terminates trace event tracing in your pro-

cess.
SYNTAX
C int trace_end();
Fortran: i nteger function trace_end()
Ada: function trace_end
return ntrace_error;
DESCRIPTION

Generally, call trace_end() only once per logging process.However, for
processes using C threads or Adat asks, trace_end() must also be caled by
any individual threads or tasks that have previously called t r ace_begi n().
trace_end() performsthefollowing operations:

Terminates trace event tracing in this process or thread

Flushes trace events from the shared memory buffer to the trace
event file

Detaches the shared memory buffer, timestamp source, and interrupt
priority level (IPL) register

Notifies the user daemon that the current process has finished log-
ging trace events

RETURN VALUES

Thetrace_end() routine returns a zero value (NTNOERROR) on successful
completion. Otherwise, it returns a non-zero value to identify the error condition. A
listof t race_end() error codesfollows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem-

ory buffer. Solution: Verify the status of the user daemon; if
necessary, restart it and rerun the trace.

[NTNODAEMON] There is no user daemon with a trace event file name that

matches the one onthet r ace_begi n() call attached to the
shared memory region. This condition is not always detect-
able. Solution: Usethe ntr ace display utility to analyze
your logged trace events.

SEE ALSO

Related routinesinclude:t r ace_begi n(),trace_cl ose_t hread()

2-23

NightTrace Manual
Disabling Tracing

There are four ways to disable tracing in your application:

* For C applications, put a#i ncl ude <ntrace. h>inyour source code.
You must either recompile your application with the - DNNTRACE
preprocessor option or insert the following preprocessor control statement
beforethe #i ncl ude <ntrace. h>.

#def i ne NNTRACE

The NightTrace header file, nt r ace. h, contains macro counterparts for each
NightTrace library routine. When you define NNTRACE, the compiler treats your
NightTrace routine calls as if they were macro calls that always return a success
(zero) status. For more information on preprocessor options, seecpp(1) .

Use a command similar to the following one to turn off tracing in your application,
fl _simec.

$ cc -DNNTRACE fl _simc -lud

By disabling tracing this way, you have to rebuild your application, but you save
compilation and execution time.

e Call the trace_di sabl e_al | () routine near the top of the source,
recompile, and relink your application with the NightTrace library. (For
more information about this routine, see “trace_enable(), trace_disable(),
and Their Variants” on page 2-16.) If your application calls any of the
enable routines, this method is not entirely effective.

By disabling tracing this way, you have to rebuild your application, and there is no
saving in compilation time or execution time.

* Start auser daemon with all events disabled.

By disabling tracing this way, you do not have to rebuild your application, but there
is no saving in compilation time or execution time.

* Do not start a user daemon.

By disabling tracing this way, you do not have to rebuild your application, but there
is no saving in compilation or execution time.

Compiling and Linking

You must link in the NightTrace library so that your application can initialize its trace
mechanism and log trace events. The name of this library depends on your source
language. C and Fortran applications must link inthe/usr/1ib/libntrace. a
library.

2-24

Adding Library Callsto Your Application

C Example
$cc fl simc -Intrace -lud # for Power MAX OS
$ cc fl_simc -Intrace -lccur_rt # for RedHawk Li nux
This step:
* Compilesthef| _si m c application
¢ Linksinthe NightTracelibrary

¢ Creates an executable named a. out if there were no major errors

For more information on compiling and linking C programs, see the Concurrent C
Reference Manual.

Fortran Example

$ hf77 turn_matrix.f -Intrace -lud # for Power MAX OS
$ hf77 turn_matrix.f -Intrace -lccur_rt # for RedHawk
Li nux

This step:
* Compilesthet urn_matri x. f application
¢ Linksinthe NightTracelibrary
¢ Creates an executable named a. out if there were no major errors

For more information on compiling and linking hf 77 programs, see the hf77 Fortran
Reference Manual.

Ada Example

For a complete example on accessing the NightTrace library routines from an Ada appli-
cation, see the section titled “NightTrace Binding” in the MAXAda Reference Manual.

Exercise: Instrumenting Code

Putting library callsin your application is called instrumenting your code. The following
applicationisin/ usr/li b/ Ni ght Trace/ exanpl es/entry_exit.c.

2-25

NightTrace Manual

2-26

#i ncl ude <sys/types. h>
#i ncl ude <tine. h>
#i ncl ude <stdio. h>

voi d take_a nap(sleep_str)
struct tinespec sleep_str;

{
printf("Sleeping for % 3f
seconds\n”,
(float) sleep_str.tv_nsec /
le+09);

nanosl eep(&sleep_str, NULL);

/* make the spaci ng between states
obvi ous */

sleep_str.tv_nsec = 30000000;

nanosl eep(&sleep_str, NULL);

mai n()
{
int i;
struct tinespec sleep str;

for(i=0; i<10; ++i)

{
sleep_str.tv_nsec = (rand() %
1000) * 1000000;
take_a nap(sleep_str);

}

exit(0);

Figure 2-2. entry_exit.c Before Instrumentation

Make a copy of this file in your directory, and call it entry_exi t. c. Make the
following changes by inserting trace event library calls at appropriate places in the
application:

* Start the trace session and log trace events to afile named | og
¢ Openathread namedti m ngs

* Log trace event NAP_START (with trace event ID 10) and the (type | ong)
number of nanoseconds to sleep (sl eep_str.tv_nsec) before the first
nanosl eep call int ake_a_nap

Adding Library Callsto Your Application

* Log trace event NAP_END (with trace event ID 20) after the first nanosleep
cal int ake_a_nap. (NAP_START and NAP_END form the boundaries of
adstate.)

* Closethethread

* End thetrace session

An example solution follows.

2-27

NightTrace Manual

2-28

/* For brevity, no return values are
checked */

#i ncl ude <ntrace. h>

#i ncl ude <sys/types. h>
#i nclude <tine. h>

#i ncl ude <stdio. h>

#def i ne NAP_START 10
#define NAP_END 20

voi d take_a nap(sleep_str)
struct tinmespec sleep_str;

{

/* NAP_START & NAP_END are the

boundaries of a state */

trace_event _arg(NAP_START,

sleep_str.tv_nsec);

printf("Sleeping for % 3f

seconds\n”,
(float) sleep_str.tv_nsec / 1le+09
)
nanosl eep(&sleep_str, NULL);
trace_event (NAP_END);
/* make the spaci ng between states
obvi ous */
sleep_str.tv_nsec = 30000000;
nanosl eep(&sleep_str, NULL);
}
mai n()
{

int i;
struct tinmespec sleep_str;

trace_begin("log”);
trace_open_t hread("tim ngs”);

for(i=0; i<10; ++i)
{

sleep_str.tv_nsec = (rand() %

1000) * 1000000;

take_a_nap(sleep_str);

}

trace_close_thread();
trace_end();
exit(0):

Adding Library Callsto Your Application

Figure 2-3. entry_exit.c After Instrumentation

This exercise continuesin “ Exercise: Logging Trace Events’ on page 4-29.

2-29

NightTrace Manual

2-30

3
NightTrace Session Manager

Using the NightTrace Session Managerottt 3-1
NightTrace Session Manager MenuBarc.coiiiiiinn... 3-2
NIGNETIaCE. . . oo e e 3-2
OPEN SESSION &« .ttt et e e 34

SAVE SESSION. . .t it 3-6
Unsaved Changes. oot 3-8
DaEMONS . . . 39
LOgiN o 3-10

Enter Password.t 311

AttaCh DaEmMONS.ot 312

OPtiONS . . ettt 314
Refreshinterval 314

TO0IS . o 314
HElD. e 3-16
Session Configuration FileNameAreat 3-17
Daemon DetallSATEa.ot ee 317
Daemon Control ATEALottt e 3-20
Enable/ Disable Trace Events. 322
Daemon Definition Dialogooviii 3-25
Import Daemon Definition. i 327
GENEra . . e 3-28
Targel. . . 3-29
Trace EVENtSOULPUL oo e 331
USEr TraCe. . . oo 3-33
Locking POlICIESo 3-34
Shared Memory o 3-36
Timestamp Heartbeat 3-36
User Event Buffer 3-37
EVeNtS. . o 3-37
Load EVent Namesot 3-39
RUNLIME . .. 341
Scheduling.o 3-42
CPU BiaS. . .ot 3-43

NUM A . 3-43
POlICIES. . . o 3-44
SrEAMING . . oot e 3-45

NightTrace Manual

3
NightTrace Session Manager

The NightTrace Session Manager allows users to manage user and kernel NightTrace dae-
mons. It provides users with the ability to define a session consisting of one or more dae-
mon definitions which can be saved for future use. These definitions include daemon col-
lection modes and settings, daemon priorities and CPU bindings, and data output formats,
aswell asthetrace event types that are logged by that particular daemon.

Using the NightTrace Session Manager, users can manage multiple daemons simulta-
neously on multiple target systems from a central location.

The NightTrace Session Manager offers the user the ability to start, stop, pause, and
resume execution of any of the daemons under its management. The user may also view
statistics as trace data is being gathered as well as dynamically enable and disable events
while a particular daemon is executing.

In addition to sending trace output to afile for later analysis, the NightTrace Session Man-
ager also offers a streaming output method. When streaming, trace output is sent directly
to the NightTrace display buffer for immediate analysis even while additional trace datais
being collected.

Using the NightTrace Session Manager

The NightTrace Session Manager provides users with the ability to define a session that
can be saved for future use.

A session issimply acollection of one or more daemon definitions.

Individual daemons within a session may or may not be related to each other in any mean-
ingful way. One might use a session simply to hold several daemon definitions that are
commonly used, but not necessarily all at the same time.

When creating and saving sessions, only the daemon definitions are being created or
saved, not the trace data that may be captured using the daemons.

3-1

NightTrace Manual

MightTrace Daemons Options Tools Help

Session configuration file: Mew

Type |Daemon Mame Target State Attached |Streaming |Logged Buffer Lost |

Figure 3-1. NightTrace Session Manager

The NightTrace Session Manager consists of the following components:
* NightTrace Session Manager Menu Bar
¢ Session Configuration File Name Area
¢ Daemon Details Area

¢ Daemon Control Area

NightTrace Session Manager Menu Bar
The NightTrace Session Manager menu bar is apart of the NightTrace Session Man-
ager window (see “Using the NightTrace Session Manager” on page 3-1).
The NightTrace Session Manager menu bar provides access to the following menus:

* NightTrace
* Daemons
¢ Options

* Tools

* Help

Each menu is described in the sections that follow.

NightTrace
The NightTrace menu contains session-related items such asinitiating a new session,

saving the current session to a configuration file, and opening a previously-saved configu-
ration file.

3-2

NightTrace Session Manager

The NightTrace menu appears on the NightTrace Session Manager menu bar (see
“NightTrace Session Manager Menu Bar” on page 3-2).

MNew Session.. Alt+

Open Session.. Ctrl+0

Save Session Ctrl+3
Save Session As.. Cirl+A

Close Session Alt+C
Close Window Al

Exit

Cirl+G

Figure 3-2. NightTrace Menu

New Session

Creates a new session.
If an existing session is open, it isfirst closed by this operation.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes diaog is presented to the user (see “Unsaved Changes’
on page 3-8).

Open Session...

Save

Opens a previously-saved session configuration file. Selecting this option brings up
the Open Session dialog (see“ Open Session” on page 3-4).

If an attempt is made to open a previously-saved session configuration file when
changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes diaog is presented to the user (see “Unsaved Changes’
on page 3-8).

Session

Saves the current configuration to the current session configuration file. The name
of the current session configuration file appears in the Session Configuration File
Name Area (see “ Session Configuration File Name Area” on page 3-17).

If the current configuration has not yet been saved, the name in the Session Config-
uration File Name Area will be displayed as New and the Save Session dialog
(see “ Save Session” on page 3-6) will be presented when this menu item is selected
to allow the user to navigate to the desired directory in which to save the session
configuration file.

3-3

NightTrace Manual

Open Session

34

Save Session As...

Displaysthe Save Session dialog (see “Save Session” on page 3-6) allowing the
user to navigate to the desired directory in which to save the session configuration
file. The name of thisfile will then appear in the Session Configuration File Name
Area (see “ Session Configuration File Name Area”’ on page 3-17).

Close Session

Closes the current session but leaves the NightTrace Session Manager open.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes diaog is presented to the user (see “Unsaved Changes’
on page 3-8).

Close Window

Exit

Closes the NightTrace Session Manager but leaves NightTrace open.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes diaog is presented to the user (see “Unsaved Changes’
on page 3-8).

Closes the NightTrace Session Manager and exits NightTrace completely.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes diaog is presented to the user (see “Unsaved Changes’
on page 3-8).

The Open Session dialog is astandard file selection dialog that allows the user to navi-
gate to the desired directory and select a previously-saved session configuration file to

open.

NOTE

Filenames are relative to the host system (the system where the
NightTrace GUI is running).

NightTrace Session Manager

Directory
Ia’samplea’ |
Filter Files
ntsess_config1
u ntsess_config?
Directories ntsess_config3
|
Selection
QK. | Filter | Cancell Help |

|

Figure 3-3. Open Session dialog

Directory

The directory in which to find the desired session configuration file.

The user may type the path into thisfield directly.

Filter

Of al the files contained in the current Directory, display only those Files that
match the specified filter.

Directories

Containsalist of all the subdirectories within the current directory. Selecting any of
these will change the current Directory to that subdirectory. Double-clicking on

any of these directory names will change to that directory and update the Files list
accordingly.

3-5

NightTrace Manual

Save Session

3-6

Files

Within the current Directory, thisis alist of the files that match the specified Fil-
ter. Any of these filenames can be selected. When selected, the filename appearsin
the Selection field.

Selection

The name of the desired session configuration file appears here after being sel ected
from the Files list. The filename may be manually entered into this field by the
user as well.

The Save Session diaog is astandard file selection dialog that allows the user to navi-
gate to the desired directory and specify the name of the file to which the session configu-
ration will be saved.

NOTE

Filenames are relative to the host system (the system where the
NightTrace GUI is running).

NightTrace Session Manager

Directory
Ia’sampleé
Filter Files
ntsess_config1
u ntsess_config?
Directories ntsess_config3
|
Selection
014 | Filter | Cancell Help |

Figure 3-4. Save Session dialog

Directory
The directory in which to save the session configuration file.

The user may type the path into thisfield directly.

Filter

Of all the files contained in the current Directory, display only those Files that
match the specified filter.

Directories

Contains alist of all the subdirectories within the current directory. Selecting any of
these will change the current Directory to that subdirectory. Double-clicking on
any of these directory names will change to that directory and update the Files list
accordingly.

3-7

NightTrace Manual

Files
Within the current Directory, thisis alist of the files that match the specified Fil-

ter. Any of these filenames can be selected. When selected, the filename appearsin
the Selection field.

Selection
The name of thefile to save the session configuration file to appears here after being

selected from the Files list. The filename may be manually entered into this field
by the user as well.

Unsaved Changes

This dialog is presented whenever the user attempts to terminate a session which has
changes that have not yet been saved to the session configuration file.

Warning
1

| ¢ There are unsaved changes to the new session.
L3

Do wou wish to save them?

I Yes | o] Cancell Help |
L

=

Figure 3-5. Unsaved Changes dialog

Yes

When the user presses this button, the current configuration is saved to the current
session configuration file. The name of the current session configuration file
appears in the Session Configuration File Name Area (see “ Session Configuration
File Name Area” on page 3-17).

If the current configuration has not yet been saved, the Save Session dialog (see

“Save Session” on page 3-6) will be presented to allow the user to navigate to the
desired directory in which to save the session configuration file.

No

When the user presses this button, any unsaved changes are discarded and the termi-
nation of the session completes.

Cancel

Cancels the termination action.

Help

Provides online help for this dialog.

3-8

NightTrace Session Manager

Daemons

The Daemons menu provides functionality for configuring new and existing daemon
definitions, as well as attaching to and detaching from running daemons.

The Daemons menu appears on the NightTrace Session Manager menu bar (see “Night-
Trace Session Manager Menu Bar” on page 3-2).

[New Ctrl+M
Edit ... Ctri+E
Attach .. Ctrl+T
Lietach Ctrl+D
Feset Ctrl+R
Select All Ctri+L
Deselect All - Ctri+K

Figure 3-6. Daemons Menu

New...

Opens the Daemon Definition diaog (see “Daemon Definition Dialog” on page
3-25) alowing the user to configure a new daemon definition.

Edit...
Opens the Daemon Definition diaog (see “Daemon Definition Dialog” on page
3-25) for the daemon definition currently selected in the Daemon Details Area (see

“Daemon Details Area” on page 3-17) alowing the user to edit that particular defi-
nition.

NOTE
The daemon definition may not be altered while the daemon is

executing.

Delete

Deletes the daemon definition(s) currently selected in the Daemon Details Area (see
“Daemon Details Area’ on page 3-17).

The user is prompted for confirmation before the deletion is performed.

3-9

NightTrace Manual

Attach...

Allows the user to query any target system for user application trace daemons and
displays the results in the Attach Daemons dialog (see “Attach Daemons’ on
page 3-12). The user may then attach to the desired daemon and control it using the
NightTrace Session Manager.

Detach
Relinquishes control of the running daemon(s) currently selected in the Daemon
Details Area (see “Daemon Details Ared’ on page 3-17).

Reset

Flushes the contents of trace buffers for the running daemon(s) currently selected in
the Daemon Details Area (see “Daemon Details Ared’ on page 3-17). Any eventsin
the buffer at the time of the reset are discarded. Eventsthat have already been writ-
ten to the output device (file or stream) are unaffected.

Pressing the Reset button also places the selected daemonsin aPaused state (see
“State” on page 3-19).

NOTE

Thisoption is not supported for kernel trace daemons.

Select All
Selects all daemon definitions listed in the Daemon Details Area (see “Daemon
Details Area’ on page 3-17).
Deselect All
Deselects all daemon definitions listed in the Daemon Details Area (see “ Daemon
Details Area’ on page 3-17)
Login

This dialog is presented when attaching to a daemon on a remote system (see “Attach
Daemons’ on page 3-12) or when importing daemon attributes based on a user application
running on aremote system (see “Import Daemon Definition” on page 3-27).

3-10

NightTrace Session Manager

S |

Target System: ‘ o |

User: II

‘ QK | Cancell Help |
L |

Figure 3-7. Login dialog

After filling in the required fields in the Login diaog, the Enter Password dialog (see
“Enter Password” on page 3-11) is displayed, allowing the user to enter the password for
the specified User on the specified Target System.

NOTE
Passwords are not included in the configuration files written by

NightTrace. They are retained only during the current invocation
of NightTrace.

Target System

The name of the target system to which the user wishes to connect.

User

The login name of the user on the specified Target System.

Enter Password

The Enter Password dialog is displayed during user authentication on atarget system.

NOTE
The Enter Password dialog is not displayed if a valid pass-

word has aready been entered for the specified user on the speci-
fied target system during the current invocation of NightTrace.

31

NightTrace Manual

Figure 3-8. Enter Password dialog

Enter the password for the specified user on the specified target system.

NOTE

Passwords are not included in the configuration files written by
NightTrace. They are retained only during the current invocation
of NightTrace.

Attach Daemons

The Attach Daemons dialog is displayed when the user attempts to attach to a daemon
running on aremote target system.

This dialog is presented foll owing user authentication (see “Login” on page 3-10 and
“Enter Password” on page 3-11) on that system.

Attach Daemons

?’—L{

Figure 3-9. Attach Daemons dialog

3-12

NightTrace Session Manager

Program ID

The process ID (PID) of the user trace daemon on the remote system.

Creator

The login name of the user who owns the user trace daemon on the remote system.

Attach as User
The login name of the user attaching to the user trace daemon. This value defaults
to the user specified inthe Login dialog (see“Login” on page 3-10) presented prior
to this dial og.

Key File

The filename which is used to cal culate the shared memory segment identifier asso-
ciated with the logging of user trace events. See “Key File” on page 3-31 for more
information.

The following buttons appear at the bottom of the Attach Daemons dialog and have the
specified meaning:
OK
Attaches to the daemon selected in the list and closes the Attach Daemons dia-
log.
Attach as User...

Brings up a dialog allowing the user to specify the login name used to attach to the
selected daemon(s). Since the daemon's shared memory is owned by the creator, the
user attaching to the user trace daemon could be relevant in terms of permissions.

Refresh

Queries the target system for active trace daemons.

Cancel

Closes the Attach Daemons dialog without attaching to any of the listed dae-
mons.

Help

Provides online help for this dial og.

3-13

NightTrace Manual

Options

Refresh Interval

Tools

3-14

The Options menu appears on the NightTrace Session Manager menu bar (see “Night-
Trace Session Manager Menu Bar” on page 3-2).

Refresh Rate ... Ctrl+H

Figure 3-10. Options Menu

Refresh Rate...

Displays the Refresh Interval dialog (see “Refresh Interval” on page 3-14)
allowing the user to specify how often the statistics (displayed in the Daemon
Details Area) are requested and updated for running daemons. This dialog sets the
display rate for those daemons currently selected in the Daemon Details Area (see
“Daemon Details Area” on page 3-17).

This dialog allows the user to specify how often the statistics (displayed in the Daemon
Details Area) are requested and updated for running daemons. This dialog sets the display
rate for those daemons currently selected in the Daemon Details Area (see “Daemon
Details Area’ on page 3-17).

—
Refresh Interval

I
| Refresh Interval (secs): I
I 0K Cancell Help |
I

=

Figure 3-11. Refresh Interval dialog

Refresh Interval

The number of seconds between queries.

The Tools menu appears on the NightTrace Session Manager menu bar (see “NightTrace
Session Manager Menu Bar” on page 3-2).

NightTrace Session Manager

MightProbe Alt+P
MightEench Builder Alt+L
Mightsim Scheduler Alt+h

Mightview Debugger Al+D

Figure 3-12. Tools Menu

NightProbe
Opens the NightProbe Data Monitoring application. NightProbe is a real-time
graphical tool for monitoring, recording, and altering program data within one or
more executing programs without significant intrusion. NightProbe can be usedin a

development environment as atool for debugging, or in a production environment to
create a“ control panel” for program input and output.

See also:

¢ NightProbe User’s Guide (0890480)

NightBench Builder
Opens the NightBench Program Devel opment Environment. NightBench is a set of
graphical user interface (GUI) tools for developing software with the Concurrent
C/C++ and MAXAda™ compiler tool sets.

NOTE

NightBench is currently not available on RedHawk systems.

See also:

¢ NightBench User’s Guide (0890480)

NightSim Scheduler

Opens the NightSim Application Scheduler. NightSim is atool for scheduling and
monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the

periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.

See also:

¢ NightSm User’s Guide (0890480)

3-15

NightTrace Manual

Help

3-16

NightView Debugger

Opens the NightView Source-Level Debugger. NightView is a graphical
source-level debugging and monitoring tool specifically designed for real-time
applications. NightView can monitor, debug, and patch multiple real-time processes
running on multiple processors with minimal intrusion.

See also:

¢ NightView User’s Guide (0890395)

The Help menu appears on the NightTrace Session Manager menu bar (see “NightTrace
Session Manager Menu Bar” on page 3-2).

Cn Windaow
N tem
MightTrace User's Guide

Eookshelf
About MightTrace

Figure 3-13. Help Menu

On Window

Displays the help topic for the current window.

On Item

Gives context-sensitive help on the various menu options, dialogs, or other parts of
the user interface.

Help for a particular item is obtained by first choosing the On Item menu option,
then clicking the mouse pointer on the object for which help is desired (the mouse
pointer will become a floating question mark when the On Item menu item is
selected).

In addition, context-sensitive help may be obtained for the currently highlighted

option by pressing the F1 key. The HyperHelp viewer will display the appropriate
topic.

NightTrace User’s Guide

Opens the online NightTrace User’s Guide.

NightTrace Session Manager

Bookshelf

Opens a HyperHelp window that lists al of the Concurrent online publications cur-
rently available on the local system.

About NightTrace
Displays version and copyright information for the NightTrace product.

Session Configuration File Name Area

The area located directly beneath the NightTrace Session Manager Menu Bar displays the
name of the current session configuration file.

I Session configuration file: Mew ‘l
I i

Figure 3-14. Session Configuration File Name Area

Session configuration file

The name of the current session configuration file. If the current session configura-
tion has not yet been saved to afile, New will be displayed in this area.

To save the current session configuration to afile, select either the Save Session
(see “Save Session” on page 3-3) or Save Session As... (see “Save Session
As...” on page 3-4) menu item from the NightTrace menu (see “NightTrace” on

page 3-2).
Daemon Details Area

The area located directly beneath the Session Configuration File Name Area displays
information about the daemons defined in the current session.

3-17

NightTrace Manual

Type |Daemon Name |Target |State |Attached |Streaming |Logged |Buffer |Lost B
A
Figure 3-15. Daemon Details Area
Type
Indicates what type of trace events the daemon is logging.
U indicates that the associated daemon is logging user trace
events
K indicates that the associated daemon is logging kernel trace
events

The type of trace event that the daemon islogging is configured by selecting either
the Kernel or the User Application radiobutton in the Trace section on the
General page of the Daemon Definition dialog (see “General” on page 3-28).

Daemon Name

The name of the daemon as configured in the Name field on the General page of
the Daemon Definition dialog (see“Name” on page 3-29).

NOTE
The Daemon Name ismerely alabel to aid the user in identify-

ing specific daemons with a session. It has no external meaning
and is unrelated to the NightTrace API.

Target
The name of the system on which the associated daemon is running.

Thetarget system is specified inthe Target System field on the General page of
the Daemon Definition dialog (see “ Target System” on page 3-29).

3-18

State

The state of the daemon.

Logging
Not Executing

Paused

Pausing

Resuming

Starting

Stopping

Attached

NightTrace Session Manager

indicates the daemon is currently capturing events
indicates the daemon has not been started

indicates the daemon is started but is not capturing
events

While paused, attempts to log events from user applica-
tions or via the operating system kernel are discarded.
Note that these are not considered lost events (see “Lost”
on page 3-20).

indicates the daemon is going from aLogging stateto a
Paused state

indicates the daemon is going from a Paused stateto a
Logging state

indicates the daemon is going from a Not Executing
stateto aLogging state

indicates the daemon is going from a Paused or Log-
ging stateto aNot Executing state

The number of user application threads or processes that are associated with the dae-

mon.

Streaming

Indicates whether or not data from this daemon is being streamed to the NightTrace
display buffer. Thisis specified by the setting of the Stream checkbox on the
General page of the Daemon Definition dialog (see“ Stream” on page 3-31).

Advanced settings with respect to streaming can be found on the Streaming page
of the Daemon Definition dialog (see“ Streaming” on page 3-45).

If streaming is not in effect, data will be written to the output file (see “Output File”
on page 3-32) as specified on the General page of the Daemon Definition dia-

log.

Logged

The number of trace events that have been written to the stream or written to thefile
by the associated daemon. See Streaming above.

Buffer

The number of trace events currently held in the buffer.

3-19

NightTrace Manual

These events will be flushed from the buffer either when the Flush Threshold
(see“Flush Threshold” on page 3-37) is reached or when the user flushes them man-
ually (see “Flush” on page 3-21).

Lost

Lost events occur when the daemon cannot keep up with the rate at which events are
being added to the buffer.

To combat this, adjust the Runtime attributes of the daemon by raising its Priority
and/or by changing its CPU Bias to bind it to a specific CPU. (See “Runtime” on
page 3-41 for a description of these settings.)

NOTE

Events that are discarded when adaemonis Paused (see “ State”
on page 3-19) are not included in the Lost count.

Also, events that are discarded when the daemon isin Buffer
Wrap mode (see “Buffer Wrap” on page 3-33) (i.e. older events
being discarded in favor of new ones) are not included in the Lost
count.

Daemon Control Area

The area located at the bottom of the NightTrace Session Manager contains a number of
buttons which control the daemons currently selected in the Daemon Details Area.

Pa z| Besume| Elush| Display| Trace Events | I

Figure 3-16. Daemon Control Area

Start

Starts execution of the daemon(s) currently selected in the Daemon Details Area.
NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

3-20

NightTrace Session Manager

Start operations are time consuming and involve possibly connecting to atarget sys-
tem, user authentication, etc. Once the daemon is started, it is more efficient to uti-
lize the Pause and Resume operations which require less time and resources.

Stop
Stops execution of the daemon(s) currently selected in the Daemon Details Area.

The connection to the target system is terminated by this operation. Once the dae-
mon is started, it may be more efficient to utilize the Pause and Resume opera-
tions.

Pause

Pauses the execution of the daemon(s) currently selected in the Daemon Details
Area

NOTE

When a daemon is paused, incoming trace events are discarded
without notice.

Resume

Resumes execution of the daemon(s) currently selected in the Daemon Details Area.
Once resumed, incoming events are placed into the daemon buffer for subsequent
processing by the daemon.

Flush

Flushes trace events from the buffers associated with the daemon(s) currently
selected in the Daemon Details Area to either the NightTrace display buffer (see
“Stream” on page 3-31) or to the output file (see “ Output File” on page 3-32).

Display

When data from the selected daemon(s) is being streamed to the NightTrace display
buffer (as specified by the setting of the Stream checkbox on the General page of
the Daemon Definition dialog (see “ General” on page 3-28)), pressing this but-
ton causes a flush of the data currently in the trace buffer to the NightTrace display
buffer. If no display pages currently exist, a default display page will be created
when this button is pressed.

NOTE

The user must scroll the NightTrace display in order to see the
most up-to-date data.

3-21

NightTrace Manual

When data from the selected daemon(s) is written to output files, pressing this but-
ton causes the data in the output file to be displayed in the NightTrace display.

Trace Events...

Presents the Enable/Disable Trace Events dialog (see “Enable/ Disable Trace
Events” on page 3-22) allowing the user to dynamically enable or disable selected
trace event types while a particular daemon isrunning. A currently executing dae-
mon must be selected from the Daemon Details Area

Enable / Disable Trace Events

The Enable/Disable Trace Events dialog allows the user to dynamically enable or
disable selected trace event types while a particular daemon is running. Thisdialogis
opened by selecting a currently executing daemon from the Daemon Details Area and
pressing the Trace Events... button in the Daemon Control Areaof the NightTrace Ses-
sion Manager (see “Daemon Control Area’ on page 3-20).

Enable # Dizable Trac

Figure 3-17. Enable / Disable Trace Events dialog

3-22

NightTrace Session Manager

Disabled Events
Thisisalist of user trace or kernel trace event types that are disabled.

Disabled events are not logged to daemon buffers and therefore are not included in
event trace outputs.

Enabled Events
Thisisalist of user trace or kernel trace event types that are enabled.

Enabled events are allowed to be placed into daemon buffers and are subsequently
transferred to the output device (see “ Trace Events Output” on page 3-31).

Enable -->

Moves the selected items from the Disabled Events list or the Trace Event
field to the Enabled Events list.

<-- Disable

Movesthe selected items from the Enabled Events list or theTrace Event field
tothe Disabled Events list.

Trace Event

Allows the user to enter a particular trace event type (or range of trace event types)
and subsegently Enable --> or Disable --> it.

The user may use the event name associated with the event type (e.g.
TR_SYSCALL_RESUME) or the numerical value of the trace event type (e.g.
4131).

The user may also enter a range of values either using the event names or their
numerical values (e.g. TR_INTERRUPT_ENTRY-TR_EXCEPTION_EXIT
or4112-4117).

Use Event Names

Allows the user to view the event names of the trace event types in the Disabled
Events and Enabled Events listsinstead of their numerical values.

For kernel events, these mappings are provided in the file
[usr/1ib/ N ghtTrace/ event map, which is automatically loaded by the
NightTrace Session Manager.

For user trace events, the user may load user-defined event map files using the
Load Event Names dialog (see “Load Event Names” on page 3-39). Usethe
Load Event Names... button to access this dia og.

3-23

NightTrace Manual

Load Event Names...

Allows the user to load various user-defined event map files by presenting the Load
Event Names dialog (see “Load Event Names’ on page 3-39).

The user may then view the event names of the user trace event types in the Dis-

abled Events and Enabled Events listsinstead of their numerical values by
checking the Use Event Names checkbox on this dialog.

3-24

NightTrace Session Manager
Daemon Definition Dialog

The Daemon Definition dialog alows the user to create and modify the various aspects
of adaemon configuration.

Dlaemon Definition

Figure 3-18. Daemon Definition dialog

The Daemon Definition dialog is divided into a number of subpages that contain spe-
cific information about the current configuration. These subpages are:

- General

This page contains information such as the name of the daemon configuration, the
target system on which the daemon will run, the user’slogin on that system, and set-
tings specifying whether kernel or user application tracing will be performed. Items
related to trace events output such as the names of output and key files and settings
such as whether or not streaming will be performed by this daemon are found on this
page as well.

See “General” on page 3-28 for more detailed information.

3-25

NightTrace Manual

3-26

- User Trace

This page contains settings for user trace daemons such as locking policies associ-
ated with the daemon, shared memory permissions, and the duration of the times-
tamp heartbeat, as well as specifications for the size and flush threshold of the user
event buffer.

See “User Trace” on page 3-33 for more detailed information.

- Events
This page allows the user to specify which events may be logged while tracing.
See “Events’ on page 3-37 for more detailed information.

- Runtime

This page allows the user to specify the scheduling policy, CPU bias, and memory
binding policies for the daemon.

See “Runtime” on page 3-41 for more detailed information.
- Streaming

This page alows the user to specify advanced settings with respect to the transfer of
trace data from the daemon to the NightTrace display buffer.

See “Streaming” on page 3-45 for more detailed information.

The following buttons appear at the bottom of the Daemon Definition dialog and have
the specified meaning:

OK
This button applies changes made and closesthe Daemon Definition dialog.
Apply
This button applies changes made but leavesthe Daemon Definition dialog open.
Reset
This button restores the values of all items to the previously-applied values and
leavesthe Daemon Definition dialog open.
Import...

Presents the Import Daemon Definition dialog (see “Import Daemon Defini-
tion” on page 3-27) allowing the user to define daemon attributes based on a user
application running on aremote system. The Import Daemon Definition dialog
is presented following user authentication (see “Login” on page 3-10 and “Enter
Password” on page 3-11).

Import Daemon

NightTrace Session Manager

Cancel
This button restores the values of all items to the previously-applied values and
closesthe Daemon Definition diaog.

Help

This button brings up the help topic for this page.

Definition

This dialog allows the user to define daemon attributes based on a running user applica-
tion containing NightTrace API calls. The Import Daemon Definition diaog is pre-
sented following user authentication (see “Login” on page 3-10 and “Enter Password” on
page 3-11).

The user may select an application, running on the specified target system, from which
they wish to import trace-related attributes.

Scan on target pteri complete.

Program ID|Program

User Key File

=l

Refresh Cancel | Help |

Figure 3-19. Import Daemon Definition dialog

Program ID

The process ID (PID) of the Program on the remote system.

Program

The name of the user application containing t r ace_ calls on the remote system.

User

The user who invoked the Program on the remote system.

3-27

NightTrace Manual

General

3-28

Key File

The filename which is used to cal culate the shared memory segment identifier asso-
ciated with the logging of user trace events. See “Key File” on page 3-31 for more
information.

The following buttons appear at the bottom of the Import Daemon Definition diaog
and have the specified meaning:

OK

Imports daemon attributes into the current daemon definition from the user applica-
tion selected in the list.

Refresh

Queries the specified target system for user applications making trace-related calls.

Cancel

This button closes the Import Daemon Definition diaog without importing any
daemon attributes from any of the listed applications.

Help

Brings up online help for thisdialog.

The General page of theDaemon Definition dialog (see “Daemon Definition Dialog”
on page 3-25) containsinformation such as the name of the daemon configuration, the tar-
get system on which the daemon will run, the user’s login on that system, and settings
specifying whether kernel or user application tracing will be performed. Items related to
trace events output such as the names of output and key files and settings such as whether
or not streaming will be performed by this daemon are found on this page as well.

NightTrace Session Manager

Figure 3-20. Daemon Definition dialog - General

Target

Name
The name for this daemon definition.

Thisfield is automatically populated with the name daemon_ x where x is a num-
ber, starting at 0, which increments with each new daemon definition.

The Name is merely alabd to aid the user in identifying specific daemons with a

session. It has no external meaning and is unrelated to the NightTrace API. The
user may change this to a name of their choosing.

Target System

The system on which this trace daemon will run.

3-29

NightTrace Manual

User
The name of the user on the specified Target System responsible for running this
daemon.

Trace

Indicates what type of trace events this daemon will be logging.

Kernel
Indicates that the daemon islogging kernel trace events.

Kernel events are automatically generated by the operating system kernel
when akernel daemon isinitiated if the operating system kernel was built with
tracing support.

See the Power MAX OS Real-Time Guide (0890466) for information on con-
figuring the kernel for kernel tracing on a PowerMAX OS system.

For systems running RedHawk Linux, see the Concurrent Real-Time Linux -
RT User Guide (0898004) for more detailed information.

User Application
Indicates that the daemon islogging user trace events.
User trace events are generated by:

- user applicationsthat use the NightTrace API

- the NightProbe tool (see the description of the To
NightTrace menu item in the chapter titled “Using the Data
Recording Window” in the NightProbe User’s Guide
(0890480).

Timing Source

By default, an architecture-specific clock is used to timestamp trace events. On
NightHawk 6000 Series machines, the interval timer is used; on Power Hawk and
PowerStack systems, it is the PowerPC Time Base Register; on iHawk systems, the
Intel Time Stamp Counter is used.

NightTrace can also specify the Rea-Time Clock and Interrupt Module (RCIM) asa
timestamp source (see “Timestamp Source Selection” on page 1-2 for more infor-
mation). Thisis most useful when concurrent traces running on multiple systems
are desired. Using the RCIM as a timing device allows NightTrace to present the
user with a synchronized view of concurrent activities on those systems.

Default

Specifies that the architecture-specific clock will be used to timestamp trace
events. On NightHawk 6000 Series machines, the interval timer is used; on

3-30

Trace Events Output

NightTrace Session Manager

Power Hawk and PowerStack systems, it isthe PowerPC Time Base Register;
on iHawk systems, the Intel Time Stamp Counter is used.

RCIM Tick

Specifies that the Real-Time Clock and Interrupt Module (RCIM) tick clock
will be used to timestamp trace events.
NOTE

Use of this option requires that an RCIM board is installed and
configured on the target system.

Stream

When checked, this specifies that streaming is in effect so that the output trace
events will go directly to the NightTrace display buffer. Otherwise, the output will
be written to the Output File (see below).

Key File

Specifies a filename which is used to calculate the shared memory segment identi-
fier associated with the logging of user trace events. The daemon and the Night-
Trace APl usethef t ok(2) serviceto map the specified filename to a shared mem-
ory identifier asused by shmat (2) .

NOTE

When the output method is NOT streaming (see Stream above),
the Key File defines the name of the Output File where trace
events are written (see “Output File’ on page 3-32).

The Key File isrelative to the target system. It does not necessarily need to be
accessible from the host system (the system where the NightTrace GUI is running);
however, that can be convienient for subsequent analysis via NightTrace.

Furthermore, the Key File does not haveto pre-exist. If auser application has not
already created it viaaNightTrace API call, the daemon will create thefileif it does
not exist.

Browse...

Brings up a standard file selection dialog so that the user may navigate to the
desired location of the Key File.

3-31

NightTrace Manual

In order to browse, the Target System (see “Target System” on page 3-29)
must be operational. The file selection dialog invoked by that button shows
filesrelativeto the Target System.

Output File
The name of the file to which trace events are written.

The Output File isrelative to the target system. It does not necessarily need to be
accessible from the host system (the system where the NightTrace GUI is running);
however, that can be convienient for subsequent analysis via NightTrace.

NOTE

When the output method is NOT streaming (see Stream above),
the Key File (see “Key File” on page 3-31) defines the name of
the Output File.

Browse...

Brings up a standard file selection dialog so that the user may navigate to the
desired location of the Output File.

In order to browse, the Target System (see “Target System” on page 3-29)
must be operational. The file selection dialog invoked by that button shows
filesrelativeto the Target System.

File Wrap

When checked, allows the user to specify the Maximum File Size for the Key
File/Output File.

Maximum File Size
The maximum number of bytesfor the Key File/Output File.

When the Maximum File Size isreached, subsequent events will overwrite
the oldest events. NightTrace automatically detectsthis and presents eventsin
chronologica order, from oldest to newest. Events that are discarded due to
File Wrap are NOT considered “lost events” (see “Lost” on page 3-20) in
statistics provided by the NightTrace Session Manager or the NightTrace ana-
lyzer.

NOTE

For a daemon capturing kernel trace events, the file wrap sizes
that the user specifies are rounded up to a multiple of kernel buffer
sizes. (On PowerMAX OS systems, a kernel trace buffer has a
fixed size of 4096* 12 bytes, on RedHawk systems, a kernel trace
buffer is 500000 bytes.)

3-32

User Trace

NightTrace Session Manager

Buffer Wrap

When this is checked, the daemon will overwrite the least recently recorded events
in the trace buffer when it reaches its maximum size.

For user trace events, the size of the buffer is specified in the Buffer Size field on
the User Trace page of the Daemon Definition dialog (see “User Trace” on
page 3-33).

For kernel trace events, the size of the buffer is defined by the operating system.

On aPowerMAX OS system, a kerndl trace buffer has afixed size of 4096* 12 bytes
which holds 4095 kernel events. The total number of trace buffers for kernel events
is specified by the kernel tunable TR_BUFFER_COUNT, the default value of which
is5.)

NOTE

The value of TR_BUFFER_COUNT may be changed on a Power-
MAX OS system viathe conf i g command. However, if this
tunable is changed, the kernel must be rebuilt and the system
restarted for the change to take effect.

On RedHawk systems, there are two kernel trace buffers, each of which is 500000
bytesin size.

TheUser Trace page of the Daemon Definition dialog (see“ Daemon Definition Dia-
log” on page 3-25) contains settings for locking policies associated with the daemon and
the corresponding user applications using the NightTrace API, shared memory permis-
sions, and the duration of the timestamp heartbeat, as well as specifications of the size and
flush threshold of the user event buffer.

3-33

NightTrace Manual

Daemon Definition

Figure 3-21. Daemon Definition dialog - User Trace

Locking Policies

Spin Lock Protection

The NightTrace API and associated daemons use high-performance, low-intrusion
spin locks to protect critical sections involved in logging and consuming trace
events.

These spin locks require preemption control so that processes on the same CPU
don't preempt a daemon or user process in the middle of acritical section and then
spin forever waiting for it to be unlocked.

The spin locks are held for extremely short periods of time.

Failure to properly select a protection level may result in a process spinning forever
on aCPU in the event of unfortunate preemption.

3-34

NightTrace Session Manager

In more severe cases, the system may hang; thisis only a problem if a user-level
interrupt preempts another user process or daemon at an unfortunate time and
attemptsto log trace events to the same trace daemon session.

Data corruption of the trace data will not occur in any case.

System priority level (SPL)

Thisis the safest form of preemption control asit prevents even machine
interrupts from preempting the locking process. Thisis required when a user
application will be logging eventsin a user-level interrupt handler (i.e. at sys
tem interrupt level).

Thisisthe default locking protection mechanism for PowerMAX OS systems.

NOTE

This mechanism is not available on RedHawk systems. If
selected for RedHawk systems, it is silently translated to the
Rescheduling Variables protection as described below.

Rescheduling Variables

Thislevel of protection is sufficient for user applications that log trace events
as long as no user-level interrupt handlers will be logging trace events.

None

Selecting no protection opens up the real possibility that the user process or
the daemon could preempt each other if they are allowed to operate on the
same CPU.

However, the Runtime subpage allows the user to define the CPU binding
(CPU Bias) and priority (Priority) at which the daemon operates. (See
“Runtime” on page 3-41 for a description of these settings.) Thus, if the user
also takes similar care to schedule their user applications then selecting None
is sufficient.

Page Critical Locking

Page locking is required to prevent preemption while holding a spin lock. Without
this choice, it is possible that a page fault could occur while a spin lock is held,
alowing for a user application or daemon to spin forever.

Lock Pages
When this option is selected, the daemon and user applications associated

with this daemon lock down the required pages and unlock them when the
NightTrace APl isterminated.

3-35

NightTrace Manual

Inheritance

When the daemon starts up, certain settings can be inherited from a running user
application that has set up atrace definition.

The NightTrace APl trace_begi n() call (an enhanced replacement for
trace_start ()) alowsthe user to define the following settingsin a user appli-
cation:

- those values listed under the Spin Lock Protection and Page
Critical Locking categories on this page

- theBuffer Size also found on this page

- the setting for the Timing Source which appears on the General
page of the Daemon Definition dialog (see “General” on page
3-28)

See “trace_begin()” on page 2-5 for more information on this API.

Inherit settings from running user application

When this is checked, trace settings defined by a running user application are
silently preferred if those definitions differ from those made in the Session
Manager.

If not checked, trace settings defined by user applications must match thosein
the current daemon definition.

See above for details on which trace settings may be inherited.

Shared Memory

The daemon and the user applications communicate with each other through shared mem-
ory. The shared memory segment identifier is calculated from the Key File setting (see
“Key File” on page 3-31).

The shared memory segment is automatically destroyed after the last user application
and/or the daemon exits normally (if the daemon or user applications are aborted, the
shared memory segment will remain; it will be reinitialized on subseguent use).

shmid Permissions

If the daemon is initiated before any user applications, then the shared memory seg-
ment will be created with the specified permissions.

Timestamp Heartbeat

For performance reasons, NightTrace events normally include only the low 32 bits of a
full 64-bit timestamp. The heartbeat ensures that the daemon logs a full 64-bit timestamp
before the interval of time represented by 32-bits expires. The daemon automatically cal-
culates the heartbeat time when it determines how fast the timing source clock ticks.

3-36

NightTrace Session Manager

Log Heartbeat

The frequency at which afull 64-bit timestamp will be generated.

NOTE

There would be no particular benefit by setting the heartbeat to a
value shorter than the automatically calcuated time unless trace
time anomolies are seen because the daemon is preempted by
higher priority processing and cannot otherwise log the heartbeat
intime.

User Event Buffer

Buffer Size

The number of events that can be held in memory before being written to the output
device.

Flush Threshold

TheFlush Threshold, expressed as a percentage of the Buffer Size, isthe point
at which the daemon beginsto transfer events from the user event buffer to the out-
put device (see “Trace Events Output” on page 3-31). Thethreshold isimportant so
as not to lose events if the daemon cannot respond quickly enough.

NOTE

If events are being lost, a combination of changing the Buffer
Size, the Flush Threshold, and the runtime Priority (see“Pri-
ority” on page 3-42) of the daemon is normally sufficient to pre-
vent event loss.

Events

The Events page of the Daemon Definition dialog (see “Daemon Definition Dialog”
on page 3-25) allows the user to specify which trace event types will be handled by the
daemon.

The user may also change this list dynamically while the daemon is executing by pressing
the Trace Events... button in the Daemon Control Area of the NightTrace Session
Manager (see “Daemon Control Area” on page 3-20) to bring up the Enable/Disable
Trace Events didog (see“Enable/ Disable Trace Events’ on page 3-22).

3-37

NightTrace Manual

Dlaemon Definition

0-4033
4356-4311

Figure 3-22. Daemon Definition dialog - Events

Disabled Events
Thisisalist of user trace or kernel trace event types that are disabled.

Disabled events are not logged to daemon buffers and therefore are not included in
event trace outputs.

Enabled Events
Thisisalist of user trace or kernel trace event types that are enabled.

Enabled events are allowed to be placed into daemon buffers and are subsequently
transferred to the output device (see “ Trace Events Output” on page 3-31).

Enable -->

Moves the selected items from the Disabled Events list or Trace Event field to
the Enabled Events list.

3-38

NightTrace Session Manager

<-- Disable

Moves the selected items from the Enabled Events list or Trace Event field to
the Disabled Events list.

Trace Event

Allows the user to enter a particular trace event type (or range of trace event types)
and subsegently Enable --> or Disable --> it.

The user may use the event name associated with the event type (e.g.
TR_SYSCALL_RESUME) or the numerical value of the trace event type (e.g.
4131).

The user may also enter a range of values either using the event names or their
numerical values (e.g. TR_INTERRUPT_ENTRY-TR_EXCEPTION_EXIT
or4112-4117).

Use Event Names

Allows the user to view the event names of the trace event types in the Disabled
Events and Enabled Events listsinstead of their numerical values.

For kernel events, these mappings are provided in the file
[usr/1ib/ N ghtTrace/ event map, which is automatically loaded by the
NightTrace Session Manager.

For user trace events, the user may load user-defined event map files using the
Load Event Names dialog (see “Load Event Names” on page 3-39). Usethe
Load Event Names... button to access this dia og.

Load Event Names...

Allowsthe user to load various user-defined event map files by presenting the Load
Event Names dialog (see “Load Event Names’ on page 3-39).

The user may then view the event names of the user trace event types in the Dis-
abled Events and Enabled Events listsinstead of their numerical values by
checking the Use Event Names checkbox on this dialog.

Load Event Names

This dialog allows the user to load various user-defined event map files, thereby enabling
the user to view the event names of the user trace event types instead of their numerical
valuesin the Enable/Disable Trace Events dialog (see “Enable / Disable Trace
Events’ on page 3-22) or on the Events page of the Daemon Definition dialog (see
“Events” on page 3-37).

The user can access this dialog by pressing the Load Event Names... button on either
of the aforementioned dialogs. TheUse Event Names checkbox on either of these dia-
logs alows the user to toggle between viewing the event names and their numerica val-
ues.

3-39

NightTrace Manual

NOTE

Event map files are relative to the host system (the system where
the NightTrace GUI is running).

Directory

Ia’sampleé

Filter Files

4 eventmap1
u eventmap?

Directories eventmap3

Pk

Zelection

I

014 | Filter | Cancell Help |

Figure 3-23. Load Event Names dialog

Directory
The directory in which to find the desired event map file.

The user may type the path into thisfield directly.

Filter

Of all the files contained in the current Directory, display only those Files that
match the specified filter.

Directories

Contains alist of al the subdirectories within the current directory. Selecting any of
these will change the current Directory to that subdirectory. Double-clicking on

3-40

NightTrace Session Manager

any of these directory names will change to that directory and update the Files list
accordingly.
Files

Within the current Directory, thisis alist of the files that match the specified Fil-
ter. Any of these filenames can be selected. When selected, the filename appearsin
the Selection field.

Selection

The name of the desired event map file appears here after being selected from the
Files list. Thefilename may be manually entered into thisfield by the user as well.

Runtime

The Runtime page of the Daemon Definition dialog (see “Daemon Definition Dia-
log” on page 3-25) alows the user to specify the scheduling policy, CPU bias, and mem-
ory binding policies for the daemon.

Dlaemon Definition

Figure 3-24. Daemon Definition dialog - Runtime

341

NightTrace Manual

Scheduling

3-42

Scheduling Policy

POSIX defines three types of policiesthat control the way a processis scheduled by
the operating system. They are SCHED_FI FO(FIFO), SCHED_RR (Round
Robin), and SCHED OTHER (Time-Sharing). Each of these scheduling policies
is associated with one of the System V scheduler classes. See either the PowerMAX
OS Programming Guide (0890423) or the RedHawk Linux User's Guide (0898004)
for more detailed information regarding these policies and their associated classes.

FIFO

The FIFO (first—in—first—out) policy (SCHED_FI FO) is associated with the
fixed-priority class in which critical processes and LWPs can run in predeter-
mined sequence. Fixed priorities never change except when a user requests a
change.

This policy is almost identical to the Round Robin (SCHED RR) policy.
The only differenceis that a process scheduled under the FIFO policy does
not have an associated time quantum. As a result, aslong as a process sched-
uled under the FIFO policy is the highest priority process scheduled on a par-
ticular CPU, it will continue to execute until it voluntarily blocks.

Round Robin

The Round Robin policy (SCHED RR), like the FIFO policy, is associated
with the fixed-priority class in which critical processes and LWPs can run in
predetermined sequence. Fixed priorities never change except when a user
reguests a change.

A process that is scheduled under this policy (as opposed to the FIFO policy)
has an associated time quantum.

Time-Sharing

The Time-Sharing policy (SCHED_OTHER) is associated with the
time-sharing class, changing priorities dynamically and assigning time slices
of different lengths to processes in order to provide good response time to
interactive processes and LWPs and good throughput to CPU-bound processes
and LWPs.

Priority

The Priority isrelative to the selected Scheduling Policy (see* Scheduling Pol-
icy” on page 3-42) and the range of allowable values is dependent on the operating
system.

CPU Bias

NUMA

NightTrace Session Manager

For example, on PowerMAX OS systems, the priority values for the FIFO class
include 0..59, where 59 is the most urgent user priority available on the system.

On RedHawk systems, the priority values for the FIFO class include 1..99, where
99 is the most urgent user priority available on the system.

It is recommended that a reasonable urgent priority is specified when using the
FIFO scheduling policy to prevent event loss.

CPU Bias

Selection of a specific CPU or set of CPUs can be advantageous to prevent event
loss, reduce daemon instruction on the rest of the system, and for careful configura-
tion to alow for relaxed Spin Lock Protection (see “Spin Lock Protection” on page
3-34).

All CPUs

Selects all CPUs on the target system.

On platforms belonging to the local/global/remote subclass of non-uniform memory
access (NUMA) architectures, primary memory is divided into global and local memories.

Global memory islocated on a memory board where it is equally distant, in terms of
access time, from al of the CPUs in the system. All CPUs share a single data path to glo-
bal memory known as the system bus.

Loca memory islocated on a CPU board where it is closer, in terms of accesstime, to the
co-resident CPUs. The path between a CPU and its local memory does not include the
system bus. Local memory usage improves the throughput of the system in two ways:
smaller access times for the co-resident CPUs and less system bus contention for the
remaining CPUs.

Applications can influence the page placement decisions made by the kernel by selecting

NUMA policies for different parts of their address spaces. NUMA policies specify where
data should reside in the local/global /remote hierarchy.

NOTE
These settings are ignored for non-NUMA target systems archi-

tectures, such as PowerHawk, PowerStack, and iHawk series
machines.

3-43

NightTrace Manual

NOTE
These settings do not affect the memory associated with the trace
buffers. Kernel trace buffers are in kernel memory allocated out
of the global memoy pool and user trace buffers are in shared
memory allocated out of the global memory pool.
Text NUMA Flag
Thisitem selects the NUMA policy to apply to text (code) pages.

Text pages are those pages in private mappings that belong to afilein afile system.
The traditional text segment fallsinto this category.

See “Policies” in the section below for alist of applicable NUMA policies.

Private Data NUMA Flag
Thisitem selects the NUMA policy to apply to private data pages.
Private data pages are those pages in private mappings that do not belong to afilein
afile system. The traditional stack and data segments fall into this category. Note
that the first time that a process writes to a page in a private, writable mapping to a
file, the page will move from the text category to the private data category.

See “Policies” in the section below for alist of applicable NUMA policies.

Shared Data NUMA Flag

Thisitem selects the NUMA policy to apply to shared data pages. See“Policies’ in
the section below for alist of applicable NUMA policies.

U-block NUMA Flag
This item selects the NUMA policy to apply to kernel data structures that contain

the stack used during system calls, the register save area used during context
switches, and miscellaneous other bits of information about the LWP.

See “Policies” in the section below for alist of applicable NUMA policies.

Policies

Each of the above flags can be set to one of the following:

Global

Specifies that the designated pages should be placed in globa memory.

Soft Local

Specifies that the designated pages be placed in local memory if space is available,
otherwise they should be placed in global memory.

344

NightTrace Session Manager

Hard Local

Specifies that the designated pages must be placed in local memory.

Default

Specifies that the default NUMA policy on the target system should be used.

Streaming

The Streaming page of the Daemon Definition dialog (see “ Daemon Definition Dia-
log” on page 3-25) alows the user to specify advanced settings with respect to the transfer
of trace data from the daemon to the NightTrace display buffer.

Dlaemon Definition

1048576
4096

Figure 3-25. Daemon Definition dialog - Streaming

Streaming Options

NightTrace Manual

Stream Buffer Size

The number of bytes for the buffer that the NightTrace Session Manager uses to
hold data from the daemon before sending it to the NightTrace display buffer.

NOTE

Thisis an internal buffer. You should not need to adjust the size
of this buffer unless NightTrace finds that it cannot transfer data
quickly enough between the daemon and the NightTrace anayzer.
In such acircumstance, the daemon isforced into aPaused state
(see “State” on page 3-19).

3-46

4
Generating Trace Event Logs with ntraceud

O VIV BN . . oot e e e e 4-1
Thentraceud DaemONo 4-1
The Default User Daemon Configuration, 4-2
Ntraceud MOOESot 4-4
ntraceud OPLIONSot 4-5
Optionto Get Help (-help) . . .o 4-7
Option to Get Version Information (-version)ccovevena... 4-8
Option to Disable the IPL Register (-ipldisable) 4-9
Option to Prevent Page Locking (-lockdisable) 4-11
Option to Establish File-Wraparound Mode (-filewrap) 4-12
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4-13
Option to Define Shared Memory Buffer Size (-memsize) 4-16
Option to Set Timeout Interval (-timeout) oot 4-17
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4-18
Option to Select Timestamp Source (-clock)t 4-19
Option to Reset the ntraceud Daemon (-reset)t 4-20
Option to Quit Running ntraceud (-quit) e... 4-21
Option to Present Statistical Information (-stats).t 4-22
Option to Disable Logging (-disable).t 4-24
Optionto EnableLogging (-enable). 4-26
INVOKING NEraceudo e e e 4-28

Exercise: Logging TraCe EVeNntS.t 4-29

NightTrace Manual

4
Generating Trace Event Logs with ntraceud

Overview

A user daemon is required in order to capture trace events logged by user applications.
There are two methods for controlling user daemons:

¢ Use the graphical user interface provided in the nt r ace session manager
dialog as described in the preceeding chapter

* Usethe command line tool nt r aceud

The interactive session manager is often more convenient and easier to use and addition-
ally offers concurrent viewing of trace events while the application continues to log trace
data; this optional feature is called streaming. Alternatively, the nt r aceud command
line tool is useful in scripts where automation is required.

This chapter describes the nt r aceud command line tool broken down into the following
topics:

* Thent raceud daemon

* The default user daemon configuration
* ntraceud modes

* ntraceud options

* Invoking nt r aceud

The ntraceud Daemon

When you start up nt r aceud, it creates a daemon background process and returns your
prompt. The daemon creates a shared memory buffer in global memory. Your application
writes trace events into this buffer, and the daemon copies these trace events to atrace
event file.

You supply the name of the trace event file on your nt r aceud invocation and in the
trace_begi n() library call in your application. If this file does not exist, nt r aceud
creates it; otherwise, nt r aceud overwritesit. Unless your umask(1) setting overrides
this default, nt r aceud creates the file with mode 666, read and write permission to al
users. If you want to maximize performance, use a trace event file that is local to the
system where the nt r aceud daemon and your application run.

4-1

NightTrace Manual

A single nt r aceud daemon may service severa running applications or processes.
Several nt r aceud daemons can run simultaneously; the system identifies them by their
distinctive trace event file names. The nt r aceud daemon resides on your system
under/ usr/ bi n/ ntraceud.

Whenever the daemon isidle, it sleeps. You can control the sleep interval with an
nt r aceud option. Logging a trace event may wake the daemon if the buffer-full cutoff
percentage is exceeded or if shared memory becomes full of trace events. Flushing trace
events from the shared memory buffer to disk always wakes the daemon.

The Default User Daemon Configuration

4-2

Invoking nt r aceud with atrace event file argument and without any options will
attempt to start a user daemon with the default user daemon configuration. You can over-
ride defaults by invoking nt r aceud with particular options. Table 4-1 summarizes these
options. Later sections provide detail ed descriptions of these options and operating modes.

However, if a user application has already been initiated, it may have specified a
non-default configuration viathet r ace_begi n() cal. If the critical settingsin the con-
figuration defined by the user application differ from those specified by nt r aceud, then
nt r aceud will fail to initialize with an appropriate diagnostic.

In the default configuration, al trace events are enabled for logging. Your application logs
trace events to the shared memory buffer. By default, an architecture-specific timing
sourceis utilized. For Intel-based machines, the Intel Time Stamp Counter (TSC regis-
ter); for Night Hawk 6000 series machine, the interval timer; for PowerHawk and Power-
Stack series machines, the Time Base Register (TBR). However, the Real-Time Clock
and Interrupt Module (RCIM) can be used as a timestamp source by using the - cl ock
option to nt r aceud (see “Option to Select Timestamp Source (-clock)” on page 4-19).

The nt r aceud daemon operates in expansive mode. In expansive mode, nt r aceud
copies al trace events from the shared memory buffer to the trace event file. This behavior
differs from file-wraparound mode and buffer-wraparound mode. If the trace event file
does not exist when nt r aceud starts up, nt r aceud creates it; otherwise, nt r aceud
overwrites it.

nt r aceud and the NightTrace library routines use page locking to prevent page faults
during trace event logging.

nt r aceud uses high-performance, |ow-intrusion spin locks to protect critical sections
involved in logging and consuming trace events.

These spin locks require preemption control so that processes on the same CPU don't pre-
empt a daemon or user process in the middle of a critical section and then spin forever
waiting for it to be unlocked.

The spin locks are held for extremely short periods of time.

Failure to properly select a protection level may result in a process spinning forever on a
CPU in the event of unfortunate preemption.

Generating Trace Event Logs with ntraceud

In more severe cases, the system may hang; thisis only a problem if a user-level interrupt
preempts another user process or daemon at an unfortunate time and attempts to log trace
events to the same trace daemon session.

Data corruption of the trace data will not occur in any case.

<default option>

IPL protection is the safest form of preemption control as it prevents even
machine interrupts from preempting the locking process. Thisis reguired
when auser application will be logging events in a user-level interrupt han-
dler (i.e. at system interrupt level).

This is the default preemption control mechanism for PowerMAX OS sys-
tems.

NOTE

This mechanism is not available on RedHawk systems. If
selected for RedHawk systems, it is silently translated to the
-resched protection as described below.

-resched

Thislevel of protection is sufficient for user applications that log trace events
aslong as no user-level interrupt handlers will be logging trace events. Thisis
the default preemption control setting for RedHawk Linux.

-i pl di sabl e

Selecting no protection opens up the real possibility that the user process or
the daemon could preempt each other if they are allowed to operate on the
same CPU.

However, appropriate use of CPU bindings and/or priority at which the dae-
mon operates can prevent such occurrences Thus, if the user also takes simi-
lar care to schedul e their user applications then selecting thisis sufficient.

Page locking is required to prevent preemption while holding a spin lock. Without this
choice, it is possible that a page fault could occur while a spin lock is held, allowing for a
user application or daemon to spin forever.

When nt r aceud isidle, it sleeps. The process of copying trace events from the shared
memory buffer to atrace event fileis called flushing the buffer. nt r aceud wakes up and
flushes the buffer when any of these conditions exist:

* ntraceud’sseepinterval elapses
* The buffer-full cutoff percentage is exceeded

* The shared memory buffer is full of unwritten trace events

4-3

NightTrace Manual

* Your application cals trace flush(), trace_ trigger(), or
trace_end()

A summary of NightTrace configuration defaults follows.

Table 4-1. NightTrace Configuration Defaults

Characteristic Default Modifying Option
nt r aceud sleep interval 5 seconds -ti nmeout seconds
Buffer-full cutoff percentage 20% full -cut of f percent
Shared memory buffer size 16K (16,384) trace - mensi ze count

events
Flush mechanism (See above) - buf ferwr ap
Trace event file size Indefinite -filew ap bytes
Trace eventsenabled for log- Al -di sabl e ID and
ging -enabl e ID
Page-fault handling Page locking -1 ockdi sabl e
Preemption control Modify IPL register -i pl di sabl e

(PowerMAX OS)

Rescheduling variables
(RedHawk Linux) -resched

ntraceud Modes

4-4

NightTrace can operate in three modes: expansive (default), file-wraparound, and
buffer-wraparound. As the following two tables show, these modes meet different needs
and have different characteristics. They differ mainly by their handling of the shared
memory buffer and the trace event file on disk.

By default, NightTrace operates in expansive mode. NightTrace operates in file-wrap-
around mode when you specify the - f i | ewr ap option on the nt r aceud invocation
line. Thent raceud - buf f er wr ap option puts NightTrace in buffer-wraparound
mode. See “Option to Establish File-Wraparound Mode (-filewrap)” on page 4-12 and
“Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-13 for more
information on these options.

It is not possible to combine expansive mode with either file-wraparound or buffer-wrap-
around mode. Although you can mix file-wraparound and buffer-wraparound modes, it is
not recommended.

Table 4-2 provides some guidelines to help you decide which mode to use.

Generating Trace Event Logs with ntraceud

Table 4-2. Mode-Selection Guidelines

MODE
Constraint Expansive File-Wraparound Buffer-Wraparound
Trace event All trace events are Newest trace events Eventsjust before a
importance important areimportant trace_flush()
areimportant
Genera Disk space and mem- Disk spaceislimited Program will run a
ory are plentiful long time

Table 4-3 shows how each NightTrace operating mode reacts to a particular condition.
The process of copying trace events from the shared memory buffer to the trace event file
on disk is called flushing the buffer.

Table 4-3. NightTrace Operating Modes

MODE
Condition Expansive File-Wraparound Buffer-Wraparound
nt r aceud sleep Flush the buffer Flush the buffer (No reaction)
interval exceeded
(-ti meout)
Buffer-full cutoff Flush the buffer Flush the buffer (No reaction)
percentage
exceeded
(-cutof f)
Shared memory Flush the buffer Flush the buffer Overwrite the
buffer isfull buffer’s ol dest
(- mensi ze) trace events with
the newest ones

Trace event fileis | N/A Overwrite the N/A
full (-filew ap) file'soldest

trace events with

the newest ones

ntraceud Options

nt r aceud always copies trace events from the shared memory buffer to the trace event
file, trace file. You can override some other NightTrace defaults by invoking nt r aceud

4-5

NightTrace Manual

4-6

with option(s). You can also use optionsto quit running or reset nt r aceud and to obtain
version, statistical, or invocation-syntax information. The full nt r aceud invocation
syntax is:

ntraceud [-hel p][-version][-ipldisable][-Iockdisabl e]
[-filew ap bytes] [- buf f erw ap] [- mensi ze count]
[-ti meout seconds] [- cut of f percent] [- cl ock source]
[-reset][-quit][-quit!][-stats][-]oin]
[[- di sabl e ID[- ID]] [...]] [[- enabl e ID[- ID]] [...] trace file

You can abbreviate all nt r aceud options to their shortest unambiguous length, but most
of the examples in this manual use the long option name. These options are
case-insensitive. The following examples are al equivalent:

ntraceud - hel p
ntraceud - hel
ntraceud - he
ntraceud-h
ntraceud-H
ntraceud - HE
nt r aceud - Hel
ntr aceud - HELP

You can invoke nt r aceud more than once with different options during a single trace
session; each invocation passes additional options and values to the running nt r aceud
daemon. Usually you do this to dynamically enable or disable trace events or to obtain
current statistical information. Options that are available only at nt r aceud start up are
described that way.

The following sections discuss the nt r aceud options.

Option to Get Help (-help)

Generating Trace Event Logs with ntraceud

The nt raceud - hel p option displays the nt r aceud invocation syntax on standard

output.
SYNTAX

ntraceud -
DESCRIPTION

hel p

Thent r aceud - hel p option displays a brief help message showing the complete
invocation syntax for nt r aceud. Screen 4-1 shows an example of - hel p option

output.

[-filewap bytes]
[-cutof f percent]
[-disable ID[-1D]]

Gener al
-help
-version

out put

options:

-ipldisable

-1 ockdi sabl e
-filewap bytes
- buf f erwr ap

- mensi ze count
-ti meout seconds
-cutof f percent
-cl ock source

def aul t
rcimtick

ptions for an existi

trace_file

/usage: ntraceud [-help] [-version] [-ipldisable] [-1ockdisable]

Options for a new ntraceud daenon:

Valid val ues for source are:

-reset Reset the ntraceud daenon and the trace_file
-quit Quit running ntraceud
-stats Wite statistics (resource/environment) to standard out put
Options for new and exi sting ntraceud daenons:
-disable ID-1D] D sable a specific event 1D or |ID range fromlogging
-enable |1D0-1D Enable a specific event IDor IDrange to |og
Files:

~

[-bufferwap] [-nensize count]
[-clock source] [-reset] [-quit]
[-enable ID[-1D]] trace_file

[-ti meout seconds]
[-stats]

Wite this nessage to standard out put
Wite the current ntraceud version stanp to standard

Di sabl e use of the IPL register

Di sabl e use of page | ocking

Use file waparound node with nax trace_file size in bytes
Use shared nenory buffer w aparound node

Set shared nenory buffer size to specified event count

Set the ntraceud tineout to specified seconds

Fl ush events to disk at specified cutoff Ievel

Specify source of event tine stanps

Use the default system cl ock
Use the RCI M synchronized tick clock

ng ntraceud daenon:

Hol ds events | ogged by your application and ntraceud

/

Screen 4-1. Sample Output from the ntraceud -help Option

NightTrace Manual

Option to Get Version Information (-version)

Thent raceud - ver si on option displays the current nt r aceud version stamp on
standard output.

SYNTAX

ntraceud -version

DESCRIPTION

Thent raceud - ver si on option displays version stamp information for this
nt r aceud daemon.

48

Generating Trace Event Logs with ntraceud

Option to Disable the IPL Register (-ipldisable)

Thentraceud -i pl di sabl e option disables the default use of the system’s interrupt
priority level (IPL) register by nt r aceud and by the NightTrace library routines in your
application.

SYNTAX

ntraceud -ipldisabl e trace file

DESCRIPTION

On PowerMAX OS, by default, NightTrace modifies a shared memory region
bound to the system’ sinterrupt priority level (IPL) register to control preemption.

On RedHawk Linux, by default, NightTrace uses rescheduling variables to prevent
process preemption (this does not prevent preemption by machine interrupts, but
thisis not of concern on RedHawk Linux since user applications cannot run at inter-
rupt level).

On PowerMAX OS, if your application lacks read and write privilege to
/ dev/ spl , the NightTrace daemon and library initialization routine exit with
errors.

On RedHawk Linux, if your application lacks privileges to be able to use rescheding
variables, the NightTrace daemon and library initialization routines will exit with
errors.

If you still want to trace events, you must invoke the nt r aceud daemon with the
-i pl di sabl e option. If you use the - i pl di sabl e option, you must start up
nt r aceud with it.

You must not usethe- i pl di sabl e option if your user-level interrupt routine logs
trace events to the shared memory buffer.

CAUTION

The -i pl di sabl e option should be used with great care to
avoid deadlock. This may occur if more than one LWP, each
biased to run on the same CPU, islogging trace events to atrace
file created by an nt r aceud invoked with the - i pl di sabl e
option.

Consider the following scenario: an LWP, preparing to log a trace
event, locks the spin lock to protect the shared memory buffer. It
is preempted by a second LWP which aso attempts to log a trace
event. However, due to priority inversion, the first LWP cannot
release the spin lock, causing the second LWP to loop infinitely

4-9

NightTrace Manual

waiting for the spin lock to be released.
Thisdeadlock could be avoided if nt r aceud were invoked with-

out the- i pl di sabl e option. Thiswould alow thefirst LWPto
release the spin lock before being preempted.

SEE ALSO

For more information on the IPL register, see the Power MAX OS Programming
Guide.

4-10

Generating Trace Event Logs with ntraceud

Option to Prevent Page Locking (-lockdisable)

Thent raceud -1 ockdi sabl e option disables default page locking by nt r aceud
and by the NightTrace library routines in your application.

SYNTAX

ntraceud -1 ockdi sabl e trace file

DESCRIPTION

You can identify arunning nt r aceud daemon by its trace event file name,
trace file.

By default, NightTrace locks its pages in memory. This capability prevents page
faults during trace event logging that could distort trace event timings.

If you lack sufficient privileges required to lock your pages in memory, your
invocation of nt r aceud and your application exit with errors. If you still want to
trace events, you must invoke the nt r aceud daemon with the - | ockdi sabl e
option. This option makes nt r aceud and the NightTrace library routines in your
application run without locking their pages in memory. If you use the - | ockdi s-
abl e option, you must start up nt r aceud with it.

You must not use the - | ockdi sabl e option if your user-level interrupt routine
logs trace events to the shared memory buffer.

4-11

NightTrace Manual

Option to Establish File-Wraparound Mode (-filewrap)

4-12

By default, the trace event file can grow indefinitely. With thent r aceud -fi | ew ap
option, you can make NightTrace operate in file-wraparound mode, rather than expansive
mode. In file-wraparound mode, you limit the trace event file size.

SYNTAX

ntraceud -fil ew ap bytes trace file

DESCRIPTION

Thentraceud -fil ew ap option lets you specify the maximum byte size, bytes,
of the trace event file, trace file. Specify the bytes parameter as a number of bytes
or asanumber with aK or M suffix to show that the bytes parameter isin kilobyte or
megabyte units, respectively. For example, 12K means 12,288 bytes. If you use the
-fil ew ap option, you must start up nt r aceud with it.

Your application logs enabled trace eventsinto a shared memory buffer. nt r aceud
copies these trace events to the trace event file. In expansive mode, this file can
grow indefinitely.

Thentraceud - fi | ew ap option makes NightTrace operate in file-wraparound
mode, rather than in expansive mode. In file-wraparound mode the trace event file
can become full of trace events. When this happens, nt r aceud overwrites the
oldest trace events in the beginning of the file with the newest ones, intentionally
discarding the oldest trace events to make room for the newest ones.

In expansive (default) and file-wraparound modes, you control automatic buffer
flushing by setting the nt r aceud sleep interval, shared memory size, and
buffer-full cutoff percentage. In contrast, there is no automatic buffer flushing in
buffer-wraparound mode; these values have no effect in this mode.

File-wraparound mode can be beneficial if you are short of disk space. With this
mode, you specify the maximum size of the trace event file, instead of allowing it to
grow indefinitely. Consider using this option if you are interested only in the most
recent of many trace events logged by an application over along period of time. If
you want to determine how much disk space is available, run the df (1) command
with the - k option and look at the “avai | " column.

SEE ALSO

For acomparison of expansive, file-wraparound, and buffer-wraparound modes, see
“ntraceud Modes’ on page 4-4.

Generating Trace Event Logs with ntraceud

Option to Establish Buffer-Wraparound Mode (-bufferwrap)

The process of copying trace events from the shared memory buffer to the trace event file
on disk is caled flushing the buffer. With thent r aceud - buf f er wr ap option, you can
make NightTrace operate in buffer-wraparound mode, rather than expansive mode. In
buffer-wraparound mode, the nt r aceud daemon flushes only the most recent trace
events, rather than all trace events. Y our application asynchronously triggers every buffer
flush.

SYNTAX

ntraceud -bufferwap trace file

DESCRIPTION

The nt r aceud daemon always logs enabled trace events into a shared memory
buffer. In expansive mode, when the buffer is full (or when some other conditions
exist), nt r aceud automatically flushes the buffer to the trace event file, trace file.

Thent raceud - buf f er wr ap option makes NightTrace operate in buffer-wrap-
around mode, rather than in expansive mode. When the buffer isfull in buffer-wrap-
around mode, the application treats the shared memory buffer as a circular queue
and overwrites the oldest trace events with the newest ones, intentionally discarding
the oldest trace events to make room for the newest ones. This overwriting continues
until your application explicitly callst race_f | ush() . Only then, doesnt r a-
ceud copy the remaining trace events from the shared memory buffer to the trace
event file. If you use the - buf f er wr ap option, you must start up nt r aceud with
it.

NOTE

You control automatic buffer flushing by setting the nt r aceud
sleep interval and buffer-full cutoff percentage in expansive
(default) mode and in file-wraparound mode. In contrast, there is
no automatic buffer flushing in buffer-wraparound mode; these
values have no effect in this mode. Invoking nt r aceud with the
- buf f er wr ap option, makesnt r aceud ignore any -t i me-
out and - cut of f options.

In buffer-wraparound mode, you can estimate the maximum number of trace events
to be written to your trace event file by using the following formula:

max_events = nax_events_in_buffer * flush_count
where:

max_events The maximum number of trace events.

4-13

NightTrace Manual

4-14

max_events_in_buffer
The number of trace events the shared memory buffer
can hold. You can set this value when you invokent r a-
ceud with the - nensi ze option.

fl ush_count The number of t race_f 1 ush() calsyour application
executes.

For example, if you set your shared memory buffer size to 1000 trace events, then
max_event s_i n_buf f er is1000. If you expect your threet race_f | ush()
calls to execute two times each, then f | ush_count issix (3* 2). Calculating
max_event s gives you about 6000 (1000 * 6) trace eventsin your trace event file.

Buffer-wraparound mode:

* Can help you with debugging
¢ Can reduce trace events to a manageabl e number

* May conserve disk space
Buffer-wraparound mode can be useful in debugging.

Assume that you are debugging a fault in a large application. Follow the steps
below to accomplish your task.

1. Insertatrace_fl ush() cal inyour code where you believe the
fault occurs.

2. Compile and link your application.
3. Invokent r aceud with the - buf f er wr ap option.

4. Run your application.

When your application executesthet r ace_f | ush() cal, ntraceud copiesall
trace events still in the shared memory buffer to the trace event file. You can then
use the nt r ace display utility to graphically analyze only the trace events
immediately preceding the fault.

Buffer-wraparound mode can also be useful in reducing trace events to a
manageable number. In this mode, when the shared memory buffer is full, the
newest trace events overwrite the oldest ones. This meansthat if the shared memory
buffer becomes full before your application executesthet race_fl ush() call,
nt r aceud copiesonly the current contents of the buffer to the trace event file. This
way, you can exclude the ol dest trace events from your nt r ace displays.

In buffer-wraparound mode, nt r aceud usually flushes fewer trace events to the
trace event file than in expansive mode. Thus, this mode can conserve disk space.

If you want to determine how much disk space is available, run the df (1)
command with the - k option and look at the “avai | ” column. Use the following
command to see the system settings for the current, default, minimum, and
maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHWAX

Seethei dt une(1M man page for more information.

Generating Trace Event Logs with ntraceud

SEE ALSO

For moreinformationont race_f | ush(), see“trace flush() and trace_trigger()”
on page 2-20. For a comparison of expansive, file-wraparound, and buffer-wrap-
around modes, see “ntraceud Modes’ on page 4-4. For information on limiting the
number of logged trace events, see “Option to Define Shared Memory Buffer Size
(-memsize)” on page 4-16.

4-15

NightTrace Manual

Option to Define Shared Memory Buffer Size (-memsize)

By default, the shared memory buffer can hold 16,384 trace events. When the buffer is full
of unwritten trace events, the nt r aceud daemon wakes up and copies the trace eventsto
the trace event file. Thent r aceud - mensi ze option letsyou ater the size of the shared
memory buffer.

SYNTAX

ntraceud -nensize count trace file

DESCRIPTION

Thentraceud - mensi ze option lets you set the shared memory buffer size.
Specify the count parameter as a maximum number of trace events or as a number
with aK or M suffix to show that the count parameter is in kilobyte or megabyte
units, respectively. For example, 12K means 12,288 trace events. nt r aceud
rounds that number up to a full page boundary. A trace event with zero or one
argument takes up 16 bytes; atrace event with more arguments takes up 32 bytes: 16
bytes for the basic trace event and one argument and 16 bytes for the
NT_CONTI NUE overhead trace event and the remaining arguments.

On PowerMAX OS, use the following command to see the system settings for the
current, default, minimum, and maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHWAX
Seethei dt une(1M man page for more information.

By default, if the shared memory buffer becomes full, nt r aceud wakes up and
copies trace events from the shared memory buffer to the trace event file, trace file.
Y ou can increase the count parameter to prevent trace event loss. If you use the
- mensi ze option, you must start up nt r aceud with it.

By changing the shared memory buffer size, you can:

¢ Alter the buffer flush frequency

¢ Control the number of trace events copied to the trace event file in
buffer-wraparound mode

SEE ALSO

For information on limiting the number of logged trace events, see “ Option to Estab-
lish Buffer-Wraparound Mode (-bufferwrap)” on page 4-13.

4-16

Generating Trace Event Logs with ntraceud

Option to Set Timeout Interval (-timeout)

By default, nt r aceud sleeps 5 seconds after writing trace events to disk. The
ntraceud - ti meout option lets you set this timeout interval.

SYNTAX

ntraceud -tineout seconds trace file

DESCRIPTION

You can identify a running nt r aceud daemon by its trace event file name,
trace file.

When nt r aceud is idle, the daemon sleeps. By default, the sleep interval isa
maximum of 5 seconds. The nt raceud -t i neout option lets you establish the
maximum number of seconds, seconds, that the nt r aceud daemon sleeps.

Waking the nt r aceud daemon incurs overhead that can distort trace event timings;
decreasing the timeout parameter makes it more likely that the daemon will be
awake when needed. You can also decrease the timeout parameter to prevent trace
event loss. Note: If your application does not log events frequently, you can increase
the timeout to reduce the time the daemon runs and consumes CPU cycles.

If you usethe -t i meout option, you must start up nt r aceud with it. If you
invoke nt r aceud with both the -t i meout and - buf f er wr ap options,
nt r aceud ignoresthe - t i neout option.

nt r aceud does not sleep for the full period if:

* Your application executes a cal to trace_ flush(),
trace_trigger(),ortrace_end()

* Your application logs a trace event that causes shared memory to
become full or your buffer-full cutoff percentage to be reached

* You specify atimeout parameter which exceeds the time in which the
lower 32 bits of the timestamp source would roll over. This rollover
time varies from architecture to architecture (with a minimum value
of 257.69803 seconds) and is calculated by nt r aceud as part of its
initialization. It isimportant to detect this rollover so that proper
ordering of trace eventsis maintained. If you specify atimeout inter-
val which exceeds the rollover time, nt r aceud uses the rollover
time as the timeout interval, ignoring the value specified.

4-17

NightTrace Manual

Option to Set the Buffer-Full Cutoff Percentage (-cutoff)

4-18

By default, when the shared memory buffer becomes 20-percent full of unwritten trace
events, the nt r aceud daemon wakes up and copies the trace events to the trace event
file. Thent raceud - cut of f option lets you ater this percentage.

SYNTAX

ntraceud -cutoff percent trace file

DESCRIPTION

Thentraceud - cut of f option lets you set the buffer-full cutoff percentage,
percent, for the shared memory buffer. percent is an integer percentage in the range
0-99, inclusive.

The process of copying trace events from the shared memory buffer to the trace
event file, trace file, on disk is called flushing the buffer. When alogged trace event
causes the buffer to reach the buffer-full cutoff percentage, nt r aceud wakes up
and flushes the buffer.

Waking the nt r aceud daemon incurs overhead that can distort trace event timings;
decreasing the shared memory buffer-full cutoff percentage makes it more likely
that the daemon will be wakened by the application. You can also decrease the per-
cent parameter to prevent trace event |oss; the effect is an increase in the buffer flush

frequency.

If you usethe - cut of f option, you must start up nt r aceud with it. If you invoke
nt r aceud with both the - cut of f and - buf f er wr ap options, nt r aceud
ignoresthe - cut of f option.

Generating Trace Event Logs with ntraceud

Option to Select Timestamp Source (-clock)

Thent raceud - cl ock option alows you to select which timing source will be used to
timestamp events.
SYNTAX

ntraceud -cl ock source trace file

DESCRIPTION

Thent raceud - cl ock option lets you select the timing source used to timestamp
trace events. Vaid source values are:

def aul t the interva timer (NightHawk 6000 Series) or the Time
Base Register (Power Hawk/PowerStack)

rcimtick the RCIM synchronized tick clock

If you invoke nt r aceud with the - cl ock option, you must supply a value for the
source.

If rci mtick isspecified for the source and the system on which you are tracing
does not have an RCIM installed or configured or if the RCIM synchronized tick
clock on the system on which you are tracing is stopped, the NightTrace daemon
and library initialization routine exit with errors.

If the - cl ock option is not specified, the interval timer (NightHawk 6000 Series)
or the Time Base Register (Power Hawk/PowerStack) is used to timestamp trace
events.

4-19

NightTrace Manual

Option to Reset the ntraceud Daemon (-reset)
Thent raceud - r eset option resetsarunning nt r aceud daemon process.

SYNTAX

ntraceud -reset trace file

DESCRIPTION

Running nt r aceud daemons are located using the shared memory identifier keyed
by thetrace event file name, trace file.

By default, nt r aceud overwrites the trace event fileif it is not currently in use. In
contrast, the nt r aceud - r eset option empties the file and prepares the running
daemon for another tracerun. Use the - r eset option when you are no longer inter-
ested in the contents of an active trace event file. Y ou can invoke nt r aceud multi-
ple times with the - r eset option.

SEE ALSO

For information on quitting an nt r aceud session without clearing the trace event
file, see “Option to Quit Running ntraceud (-quit)” on page 4-21.

4-20

Generating Trace Event Logs with ntraceud

Option to Quit Running ntraceud (-quit)

Thentraceud - quit and-qui t! optionsterminate arunning nt r aceud process.

SYNTAX
ntraceud -quit trace file
ntraceud -quit! trace file
DESCRIPTION

Running nt r aceud daemons are located using the shared memory identifier keyed
by thetrace event file name, trace file.

A process completesits NightTrace session by callingt race_end() or exiting
normally. The- qui t and- qui t! option instruct nt r aceud to terminate tracing.
When - qui t isused, nt raceud will wait for all user processes associated with
this daemon that are currently tracing to terminate, whereas use of - qui t ! skips
thischeck. The following actions are then taken:

* Remaining trace events are flushed to the trace event file
* Theoutput fileis closed

* The shared memory buffer is removed (unless user applications still
exist)

* Therunning nt r aceud daemon terminates

TIP:

You cannot get statistical information after you quit running nt r aceud. Consider
getting statistical information before you quit running nt r aceud. For statistical
information on your trace session, see “Option to Present Statistical Information
(-stats)” on page 4-22.

Assume that you have invoked nt r aceud with the - qui t option, and you want to
reinvoke nt raceud with the same trace event file. Your next nt r aceud
invocation will automatically overwrite the trace event file.

SEE ALSO

For information on resetting nt r aceud and the trace event file for another session,
see “ Option to Reset the ntraceud Daemon (-reset)” on page 4-20.

4-21

NightTrace Manual

Option to Present Statistical Information (-stats)

Thent raceud - st at s option presents adisplay of statistical information for arunning
nt r aceud daemon on standard output.

SYNTAX

ntraceud -stats trace file

DESCRIPTION

Running nt r aceud daemons are located using the shared memory identifier keyed
by thetrace event file name, trace file.

The- st at s option provides statistical information that tells you about your current
NightTrace configuration and resource use. Thisinformation can help you deter-
mine if you have adequate resources for your application. If you are interested in
watching changes in the statistics, invoke nt r aceud multiple times with the
- st at s option.

Specifically, the - st at s option provides information on:

* ntraceud mode. nt raceud may runin thefollowing modes:
- NT_M DEFAULT, meaning expansive (default) mode
- NT_M FI LEWRAP, meaning file-wraparound mode
- NT_M BUFFERWRAP, meaning buffer-wraparound mode
¢ Shared memory buffer size
¢ Buffer-full cutoff percentage
* ntraceud timeout interval
* Number of threads or processes logging in your application

* Number of times trace events were lost. This statistic refers to a
situation that infrequently arises during a NightTrace session.
nt r aceud may lose some trace events if the trace events enter the
shared memory buffer faster than nt r aceud can copy them to the
trace event file. For more information on this topic, see “Preventing
Trace EventsLoss’ on page A-1.

* Number of automatic buffer flushes (For more information on buffer
flushes, see “trace_flush() and trace_trigger()” on page 2-20.)

* Number of trace events logged to shared memory. nt r aceud and
some NightTrace library routines occasionally log predefined trace
events into the shared memory buffer. Therefore, the statistic for
number of trace events logged to shared memory may exceed the
number of times your application logs a trace event.

* Trace event IDs enabled

Screen 4-2 shows asample of - st at s option output.

4-22

Generating Trace Event Logs with ntraceud

K‘B ntraceud -stats |og \

NTRACEUD STATI STI CS

The ntraceud daenon is running in NT_M DEFAULT node.

There is a maxi mum of 16384 trace events in the shared nenory buffer
The buffer-full threshold is 20% or 3276 trace events

The daenon timeout period is 5 seconds

There are 1 thread(s) |ogging trace events

The shared nmenory buffer had 0 events | ost

There have been 0 unrequested buffer flushes

The total nunber of trace events |logged to shared nenory is 5

Enabl ed Events:
0- 4095

_ /

Screen 4-2. Sample Output from ntraceud -stats Option

Defaults for some of these values exist in the header file
/usr/include/ntrace. h. You can override the default values with
nt r aceud options. See Table 4-1 for more information on the default values and
the corresponding options used to override them.

SEE ALSO

For information on trace event loss prevention, see “Option to Establish File-Wrap-
around Mode (-filewrap)” on page 4-12, “Option to Set Timeout I nterval (-timeout)”
on page 4-17, and “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)” on
page 4-18.

4-23

NightTrace Manual

Option to Disable Logging (-disable)

4-24

By default, all trace events are enabled for logging to the shared memory buffer. The
ntraceud - di sabl e option makes the application ignore requests to log a specific
trace event or range of trace events.

SYNTAX

ntraceud -disable ID [..] trace file

ntraceud -disabl e ID_lowID_high [..] trace file
DESCRIPTION

Sometimes nt r aceud logs so many trace events that it is hard to understand the
nt r ace display. Occasionally you know that a particular trace event or trace event
range is not interesting at certain times but is interesting at others. When either of
these conditions exist, it is useful to disable the extraneous trace events. You can
disable trace events temporarily, where you disable and later re-enable them. You
can also disable trace events permanently, where you disable them before the
application runs or during its execution and never re-enable them.

In the first format, the nt r aceud - di sabl e option dynamically disables a
specific trace event 1D, 1D, from logging to the shared memory buffer. In the second
format, the nt r aceud - di sabl e option dynamically disables a range of trace
event IDs, ID_low through ID_high, from logging to the shared memory buffer. In
either case, trace event I Ds are integers in the range 0-4095, inclusive. At defined
times, nt r aceud copies trace events from the shared memory buffer to the trace
event file, trace file.

NOTE

The - di sabl e option disables trace eventsin all processes that
rely on the same nt r aceud daemon to log to the same trace
event file.

Thisfirst format providesthe same functionality asthet r ace_di sabl e() Night-
Trace library routine. The second format provides the same functionality as the
trace_di sabl e_range() NightTrace library routine. One advantage of using
the - di sabl e option rather than the library routine is that you do not have to
re-edit, recompile, and relink your application. For more information on disable
library routines, see “trace_enable(), trace _disable(), and Their Variants” on page
2-16.

Note: In the following text, the names of the trace event files are varied for interest.

You can start up nt r aceud with the - di sabl e (- d) option. You can also
re-invoke nt r aceud with this option while nt r aceud is running. Furthermore,
using the - di sabl e option to disable an already disabled trace event has no effect.
For example, assume that you invoke nt r aceud three times, sequentially, before
your application terminates and that nt r aceud has not logged to the nt out put
file before.

Generating Trace Event Logs with ntraceud

$ ntraceud -d4 ntoutput --traceevent 4 isdisabled
$ ntraceud -d7 ntoutput --traceevents4 & 7 are now disabled
$ ntraceud -d4 ntout put -- no effect; traceevents4 & 7 disabled

There may be any number of - di sabl e optionson an nt r aceud invocation line.
The following example illustrates this fact.

$ ntraceud -d10 -d15 nytrace --traceevents 10 & 15 aredisabled

You may specify a hyphenated trace event range on the nt r aceud invocation line.
The following example depicts this case.

$ ntraceud -d23-25 traceout put -- events23, 24, and 25 disabled

The following two sequences show how important timing can be when you use the
- di sabl e option. The same steps appear in both sequences, but their order differs.
When the first sequence ends, nothing has been logged and all trace events are
enabled. In contrast, when the second sequence ends, trace event 52 has been logged
once and is now disabled.

Table 4-4. ntraceud Disable Sequence #1

From the Shell From the Application Comments
1. Invokentraceud All trace events enabled
2. Invokentraceud - d52 Trace event 52 disabled
3. Start application
4. Cal trace_event (52) Trace event 52 not logged
5. Call trace_enabl e(52) Trace event 52 enabled

Table 4-5. ntraceud Disable Sequence #2

From the Shell From the Application Comments
1. Invokentraceud All trace events enabled
2. Start application Trace event 52 enabled
3. Cal trace_event (52) Trace event 52 logged
4. Cdltrace_enabl e(52) No effect
5. Invokent raceud - d52 Trace event 52 disabled
SEE ALSO

For information on enabling trace events, see “Option to Enable Logging (-enable)”
on page 4-26 and “trace_enable(), trace_disable(), and Their Variants” on page 2-16.

4-25

NightTrace Manual

Option to Enable Logging (-enable)

4-26

By default, all trace events are enabled for logging to the shared memory buffer. The
nt r aceud - enabl e option makes the application notice previously disabled requeststo
log a specific trace event or arange of trace events.

SYNTAX

ntraceud -enable ID [..] trace file
ntraceud -enable ID_low-1D_high [..] trace file

DESCRIPTION

In the first format, the nt r aceud - enabl e option dynamically re-enables a
specific disabled trace event ID, 1D, for logging to the shared memory buffer. In the
second format, the nt r aceud - enabl e option dynamically re-enables arange of
disabled trace event IDs, ID_low through ID_high, for logging to the shared memory
buffer. In either case, trace event IDs are integers in the range 0-4095, inclusive. At
defined times, nt r aceud copies trace events from the shared memory buffer to the
trace event file, trace file.

NOTE

The - enabl e option affects all processes that rely on the same
nt r aceud daemon to log to the same trace event file.

The first format provides the same functionality asthet r ace_enabl e() Night-
Trace library routine. The second format provides the same functionality as the
trace_enabl e_range() NightTrace library routine. One advantage of using
the nt r aceud option instead of the library routine is that you do not have to
re-edit, recompile, and relink your application. For more information on enable
library routines, see “trace_enable(), trace_disable(), and Their Variants” on page
2-16.

In the following text, the names of the trace event files are varied for interest.
Unless otherwise stated, all the following examples describe the results of a
non-startup nt r aceud invocation.

There may be any number of - enabl e (- e) options on an nt r aceud invocation
line. Thefollowing exampleillustrates thisfact.

$ ntraceud -e10 -el5 nytrace --traceevents 10 and 15 enabled

You may specify a hyphenated trace event range on the nt r aceud invocation line.
The following example depicts this case.

$ ntraceud -e23-25 traceout put --traceevents23,24,& 25
enabled

Generating Trace Event Logs with ntraceud

The - enabl e option acts differently when you useit:

* Onntraceud start up

¢ Onlater nt r aceud invocations

If you start up nt r aceud with the - enabl e option, the specified trace event(s) are
the only one(s) enabled; all other trace events are disabled. For example, if the fol-
lowing invocation startsup nt r aceud, then only trace event 18 is enabled.

$ ntraceud -el8 traceout

When you use the - enabl e option on non-startup nt r aceud invocations, Night-
Trace adds the specified trace event(s) to the list of enabled trace events. Further-
more, attempting to enable an already enabled trace event has no effect. For
example, assume that you invoke nt r aceud four times, sequentially, before your
application terminates and that nt r aceud has not logged to the nt out put file
before.

$ ntraceud ntout put -- all trace events enabled

$ ntraceud -d4 -d7 ntout put --all except 4 and 7 enabled

$ ntraceud -e4 ntoutput -- all except 7 enabled

$ ntraceud -e4 ntout put -- no effect; all except 7 enabled

The following two sequences show how important timing can be when you use the
- enabl e option. The same steps appear in both sequences, but their order differs.
When the first sequence ends, nothing has been logged and all trace events are
enabled. In contrast, when the second sequence ends, trace event 52 has been
logged once and is now disabled.

Table 4-6. ntraceud Enable Sequence #1

From the Shell From the Application Comments
1. Invokentraceud All trace events enabled
2. Start application
3. Call trace_di sabl e(52) Trace event 52 disabled
4. Cal trace_event (52) Trace event 52 not logged
5. Invokentraceud - €52 Trace event 52 enabled

Table 4-7. ntraceud Enable Sequence #2

From the Shell From the Application Comments
1. Invokentraceud All trace events enabled
2. Start application
3. Cal trace_event (52) Trace event 52 logged
4. Invokent raceud - e52 No effect
5. Call trace_di sabl e(52) Trace event 52 disabled

4-27

NightTrace Manual

SEE ALSO

For information on disabling trace events, see “Option to Disable Logging (-dis-
able)” on page 4-24 and “trace_enable(), trace_disable(), and Their Variants” on
page 2-16.

Invoking ntraceud

4-28

This section shows afew common nt r aceud invocation examples. In each example, the
trace file argument corresponds to the trace event file name you supply on your call to the
trace_begi n() library routine.

Normally, your first nt r aceud invocation |ooks something like the following sample.
nt r aceud trace file

The next sample invocation assumes that you lack both page lock privilege
(-1 ockdi sabl e) and read and write access to / dev/ spl needed to modify the
interrupt priority level register (- i pl di sabl e), or lack sufficient privileges required for
rescheduling variables.

ntraceud - | ockdi sabl e -i pl di sabl e trace file

The following invocation might be used when tuning your NightTrace configuration
because you lost trace events last time.

nt raceud - mensi ze count - cut of f percent trace file

There are several times when you may want to use the following invocation. Usually this
invocation is appropriate if youareusingt race_fl ush() callsto debug afault in your
application or to reduce the number of logged trace events so the nt r ace display ismore
readable.

nt raceud - buf f er wr ap trace file

The following invocation is also useful on severa occasions. One exampleisif you want
to conserve disk space.

ntraceud - fil ew ap bytestrace file

The following invocation waits for all user applications associated with the running
nt r aceud daemon to terminate, flushes remaining trace events to the trace event file,
closes the file, removes the shared memory buffer, then terminates the running nt r a-
ceud.

ntraceud - qui t trace file

Similarly, the following invocation immediately flushes remaning trace eventsto the trace
file, closesthefile, and terminates the running nt r aceud daemon. User applications can
continue to run and make NightTrace API calls, but no trace eventswill be logged. Subse-
guently, a new user daemon can be initiated and trace events will start beging logged

again:

Generating Trace Event Logs with ntraceud

ntraceud - quit! trace file

At this point, you can begin data analysis.

Exercise: Logging Trace Events

The following exercise has you log trace events. It is a continuation of “Exercise: Instru-
menting Code” on page 2-25.

1. Compile and link entry_exit.c with the ntrace library. Give the
executablethenameentry_exit.

2. Start the ntraceud daemon. (Look at the trace_start cal to
determine the trace event file name.) You may need some additional
options if you cannot lock pagesin memory or cannot read and write to the
IPL register.

3. Executetheent ry_exi t program.
4. Getthent r aceud daemon to give you statistics.

5. When the program completes, stop the nt r aceud daemon.
An example solution follows.

$cc-Xa-oentry exit entry_exit.c -Intrace -1ud
$ ntraceud | og

$ entry_exit

$ ntraceud -stats |og
$ ntraceud -quit |og

This exercise continuesin “ Exercise: Displaying Trace Events’ on page 5-35.

4-29

NightTrace Manual

4-30

5
Invoking the ntrace Display Utility

OVEIVIBIWGE . o ettt e et e e e e e e e e e e e e e e e e e 5-1
X and NightTraceVocabulary e 51
SySteM ENVIFONMENEot e 5-2
INVOKING NEraCe . . . oo e e e 5-3
NrAaCE OPLIONS . . . oot et e e e e e e 5-3
Ntrace ArgUMENTS. e e e e 5-8
Understanding Trace Event Files. 5-9
Understanding Event-Map Files.o 5-9
Understanding Page ConfigurationFiles. 5-11
Ntrace TableSo 5-12

SN Tables. . ..o 5-13

Pre-Defined String Tableso 514

Format Tables. 5-17

Pre-Defined Format Tables, 5-20

Configuring Display Pageso e 5-20

ntrace User Interfaceo 5-21
USINgthe MOUSE.o e 5-21
Understanding Pointer Shapes 5-22
Anticipating Window Layout. 5-22
ReSIZINGWINOWSo e 5-24
ntrace Notation ConNVENtioNS. vttt e e 5-24
ntrace Global WIindow 5-25
Message Display Ar€a oo 5-25
MenuBar 5-26
NightTrace Menultem e 5-26

New Page. 5-27

Default Page.o 5-28
OpenConfigFile. 5-30

Read Event-Map File. 5-31

Xt . 5-32

ToolsSMenuU Item 5-32
HelpMenu ltem e 5-33

The File Selection Diadlog BOXo it 5-33
TypingintheExact FileName. i 5-33
Scrolling Through Existing FileNames. oo, 5-34
Typing inaFilter (FileNamePattern), 5-35

Exercise: Displaying TraCe EVeNntS.t 5-35

NightTrace Manual

5
Invoking the ntrace Display Utility

Overviewc

The trace event display utility, nt r ace, is an interactive, graphica debugging and
performance analysis tool. nt r ace textually presents trace run statistics. As atool built
on the X Window System, it can graphically displays user trace events and system trace
events as well as manages the configuration and operation of user and kernel daemonsto
collect trace data.

ntrace is flexible: you choose the look of your graphical display pages. ntr ace
provides many different built-in graphical components called display objects. You can
color, select, size, position, and group these objects and direct particular trace events to
specific objects; thisis called configuring display objects. There are also ways to label
trace events, trace event arguments, and other numeric values.

This chapter covers the following topics:

¢ X and NightTrace vocabulary
* System environment

* ntrace invocation

* ntrace options

* ntrace arguments

* ntrace userinterface

* ntr ace notation conventions

* ntrace Global Window

X and NightTrace Vocabulary

The Massachusetts Institute of Technology developed a windowing system called the X
Window System, or X for short. If you are unfamiliar with standard X terminology, you
may find the glossary near the end of this manual useful. It contains definitions of words
and phrases aboult:

¢ X applicationsin general

* Thentrace display utility

5-1

NightTrace Manual

¢ Window components
¢ Common push buttons and menu item labels

* Mouse operations

System Environment

5-2

To run the nt r ace display utility, you need an installed X server. ntrace usesan X
server to support windowing in trace event displays.

Motif is a user environment based on X. The window images in this manual come from a
Motif environment. If you are using another environment, your windows may differ
dlightly from those presented here.

nt r ace displays appear on your terminal only if you set your DI SPLAY environment
variable. Determineif this variable is set by issuing the following command:

$ echo $DI SPLAY

If thisvariableis not set, you must set it manually to a value based on the name of your X
server. For example, in Bourne shell, set the DI SPLAY environment variable for a
termina named “eagle” thisway:

$ DI SPLAY=eagl e: 0.0
$ export DI SPLAY

In the Korn shell, thisis:

$ export DI SPLAY=eagl e: 0.0
Inthe C shell, thisis:

% set env DI SPLAY eagle: 0.0

The . Xdef aul t s (or . Xr esour ces) filein your login directory establishes default
environmental settings for your X sessions. Y ou may use specia nt r ace settingsin this
file to customize your nt r ace displays.

nt r ace runs on both monochrome and color monitors. See Appendix B for information
about setting color and other X resources that pertainto nt r ace.

TIP:

Experiment with colors and shadings until you find a set you like. To avoid visual fatigue,
use highly-contrasting colors and values sparingly.

For more information on window system concepts or Motif, see “Recommended Reading”
on page 1-7.

Invoking the ntrace Display Utility
Invoking ntrace

The nt r ace display utility resides on your system under / usr / bi n/ ntr ace. Itisthe
graphical user interface to trace event analysis. If you do not have any nt r ace-related
files but you still want to try out thistool, just type:

$ ntrace

You can override some default functionality by invoking nt r ace with options and
arguments. The full nt r ace invocation syntax is:

ntrace [-hel p] [-version] [-1isting] [-ngr][-fil estats]
[-nohardcl ock] [-process {all |[name|PID}]
[-start { offset | time{s|u} | percent%}]
[-end { offset|time{s|u} | percent%}]
[-flat color] [-Xoption ...] [file...]

Depending on your nt r ace options and arguments, when you invokent r ace, it:

* Loads all trace event information into memory

* Checks the syntax of specificationsin each file argument
* Processes each file argument

¢ Loadsany display pages and their objects into memory

* Presents any display pages (See Chapter 6.)

* Displays the Global Window (See “ntrace Global Window” on page
5-25.)

The following sections discuss the nt r ace options and arguments.

ntrace Options

You can abbreviate all nt r ace options to their shortest unambiguous length, but most of
the examplesin this manual use the long option name. These options are case-insensitive.
The following examples are all equivaent:

ntrace - hel p
ntrace - hel
ntrace - he
ntrace-h
ntrace-H
ntrace - HE
ntrace - Hel
ntrace - HELP

nt r ace optionsinclude:

5-3

NightTrace Manual

54

-hel p

Displays the ntr ace invocation syntax on standard output
and exits. Screen 5-1 shows an example.

Fil

N

Gtrace -hel p

usage: ntrace [-help]

[-filestats] [-nohardclock] [-process {all | name | PID}]
[-start {offset | tine{s|u} | percent%]
[-end {of fset | tine{s|u} | percent%4] [-flat color]

[-Xoption ...] [file ...]

-hel p
-version
-listing
-filestats

- nohar dcl ock
-process all
-process name
-process PID
-start offset
-start time{s|u}
-start percent%
-end of fset

-end time{s|u}
-end percent %

Options for graphical

-flat color
- Xopti on

es:

config_file

event _map_file
trace_file

Options that wite to standard out put:

Options to select events:

di

~

[-version] [-1listing]

Wite this nmessage to standard out put

Wite current ntrace version stanp to standard output
Chronologically list all events to standard output
Wite sinple trace_file statistics to standard output

Do not | oad kernel hardclock interrupt events

Load kernel events for all user-traced processes

Load kernel events associated with process_nane

Load kernel events associated with PID

Load events after the specified event of fset

Load events after the specified relative tine

Load events after the specified percent of total events
Load events before the specified event offset

Load events before the specified relative tine

Load events before the specified percent of total events

spl ays:
Color to use for all flat areas and franes
Any standard X Tool kit conmand |ine options (see X(1))

Hol ds configuration information: display pages,
macro definitions, qualified events, qualified
states and tables

Maps event | D nunbers with event tag names

Hol ds events | ogged by your application and ntraceud

/

Screen 5-1. Sample Output from the ntrace -help Option

-version

'rTgr

-listing

Displaysthe current nt r ace version stamp on standard output
and exits.

Starts the NightTrace graphical interface and pops up the ses-
sion manager dialog for configuration and control of user and
kernel daemons.

Chronologically lists all trace eventsin the trace event file(s) to
standard output and exits. The output includes the following
information about atrace event: relative timestamp, trace event
ID, any trace event argument(s), the global process identifier
(PID) or thread name, and the CPU. The timestamp for the first
trace event is zero seconds (0s). All other timestamps are rela-
tiveto thefirst one.

If you supply an event-map file on the invocation line,
nt r ace displays symbolic trace event tags instead of numeric
trace event IDs, and nt r ace displaystrace event argumentsin

Invoking the ntrace Display Utility

the format you specify in the file, rather than the hexadecimal
default format. For more information on event-map files, see
“Understanding Event-Map Files” on page 5-9.

In kernel tracing, the vect or s file provides names for system

processes, interrupts, and exceptions.

Screen 5-2 and Screen 5-3 show examples from a kernel trace

event fi

le.

(Note that when viewing a user trace event file, a kernel trace
event fileis required in order to resolve which CPU each pro-
cess was logging trace events from. See Chapter 11 for more
information.)

NOTE

The information associated with the node field appears in this
listing only when NightTrace is configured to use an RCIM to

timestamp events.

5’536: cpu=01 TR _PAGEFLT_ADDR pid=schene
S

user instr page fault PC=0x10

S vector=inst access

5538: cpu=01 TR_SW TCH N

S argl= 0

5539: cpu=00 TR_I NTERRUPT_ENT
S vect or=hardcl ock level =1
5540: cpu=00 TR_I NTERRUPT_EXI
S vector=hardcl ock I evel =0
5541: cpu=01 TR_I NTERRUPT_ENT
S vector=softcl ock level =1
5542: cpu=01 TR_I NTERRUPT_EXI

Q/ect or=softcl ock I evel =0

00f d54

5537: cpu=01 TR_EXCEPTI ON_SUS pi d=schene

pid=idle
pid=idle
pid=idle
pid=idle

pid=idle

tid=1241'0

tid=1241'0

tid=0'0

tid=0'0

tid=0'0

tid=0'0

tid=0'0

tinme=

tinme=

tinme=

tinme=

tinme=

tinme=

tinme=

8

8.

8.

8.

8.

8.

. 305263

8.

305441
305441
313355
313408
313416

313425

/

Screen 5-2. Example of ntrace -listing Output (with instr page fault)

5-5

NightTrace Manual

@90: cpu=01 TR PAGEFLT_ADDR pid=ls tid=1250'0 time= 14. 19434x
S user data page fault addr=0x300adlcO (PC=0xb0121f bc)
13391: cpu=01 TR _EXCEPTI ON_EXI pid=ls tid=1250'0 time= 14.194460
S vector=data access
13392: cpu=01 TR _SYSCALL_ENTRY pid=ls tid=1250'0 time= 14.194473
S syscall =read device=file
13393: cpu=01 TR_EXCEPTI ON_ENT pid=ls tid=1250'0 time= 14.194528
S vector=data access
13394: cpu=01 TR _PAGEFLT_ADDR pid=ls tid=1250'0 time= 14.194534
S kernel data page fault addr=0xelel8000 (PC=0x000931cc)
13395: cpu=01 TR_EXCEPTI ON_EXI pid=ls tid=1250'0 time= 14.194590
S vector=data access
13396: cpu=01 TR SYSCALL_EXIT pid=ls tid=1250'0 time= 14.194659
S syscall =read device=file
13397: cpu=01 TR _SYSCALL_ENTRY pid=ls tid=1250'0 time= 14.194715
S syscal | =cl ose device=file

_ /

Screen 5-3. Example of ntrace -listing Output (with data page fault)

-filestats Displays simple datistics about al trace event file(s)
arguments to standard output, similar to the display on the
Global Window, and exits. (See “ntrace Globa Window” on
page 5-25.) The statistics are grouped by trace event file, with
cumulative statistics for all trace event files. The statistics
include: the number of trace event files, their names, the num-
ber of trace events logged, and the number of trace events lost.

Screen 5-4 shows an example, with:
| og The user trace event file.
map The event-map file.

continuation events The NT_CONTI NUE trace events that nt r aceud
logs for multi-argument trace events.

Crrber2> ntrace -filestats nl.cap vectors.cap | p \

1 trace event log file read.

Kernel trace event log file: nl.cap.
10916 trace events plus 9863 continuation events.
10916 events saved in nenory.
0 trace events |ost.
52.4036288s time span, from 0.0000000s to 52.4036288s.

RCI M synchroni zed tick clock was used to tinme stanp events.

10916 total events read fromdisk plus 9863 continuation events.
10916 total events saved in nenory; 1 events internal to ntrace.
0 total trace events |ost.

\52.40362885 total tine span saved in nenory.

Screen 5-4. Example of ntrace -filestats Output

5-6

By default, whennt r ace

Invoking the ntrace Display Utility

starts up, it reads and loads all trace events from all trace event

files into memory; therefore, the more trace events in your trace event file(s), the more
memory nt r ace uses. The - nohar dcl ock, - process, -start, and - end options
let you prevent the loading, but not the reading, of certain trace events.

-nohar dcl ock

Do not load hardclock interrupts from the kernel trace event
file. This option may save about 15% of the memory nt r ace
consumes. For more information on the hardclock interrupt,
see “Hardclock Interrupt Handling” in the PowerMAX OS
Real-Time Guide.

If you invoke nt r ace with the - pr ocess option, it loads only exceptions and system
calls of processes you specify after the - pr ocess; this takes some extra processing time

during nt r ace start up.

You can invoke nt r ace with multiple - pr ocess options.

The possible ways to use the - pr ocess option include:

-process al |

- process PID

- process name

-start offset

-start timegs|u}

-start percent%

- end offset

- end time{ s|u}

- end percent%

From the NightTrace kernel trace event file, load only excep-
tions and system calls associated with process(es) in the user
trace event file(s). Thisimplies that you invoke nt r ace with
both akernel trace event file and user trace event filg(s).

From the NightTrace kernel trace event file, load only excep-
tions and system calls associated with this global process iden-
tifier (PID). Note that aglobal PID is different than araw PID.
For more information on global process identifiers see “PID
List” on page 8-7.

From the NightTrace kernel trace event file, load only excep-
tions and system calls associated with this process name, name.
This implies that you invoke nt r ace with both akernel trace
event file and user trace event file(s).

Load trace events after the specified trace event offset. (See
“The Grid” on page 6-4 for information about trace event off-
sets.)

Load trace events after the specified relative time in seconds
(s) or microseconds (u).

Load trace events after the specified percent of total trace
events. The %is required.

Load trace events before the specified trace event offset.

Load trace events before the specified relative time in seconds
(s) or microseconds (u).

Load trace events before the specified percent of total trace
events. The %is required.

For example, the following invocation loads trace events logged between 5 and 15 sec-

onds into the trace session.

$ ntrace -start 5s -end 15s | og

5-7

NightTrace Manual

For example, the following invocation skips the first 10% of trace events, loads the next
15% of trace events, and skips the remaining 75% of trace events.

$ ntrace -start 10% -end 25% ul og

If you invoke nt r ace with several - st art options, nt r ace pays attention only to the
last one. The same is trueif you invoke nt r ace with several - end options. If you
invokent r ace withboth a- st art anda- end option and the - end condition precedes
the - st art condition, nt r ace does not load any real trace events; it loads two dummy
trace events.

You can establish a default windowing environment for al your nt r ace sessionsin your
. Xdef aul t s (or. Xresour ces) file. You can invoke nt r ace with X options to:

® Customize anindividual nt r ace session

¢ Override any corresponding settingsin the . Xdef aul t s file

* Possibly improve the readability of your nt r ace display
You can invoke nt r ace with the following options:

-flat color Color to use for the window edges, scroll bars, push buttons,
and menu bars.

- Xopt i on This option includes all of the standard X Tool kit
command-line options (see X(1)).

TIP:

Consider experimenting with these options and then saving their counterpart values in
your . Xdef aul t s or . Xr esour ces file.

Invoking nt r ace on acolor X server with no nt r ace options and no nt r ace settings
in. Xdef aul t s isnearly equivalent to:

$ ntrace -fg black -bg white -flat gray75 -fn fixed

Your X terminal vendor supplies you with vendor-specific directories and files that pertain
to colors and fonts. The file that contains available colorsiscalled r gb. t xt . The
directory for fontsis/ usr/1i b/ X11/f ont s. For more information on X options, see
xterm(1l) orX(1).

ntrace Arguments

5-8

You can invoke nt r ace with arguments that provide information about trace events, their
tags, other labels, and desired display object layout. nt r ace identifies the purpose of a
file argument by its contents; therefore, the order (and number) of these arguments is not
significant.

Invoking the ntrace Display Utility

SYNTAX

ntrace [-option] [trace files [event_ map fileg|
[config_files] [session_fileg]

ARGUMENTS

trace files Trace event files contain sequences of trace events logged by
your application or the operating system kernel and capture by
auser or kernel trace daemon.

event_map _files Event-map files map short mnemonic trace event tags to
numeric trace event I Ds and associates data types with trace
event arguments. Thisis a hand-edited ASCI| file.

config_files Configuration files define macros, qualified events, qualified
states, string tables, format tables, display objects, and display
pages. These ASCII files are usualy created with nt r ace.

session files Session manager configuration files define a list of deamon
sessions and their individual configuration for quick invoca-
tion. These files are created and saved by the session manager
dialog

See the NightTrace Pocket Reference card for a syntax summary of formats for event-map
files, string tables, and format tables.

Understanding Trace Event Files

Trace event files are created by user and kernel trace daemons. They consist of header
information and individual trace events and their arguments as logged by user applications
or the operating system. nt r ace detects trace event files as specified on the command
line and does the required initialization processing so that the trace events contained in the
files are available for display.

Understanding Event-Map Files

nt r ace does not require you to use event-map files. However, if you use these file(s),
you can improve the readability of your nt r ace displays.

A trace point is a location in the application’s source code where you call a NightTrace
trace event logging routine. Each trace point has a corresponding trace event ID number.
An event-map file allows you to associate meaningful tags or labels with the more cryptic
trace event ID numbers. It also allows you to associate additional information with atrace
event including the number of arguments and the argument conversion specifications or
display formats. Although nt r ace does not require you to use event-map files, labels
and correct display formats can make graphical nt r ace displays and textual summary
information much more readable.

5-9

NightTrace Manual

5-10

You can run nt r ace with multiple event-map files; however, if atrace event ID is
multiply-defined, nt r ace writes an error message in the message display area of the
Global Window. For more information on the Global Window, see “ntrace Global
Window” on page 5-25.

TIP:

If you used symbolic constants to represent numeric trace event IDs, you may be able to
simply reformat this information in the event-map file.

To load an existing event-map file, either:

* Start annt r ace session with the file name as an argument

* ClickonFile | Read Event-Map File ... on the Global Window

You must create an event-map file with atext editor before you invoke nt r ace. Thefile
contains lines of ASCII text separated by newlines. There is one trace event tag mapping
per line. White space separates each field except the conversion specifications, commas
separate the conversion specifications. nt r ace ignores blank lines and treats text
following a# as comments. The syntax for the trace event mappings in the event-map file
follows:

event: ID “event tag” [nargs [conv_spec, ... |]
Fieldsinthisfile are:
event: The keyword that begins all trace event name mappings.

ID A valid integer in the range reserved for user trace events
(0-4095, inclusive). Each time you call a NightTrace trace
event logging routine, you must supply atrace event ID.

event_tag A character string to be associated with event_ID. Trace event
tags must begin with aletter and consist solely of alphanumeric
characters and underscores.Keep trace event tags short; other-
wise, nt r ace may be unable to display them in the limited
window space available.

The following words are reserved in nt r ace and should not
be used in upper case or lower case astrace event tags. NONE,
ALL, ALLUSER, ALLKERNEL, TRUE, FALSE, CALC.

TIP:

Consider giving your trace events upper case tags in event-map files and giving any
corresponding qualified event the same name in lower case. For more information about
qualified events, see “ Qualified Events’ on page 9-81.

If your application logs a trace event with one or more numeric arguments, by default
nt r ace displays these arguments in decimal integer format. To override this default,
provide a count of argument values and one argument conversion specification or display
format per argument.

nargs The number of arguments associated with a particular trace
event. If nargsistoo small and you invoke nt r ace with the
event-map file and the - | i st i ng option, nt r ace shows
only nargs arguments for the trace event.

Invoking the ntrace Display Utility

CONv_spec A conversion specification or display format for a trace event
argument. nt r ace uses conversion specification(s) to display
the trace event’s argument(s) in the designated format(s). There
must be one conversion specification per argument. Valid con-
version specifications for displaysinclude the following:

% signed decimal integer (default)

%ounsigned octal integer

% unsigned hexadecimal integer

% f signed double precision, decimal floating point

For more information on these conversion specifications, see
printf(3S).

The following line is an example of an entry in an event-map file:
event: 5 “Error” 2 % %f

Trace event ID 5 is an error condition; when appropriate, nt r ace displays trace event 5
and labelsthetraceevent“ Error . ” Trace event 5 aso hastwo (2) arguments. nt r ace
displays the first argument in unsigned hexadecimal integer (%) format and the second
argument in signed double precision decimal floating point (%8 f) format. (You may over-
ride these conversion specifications when you configure display objects.)

For more information on event-map files, see” Pre-Defined String Tables” on page 5-14,
“Read Event-Map File” on page 5-31, and the nt r ace(4) man page. For information
about trace event tags for kernel trace events, see the / usr/ 1 i b/ Ni ght -
Trace/ event map file

Understanding Page Configuration Files

nt r ace does not require you to use configuration files. However, using these file(s):

¢ Allowsyou to associate macros, qualified events, and qualified states with
particular display page(s)

¢ Improves the readability of your displays
* Savesyou time laying out your display pages

A configuration fileis an ASCII file that contains definitions. These definitions look like
initialized C structures. A configuration file can contain any number of the following
definitions:

* Macro, qualified event, and qualified state definitions (See Chapter 9.)
¢ String table definitions (See “ String Tables” on page 5-13.)
* Format table definitions (See “Format Tables’ on page 5-17.)

* Display page definitions

511

NightTrace Manual

NOTE

The components of a configuration file are often interrelated. For
example, display pages may reference user-defined tables.
nt r ace generates an error message if your configuration file
refers to a table before you defineit. To avoid this problem, create
your configuration files so that a table definition precedes its
reference(s). There is no similar problem for macros, qualified
events, and qualified states.

If you accidentally define a macro, qualified event, or qualified
state more than once in a configuration file, nt r ace flags
subsequent definitions as errors. If you define a string table or
format table more than once in a configuration file, nt race
merges the two tables; if there are duplicate entries, values come
from the last definition.

Results can be unpredictable if multiple users simultaneously
modify a configuration file. Similarly, nt r ace may behave
strangely if you edit your configuration file so that any of your
display objects overlap.

You can create, modify, save, and load configuration files from within nt r ace; however,
you must use a text editor to create and modify tablesin a configuration file. nt r ace
ignores blank lines and treats text between a/ * and a*/ as commentsin configuration
files, however, saving a configuration file removes your comments.

To load an existing configuration file, do one of the following:
* Start annt r ace session with the file name as an argument
* Click onFile I Open Config File ... on the Global Window

For more information on manipulating configuration files, see “NightTrace Menu Item”
on page 5-26.

ntrace Tables

The configuration file may contain two types of tables: string tables and format tables.
Both types of table can improve the readability of your nt r ace displays. The only way
to put tables into your configuration file is by text editing the file before you invoke
ntrace. To avoid any forward-reference problems, define all string tables before any
format tables.

A table lets you associate meaningful character strings with the more cryptic integer
values, such as trace event arguments. These character strings may appear in nt r ace

displays.

For example, suppose that one trace event’s argument may have the decimal values 2, 5,
and 8. You can define:

¢ A string that appears when the valueis 2

5-12

String Tables

Invoking the ntrace Display Utility

¢ A different string that appears when the valueis 5

* A third string that appears when the value is 8

The following table names are reserved in nt r ace and should not be redefined in upper
case or lower case:

event, pid, tid, boolean, name_pid, nane_tid, node_nane,
pi d_nodename, ti d_nodename, vector, syscall, device,
vect or _nodename, syscall _nodename, devi ce_nodename,
event _sunmary, event_arg summary, event_arg_dbl _summary,
state_sunmary

The results are undefined if you supply your own version of these tables. For more
information on pre-defined tables, see “Pre-Defined String Tables” on page 5-14,
“Pre-Defined Format Tables” on page 5-20, and “Kernel String Tables” on page 11-16.

TIP:

Put tables in separate configuration files from display pages. Thisway tables do not get
redefined if you close and reopen a display page during asingle nt r ace session.

If you define a string table or format table more than oncein a configuration file, nt r ace
merges the two tables; if there are duplicate entries, values come from the last definition.

You can log a trace event with one or more numeric arguments. Sometimes these
arguments can take on a nearly fixed set of values. A string table associates an integer
value with a character string. Labeling numeric values with text can make the values eas-
ier to interpret.

The syntax for astring tableis:

string_table (table name) = {
item = int const, “str_const” ;

[default_item= “str_const” ;]

}s

You do not need to separate the parts (tokens) of the string table with white space.
String-table tokens are indivisible; although these tokens need not break on the lines
shown, they must appear in the order shown. Include al specia characters from the syntax
except the ellipsis (. . .) and square brackets ([]). The fields in a string table definition
are:

string_table Thekeyword that startsthe definition of all string tables.

table_name The unique, user-defined name of this table. This name
describes the relationship of the numeric valuesin this string
table.

An itemline associates an integer value with a character string. This line extends from the
keyword i t emthrough the semicolon. You may define any number of item linesin asin-
gle string table. The fieldsin an item line are:

item The keyword that begins all item lines.

5-13

NightTrace Manual

int_const An integer constant that is unique within table_name. It may be
decimal, octal, or hexadecimal. Decimal values have no special
prefix. Octal values begin with a zero (0). Hexadecimal values
begin with Ox.

str_const A character string to be associated with int_const. Keep this
string short; otherwise, nt r ace may be unable to display itin
the limited window space available. Use a\ n for a newline,
not a carriage return in the middle of the string.

The optional default item line associates al other integer values with a single string. The
fields of the default item line are:

defaul t _item Thekeyword that beginsall default item lines.
str_const (See str_const above.)

TIP:

If your table needs only one entry, you may omit the item line and supply only the default
item line. A get _string() call with this table name as the first parameter needs no
second parameter.

nt r ace returnsastring of the item number in decimal if:

* Thereisno default item line, and the specified item is not found.

* The string table is not found. (The first time ntrace cannot find a
particular string table nt r ace flagsit as an error.)

The following lines provide an example of a string table in a configuration file.

string_table (curr_state) = {
item= 3, “Processing Data”;
item= 1, “Initializing”;
item= 99, “Term nating”;
default item= “Cher”;

}s

In this example, your application logs a trace event with a numeric argument that identi-
fies the current state (cur r _st at e). This argument has three significant values (3, 1,
and 99). When cur r _st at e has the value 3, the nt r ace display shows the string
“Processi ng Dat a.” When it has the value 1, the display shows“I ni ti al i zi ng.”
When it has the value 99, the display shows “Ter m nat i ng.” For all other numeric
values, the display shows“Qt her .”

For more information on string tables and the get _stri ng() function, see
“get_string()” on page 9-75and the/ usr/ 1 i b/ Ni ght Trace/ t abl es file.

Pre-Defined String Tables

5-14

The following string tables are pre-defined in nt r ace:

event A dynamically generated string table interna to ntrace. It
maps all known numeric trace event IDs with symbolic trace
event tags. A similar association appears in the
fusr/1ib/NightTrace/ event map file; thisis an

pi d

tid

Invoking the ntrace Display Utility

event-map file that associates trace event IDs with kernel trace
event tags.

This table is indexed by an event code or an event code hame.
Examples of using this table are:

get _string(event, 4112)
get _itemevent, “TR | NTERRUPT_EXI T")

A dynamically generated string table internal to nt race. In
user tracing, it associates global process ID numbers with pro-
cess names of the processes being traced. In kernel tracing, it
associates process |ID numbers with all active process names
and resides in the dynamically generated vect or s file.

When analyzing trace event files timestamped by the RCIM
synchronized tick clock, process identifiers are not guaranteed
to be unique across nodes. Therefore, accessing the pi d table
may result in an incorrect process name being returned for a
particular process ID. To get the correct process name for a
process ID, the pi d table for the node on which the process
identifier occurs should be used instead. The pi d table is
maintained for backwards compatibility.

Thistable isindexed by a process identifier or a process hame.
Examples of using this table are:

get_string(pid, pid())
get item(pid, “ntraceud”)

See “PID List” on page 8-7 for more information.

A dynamically generated string table internal to ntrace. In
user tracing, it associates NightTrace thread ID numbers with
thread names. In kernel tracing, thistableis not used.

When analyzing trace event files timestamped by the RCIM
synchronized tick clock, thread identifiers are not guaranteed
to be unique across nodes. Therefore, accessing the t i d table
may result in an incorrect thread name being returned for a par-
ticular thread ID. To get the correct thread name for a thread
ID, theti d table for the node on which the process identifier
occurs should be used instead. Thet i d tableismaintained for
backwards compatibility.

This table is indexed by athread identifier or a thread name.
Examples of using this table are:

get _string(tid, tid())
get item(tid, “cleanup_thread”)

See “TID List” on page 8-8 for more information.

5-15

NightTrace Manual

bool ean

name_pid

nanme tid

node nane

pi d_nodename

ti d_nodename

5-16

A string table defined in the /usr/lib/N ght-
Tr ace/ t abl es file. It associates 0 with f al se and all other
vaueswithtr ue.

A dynamically generated string table internal to nt race. It
maps all known node ID numbers (which are internally
assigned by nt r ace) to the name of the node’s process ID
table).

This table is indexed by a node identifier or a node name.
Examples of using this table are:

get _string(name_pid, node_id())
get _item(nane_pid, “systenl23”)

A dynamically generated string table internal to nt race. It
maps all known node ID numbers (which are internally
assigned by nt r ace) to the name of the node’s thread ID
table).

Thistableis indexed by a node identifier or a node name.
Examples of using this table are:

get _string(name_tid, 1)
get itemnane_tid, “charon”)

A dynamically generated string table internal to nt race. It
associates node 1D numbers (which are internally assigned by
nt r ace) with node names.

This table is indexed by a node identifier or a node name.
Examples of using this table are:

get _string(node_nane, node_id())
get _i tem(node_nane, “gandal f”)

A dynamically generated string table internal to nt r ace. In
kernel tracing, it associates process ID numbers with all active
process names for a particular node and resides in that node’s
vect or s file. In user tracing, it associates global process ID
numbers with process names of the processes being traced for a
particular node.

Thistable isindexed by a process identifier or a process hame.
Examples of using this table are:

get _string(pid_sbcl, pid())
get itempid_engsim “nfsd”)

A dynamically generated string table internal to nt r ace. In
kernel tracing, this tableis not used. In user tracing, it associ-
ates NightTrace thread ID numbers with thread names for a
particular node.

Format Tables

Invoking the ntrace Display Utility

This table isindexed by athread identifier or a thread name.
Examples of using this table are:

get _string(tid_harpo, 1234567)
get item(tid_shark, “reaper_thread”)

vect or See “Kernel String Tables’ on page 11-16.
syscal | See “Kernel String Tables’ on page 11-16.
devi ce See “Kernel String Tables’ on page 11-16.

vect or _nodename See “Kernel String Tables’ on page 11-16.
syscal | _nodenameSee “Kernel String Tables” on page 11-16.
devi ce_nodename See “Kernel String Tables’ on page 11-16.

You can use pre-defined string tables anywhere that string tables are appropriate. Use the
get _string() function to look up valuesin string tables. For information about the
get _string() function, see“get_string()’ on page 9-75. For examples of function
calls with these tables, see Table 8-3.

Like string tables, format tables let you associate an integer value with a character string;
however, in contrast to a string table string, a format table string may be dynamically
formatted and generated. Labeling numeric values with text can make the values easier to
interpret.

The syntax for aformat tableis:

format _table (table name) = {
item = int_const, “format string” [, “valuel”] ... ;

[default_item = “format string” [, “valuel”] ... ;]
i

You do not need to separate the parts (tokens) of the format table with white space. Format
table tokens are indivisible; although these tokens need not break on the lines shown, they
must appear in the order shown. Include all special characters from the syntax except the
ellipses(. . .) and square brackets ([]). Thefieldsin aformat table are:

format _table Thekeyword that beginsthe definition of all format tables.

table_name The unique, user-defined name of this table. This name
describes the relationship of the numeric values in this format
table.

An item line associates a single integer value with a character string. This line extends
from the keyword i t emthrough the semicolon. You may have any number of item lines
in asingle format table. Thefieldsin an item line are:

item The keyword that begins all item lines.

5-17

NightTrace Manual

5-18

int_const

format_string

valuel

An integer constant that is unique within table name. This
value may be decimal, octal, or hexadecimal. Decimal values
have no special prefix. Octal values begin with a zero (0).
Hexadecimal va ues begin with Ox.

A character string to be associated with int_const. Keep this
string short; otherwise, nt r ace may be unable to display itin
the limited window space available. Use a\ n for a newline,
not a carriage return in the middle of the string.

The string contains zero or more conversion specifications or
display formats. Valid conversion specifications for displays
include the following:

% Signed integer

%uUnsigned decimal integer

%l Signed decimal integer

%oUnsigned octal integer

% Unsigned hexadecimal integer

% f Signed double precision, decimal floating point

%e Signed decimal floating point, exponential
notation

% Single character
%s Character string
% ercent sign

\ nNewline

For more information on these conversion specifications, see
printf(3S).

A value associated with the first conversion specification in
format_string. The value may be a constant string (literal)
expression or an nt r ace expression. A string literal expres-
sion must begin and end with a\ \ '’ and must be enclosed in
double quotes; for example:

“\\"string expression\\

An expression may beaget _stri ng() cal; adescription of
theget _string() function appearsin “get_string()” on
page 9-75. For more information on expressions, see
Chapter 9.

format_string may contain any number of conversion
specifications. There is a one-to-one correspondence between
conversion specifications and quoted values. A particular con-
version specification-quoted value pair must match in both

Invoking the ntrace Display Utility

datatype and position. For example, if format_string contains a
% and a %, the first quoted value must be of type string and
the second one must be of type decimal integer. If the number
or data type of the quoted value(s) do not match format_string,
the results are not defined.

The optional default item line associates all other integer values with asingle format item.
nt race flagsit asan error if an expression evaluatesto avaluethat is not on an item line
and you omit the default item line. The fields of the default item line are:

defaul t _item Thekeyword that beginsall default item lines.
format_string (See format_string above.)
valuel (See valuel above.)

TIP:

If your table needs only one entry, you may omit the item line and supply only the default
item line. A get _f ormat () call with this table name as the first parameter needs no
second parameter.

The following lines provide an example of a string table and format table in a
configuration file.

string_table (curr_state) = {
item= 3, “Processing Data”;
item= 1, “Initializing”;
item= 99, “Terninating”;
default _item= “Cher”;

}s

format _table (event_info) = {

item= 186, “Search for the next tine we process data”;

item= 25, “The current state is %",
“get_string (curr_state, argl())”;

item= 999, “Current state is %, current trace event is %",
“get_string (curr_state, argl())”,
“offset()”;

default_item= “Cher”;

}s

In this example, the first numeric argument associated with atrace event represents the
current state (cur r _st at e), and the event _i nf o format table represents information
associated with the trace event IDs. When trace event 186 occurs, a
get _format (event _i nfo, 186) makesnt r ace display:

Search for the next time we process data

When trace event 25 occurs, nt r ace replaces the conversion specification (%) with the
result of theget _string() cal. If argl() hasthevaluel, thennt race displays:

The current state is Initializing

When trace event 999 occurs, nt r ace replaces the first conversion specification (%s)
with the result of theget _string() call and replaces the second conversion
specification (@) with the integer result of the numeric expression of f set (). If
ar g(1) hasthevalue 99 and of f set () hasthe value 10, then nt r ace displays:

5-19

NightTrace Manual

Current state is Term nating, current trace event is
10

For al other trace events, nt r ace displays“Ct her ”.

For more information on get _stri ng(), see“get_string()” on page 9-75. For more
information on format tables and the get _f or mat () function, see “get_format()” on
page 9-79. See also the/ usr /1 i b/ Ni ght Trace/t abl es file. For more information
about ar g1() , see “arg()” on page 9-20. For more information about of f set (), see
“offset()” on page 9-27.

Pre-Defined Format Tables

The following format tables are pre-defined inthe / usr /1i b/ Ni ght Trace/t abl es
file

state_summary Formats statistics about the state matches
summarized, state durations, and state time
gaps. This table provides the default state
summary output format.

event _summary Formats statistics about the trace event
matches and trace event time gaps. Thistable
provides the default trace event summary
output format.

event _arg_summary Formats statistics about the trace event
matches and their type long trace event
arguments.

event _arg dbl _sumary
Formats statistics about the trace event
matches and their type double trace event
arguments.

For more information about summaries, see Chapter 10.

You can use pre-defined format tables anywhere that format tables are appropriate. Use
theget _f ormat () function to look up valuesin format tables. For information about
the get format () function, see “get_format()” on page 9-79. For examples of func-
tion calls with format tables, see Table 8-3.

Configuring Display Pages

5-20

The configuration file usually contains display page(s). You use nt r ace to put these
display page(s) in your configuration file.

ntr ace lets you customize the layout of your nt r ace display pages. You do this by
coloring, selecting, sizing, positioning, grouping, and otherwise configuring display
objects on a particular display page. Once you have created a useful display page, you
may save it for future nt r ace sessions. Saving a display page is the same as creating or
modifying a configuration file. See Chapter 7 and Chapter 8 for more information.

Invoking the ntrace Display Utility

Rather than creating your own display page, you can let nt r ace create a default display
page for you. For more information on the default display page, see “Default Page” on
page 5-28 and “Kernel String Tables” on page 11-16.

ntrace User Interface

nt r ace displays textual and graphical information, and it provides you with ways to
manipulate this information. These displays and mechanisms make up the nt r ace user
interface.

The next sections describe the following nt r ace user interface issues:

¢ Using the mouse
¢ Understanding pointer shapes
* Anticipating window layout

* Resizing windows

Using the Mouse

It is assumed that your X server has a three-button mouse. By default, mouse button 1 is
the leftmost button, button 2 the middle button, and button 3 the rightmost button. You can
reassign the functions associated with mouse buttons by using xmodmap(1) . If you do
not have a three-button mouse or a standard 101-key North American keyboard, see your
system administrator or read sections on input and navigation in the OSF/Motif Style
Guide.

You use the mouse with point-and-click interfacesin nt r ace. Each mouse button has a
different purpose. The only mouse button operation you need to know for now is that
clicking mouse button 1 usually does a single selection.

5-21

NightTrace Manual

Understanding Pointer Shapes

When you move the mouse, the mouse pointer moves on the screen. You use this pointer
to point to particular parts of the screen. The shape of the pointer shows the current usage.
The following table describes when nt r ace uses each pointer shape.

Table 5-1. ntrace Pointer Shapes and Their Usage

Shape When Used

By default

While moving adisplay object

. A

When amenu action is pending

,'_.:_ _} While resizing adisplay object

L RN

—I— During display-object placement
During time-consuming operations, for example
E} while scrolling through alarge trace event file

Anticipating Window Layout

Your window manager may automatically place a window frame around your windows. It
may also provide you with a means of performing some standard operations, such as
minimizing (also known as iconifying) or maximizing the window size. If your window
manager provides a window frame, then nt r ace puts a window title in the title area of
thisframe. If you minimize awindow, nt r ace providesall or part of the window title for
the icon that represents that window.

nt r ace windows may contain different mixtures of components. In nt r ace the window
components include:

5-22

Invoking the ntrace Display Utility

Menu bars and pull-down menus

Push buttons

Radio buttons

A menu bar appears at the top of the window. It consists of labeled
pull-down menu(s). When you select (click on) a pull-down menu,
entries appear in avertical list. Selecting a menu entry with elipses
on it, causes a dialog box or form to appear. Entries are grouped by
function with separators dividing groups. Any destructive items
appear last.

A push button is a graphic image of alabeled button on apanel. Push
buttons are evenly-spaced in a horizontal panel at the bottom of the
window. The default push button is highlighted by having a border
around it. Pressing <Enter> makes the default push button take
effect. Push buttons are organized by frequency of use and grouped
by functionality. Push button names are active verbs. The most-com-
monly-used push buttonsin nt r ace are: Apply, Reset, and
Close.

Rather than duplicating functionality in both a menu entry and push
button, nt r ace supports the menu entry.

A radio button is a graphic, labeled diamond-shape that represents a
mutually exclusive selection from related radio buttons. Related
radio buttons usually appear on the same panel, a panel between the
menu bar and the push buttons. The first radio button is the default
one. The selected radio button has a different color than the others.

Scroll regions and scroll bars

Text fields

A scroll region appears between the menu bar and the push buttons.
The scroll bar isimmediately below or to the right of the scroll
region.

A text field appears between the menu bar and the push buttons.
While atext field is being edited, it contains a blinking vertical bar
called the text cursor. The text cursor shows your current edit posi-
tion within the field.

Figure 5-1 illustrates these window components.

5-23

NightTrace Manual

Menu Bar

File Edit Create Configure Expressions Tools Help

Radio | Edi I
Buttons | ¢ View v
|offset = 3 id = 1662 argl = 0 ‘
T
|
|
|
© |Threads threadl
: {garcia’ 200970
. |
E Thread: threadl {(cap’815703
: T
* |User Events: ! ‘ ‘
: . i :
- 0,= 1‘§ 2.z 3.z 4,5 .
o ||:
o — [
Time Start[0,0000000s Time Length [4,2251536= Time End [4,8261896= ‘
Event Start[o Event Count/[3 Event End |z |
Push Zoom Factor[2.0 Increment |25, 00% Current Time [1. 20854725
Buttons \ Apply Feset Center tlark. Zoom Region Zoom In Zoom Jut I

Figure 5-1. Window Components

Resizing Windows

Scroll
Region
and

Scroll Bar

Scroll Bar

Text
Fields

You can resize al windows in nt r ace. However, many windows require a minimum
size to display information. You can resize some windows only horizontally. When you
make awindow wider, nt r ace horizontally stretches any push buttons in that window to

take up the new width.

ntrace Notation Conventions

This manual uses the following notation convention to reference menu entries.

Menu bars consist of one or more menu items. Clicking on a menu item causes a
pull-down menu to appear. Pull-down menus have selectable entries. This manual lists
menu levels (from menu item to menu entry) in the order in which they appear. An arrow

5-24

Invoking the ntrace Display Utility

(1) separates each menu level from the next. To show the progression from menu item to
menu entry, this manual uses the following notation:

menu item | menu entry

For example, if you click on the File menu bar item, you may then select the Exit menu
entry. Thismanual shows this procedure as:

Click on File I Exit
If the menu item consists of more than one word, the procedure is shown as:

Click on File | Open Config File ...

ntrace Global Window

Unless you invoke nt r ace with an option that writes to standard output, nt r ace starts
up by displaying the Global Window. Thent race Global Window consists of:

* A message display area and its associated scroll bar

* A menu bar

File Help

1 MightTrace performance analyzer - Version 4,2
2 Copyright ¢C} 1996, Concurrent Computer Corporation

3

4 1 trace event log file read,

5

B kernel trace event log file: Att/hydrogenshomesrubs/tmpsnl, jedi,
7 26111 trace ewvents plus 31240 continuation events,

8 26111 events saved in memory,

g 0 trace events lost,

10 9,0582967= time span, from 0,0000000s to 9,5582967s,

11

12 Time Baze Regizter was uzed to time stamp events,

13

14 3E111 total events read from dizk plus 31240 continuation events,
15 36111 total events saved in memory: 1 events internal to ntrace,
16 0 total trace events lost,

17 9,5582967= total time span zaved in memory.

Figure 5-2. Global Window for a Single Trace Event File

Message Display Area

The message display area of the Global Window presents the following information:

* \ersioninformation

5-25

NightTrace Manual

* Trace-session statistics grouped by trace event file
¢ Cumulative statistics for all trace event files
¢ Event timestamp source

* Error messages about corrupted or syntactically-incorrect ntr ace file
arguments

You can also obtain this statistical information by invoking nt r ace with the
-filestats option. If youinvoke nt race without any trace event file arguments,
nt r ace displays most of the statistics as zero values.

By default, nt r ace issized to hold twenty lines in the message display area. You can
alter this number by changing the size of the Global Window. To change the Global
Window size, resize your window by using features of your window manager. It is not
necessary to resize a window to see messages 21 and higher; you can scroll through all
messages by using the scroll bar.

Menu Bar

The menu bar of the Global Window consists of the following menu items:
* NightTrace
* Tools

* Help

NightTrace Menu Item

When you click on the File menu item on the Global Window, the pull-down menu
shown in Figure 5-3 appears.

File | Help
Mew F’age E analuyzer

Default Page nourrent

Puenelons i L ey et
AT T

Open Config File

g

bz read,

. om dizk f

Read Event-tdap File ... |y nemory:
; ost,

Exit Span sawve

Figure 5-3. Global Window File Menu

5-26

New Page

Invoking the ntrace Display Utility

New Page, Default Page, Default Kernel Page, and Open Config File ...,
can al cause nt r ace to bring up adisplay page. The difference between these menu
items is the origin and content of the display page. The Default Kernel Page is
disabled (dimmed) unless you provide a NightTrace kernel trace file. It is discussed in
“Kernel Display Pages” on page 11-6. The rest of these menu entries are discussed later in
this chapter. The regular features of a display page include:

* Create and configure display objects so they graphically depict your trace
session (See Chapter 7 and Chapter 8)

* Examine trace events, states, trace event arguments, and timings using dif-
ferent display objects (See Chapter 6)

* Create, configure, and modify macros, qualified events, and qualified
states (See Chapter 9)

¢ Search for trace events (See Chapter 10)

* Summarize data into statistics for trace events and states (See Chapter 10)

When you click on File | New Page on the Global Window, a display page with a
dotted but otherwise empty grid appears. This menu item is useful if you want to create a
display page from scratch. Most regular features of a display page are immediately
available on a new page. However, you must create and configure display objects before
you can:

* Examine trace events, states, and trace event arguments using different
display objects

¢ Graphically depict your trace session

NOTE
The new display page comes up in Edit mode. In Edit mode, the

field labels, scroll bar and push buttons on the display page are
disabled (dimmed).

5-27

NightTrace Manual

Default Page

5-28

~| MightTrace: untitled display page | - |J
File Edit Create Configure Expressions Tools Help

< Edit j
s Wiew

ol e -

IO‘OOOOOOOS ' H I O006400= s |0‘00084003
i B IO—
|0 0001518

Figure 5-4. New Display Page

When you click on File | Default Page on the Global Window, an
automatically-generated display page appears. The purpose of the default display pageis
to save you time configuring display objects; if this page does not exactly meet your
needs, you can customize it or you can create a new display page. nt r ace brings up this
page in View mode. All regular features of a display page are immediately available on a
default page.

Before nt r ace displaysadefault display page, it counts the number of processesin your
trace event file(s). Normally, it then creates and displays a default display page with one
StateGraph per process in the trace event file(s). The StateGraph is configured to show all
user trace events. If there are so many processes that their StateGraphs do not fit on the
screen, then nt r ace does not display any StateGraphs.

When analyzing trace events timestamped by an RCIM synchronized tick clock, if a
thread name is not unique in the trace events, nt r ace prints a node name along with the
process D number and thread ID number in the associated GridLabel to identify that
thread.

Figure 5-5 shows a default display page. A brief description of the display objects on this
display page follows. See Chapter 7 for a more detailed description of display objects and
the display page.

Invoking the ntrace Display Utility

NOTE

The dynamic information that display objects present relates to
the interval, awindow into your trace session.

-
[H T NgtTreceumieddisplaypage |||

File Edit Create Configure Expressions Tools Help |

- Edit
- View

E Thread; threadl

E User Events:

i) 1.5 2.8
(R R N R R | [T I I N N N N | [
o P
Time Start[0,0000000s Time Length |2, 2504284 Time End [2, 25042845
Event Start[o Event Count /4 Event End|z
Zoom Factor[2,0 Increment [25.00% Current Time [1.1252140s

| Apply | Feset | Center | tlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 5-5. A Default Display Page

GridLabel A textual display object that contains a static user-specified text
string. This object labels other objects for clarity

DataBox A display object that displays textual or numeric information such as
the trace event ID or tag and the time the trace event occurred. The
information it displays is related to the current time. A DataBox’s
main useisto display datathat is variable in nature and does not lend
itself to graphical representation.

Column A scrollable display object that does not display data itself but holds
graphical display objects: StateGraphs, EventGraphs, DataGraphs,
and Rulers. Its purpose is to define the width of and group together
graphical display objects.

StateGraph A scrollable display object that graphically displays states as bars
and trace events as vertical linesin a Column. The StateGraph shows
relative chronological positions of trace events and states since the
trace started.

5-29

NightTrace Manual

Open Config File

5-30

EventGraph

DataGraph

Ruler

A scrollable display object that graphically displays trace events as
vertical linesin a Column. It shows relative chronological positions
of trace events since the trace started.

A scrollable display object that graphically displays a trace event
expression as avertical line or bar in a Column. A DataGraph shows
the relative chronological positions of trace event arguments since
the trace started. The height of the line or bar is proportiona to the
value of the expression.

A scrollable display object resembling a ruler that graphically
displays the time. A Ruler appears within a Column and shows what
time a trace event occurred in a StateGraph, EventGraph, or Data-
Graph.

A configuration file contains user-created display page(s), macros, qualified events,
qualified states, and/or table definitions. When you click on File I Open Config File
... on the Global Window, a dialog box appears. This window prompts you for an
existing configuration file name. To avoid any nt r ace errors, you must have read
permission for the file. When you open a configuration file, all regular features of adis-
play page are immediately available.

When you open an existing configuration file that contains display page(s), ntr ace
displays them. This can save time configuring display objects and let you immediately
begin trace event analysis.

The Open Config File Dialog Box (shown in Figure 5-6) is made up of:

* A File Name text field

* A Filter text field

¢ A file name scroll region and its scroll bar

* The (default) Open push button

* The Cancel push button

If you decide not to open a configuration file, click on Cancel. This action causes the
Open Config File Dialog Box to go away. If you still want to open an existing
configuration file, see“The File Selection Dialog Box” on page 5-33.

For more information on configuration files, see “Understanding Page Configuration

Files’ on page 5-11.

Read Event-Map File

Invoking the ntrace Display Utility

— Open Dialog

Enter configuration file name:
wad

Fi A
ol
hAakefile
config1
confige
file
name1
arint
printe
prog

I

Filter:|
| Dpenl Cancel |

Figure 5-6. The Open Config File Dialog Box

An event-map file associates user-created mnemonic tags or labels with numeric trace
event IDs. When you click on File | Read Event-Map File ... on the Global Win-
dow, a dialog box appears. This window prompts you for an existing event-map file. To
avoid any nt r ace errors, you must have read permission for this file.

Once nt r ace reads an event-map file, it is able to display short trace event tags rather
than less-meaningful trace event IDs. By naming your trace events, you can make your
displays much easier to understand.

The Read Event-Map File Dialog Box is made up of:
* A File Name text field
* AFilter textfield
¢ A file name scroll region and its scroll bar
* The (default) Read push button

* The Cancel push button

If you decide not to read an event-map file, click on Cancel. This action causes the
Read Event-Map File Dialog Box to go away. If you still want to read an existing
event-map file, see “ The File Selection Dialog Box” on page 5-33.

For more information on event-map files, see “Understanding Event-Map Files’ on page
5-9.

5-31

NightTrace Manual

Exit

Tools Menu Item

5-32

Enter event—-map file name:;
wad

/
ol
config_page
cpe
easy
easy.c
eventfile
eventfilez
f sim_log

harg n

Filter:|
| Readl Cancel |

Figure 5-7. The Read Event-Map File Dialog Box

When you click on File 1 Exit on the Global Window, nt r ace:

* Prompts you to save any unsaved changes, if appropriate
¢ Discards unsaved changes, if appropriate

¢ Deallocates memory it used to store trace events

* Exits

nt race putsup aWarning Dialog Box if you try to exit from nt r ace without saving
your display page changes. If you want to save your changes, click on Cancel; asa
result, nt r ace removes the dialog box, and you can save your changes. If you do not
want to save your changes, click on OK; thiscauses nt r ace to exit.

The tools menu alows you to invoke the session manager, an integral part of the Night-
Trace graphical interface, in addition to other tools in the NightStar family, including
NightProbe, NightBench, NightSim, and NightView.

Invoking the ntrace Display Utility

Help Menu Item

When you click on the Help menu item on the Global Window, the pull-down menu
shown in Figure 5-8 appears.

He|

= Online kManual -
Copyright {C} 1996, Co

Figure 5-8. Global Window Help Menu

The Online Manual item opens the online version of the NightTrace Manual using the
HyperHelp viewer that is shipped as part of the X Window System (x11) product.

The online NightTrace Manual can aso be accessed using the nhel p utility shipped with
the X Window System. The manua nameisnt race. For example, from the command
line:

nhel p ntrace

opens the most recently installed version of the NightTrace Manual in the HyperHelp
viewer.

The File Selection Dialog Box

The File Selection Dialog Box gives you three waysto find afile:

* Typein the exact file name
¢ Scroll through existing file names until you see the one you want

* Typein afilter (file name pattern) for nt r ace to locate

Typing in the Exact File Name

If you know the exact file name, use the following steps to open thefile.

1. Type afile name, possibly with leading directory name(s), into the File
Name text field.

2. If you mistype the file name, see “Field Editing” on page 6-16 and correct
the problem.

3. Press<Enter>.

Thiscausesnt r ace to removethe File Selection Dialog Box.

5-33

NightTrace Manual

If you have read permission to this file and it is of the right type, nt r ace opens the file.
If it isaconfiguration file, nt r ace puts up any display page(s) from thisfile. If itisan
event-map file, nt r ace adds those trace event tags and trace event argument formats to
itsinternd list.

If opening the file was not successful, nt r ace puts up aWarning Dialog Box. The
warning message in the dialog box differs depending on the problem. When you have
read the warning, click on OK. Asaresult, nt r ace removes the dialog box.

If you cause nt r ace to bring up this File Selection Dialog Box again, all fields
contain the same values as when you left this dial og box, except the File Name text field
never comes up with more than a directory name.

Scrolling Through Existing File Names

5-34

If you would recognize the file name if you saw it, use the following stepsto find and open
it.
1. Use the scroll bar to examine the aphabetica list of file and directory
names displayed in the scroll region.
2. Try to find the file name you are seeking.
3. If you find thefile:
a Click on the file nameto select and highlight it.

b. Click on Open.
Asan alternative to these two steps, you could double click quickly on the file name.

If you have read permission to this file and it is of the right type, nt r ace opens the file.
If itisaconfiguration file, nt r ace puts up dl display page(s) from thisfile. If itisan
event-map file, nt r ace adds those trace event tags and trace event argument formats to
itsinternd list.

If opening the file was not successful, nt r ace putsup aWarning Dialog Box. The
warning message in the dialog box differs depending on the problem. When you have
read the warning, click on OK. Asaresult, nt r ace removes the dialog box.

If you do not find the file in the list:

1. Click on the directory name under which it resides. This selects and high-
lights the directory name.

2. Click on Open.
Asan dternative to these two steps, you could double click quickly on the directory name.
Thiscausesnt r ace to:

* Put the selected directory’s namein the File Name text field
¢ Changeto that directory (cd)

¢ Display thefile and directory names under that directory

Invoking the ntrace Display Utility

You can repeat the steps in this method until you find the file.

If you cause nt r ace to bring up this File Selection Dialog Box again, all fields
contain the same values as when you left this dialog box.

TIP:

Clickingonthe®. . ” directory causesthe scrolled list to be filled with the contents of the
parent directory.

Typing in a Filter (File Name Pattern)

If you know only some of the charactersin the file name, use the steps below to find and
open it.

1. Type a file name pattern, possibly with leading directory name(s) and
appropriately-placed asterisk(s), into the Filter text field. Each asterisk (*)
in this field represents zero or more characters at this position.

2. If you mistype the field name pattern, see “ Field Editing” on page 6-16 and
correct the problem.

3. Press<Enter>.

This causes nt r ace to replace the contents of the scroll region with subdirectory names
and file names that match your pattern. To locate your file in the scroll region and open it,
see the “ Scrolling Through Existing File Names’ on page 5-34.

If you caused nt r ace to bring up this File Selection Dialog Box again, al fields
contain the same values as when you left this dialog box.

Exercise: Displaying Trace Events

The following exercise has you graphically display the trace events you logged in “Exer-
cise: Logging Trace Events’ on page 4-29.

Copy the/ usr/1i b/ N ght Trace/ exanpl es/ entry_exi t_page configuration
file to your directory and call it page. (See “ Understanding Page Configuration Files’ on
page 5-11 for more information about configuration files.)

$ cp /usr/lib/ N ght Trace/ exanpl es/entry _exit_page page

Copy the/ usr/1i b/ Ni ght Tr ace/ exanpl es/ entry_exi t _nmap event-mapfileto
your directory and call it map. (See “Understanding Event-Map Files” on page 5-9 for
more information about event-map files.)

$ cp /usr/lib/ N ghtTrace/ exanpl es/entry_exit_map map

Invoke nt r ace with the trace event file you created in the last exercise and the
configuration file you just created.

5-35

NightTrace Manual

5-36

$ ntrace | og page

NightTrace presents a display page. Concentrate on the dotted grid area in the middle and
the row of push buttons at the bottom. Keep clicking on the Zoom Out push button until
the display quits changing. Click on the Ruler around 2 seconds. The display object with
digital “waves’ is a SateGraph. It graphically displays trace events and states. The two
“floating” DataBoxes contain textual information about the current trace event and its first
argument, respectively. Notice that the current trace event is identified by its cryptic trace
event ID number. (See “ StateGraph” on page 7-14 and “DataBox” on page 7-12 for more
information about StateGraphs and DataBoxes.)

The next few steps get the same display page to show symbolic tags instead of numeric
IDsfor trace events.

Close the display page by clicking on File 1 Close. (See“Close” on page 7-19 for more
information about this menu item.)

Read in the event-map file named map by clicking on File I Read Event-Map File
.... (See “Read Event-Map File” on page 5-31 for more information about this menu
item.)

Re-open the configuration file named page by clicking on File 1 Open Config File
.... (See “Open Config File” on page 5-30 for more information about this menu item.)
Click on the Refresh push button on the display page. Notice that the current trace event
is now identified by its symbolic tag because that trace event has an entry in the map file.

This exercise continuesin “Exercise: Using the Search Tool” on page 10-14.

For practice customizing the graphical user interface, read Appendix B and try “Exercise:
Customizing Display Colors’ on page B-5.

6
Viewing Trace Event Logs with ntrace

O VIV BN . . oot e e e e 6-1
Mouse BUtton Operationsottt 6-3
The Grid. . . 6-4
VIBWING SIralEOY - . - oo v ettt e e e e e e e e e e 6-5
Thelnterval SCroll Bar e 6-7
Thelnterval PUSh BULONS. 6-8
Thelnterval Control Area.t e 6-11
Reading Fields 6-11
Editing SingleFields 6-12
Editing Multiple Fields. 6-14
FIeldEAitingo 6-16
Editing Text Fields. 6-16

Positioning Within Text Fields. i 6-18

NightTrace Manual

Overview

6
Viewing Trace Event Logs with ntrace

nt r ace’s display page has two modes: Edit mode and View mode. The words “Edit”
and “View” pertain to the operations you can perform on the graphical display, not the text
fields or scroll bar. This chapter discusses View mode, the mode that displays trace events
and states from your trace event file(s). nt r ace displays thisinformation:

* Graphically in configured display object(s) on the grid
e Satistically in fields of the interval control area

¢ Uniformly on al display page(s). (This means that changes on one page
are reflected on all pages.)

nt r ace uses the same display page(s) in both Edit and View modes. However, toggling
between modes changes the interval scroll bar, fields in the interval control area, and the
push buttons. In View mode, the message display area shows some statistics, as well as
errors and warnings. The default mode for an existing display is View mode.

View mode lets you locate interesting parts of your trace session by:

¢ Shifting with the interval scroll bar
¢ Clicking on some of theinterval push buttons
* Editing some field(s) in the interval control area

* Using the built-in Search tool (See Chapter 10 for more information.)

See Chapter 7 for more information on Edit mode, the components of the display page,
and display objects.

This chapter assumes that you have already created or loaded a display page with
configured display objects. This manual uses the following term conventions:

<Enter> The key on your keyboard that issues a carriage return and line feed.

<Backspace> The key on your keyboard that issuesa<Ctrl> <h>. Innt r ace this
isalso <Delete>.

interval A time period in the trace session that has a specific starting and end-
ing time. It is the “window” into the trace session that appears on the

display page.

6-1

NightTrace Manual

Menu Bar

File Edit Create Configure Expressions Tools Helg

Message
Display
Area

< |offset = 3 id = 1662 argl = 0 ‘ :

The Grid

E Thread; threadl

E User Events:

113 2.5 s 4.5 :
||I||||||||||||||||||||||||||||||||||:

=
S SRRRI NERE Interval

Scroll

Bar
Time Start[0,0000000s Time Length [4,50085725 Time End [4,50085725
Event Start[o Event Count|5 Event End|[4 Interval
Zoom Factor[2.0 Increment |25, 002 Current Time [1.1252140s Control
| Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut r Refresh Area
Interval
Push
Buttons
Figure 6-1. A Display Page in View Mode
current time The instance in time currently being displayed. It occurs within the

interval. Searches begin at the current time.

currenttimeline The dashed vertical bar that represents the current time in a Column.
This line moves to the location of your pointer when you click with
mouse button 1 in a Column. The position of the current time line
determines the values that appear on display pages.

This chapter covers the following topics:
* Mouse button operationsin View mode
* Understanding the grid
¢ Deciding what to do next in View mode
¢ Using theinterval scroll bar
¢ Using theinterval push buttons

¢ Understanding the interval control area

Viewing Trace Event Logs with ntrace

* Field editing

Mouse Button Operations

Mouse button operations in View mode appear in Table 6-1 and in the NightTrace Pocket
Reference card. Unfamiliar terminology is defined later in this chapter.

Table 6-1. View-Mode Mouse Button Operations

Button

Use Within a Column

Mouse button 1

Hold down <Ctrl> and
click mouse button 1

Hold down <Ctrl>,
hold down mouse but-
ton 1, and drag horizon-
tally

Mouse button 2

Hold down <Ctrl> and
click mouse button 2

Mouse button 3

Hold down <Ctrl> and
click mouse button 3

Move the current time line to the place where the pointer rests, or put the text cursor
where you clicked in the text field.

Move the mark and the current time line to the place where the pointer rests.

Move the mark to the beginning point of the drag region, and move the current timeline
to the ending point of the drag region. The drag region is highlighted as you drag the
pointer.

Write a statistic in the message display areathat tells about the trace event where the
pointer rests in a StateGraph or EventGraph.

Write a statistic in the message display areathat tells how far the pointer is from the
mark. A positive number means the pointer isto the right of the mark. A negative
number means the pointer isto the left of the mark.

Write a statistic in the message display areathat tells about the data item where the
pointer rests in a DataGraph.

Write a statistic in the message display areathat tells how far the pointer isfrom the cur-
rent time line. A positive number means the pointer is to the right of the current time
line. A negative number means the pointer isto the left of the current timeline.

6-3

NightTrace Manual

The Grid

6-4

E offget = 3

E Thread; threadl

E User Events:

id = 1EG2 argl = 0

s 113 2.5 s 4.5 :
B |||||||||||I||||||||||||||||||||||||||||||||||:

Figure 6-2. The Grid

The grid is aregion of the display page that is filled with parallel rows and columns of
dots. These dots serve as reference points for display-object alignment. You can alter the
grid dimensions by changing the size of the display page. To change the display page size,
resize your window by using features of your window manager.

Thet race_open_t hread() routine and the nt r aceud daemon write overhead trace
events into your trace event file. The tags for these trace events are NT_ASSOC PI D and
NT_ASSOC _TI D. In View mode, you may see these trace events in display objects on the
grid. nt r ace assigns each trace event in the trace session a unique ordinal number or off-
set beginning with ordinal number 0. These ordinal numbers appear in the interval control
area and in the message display area. For more information on ordinal trace events, see
“The Interval Control Area” on page 6-11.

Some display objects on the grid contain vertical lines. Each vertical line in a StateGraph
or EventGraph represents a user trace event, kernel trace event, or NightTrace overhead
trace event. If you click on atrace event with mouse button 2, nt r ace writesinformation
about that trace event in the message display area. Each vertical line in a DataGraph
represents a trace event argument. If you click on a data value with mouse button 3,
nt r ace writes information about the data value in the message display area. For
information about StateGraphs, EventGraphs, and DataGraphs, see “ StateGraph” on page
7-14, “EventGraph” on page 7-15, and “DataGraph” on page 7-16.

If your grid has a Column and you have not aready positioned your interval somewhere
else, nt r ace displaysin the Column the earliest 5 percent of your trace session. Usually
thisinformation is uninteresting and you want to see other parts of your trace session. The
following list shows the ways you can get nt r ace to locate interesting parts of your trace
session:

¢ Scroll through the interval using theinterval scroll bar
® Zoom in or zoom out using interval push buttons

¢ Change the parameters defining the interval by editing its fields

Viewing Trace Event Logs with ntrace

* Usethe Tools I Search menuitem to search for a specific trace event or
condition. (See Chapter 10 for more information.)

Viewing Strategy

nt r ace isaflexible tool. Depending on your personal preferences and how much you
know about your trace events, there are several ways to locate intervals of interest. The
following flowchart provides information to help you decide what to do next in View
mode.

6-5

NightTrace Manual

Look at the grid

Is the displayed
information
interesting yet?

Do one of the following:

Useinterval scroll bar to slowly scroll through total trace
run

Click on Zoom Out

Return to Edit mode, alter the display page, and return
to View mode

Click on Tools | Search and set the search criteria
Change settings in the intervad control area

No

Could the
display use
improvement?

Analyze trace event information

‘ Yes

Do one of the following:

ClickonZoom In

Click on Center

Click on Mark, align theinterval, and click on
Zoom Region

:

6-6

Figure 6-3. Deciding What to Do Next in View Mode

Viewing Trace Event Logs with ntrace

The Interval Scroll Bar

Although by its position it may look asif it scrollsthe grid, the interval scroll bar scrolls
the interval. Moving the slider of the interval scroll bar alows you to examine different
intervals in your trace session. By moving the dider, you change the displays in display
objectson the grid and in the interval control area. Changes in the display objects are most
obvious when you have a Column that contains both a StateGraph and a Ruler. For more
information on the interval control area, see “The Interval Control Area” on page 6-11.
See Chapter 7 for more information on display objects.

The interval scroll bar is horizontal and extends the entire width of the grid. The left
arrowhead represents the beginning of the entire trace session, not just the part displayed
on the grid or by the interval control areafields. The right arrowhead represents the end of
the entire trace session.

If you have not already positioned your interval somewhere else, the movable slider of the
interval scroll bar is adjacent to the scroll bar’s left arrowhead. When the slider is here, the
Time Start statistic in the interval control areais 0.0000000 seconds. The length of the
slider is proportionate to the amount of the trace session displayed in the interval. By
default, adisplay page shows 5% of atrace session.

In the following interval scroll bar descriptions, the fields in the interval control area that
are affected by the interval scroll bar include: Current Time, Time Start, Time End,
Event Start, Event End, and Increment. For more information on these fields, see
“The Interval Control Area” on page 6-11.

Trough

'T Lo |

Left Arrowhead Right Arrowhead

Figure 6-4. The Interval Scroll Bar

Manipulating the interval scroll bar in the following ways has the following results.

6-7

NightTrace Manual

Table 6-2. Manipulating the Interval Scroll Bar

Action Mouse Location Result
Button
Click Any Left If the interval scroll bar slider isnot already at the leftmost position:
arrowhead
* Movesthe dlider to the left.
 Scrollsbackward Increment secondsor Increment percent of
the current display interval.
Click Any Right If the interval scroll bar slider is not aready at the rightmost position:
arrowhead
* Movesthe dlider to theright.
» Scrolls forward Increment seconds or Increment percent of
the current display interval.
Click 1 Between an » Movesthe dslider to the side you clicked on.
arrowhead and Scrolls the current interval by twice the number of seconds in
the slider Increment or by twice the percentage in Increment.
Click or 2 Between an » Movesthe dider where you clicked and/or dragged.
Drag arrowhead and Scrollsthe current interval accordingly.
the dlider « If your current time line was not centered, centersiit.
Drag lor2 Slider (Same as preceding entry.)
Pressand Any Left or right Causes animated scrolling of data in the direction the arrow points
Hold arrowhead

The Interval Push Buttons

6-8

Apply | Feset | Center | Fark | Zoom Region | Zoom In | Zoom Outl Refresh |

i

Figure 6-5. The Interval Push Buttons

The interva push buttons let you examine different intervals in your trace session. The
eight push buttons appear just below the grid on the display page. In the following push
button descriptions:

¢ Click on apush button by first pointing to it and then clicking with mouse
button 1.

e Current Time, Time Start, Time End, Time Length, Event
Start, Event End, and Event Count refer to fields in the interval
control area.

Viewing Trace Event Logs with ntrace

Except for the Reset push button, each push button has an effect on:
* Thefieldsin theinterval control area
* Thedisplay objects on the grid
¢ The current time line on the grid
The effect of clicking on a particular push button appears next.
Apply (the default)

* Validates any field change(s) in the interval control area and takes
appropriate action.

* Makes corresponding changesto other field(s).

¢ Possibly updates display objects on the grid.

¢ Possibly movesthe current time linein a Column.
* |sequivalent to pressing <Enter>.

Reset

* Restores changed field(s) in the interval control area to the value(s) they
had immediately after the last Apply or <Enter>. Thisworksonly if you
have not already pressed <Enter> or clicked on the Apply push button.

* |sequivalent to pressing <Esc>.
Center

* Centerstheinterval around the current timeline in a Column.

* Makes corresponding changesto Time Start, Time End, Event Start,
and Event End.

Mark

* Sets a mark that points to a particular time. A mark is represented by a
solid triangle on the Ruler. nt r ace currently supports only one mark. By
default thismark is at time 0.

* Putsamark at the current timeline of all Rulers.
¢ |suseful before clicking on Zoom Region.

* Can provide a statistic about the distance between your pointer and the
mark.

Some control sequences pertain to the mark, the current time line, and your pointer.

¢ Simultaneously pressing <Ctrl> and clicking on mouse button 1 movesthe
mark and the current time line to the place where your pointer rests.

¢ Simultaneously holding down <Ctrl> and clicking on mouse button 2
causes nt r ace to write a statistic in the message display areathat tells
how far your pointer is from the mark. A positive number means your

6-9

NightTrace Manual

6-10

pointer isto the right of the mark. A negative number means your pointer is
to the left of the mark.

Simultaneously holding down <Ctrl> and clicking on mouse button 3
causes nt r ace to write a statistic in the message display area that tells
how far your pointer is from the current time line. A positive number
means your pointer is to the right of the current time line. A negative
number means your pointer isto the left of the current time line.

Simultaneously holding down <Ctrl>, holding down mouse button 1, and
dragging your pointer horizontally in a Column makes nt r ace move the
mark to the beginning point of the drag region and move the current time
line to the ending point of the drag region. The region is highlighted as you
drag the pointer.

Zoom Region

Sets the interval to be the time between the mark and the current time line
(inclusive).

Sets Time Start to either the mark or the current time line, whichever is
|eftmost.

Sets Time End to either the mark or the current time line, whichever is
rightmost.

Centersthe current timelinein a Column.

Displays an error message in the message display area if the mark and the
current time line are at the same place.

Zoom In

Centersthe interval around the current timeline in a Column.

Divides Time Length by the value of Zoom Factor; this provides a
microscopic view of asmaller interval.

Makes corresponding changesto Time Start, Time End, Event Start,
Event Count, and Event End.

Zoom Out

Centerstheinterval around the current timeline in a Column.

Multiplies Time Length by the value of Zoom Factor; this provides a
macroscopic view of alarger interval.

Makes corresponding changesto Time Start, Time End, Event Start,
Event Count, and Event End.

Refresh

Updates the grid to reflect the result of changesin configuration.
Isimplicit with any action that updates the grid.
Should be used when you:

Viewing Trace Event Logs with ntrace

Open adisplay page

Switch to View mode from Edit mode

- Change aconfiguration parameter from View mode
- Resizethe grid

¢ Differs from the X window manager's Refresh which redraws the
windows without notifying nt r ace.

The Interval Control Area

Reading Fields

The interval control areais aregion of the display page that contains nine fields of
statistics. If you have not already positioned your interval somewhere else, ntr ace
displays in the interval control areathe earliest 5 percent of your trace session. Usually
thisinformation is uninteresting and you want to see other parts of your trace session. You
can do two things with the statistics in the interval control area:

* Read the fields to obtain information about the interval

¢ Edit the fields to change the interval

Time Start[4,9124576s Time Length [12. 0000000 Time End [15, 5124576
Event Start|8 Event Count|15 Event End |20
£oom Factor|2.00 Increment|25.003 Current Time |10.91248?Bs

Figure 6-6. The Interval Control Area

All field values in the interval control area are non-negative numbers. Some fields have
default values. Time fields all display the time in seconds with the “s” suffix. A
description of each field follows. In the following text, interval is the time from Time
Start through Time End.

Time Start Is the beginning time of the interval in seconds.
Time End Isthe ending time of the interval in seconds.
Time Length Is the amount of time within this interval in seconds. It is the

difference between Time End and Time Start.
Current Time Isthe present time within the interval in seconds.

Event Start Isthe ordinal number (offset), not the trace event ID, of the first trace
event in thisinterval.

6-11

NightTrace Manual

Event End Is the ordinal number (offset), not the trace event ID, of the last trace
event in thisinterval.

Event Count Is the quantity of trace events present in this interval. It is the
difference between Event End and Event Start plus one.

Zoom Factor Is the number of times to magnify (or reduce) the interval each time
you click on Zoom Out (or Zoom In). The default is 2.

Increment Controls how much the current interval scrolls (and the slider moves)
when you click on an arrowhead of the interval scroll bar or between
an arrowhead and the slider on the interval scroll bar.

This field may contain either a percentage or an absolute amount of
time in seconds. The default is 25%.

Editing Single Fields

6-12

Changing the interval control areafields allows you to examine different intervals in your
trace session. Usually you modify fields in the interval control area when you already
know something about your trace events and their distribution.

When you press <Enter> or click on the Apply push button at the end of your editing,
nt r ace validates the data in each field you modified and takes appropriate action. If
nt r ace detects an invalid value, it restores the affected field to its previous value. For
moreinformation on the Apply push button, see“The Interval Push Buttons” on page 6-8.

nt r ace displays al timesin theinterva control areain secondswith the“s” suffix. You
can enter timesinto time-related fieldsin the following ways:

¢ Numerictime. nt r ace assumes that the time unit is seconds.
* Numeric timein secondswith a“s” suffix.

* Numeric time in microsecondswith a“u” suffix.

The following text explains what constitutes a valid field change and describes the effects
of changing asingle field. For general information on field editing, see “Field Editing” on
page 6-16.

Time Start A valid change keeps Time Start less than the ending time in the
trace session. The new interval starts at the specified time. Time
Length remains unchanged, but other fields, including Time End,
change appropriately.

If you set Time Start to the word start, ntrace resets Time
Start to the start time (0 microseconds) of the trace session.

Time End A valid change keeps Time End greater than the beginning timein
the trace session and greater than or equal to Time Length. The
new interval ends at the specified time. Time Length remains
unchanged, but other fields, including Time Start, change appropri-
ately.

Time Length

Current Time

Event Start

Event End

Event Count

Zoom Factor

Viewing Trace Event Logs with ntrace

If you change Time End so it is smaler than Time Length,
ntrace setsTime End toTime Length. If youset Time End to
the word end or an arbitrarily large number, nt r ace resets Time
End to the last time recorded in the trace event file(s) and changes
other fields appropriately.

A valid change keeps Time Length greater than 0 and less than or
equal to the last recorded time in the trace session. The new interval
length is the specified length. Time End and other fields change

appropriately.

If you set Time Length to the word al | or an arbitrarily large
number, nt r ace resets Time Length to the last time recorded in
the trace event file(s) and changes other fields appropriately.

The current time is the specified time.

If the new current time is inside the current interval, the current time
line moves appropriately in any Columns and the current interval
remains unchanged.

If the new current time is outside the current interval, the interva
shifts so the current time is centered in the interval, the current time
line is centered in any Columns, and the interval length remains
unchanged.

A valid change keeps Event Start less than the number of trace
events logged in the trace session. The new interval starts at the
specified ordinal trace event number (offset). Time Length
remains unchanged, but other fields change appropriately.

If you set Event Start to theword st art, nt race resets Event
Start to0and Time Start to O microseconds.

A valid change keeps Event End non-negative. The new interval
ends at the specified ordinal trace event number (offset). Time
Length remains unchanged, but other fields change appropriately.

If you set Event End to the word end, or an arbitrarily large num-
ber, nt r ace resets Event End to the total number of trace events
in your trace event file(s).

A valid change keeps Event Count lessthan or equal to the ordina
position (offset) of the last trace event recorded in the trace session.
The new trace event count is the specified count. Fields change

appropriately.

If you set Event Count to the word al | or an arbitrarily large
number, nt r ace resets Event Count to the total number of trace
events in your trace event file(s) and changes other fields appropri-
ately.

A valid change keeps Zoom Factor greater than or equal to 1. If
you set Zoom Factor to the word def aul t or aspace, ntrace
resetsZoom Factor to the default value, 2.

6-13

NightTrace Manual

Increment A valid change keeps percentages greater than 0% and less than or
equal to 100% and absolute numbers greater than O microseconds
and less than or equa to the end time of the trace session. If you set
Increment to the word def aul t or a space, ntr ace resets
Increment to the default value, 25%.

If Increment islessthan 100% when you click on an interval scroll
bar arrowhead, you see part of the previous interval in this interval.
However, if Increment isegual to 100%, you see a completely new
interval.

For more information on the interval scroll bar, see “The Interva
Scroll Bar” on page 6-7.

Increment Increment

multiplied —— multiplied ——
{ by 2 v { by 2 Y
| f : T

Increment Increment

Figure 6-7. Amount of Scrolling Due to Increment Value

Editing Multiple Fields

6-14

Sometimes it makes sense to change multiple fields for a single effect; for example, you
may wish to change both the Time Start and Time End fields or you may wish to
change both the Time Start and Event Count fields. In these cases, apply your
changes only once, after you have edited each field of interest.

Changing some combinations of fields is not meaningful; for example, you may try to
change both Time Length and Event Count. When nt r ace detects a meaningless
combination of changes, it displays an error message in the message display area and
restores the affected fields to their previous values. When nt r ace detects an invalid
value, it restores the affected field to its previous value.

Some general rules apply to multiplefield editing.

* You must not simultaneously apply changes to more than two trace event
fields.

* You must not simultaneously apply changes to more than two time fields;
for these purposes Current Time isnot considered to be atimefield.

* You can change Current Time with any other valid field changes as long
as Current Time falls within the new interval.

* You can change Zoom Factor with any other valid field changes.

Viewing Trace Event Logs with ntrace

* You can change Increment with any other valid field changes.

¢ Simultaneously modifying one time field and clearing another time field
makes nt r ace use the static and modified fields to determine the values
of the cleared time field and the other fields.

¢ Simultaneously modifying one trace event field and clearing another trace
event field makes nt r ace use the static and modified fields to determine
the values of the cleared trace event field and the other fields.

The following table shows all the valid multiple field changes except those that involve
Current Time, Zoom Factor, or Increment. For information on editing specific
fields of the interval control area, see “The Interval Control Area” on page 6-11. For
general information on field editing, see “Field Editing” on page 6-16.

Table 6-3. Valid Multiple Field Changes

Fields Result

Time Start The new interval startsat Time Start and endsa Time End.
Time End

Time Start The new interval startsat Time Start and has a length of the speci-
Time Length fied Time Length.

Time Length Thenew interval endsat Time End and has alength of the specified
Time End Time Length.

Event Start Thenew interval starts at ordina trace event number (offset) Event
Event End Start and ends at ordina trace event number (offset) Event End.

Event Start
Event Count

Event Count
Event End

Time Start
Event Count

Time End
Event Count

Event Start
Time Length

Event End
Time Length

The new interval starts at ordinal trace event number (offset) Event
Start and includes the specified quantity of trace events.

The new interval ends at ordinal trace event number (offset) Event
End and includes the specified quantity of trace events.

The new interval startsat Time Start and includes the specified
quantity of trace eventsunlessthe Time Length forces Time Start
to change.

The new interval ends at Time End and includes the specified
quantity of trace events unlessthe Time Length forcesTime End
to change.

The new interval starts at ordinal trace event number (offset) Event
Start and has alength of the specified Time Length unlessthe
Time Length forces Event Start to change.

The new interval ends at ordinal trace event number (offset) Event
End and has alength of the specified Time Length unlessthe
Time Length forcesEvent End to change.

6-15

NightTrace Manual
Field Editing

You make changes to fields by following these steps:

1. Do one of the following:

¢ Click with a mouse button on the field you want to edit. Clicking
with mouse button 1 leaves a blinking vertical bar called the text
cursor where you clicked in the field. Clicking with the other mouse
buttons | eaves the text cursor at the end of the field.

¢ Drag with mouse button 1 on the field you want to edit.

¢ |If there aready is a text cursor in afield, you can press <Tab> to
move to the next field or <Shift> <Tab> to move to the previous
field.

2. Usethe built-in field editor to change values. Editing procedures follow.

3. Either press <Enter> or click on the Apply push button. This is called
applying your changes.

Editing Text Fields

You can make the following types of editing changesin atext field:

* |nsert text
* Deletetext
* Replace text

¢ Undo atext change

Table 6-4. Making Editing Changes

Goal Steps to Attain Goal
Insert 1. Position the text cursor where you want to insert character(s).
character(s) 2. Typein the additional character(s).
Delete one character 1. Position the text cursor to the left of the character to be deleted.
to the right 2. Simultaneoudly press<Ctrl> <d>.
Delete one character 1. Position the text cursor to the right of the character to be deleted.
to the left 2. Either press<Backspace>, <Delete>, or simultaneously press

<Ctrl> <h>.

6-16

Viewing Trace Event Logs with ntrace

Table 6-4. Making Editing Changes

Goal

Delete adjacent
character(s)

Replace adjacent
character(s)

Replace all
character(s)

Restore the
default value

Undo editing change(s)
since the last <Enter>
or Apply

Steps to Attain Goal

=

Point to the first character to be deleted.

2. Drag the pointer across any other charactersto be deleted, rel ease the mouse button,
and keep the pointer in the field. This highlights the characters you dragged the
pointer across.

3. Either press<Backspace>, <Delete>, or simultaneously press

<Ctrl> <h>.

=

Point to the first character to be replaced.

Drag thepointer acrossany other charactersto bereplaced, rel easethe mouse button,
and keep the pointer in the field. This highlights the characters you dragged the
pointer across.

Type in the new character(s).

N

Position the text cursor anywhere in the field you want to modify.
Simultaneously press <Ctrl> <u>. Thishighlights all charactersin the field.
Type in the new character(s).

N T

Replace all character(s) in the field with either a single space character or the word
default. Note: Some fields do not have default values.
2. Press<Enter> or click on Apply.

=

Position in the window you want to modify.
2. Press<Esc> (or click on Reset if thisisavailable).

Sometimes it is desirable to change multiple fields before applying the changes. In these
cases, apply your changes only once, after you have edited each field of interest.

When you press <Enter> or click on Apply at the end of your editing, nt r ace validates
the data in each field you modified. nt r ace rarely issues error messages about editing
errorsit detects. Usually it takes a default action. Some of the default actions include:

¢ If you enter an invalid value, for example alphabetic characters in a
numeric field, nt r ace ignores the changes and restores the previous val-
ues.

¢ Usudly, if you enter a number that exceeds the maximum value, nt r ace
replaces it with the maximum value.

* |f arange's starting value exceeds its ending value, nt r ace swaps them.

6-17

NightTrace Manual

Positioning Within Text Fields

You can either position the text cursor to aparticular place within afield by either clicking
or typing in key sequences. The following key sequences move the text cursor only if you
are already positioned in atext field.

Table 6-5. Positioning Within a Text Field

Goal Stepsto Attain Goal
Move text cursor left Press <LeftArrow> or simultaneously press<Ctrl> .
one character This action may cause scrolling.
Movetext cursor right Press<RightArrow> or simultaneously press<Ctrl> <f>.
one character This action may cause scrolling.
Movetext cursortonext Press<Tab>.
field
Move text cursor to pre- Press<Shift> <Tab>.
viousfield

6-18

7
Creating Display Objects

VIV BV .« . o ettt e e e e e e 7-1
TheDisplay Page. 7-2
Display PAeMOES 7-3
EditMode. 7-4
VIeW MOOE. . o 7-4
Operationson Display Objects 7-4
Creating Display ObJeCtSt 7-5
Selecting Display Objects. 7-6
Moving Display Objects.t 7-7
Resizing Display ObjeCtS.o i e 7-7
Display ObjECtS . . . oottt 7-8
GridLabel 7-12
DataBOX . ..o 7-12
COlUMIN . L 7-13
SAEGIaPh . o 7-14
BventGraph. 7-15
DataGraph. . . .o 7-16
RUIEr . 7-17
Editing Operations.ot 7-17
Select All . 7-18
Desalect All ..o 7-18
DE e . . 7-18
FIle Operationst e 7-18
S . i 7-18
SV A it 7-19

NightTrace Manual

7
Creating Display Objects

Overview
File Edit Create Configure Expressions Tools Help
~ Edit
Display Objects
; offzet = 3§
Display Page

E Thread: thrigadl (cap’815703

T

|

|

|

NG TR NG |
|Threads threadl
: {garcia 2009707

I

|

' | |

|

|

S l0,s Ly

o 2. Bag 4.5 .
. IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III:

E User Events:

o [y P

Time Start[0,0000000s Time Length [4,2251336= Time End [4,8261896=
Event Start[o Event Count/[3 Event End |z
Zoom Factor[2,0 Increment |25, 00% Current Time [1.20854725

| | Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 7-1. Display Page with Display Objects

Figure 7-1 shows what a display page may look like when you invoke nt r ace and
specify the default display page. The default display page contains display objects. (See
“Default Page” on page 5-28.) Display objectsfilter, process, and display the information
in the trace event file. These display objects are created with the display page and then
viewed on the display page. You may want to create your own set of display objects to
view your trace event file. To do this, follow the steps bel ow.

1. Read “The Display Page” on page 7-2 to learn about the various parts of a
display page.

2. Read “The Display Page’ on page 7-2, which describes the different modes
adisplay page can bein: Edit and View.

7-1

NightTrace Manual

3. Put the display in Edit mode.

4. Read “Display Objects’ on page 7-8, which explains what a display object
is and what the different types of display objects you can put on your
display page are.

5. Read “Operations on Display Objects’ on page 7-4, which explains how to
perform various operations (creating, selecting, moving and resizing) on
display objects.

6. Create the various display objects you want and place them on the display
page. Move or resize any display objects necessary to improve the layout
of the page.

The Display Page

Menu Bar

File Edit Create Configure Expressions Tools Helg

Mode
Buttons Message
Display
Area
< |offset = 3 id = 1662 argl = 0 ‘ :
T
|
: The Grid
|
: |
- |Threads threadl 1
: |
User Events: |
B [11IS 2.z 3.z 4,5
o ||: Interval
S R Scroll
Bar
Time Start[0,0000000s Time Length [4,50085725 Time End [4,50085725
Event Start[o Event Count|5 Event End|[4 Interval
Zoom Factor[2,0 Increment |25, 00% Current Time [1.1252140s Control
| Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut r Refresh Area
Interval
Push
Buttons

Figure 7-2. Elements of a Display Page

7-2

Creating Display Objects

A display page lets you view the trace event datain the trace event file. Figure 7-2 shows
an example of a display page and points out the portions of the display page. Following is
abrief description of the portions of a display page:

Menu bar Contains menu items. When you click on a menu item in the
menu bar, a pull-down menu appears with a list of related
menu entries. You can then initiate an operation on the menu.

Mode buttons Are radio buttons that control whether the display page isin
Edit or View mode and allow you to switch between modes by
clicking on them.

Message display area Displays error and status messages. It has a scroll bar so you
can view previous or current messages.

Grid Contains display objects. Figure 7-2 shows a grid before any
display objects have been created.

Interval control area Contains information on the current interval being displayed
and the controls to manipul ate the display.

Display Page Modes

File Edit Creat

- Edit
e Wiew

Figure 7-3. Edit and View Mode Buttons

Display pages can be operated in one of two modes: Edit mode or View mode. Edit mode
lets you make changes to the display objects. View mode lets you view the execution of
your application via the trace event file. The buttons for Edit and View mode are in the
upper left-hand corner of the display page. If the display isin Edit mode, the button beside
the word “Edit” is depressed. Otherwise, the View button is depressed and the display
will bein View mode. To change modes, click with any mouse button on the button beside
the desired mode.

7-3

NightTrace Manual

Edit Mode

View Mode

When the display pageisin Edit mode, you can perform any of the operations on the menu
bar except Tools, which is disabled (dimmed). The interval scroll bar, push buttons, and
fieldsin the interval control area are disabled too.

Once you have created a set of display objects and configured them, you can view the
trace event information in the trace event file.

To view the datain the trace event file, the display page must be in View mode. However,
if the display page is in View mode, you will not be able to create, edit, or configure
display objects. See Chapter 6 for information on running (viewing) a display page.

Operations on Display Objects

7-4

This section describes some operations you can perform on display objects. The four
operations discussed are:

¢ Creating new display objects and placing them on the grid
¢ Selecting display objects

* Moving display objects around the grid

¢ Resizing display objects

Each of these operations involves using the mouse buttons and the grid. Figure 7-4,
Table 7-1, and the NightTrace Pocket Reference card show which mouse buttons
correspond to which operations. These operations are referred to as grid operations. You
can perform other operations on display objects using the Edit and Configure menus.
Edit operations are discussed later in this chapter. See Chapter 8 for more information on
configure operations.

Creating Display Objects

Create or Select >

- Resize

Move

Figure 7-4. Button Functions on a Mouse

Table 7-1. Edit-Mode Mouse Button Operations

Button

Use Within the Grid

Mouse button 1

<Ctrl> mouse button 1

<Shift> mouse button
1

Mouse button 2
<Ctrl> mouse button 2
Mouse button 3

<Ctrl> mouse button 3

Create new objects, single select by clicking, or
multiple select by dragging

Select the Column display object
Multiple select or toggle selection

Move display objects
Move the Column display object
Resize display objects

Resize the Column display object

Creating Display Objects

Before you can do any of the other operations, you must first create a display object.
When you create a display object, you choose its place on the grid and its size.

7-5

NightTrace Manual

Creating display objects involves three steps: selecting (loading) the type of display
object to be drawn, selecting the place on the grid where the display object will go, and
selecting the size of the display object.

Some display objects go only inside of other display objects. StateGraphs, EventGraphs,
DataGraphs and Rulers go only inside a Column.

To create a display object and place it on the grid, do the following:

1. Place the pointer on the Create entry on the menu bar and click mouse
button 1.

2. Select the type of display object you want to create. Note that the pointer is
now a crosshair. The display object is now “loaded.”

3. Move the pointer until it is on the grid where you want to place a corner of
the display object. As mentioned previously, some display objects go only
inside of Columns. If the cursor is on the border of a Column or outside of
one, you will not be able to draw these display objects. Note that the left
and right sides of these display objects are determined by the Column, and
you only have to place the pointer somewhere on the intended top or
bottom edge of the display object.

4. Click and drag mouse button 1 until the display object is the size you want
it to be. While you are sizing a display object, its boundaries are shown as
dashed lines. Note that if you pressthe <Esc> key before releasing mouse
button 1, the operation aborts. The display object is still l0oaded, as signified
by the crosshair at the pointer location, so you can immediately try to
recreate the display object. Also note that display objects must not overlap
(except for graphical display objects, which must overlap a Column).

5. Release mouse button 1. The display object should appear on your grid
with solid line boundaries, unless there was an error (e.g., you placed a
DataBox on top of an existing GridLabel). Notice that the display object is
also selected (corners have handles). Thisisin case you want to move,
configure, or resizeit at thistime,

Selecting Display Objects
Often, you must select a display object before performing grid and edit operations. For
example, before you can resize adisplay object you must first select the display object.

To select asingle display object, ssimply click on the display object with mouse button 1.
The display object now has handles at the corners, indicating that the display object is
selected.

When display objects are inside a Column, it is sometimes difficult to select the Column.
To select an unselected Column, hold down the <Control> key and click mouse button 1.
If you perform the same action in a selected Column, the Column is desel ected.

You can select multiple display objects three different ways. The first way to select
multiple display objectsisasfollows:

1. Position the cursor outside the display objects you want to select.

7-6

Creating Display Objects

2. Click mouse button 1 and drag the mouse until the rectangle that is formed
completely surrounds only the display objects you want to select. If a
display object is not completely surrounded by the rectangle, it will not be
selected.

3. Release mouse button 1. The display objects that were within the rectangle
will now have handles at each corner.

The second way to select multiple display objectsis by using the <Shift> key. Holding
down the <Shift> key and clicking mouse button 1 while the cursor isin an unselected
display object selects that display object without desel ecting any other display objects.
Thisalows you to select any set of display objects that you want. If you perform the same
action in adisplay object that is aready selected, the display object is desel ected.

The third way to select multiple display objectsis described in “ Select All” on page 7-18.

Moving Display Objects

To move a display object to somewhere else on the grid, do the following:

1. Select the display object(s). Refer to “ Selecting Display Objects’ on page
7-6.

2. Using the mouse button 2, click anywhere on or within the selected display
object(s) and drag to the desired location.

3. Release the middle button.

When display objects are inside a Column, it is sometimes difficult to move the Column.
To move a selected Column, hold down the <Control> key and click mouse button 2.

Display objects must not overlap, except certain display objects must be placed inside a
Column. If you try to move a display object on top of another display object, nt r ace
displays an error message in the message display area and aborts the move.

Resizing Display Objects

To resize adisplay object on the grid, do the following:

1. Select the display object. See “ Selecting Display Objects’ on page 7-6 for
more information.

2. Using mouse button 3, click on a handle and drag until the desired size is
reached.

3. Releasetheright button.

When display objects are inside a Column, it is sometimes difficult to resize the Column.
To resize a selected Column, hold down the <Control> key and click mouse button 3.
Note that a Column cannot be vertically resized smaller than the minimum space required
to hold all the StateGraphs, EventGraphs, DataGraphs and Rulersthat it contains.

7-7

NightTrace Manual

Display objects must not overlap, with the exception that certain display objects need to be
placed inside a Column. If you try to resize a display object on top of another display
object, nt r ace displays an error message in the message display area and aborts the
resize.

Display Objects

7-8

: Create|C0nﬁgure Expr

T GridLabel |

DataBox

Column
:' EventGraph [~

StateGraph

DataGraph |00 00000

Buler |-+ - .

Figure 7-5. Create Display Objects Menu

Display objects, which are created viathe Create menu shown in Figure 7-5, can be
thought of as combination filters and formatters for the data stored in the trace event file.
Every time adisplay object isupdated, it filtersthrough the datain the trace event file. The
display object accepts input in the form of a trace event record, processes and reformats
the information, and displaysit. The following information is in a trace event record:
numeric trace event ID, global processidentifier (PID), NightTrace thread identifier
(TID), time, and optional arguments. NightTrace also keeps track of the ordinal number
(offset) of atrace event. You can use nt r ace functions to express any of these values.
For more information about functions, see “Functions’ on page 9-9.

Although the trace event file contains trace events, it also implicitly contains states. The
concepts of trace events and states are key to understanding display objects.

trace event Corresponds to the point in the execution of your application when a
trace_event () cal was executed. All the datalogged at that
time (trace event ID, arguments, etc.) is considered a trace event.

state A state is bounded by two trace events, a start event and an end event.
An instance of a state is the period of time between the start event
and end event, including the start and end events themselves. Addi-
tional conditions may be specified in a state definition to further con-
strain the state. Instances of states do not nest; that is, once a state
becomes active, events that might normally satisfy the conditions for
the start event are ignored until the end event is encountered.

Different types of display objects display information in different ways. Depending on the
type of information you want to display, you choose the display object or objects you wish

Creating Display Objects

to create. You can then configure those display objects to filter out unwanted data and
process the information that you want displayed. This alows you to watch only the data of
interest. Of course, al of this is dependent on the application having the necessary
trace_event () calsenabled and inserted in the appropriate places.

All display objects are rectangular, but you specify the dimensions of the rectangle. Other
properties of display objects you should be aware of are:

* Display objects can be dynamic or static. Dynamic means the contents vary
depending on values in the trace event file and may change depending on
what point in the execution of the application you are looking at. Satic
means the contents do not change. All display objects except the GridL abel
and the Ruler are dynamic.

* Display objects can be configurable or non-configurable. Configurable
means you define the parameters that determine the content of the display
object. Non-configurable means the display object has no parameters. All
display objects except the Column are configurable.

¢ Display objects can be textual or graphical. Textual means the contents
consist of words or numbers. Graphical means the contents are lines or
shapes, like a bar chart.

* Display objects can be scrollable or non-scrollable. Scrollable means the
display object acts as a movable window into the trace event file.

The basic types of display objects you can create are listed below and discussed in the fol-

lowing sections.

GridL abel

DataBox

Column

StateGraph

EventGraph

DataGraph

Static textual display object that contains a user-specified string of
text and is used to label other display objects for clarity.

Dynamic display object that displays textual information, such asthe
trace event tag or the time the trace event occurred. [ts main useisto
display datathat does not lend itself to graphical representation.

Dynamic display object that does not display dataitself but holds the
scrollable graphical display objects: StateGraphs, EventGraphs, Dat-
aGraphs, and Rulers. Its purpose is to group together related graphi-
cal display objects. It isthe only non-configurable display object.

Dynamic, scrollable, graphical display object that displays a state as
abar and other trace events as a verticd line. It indicates the states
and trace events' relative positions in time since the trace started.
This display object is usually used if you want to know when the
application enters and exits a particular user-defined state.

Dynamic, scrollable, graphical display object that displays a trace
event asavertical line and indicates its relative position in time since
the trace started. Use this display object if you want to know when
particular trace events occur.

Dynamic, scrollable, graphical display object that displaysadataasa
vertical line or bar and indicates its relative position in time since the
trace started. The height of the line or bar can be made proportional
to the value of atrace event argument or other data. Use this display

7-9

NightTrace Manual

7-10

object to display relative values of arguments in the trace event
record.

Ruler Static, scrollable, graphical display object resembling a Ruler that
displays the time. Rulers are used with StateGraphs, EventGraphs,
and DataGraphs to show what time a trace event occurred.

Each display page can hold multiple instances of these display objects, usually with each
display object uniquely configured. All display objects on all display pages reflect the
same interval; display object type, size, configuration, and position have no bearing.

Display objects just created in Edit mode contain little useful information. The
illustrations of display objects in this chapter show the display objectsin View mode.

Figure 7-6 contains a flowchart to help you decide what display objects suit your needs.
To use the flowchart, decide what type of information you want to display. Then start at
the upper left-hand corner of the chart in the box labeled “ Start.”

Creating Display Objects

Do you
want to

e Is the text Use a
display text constant? GridLabel
or graphics?

Use a

Graphics - DataBox

Create a L e W;)not Z\Ottijme Use a
Column Ruler? Ruler

Do you

Yes

want to
graph states
or events?

Use a StateGraph
or Event Graph

Do you

want to graph
argument or
expression

Use a
DataGraph

values?

7-1

NightTrace Manual

GridLabel

DataBox

7-12

Figure 7-6. Display Object Use Flowchart

Hit Count | @0 po i il

oo | Available For | oo
~ | Too tuch | o [Quick Loading [

Samples From Distribution #6

Figure 7-7. GridLabel Examples

Clicking on Create | GridLabel letsyou draw or create a GridLabel display object on
the grid. A GridLabel isarectangle that contains a string of text. Thistext usually is atitle
or description of an adjacent display object on the grid and makes the display page easier
to interpret. GridL abels can appear anywhere on the grid, but they cannot go inside a
Column. You can put several GridLabelson agrid.

If the text istoo long to fit into the GridL abel, the lower right corner of the box isfilled in.
If this occurs, you should resize the GridLabel. This is described in “Resizing Display
Objects’ on page 7-7. A newly created label contains the word | abel . See “ GridLabel”
on page 8-12 for more information.

GridLabels are static display objects. That is, a GridLabel does not change its appearance
or contents depending on the trace event data.

In addition to specifying the text inside of the GridLabel, you a so specify the color of the
text (and background), the font of the text, and where in the box the text will appear (for
example, top vs. bottom). See Chapter 8 for more information.

hardclock
data access
poll mip

Figure 7-8. DataBox Examples

ClickingonCreate 1 DataBox letsyou draw or create a DataBox display object on the
grid. A DataBox is a rectangle that textually displays data from the trace event file.

Column

Creating Display Objects

Although the datais usually related to the last trace event received, it can also be a cumu-
lative total or other manipulations of datain the trace event file.

DataBoxes are useful when you want to display data that does not lend itself to graphical
representation, as shown in Figure 7-8. This figure shows three databoxes: the top
DataBox contains the interrupt name, the middle contains the exception name and the bot-
tom contains the syscall name. |If the value istoo largeto fit into the DataBox (e.g., along
trace event tag), the lower right corner of the box isfilled in. If this occurs, you should
resize the DataBox. This is described in “Resizing Display Objects” on page 7-7. By
default, numeric datais displayed in decimal integer. (For information about overriding
this default, see “Understanding Event-Map Files” on page 5-9, “format()” on page 9-80,
and “get_format()” on page 9-79.) A newly created DataBox containsa 0. See “DataBox”
on page 8-13 for more information.

DataBoxes can appear anywhere on the grid except within a Column. You can put several
DataBoxes on a grid.

Some examples of data that you can configure a DataBox to show are:

* Thetag of the last trace event before the current time (See Table 8-3.)

* The NightTrace thread name of the last trace event before the current time
(See Table 8-3))

* A particular argument logged with the last trace event before the current
time (See “arg()” on page 9-20.)

* Thetotal amount of timethe application was in a particular state before the
current time (See “state_dur()” on page 9-57 and “sum()” on page 9-72.)

* The number of times a particular trace event has occurred before the
current time (See “event_matches()” on page 9-33.)

* A string of characters generated by aformat expression (See “format()” on
page 9-80.)

Figure 7-9. Column Example

Clicking on Create | Column lets you draw or create a Column display object on the
grid. When a Columniisfirst created, it is an empty rectangle that does not display data of
itsown. A Column holds StateGraphs, EventGraphs, DataGraphs and Rulers. It provides a
convenient way of associating these graphical display objects. Figure 7-9 shows a Column
after a Ruler has been added.

7-13

NightTrace Manual

StateGraph

7-14

Columns ensure that all graphical display objects within them have the same physical
starting point and ending point and the same time scale. Columns are not configured, so
the only variations between Columns are in their height and width.

Without a Column, you cannot put any StateGraphs, EventGraphs, DataGraphs or Rulers
on your grid, so you must create a Column before you can create any of these display
objects.

You can place a Column anywhere on the grid. You can put more than one Column on a
grid. This allows you to group related graphical objects together. All of the Columns,
however, show the sameinterval and current time in View mode.

To hold a Ruler and any other graphical display object, Columns must be at least five grid
dots high. Wider Columns are recommended because they determine the resolution to
which trace events can be displayed.

TIP:

On a monochrome display, make sure that you can differentiate among display objects
within a Column. The easiest way to do thisisto leave at least one grid dot between
display objects in a Column and to make the background color of the Column black. For
more information on setting a Column’s background color, see “Default X-Resource Set-
tings for ntrace” on page B-2.

|2 4135 2,414s 2,415 2,416s 2,417s |
||

Figure 7-10. StateGraph Example

A state is bounded by two user-specified trace events, a start event and an end event. An
instance of a state isthe period of time between the start event and end event, including the
start and end events themselves. A StateGraph represents an instance of astate as a solid
horizontal bar that starts when the state is active and ends when the state is inactive.
Instances of the same state do not nest; thus, once a state becomes active, events that
might normally satisfy the conditions for the start event are ignored until the end event is
encountered. You can create a StateGraph by clicking on Create | StateGraph and
drawing on the grid.

StateGraphs must be placed in a Column. A StateGraph and a Ruler are shown in
Figure 7-10.

A StateGraph can display trace events in a manner identical to an EventGraph. This can
be useful for saving screen space or detecting when state start and state end trace events
occur out of order. For example, the trace event lines can show multiple state start trace
events occurring before a state end trace event.

Some examples of information that StateGraphs can be used to display are:

EventGraph

Creating Display Objects

* Thetimes your application is executing a particular subroutine
* The differences in the execution speed of parallel threads

* Thetime spent in contention for resources
See “StateGraph” on page 8-14 for more information.

In View mode, to find out more information about a particular trace event, position the
cursor on atrace event line and click once with mouse button 2. Information about that
trace event is displayed in the message display area. You can also click with mouse button
2 on the start and end of a displayed state to obtain information about the state start and
state end trace events.

[3‘? B.z 9.z 12.s 15,5
b tebe et et e e e e e b 0

Figure 7-11. EventGraph Example

Clicking on Create | EventGraph letsyou draw or create an EventGraph display
object on the grid. An EventGraph represents trace events as a thin vertical line. Event-
Graphs must be placed in a Column. Figure 7-11 shows an EventGraph with a Ruler
below it.

Some examples of information that an EventGraph can be used to display are:
* Thetimes your application starts executing a particular subroutine
* The sequence of execution of various modules in your application
* Thetiming of the birth and death of child processes

See “EventGraph” on page 8-16 for more information.

In View mode, to find out more information about a particular trace event, position the
cursor on the line and click once with mouse button 2. Information about that trace event
is displayed in the message display area.

7-15

NightTrace Manual

DataGraph

7-16

18,4722= 18,4723= 18‘4?24! 18,4720 18,4726= 18,4727s |-

Figure 7-12. DataGraph Examples

Clicking on Create | DataGraph lets you draw or create a DataGraph display object on
the grid. DataGraphs must be placed in a Column. They represent data as either vertical
lines or bars of varying height. In Figure 7-12 the same set of datais used to draw the two
basic types of DataGraph. The top DataGraph is a line DataGraph, which shows the data
as vertical lines of varying height. The bottom DataGraph is a bar DataGraph, which
consists of bars of varying height. The height of the line or bar is proportiona to datafrom
the trace event file. This display object is usually used to display values of argumentsin
the trace event record.

Some examples of ways that a DataGraph can be used are:

* Track the value of an expression over time

¢ |dentify when an application variable takes on an abnormally high or low
value

When choosing a size for your DataGraphs, make sure that they are high enough for you
to distinguish differences in data values. See “DataGraph” on page 8-17 for more
information.

TIP:
The higher you make the DataGraph, the easier it is to differentiate similar data points.

In View mode, to find out about the trace event that caused the data value expression to be
evaluated at a particular point, position the cursor on the line (or bar) and click once with
mouse button 2. Information about the trace event is displayed in the message display
area.

In View mode, to find out the value of a particular dataitem, position the cursor on theline
(or bar) and click once with mouse button 3. The value of that dataitem is displayed in the

message display area.

Ruler

Creating Display Objects

18,4722= 18,4723 18, 47245 18,4725s 18,4726= 18,4727=
T N T I N N T N T I T

Figure 7-13. Ruler Example

The interval control area, which is described in “ The Interval Control Area” on page 6-11,
has three numeric fields that list the beginning, end, and current time for the time interval
displayed in the Column. A Ruler display object, however, displays thisinformation in a
graphical format on the grid. Like their physical counterparts, Ruler display objects have
major and minor hash marks to mark divisions, but the units are of time, not distance.
They represent the amount of time since the first trace event was logged. Usually the first
trace event islogged by thet race_open_t hread() call. You can create a Ruler by
clicking on Create 1 Ruler and drawing on the grid.

In addition to hash marks and numbers, Rulers can also have lost-data indicators and a
mark. The lost-data indicator is areverse-video “L” and indicates the location in time
where NightTrace lost some data. For more information on trace event loss, see “ Prevent-
ing Trace Events Loss” on page A-1. Marks are explained in “The Interva Push Buttons”
on page 6-8.

Rulers are static display objects. That is, they do not change their appearance or contents
depending on the trace event data. They do change their appearance, however, to reflect
the current interval being displayed.

A Ruler should be at least three grid dots high. In addition to determining the size of the
Ruler, you also specify other aspects of the Ruler. See “Ruler” on page 8-19 for more
information.

Editing Operations

Edit| Create Con

Select All |

8 Deselect All
K Delete

Figure 7-14. Edit Menu

7-17

NightTrace Manual

Select All

Deselect All

Delete

Editing operations are enabled only when the display page is in Edit mode, which is
selected by clicking on the radio button labeled “ Edit” in the upper left-hand corner of the

display page.

Select All selects every display object on the grid. This is useful when you want to
perform some operation on every display object on the grid (for example, moving or
deleting every display object).

Deselect All deselects every selected display object on the grid.

Delete deletes the selected display object(s).

File Operations

Save

7-18

File | Edit Cre
Save |:

Save As ..

Close

Figure 7-15. File Menu

The file operations are accessed through the File operations menu shown in Figure 7-15.

Save saves the current display page (including all local macros, qualified events, and
qualified states) to the configuration file you opened. Thus, any changes you have made
since the last Save operation will be saved. You can continue editing or viewing the
display after this operation. The Save operation is disabled (dimmed) if thisis a new

Save As ...

Close

Creating Display Objects

display page, or you have not made any changes since the last time the display page was
saved. Instead, use Save As

Save As ... saves the current display page to afile other than the one you opened. You
can continue editing or viewing the display after this operation.

Save As ... usesaFile Selection Dialog Box to prompt you for a file name. See
“TheFile Selection Dialog Box” on page 5-33 for more information.

Close ends the current editing/viewing session, resets all field and radio button settings,
and clears the message display area. If you have unsaved changes and you do a Close, a
Warning Dialog Box appears, reminding you that you may want to save you changes.

7-19

NightTrace Manual

7-20

8
Configuring Display Objects

VIV BV .« . o ettt e e e e e e 8-1
Common Configuration Parameterst 8-1
Display Object Name.o 8-4
BVENt List . .. o 8-4
[F-EXPreSSiON . ..ottt 8-4
THEN-EXPreSSION. . . .ottt e e e e e e e 8-5
CPU List. oot 8-6
PID LISt oottt 8-7
TID LISt .ot 8-8
NOGE LISt .« . 8-9
Foreground Coloro oot 8-9
Background Color i 8-9
FONt. . 8-9
TeXtJUSHITY . . 8-9
TEXE GraVity . . o oottt e e 8-10
Configuration Form PUsh BULLONS. oot 8-10
Specific Configuration Parameters 8-11
GridLabel 8-12
DataBOX . ..ot 8-13
SAEGIaPN . o 814
BventGraph. 8-16
DataGraph. . . .ot 8-17

NightTrace Manual

Overview

8
Configuring Display Objects

Customizing adisplay object so that it displays only the information you want it to —in the
way that you want it to —is called configuring. Configuring is done with the Configure |
Content menu item shown in Figure 8-1.

Cunﬁgure| Expressi

Figure 8-1. Configure Command Menu

Sections on configuring display objects discuss the following topics:

¢ Configuration parameters that are common to many display objects
¢ QOperations you can perform on the configuration data

¢ Configuration parameters that are specific to each type of display object

NOTE

Columns are the only display objects that are not configurable.

Common Configuration Parameters

Different types of configuration parameters exist. Some parameters are concerned with
how the information appears in the display object. These parameters are Foreground
Color, Background Color, Font, Text Justify, Text Gravity, Fill Style, Event
Color, Lost Event Color, Mark Color, Maximum, and Minimum. For each config-
uration parameter that pertains to color, there is an equivaent X resource. See Appendix B
for more information.

Other parameters are concerned with determining the content of the information in the
display objects. The parameter that does thisis Then-Expression.

8-1

NightTrace Manual

The last type of parameter is concerned with constraining the information that appearsin
the display object. These parameters act as filters, allowing only data that meets certain
criteriato be displayed. These parameters are Event List, If-Expression, CPU List,
PID List, TID List, Start-Events, End-Events, Start-Expression, and
End-Expression.

The configuration parameters are changed with the same editing methods used in the
interval control area. See “Field Editing” on page 6-16 for more information. Note that
you can type def aul t orjust aspacein afield to get the default value.

Many of the display objects share common configuration parameters. These common
configuration parameters are summarized in Table 8-1 and discussed in the following
sections. For more information about configuration parameters, refer to the sections on
configuring the object you are interested in.

Table 8-1. Common Configuration Parameters

Parameter Name Possible Va ues Meaning
Display Object Any alphanumeric string beginning witha The name of the display object.
Name letter. Underscores are also
allowed. Spacesare not allowed.
Any meaningful combination of the fol-
lowing:
o ALL » All trace events are caught.
e ALLUSER All user trace events are caught.
Event List e ALLKERNEL » All kernel trace events are caught.
* NONE » No trace events are caught.
« 0, 1, 2, ..., 4095 Listed user trace events are caught.
e 4100, 4101, 4102, ..., 4300 » Listed kernel trace events are caught.
* A comma-separated list of alphanu- » Thetags of trace events as specified in
meric strings beginning with letters. anevent-map file are caught. See* Un-
Underscoresare also allowed. Spaces derstanding Event-Map Files’ onpage
are not allowed. 5-9 for more information.
If-Expression Boolean expression Expression is any valid boolean C-like
expression, possibly containing functions
or macros. See Chapter 9 for more
information.
Then- Numeric expression or string Expression is any valid C-like expression,
Expression possibly containing functions or macros.
See Chapter 9 for moreinformation.
ALL All CPUs are listened to.
CPU List NONE No CPUs are listened to.
1, 2, 3, ... Listed CPUs are listened to.

8-2

Table 8-1. Common Configuration Parameters (Cont.)

Configuring Display Objects

Parameter Name

Possible Values

Meaning

Any meaningful combination of thefol-
lowing:

PID List ALL » All PIDs arelistened to.
* NONE * NoPIDsarelistened to.
« 1231, 456’1, 7891, » Listed PIDs are listened to.
* A comma-separated list of alphanu- » The name of a process.
meric strings beginning with letters.
Underscoresare also allowed. Spaces
arenot allowed.
Any meaningful combination of the fol-
lowing:
TID List o ALL » All TIDs are listened to.
* NONE * No TIDs are listened to.
« 1231, 456’1, 7891, » Listed TIDs are listened to.
* A comma-separated list of alphanu- » The name of a thread as specified in
meric strings beginning with letters. thetrace_open_t hread() call.
Underscores are also allowed. Spaces See “trace_open_thread()” on page
arenot allowed. 2-9 for more information.
Any meaningful combination of thefol-
lowing:
Node List e ALL * All nodes are listened to.
* NONE * Nonodes are listened to.
0, 1, 4 * Listed node IDs are listened to.
» A comma-separated list of host names. * The name of anode/host.
Spaces are not allowed.
Foreground The colorsyour X server supports, asspec- The color used by the display object to
Color ifiedinther gb. t xt file. draw text and graphics in the foreground.
Background The colorsyour X server supports as, spec- The color in the background that any text
Color ifiedinther gb. t xt file. and graphics are drawn over.
Font The fonts your X server supports or are The style of text characters that the display

installed are in the directory
{usr/1ib/X11/fonts.

object uses to display text.

Text Justify

Left Text isjustified on the left side of the
display object.

Center Text ishorizontally centered in the display
object.

Right Text isjustified on the right side of the
display object.

Default Same as L eft, unless adifferent default is

specified in an X resource.

8-3

NightTrace Manual

Table 8-1. Common Configuration Parameters (Cont.)

Parameter Name Possible Va ues Meaning
Bottom Text sinks to the bottom of the display
object.
Text Gravity Center Te?(t isvertically centered in the display
object.
Top Text floats to the top of the display object.
Default SameasBottom, unlessadifferent default

is specified in an X resource.

Display Object Name

The “Display Object Name” isthe field at the top of the configuration form. Thisfield is
not titled in the configuration form; instead, it is labeled with the name of a display object
type, for example, DataBox. This parameter allows:

* You to name a particular display object configuration. (By default, newly
created display objects bear the nameunnaned_obj ect .)

* You to later define X resources to apply to the named display object. See
Appendix B for more information.

* ntr ace to reference the display object by name in error messages.

Event List

The Event List parameter restricts the trace events on which the display object can
display information. The display object ignores any trace event IDs or trace event tags that
are not on the trace event list. If an explicit list of trace event tags and trace event IDs is
specified, the tags and IDs on the list must be separated by commas. Only listed trace
events are examined. Qualified events and qualified states must not appear in the list.

If-Expression

The If-Expression parameter determines whether the Then-Expression parameter is
evaluated. If-Expressions are boolean, i.e., they should evaluateto f al se (0) ort r ue
(non-zero). If the If-Expression istrue, the Then-Expression is evaluated and
displayed in the display object (assuming all other criteria are met). If an If-Expression
evaluates to false, the Then-Expression retains its last value. See Chapter 9 for more

8-4

Configuring Display Objects

information on expressions. Some examples of valid If-Expressions and their effect on
the Then-Expression are shown in Table 8-2.

Table 8-2. Examples of If-Expressions

If-Expression Effect on Then-Expression
true Always evaluated
fal se Never evaluated
id() == 200 Evaluated if current trace event ID isequal to 200
id() < 200 Evaluated if current trace event ID isless than 200
pid() == 2371 Evaluated if current global process ID isequal to 237’1
tid() == 8953 Evaluated if current NightTrace thread ID is equal to 895’3
cpu() == 2 || cpu() == Evaluated if current trace event occurred on CPU 2 or 4

Then-Expression

The Then-Expression parameter determines what the output of the display object is
when the If-Expression istrue. If the If-Expression isfalse, the Then-Expression
retainsits last value. The possible values are a numeric expression or string. See Chapter 9
for more information on expressions. Some examples of valid Then-Expressions and
their resulting values are shown in Table 8-3.

Table 8-3. Examples of Then-Expressions

Then-Expression Resulting Value or Meaning

id() The current trace event ID

arg2() The second argument of the current trace event

format (“abc=%", argl()) The string “ abc=10" if ar g1() is 10 (See“format()” on
page 9-80.)

get _string (curr_state, id()) Thestring fromthe cur r _st at e string table pointed to by
id() (if any)

get _string (event, id()) Depending on whether trace event ID returned by i d() isin

the pre-defined event table, either the trace event ID hum-
ber or its corresponding trace event tag is displayed. (See
“get_string()” on page 9-75, “Pre-Defined String Tables” on
page 5-14, and “id()” on page 9-19.)

get _string (pid, pid()) Depending on whether the global processidentifier returned
by pi d() isinthe pre-defined pi d table, either the global
process identifier (PID) or its corresponding process nameis
displayed. (See“get_string()” on page 9-75, “Pre-Defined
String Tables’” on page 5-14, and “pid()” on page 9-22.)

8-5

NightTrace Manual

Table 8-3. Examples of Then-Expressions (Cont.)

Then-Expression

Resulting Value or Meaning

get _string (tid, tid())

get _string (bool ean, arg)

get _string (syscall, arg)

get _string (vector, arg)

get _format (next_state, id())

get _format (state_sumrary)

get _format (event _summary)

get format (event_arg_summary, 3)

get _format (event_arg_dbl _sunmary, 1)

Depending on whether the NightTrace thread identifier
returned by t i d() isinthe pre-definedt i d table, either
the NightTrace thread identifier (TID) or its corresponding
thread name is displayed. (See “get_string()” on page 9-75,
“Pre-Defined String Tables” on page 5-14, and “tid()” on
page 9-25.)

If arg hasthevalueO, f al se isdisplayed. Otherwise t r ue
is displayed. (See “get_string()” on page 9-75 and
“Pre-Defined String Tables” on page 5-14)

arg'svalueislooked up in the pre-defined syscal | table,
and its corresponding system call nameisdisplayed. (Thisis
meaningful only for NightTrace kernel trace event files.)
(See“get_string()” on page 9-75 and “Kernel String Tables”
on page 11-16.)

arg'svalueislooked up in the pre-defined vect or table,
and its corresponding interrupt or exception nameis
displayed. (Thisis meaningful only for NightTrace kernel
trace event files.) (See“get_string()” on page 9-75 and “ Ker-
nel String Tables” on page 11-16.)

The formatted string from the next _st at e format table
indexed by the integer returned by i d() (if any)

Display statistics about state matches, the state gaps, and the
state durations. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-20.)

Display statistics about trace event matches and trace event
gaps. (See“get_format()” on page 9-79 and “Pre-Defined
Format Tables” on page 5-20.)

Display statistics about trace event matches and their type
long third argument. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-20.)

Display statistics about trace event matches and their type
doublefirst argument. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-20.)

CPU List

The CPU List parameter determines from which logical central processing units (CPUS)
the display object will process trace events. Only processes that run on one of the CPUs on
this list will be considered by this display object. If the trace event sent to the display
object is not on the list of CPUs, then the trace event is ignored. A CPU number can be
specified only if a NightTrace kernel trace event file is specified. Multiple CPU numbers
must be separated by commas.

8-6

PID List

Configuring Display Objects

A global process identifier (PID) is a 32-bit integer. It includes a 16-bit integer raw PID
and a 16-bit integer lightweight process identifier (LWPID). The syntax for specifying a
PIDis:

raw_PID’ LWPID

The PID List parameter isthe list of global process identifiers (PIDs) or process names
that the display object will accept trace events from. If the trace event did not occur in a
process listed in this parameter, the trace event isignored. If anumber or nameis specified
that isnot avalid PID, awarning message is displayed. Multiple numbers and names must
be separated by commas.

NOTE

Prior to Version 4.1, nt r ace converted process identifiers into
process names during PID List input verification for a display
object. For each process identifier in the PID List, ntrace
would try to find its associated process name and display that
nameinthePID List. However, because multiple processes hav-
ing the same name may exist on a system, changing a process
identifier into a process name introduces the possibility that the
display object will accept trace events from undesirabl e processes.
Therefore, nt r ace no longer performs this conversion.

For example, suppose that two processes named a. out exist on a
particular system and that one has a PID of 1234 and the other
has a PID of 5678. Further suppose that you wish to create a
StateGraph to display events only for PID 1234. Prior to Version
4.1, if you entered 1234 in the PID List parameter, ntr ace
would have converted that to a. out . Asthe events were being
analyzed, any event that had a PID of 5678 would a so have been
displayed by the StateGraph since a process named a. out also
existed with aPID of 5678.

If the trace event file has multiple processes with the same name (for example, a. out),
specifying any one of the PIDs for that process selects all the PIDs of that process. To
avoid this, it isrecommended that all processes be given unique names. If that is not possi-
ble, you can isolate individual processes by including a PID restriction in the
If-Expression parameter. For example, if a. out includes PIDs 100’1, 200’1, and
300’1 and you want information only on PID 100’1, set the PID List parameter to a. out

and the If-Expression to pi d() == 100’ 1. For more information about the pi d
function, see “pid()” on page 9-22.

8-7

NightTrace Manual

TID List

8-8

A NightTrace thread identifier (TID) is a 32-bit integer. It includes a 16-bit integer raw
PID and a 16-hit integer C thread or Ada task identifier. If neither C threads nor Adatasks
are in use, then the 16-bit integer will always be zero. The syntax for specifyingaTID is:

raw_PID’ task id
or:
raw_PID’ thread id

TheTID List parameter isthelist of NightTrace thread identifiers (TIDs) or thread names
that the display object will accept trace events from. If the trace event did not occur in a
thread listed in this parameter, the trace event isignored. If a number or name is specified
that isnot avalid TID, awarning message is displayed. Multiple numbers and names must
be separated by commas.

NOTE

Prior to Version 4.1, nt r ace converted thread identifiers into
thread names during TID List input verification for a display
object. For eachthread identifierinthe TID List, nt r ace would
try to find its associated thread name and display that namein the
TID List. However, because multiple threads having the same
name may exist on a system, changing a thread identifier into a
thread name introduces the possibility that the display object will
accept trace events from undesirable threads. Therefore, nt r ace
no longer performs this conversion.

For example, suppose that two threads named daenon exist on a
particular system and that onehasaTID of 1234’ 1 and the other
hasaTID of 5678’ 3. Further suppose that you wish to create a
StateGraph to display events only for TID 1234’ 1. Prior to Ver-
sion 4.1, if you entered 1234’ 1 in the TID List parameter,
nt r ace would have converted that to daenmon. As the events
were being analyzed, any event that had a TID of 5678’ 3 would
also have been displayed by the StateGraph since the thread dae-

non also existed withaTID of 5678’ 3.

If the trace event file has multiple threads with the same name (for example,
CHI LD_THREAD), specifying any one of the TIDs with that thread name selects all of the
TIDs with that thread name. To avoid this, it is recommended that all threads be given
unique names. If that is not possible, you can isolate individual threads by includingaTID
restriction in the If-Expression parameter. For example, if CHl LD_THREAD includes
TIDs 100'1, 200’1, and 300’1 and you want information only on TID 100’1, set the TID
List parameter to CHI LD_THREAD and the If-Expression toti d() == 100’ 1. For
more information on thread names, see “trace_open_thread()” on page 2-9. For more
information about thet i d function, see“tid()” on page 9-25.

Node List

Configuring Display Objects

When NightTrace processes a trace file which was timestamped by an RCIM synchro-
nized tick clock, it internally assigns a node identifier to each node/host name represented
by atracefile. If no trace file was generated using the tick clock, this parameter is not dis-
played.

TheNode List parameter isthelist of node identifiers or node names from which the dis-
play object will accept trace events. If the trace event did not occur on anode listed in this
parameter, the trace event isignored. If a number or name is specified that is not avalid
node, awarning message is displayed. Multiple numbers and names must be separated by
commas.

Foreground Color

TheForeground Color parameter determinesthe color of itemsin the foreground of the
display object, which usually corresponds to the data being displayed by the display
object.

Background Color

Font

Text Justify

The Background Color parameter determines the color of the background of the
display object. Although thisis not the color used to display the data of interest in the
display object, it should be a color that contrasts well with the Foreground Color. This
will make the data easier to read.

The Font parameter determines the font that characters in the display object are displayed
in. Use of asmall font size is recommended due to the fact that there is generally alot of
data being displayed and asmall font size will help conserve screen space. All examplesin
this manual use the default “f i xed” font that is supplied with al X servers.

The Text Justify parameter determines the justification of the text in the display object.
Figure 8-2 shows what each type of text-justification looks like.

8-9

NightTrace Manual

Thiz i=
- |This is o |center—jus| - This is
Coleft=justi| o tified © o {right-just | -
<o |fFied text | - - text <+ |ified text

Figure 8-2. Left-, Center-, and Right-Justified Text

Text Gravity

The Text Gravity parameter determines whether text in the object will float to the top or
sink to the bottom of the display object. Figure 8-3 shows what each type of text gravity

lookslike.
S - [Thizs is
: o 1z 1= top
: Thiz is . center C o |gravity
- |bottom D |aravity
- |gravity :

Figure 8-3. Top vs. Bottom Gravity

Configuration Form Push Buttons

| Apply | Feset Festore Close

Figure 8-4. Configuration Form Push Buttons

Figure 8-4 shows the push buttons that all display object configuration forms have.

After you have changed the configuration parameters of a display object, these buttons
alow you to perform the following operations:

Apply (default) Validate the changes you made to the configuration
parameters, and apply the changes to the display object. Thisis
equivalent to pressing <Enter>.

8-10

Configuring Display Objects

Reset Discard all changes made since the last Apply or <Enter>.
Thisisequivalent to pressing <Esc>.

Restore Discard al changes made since the window was opened.

Close Discard any changes made since the last change was applied
and close the window.

Specific Configuration Parameters

The following sections discuss the configuration parameters specific to the following
display objects:

* GridLabel
¢ DataBox

¢ StateGraph
¢ EventGraph
¢ DataGraph

* Ruler

81

NightTrace Manual

GridLabel

8-12

Figure 8-5. GridLabel Configuration Form

The configuration form for the GridLabel is shown in Figure 8-5.

The Text parameter is the only parameter that is unique to GridLabels. This parameter is
set to the characters that are to appear in the GridL abel. For example, if you want abox on
the grid containing the phrase, “Flight Simulation Trace Screen,” you would enter the
following text in the Text field:

Fl'ight Simulation Trace Screen

See “GridLabel” on page 7-12 for more information. See* Common Configuration Param-
eters” on page 8-1 for descriptions of the common configuration parameters that
GridLabels use.

DataBox

Configuring Display Objects

TR_SWITCHIM
RUE

format{"pid %¥=", get_stringf{pid_cap, argli?

Figure 8-6. DataBox Configuration Form

The configuration form for the DataBox is shown in Figure 8-6.

NOTE

The Node List field appearsin thisdialog only when NightTrace
is configured to use an RCIM to timestamp events.

A DataBox can be used as a counter. A counter is simply a DataBox that counts the
occurrences of a particular trace event or other condition up to the current time.

For example, if you wanted to display the number of trace events occurring before the
current time, set the Event List parameter to ALL and put the following expression in the
Then-Expression field:

event _nat ches()

8-13

NightTrace Manual

This expression counts the number of times the criteria were met. See Chapter 9 for more
information on expressions. See “DataBox” on page 7-12 for more information. See
“Common Configuration Parameters” on page 8-1 for descriptions of the common config-
uration parameters that DataBoxes use.

To determine the format of the data displayed in the DataBox, give the

Then-Expression parameter an expression value. See “ Then-Expression” on page 8-5
for examples.

StateGraph

exceptiond

TR_EXCEPTIOM_ENTRY, TR_EXCEPTION_RESUME
TR_EXCEPTION_EXIT, TR_EXCEPTIOM_SUSPEND

C3|

TR_SWITCHIN

TRUE
TRUE
TRUE

Figure 8-7. StateGraph Configuration Form

The configuration form for the StateGraph is shown in Figure 8-7.
NOTE

The Node List field appearsin thisdialog only when NightTrace
is configured to use an RCIM to timestamp events.

8-14

Configuring Display Objects

A state is bounded by two user-specified trace events, a start event and an end event. An
instance of a state isthe period of time between the start event and end event, including the
start and end events themselves. Instances of the same state do not nest; thus, once a state
becomes active, events that might normally satisfy the conditions for the start event are
ignored until the end event is encountered.

The Start-Events parameter determines the trace events that can begin a state. This
parameter, aong with the End-Events parameter, defines part of what will be consid-
ered a state for this display object. These parameters work exactly like the Event List
parameters discussed earlier in “Common Configuration Parameters’ on page 8-1. Like
the Event List, they each have corresponding If-Expressions, caled Start-Expres-
sion and End-Expression, respectively.

The Start-Expression parameter determines the criteria, in addition to the start trace
event(s) and other criteria, which must be true before a state is considered to be started
(active). The End-Expression parameter determines the criteria, in addition to the end
trace event(s) and other criteria, which must be true before a state is considered to be
ended (inactive).

The following semantic rules apply to these expressions. In these rules, defining state
means a state with trace events in the Start-Events and End-Events lists.

e Start-Expression must not refer to its defining states. For example, it
must not call state_dur (), state_gap(), start or end functions for
these states. (See “Multi-State Functions’ on page 9-56, “ Start Functions’
on page 9-34, and “End Functions’ on page 9-45 for details.) Calling these
functions for these states would be an attempt to define a state based on its
own definition. Note that Start-Expression may call all of these
functions for qualified states.

* End-Expression must not refer to its defining states. For example, it
must not call st ate_dur (), state_gap(), or end functions for these
states. Calling these functions for these states would be an attempt to
define a state based on its own definition. Note that End-Expression
may call start functions for these states because at this point in the state
definition, the state has started. Note also that End-Expression may call
all of these functionsfor qualified states.

The Event Color parameter specifies the color of the vertical lines that represent the
eventsin the Event List. The possible values are the colors your X server supports, as
specified inther gb. t xt file. See Appendix B for more information.

StateGraphs indicate when a state is active by drawing arectangle in the Foreground
Color that spans the time when the start state and end state criteriaare met. In addition to
drawing this state rectangle, StateGraphs can behave exactly like EventGraphs by using
the Event List and If-Expression fields. Trace event lines are superimposed on the
state rectangle, which is useful for diagnosing problems where the criteria for starting the
state are met multiple times before the criteria for ending the state are met.

See “ StateGraph” on page 7-14 for more information. See “Common Configuration
Parameters’ on page 8-1 for descriptions of the common configuration parameters that
StateGraphs use.

8-15

NightTrace Manual

EventGraph

8-16

Figure 8-8. EventGraph Configuration Form

The configuration form for the EventGraph is shown in Figure 8-8. All of the parameters
for the EventGraph are discussed in “Common Configuration Parameters” on page 8-1.
See “EventGraph” on page 7-15 for more information.

NOTE

The Node List field appearsin this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

The If-Expression of an EventGraph determines whether a trace event should be
graphed. If the If-Expression istrue, then avertical lineis drawn at the point in time
that the trace event occurred.

DataGraph

Configuring Display Objects

interrupti

0, 0000
ER Y

>
4

[y
1]
=l

TR_INTERRUPT_ENTRY, TR_INTERRUPT_EXIT

TRUE

Figure 8-9. DataGraph Configuration Form

The configuration form for the DataGraph is shown in Figure 8-9.

NOTE

The Node List field appearsin this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

TheFill Style parameter determines the style of DataGraph created. The possible choices
are None or Solid. If None is chosen, then averticd line is drawn only at the time of a
trace event. If Solid is chosen, then all space to the right of a trace event will be filled
until the next trace event is encountered. Figure 8-10 shows the difference between Solid
and None.

8-17

NightTrace Manual

8-18

Figure 8-10. Solid vs. No Fill

The Maximum parameter determines what data value corresponds to the top of the Data-
Graph. The possible values are integers or CALC. If an integer is specified as the
maximum, any data that is equal to or greater than that vaue resultsin aline or bar that
goes to the top of the DataGraph. If CALC is specified, the maximum value will be the
greatest value found in the trace event run up to that point in time. Note that the maximum
can change as time increases and new maximums are encountered.

The Minimum parameter determines what data value corresponds to the bottom of the
DataGraph. The possible values are integers or CALC. If an integer is specified as the
minimum, any datathat isequal to or less than that value will result in no line or bar on the
DataGraph. If CALC is specified, the minimum value will be the smallest value found in
the trace event run up to that point in time. Note that the minimum can change as time
increases and new minimums are encountered.

Figure 8-11 shows the same set of data drawn in three DataGraphs, each configured
differently. The data range in value from 1 to 6 and are shown at the bottom of the figure.

* Thetop DataGraph is configured with a minimum of 2 and a maximum of
4. Notice that several bars reach the top of the DataGraph even though
they represent different data values; also note that there is no bar where
data has a value less than the minimum.

* Themiddle DataGraph is configured with aminimum of 0 and a maximum
of 10. Notice that the bars do not reach the top of the DataGraph and that
the differences between values are harder to discern.

¢ The bottom DataGraph is configured with a minimum of 0 and a maximum
set to CALC. Notice that the two occurrences of the maximum value of six
cause bars to reach the top of the DataGraph.

Figure 8-11. Maximum vs. Minimum Values

Ruler

Configuring Display Objects

See “DataGraph” on page 7-16 for more information. See “Common Configuration
Parameters’ on page 8-1 for descriptions of the common configuration parameters that
DataGraphs use.

— unnamed_ohject

Buler |unnamed_ubject

Lost Event Color |
tAark Color |

Foreground Color |

Background Color |
Font |

| | ﬁpplyl Resetl Resturel Clusel |

Figure 8-12. Ruler Configuration Form

The configuration form for the Ruler is shown in Figure 8-12.

TheLost Event Color parameter specifies the color of the reverse-video “L” (shownin
Figure 8-13) that is placed on a Ruler where NightTrace lost data. The possible values are
the colors your X server supports, as specified inther gb. t xt file. See “Preventing
Trace Events Loss’ on page A-1 for more information on lost data.

The Mark Color parameter specifies the color of the mark indicator, a triangle that
appears on the Ruler (shown in Figure 8-13). The possible values are the colors your X
server supports. See “The Interval Push Buttons’ on page 6-8 for more information about
the mark.

006621 0, 06624

N N T S O T . A I

Figure 8-13. Mark and Lost Event Markers

See “Ruler” on page 7-17 for more information. See “Common Configuration Parame-
ters” on page 8-1 for descriptions of the common configuration parameters that Rulers
use.

8-19

NightTrace Manual

8-20

9
Using Expressions

VIV BV .« . o ettt e e e e e e 9-1
EXPressioNSMENUttt 9-1
EXpression Dialog BOXES oo vt 9-2
Expression Configuration FOrmsot 9-2
EXPrESSIONS .« o .ttt e 9-4
OPEIAIOIS . . o ottt et e 9-4
O ANAS. . o et 9-5
CONSIANTS . . oo 9-5
MaCIOS . .. 9-6
FUNCLIONS . . o 9-9
Function Parameters e 9-12
Function Terminologyo o 9-13
Trace Event FUNCLIONS. 9-19

A0 - 9-19

AG() - e 9-20

arg dbl(). .. 9-21
NUML_@IGS() - e v vt et e e e e e e e e e 9-21

PIA() - e 9-22
FAV_PIA() - .o e 9-23

IWPI() - 9-23

thread id()o 9-24

task id() ... 9-25

1 [9-25

00 9-26

Off SBE() « v oo 9-27

HME() . oo e 9-27

NOAe Td() - . ot 9-28

pid table name() 9-29

tid table name() ... 9-29

NOAE NAME(). .« v vt et e e e e 9-30

ProCeSS NAME() .« . o v vttt e e e e e e e e 9-30
task_name() 9-31

thread name() 9-32
Multi-Event FUNCLIONS.o 9-32
BVENE_GAD() -« o et e 9-32
event_matches() 9-33

S@E FUNCLIONS . . . oo 9-34
SAt FUNCLIONS 9-34

start Td() ..o 9-35

Start Arg() - . 9-35
start_arg_ dbl(). 9-36

start NUM_args() .« ..o v 9-37

start Pid() ... e 9-37

start_ raw pid() ... 9-38

start_ Iwpid() 9-39
start_thread id()o 9-39

start_task id()ooii 9-40

NightTrace Manual

start tid(). ... 9-41

St CPU() - v oot 9-41
start_offset() 9-42
start time()o 9-42
start node id() ... 9-43
start_pid_table name() ... 9-44
start_tid table name(). 9-44
start node name(). 9-45
End FUNCLIONS.o 9-45
end id() .. oo 9-46
ENA AG() - - oo 9-47
end arg dbl() ... 9-47
end_NUM_args(). - -« v v et 9-48

end Pid() 9-48

end raw _pPid(). . ..o 9-49

end Iwpid()o 9-50

end thread id(). ... 9-51

end task id(). 9-51
end tid() 9-52
ENA CPU() . - o e e et 9-52

end OffSet()o oo 9-53
end time()o 9-54

end node id()ot 9-54
end pid_table name(). 9-55
end tid table name() 9-55

end node Name() . ..o e 9-56
Multi-State FUNCtions.o 9-56
SEAE GAD() -« v e e 9-57
State dUr() ..o 9-57
state matches() 9-58
State StAUS() . . o oo 9-58
Offset FUNCLIONS.o 9-59
Off Bt Hd() . .o vt 9-60
offset_arg() ..o oo 9-60
offset_arg dbl() ... 9-61
offset_ NUM_args(). . ..« vv it 9-61
offset_pid() oo v 9-62
offset_raw_pid()oovni i 9-63
offset_Iwpid()......cooi 9-63
offset_thread_id()........o oo 9-64
offset_task_id(). . ..o et 9-64
OffSEt_tid() ..o 9-65
OffSEL_CPU(). « o oo 9-66
offset_time(). 9-66
offset node id() ... 9-67
offset_pid table name().......... ... 9-67
offset_tid table name() i 9-68
offset_ node name()o 9-68
offset_process Name()ouie i 9-69
offset_task_name()t 9-69
offset_thread_name() 9-70
Summary FUNCLIONS.t 9-70
MINQ) . e e e 9-71

SUM() .« ettt e e e e 9-72
MIN_OffSet()o 9-73
max_offset()o 9-73
summary_matches().o 9-74

Format and Table Functionso 9-75

OB SING() . - v et e 9-75

0 1= L = 0) 9-77
get_format()o 9-79

format() 9-80
Qualified EVeNnts. o e 9-81

Qualified States 9-83

NightTrace Manual

Overview

9
Using Expressions

NightTrace allows you to define macros, qualified events, and qualified statesto aid in the
analysis of trace data. Macros are named expressions provided for flexibility and
convenience. Qualified events provide a mechanism for referencing trace event configu-
rations within certain functions. Qualified states provide a mechanism for referencing
state configurations within certain functions as well.

The Expressions menu contains menu items for creating these entities. See “Expres-
sions Menu” on page 9-1, “Macros’ on page 9-6, “Qualified Events’ on page 9-81, and
“Qualified States’ on page 9-83 for further information.

Macros, qualified events, and qualified states are configured using expressions in much
the same way as display objects. See “Expressions” on page 9-4 for a complete explana-
tion of expressions. In addition, Chapter 8 - Configuring Display Objects may provide
some helpful information as well.

Expressions Menu

Figure 9-1 shows the display page menu that lets you define macros, qualified events, and
qualified states. For more information about display pages, see “ Understanding Page Con-
figuration Files” on page 5-11.

ExEressiDns | Tools Hi

- hacros ..

Gualified Events ..
Gualified States ..

Figure 9-1. Expressions Menu

Selecting any of these menu entries makes an Expression Dialog Box appear.

9-1

NightTrace Manual

Expression Dialog Boxes

In the following text, expr stands for macro, qualified event, and qualified state.

Selecting any of the entries from the Expressions menu of the display page, makes a
dialog box like the one in Figure 9-2 appear. Because al exprs are user-defined, the list of
exprsisempty at first.

= Macros
List of Macros:
macro_001 A
steldey
T
| Add Delete | | Canfigure Close

Figure 9-2. Macro Dialog Box

The caption and the list presented are suitably different for each of the expr dia og boxes.

The push buttons in the dialog boxes perform the following functions:

Add Create a new expr on the current display page. Theinitial name

of an expr is type ###, where type is macr o, event, or
st at e and ### is a three-digit number beginning with 001.

Delete Remove the sel ected expr
Configure (default) Reconfigure or rename the selected expr
Close Close the dial og box

Add, Delete, and Close need no further explanation. Selecting Configure makes an
expr Configuration Form appear.

Expression Configuration Forms

In the following text, expr stands for macro, qualified event, and qualified state.

The Configuration Forms for exprs are similar. Common features are described here and
specific features appear in later sections.

9-2

Using Expressions

The push buttons on a Configuration Form appear in Figure 9-3.

| Apply Feset Festore Close

Figure 9-3. Configuration Form Push Buttons

A description of these push buttons follows:

Apply (default) Validate the changes you made to the configuration
parameters, and apply the changes to the selected expr. Thisis
equivalent to pressing <Enter>.

Reset Discard all changes made since the last Apply or <Enter>.
Thisisequivalent to pressing <Esc>.

Restore Discard al changes made since the window was opened.

Close Discard any changes made since the last change was applied
and close the window.

When you have finished editing the fields on the Configuration Form, press<Enter>
or click on Apply. This causes NightTrace to validate the data in each field you modified.
For general information on field editing and how NightTrace handles editing errors, see
“Field Editing” on page 6-16.

exprs are saved in aconfiguration file but are global to all display pages. That is, if an expr
is created in one display page, it may be used by any other display page. This means, how-
ever, that if an expr is saved in one configuration file but altered in another, you will have
to reopen the file with the original copy of the expr and save the new value.

NightTrace prevents you from creating more than one definition for aspecific expr. If you
wish to change the definintion of an expr, you must select it from the list of exprs and
press Configure. See“Expression Dialog Boxes’ on page 9-2 for details.

TIP:

If you want to share exprs among multiple display pages, create an empty display page
and put only exprsin it. Any new exprs or changes to old exprs should be added to this
display page. It is aso agood ideato place a DataBox on this page for every expr that you
add to this page. This way, you can see the current value of all your exprs at a glance.

9-3

NightTrace Manual
Expressions

NightTrace expressions can evaluate to numbers, strings, or boolean values. Expressions
appear in the following placesin NightTrace:

e Start-Expression and End-Expression on:
- Configuration Forms
- Summarize Forms
¢ [f-Expression on:
- Configuration Forms
- Summarize Forms
- Search Forms
* Then-Expression on Configuration Forms

* Filter-Expression and Summary-Expression on the Summarize
Form

* Expression onMacro Dialog Boxes
* Valuesin format tables

e Calstoformat(),get_string(),get _item),get _format(),
and summary functions.

Start-Expressions, End-Expressions, If-Expressions, and Filter-Expression
must evaluate to boolean values.

See Chapter 8 for more information on the Configuration Form. See Chapter 10 for
more information on the Search and Summarize Forms. See “Format Tables” on
page 5-17 for more information on format tables. Information on f or mat (),
get _string(),get item),get format(),and summary functions appears later
in this chapter.

NightTrace expressions are comprised of a combination of operators and operands. A
description of these operators and operands appears in the following sections.

Operators

Operatorsin NightTrace expressions include:
¢ Arithmetic operators: (), *,/,% (modulo), +,-,unary -
¢ Shift operators: <<, >>
¢ Bitwise operators. ~ (not), & (and), ™ (exclusiveor), | (or)
¢ Logical operators: ! (not), & (and), | | (or)

* Relationd operators: <, <=, >, >=, == (equivalence), ! = (non-equivalence)

94

Operands

Constants

Using Expressions

¢ Conditional operator: expr ? true value: false value

¢ Unary caststo data types (where the parentheses are required): e.g., (i nt)

NightTrace operators follow the operator precedence rules of the C programming lan-
guage.

Operand types are largely based on the C programming language and include:
* integer
¢ double-precision floating point
¢ character
* string
* boolean
Operands include:
¢ constants (see “Constants” on page 9-5)
* macro calls (see “Macros’ on page 9-6)
¢ function calls (see “Functions’ on page 9-9)
¢ qualified events (in functions only) (see “Qualified Events’ on page 9-81)
¢ qualified states (in functions only) (see “ Qualified States’ on page 9-83)

Constants are one type of operand that may be used in NightTrace expressions.
Integer literals may be expressed using typical C language notation:

* decimal literals have no special prefix
¢ octd literals begin with azero

* hexadecimal literals begin with a 0x
Floating point literals are always considered to be double-precision floating point literals.

String literals must be enclosed within double quotes; to include a double quote in a con-
stant string literal, precede the double quote with a backslash character. For example:

“possi bl e \"nel tdown\” alert”

The case-insensitive boolean constants TRUE and FAL SE have the values 1 and O,
respectively.

9-5

NightTrace Manual

Macros

9-6

Table 9-1 shows units and suffixes for time constants.

Table 9-1. Time Units and Constant Suffixes

Time Unit Suffix
Seconds (Thisis the default) S
Milliseconds (10e-3 seconds) ns
Microseconds (10e-6 seconds) us
Nanoseconds (10e-9 seconds) ns

Macros are named expressions provided for flexibility and convenience. Table 9-2 con-
trasts functions and macros.

Table 9-2. A Comparison of Functions and Macros

Functions Macros
Predefined User-defined
May have parameters Cannot have parameters

Invoked with parentheses around the Invoked with adollar sign ($) before the
parameter list macro name

To create amacro definition, select the Macros menu item from the Expressions menu
(see " Expressions Menu” on page 9-1) to openthe Macro Dialog Box (see“Expression
Dialog Boxes” on page 9-2 for details on this type of dia og).

Click the Add button on the Macro Dialog Box, select the macro from the list, and
click on the Configure button to pop up aMacro Configuration Form, like the one
shown in Figure 9-4.

Using Expressions

— stddev

hacroDefinition |stddew

EXpI’ESSiDﬂ I{max{argi} - mintargl} /B

| | Apply | Feset | Festore | Close | |

Figure 9-4. Macro Configuration Form

The following parameters can be configured for a macro.

MacroDefinition The name by which you refer to this macro in expressions.
Only references to this macro have adollar sign ($) prefix.

Expression Any valid expression. You must not call macros recursively; if
you try it, NightTrace issues an error, and you get undefined
results. Macros must not call the f or mat () and
get _format () functions. (For more information about these
functions, see “format()” on page 9-80 and “get_format()” on
page 9-79.)

EXAMPLES

A StateGraph configuration is a good candidate for a macro because it has two
expressions that are often related. For example, the following configuration

Start Events: FQO

Start Expression: argl() == 0x1234 &&
(arg2() == 0 || arg3() > 700)

End Events: BAR

End Expression: argl() == 0x1234 &&
(arg2() == 0 || arg3() > 700)

graphs states of trace event FOOthrough trace event BAR, where the arguments of
the trace events must meet an identical criteriato be considered interesting. Making

argl() == 0x1234 && (arg2() == 0 || arg3() > 700)

amacro would help ensure that you did not type the expression wrong in one of the
fields, and it would allow you to change the expressions easily, even while viewing
the trace run in View mode. (You can leave Macro Configuration Forms up
whilein View mode.)

Another good use for amacro is for focusing many display objects on a specific
process group. For example, if a Column contained several EventGraphs, each of
which had the following If-Expression:

I f Expression: process_nanme() == $task

9-7

NightTrace Manual

9-8

then at ask macro definition of
“f oobar”

would cause al of the EventGraphs to show only trace events logged by process
f oobar . Changing the macro to

“bazonk”

would shift the focus of the EventGraphs from process f oobar to process
bazonk. This technique can also be used in DataBoxes, DataGraphs, and State-
Graphs.

Functions

Using Expressions

Functions are pre-defined NightTrace entities that may be used in an expression. Night-
Trace defines five classes of functions:

* Traceevent functions (see “ Trace Event Functions’ on page 9-19)

State functions (see “ State Functions’ on page 9-34)

Offset functions (see “ Offset Functions’ on page 9-59)

Summary functions (see “ Summary Functions’ on page 9-70)

Format and table functions (see “Format and Table Functions” on page

9-75)

The genera syntax of al function calls except summary, format, and table functionsis as
follows. (Optional parts of function calls are in brackets ([]).)

function_name[([parameter])]

The prefix of the function_name determinesits class as follows:

of f set _

start _

end

state_

event _

Functions with this prefix provide information about the trace event
at the specified offset (or ordinal trace event number). See “ Offset
Functions” on page 9-59.

Functions with this prefix provide information about the start event
of the most recent instance of a state. See “Start Functions’ on page
9-34.

Functions with this prefix provide information about the end event of
the last completed instance of a state See “End Functions” on page
9-45.

Functions with this prefix provide information about instances of
states. See “Multi-State Functions” on page 9-56.

Functions with this prefix provide information about instances of
events. See “Multi-Event Functions’ on page 9-32.

Some functions can be optionally suffixed by a number, N, which specifies the Nth argu-
ment logged with the trace event. N defaultsto 1 and can have the values 1 through the
maximum argument logged. For example,

arg() Returns the first argument

argl() Returns the first argument

arg3() Returns the third argument

start_id() Returns atrace event ID

state_gap() Returns the time between instances of a state

9-9

NightTrace Manual

Table 9-3 contains a complete list of functions.

Table 9-3. NightTrace Functions

Syntax

Return Type

i d [([QE])]
start _id[([Q9)]
end_i d [([QI)]

of f set _i d (offset_expr)

The integer trace event ID.

ar g[N] [([QE])]
start_arg[N] [([QS)]

end_ar g[N] [([QS])]
of f set _ar g[N] (offset_expr)

The integer trace event argument.

ar g[N]_dbl [([QE])]
start_arg[N]_dbl [([QI])]

end_ar g[N]_dbl [([QS])]
of f set _ar g[N]_dbl (offset_expr)

The double-precision floating point trace
event argument.

num_ ar gs [([QE])]
start_num args [([Q9)]

end_num ar gs [([Q9)]
of f set _num ar gs (offset_expr)

The number of arguments associated with a
trace event.

pi d [([QE])]
start _pi d [([QS])]

end_pi d [([Q9))]
of f set _pi d (offset_expr)

Theinteger global processidentifier (PID)
associated with atrace event.

raw_pi d [([QE])]
start_raw pid[([Q9)]

end_raw _pi d [([Q9)]
of f set _raw _pi d (offset_expr)

The integer process identifier (raw PI1D)
associated with atrace event.

I'wpi d [([QE])]
start _| wpi d [([QS)]

end_| wpi d [([QS])]
of f set _| wpi d (offset_expr)

The integer lightweight process identifier
(LWPID) associated with atrace event.

t hread_i d [([QE])]
start_thread_ id[(Q9)]

end_t hread_i d [([QY])]
of f set _t hread_i d (offset_expr)

The integer thread identifier (thread D)
associated with atrace event.

task_i d [([QE])]
start _task_id[([Q9)]

end_t ask_i d [([QS])]
of f set _task_i d (offset_expr)

The integer Adatask identifier associated
with atrace event.

tid[([QE]]
start _tidI[([QI)]

end_tid [([QY])]
of f set _ti d (offset_expr)

9-10

The integer NightTrace thread identifier
(TID) associated with atrace event.

Table 9-3. NightTrace Functions

Using Expressions

Syntax

Return Type

cpu [([QE])]
start_cpu [([QS])]

end_cpu [([Q))]
of f set _cpu (offset_expr)

The integer logical CPU number associated
with atrace event. Thisfunctionisonly
valid when applied to events from Night-
Trace kernel trace event files.

tinme [([QE])]
start_time[([Q)]

end_ti me [([Q)]
of f set _t i nme (offset_expr)

The double-precision floating point time,
expressed in units of seconds, between a
trace event and the earliest trace event from
all trace event files currently in use.

node_i d [([QE])]
start_node_id[([Q9)]

end_node_i d [([QI])]
of f set _node_i d (offset_expr)

The internally-assigned integer node identi-
fier associated with atrace event.

pi d_t abl e_nare [([QE])]
start_pid_tabl e_nane [([QY])]
end_pi d_t abl e_nane [([QY])]

of f set _pi d_t abl e_nane (offset_expr)

The string describing the name of the pro-
cess identifier table (PID table) associated
with atrace event.

tid_table_name [([QE])]
start_tid_tabl e _name [([QS)]
end_tid_tabl e _name [([QI)]

of fset _tid_tabl e_name (offset_expr)

The string describing the name of the inter-
nally-assigned thread identifier table (TID
table) associated with atrace event.

node_nane [([QE])]
start_node_nane [([QY])]

end_node_nare [([Q9)]
of f set _node_nane (offset_expr)

The string describing the name of the sys-
tem from which atrace event was logged.

process_nane [([QE])]
of f set _process_nane (offset_expr)

The string describing the name of the pro-
cess (PID) associated with a trace event.

t ask_nane [([QE])]

of f set _t ask_nane (offset_expr)

The string describing the name of the Ada
task associated with a trace event.

t hr ead_nane [([QE])]
of f set _t hr ead_nane (offset_expr)

The string describing the name of the C
thread associated with atrace event.

event _gap [([QE])]
stat e_gap [([QS])]

The double-precision floating point time,
expresed in units of seconds, between the
instances of either atrace event or a state.

state_dur [([Q9)]

The double-precision floating point time,
expressed in units of seconds, of an instance
of adtate.

event _mat ches [([QE])]
st at e_mat ches [([Q9])]
sumary_nat ches [()]

The integer number of instances of either a
trace event or a state.

state_status [([Q9)]

The boolean status of a state; true if the cur-
rent time line is within an instance of the
state, false otherwise. See “state status()”
on page 9-58 for important details.

o1

NightTrace Manual

Table 9-3. NightTrace Functions

Syntax Return Type

of f set [([QE])] Theinteger ordina number (offset) of a
start_offset [([QS])] traceevent.
end_of f set [([QY])]

m n_of fset (expr) Theinteger ordina number (offset) of a
max_of f set (expr) trace event associated with a minimum or
maximum occurrence of expr.

m n (expr) The minimum, maximum, average, or sum
max (expr) of expr values before the current time. The
avg (expr) returntypeisthat of expr.

sum(expr)

get _string (table namel, int_expr]) The character string associated with item
int_expr in string table table_name.

get _i t em(table_name, “str_const”) Thefirst integer item number associated
with string str_const in string table
table name.

get _fornat (table namel, int_expr]) The character string associated with item
int_expr in format table table_name.

format (“format_string” [, arg] ...) A character string to format and display.

Function Parameters

If the function has a parameter, the parentheses are required. Otherwise, they are optional.

For example,
arg2 No parentheses are required
arg2() No parentheses are required
ar g2(GAK) Parentheses are required

In many functions, the parameter is optional because it can be inferred from context. For
trace event functions, the current trace event is used if the parameter is omitted. For state
functions, the state being defined is used if the parameter is omitted. (Thus, state func-
tions without parameters can only be used inside state definitions). For example,

argl() Operates on the current trace event
argl(my_event) Operates on the qualified event my _event
end_argl() Operates on the last completed instance of

the state being defined and can only appear
within a state definition

end_argl(mnmy_state) Operates on the last completed instance of
the qualified staterry_st at e

9-12

Using Expressions

This manua uses the following conventions for function parameters:

QE

QS

offset_expr

expr

table name

int_expr

str_const

format_string

arg

A user-defined qualified event. If supplied, the function applies
to the specified qualified event. For more information, see
“Qualified Events’ on page 9-81.

A user-defined qualified state. If supplied, the function applies
to the specified qualified state. For more information, see
“Qualified States” on page 9-83.

An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

Any valid NightTrace expression (see “Expressions’ on page
9-4).

An unquoted character string that represents the name of a
string table or format table.

An integer expression that acts as an index into the specified
string table or format table. int_expr must either match an
identifying integer value in the table_name table, or the
table nametable must haveadef aul t it emline

A string constant literal that acts as an index into the specified
string table.

A character string that contains litera characters and
conversion specifications. Conversion specifications modify
zero or more args.

An optiona expression to be formatted and displayed.

NOTE

NightTrace does not perform semantic error checking of func-
tions. For example, if you ask for information about the second
argument, but no second argument was logged, NightTrace does
not tell you. Similarly, NightTrace does not flag the use of unde-
fined macros, qualified events, and qualified states; it temporarily
puts their names in the appropriate Dialog Box in case you want
to configure these constructs. For more information about these
Dialog Boxes, see “Expression Dialog Boxes” on page 9-2.

Function Terminology

In order to use the NightTrace functions effectively, it may be useful to understand some
of the concepts associated with them.

Remember that an event (or trace event) is either a user-defined point of interest in an
application’s source code or a predefined point of interest in the kernel. In addition, a
state is defined to be aregion of source code bounded by two events.

9-13

NightTrace Manual

The descriptions of the functions further speak in terms of “instances’ of states. These are

best defined as:

current instance

last completed instance

most recent instance

The instance of a state which has begun but
has not yet completed. Thus, the current
time line would be positioned within the
region from the start event up to, but not
including, the end event.

The most recent instance of a state that has
already completed. Thus, the current time
line would be positioned either on, or after,
the end event for a state.

If the current time line is positioned within a
current instance of a state, then it is that
instance of the state. Otherwisg, it isthe last
completed instance of a state.

Figure 9-5 illustrates some of these concepts with a StateGraph.

State
Duration

Event Gap

/

|4

.L T

————a

L
1,6308=

L

|
1,630
L1 Jl | P!

1,6310=

State Gap

\Current

Time
Line

Figure 9-5. Function Terminology lllustrated

9-14

Using Expressions

A more detailed example isillustrated in the following figure.

> & [~ ~ LN
S‘\- c::'} '::‘Q. S '::‘N le,
1 E316= 1.6317= 1.6318= | 1 E319=

time line z
time line y
time line x

Figure 9-6. States and Events

The following discusses the terminology with respect to timeline x, timeliney, and time
linez.

Assuming the current time line was positioned at time line x in Figure 9-6, the various
“instances’” would be defined as:

current instance No current instance is defined since the cur-
rent time line is not positioned within any
instance of a state.

last completed instance Instance B

most recent instance Instance B. Since the current timelineis not
positioned within any instance of a state, the
most recent instance is the last completed
instance.

9-15

NightTrace Manual

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line x in Figure 9-6.

state_status() fase The current time line was not posi-
tioned within a current instance of a
state.

state_gap() ~0.000020 The duration of time in seconds

between event b and event c. The
function operated the most recent
instance of the state (instance B) and
the immediately preceding instance
(instance A).

state_dur () ~0.000090 The duration of time in seconds
between event ¢ and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_nat ches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631750 The time associated with event c. The
function operated on the most recent
instance of the state (instance B).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).

Assuming the current time line was positioned at time liney in Figure 9-6, the various
“instances’ would be defined as:

current instance Instance C
last completed instance Instance B
most recent instance Instance C

9-16

Using Expressions

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time liney in Figure 9-6.

state_status() true The current time line was positioned
inside a current instance of the state
(instance C).

state_gap() ~0.000030 The duration of time in seconds

between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur () ~0.000090 The duration of time in seconds
between event ¢ and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_nat ches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).

Assuming the current time line was positioned at time line z in Figure 9-6, the various
“instances’ would be defined as:

current instance No current instance is defined since the cur-
rent time line is positioned on the end event
of an instance of a state.

last completed instance Instance C

most recent instance Instance C

9-17

NightTrace Manual

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line z in Figure 9-6.

state_status() fase The current time line was not posi-
tioned inside a current instance of the
state. Even though the current time
line is positioned on an end event of
the state (event f), the corresponding
instance is said to have already com-
pleted.

state_gap() ~0.000030 The duration of time in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur () ~0.000040 The duration of time in seconds
between event e and event f. The func-
tion operated on the last completed
instance of the state (instance C).

state_nat ches() 3 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A, B, and C).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631910 The time associated with event f. The
function operated on the last com-
pleted instance of the state (instance
C).

9-18

Trace Event Functions

id()

Using Expressions

The trace event functions operate on either the qualified event specified to that function or

the current trace event. They include the following:

id()

arg()

arg_dbl ()
num ar gs()

pi d()

raw_pi d()

| wpi d()

cpu()
thread_id()
task_id()

tid()

of f set ()

time()

node_i d()

pi d_t abl e_narne()
tid_tabl e nane()
node_nane()
process_nhane()
task_nane()

t hr ead_nane()

Multi-event functions

DESCRIPTION

Thei d() function returnsthe trace event ID of the last instance of atrace event.

SYNTAX

id [([QED]

9-19

NightTrace Manual

PARAMETERS

QE

RETURN TYPE

integer

SEE ALSO

A user-defined qualified event. If supplied, the function returns
the trace event ID of the last instance of the trace event which
satisfies the conditions of the specified qualified event. If
omitted, the function returns the trace event ID of the current
trace event. For more information, see “Qualified Events’ on
page 9-81.

“start_id()” on page 9-35, “end_id()” on page 9-46, and “offset_id()” on page 9-60.

arg()

DESCRIPTION

Thear g() function returnsthe value of a particular trace event argument.

SYNTAX
ar g[N] [([QE])]
PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaultsto 1.
QE A user-defined qualified event. If supplied, the function returns

RETURN TYPE

integer

SEE ALSO

the specified argument for the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the specified argument for the
current trace event. For more information, see “Qualified
Events’ on page 9-81.

“arg_dbl()” on page 9-21, “num_args()” on page 9-21, “start_arg()” on page 9-35,
“end_arg()” on page 9-47, and “offset_arg()” on page 9-60.

9-20

arg_dbl()

num_args()

Using Expressions

DESCRIPTION

Thear g_dbl () function returns the value of a particular trace event argument.

SYNTAX

ar g[N]_dbl [([QE])]

PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaultsto 1.
QE A user-defined qualified event. If supplied, the function returns

the specified argument for the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the specified argument for the
current trace event. For more information, see “Qualified
Events’ on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg()” on page 9-20, “num_args()” on page 9-21, “start_arg_dbl()” on page 9-36,
“end_arg dbl()” on page 9-47, and “offset_arg_dbl()” on page 9-61.

DESCRIPTION
The num ar gs() function returns the number of arguments logged with a trace

event.

SYNTAX

num ar gs [([QE])]

PARAMETERS

QE A user-defined qualified event. If supplied, the function returns
the number of arguments of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the number of arguments of the
current trace event. For more information, see “Qualified
Events’ on page 9-81.

9-21

NightTrace Manual

pid()

9-22

RETURN TYPE

integer

SEE ALSO

“arg()

" on page 9-20, “start_num_args()” on page 9-37, “end_num_args()” on page

9-48, and “offset_num_args()” on page 9-61.

DESCRIPTION

The pi d() function returns the global process identifier (PID) associated with a
trace event.

SYNTAX

NOTE

A global processidentifier does not have the same meaning as the
typical operating system definition of pi d. A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the | wp_gl obal _sel f (2) man page for more information.

pi d [([QE]]

PARAMETERS

QE

A user-defined qualified event. If supplied, the function returns
the global process identifier of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the global process iden-
tifier of the current trace event. For more information, see
“Qualified Events’ on page 9-81.

RETURN TYPE

integer

SEE ALSO

“PID List” on page 8-7, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, “end_pid()” on page 9-48, and “offset_pid()” on page

9-62.

Using Expressions

raw_pid()

DESCRIPTION
Ther aw_pi d() function returns the process identifier (raw PID) associated with a
trace event.
NOTE
A NightTrace raw PID has the same meaning as the typical oper-
ating system definition of pi d. Seetheget pi d(2) man page
for more information.

SYNTAX

raw_pi d [([QE])]

PARAMETERS
QE A user-defined qualified event. If supplied, the function returns
the process identifier of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returnsthe processidentifier of the cur-

rent trace event. For more information, see “ Qualified Events”
on page 9-81.

RETURN TYPE

integer

SEE ALSO
“PID List” on page 8-7, “pid()” on page 9-22, “lwpid()” on page 9-23,
“start_raw_pid()” on page 9-38, “end_raw_pid()” on page 9-49, and
“offset_raw_pid()” on page 9-63.
Ilwpid()
DESCRIPTION

The | wpi d() function returns the lightweight process identifier (LWPID) associ-
ated with atrace event.

NOTE

Seethe | wp_sel f (2) man page for more information.

9-23

NightTrace Manual

SYNTAX

I'wpi d [([QE])]

PARAMETERS

QE

RETURN TYPE

integer

SEE ALSO

A user-defined qualified event. If supplied, the function returns
the lightweight process identifier of the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the lightweight
process identifier of the current trace event. For more infor-
mation, see “Qualified Events’ on page 9-81.

“PID List” on page 8-7, “pid()” on page 9-22, “raw_pid()” on page 9-23,
“start_|wpid()” on page 9-39, “end_Iwpid()” on page 9-50, and “offset_Iwpid()” on

page 9-63.

thread_id()

DESCRIPTION

Thet hread_i d() function returns the thread identifier associated with a trace

event.

NOTE

Seethet hr _sel f (3t hr ead) man page for more information.

SYNTAX

thread_i d [([QE])]

PARAMETERS

QE

RETURN TYPE

integer

9-24

A user-defined qualified event. If supplied, the function returns
the thread identifier of the last instance of the trace event which
satisfies the conditions for the specified qualified event. If
omitted, the function returns the thread identifier of the current
trace event. For more information, see “ Qualified Events’ on
page 9-81.

Using Expressions

SEE ALSO

“start_thread_id()” on page 9-39, “end_thread_id()” on page 9-51, and
“offset_thread_id()” on page 9-64.

task_id()
DESCRIPTION
The task_i d() function returns the Ada task identifier associated with a trace
event.
NOTE
This function is only meaningful for trace events logged by Ada
tasking programs.
SYNTAX
task_i d [([QE])]
PARAMETERS
QE A user-defined qualified event. If supplied, the function returns
the Adatask identifier of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the Ada task identifier of the
current trace event. For more information, see “Qualified
Events’ on page 9-81.
RETURN TYPE
integer
SEE ALSO
“start_task_id()” on page 9-40, “end_task_id()” on page 9-51, and
“offset_task_id()” on page 9-64.
tid()

DESCRIPTION

Theti d() function returns the internally-assigned NightTrace thread identifier
(TID) associated with atrace event.

SYNTAX

tid[([QE]]

9-25

NightTrace Manual

PARAMETERS

QE A user-defined qualified event. If supplied, the function returns
the NightTrace thread identifier of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the NightTrace thread
identifier of the current trace event. For more information, see
“Qualified Events’ on page 9-81.

RETURN TYPE

integer

SEE ALSO
“TID List” on page 8-8, “start_tid()” on page 9-41, “end_tid()” on page 9-52, and
“offset_tid()” on page 9-65.

cpu()

DESCRIPTION

The cpu() function returns the logica CPU number associated with a trace event.
CPUs are logically numbered starting at 0 and monotonically increase thereafter.

NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

cpu [([QEN]

PARAMETERS

QE A user-defined qualified event. If supplied, the function returns
the logical CPU number of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the logical CPU number of the
current trace event. For more information, see “Qualified
Events’ on page 9-81.

RETURN TYPE

integer

9-26

offset()

time()

SEE ALSO

Using Expressions

“start_cpu()” on page 9-41, “end_cpu()” on page 9-52, and “offset cpu()” on page

9-66.

DESCRIPTION

Theof f set () function returns the ordina number (offset) of atrace event.

SYNTAX

of f set [([QE])]

PARAMETERS

QE

RETURN TYPE

integer

SEE ALSO

A user-defined qualified event. If supplied, the function returns
the ordinal number (offset) of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the ordinal number (off-
set) of the current trace event. For more information, see
“Qualified Events’ on page 9-81.

“start_offset()” on page 9-42, “end_offset()” on page 9-53, “min_offset()” on page
9-73, and “max_offset()” on page 9-73.

DESCRIPTION

Theti me() function returns the time, in seconds, associated with a trace event.

Times arerelative to

SYNTAX

ti e [([QE]]

PARAMETERS

QE

the earliest trace event from all trace data files currently in use.

A user-defined qualified event. If supplied, the function returns
the time, in seconds, of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the time, in seconds, of the cur-

9-27

NightTrace Manual

rent trace event. For more information, see “ Qualified Events”
on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO
“event_gap()” on page 9-32, “start_time()” on page 9-42, “end_time()” on page

9-54, “state_gap()” on page 9-57, “state_dur()” on page 9-57, and “ offset_time()” on
page 9-66.

node_id()

DESCRIPTION

Thenode_i d() function returns the internally-assigned node identifier associated
with atrace event.

NOTE

Thenode_i d() functionis of limited usefulness since the node
identifier is an internally-assigned integer number assigned by
NightTrace. Thenode_name() function is more useful, as it
returns the name of the system from which a trace event was
logged. (See“node_name()” on page 9-30 for more information
about thisfunction.)

SYNTAX

node_i d [([QE])]

PARAMETERS

QE A user-defined qualified event. If supplied, the function returns
the node identifier of the last instance of the trace event which
satisfies the conditions for the specified qualified event. If
omitted, the function returns the node identifier of the current
trace event. For more information, see “ Qualified Events’ on
page 9-81.

RETURN TYPE

integer

9-28

pid_table _name()

tid_table_name()

Using Expressions

SEE ALSO

“start_node_id()” on page 9-43, “offset_node_id()” on page 9-67, and
“end_node id()” on page 9-54.

DESCRIPTION

The pi d_t abl e_nane() function returns the name of the internally-assigned
NightTrace process identifier table (PID table) associated with atrace event.

SYNTAX
pi d_t abl e_nane [([QE])]
PARAMETERS
QE A user-defined qualified event. If supplied, the function returns

the name of the process identifier table (PID table) of the last
instance of the trace event which satisfies the conditions for the
specified qualified event. |f omitted, the function returns the
name of the process identifier table (PID table) of the current
trace event. For more information, see “ Qualified Events’ on
page 9-81.

RETURN TYPE

string

SEE ALSO

“start_pid_table name()” on page 9-44, “offset_pid_table name()” on page 9-67,
and “end_pid_table name()” on page 9-55

DESCRIPTION

Thetid_t abl e_nanme() function returns the name of the internally-assigned
NightTrace thread identifier table (TID table) associated with atrace event.

SYNTAX
tid_tabl e name [([QE])]
PARAMETERS
QE A user-defined qualified event. If supplied, the function returns

the name of the thread identifier table (TID table) of the last

9-29

NightTrace Manual

instance of the trace event which satisfies the conditions for the
specified qualified event. |f omitted, the function returns the
name of the thread identifier table (TID table) of the current
trace event. For more information, see “ Qualified Events’ on
page 9-81.

RETURN TYPE

string

SEE ALSO
“start_tid_table name()” on page 9-44, “offset_tid_table name()” on page 9-68, and
“end_tid_table_name()” on page 9-55

node_name()

DESCRIPTION
The node_nane() function returns the name of the system from which atrace
event was logged.

SYNTAX

node_nane [([QE])]

PARAMETERS

QE A user-defined qualified event. If supplied, the function returns
the name of system from which the last instance of the trace
event which satisfies the conditions for the specified qualified
event was logged. If omitted, the function returns the name of
the system from which the current trace event was logged. For
more information, see “Qualified Events’ on page 9-81.

RETURN TYPE

string

SEE ALSO

“start_node_name()” on page 9-45, “offset_node_name()” on page 9-68, and
“end_node_name()” on page 9-56

process_name()

DESCRIPTION

The process_nane() function returns the name of the process (PID) associated
with atrace event.

9-30

task_name()

SYNTAX

Using Expressions

process_nane [([QE])]

PARAMETERS

QE

RETURN TYPE

string

SEE ALSO

A user-defined qualified event. If supplied, the function returns
the name associated with the PID of the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the name asso-
ciated with the PID of the current trace event. For moreinfor-
mation, see “Qualified Events’ on page 9-81.

“offset_process name()” on page 9-69

DESCRIPTION

Thet ask_name() function returns the name of the task associated with atrace

event.

NOTE

This function is only meaningful for trace events which were
logged from Adatasking programs.

SYNTAX

t ask_nane [([QE]D)]

PARAMETERS

QE

RETURN TYPE

string

A user-defined qualified event. If supplied, the function returns
the name of the task associated with the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the name of the
task associated with the current trace event. For more infor-
mation, see “Qualified Events’ on page 9-81.

9-31

NightTrace Manual

thread_name()

Multi-Event Functions

event_gap()

9-32

SEE ALSO

“offset_task_name()” on page 9-69

DESCRIPTION

Thet hread_nane() function returns the thread name associated with a trace
event.

SYNTAX

t hr ead_name [([QE])]

PARAMETERS
QE A user-defined qualified event. If supplied, the function returns
the thread name associated with the last instance of the trace
event which satisfies the conditions for the specified qualified
event. |f omitted, the function returns the thread name associ-

ated with the current trace event. For more information, see
“Qualified Events’ on page 9-81.

RETURN TYPE

string

SEE ALSO

“offset_thread_name()” on page 9-70

Multi-event functions return information about one or more instances of an event:

e event_gap()

¢ event_nat ches()

DESCRIPTION

The event _gap() function returns the time, in seconds, between the most recent
occurrence of a specific event and its immediately preceeding occurrence.

SYNTAX

event _gap [([QE])]

Using Expressions

PARAMETERS
QE A user-defined qualified event. If supplied, the function calclu-
ates the gap between the two most recent occurrences of events
which satisfy the conditions of the specified qualilfied event.
If omitted, the function calculates the gap between the current

trace event and the event immediately preceeding it. For more
information, see “Qualified Events’ on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO
“time()” on page 9-27, “state_gap()” on page 9-57, and “state_dur()” on page 9-57.

event_matches()

DESCRIPTION

The event _mat ches() function returns the number of occurrences of atrace
event on or before the current time line.

SYNTAX

event _nat ches [([QE])]

PARAMETERS
QE A user-defined qualified event. If supplied, the function calcu-
lates the number of occurrences of events which satisfy the
conditions of the specified qualified event on or before the cur-
rent timeline. If omitted, the function calculates the number of

occurrences of all events on or before the current time line.
For more information, see “Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“summary_matches()” on page 9-74.

9-33

NightTrace Manual

State Functions

Inits simplest form, a state is a region of source code bounded by two trace events. A
state definition requires the specification of two trace events, a start event and an end
event, respectively. Additional conditions may be specified in a state definition to further
constrain the state. The state functions include the following:

* Start functions
¢ End functions

¢ Multi-state functions

Start Functions

The start functions provide information about the start event of the most recent instance of
a state. The state to which the start function appliesis either the qualified state specified to
the function, or the state being currently defined. Thus, if a qualfied state is not specified,
start functions are only meaningful when used in expressions associated within a state def-
inition. In addition, start functions should not be used in a recursive manner in a Start
Expression; a start function should not be specified in a Start Expression that
applies to the state definition containing that Start Expression. Conversely, an End
Expression may include start functions that apply to the state definition containing that
End Expression.

NOTE

Start functions provide information about the most recent instance
of a state, whereas end functions (see “End Functions” on page
9-45) provide information about the last completed instance of a
state.

Start functions include the following:
e start_id()
e start_arg()
e start_arg_dbl ()
e start_numargs()
e start_pid()
e start_raw pid()
e start_thread_id()
e start_task_id()
e start_tid()
e start_|wpid()

e start_cpu()

9-34

start_id()

start_arg()

Using Expressions

e start_offset()

e start_time()

e start_node_id()

e start_pid_tabl e name()
e start_tid_tabl e name()

e start_node_nane()

DESCRIPTION

Thestart _i d() function returnsthe trace event ID of the start event of the most
recent instance of a state.

SYNTAX

start _id[([QI]

PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“id()” on page 9-19, “end_id()” on page 9-46, and “offset_id()” on page 9-60.

DESCRIPTION

Thestart _arg() function returns the value of a particular trace event argument
associated with the start event of the most recent instance of a state.

SYNTAX

start_ar g[N] [([QI)]

9-35

NightTrace Manual

PARAMETERS
N Specifies the Nth argument logged with the start event.
Defaultsto 1.
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg_dbl()” on page 9-36, “start_num_args()” on page
9-37, “end_arg()” on page 9-47, and “ offset_arg()” on page 9-60.

start_arg_dbl()

DESCRIPTION

Thestart _arg_dbl () function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX
start _arg[N]_dbl [([Q)]
PARAMETERS
N Specifies the Nth argument logged with the start event.
Defaultsto 1.
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()" on page 9-21, “start_arg()” on page 9-35, “start_num_args()” on page
9-37, “end_arg_dbl()” on page 9-47, and “ offset_arg_dbl()” on page 9-61.

9-36

start_num_args()

start_pid()

Using Expressions

DESCRIPTION

Thestart_num args() function returns the number of arguments associated
with the start event of the most recent instance of a state.

SYNTAX

start_num args [([Q9)]

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“start_arg()” on page 9-35, “num_args()” on page 9-21, “end_num_args()” on page
9-48, and “offset_num_args()” on page 9-61.

DESCRIPTION

Thestart _pi d() function returns the global process identifier (PID) associated
with the start event of the most recent instance of a state.

NOTE

A global processidentifier does not have the same meaning as the
typical operating system definition of pi d. A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the _I| wp_gl obal _sel f (2) man page for moreinformation.

SYNTAX

start_pi d [([QS)]

9-37

NightTrace Manual

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“end_pid()” on page 9-48, and “offset_pid()” on page 9-62.

start_raw_pid()

DESCRIPTION

Thestart _raw _pi d() function returns the process identifier (raw PID) associ-
ated with the start event of the most recent instance of a state.

NOTE

A NightTrace raw PID has the same meaning as the typical oper-
ating system definition of pi d. Seetheget pi d(2) man page
for more information.

SYNTAX
start_raw pid [([QY)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()" on page 9-23, “lwpid()” on page 9-23,
“end_pid()” on page 9-48, and “offset_pid()” on page 9-62.

9-38

Using Expressions

start_lwpid()

DESCRIPTION

Thestart _| wpi d() function returns the lightweight process identifier (LWPID)
associated with the start event of the most recent instance of a state.

NOTE

Seethe | wp_sel f (2) man page for more information.

SYNTAX
start _|wpi d[([Q)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()" on page 9-23, “lwpid()” on page 9-23,
“end_pid()” on page 9-48, and “offset_pid()” on page 9-62.

start_thread_id()

DESCRIPTION

Thestart _thread_id() function returns the thread identifier associated with
the start event of the most recent instance of a state.

NOTE

Seethet hr _sel f (3t hr ead) man page for more information.

SYNTAX

start_thread_id[(QY)]

9-39

NightTrace Manual

PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“thread_id()” on page 9-24, “end_thread_id()” on page 9-51, and
“offset_thread_id()” on page 9-64.

start_task_id()

DESCRIPTION

Thestart _task_id() function returns the Adatask identifier associated with
the start event of the most recent instance of a state.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX
start _task_id[([QY)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“task_id()" on page 9-25, “end_task_id()” on page 9-51, and “offset_task_id()” on
page 9-64.

9-40

Using Expressions

start_tid()

DESCRIPTION

Thestart tid() functionreturns the internally-assigned NightTrace thread
identifier (TID) associated with the start event of the most recent instance of a state.

SYNTAX

start_tid[([Q)]

PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“tid()” on page 9-25, “end_tid()” on page 9-52, and “ offset_tid()” on page 9-65.

start_cpu()

DESCRIPTION

Thestart _cpu() function returnsthe logical CPU number associated with the
start event of the most recent instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files.
SYNTAX

start_cpu [([QY)]

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

9-41

NightTrace Manual

start_offset()

start_time()

9-42

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “end_cpu()” on page 9-52, and “ offset_cpu()” on page 9-66.

DESCRIPTION

Thestart_of fset () function returns the ordinal number (offset) of the start
event of the most recent instance of a state.

SYNTAX

start_of fset [([Q])]

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“offset()” on page 9-27 and “end_offset()” on page 9-53.

DESCRIPTION
Thestart_time() function returns thetime, in seconds, associated with the start

event of the most recent instance of a state. Times are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

start _time [([QI)]

start_node_id()

PARAMETERS

QS

RETURN TYPE

Using Expressions

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

double-precision floating point

SEE ALSO

“time()” on page 9-27, “end_time()” on page 9-54, “state_gap()” on page 9-57,
“state_dur()” on page 9-57, and “offset_time()” on page 9-66.

DESCRIPTION

The st art _node_i d() function returns the internally-assigned node identifier
associated with the start event of the most recent instance of a state.

SYNTAX

start_node_i d [([QY)]

PARAMETERS

QS

RETURN TYPE

integer

SEE ALSO

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

“node_id()” on page 9-28, “offset_node_id()” on page 9-67, and “end_node _id()”

on page 9-54

9-43

NightTrace Manual

start_pid_table_name()

start_tid_table_name()

9-44

DESCRIPTION

Thestart _pid_tabl e_nanme() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) associated with the
start event of the most recent instance of a state.

SYNTAX
start_pi d_tabl e _nane [([QI)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“pid_table_name()” on page 9-29, “offset_pid_table name()” on page 9-67, and
“end_pid_table name()” on page 9-55

DESCRIPTION

Thestart _tid_tabl e _name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) associated with the
start event of the most recent instance of a state.

SYNTAX
start_tid_tabl e _nane [([QI)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

start_node_name()

End Functions

Using Expressions

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “offset_tid_table name()” on page 9-68, and
“end_tid_table_name()” on page 9-55

DESCRIPTION
Thestart _node_nane() function returns the name of the system from which
the start event of the most recent instance of a state was logged.

SYNTAX

start_node_nane [([QY)]

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“node_name()” on page 9-30, “offset_node_name()” on page 9-68, and
“end_node_name()” on page 9-56

The end functions provide information about the end event of the last completed instance
of a state. The state to which the end function appliesis either the qualified state specified
to the function, or the state being currently defined. Thus, if a qualfied state is not speci-
fied, end functions are only meaningful when used in expressions associated within a state
definition.

NOTE
End functions provide information about the last completed
instance of a state, whereas start functions (see “ Start Functions’

on page 9-34) provide information about the most recent instance
of a state.

9-45

NightTrace Manual

end_id()

9-46

End functions include:

end_id()

end_arg()

end_ar g_dbl ()
end_num ar gs()
end_pi d()
end_raw pi d()
end_I wpi d()
end_thread_id()
end_task_id()
end_tid()

end_cpu()

end_of fset ()
end_time()
end_node_i d()

end_pi d_tabl e_nane()
end_tid_table_nane()

end_node_nane()

DESCRIPTION

Theend_i d() function returns the trace event ID associated with the end event of
the last completed instance of a state.

SYNTAX

end_i d [([QS])]

PARAMETERS

QS

RETURN TYPE

integer

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

end_arg()

end_arg_dbl()

Using Expressions

SEE ALSO

“id()” on page 9-19, “start_id()” on page 9-35, and “offset_id()” on page 9-60.

DESCRIPTION

The end_ar g() function returns the value of a particular trace event argument
associated with the end event of the last completed instance of a state.

SYNTAX
end_ar g[N] [([QT)]
PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaultsto 1.
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg()” on page 9-35, “end_arg_dbl()” on page 9-47,
“end_num_args()” on page 9-48, and “ offset_arg()” on page 9-60.

DESCRIPTION

Theend_arg_dbl () function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX
end_ar g[N]_dbl [([QS])]
PARAMETERS
N Specifies the Nth argument logged with the trace event.

Defaultsto 1.

9-47

NightTrace Manual

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()" on page 9-21, “start_arg_dbl()” on page 9-36, “end_arg()” on page 9-47,
“end_num_args()” on page 9-48, and “ offset_arg_dbl()” on page 9-61.

end_num_args()

DESCRIPTION

Theend_num ar gs() function returns the number of arguments associated with
the end event of the last completed instance of a state.

SYNTAX
end_num ar gs [([Q)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“num_args()” on page 9-21, “start_num_args()” on page 9-37, “end_arg()” on page
9-47, and “offset_num_args()” on page 9-61.

end_pid()

DESCRIPTION

The end_pi d() function returns the global process identifier (PID) associated
with the end event of the last completed instance of a state.

9-48

end_raw_pid()

Using Expressions

NOTE

A global processidentifier does not have the same meaning as the
typical operating system definition of pi d. A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the | wp_gl obal _sel f (2) man page for more information.

SYNTAX
end_pi d [([Q9)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()" on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.

DESCRIPTION
Theend_r aw _pi d() function returns the process identifier (raw PID) associated
with the end event of the last completed instance of a state.
NOTE
A NightTrace raw PID has the same meaning as the typical oper-

ating system definition of pi d. Seetheget pi d(2) man page
for more information.

SYNTAX

end_r aw_pi d [([Q9)]

9-49

NightTrace Manual

PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.

end_lwpid()

DESCRIPTION

The end_| wpi d() function returns the lightweight process identifier (LWPID)
associated with the end event of the last completed instance of a state.

NOTE

Seethe | wp_sel f (2) man page for more information.

SYNTAX
end_I wpi d [([QI)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()" on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.

9-50

Using Expressions

end_thread_id()

DESCRIPTION

Theend_t hread_i d() function returns the thread identifier associated with the
end event of the last completed instance of a state.

NOTE

Seethet hr _sel f (3t hr ead) man page for more information.

SYNTAX
end_t hread_i d [([Q9)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“thread_id()” on page 9-24, “start_thread_id()” on page 9-39, and
“offset_thread_id()” on page 9-64.

end_task_id()

DESCRIPTION

Theend_task_i d() function returns the Adatask identifier associated with the
end event of the last completed instance of a state.

NOTE
This function is only meaningful for trace events logged by Ada

tasking programs.

SYNTAX

end_t ask_i d [([Q9)]

9-51

NightTrace Manual

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer
SEE ALSO
“task_id()” on page 9-25, “start_task_id()” on page 9-40, and “offset_task_id()” on
page 9-64.
end_tid()
DESCRIPTION
Theend_ti d() function returnsthe internally-assigned NightTrace thread identi-
fier (TID) associated with the end event of the last completed instance of a state.
SYNTAX
end_tid[([Q9)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.
RETURN TYPE
integer
SEE ALSO
“tid()" on page 9-25, “start_tid()” on page 9-41, and “offset_tid()” on page 9-65.
end_cpu()

DESCRIPTION
The end_cpu() function returns the logical CPU number associated with the end

event of the last completed instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

9-52

end_offset()

Using Expressions

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

end_cpu [([QS)]

PARAMETERS

QS

RETURN TYPE

integer

SEE ALSO

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

“cpu()” on page 9-26, “ start_cpu()” on page 9-41, and “ offset_cpu()” on page 9-66.

DESCRIPTION

The end_of f set () function returns the ordinal number (offset) of the end event
of the last completed instance of a state.

SYNTAX

end_of fset [([QI)]

PARAMETERS

QS

RETURN TYPE

integer

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

9-53

NightTrace Manual

end_time()

end_node_id()

9-54

SEE ALSO

“offset()” on page 9-27 and “start_offset()” on page 9-42.

DESCRIPTION

Theend_ti me() function returns the time, in seconds, associated with the end
event of the last completed instance of a state. Times are relative to the earliest
trace event from all trace data files currently in use.

SYNTAX

end_t i me [([QS)]

PARAMETERS

QS

RETURN TYPE

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

double-precision floating point

SEE ALSO

“time()” on page 9-27, “start_time()” on page 9-42, “state_gap()” on page 9-57,
“state_dur()” on page 9-57, and “offset_time()” on page 9-66.

DESCRIPTION

Theend_node_i d() function returnsthe internally-assigned node identifier asso-
ciated with the end event of the last completed instance of a state.

SYNTAX

end_node_i d [([QS])]

PARAMETERS

QS

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

end_pid_table_name()

end_tid_table_name()

Using Expressions

RETURN TYPE

integer

SEE ALSO

“node_id()” on page 9-28, “start_node _id()” on page 9-43, and “offset_node _id()”
on page 9-67

DESCRIPTION

The end_pi d_t abl e_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) associated with the
end event of the last completed instance of a state.

SYNTAX
end_pi d_tabl e_nane [([QY)]
PARAMETERS
Qs A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“pid_table_name()” on page 9-29, “start_pid_table name()” on page 9-44, and
“offset_pid_table name()” on page 9-67.

DESCRIPTION
Theend_tid_table_name() function returns the name of the inter-

nally-assigned NightTrace thread identifier table (TID table) associated with the end
event of the last completed instance of a state.

SYNTAX

end_tid_table_nane [([Q])]

9-55

NightTrace Manual

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “start_tid table name()” on page 9-44, and
“offset_tid_table_name()” on page 9-68.

end_node_name()

DESCRIPTION

The end_node_nane() function returns the name of the system from which the
end event of the last completed instance of a state was logged.

SYNTAX

end_node_nane [([QI)]

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“node_name()” on page 9-30, “start_node_name()” on page 9-45, and
“offset_node_name()” on page 9-68.

Multi-State Functions
Multi-state functions return information about one or more instances of a state:

e state_gap()

e state _dur()

9-56

state_gap()

state_dur()

Using Expressions

e state _natches()

e state_status()

For restrictions on usage, see “ StateGraph” on page 8-14.

DESCRIPTION

The st at e_gap() function returns the time in seconds between the start event of
the most recent instance of the state and the end event of the instance immediately
preceeding it or zero if there was no previous instance.

SYNTAX

state_gap [([QS)]

PARAMETERS
Qs A user-defined qualified state. If supplied, it specifiesthe state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“start_time()” on page 9-42, “end_time()” on page 9-54, “event_gap()” on page
9-32, and “state_dur()” on page 9-57.

DESCRIPTION

The st at e_dur () function returns the time in seconds between the start event and the
end event of the last completed instance of a state. Thus, if the current time line occurs
within an instance of the state but before it has ended, st at e_dur () returnsthe duration
of the previous instance or zero if there was no previous instance.

SYNTAX

state_dur [([QI)]

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may

9-57

NightTrace Manual

state_matches()

state_status()

9-58

only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“state_gap()” on page 9-57.

DESCRIPTION

The st at e_mat ches() function returns the number of completed instances of a
state on or before the current time line.

SYNTAX

st at e_mat ches [([Q])]

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“Start Functions” on page 9-34 and “summary_matches()” on page 9-74.

DESCRIPTION

The st at e_st at us() function indicates whether the current time line resides
within a current instance of a state. Thus, if the current timelineis positioned in the
region from the start event up to, but not including, the end event of an instance of
the state, the return value is TRUE. Otherwise, it is FALSE.

SYNTAX

st at e_st at us [([Q])]

Using Expressions

PARAMETERS

Qs A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

boolean

Offset Functions

All offset functions take an expression that evaluates to an ordina trace event (offset) asa
parameter. (Offsets begin at zero.) These functions include the following:

e offset _id()

e offset_arg()

e offset_arg_dbl ()

e offset_num args()

e offset_pid()

e offset_raw pid()

e offset | wpid()

e offset _thread_ id()

e offset _task_ id()

e offset _tid()

e offset_cpu ()

e offset _tinme()

e offset_node_id()

e offset_pid_table_nane()
e offset _tid_table_nane()
¢ of f set _node_nane()

e offset _process_nane()

e offset _task_name()

e offset_thread_nane()
Usually, these functions take one of the following functions as a parameter:

e offset()

9-59

NightTrace Manual

offset_id()

offset_arg()

9-60

e start_offset()

end_of fset ()
* mn_offset()
* max_of fset()
For information about these functions, see “offset()” on page 9-27, “start_offset()” on

page 9-42, “end_offset()” on page 9-53, “min_offset()” on page 9-73, and “max_offset()”
on page 9-73.

DESCRIPTION

The of f set _i d() function returns the trace event ID of the ordina trace event
(offset).

SYNTAX

of fset i d(offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“id()” on page 9-19, “start_id()" on page 9-35, and “end_id()" on page 9-46.

DESCRIPTION

The of f set _ar g() function returns the value of a particular trace event argu-
ment for the ordinal trace event (offset).

SYNTAX
of f set _ar g[N] (offset_expr)
PARAMETERS
N Specifies the Nth argument logged with the trace event.

Defaultsto 1.

offset_arg_dbl()

offset_num_args()

Using Expressions

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg()” on page 9-35, “end_arg()” on page 9-47,
“offset_arg_dbl()” on page 9-61, and “offset_ num_args()” on page 9-61.

DESCRIPTION

The of f set _ar g_dbl () function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX
of f set _ar g[N]_dbl (offset_expr)
PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaultsto 1.
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of atrace event.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()" on page 9-21, “start_arg_dbl()” on page 9-36, “end_arg_dbl()” on page
9-47, “offset_arg()” on page 9-60, and “offset_num_args()” on page 9-61.

DESCRIPTION

Theof f set _num ar gs() function returns the number of arguments logged with
the ordinal trace event (offset).

SYNTAX

of f set _num ar gs (offset_expr)

9-61

NightTrace Manual

offset_pid()

9-62

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“num_args()” on page 9-21, “start_num_args()” on page 9-37, “end_num_args()” on
page 9-48, “offset_arg()” on page 9-60, and “offset_arg _dbl()” on page 9-61.

DESCRIPTION

The of f set _pi d() function returns the global process identifier (PID) from
which the ordinal trace event (offset) was logged.

NOTE

A global processidentifier does not have the same meaning as the
typical operating system definition of pi d. A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the | wp_gl obal _sel f (2) man page for more information.

SYNTAX

of f set _pi d (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “end_pid()” on page 9-48.

Using Expressions

offset_raw_pid()

DESCRIPTION

The of f set _raw _pi d() function returns the process identifier (raw PID) from
which the ordinal trace event (offset) was logged.

NOTE

A NightTrace raw PID has the same meaning as the typical oper-
ating system definition of pi d. Seetheget pi d(2) man page
for more information.

SYNTAX
of f set _raw _pi d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()" on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “end_pid()” on page 9-48.

offset_lwpid()

DESCRIPTION

The of f set _| wpi d() function returns the lightweight process identifier
(LWPID) from which the ordinal trace event (offset) was logged.

NOTE

Seethe | wp_sel f (2) man page for more information.

SYNTAX

of f set _| wpi d (offset_expr)

9-63

NightTrace Manual

offset_thread_id()

offset_task_id()

9-64

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()" on page 9-23, “lwpid()” on page 9-23,
“start_lwpid()” on page 9-39, and “end_Iwpid()” on page 9-50.

DESCRIPTION

Theof fset _thread_i d() function returns the thread identifier from which the
ordinal trace event (offset) was logged.

NOTE

Seethet hr _sel f (3t hr ead) man page for more information.

SYNTAX
of fset _t hread_i d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“thread_id()” on page 9-24, “start_thread id()” on page 9-39, and “end _thread id()”
on page 9-51.

DESCRIPTION

Theof fset _task_id() function returnsthe Adatask identifier from which the
ordinal trace event (offset) was logged.

offset_tid()

Using Expressions

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX
of f set _task_i d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“task_id()” on page 9-25, “start_task_id()” on page 9-40, and “end_task_id()” on
page 9-51.

DESCRIPTION

The of f set _ti d() function returns the internally-assigned NightTrace thread
identifier (TID) from which the ordina trace event (offset) was logged.

SYNTAX
of f set _ti d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“tid()” on page 9-25, “start_tid()” on page 9-41, and “end_tid()” on page 9-52.

9-65

NightTrace Manual

offset_cpu()

DESCRIPTION

Theof f set _cpu() function returnsthelogica CPU number on which the ordinal
trace event (offset) occurred. CPUs are logically numbered starting at 0 and mono-
tonically increase thereafter.
NOTE
This function is only valid when applied to events from Night-

Trace kerndl trace event files.

SYNTAX

of f set _cpu (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “ start_cpu()” on page 9-41, and “end_cpu()” on page 9-52.

offset_time()

DESCRIPTION

Theof f set _ti me() function returns the time in seconds between the beginning
of the trace run and the ordinal trace event (offset).

SYNTAX

of f set _ti me (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

double-precision floating point

9-66

Using Expressions
SEE ALSO
“time()” on page 9-27, “start_time()” on page 9-42, and “end_time()” on page 9-54.
offset_node_id()

DESCRIPTION

The of f set _node_i d() function returns the internally-assigned node identifier
from which the ordinal trace event (offset) was logged.

SYNTAX
of f set _node_i d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of atrace event.

RETURN TYPE

integer

SEE ALSO

“node_id()” on page 9-28, “start_node_id()” on page 9-43, and “end_node _id()" on
page 9-54

offset_pid_table_name()

DESCRIPTION

The of f set _pi d_t abl e_nanme() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) for the ordinal trace
event (offset).

SYNTAX
of f set _pi d_t abl e_nane (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of atrace event.

RETURN TYPE

string

9-67

NightTrace Manual

SEE ALSO

“pid_table_name()” on page 9-29, “start_pid_table name()” on page 9-44, and
“end_pid_table name()” on page 9-55

offset_tid_table_name()

offset_node_name()

9-68

DESCRIPTION

The of fset _tid_tabl e_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) for the ordinal trace
event (offset).

SYNTAX

of fset _tid_tabl e_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “start_tid table name()” on page 9-44, and
“end_tid_table_name()” on page 9-55

DESCRIPTION

The of f set _node_name() function returns the name of the system from which
the ordinal trace event (offset) was logged.

SYNTAX

of f set _node_nane (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

string

Using Expressions

SEE ALSO

“node_name()” on page 9-30, “start_node_name()” on page 9-45, and
“end_node_name()” on page 9-56

offset_process_name()

DESCRIPTION

The of f set _process_nane() function returns the name of the process (PID)
from which the ordinal trace event (offset) was |ogged.

SYNTAX

of f set _process_nane (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

string

SEE ALSO

“process_name()” on page 9-30

offset_task_name()

DESCRIPTION

Theof f set _t ask_nane() function returnsthe name of the task from which the
ordinal trace event (offset) was logged.

NOTE

This function is only meaningful for trace events which were
logged from Adatasking programs.

SYNTAX

of f set _t ask_nane (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

9-69

NightTrace Manual

offset_thread_name()

RETURN TYPE

string

SEE ALSO

“task_name()” on page 9-31

DESCRIPTION

The of f set _t hr ead_name() function returns the thread name from which the
ordinal trace event (offset) was logged.

SYNTAX

of f set _t hr ead_nane (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of atrace event.

RETURN TYPE

string

SEE ALSO

“thread_name()” on page 9-32

Summary Functions

9-70

You usually use summary functions on the Summarize Form. Except for
sunmmary_mat ches(), al of these functions take another expression as a parameter.
They include the following:

* mn()
* max()
* avg()
* sum()
* mn_of fset()
* max_of fset()

e summary_nmat ches()

min()

max()

Using Expressions

DESCRIPTION

Them n() function returns the minimum value of al occurrences of expr within a
time range. When used ina Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX
m n (expr)
PARAMETERS
expr A numeric expression.

RETURN TYPE

datatype of expr

SEE ALSO

“Summary Functions’ on page 9-70 and “ Summarizing Statistical Information” on
page 10-5.

DESCRIPTION

The max () function returns the maximum value of all occurrences of expr within a
time range. When used ina Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX
max (expr)
PARAMETERS
expr A numeric expression.

RETURN TYPE

datatype of expr

9-71

NightTrace Manual

avg()

sum()

9-72

SEE ALSO

“Summary Functions’ on page 9-70 and “ Summarizing Statistical Information” on
page 10-5.

DESCRIPTION

The avg() function returns the average value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX
avg (expr)
PARAMETERS
expr A numeric expression.

RETURN TYPE

datatype of expr

SEE ALSO

“Summary Functions’ on page 9-70 and “ Summarizing Statistical Information” on
page 10-5.

DESCRIPTION

The sun() function returns the sum value of all occurrences of expr within atime
range. When used inaSummarize Form, thetimerangeisdefined by that form.
When used elsewhere, the time range is defined as the region starting with the first
trace event and ending with the current trace event.

SYNTAX
sum(expr)
PARAMETERS
expr A numeric expression.

min_offset()

max_offset()

Using Expressions

RETURN TYPE

datatype of expr

SEE ALSO

“Summary Functions’ on page 9-70 and “ Summarizing Statistical Information” on
page 10-5.

DESCRIPTION

Them n_of f set () function returns the ordinal trace event (offset) where the
minimum value of the parameter occurred for matches in the time range. Thus, if
the same minimum was seen more than once, the offset corresponds to the first one

seen.
SYNTAX
m n_of f set (expr)
PARAMETERS
expr A numeric expression.

RETURN TYPE

integer

NOTE

Thereis no function that returns the trace event ID where the minimum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

of fset_id(mn_offset(argl()))

SEE ALSO

“Summary Functions’ on page 9-70 and “ Summarizing Statistical Information” on
page 10-5.

DESCRIPTION

The max_of f set () function returns the ordinal trace event (offset) where the
maximum value of the parameter occurred for matches in the time range. Thus, if

9-73

NightTrace Manual

summary_matches()

9-74

the same maximum was seen more than once, the offset corresponds to the first one

seen.
SYNTAX
max_of f set (expr)
PARAMETERS
expr A numeric expression.

RETURN TYPE

integer

NOTE
Thereisno function that returns the trace event 1D where the maximum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

of fset_id(max_offset(argl()))

SEE ALSO

“Summary Functions’ on page 9-70 and “ Summarizing Statistical Information” on
page 10-5.

DESCRIPTION
Thesummar y_mat ches() function returns the number of times the summary cri-
teriaand Filter-Expression were matched in the time range.
NOTE
This function should only used in the Summarize Form. Its

behavior elsewhere is undefined. (See“Summarizing Statistical
Information” on page 10-5 for more information.)

SYNTAX

sunmary_mat ches ()

RETURN TYPE

integer

SEE ALSO

Using Expressions

“event_matches()” on page 9-33 and “ state_matches()” on page 9-58. For informa-
tion about Filter-Expression, see “ Summarize Form Fields’ on page 10-6.

Format and Table Functions

The format function allows you to display a string. The table functions allow you to
extract information from user-defined and pre-defined string and format tables. These
functionsinclude the following:

e get _string()
e get_item()
e get _format()

e format ()

For more information about tables, see “ntrace Tables” on page 5-12 and “Kernel String

Tables’ on page 11-16.

get_string()

Theget string() routine dynamically looks up astring in astring table.

SYNTAX

get _stri ng (table_name], int_expr])

PARAMETERS

table name

int_expr

table_name is an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make your get _stri ng() callsrefer to pre-
viously-defined string tables. The following string table names
are pre-defined in NightTrace: event, pid, tid, bool -

ean, name_pid, name_tid, node_name,

pi d_nodename, ti d_nodename, vector, syscall,

devi ce, event_summary, event_arg_sumary,

event _arg dbl _summary, state_summary. For more
information on these tables, see “Pre-Defined String Tables”
on page 5-14 and “Kernel String Tables’ on page 11-16.

int_expr is an integer expression that acts as an index into the
specified string table. int_expr must either match an identifying
integer value in the table_name string table, or the table_name
string table must have a default item line; otherwise
get _string() returnsastring of int_expr in decimal. Often
int_expr is based on aNightTrace function.

If your table consists of only a default item line, omit this
parameter.

9-75

NightTrace Manual

DESCRIPTION

The following NightTrace constructs can call get _stri ng() to dynamically
locate a static string in a string table;

* A Then-Expression of adisplay object configuration
* A valuefield of aformat table
For each get _stri ng() cdl, NightTrace follows these steps:
Evaluatesint_expr
Uses this value as an index into table_ name

Retrieves the associated string from table_name

A W D P

Returns a string

The following lines provide a brief example of acall toget _string().

9-76

Using Expressions

string_table (conditions) = {

item
item

item =

1, “normal ”;
50, “YELLOW ALERT”;
99, “RED ALERT”;

default item= “NA";

}s

In this example the numeric argument associated with a trace event represents the
current conditions (condi t i ons). If the argument has the value 99, NightTrace:

1. Usesthevalue99 asinindex into condi ti ons

2. Retrievesthe associated string (“RED ALERT”) from condi ti ons

3. Returns“RED ALERT”

RETURN TYPES

On successful completion, get _string() returns astring from a string table.
NightTrace returns a string of the item number, int_expr, in decimal if table name is
not found, or if int_expr is not found and there is no default item line. The first time
table_name is not found, NightTrace issues an error message. Because
get _string() returnsastring, you can use it anywhere a string expression is

appropriate.

For more information on string tables, see “ String Tables’ on page 5-13, Table 8-3, and
the/usr/1i b/ Ni ght Trace/t abl es file.

get_item()

Theget _item() routinelooks up an item number in a string table.

SYNTAX

int get_item(table name, “sr_const”)

PARAMETERS

table name

str_const

table name is an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make your get _i t en{) callsrefer to previ-
ously-defined string tables. The following string table names
are pre-defined in NightTrace: event, pid, tid, bool-

ean, name_pid, name_tid, node_name,

pi d_nodename, ti d_nodename, vector, syscall,

devi ce, event_summary, event_arg_sumary,

event _arg dbl _summary, state_summary. For more
information on these tables, see “Pre-Defined String Tables”
on page 5-14 and “Kernel String Tables’ on page 11-16.

str_const isastring constant literal that acts as an index into the
specified string table. str_const must either exactly match a
string value in the table_name string table, or the table name
string table must have a default item line; otherwise the results

9-77

NightTrace Manual

are undefined. A table_name may contain several item lines
with the same str_const value.

DESCRIPTION

Usually you would put aget _i tem() cal inaThen-Expression of adisplay
object configuration to locate an index number in a string table. For each
get _item() cal, NightTrace follows these steps:

1. Usesstr_cong value as an index into table_name
2. Retrievesthe first associated index number from table name
3. Returns the index number
Assume that the following string table definition isin your configuration file.

string_table (fruit) = {
item= 3, “apple”;

item= 4, “orange”;
item= 5, “cherry”;
item= 6, “banana’;

default _item = “Unknown”;

i
Assume that you make the following call in the Then-Expression of a DataBox.
get _item (fruit, “orange”)

In this example, the f r ui t string table associates specific numeric codes with a
corresponding fruit name string; it associates al other numeric codes with the string
“Unknown. ” When NightTrace evaluates the Then-Expression of this
DataBox, it:

1. Cdlsget _item()
2. Usesthestring “ or ange” asanindex intothef rui t string table
3. Retrievesthe (first) associated index (4)

4. Returns the index number (4)

RETURN TYPES

On successful completion, get it em() returns an item number from a string
table. If several item lines within the string table have the same string value as
str_const, get _i t em() returns the first item number from one of these item lines.
If table_nameis not found, NightTrace issues an error message, and the results are
undefined. If str_const is not found and there is no default item line, the results are
undefined. Because get _i t en{) returns an integer, you can use it anywhere an
integer expression can be used.

For more information on string tables, see “ String Tables” on page 5-13 and the

[fusr/1ib/NightTrace/tabl es file. For more examples of function calls with
pre-defined string tables, see Table 8-3.

9-78

Using Expressions

get_format()

Theget f ormat () routine dynamically looks up a string in aformat table.

SYNTAX

get _format (table namel, int_expr])

PARAMETERS

table_name table name is an unquoted character string that represents the
name of a format table. To avoid possible forward reference
problems, try to make your get _f or mat () callsrefer to pre-
viously-defined format tables.

int_expr int_expr is an integer expression that acts as an index into the
specified format table. int_expr must either match an identify-
ing integer value in the table_name format table, or the
table_name format table must have a default item line; other-
wise, the results are undefined. Often int_expr is based on a
NightTrace function.

If your table consists of only a default item line, omit this
parameter.

DESCRIPTION

A cal toget format () must bethe first function call in an expression. You
must not nest callstoget _f ormat ().

The Then-Expression parameter of a DataBox configuration and the
Summarize-Expression onaSummary Form cancall get _format () to
dynamically locate a string in aformat table. For each get _f or mat () call, Night-
Trace follows these steps:

Evaluatesint_expr
Uses this value as an index into table_name
Retrieves the associated string from table_name

Replaces any conversion specifications in the associated string

a » w NP

Returns a string
Assume that the following format table definition isin your configuration file.
format _table (what _pid) = {
item= 1, “Trace event 1 logged by pid % %", “raw pid()”,
“lwpi d()";
default_item = “Unaccounted for event ID (%l)”, “id()”;
b
Assume that you make the following call in the Then-Expression of aDataBox.

get _format (what _pid, id())

9-79

NightTrace Manual

format()

9-80

In this example, thewhat _pi d format table associates one dynamically-generated
string with traceevent ID 1 (i d() == 1) and another string with all other trace
events (def aul t _i t en). When NightTrace processes a trace event for the display
object with the aboveget _fornat (), it:

A W NP

Evaluatesthe NightTracei d() function. (Assumeit evaluatesto 1)
Callsget _format ()
Usesthisvalue (1) as an index into thewhat _pi d format table

Retrieves the associated string (“ Trace event 1 | ogged by
pi d %’ %") from thewhat _pi d format table

Evaluates the NightTrace raw pi d() and | wpi d() functions.
(Assume they evaluate to 213 and 1 respectively)

Replaces the % conversion specifiers with the raw _pi d() and
[wpi d() vaues

Displays“ Trace event 1 | ogged by pid 213 1"

RETURN TYPES

On successful completion, get _f or mat () returns a format table string. Other-
wise, it returns an empty string.

For more information on format tables, see “Format Tables’ on page 5-17 and the
[fusr/1ib/NightTrace/tabl es file. For more examples of function calls with
pre-defined format tables, see Table 8-3.

Thef or mat () routine displays astring.

SYNTAX

format (“format_string” [, arg] ...)

PARAMETERS
format_string format_string controls how the optiona args are displayed.
format_string is based on the format parameter used in the
printf(3S) routinein C. It is acharacter string enclosed in
double quotes that contains literal characters and conversion
specifications. The literals are copied as is to the display
object. Conversion specifications modify zero or more args.
arg argisan optional expression to be formatted and displayed.
DESCRIPTION

Call the f or mat () function to display a string. You can do this only from the
Then-Expression parameter of a display object configuration or the

Using Expressions

Summary-Expression of the Summarize Form. A call tof or mat () must
be the first function call in an expression. You must not nest callsto f or mat () .

The following lines provide examples of f or mat () statements and what they dis-
play. Assume all variables have avalue of 10 (decimal).

format("Error”) Error
format ("Event=%", id()) Event =10
format ("Argunent is %", argl()) Argument is A

RETURN TYPES

On successful completion, for mat () returns a string. Otherwise, it returns an
empty string.

Qualified Events

A qualified event is a user-defined named event configuration that consists of a set of one
or more trace events, possibly restricted by an If-Expression, CPU List, TID List,
PID List, and Node List. Qualified events provide a mechanism for referencing trace
event configurations within some functions; for example, they cannot appear alonein a
DataBox configuration.

You may use a qualified event in trace event functions. For more information, see “Trace
Event Functions” on page 9-19.

To create a qualified event definition, select the Qualified Events menu item from the
Expressions menu (see “Expressions Menu” on page 9-1) to open the Qualified
Events Dialog Box (see“Expression Dialog Boxes” on page 9-2 for detailson thistype
of dialog).

Click the Add button on the Qualified Events Dialog Box, select the qualified event

from the list, and click on the Configure button to pop up a Qualified Event Config-
uration Form, like the one shown in Figure 9-7.

9-81

NightTrace Manual

9-82

— event_001

QualifiedEvent |event_oo1

Mode List |ALL
Event List |TR_INTERRUPT_ENTRY

If Expression |TRUE

CPU List |ALL

PIC List |ALL

TIC List JALL

| | Apply | Feset | Festore | Close |

Figure 9-7. Qualified Event Configuration Form

The following parameter is specific to the Qualified Event Configuration Form.

QualifiedEvent The name by which you refer to this qualified event in expres-
sions.

TIP:

Consider giving your trace events upper case names in event-map files and giving any
corresponding qualified event the same namein lower case.

NOTE

The Node List field appearsin this dialog only when NightTrace
is configured to use an RCIM to timestamp events. (See “Node
List” on page 8-9 for more information about thisfield.)

For information about other configuration parameters, see Chapter 8, especially “Com-
mon Configuration Parameters” on page 8-1.

Configuring qualified events is similar to configuring DataBox display objects. The
configuration parameters for a qualified event are identical to those that are used to
configure a DataBox display object. See “DataBox” on page 8-13 for information on how
to configure a DataBox.

EXAMPLE

Qualified events can be useful when you are interested in seeing a trace event (or
state) that occurs within a certain amount of time after another trace event. Given
the following qualified event configuration:

Qualified States

Using Expressions

QualifiedEvent: fire
Event List: FI RE
CPU Li st: 2

an EventGraph can be configured to show only BAR trace events that happen within
100 microseconds of a FI RE trace event on CPU 2:

Event List: BAR
If Expression: time() - time(fire) < 100us

Note: The BARtrace events themselves can happen on any CPU, and aslong as they
occur with 100 microseconds of a FI RE trace event on CPU 2, they will be graphed.

A qualified stateis a user-defined named state configuration that consists of a set of one
or more states, possibly restricted by a Start-Expression, End-Expression, CPU
List, TID List, PID List, and Node List. Qualified states provide amechanism for ref-
erencing state configurations within some functions.

You may use a qualified state in the following predefined functions: start functions, end
functions, and multi-state functions. For more information, see “ Start Functions’ on page
9-34, “End Functions’ on page 9-45, and “ Multi-State Functions’ on page 9-56.

To create a qualified state definition, select the Qualified States menu item from the
Expressions menu (see “Expressions Menu” on page 9-1) to open the Qualified
States Dialog Box (see “Expression Dialog Boxes’ on page 9-2 for details on thistype
of dialog).

Click the Add button on the Qualified States Dialog Box, select the quaified state
from the list, and click on the Configure button to pop up a Qualified State Config-
uration Form, like the one shown in Figure 9-8.

9-83

NightTrace Manual

9-84

— state_001 ==

QualifiedState |state_ool

Start Events |TR_EXCEPTION_ENTRY
End Events |TR_EXCEPTION_EXIT
Start Expression |TRUE
End Expression |TRUE
Mode List | cap
CPU List |ALL
PIC List |ALL
TIDr List |ALL

| | Apply | Feset | Festore | Close | |

Figure 9-8. Qualified State Configuration Form

The following parameter is specific to the Qualified State Configuration Form.

QualifiedState The name by which you refer to this qualified state in expres-
sions.

NOTE

The Node List field appearsin this dialog only when NightTrace
is configured to use an RCIM to timestamp events. (See “Node
List” on page 8-9 for more information about thisfield.)

For information about other configuration parameters, see Chapter 8, especially “Com-
mon Configuration Parameters’ on page 8-1 and “ StateGraph” on page 8-14.

Configuring qualified statesis similar to configuring StateGraph display objects. The
configuration parameters for a qualified state are identical to those that are used to
configure a StateGraph display object. See “ StateGraph” on page 8-14 for information on
how to configure a StateGraph.

EXAMPLE

Qualified states can be useful when you are interested in a trace event that occurs
while a certain state isactive. The following qualified state:

Using Expressions

QualifiedState: foo_state
Start Events: PROG A BEG N
End Events: PROG A EXIT

defines a state that is active whenever program Ais running. Assume that another
process is logging FOO trace events asynchronously. If you are interested only in
the FOOtrace events that are logged while program A is running, you can define an
EventGraph asfollows:

Event List: FQO
I f Expression: state status(foo_state) == true

This graphs only FOOtrace events that occur while the qualified state f oo_st at e
isactive. (The“== true” isnot necessary.) Thus, you see only FOOtrace events
logged while program A is running.

9-85

NightTrace Manual

9-86

10
Using the Built-In Tools

OV IV B .« . ettt e e e e 10-1
Searching for Pointsof Interest. i 10-1
Search FOrm Radio BULtONSo e 10-2
Search FOrm PUsh BUttONS. oo e e 10-3
Search Form Fields. 10-4
Summarizing Statistical Information. 10-5
Summarize Form RadioButtons 10-6
Summarize Form Fields. 10-6
Summarize FormPushButtons i 10-8
MenuBar ... e 10-9
File Operationsottt e 10-9

Save TeXt . . 10-10

Save TEXt AS .. o 10-10

ClOSE. . it 10-10

Summary Display Areao 10-10
Event SUMMANiESottt et e e e e e 10-11
S QUMM ES. . . oottt et e e e e 10-12
Exercise: UsingtheSearch Tool 10-14

Exercise: Using the Summarize Tool 10-15

NightTrace Manual

Overview

Searching for

10
Using the Built-In Tools

nt r ace comes with a set of built-in tools available in View mode. These tools make it
easier for you to pinpoint important trace events and numerically analyze aspects of your
trace session.

This chapter coversthe following built-in tools:
Search Locates interesting parts of your trace session
Summarize Summarizes statistics about trace events or states

Figure 10-1 shows the display page menu that gives you access to these tools.

TDD|S| Help
- Search .. |

Summarize ...

Figure 10-1. Tools Menu

Points of Interest

Clicking on Tools | Search ... onthe display page allows you to locate areas of interest
in your trace event file(s). When you click on Tools | Search ..., the Search Form
appears. This form lets you provide search specifications and define conditions you wish
to find in your trace event file(s).

The Search Form consists of:

* Radio buttons
* Push buttons

* Textfieds

Figure 10-2 illustrates the Search Form.

10-1

NightTrace Manual

= Search =
Zearch
Zearch Direction: Zearch Constraints:
< Forward “ GGlobal Zearch
-~ Backward -~ Interval Search

Interval Wanipulation:
< Zeroll Current Time to Event
-~ Zoom o Include Event
- Do Mot kMove Current Time

Mode List [ALL

Event List |ALL

Mo Event List [NONE
If Expression |process_name{} == "ktrace"

CPU List [ALL

PID List |ALL

TID List [ALL

|| | Applyl Resetl Preul Nextl Searchl Closel |

Figure 10-2. The Search Form

NOTE

TheNode List field appearsin this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Search Form Radio Buttons

Through the Search Form’sradio buttons, you can choose:
* Thedirection of asearch
* Theinterval to search

* The effect of asearch on the grid and interval control area of adisplay page

The Search Direction radio buttons let you search forward or backward in your trace
session, relative to the current time.

¢ Click on the Forward radio button to search through newer trace events.
Thisisthe default setting.

¢ Click on the Backward radio button to search through older trace events.
Note: Thisisamuch less efficient search than a forward search.

The Search Constraints radio buttons let you limit your search to the entire trace
session or to the current interval.

10-2

Using the Built-In Tools

* Click onthe Global Search radio button to search from the current time
through the end (or beginning) of the trace session. This is the default
Setting.

¢ Click on Interval Search to search only between this interva’s Time
Start and Time End.

The Interval Manipulation radio buttons let you choose the action nt r ace takesif a
trace event meets all your criteria. This decision can affect both the grid and the interval
control area.

* Clickon Scroll Current Time to Event if youwant nt r ace to set the
current time to the time when the trace event occurred and move the
interval. Thisisthe default setting.

¢ ClickonZoom to Include Event to zoom out the interval end time (for
forward searches) or the interval start time (for backward searches) to
include the found trace event. Clicking this radio button aso updates the
current time.

¢ ClickonDo Not Move Current Time if youwant nt r ace to just write
a message to the message display area of the display page without
repositioning you on the grid or in the interval control area; a side-effect of
this setting is that repeatedly clicking on the Search push button does not
find trace events after the first one found. This is because the current time
has not changed.

Search Form Push Buttons

Following is a summary of the effects of clicking on the push buttonsin the Search
Form:

Apply (default) Validates any field change(s) on the Search Form.
Clicking on Apply isequivalent to pressing <Enter>.

Reset Restores changed field(s) on the Search Form to the va ue(s) they
had after the last Apply or <Enter>. Thisworks only if you have
not already pressed <Enter> or clicked on the Apply push button.
Clicking on Reset is equivalent to pressing <Esc>.

Prev Goes backward one group of field settings in the search history and
displays those settings in the fields. You may click on this push but-
ton multiple times to go backward several groups of settings. Click-
ing on this push button from the earliest group of settings has no
effect. This push button is useful only after you have clicked on the
Search push button.

Next Goes forward one group of field settings in the search history and
displays those settings in the fields. You may click on this push but-
ton multiple times to go forward several groups of settings. Clicking
on this push button from the most recent group of settings has no
effect. This push button is useful only after you have clicked on the
Search and Prev push buttons.

10-3

NightTrace Manual

Close

Search

Closes the Search Form window and erases all but the last group
of field settings from the search history. That is, if you click on
Close and reopen this window during the same nt r ace session,
nt r ace displaysyour most recent field settings; until you save more
field settings, clicking on Prev and Next have no effect.

Performs a search starting at the current time and saves your field
changes, but not your radio button settings.

* Clicking on this push button causes ntrace to
search through your trace event file(s) based on the
criteriafrom the Search Form fields and the
radio button settings.

* |If you have made a field change, clicking on this
push button makes nt r ace temporarily save your
field settings in the search history in memory. By
saving your field settings in the search history,
nt r ace gives you an easy way to retrieve groups
of field settings for use in future searches.

Because all fields and radio buttons on the Search Form have default settings, you can
click on the Search push button without modifying anything in thiswindow. The default

search behavior is:

* Search forward through the entire trace session for any trace event from
any process on any CPU.

¢ |f atrace event meetsall these criteria, nt r ace:

- Writes an informative message in the message display area of the
display page that tells which ordinal trace event (offset) it found.

- Setsthe current time to the time when the trace event occurred.

- Updates the grid and fields in the interval control area of the display

page.

¢ |f no trace event meets all these criteria, nt r ace writes an error message
in the message display area of the display page that tells from which
ordinal trace event (offset) it began the search.

Search Form Fields

All fields of the Search Form have default values. Because of these defaults, clicking
on Search without making any field changes makes nt r ace search for the next (or
previous) trace event in your trace event file(s). If you want to restrict this operation by
trace event D, trace event tag, CPU number, node, process name or global process identi-
fier (PID), thread name or NightTrace thread identifier, or expression, you can do that by
editing one or more of the fields on the Search Form. You can restore afield to its
default value by entering a single space character or the word def aul t into the field and
clicking Apply or pressing <Enter>.

10-4

Using the Built-In Tools

When you have finished editing the Search Form fields, press <Enter> or click on
Apply. This causes nt r ace to validate the data in each field you modified. For genera
information on field editing and how nt r ace handles editing errors, see “Field Editing”
on page 6-16.

When you are ready for nt r ace to do a search, click on the Search push button.
nt r ace logical-ORs comma-separated lists of values within afield and logical-ANDs
fields' values. This means that atrace event must match at least one entry in each list and
al criteriafrom thefields. If nt r ace locates atrace event that meets every field criterion,
it writes an informative message in the message display area on the display page. Depend-
ing on your preferences, it may also reposition the interval and current time line. If
nt r ace does not locate a trace event that meets every field criterion, it writes an error
message in the message display area on the display page. For more information on the
Search push button, see “ Search Form Push Buttons” on page 10-3.

When you make field changes and click on Search, nt r ace temporarily saves your
field settings in the search history in memory. You can step through these groups of set-
tings by clicking on the Prev and Next push buttons. Clicking on the Close push button
erases all but the last group of field settings from the search history. For more information
on these push buttons, see “ Search Form Push Buttons’ on page 10-3.

See Chapter 8 for a definition of each field, al its possible values, and its default value.
There is only one difference between the nt r ace behavior described there and the
behavior of the Search Form: onthe Search Form nt r ace searches for, but does not
display, data that meetsthe criteria. The search stops when nt r ace finds a suitable value
or runs out of trace events.

TheNo Event List fieldistheonly field that isuniqueto the Search Form. Thisfield
lets you decide which trace event(s) to ignore in a search. The possible values are the
same as those in the Event List field. It is not meaningful to put the same value in the
Event List andintheNo Event List.

NOTE

The Node List field appearsin this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Summarizing Statistical Information

Clicking on Tools | Summarize ... on the display page lets you get statistical informa-
tion about trace events and states. When you click on Tools 1 Summarize ..., the
Summarize Form appears. This form lets you constrain the information to be
summarized.

The Summarize Form consists of:

* Radio buttons
* Textfieds

* Summary display area

10-5

NightTrace Manual

* Push buttons

* Menuitems

Figure 10-4 and Figure 10-5 show two Summarize Forms with different
configurations.

Summarize Form Radio Buttons

Through the Summarize Form’sradio buttons, you can choose:

* Whether to summarize trace events or states

¢ Theinterval to summarize

The Summary Type radio buttons let you specify the type of information you want
summarized.

* Click on the Event radio button to summarize trace event information.
Thisisthe default setting.

* Click on the State radio button to summarize state information.

The Summary Range radio buttons let you limit the summary to the current interval, to
the time between a mark and the current time, or to the entire trace session.

* Click onthe Trace Event File radio button to summarize data through-
out the trace session. Thisisthe default setting.

* Click on Region to summarize data only between the mark and the
current time.

¢ Click on Interval to summarize data only between the current interval’s
Time Start and Time End.

Summarize Form Fields

All fields of the Summarize Form have default values. Because of these defaults,
clicking on Summarize without making any field or radio button changes makes
nt r ace summarize all trace eventsin your trace event file(s). If you want to restrict the
summary by trace event D, trace event tag, CPU number, node, process name or global
process identifier, thread name or NightTrace thread identifier, or expression, you can do
that by editing one or more of the fields on the Summarize Form.

When you have finished editing the Summarize Form fields, press <Enter> or click
on Apply. This causes nt r ace to validate the data in each field you modified. For
genera information on field editing and how nt r ace handles editing errors, see “Field
Editing” on page 6-16.

When you are ready for nt r ace to summarize data, click on the Summarize push

button. nt r ace logical-ORs comma-separated lists of values within a field and
logica-ANDs fields' values. This means that a summary object must match at least one

10-6

Using the Built-In Tools

entry in each list and all criteria from the fields. Every time you click on Summarize,
nt r ace writes lines of statistics in the summary display area. For more information on
the Summarize push button, see“ Summarize Form Push Buttons’ on page 10-8.

The text fields on the Summarize Form differ depending on the selected summary
type. See Chapter 8 for a definition of each field (except those described below) and all its
possible values. There is only one difference between the nt r ace behavior described
there and the behavior of the Summarize Form: on the Summarize Form, ntr ace
textually summarizes all data, rather than displaying individual values that meet the
criteria.

The following text describes fields specific to the Summarize Form, their possible and
default values, and how the Summarize push button behaves when you modify that
field.

Filter-Expression Thistext field has all the characteristics of If-Expression,
except it is evaluated only if the If-Expression (for trace
event summaries) or End-Expression (for state summa-
ries) aretrue. Vaues may be: aboolean nt r ace expres-
sion, the word TRUE, or the word FALSE. The default is
TRUE. When you click on Summarize, nt r ace evaluates
the expression for every trace event it summarizes. A
FALSE in thisfield essentially disables the summary.

Summary-Expression This text field is evaluated every time the If-Expression
or End-Expression and Filter-Expression
configuration criteria for your summary are met. It lets you
specify the format of the summary text. Values may be: a
cal tothef or mat () orget format () function.

The default isaget _for mat (event _summary) call
for trace event summaries. For state summaries, the default
isaget _format(state_summary) call. For more
information about these format tables, see “Pre-Defined
Format Tables’” on page 5-20.

For example, if you wanted to limit your summary to trace events with a first argument
value between 5 and 100, your If-Expression would look something like:

argl() > 5 & argl() < 100

If you wanted to determine the largest of these argument values, your
Summary-Expression would look something like:

max(argl())
In another example, the following configuration:

Event List:100
I f Expression: TRUE
Sunmmary Expression:mn(argl())

prints out the minimum value of the first argument of every trace event logged with atrace
event ID of 100. To find the offset where this minimum occurred, set:

Sunmmary Expression:mn_offset(argl())

10-7

NightTrace Manual

If you want both statistics, use the following:

Summary Expression:format("min % at %l",
mn(argl()), mn_offset(argl()))

TIP:

If you are interested in many statistics or if you are going to reuse this summary format at
alater date, consider defining and using a format table. For example,

Summary Expression: get format(my_table)

Thelack of a second parameter indicates that the only entry in format tablermy_t abl e is
the default item line. The pre-defined event _arg_sunmmar y format table has four
formats defined in it. Format 1 produces summary data on ar g1, format 2 does the same
for ar g2, etc.

For more information about format tables, see “Format Tables’ on page 5-17 and the end
of fusr/lib/Ni ghtTrace/tabl es.

TIP:

Them n_of f set () and max_of f set () functions return the offset of the first trace
event where the expression minimum or maximum was seen. Thus, if the same minimum
or maximum was seen more than once, the offset corresponds to the first one seen.

TIP:

Including mi n_of f set (), max_offset (), m n(),or max() inyour summary text
tells you the inclusive range of matches that you summarized, and the
sunmary_mat ches() function tellsthe number of matches that you summarized.

TIP:

Sometimes there are anomalies in the trace information logged by an application, such as
an unusually long state duration during program start up; this can throw off the duration
statistics when analyzing “typical” program performance. You can use the
Start-Expression for state summaries and the If-Expression for event summaries to
limit the range of trace events summarized and remove extraneous trace events from the
statistics produced.

See Chapter 8 for information about configuration parameters. See Chapter 9 for
information on nt r ace expressions. For more information on the Summarize push but-
ton, see “ Summarize Form Push Buttons” on page 10-8.

Summarize Form Push Buttons

10-8

Following is asummary of the effects of clicking on the push buttonsin the Summarize
Form:

Apply (default) Validates any field change(s) on the Summarize Form.
Clicking on Apply isequivalent to pressing <Enter>.

Reset Restores changed field(s) on the Summarize Form to the value(s)
they had after the last Apply or <Enter>. Thisworks only if you

Using the Built-In Tools

have not already pressed <Enter> or clicked on the Apply push
button. Clicking on Reset isequivaent to pressing <Esc>.

Restore Restores changed field(s) on the Summarize Form to the original
value(s) they had when you brought up the form.

Clear Erases all text in the summary display area.
Summarize Saves your field changes and summarizes the requested data.

¢ |If you have made afield change, clicking on this push
button makes nt r ace temporarily save your field
Ssettings.

* Clicking on this push button causes nt r ace to sum-
marize summary data from your trace event file(s)
based on the criteria from the Summarize Form
fields and the radio button settings.

Because dll fields and radio buttons on the Summarize Form have default settings, you
can click on the Summarize push button without modifying anything in this window.
The default summarize behavior is:

* ntrace writes statistical messages in the summary display area that tell
about trace event data through the entire trace session for any trace event
from any process on any CPU.

If you have configured the Summarize Form by specifying additional criteria, the
summarize behavior is:

¢ |f atrace event or state meets all these criteria, nt r ace writes statistical
messages in the summary display areathat tell: the trace events or states
involved, and minimum, maximum, average, and total for intervals and/or
trace event arguments.

¢ |f notrace event or state meets al these criteria, nt r ace writes a message
in the summary display area that says that there are no trace event or state
matches to summarize.

Menu Bar
The menu bar of the Summarize Form consists of the following menu item:

* File

File Operations

When you click on the File menu item on the Summarize Form, the pull-down menu
shown in Figure 10-3 appears.

10-9

NightTrace Manual

File |

Cpnneen

wAE IS i f—

Save Text As ..

Close

Figure 10-3. Summarize Form File Menu

Save Text

When you click on File | Save Text onthe Summarize Form, nt r ace saves your
summary text to the file you saved to last time. Any changes you have made since the last
Save Text or Save Text As ... operation will be saved. You can continue running
summaries after this operation. The Save Text operation is disabled (dimmed) if you
have not both done a Save Text As ... and changed the summary display. Instead, use
Save Text As ...

Save Text As ...

When you click on File | Save Text As ... onthe Summarize Form, nt r ace saves
your summary text to the specified file. You can continue running summaries after this
operation.

Save Text As ... usesaFile Selection Dialog Box to prompt you for afile name.
See “The File Selection Dialog Box” on page 5-33 for more information.

Close

When you click on File I Close on the Summarize Form, nt r ace ends the current
summary session, resets al field and radio button settings, and clears the summary display
area. It does not prompt you to save your summary text since the last timeyou did a Save
Text or Save Text As Therefore, if you have made any changes to the summary
display areathat you want to keep, you must perform aSave Text or Save Text As ...
before you do a Close.

Summary Display Area

After you click on Summarize, nt r ace appends statistics to the end of the scrolling
summary display area. It automatically scrollsthis area so the newest statistics are visible.
Every line in this area has aunique number. A blank line separates sets of statistics. If you
want new statistics to appear alone in the summary display area, click on Clear before
you click on Summarize. See “ Summarize Form Push Buttons’ on page 10-8 for more
information.

By default, nt r ace displays 14 lines in the summary display area. You can alter this
number by changing the size of the Summarize Form. To change the Summarize

10-10

Using the Built-In Tools

Form size, vertically resize your window by using features of your window manager. Itis
not necessary to resize a window to see lines 15 and higher; you can scroll through all
lines by using the scroll bar. Sometimes the statistical information exceeds the width of
the summary display area. In thiscase, you must horizontally resize your window.

The summary display area of the Summarize Form presents different information
depending on your Summary-Expression and whether your summary typeis Event
or State.

Event Summaries

Configuring event summaries is similar to configuring DataBox display objects. The
configuration parameters for an event summary are identical to those that are used to
configure a DataBox display object. See “DataBox” on page 8-13 for information on how
to configure a DataBox.

By default, the Summary-Expression for an event summary type, displaysonelinefor
each of the following in the summary display area:

* Therange of ordina trace event numbers (offsets) summarized
¢ The number of matches summarized

* The minimum time gap between matches and the ordina trace event
number (offset) where it began

* The maximum time gap between matches and the ordinal trace event
number (offset) where it began

* The average time gap between matches

Figure 10-4 shows an event summary.

10-11

NightTrace Manual

Summarizing from offzet 0 thru offset 10915,
3877 event matches summarized,
gap min of 0,000011s @ offset 2070,

max of 0,016678s B offset 10520,

avg of 0,013520s,

LL

TRUE

get_format {event_summary

Figure 10-4. The Event Summarize Form

NOTE

The Node List field appearsin this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

State Summaries

Configuring state summaries is similar to configuring StateGraph display objects. The
configuration parameters for a state summary are identical to those that are used to
configure a StateGraph display object. See “ StateGraph” on page 8-14 for information on
how to configure a StateGraph.

The main difference between a state summary and a StateGraph is that a state summary
shows information textually and a StateGraph showsiit graphically.

By default, the Summary-Expression for a state summary type, displays one line for
each of the following in the summary display area:

10-12

Using the Built-In Tools

* Therange of ordina trace event numbers (offsets) summarized
¢ The number of matches summarized

* The minimum time gap between matches and the ordina trace event
number (offset) where it began

* The maximum time gap between matches and the ordinal trace event
number (offset) where it began

* The average time gap between matches
¢ The sum of the time gaps between matches

* The minimum time duration of a match and the ordinal trace event number
(offset) where it began

* The maximum time duration of a match and the ordinal trace event number
(offset) where it began

* The average time duration of amatch

* The sum of the time durations of matches

Figure 10-5 shows a state summary.

10-13

NightTrace Manual

Summarizing from offzet 0 thru offset 10915,
3876 state matches summarized,
state_dur min of 0,000003s B offset 100,
max of 0,000412s @ offset 1252,
avg of 0,000072s,
sum of 0,280108s,
state_gap min of 0,000008s @ offset 2071,
max of 0,016624s B offset 10389,
avg of 0,013451s,
sum of 52,122576s,

Ll

TRLE

Figure 10-5. The State Summarize Form

NOTE

The Node List field appearsin thisdialog only when NightTrace
is configured to use an RCIM to timestamp events.

Exercise: Using the Search Tool

The following exercise has you search for trace events you logged in “Exercise: Logging
Trace Events’ on page 4-29, while using files you created in “Exercise: Displaying Trace
Events’ on page 5-35.

Invoke the NightTrace display utility with the |l og trace event file, the map event-map
file, and the page configuration file.

$ ntrace | og map page

10-14

Using the Built-In Tools

After the display page appears, press the Refresh push button at the bottom right of the
page. The current time line should now be positioned inside the first visible state. What is
the tag of the current trace event?

NAP START
Now, bring up the Search tool by clicking on Tools | Search ...
Use the default settings to search globally forward for all trace events and make the
interval scroll the current time to the trace event. After one search, what is the tag of the
current trace event?

NAP_END

Keep searching forward until you reach the end of the trace. You should continue to see
alternating NAP_START and NAP_END trace event tags.

Close the Search Form by clicking on the Close push button.

Exercise: Using the Summarize Tool

The following exercise has you summarize trace events you logged in “Exercise: Logging
Trace Events’ on page 4-29.

Whilestill in nt r ace, bring up the Summarize tool by clicking on Tools | Summarize

Press the Summarize button for the default event summary.
How many matches were summarized?
22
At which offset does the largest gap occur?
2
How large isthis gap?
about 1.8 seconds

Close the Summarize Form by clicking on File | Close.

10-15

NightTrace Manual

10-16

11
Tracing the Kernel

VIV BV .« . o ettt e e e e e e 11-1
Default Kernel Trace POINtSot e 11-1
Context Switch Trace Event.t e 11-2
Interrupt Trace Events 11-2
Exception TraCe EVENtS oot 11-3
Syscall TraCe EVeNtsS.ot 11-4
Kernel Trace Points Not Enabled By Default oot 11-5
Page Fault EVent. 11-5
Protection Fault Event 11-5
Viewing Kernel Trace Event Files.o i 11-6
Kernel Display Pages.o oot 11-6
RCIM Default Kernel Display Page..o 11-7

CPU Information. o e 11-9
Running Process Information 11-10

Node Information 11-11

Context Switch Information i, 11-11
Interrupt Information. 11-12
Exception Information. e 11-13

Syscall Information. 11-15

Color INformation 11-16

Kernel String Tables. 11-16
Kernel Reference. 11-18
INMtEITUPLS. . . o 11-19
Non-Device-Related Interrupts. 11-19
Device-Related Interruptso e 11-20
EXCEPUIONS . . oo 11-20

NightTrace Manual

Overview

11
Tracing the Kernel

This chapter provides a description of the trace points logged by the kernel. It also
discusses the steps required to produce a highly detailed picture of kernel activity with
NightTrace. This lets you customize the default nt r ace kernel display pages or combine
kernel information with user-application trace information.

Kernel trace event files are logged in raw format by the kernel trace daemon. nt r ace
accepts files of this type as arguments. When it detects such a file on the command line,
or when the session manager indicates such afile should be displayed, it automatically fil-
ters the raw datafile and creates two new files. The first file created is the filtered data,
which contains trace eventsin a manner suitable for display within NightTrace. Thisfile
is saved with a pathname constructed from the original raw kernel trace event filename
witha*“ . ntf” suffix appended to it. The second file saved is commonly referred to as
the “vectors’ file. It contains tablesthat are specific to the actual raw data. The “vectors’
fileis saved with a pathname constructed from the orignal raw kernel trace event filename
witha“ . vec” suffix appended to it. A more detailed description of the vectorsfileis
given subsequently in this chapter.

On subsequent invocations of nt r ace, either the raw kernel file may be specified, or,
dternatively, the“ . ntf” and“. vec” filesmay be specified together.

Default Kernel Trace Points

The following kernel trace points are enabled by default:
e TR SWTCH N
e TR_I NTERRUPT_ENTRY and TR_| NTERRUPT_EXI T
* TR_EXCEPTI ON_ENTRY and TR_EXCEPTI ON_EXI T
e TR_SYSCALL_ENTRY
e TR | O VNODE
e TR_ALT_I NT_Di SPATCH
e TR _PROCESS NAVE

These default kernel trace points are required to get meaningful kernel performance data
in aKernel Trace trace event file. However, these trace points are not the only trace points

NightTrace Manual

Context Switch Trace Event

that you will see with nt r ace when viewing kernel data. Specifically, the following trace
points are introduced during raw kernel trace data processing by nt r ace:

e TR SYSCALL EXI T

* TR SYSCALL_SUSPENDand TR_SYSCALL RESUVE

* TR_EXCEPTI ON_SUSPEND and TR_EXCEPTI ON_RESUME

The following sections discuss the trace events that you will seein nt r ace as aresult of
logging the default kernel trace points.

There isonly one context switch trace event:

TR_SW TCHI N argl

This trace event is logged whenever a process has been switched in and is ready to
be run on a specific CPU. Because only one process can run on a given CPU at a
time, this trace event also signifies that the process that was running on the CPU
immediately prior to the context switch trace event has been switched out and can
no longer run. Thistrace event has one argument:

argl

Interrupt Trace Events

-2

The numeric 32-bit globa process identifier (PID) of the process
being switched in. This information is redundant, since it isidentical
to the PID that is already associated with the trace event. A PID of O
indicates that the CPU isidle.

The 32-hit global process identifier uniquely identifies the running
process on the system. This identifier isidentical to the return value
of the_| wp_gl obal _sel f () system call for PowerMAX OS and
the getpid() system call under RedHawk Linux. See “pid()” on page
9-22.

There are two trace events associated with interrupts:

TR_| NTERRUPT_ENTRY argl arg2 arg3

Thistrace event islogged whenever an interrupt is entered. It has three arguments:

argl

The interrupt vector number that indicates the type of interrupt. This
isanindex into thevect or string table that is contained within the
vectors file generated by NightTrace when consuming kernel data.
For more information about the vect or string table, see “Kernel
String Tables” on page 11-16.

The interrupt nesting level used by the pre-defined kernel pages to
graph the different heights associated with the nesting level. This

Tracing the Kernel

argument will be 1 for the first interrupt, 2 for a second interrupt that
interrupted the first interrupt, 3 for athird interrupt that interrupted
the second interrupt, etc.

arg3 The interrupt vector number of the previous interrupt that this inter-
rupt entry isinterrupting, if any.

TR | NTERRUPT_EXI T argl arg2 arg3

This trace event is logged whenever an interrupt is exited. Its arguments are identi-
cal to those of the TR_| NTERRUPT _ENTRY trace event.

Exception Trace Events

There are four trace events associated with exceptions:
TR_EXCEPTI ON_ENTRY argl
Thistrace event islogged whenever an exception is entered. It has one argument:

argl The exception vector number that indicates the type of exception.
Thisisanindex intothevect or string tablethat is contained within
the vectorsfile. For more information about thevect or string table,
see “Kernel String Tables’ on page 11-16.

TR_EXCEPTI ON_SUSPEND argl

This trace event is logged whenever an exception is suspended by a context switch.
It has one argument that is identical to the argument logged with the
TR_EXCEPTI ON_ENTRY trace event.

TR_EXCEPTI ON_RESUME argl

This trace event is logged whenever an exception is resumed (i.e., the process that
caused the exception to occur, which was switched out before the exception could
be completed, is switched back in). A TR_EXCEPTI ON_RESUVE trace event will
always follow a TR_EXCEPTI ON_SUSPEND event, unless the processis being
switched in for the first time since kernel tracing began.

It is possible for several TR_EXCEPTI ON_SUSPEND-TR_EXCEPTI ON_RESUMVE
trace event pairs to occur if the process is switched in and out several times before
the exception completes.

The TR_EXCEPTI ON_RESUME trace event has one argument that is identical to the
argument logged with the TR_EXCEPTI ON_ENTRY trace event.

TR_EXCEPTI ON_EXI T argl

This trace event islogged whenever an exception is completed. It has one argument
that isidentical to the argument that is logged with the TR_EXCEPTI ON_ENTRY
trace event.

11-3

NightTrace Manual

Syscall Trace Events

There are four trace events associated with syscalls:

TR _SYSCALL_ENTRY argl arg2 arg3

Thistrace event islogged whenever asyscall isentered. It has three arguments:

argl Thisargument is always zero for historical reasons.

arg2 The syscall number that identifies the syscall. This is an index into
the pre-defined syscal | string table.

arg3 The device number that indicates the type of devicethat is associated
with the syscall, if any. Thisisan index into the pre-defined devi ce
string table.

For more information about the pre-defined syscal | and devi ce string tables,
see “Kernel String Tables’ on page 11-16.

TR _SYSCALL_SUSPEND argl arg2 arg3

This trace event islogged whenever a syscall is suspended by a context switch. It
has three arguments that are identical to the arguments logged with the
TR _SYSCALL_ENTRY trace event.

TR _SYSCALL_RESUME argl arg2 arg3

This trace event is logged whenever a syscall is resumed (i.e., the process that
caused the syscall to occur, which was switched out before the syscall could be
completed, is switched back in). A TR_SYSCALL_RESUME trace event will always
follow aTR_SYSCALL_SUSPEND trace event, unless the process is being switched
in for the first time since kernel tracing began.

Itis possible for several TR_SYSCALL _SUSPEND—FR_SYSCALL_RESUME trace
event pairs to occur if the processis switched in and out several times before the
syscall completes.

The TR_SYSCALL_RESUME trace event has three arguments that are identical to
the arguments logged with the TR_SYSCALL_ENTRY trace event. However, if a
TR_SYSCALL_RESUME trace event does not follow a TR_SYSCALL _SUSPEND
trace event (i.e., it isthe first syscall trace event logged by the process since kernel
tracing began) arg2 identifiesthe syscall as“can’ t det er mi ne.”

TR SYSCALL_EXI T argl arg2 arg3

This trace event is logged whenever a syscall is completed. It has three arguments
that are identical to the arguments logged with the TR_SYSCALL_ENTRY trace
event.

Tracing the Kernel
Kernel Trace Points Not Enabled By Default

There are several kernel trace points which are not enabled by default but two of them
deserve specia mention. These two events allow you to determine areas in your applica-
tion code where address faults are occurring, to minimize such faults, and thus improve
the application's performance. The following sections discuss the page fault and protec-
tion fault kernel trace points.

Page Fault Event

There is one page fault trace event:
TR _PAGEFLT_ADDR argl arg2 arg3

Thistrace event is logged whenever akernel or user page fault occurs. The page fault can
be either on a data address or on an instruction address. Thistrace event is not enabled by
default because, depending upon system activity, page faults may occur reasonably fre-
quently. Thistrace event has three arguments:

argl The data address which caused the page fault. If the page fault
occurred on an instruction, thiswill be set to zero.

arg2 The program counter value at the time of the page fault.

arg3 The flag indicating whether the fault occurred on a kernel address or

on auser address. A value of zero indicates that the fault occurred on
a user address. A value of one indicates that the fault occurred on a
kernel address.

Protection Fault Event

There is one protection fault trace event:
TR _PROTFLT_ADDR argl arg2 arg3

This trace event is logged whenever a kernel or user protection fault occurs. The protec-
tion fault can be either on a data address or on an instruction address. Thistrace event is
not enabled by default because, depending upon system activity, protection faults may
occur reasonably frequently. This trace event has three arguments:

argl The data address which caused the protection fault. If the protection
fault occurred on an instruction, then thiswill be set to zero.

arg2 The program counter value at the time of the protection fault.

arg3 The flag indicating whether the fault occurred on a kernel address or

on auser address. A value of zero indicates that the fault occurred on

NightTrace Manual

auser address. A value of one indicates that the fault occurred on a
kernel address.

Viewing Kernel Trace Event Files

All of the kernel trace event tags are defined in the
/usr/1ib/ N ghtTrace/ event map file. Thisfile is automatically read by nt r ace
at start-up time.

You may design your own display pagesto view kernel trace event files; see Chapter 7 and
Chapter 8 for more information. Alternatively, you may use pre-defined kernel display
pages. These pages are discussed in the following sections.

Kernel Display Pages

Figure 11-1 showsthe File menu of thent r ace Global Window. This menu containsa
Default Kernel Page menu item which is used to open adynamically-built kernel dis-
play page. The Default Kernel Page menu item isenabled only if a converted Kernel-
Trace trace event file has been supplied to nt r ace on the command line.

File | Help
' Mew Page E

Default Page neur
Default Kernel Page
Open Config File .. _
Fead Event-tdap File ...]SF;}
Exit e
}? e, 4056288s time spar

E B

Figure 11-1. Global Window File Menu

Figure 11-2 shows a sample kernel display page in View mode constructed from trace files
on two different nodes.

NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

11-6

Tracing the Kernel

File Edit Create Configure Expressions Tools Help

- Edit
o e

buzzard

N

buzzard

N

cap

hardclock

“leroo

- |pid idle

poll mip

papio

N

papio

N

EE EE |Interrupt |Exception | Syzcall |E EEE

0.5 L= 2.5 3 4= 5 [N
|||||||||||||||||||||||||||||||'|||||||||||||||||||||||||||||||

| p—

|

Time Start [0, 00000005 Time Length|&.,29075525 Time End |&,2307552s

Ewvent Start [0

Ewent Count [3221 Ewvent End |3220

Zoom Factor 2.0

Increment |25. 00z Current Time |3.1453776s

| Apply | Reset | Center | tlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 11-2. Sample Kernel Display Page

nt r ace determines the number of CPUs on the system from information in the converted
Kernel Trace trace event file.

RCIM Default Kernel Display Page

When viewing Kernel Trace trace event files that have been timestamped by the RCIM tick
clock, nt r ace determines the number of distinct nodes/hosts which have trace files and
constructs a default display page accordingly. When you create a default kernel display
page from trace event files that have been timestamped by the RCIM tick clock, nt r ace
pops up adiaog box that allows you to select the nodes you wish to display on that kernel
page.

NightTrace Manual

11-8

Zelect the nodes you wish to display on this kernel page

Auwailable Modes: Zelected Modes:

rudi £ |
* papio papio

hiezard garcia
* garcia [cap

*
=
=
=

=

shugs
pookie
oipap
idur

aicrag

Figure 11-3. Node Selection Dialog

The Available Nodes list shows all nodes that NightTrace has found in the trace files.
The Selected Nodes list contains all nodes you want shown on the kernel display page
you are building.

NOTE

An asterisk (*) next to anode in the Available Nodes list indi-
cates that the particular node has already been selected through
the Node Selection Dial og.

You may select the nodes you wish to be included on the kernel display page you are
building by either double-clicking each node name in the Available Nodes list or by
selecting a node from that list and using the right arrow button to add it to the list of
Selected Nodes. When thelist of Selected Nodes contains al the nodes you wish
to display on your kernel display page, you may press the Build button.

As each node is added to the list of Selected Nodes, nt r ace figures out how much
vertical real estate the grid needs (based upon the number of nodes you wish to display
and how many CPUs each node has). If the required vertical space does not exceed the
maximum grid height, nt r ace will allow the page to be created. Otherwise, nt r ace
will pop up awarning dialog window and will not allow the page to be created.

Tracing the Kernel

m|

Warning Dialog
]

? Adding this node would exceed maximum display page height

QK |

=

Figure 11-4. Node Selection Warning Dialog

Figure 11-5 shows the display of information for a CPU on a particular node on a dynami-
cally-built kernel page.
NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

Node Last Interrupt Interrupf Graph
CPU Last Exception Exception Graph
\Running Process Last Syscall Syscall Graph
o \ ! \ -
: i \ cap\ decintr .." i i :
- |CRU [\ data access .u' :
: pid 81571 i mprotect ! H :
0 T T :
oo [Interrupt JException [Syscall |- | |, | | 0 .//| T RN AT
Color Key Current Time Line

Figure 11-5. Per-CPU Information

There are several pieces of information being displayed for each CPU. The position of the
current time line determines the values that appear on the kernel display pages. Moving
the current time line within the current interval does not change the graphical displays.
However, the textual displays always reflect the last values prior to the current time line.

The following sections discuss all of the different pieces of information in detail.

CPU Information

- [ePu o | -
Figure 11-6. CPU Box

11-9

NightTrace Manual

Figure 11-6 shows a CPU box. The CPU box simply identifies which logical CPU the
displayed data corresponds to. Logica CPU numbers are related to, but not necessarily
identical to, physical CPU numbers.

Each CPU in a system has a four-bit physical CPU number. The physica CPU number is
dependent on which card slot the CPU card containing the CPU isin and which location
on the card the CPU isin. The low two bits of the number specify the location on the card
that the CPU isin. These bits are either 00 for the first CPU location or 01 for the second.
The high two bits of the physical CPU number contain the CPU card slot number. These
bits can be 00, 01, 10, or 11 (or, in decimdl, O, 1, 2, or 3).

For simplicity, most kernel utilities translate the physical CPU numbers into logical CPU
numbers. The mapping is accomplished by listing the physical CPU numbers of all
configured CPUs in ascending order and then numbering them sequentially, starting with
zero. For example, afour-CPU system having two CPUs on acard in slot 1 and two CPUs
on acard in slot 3 will have physical CPU numbers 4 (0100), 5 (0101), 12 (1100) and 13
(1101). Table 11-1 shows the logical CPU mapping of this example system.

Table 11-1. Example Logical CPU Mapping

Physical CPU Number Logical CPU Number

4 (0100) 0
5 (0101) 1
12 (1100) 2
13 (1101) 3

The CPU box is a GridL abel display object. See Chapter 7 and Chapter 8 for more infor-
mation on creating and configuring GridL abels.

Running Process Information

11-10

[pid in.rlogind | - [L1
Figure 11-7. Running Process Boxes

Figure 11-7 shows two examples of running process boxes. The running process box
shows the process that is executing at the current time on the associated CPU. The process
is listed by name, or by itsraw PID and LWPID if no nameis available. See “PID List” on
page 8-7 for more information about PIDs, raw PIDs and LWPIDs.

You can supply NightTrace trace event filesto nt r ace along with converted Kernel Trace
trace event files. nt r ace uses the process names of all processes that logged trace events
when displaying the running process.

The running process box is a DataBox display object. See Chapter 7 and Chapter 8 for
more information on creating and configuring DataBoxes.

Tracing the Kernel

Node Information

E| buzzard |E

Figure 11-8. Node Box

Figure 11-7 shows a node box. The node box simply identifies which node the displayed
data corresponds to.

NOTE
The node information is displayed only when NightTrace is con-

figured to use an RCIM to timestamp events.

The node box is a GridL abel display object. See Chapter 7 and Chapter 8 for more infor-
mation on creating and configuring GridL abels.

Context Switch Information

Context Switch Lines

|]]
|

—

Current Time Line

Figure 11-9. Context Switch Lines

Figure 11-9 shows an example of several context switch lines. Context switch lines are
superimposed on the exception and syscall graphs. They indicate that the kernel has
switched out the process that was previously running on the CPU and switched in a new
process. Thereisadirect correlation between context switch lines and the running process
box: the running process box shows the process associated with the context switch line
that immediately precedes the current timeline.

NightTrace Manual

Interrupt Information

Last Interrupt Name Current Time Line

\

=

/ :

Interrupts

|r'esched-str‘sched |

Nested Interrupts

Figure 11-10. Last Interrupt Box and Interrupt Graph

11-12

Figure 11-10 shows a last interrupt box and an interrupt graph. The interrupt graph dis-
plays a state that is drawn whenever an interrupt is executing on the associated CPU. Inter-
rupts can be interrupted while executing, and the interrupt graph shows this interrupt nest-
ing by increasing the height of the state bar. Although interrupts can nest, all interrupts
must complete before the process they interrupt can be switched out. Therefore, you will
never see a context switch occur in the middle of an interrupt.

The last interrupt box displays the name of the last interrupt prior to the current time line
that executed (and may still be executing) on the associated CPU. It can be used with the
interrupt graph to identify any interrupts that are currently visible on the graph. Simply
move the current time line onto a graphed interrupt, and the last interrupt box will update
to display the name of the interrupt.

Because the last interrupt box displays the name of the last interrupt that executed, it is
possible for there to be no interrupts visible on the interrupt graph even though the last
interrupt box contains a valid interrupt name. This just signifies that the last interrupt on
the CPU ended prior to the beginning of the current interval.

An interrupt that is seen very often is the hardclock interrupt, which usually accounts for
15% of the total number of trace events logged by the kernel. If you are not interested in
hardclock interrupts, they can be ignored by nt r ace, improving performance and
readability. See “ntrace Options’ on page 5-3 for more information.

The last interrupt box is a DataBox display object, and the last interrupt graph is a Data-
Graph display object. See Chapter 7 and Chapter 8 for more information on creating and
configuring DataBoxes and DataGraphs.

Tracing the Kernel

Exception Information
Last Exception Name Current Time Line Exceptions

] 1 - :
LIl | .

Context Switch Lines

Figure 11-11. Last Exception Box and Exception Graph

Figure 11-11 shows a last exception box and an exception graph. The exception graph
displays a state that is drawn whenever an exception is executing on the associated CPU.
Unlike interrupts, exceptions cannot nest, so they are always graphed with the same
height.

Context switch lines are superimposed on exception graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of an exception. Usually, this
does not indicate that the exception has ended, only that it has been suspended because the
process that originated the exception has switched out. The exception resumes when the
process is switched back in again. An example of an exception being suspended and
resumed can be seen at the left end of the exception graph in Figure 11-11.

The last exception box displays the last exception prior to the current time line that
executed (and may still be executing) on the associated CPU. It can be used with the
exception graph to identify any exceptions that are currently visible on the graph. Simply
move the current time line onto a graphed exception, and the last exception box will
update to display the name of the exception.

Because the last exception box displays the name of the last exception that executed, it is
possible for there to be no exceptions visible on the exception graph even though the last
exception box contains a valid exception name. This just signifies that the last exception
on the CPU ended prior to the beginning of the current interval.

The last exception box is aDataBox display object, and the last exception graph is a State-
Graph display object. See Chapter 7 and Chapter 8 for more information on creating and
configuring DataBoxes and StateGraphs.

Linesindicating TR_PAGEFLT_ADDRand TR_PROTFLT_ADDR events are also superim-
posed on exception graphs. Exception graphs display these trace points to allow you to
obtain a formatted dump of them in the message display area by clicking on the events
with mouse button 2. An example of aTR_PAGEFLT_ADDRand aTR _PROTFLT_ADDR
event as well as their associated data in the message display area can be seen in
Figure 11-12.

11-13

NightTrace Manual

NightTrace: ntracBARal0lcE

File Edit Create Configure Expressions Tools Help

~ Edit 2 of fzet=1461 id=TR_PAGEFLT_ADIR pid=inetd tid=304"0 cpu=l time=9,460080s argl=0xelf(0000 arg?=0x96ebc arg3=0xl,

o e

1 offzet=1451 id=TR_PROTFLT_ADIR pid=inetd tid=304"0 cpu=l time=9,459738s argl=0xb0172b04 arg?=0xb00fechl® arg3=0x0, E

~[ePuo

- - [resched-strached

NET

data acoess e e — : e |

open file

E|pid inetd

o

Lol N Y- DY 1.3 9,4857= 9,4598= 59‘45993 9, 4600z 9,4601= |:
N [Interrupt [Exception [Syscall |j L || [|| vl || N J s || Ll | Ll || :

4 P

Time Start |3, 45359555 Time Length |0, 00060635 Time End |4, 46020235

Ewvent Start [1443

Ewent Count |20 Ewvent End |1462

Zoom Factor 2.0

Increment | 25,002 Current Time [9, 45383875

| Apply | Reset | Center | tlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 11-12. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

11-14

Notethe TR_PROTFLT_ADDR event to the | ft of the current timelineat t i me=9.459738
and the TR_PAGEFLT_ADDR event to theright of the current timelineatt i ne=9.460050
and the corresponding data in the message display area. (See " The Display Page’ on page
7-2 for more information on the message display area and other elements of the display
page.)

Note aso that the TR_PROTFLT_ADDR and TR_PAGEFLT_ADDR events are represented
by avertical line that only intersects the exception state graph whereasa TR_SW TCHI N
event (see “Context Switch Trace Event” on page 11-2) intersects both the exception and
syscall state graphs. In addition, TR_PROTFLT_ADDRand TR_PAGEFLT_ADDR events
will only appear within a currently executing exception. This can be seen in Figure 11-13.

Tracing the Kernel

File Edit Create Configure Expressions Tools Help |

& view |3

~ Edit 2 of fset=738 id=TR_PAGEFLT_ALDR pid=in.rwhod tid=166"0 cpu=l time=4,922573z argl=0xe21a0000 arg2=0x96evc argd=(xl,

1 of fset=729 id=TR_SWITCHIN pid=in,rwhod tid=166"0 cpu=l time=4,922322z argl=10878977,
of fset=r51 id=TR_SWITCHIN pid=idle tid=0"0 cpu=l time=4,922808= argl=0,

~[ePuo |

resched-strached

NET

data access | H _ |

E|pid in, ruhod

ghine | —| - —— S i EE

4,9223s 4,9224s L9225s 4,9226s 4,9227s 4,9228s

o

R R R RS ;
N [Interrupt [Exception [Syscall |j L l L1 | NN || vl |'|| il || vl || N || Lol

4 P

Time Start [4,59222695s

Time Length |0, 00060625 Time End |4,9228757s

Ewvent Start [728

Event Count [24 Event End [751

Zoom Factor 2.0

Increment |25. 00z Current Time |4. 92250615

| Apply | Reset | Center | tlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |
—J

Figure 11-13. TR_SWITCHIN vs. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

Syscall Information

Last Syscall Name Current Time Line
éiw;i£e.pgm = ;
i — | :
Context Switch Lines

Associated Device (if any) Syscalls

Figure 11-14. Last Syscall Box and Syscall Graph

Figure 11-14 shows a last syscall box and a syscall graph. The syscall graph displays a
state that is drawn whenever a system call (syscall) is executing on the associated CPU.
Unlike interrupts, syscalls cannot nest, so they are always graphed with the same height.

Context switch lines are superimposed on syscall graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of a syscall. Usually, this does
not indicate that the syscall has ended, only that it has been suspended because the process
that originated the syscall has switched out. The syscall resumes when the processis
switched back in again. An example of asyscall being suspended and resumed can be seen
at the right end of the syscall graph in Figure 11-14.

The last syscall box displays the last syscall prior to the current time line that executed
(and may still be executing) on the associated CPU. If the syscall is associated with a
device, the name of the device is shown after the name of the syscall.

11-15

NightTrace Manual

Color Information

The last syscall box can be used with the syscall graph to identify any syscalls that are
currently visible on the graph. Simply move the current time line onto a graphed syscall,
and the last syscall box will update to display the name of the syscall.

Because the last syscall box displays the name of the last syscall that executed, it is
possible for there to be no syscalls visible on the syscall graph even though the last syscall
box contains avalid syscall name. Thisjust signifiesthat the last syscall on the CPU ended
prior to the beginning of the current interval.

It is possible for the first syscall logged by a process since kernel tracing began to be
unknown. This can occur if the process is switched in and immediately resumes a syscall
that was previously suspended. If this occurs, the last syscall box will display “can’ t

det er mi ne” for the name of the syscall.

The last syscall box isaDataBox display object, and the last syscall graph is a StateGraph
display object. See Chapter 7 and Chapter 8 for more information on creating and
configuring DataBoxes and StateGraphs.

| Interrupt |Exu:eptiu:un | Syzcall |
Figure 11-15. Color Key

Figure 11-15 shows the color key that is located on the bottom left of the grid on the
pre-defined kernel display pages. The color key isuseful only on X terminals that support
more colors than just black and white.

The text in the color key is color-coded. By default, the word “Interrupt” isred, and all
display objects on the kernel display page that display information about interrupts are
also red. By default, the word “Exception” is green, and all display objects that display
information about exceptions are also green. By default, the word “Syscall” is blue, and
all display objects that display information about syscalls are also blue.

The default colors of the different groups of kernel objects can be controlled with X
resources. The colors are specified on a per-CPU basis. The default resources for logical
CPU O are:

Nt race* Col or*Gri dObj ect *i nt errupt 0*f or egr ound: red
Nt race* Col or*G i dOhj ect *except i onO*f or egr ound: green
Nt race* Col or*Gi dObj ect *syscal | 0*f or egr ound: bl ue

See Appendix B for more information on X resources.

Kernel String Tables

11-16

There are seven kernel related pre-defined string tables. They are:

vect or

syscal |

devi ce

name_pid

node nane

pi d_nodename

Tracing the Kernel

This string table contains the interrupt and exception vector names
associated with the system that the kernel tracing was performed on.
It is contained in the vectors file.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using thistable are:

get _string(vector, arg3())
get _string(vector, 15)
get item(vector, “ncr_intr”)

This string table contains the names of al the possible syscalls that
can occur on the system. It is contained in the vectors file. For brief
descriptions of the entriesin the syscal | table, see“Syscalls’ on
page 11-21.

Thistable is indexed by a system call number or a system call name.
Examples of using this table are:

get _string(syscall, 44)
get_string(syscall, arg2())
get _item(syscall, “fork”)

This string table contains the names the devices that are currently
configured in the kerndl. It iscontained in the vectorsfile.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get _string(device, arg3())
get _string(device, 720900)
get _i tem(device, “gd”)

This string table contains the name of each node's process ID table.
Itis dynamically built as the trace event files are processed upon ini-
tialization.

This string table contains the names of all nodes that have a trace
event file associated with them. It is dynamically built as the trace
event files are processed upon initialization.

This string table contains the names associated with all process iden-
tifiers found in trace event files for node name nodename. Itis
dynamically built as the trace event files are processed upon initial-
ization. Itis contained in the vectorsfile. Because process identifiers
are not guaranteed to be unique across nodes, using the predefined
string table pi d_to get the process name for a process ID may result
in an incorrect name being returned from the table. Using the node
process I D tables ensures that the correct process name is returned
for aprocess D unless the process hame is not unique on that partic-
ular node.

These tables are indexed by a process identifier or a process name.
Examples of using these tables are:

1-17

NightTrace Manual

get _string(pid_hal, pid())
get itempid_simulator, “odyssey”)

syscal | _nodenameThis string table contains the names of all possible system calls that
can occur in trace event files for node name nodename. It is con-
tained in the vectorsfile.

Thistable is indexed by a system call number or a system call name.
Examples of using this table are:

get _string(syscall_systenx, 31)
get _string(syscall _systeny, arg2())
get _iten(syscall _systenz, “read”)

vect or _nodename This string table contains the interrupt and exception vector names
associated with trace event files for node name nodename. It is con-
tained in the vectorsfile.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using thistable are:

get _string(vector_machinel, arg3())
get _string(vector_nmachi ne2, 585)
get _itemvector_systenB, “data access”)

devi ce_nodename This string table contains the names of devices configured in the ker-
nel for trace event files from node name nodename. It iscontained in
the vectorsfile.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get _string(device_simulatorl, arg3())
get _string(device_simulator4, 3604484)
get _itenm(devi ce_controller, “rtc”)

The pi d string table is also used by the kernel display pages. For more information on the
pi d string table, see “ Pre-Defined String Tables’ on page 5-14. For examples of function
calls with these tables, see Table 8-3.

Kernel Reference

The following sections provide a brief reference to the most common interrupts,
exceptions, and syscalls.

11-18

Interrupts

Tracing the Kernel

There are many different types of interrupts that can be logged by the kernel. The possible
types are listed in the system-dependent vect or string table in the vectorsfile. There are
two main categories of interrupts:

* Non-device-related interrupts

* Devicerelated interrupts

The members of these two categories are described in the following two sections.

Non-Device-Related Interrupts

Table 11-2 provides an aphabetical list of the most common non-device-related inter-

rupts.

Table 11-2. Non-Device-Related Interrupt Reference

Interrupt

Description

callout int
console wake

int on noint

power fail

rescheduling

softclock

spurious int

sysfault int

user int

xcall int

A real time clock interrupt that is used internaly by the kernel.
An interrupt caused by the console wakeup button.

An interrupt that occurs during the processing of another
interrupt.

A power fail interrupt.

A rescheduling interrupt used to trigger a context switch to run
the highest priority processthat isready to run.

An interrupt used to process system callout queue entries.

An interrupt that usually indicates an unreported or
aready-removed interrupt. This interrupt appears only in kernel
traces.

An interrupt indicating that afatal hardware condition has been
detected.

A user-level interrupt. Seei connect (3C) for adescription of
enabling user-level interrupts.

An inter-processor interrupt used for cache flushing, delivering
exceptions to another processor, performance monitoring, and
halting processors.

For more information about interrupts seei nt st at (1M andui stat (1M .

11-19

NightTrace Manual

Device-Related Interrupts

The names printed for device interrupts correspond to the device names in the system
configuration files. See System Administration Volume 2 for information on adding
devicesto a system.

Table 11-3 provides an alphabetical list of the most common device-specific interrupts.

For more information on a device-specific interrupt, refer to the documentation associated
with the particular device.

Table 11-3. Device-Related Interrupt Reference

Interrupt Description

consintr A console terminal interrupt.
eg An Eagle ethernet controller interrupt.

eti_intr An edge-triggered interrupt.

ex An Excellan ethernet controller interrupt.
gpib An |EEE-488 GPIB controller interrupt.
hardclock A 60-Hertz clock interrupt.

hd An HDC disk-controller interrupt.

hps An HPS serial line-controller interrupt.
hrm A reflective memory interrupt.

hsa An HSA disk controller interrupt.

hsd An HSD controller interrupt.

ie An integral ethernet interrupt.

is An integral SCSI controller interrupt.
mpcc An MPCC controller interrupt.

pgintr An FDDI controller interrupt.

rtcintr A real-time clock interrupt.

Xy A Xylogics tape-controller interrupt.

Exceptions

There are many different types of exceptions that can be logged by the kernel. The
possible types are listed in the system-dependent vect or string table in the vectorsfile.

11-20

Syscalls

Tracing the Kernel

Table 11-4 is an aphabetical list of the most common exceptions. See the Power PC 604
RISC Microprocessor User’s Manual for more information.

Table 11-4. Exception Reference

Exception Description

data access An exception indicating that a page fault for a data page
occurred.

decrementer An exception that occurs when the decrementer register counts
down to zero.

float unavail An exception that occurs the first time a process attemptsto use
the floating-point unit.

inst access A page fault exception that occurs during an instruction fetch.

inst brkpt An exception indicating that a breakpoint instruction was

kstack overflow

machine check

misaligned

program

trace

executed.
A fatal exception generated due to kernel errors.

A fatal exception generated for various reasons including parity
errors, hardware failures, and kernel errors.

An exception indicating that aload, store, or exchange
instruction was attempted with a destination memory address not
consistent with the size of the access.

An exception indicating one of several possible conditions
including divide by zero, invalid instruction, and privilege
violation.

An exception generated during single stepping of the CPU.

Thelist system calls can be found in the architecture-dependent syscal | string table that
is dynamically generated into the vectorsfile.

11-21

NightTrace Manual

11-22

Overview

A
Performance Tuning

Although NightTrace's defaults are designed for maximum efficiency, your NightTrace
environment and application may have special requirements that warrant some
performance tuning. You may want to investigate the following issues:

* Preventing trace event loss

* Ensuring accurate timings

* Optimizing file system and CPU usage
* Conserving disk space

* Conserving memory and accelerating nt r ace

Preventing Trace Events Loss

By default, NightTrace copies all user trace events from the shared memory buffer to the
trace event file. This means that normally NightTrace neither discards nor loses trace
events.

To conserve disk space, you may invoke nt r aceud withthe-fi | ew ap or - buf f er -
wr ap option. However, by doing so, you are telling NightTrace to intentionally discard
older or less-vital trace events. If discarding trace eventsis undesirable, runnt r aceud in
expansive mode. To do this, invoke nt r aceud without the-fi | ewr ap and - buf f er -
wr ap options. See “Conserving Disk Space” on page A-4 for more information.

When NightTrace discards trace events, it is intentional. When NightTrace | oses trace
events, it is not. NightTrace does not report discarded trace events; it does, however, report
lost trace events. Most trace event loss is preventable by flushing the shared memory
buffer often.

NightTrace shows trace event loss in the following ways:

* Asanon-zero “events lost” statistic from nt raceud - st at s trace file,
fromntrace-fil estats,oronthentrace Global Window

* Asareverse video “L” on the nt r ace display page Ruler at the location
where the trace event was |l ost

If trace event 10ss seems excessive, you can do the following:

A-l

NightTrace Manual

A-2

Action Reason

Decrease- cut of f , the shared memory buffer-full Increase the chance that the

cutoff percentage for nt r aceud nt r aceud daemon will have
enough time to copy the trace
events in the shared memory
buffer to disk before the shared
memory buffer fills up.

Decrease- t i meout , thent r aceud timeout (Same)
interval

Caltrace_flush() ortrace_trigger() (Same)
often from within your application, especially when
your application is at anon-time critical point

Increase - nensi ze, the shared memory buffer (Same)
sizefor nt r aceud

Use the following command to see the system settings for the current, default, minimum,
and maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHWAX
Seethei dt une(1M man page for more information.

A few other factors can affect trace event loss. Processes in your application may write
trace events into the shared memory buffer at the same time that nt r aceud is flushing
trace events from the shared memory buffer to the trace event file; if the trace event
incoming rate exceeds the flush rate, trace events may not be recorded. Furthermore, when
NightTrace must choose between operating unobtrusively and logging all trace events, it
favors being unobtrusive.

See Chapter 4 for more information on nt r aceud options and modes. For more
informationontrace_flush() ortrace_trigger(), see“trace flush() and
trace_trigger()” on page 2-20.

If events are being lost during kernel tracing:

* Verify that the output Kernel Trace trace event fileison alocal file system
and not an NFSfile system. If you run the following command and thereis
acolon (:) inthe“Fi | esyst en column, the fileison an NFSfile
system.

$ df kernel_trace file

* Askyour system administrator to increase the size of TR_BUFFER_COUNT
in/etc/conf/ntune.d/trace by running thei dt une(1M com-
mand, rebuild, and reboot the system. (Usually a TR_BUFFER_COUNT of
5 issufficient.) The kerndl allocates buffers of 3 pages each (12,288 bytes)
for kernel tracing. Thisis part of the kernel’sinitialized global data, mean-
ing these are reserved physical pages.

Performance Tuning
Ensuring Accurate Timings

If you lack the privilege to lock your pages in memory (P_PLOCK), you must invoke
nt r aceud with the - | ockdi sabl e option. If your application lacks read and write
privilegeto / dev/ spl you must invoke nt r aceud with the- i pl di sabl e option.
Invoking nt r aceud with either the - | ockdi sabl e or - i pl di sabl e option, may
introduce delays and waiting within your application. Use the - | ockdi sabl e and
-i pl di sabl e options only when necessary. For more information on the
-1 ockdi sabl e option, see “Option to Prevent Page Locking (-lockdisable)” on page
4-11. For more information onthe - i pl di sabl e option, see “Option to Disable the IPL
Register (-ipldisable)” on page 4-9.

By default, nt r aceud and NightTrace library routines use page locking to prevent page
faults during trace event logging. NightTrace also modifies the interrupt priority level
(IPL) register; this action prevents rescheduling and interrupts during trace event logging.
NightTrace prevents the operating system from pre-empting your trace event logging
application to make itself most unobtrusive to your application.

If the application must wake the nt r aceud daemon unexpectedly, overhead can cause
trace event timings to be distorted. Do one or more of the following to increase the
likelihood that the daemon will be awake when needed and to make sure that disk write
rates are asfast as the application’slogging rate:

* Increase the shared memory buffer size (- nensi ze)
* Decrease the shared memory buffer-full cutoff percentage (- cut of)
* Decreasethent r aceud timeout interval (- ti neout)

e Caltrace_flush() ortrace_trigger () appropriately

For more information on the - mensi ze, - cut of f, and - t i meout options, and
trace_fl ush(), see, respectively, “Option to Define Shared Memory Buffer Size
(-memsize)” on page 4-16, “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)” on
page 4-18, “Option to Set Timeout Interval (-timeout)” on page 4-17, and “trace_flush()
and trace_trigger()” on page 2-20.

Optimizing File System and CPU Usage

Different systems may share files via the Network File System (NFS); however, accessing
an NFS-mounted file takes longer than accessing a local file. You get the best NightTrace
and Kernel Trace performance if you avoid NFS accesses; put your trace event file on the
same system where both the daemons and your application run. To determine whether
your disk islocal to your system, verify that it is mounted on / dev and not on another
host. You can do this by running the df (1) command and looking for a colon (:) in the
“Fi | esyst ent column.

A single system may have more than one CPU. Consider assigning the daemon and your
application to different CPUs on the same system; this way, the daemos will not interfere
with your application.

A-3

NightTrace Manual

You can usethenpadvi se(3C) library routine to help you determine which CPUs exist
on this system. You can the trace daemon and your application to particular CPUs with the
run(1) command.

$ run -bbias command

Conserving Disk Space

To determine how much disk spaceis available on your system, run the df (1) command
with the - k option and look at the “avai | ” column. You can conserve disk space if you
permit NightTrace to discard sometrace events. To do this, invoke nt r aceud with either
the-fi | ewr ap option or the- buf f er w ap option.

Thentraceud -fil ew ap option makes NightTrace operate in file-wraparound mode,
rather than in expansive mode. In file-wraparound mode the trace event file can become
full of trace events. When this happens, nt r aceud overwrites the oldest trace events at
the beginning of the file with the newest ones. The overwriting is called discarding trace
events. For more information on file-wraparound mode, see “Option to Establish
File-Wraparound Mode (-filewrap)” on page 4-12.

Thent raceud - buf f er wr ap option makes NightTrace operate in buffer-wraparound
mode, rather than in expansive mode. When the buffer is full in buffer-wraparound mode,
the application treats the shared memory buffer as a circular queue and overwrites the
oldest trace events with the newest ones. This overwriting continues until your application
explicitly callstrace_fl ush() ortrace_trigger().Only then, doesnt raceud
copy the remaining trace events from the shared memory buffer to the trace event file. The
overwriting is called discarding trace events. For more information on buffer-wraparound
mode, see “Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-13.

By default, nt r aceud operates in expansive mode, not file-wraparound or buffer-wrap-
around mode. In expansive mode, NightTrace uses the most disk space because it does
not discard any trace events.

You can also conserve disk space by invoking nt r aceud with the - di sabl e option so
it logs fewer trace events. For details, see “trace_enable(), trace_disable(), and Their Vari-
ants’ on page 2-16.

Conserving Memory and Accelerating ntrace

A4

nt r ace can be amemory-intensive tool. By default, when nt r ace starts up, it loads all
trace event information into memory; therefore, the more trace events in your trace event
file(s), the more memory nt r ace uses. When you move the scroll bar on the Display
Page to change the displayed interval, nt r ace processes all trace events between the last
interval and this one; if there are many trace events, the display update (or search) may
seem slow. To conserve memory and accelerate nt r ace:

* Log only trace events you are really interested in.

Performance Tuning

* Invoke nt r ace only with the trace event files that are essential to your
analysis.

* Invoke ntrace with options (- nohar dcl ock, - process -start,
and - end) that restrict which trace events get loaded. For more informa-
tion about nt r ace options, see “ntrace Options’ on page 5-3.

A-5

NightTrace Manual

A-6

Overview

B
GUI Customization

The graphical user interface (GUI) for nt r ace is based on OSF/Motif. nt race runsin
the environment of the X Window System. Your X terminal vendor supplies you with
vendor-specific directories and files that pertain to colors and fonts. The file that contains
available colorsiscalled r gb. t xt . The fonts that your X server supports are in the
fusr/1ib/X11/fonts directory.

nt r ace has default values for X resources. These resources include fonts, some push
button names, window titles, window-component dimensions, and colors. You can over-
ride the following default X resource settings by providing new values in the following
places:

* Inyour. Xdef aul t s file
* Onthentrace invocation line

* Inaresourcefilethat thexr db(1) X resource database manager reads

If you specify the same X resource on the ntr ace invocation line and in your
. Xdef aul t s file, the setting on the invocation line overrides the one in thefile.

An X resource line has the following format:

object* subobject[* subobject. . .] * attribute: value

where:

object Isthe name of the X client program, Nt r ace.

subobject Isalevel in thewidget (window component) hierarchy with the most
general level first; this always begins on an upper-case letter. In
nt race, the first subobject is often Col or for color displays or
Mono for monochrome displays. The last subobject may be the name
of your display object. For more information about display object
names, see “Display Object Name” on page 8-4.

attribute Is a characteristic of the last subobject; this aways begins on a
lower—case letter.

value Isasetting for the attribute.

It is possible to omit levels from the widget hierarchy. If you specify all levels of the
widget hierarchy and then a value, the value applies to that specific widget. If you leave

B-1

NightTrace Manual

out levels of the widget hierarchy, the attribute applies more generally, possibly to a class
of widgets.

For more information on X resources, see “Recommended Reading” on page 1-7 and the
X Window System User’s Guide.

Default X-Resource Settings for ntrace

B-2

nt r ace’sdefault X-resource settings follow. They are primarily grouped by window and
display object. There are some subobjects and attributes that appear in many settings.
Table B-1 lists several common subobjects and attributes along with their meanings.

Table B-1. Meanings of Common Subobjects and Attributes

Subobject/Attribute Meaning

Text Scrol | box The message (or summary) display area

D al og The dialog box

name The window title. Any window that has a name attribute
also has a geometry attribute.

geonetry The location and dimensions of the window. See “Recom-
mended Reading” on page 1-7 for more information.

open A push button nameinaFile Selection Dialog Box

caption The descriptive text within awindow

In the following X-resource strings, default values are shown where they exist.

The resource strings for the global window message display area dimensions and window
title are:

Nt race*d obal W ndow* Text Scr ol | box*def aul t Li nes: 20

Nt race*d obal W ndow* Text Scr ol | box*def aul t Chars: 80

Nt race*d obal W ndow* narre: Ni ght Tr ace
Nt race*d obal W ndow* geonetry:

The resource strings for the line count of the display page message area follow. Note:
m ni munli nes must be less than or equal to def aul t Li nes, and def aul t Li nes
must be less than or equal to maxi nmunli nes.

Nt race* Di spl ayPage* Text Scrol | box*def aul tLines: 3
Nt race* Di spl ayPage* Text Scrol | box* maxi nunii nes: 3
Nt race* Di spl ayPage* Text Scrol | box*m ni nuniLi nes: 3

The resource strings for grid attributes follow. nt r ace uses the def aul t Dot sHi gh
and def aul t Dot sW de attributes only for new display pages. Note: if
def aul t Dot sW de istoo narrow to accommodate all the display page push buttons,
nt r ace overrides this setting.

Nt race*Gri d*f oreground:

GUI Customization

Nt race*Gi d*backgr ound:

Nt race*Grid*font:

Nt race*Gri d*defaul t Dot sH gh: 30
Nt race*Gi d*defaul t Dot sWde: 60

The resource strings for the File Selection Dialog Box width, window titles, push
buttons, and prompt strings follow. A File Selection Dialog Box is the type of
window nt r ace uses to prompt for file names, for example, configuration file names to
open and save.

Nt race*Fi | eChooser *wi dt h: 180

Nt r ace* OpenPopup* nane: Open Di al og

Nt r ace* OpenPopup* open: Open

Nt race* OpenPopup*capt i on: Enter configuration file nane:

Nt race* OpenPopup*geonetry:

Nt r ace* ReadPopup* nane: Read D al og
Nt r ace* ReadPopup* open: Read
Nt r ace* ReadPopup*capt i on: Enter event-map file name:

Nt r ace* ReadPopup*geonet ry:

Nt r ace* SaveAsPopup* nane: Save As Dial og
Nt r ace* SaveAsPopup* open: Save
Nt r ace* SaveAsPopup*capt i on: Enter configuration file nane to save:

Nt r ace* SaveAsPopup*geonetry:

The resource strings for the other dial og box titles and descriptive text are:

Nt race*War ni ngD al og* nane: Warni ng D al og
Nt race*Quest i onDi al og* name: Question Dial og
Nt race*Wor ki ngD al og* nane: Wrking D al og
Nt race* Macr oD al og* nane: Macr os

Nt race* MacroDi al og*capt i on: Li st of Macros:
Nt race*Qual i fi edEvent D al og*name: Qualified Events

Nt race*Qual i fi edEvent D al og*caption: List of Qualified Events:

Nt race*Qual i fi edSt at eD al og*name: Qualified States
Nt race*Qual i fi edStateD al og*caption: List of Qualified States:

The resource strings for the window title and descriptive text for al Forms are:
Nt r ace* Sear chFor nt narre: Search
Nt race* Summar i zeFor nt nane: Summari ze

Nt race* Summar i zeFor nt Text Scrol | box: def aul t Chars: 84
Nt race* Summar i zeFor nt Text Scrol | box: def aul t Li nes: 14

Nt race* Surmar i zeFor n¥ SaveText AsPopup*nane: Save Summary Text As Dial og
Nt race* Summar i zeFor nt SaveText AsPopup*open: Save
Nt race* Surmar i zeFor nt SaveText AsPopup* capt i on:
Enter file name to save text
to:
Nt race* Summar i zeFor n¥ SaveText AsPopup* geonet ry:

B-3

NightTrace Manual

B-4

TIP:

If you sometimes work at a monochrome monitor, you may want to have two sets of the
following X resource settings: one for color and one for monochrome. The color settings
follow. The resource names for monochrome settings are identical except they say Mono
instead of Col or.

TIP:

Experiment with colors and shadings until you find a set you like. To avoid visual fatigue,
use highly-contrasting colors and values sparingly.

The resource strings for the specific display objects are:

Nt race* Col or *Gri dLabel *backgr ound:
Nt race*Col or *Gri dLabel *f or egr ound:
Nt race*Col or *Gri dLabel *font :

Nt race*Col or *Gri dLabel *text Justify:
Nt race*Col or *Gri dLabel *text G avity:

Nt r ace* Col or * Dat aBox* backgr ound:
Nt race* Col or * Dat aBox* f or egr ound:
Nt race* Col or * Dat aBox* f ont :

Nt race* Col or * Dat aBox*t ext Justify:
Nt race* Col or *Dat aBox*text Gavity:

Nt race* Col or * Col utmm* backgr ound:
Nt race* Col or * Col urm*f or egr ound:

Nt race* Col or * St at eGr aph*backgr ound:
Nt race* Col or * St at eGr aph*f or egr ound:
Nt race* Col or * St at eGr aph*event Col or:

Nt race* Col or *Event Gr aph*backgr ound:
Nt race* Col or *Event Gr aph*f or egr ound:

Nt race* Col or * Dat a@ aph* backgr ound:
Nt r ace* Col or * Dat a@ aph*f or egr ound:

Nt race* Col or * Rul er *backgr ound:

Nt race* Col or *Rul er *f or egr ound:

Nt race* Col or *Rul er*f ont :

Nt race* Col or *Rul er * mar kCol or:

Nt race* Col or *Rul er *| ost Event Col or :

TIP:

On a monochrome display, make sure that you can differentiate among display objects
within a Column. The easiest way to do thisisto leave at least one grid dot between dis-
play objectsin a Column and to make the background color of the Column black.

Grid object settings apply if you have not set the corresponding setting for a specific
display object. The general grid object resource strings are:

Nt race* Col or *Gri dQoj ect *backgr ound:
Nt race*Col or *Gri dQoj ect *f or egr ound:
Nt race* Col or *Gri dQbj ect *bor der Col or :

For information about setting X resources for kernel displays, see “Color Information” on
page 11-16.

Examples

GUI Customization

Setting X resources to values is most consistent if the values of the X resources do not
contain spaces. For example, even if your r gb. t xt color file contains a color called
“navy blue,” for smplicity type it as one word without any quotation marks.

In the following examples, you are making navy blue (navybl ue) the foreground color
(f or egr ound) of all grid objects (Gri dCbj ect) on a color monitor (Col or) for
nt race (Nt r ace). This example shows how thisline may appear in your . Xdef aul t s
file

Nt race*col or*Gi dbj ect *f or egr ound: navybl ue

The following example shows how you can use this setting on the nt r ace invocation
line. Note: there must not be any spaces between the colon and the value.

$ ntrace -xrm Ntrace*col or*Gri dObj ect *f or egr ound: navybl ue

Exercise: Customizing Display Colors

Edit your . Xdef aul t s file so it defines background colors for the following display
objects. Suggested colors are provided.

Table B-2. Suggested Colors for X Resources

Display Object Suggested Color
Column CornflowerBlue
DataGraph PowderBlue
StateGraph LightSteelBlue
Ruler PaleGreen
DataBox Aquamarine
GridObject SkyBlue

B-5

NightTrace Manual

A possible solution follows:

Nt r ace* Col or * Col uim*background: Cor nf | ower Bl ue

Nt race* Col or * Dat aG aph*background: Powder Bl ue

Nt race* Col or * St at eGraph* backgr ound: Li ght St eel Bl ue
Nt race* Col or *Rul er *background: Pal eG een

Nt r ace* Col or * Dat aBox*backgr ound: Aquamari ne

Nt race* Col or*Gri dObj ect *backgr ound: SkyBIl ue

To test your entries at an X terminal, invoke nt r ace with the | og trace event file, and
bring up the default display page.

B-6

> Q

> Q

> Q

> Q

> Q

C
Answers to Common Questions

What can | do if trace events are not logging at al?

Verify that the trace event file name on the t r ace_begi n() cal matches the one on the user daemon
invocation. Furthermore, check that the file exists and that you have permission to read and write it.
Additionally, be sure your thread name contains no embedded spaces or punctuation, including periods. See
“trace_begin()” on page 2-5 and “trace_open_thread()” on page 2-9 for more information.

When should | log a different trace event ID number?

Each endpoint of a state should have a different trace event ID number. Usually each trace event logging
routine logs a different trace event D number. Thislets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in. However, it is sometimes
useful to log the same trace event ID in multiple places. This makes it possible to group trace events from
related, but not identical, activities. For more information, see “trace_event() and Its Variants” on page 2-10.

How can | prevent user trace events from being discarded or |ost?

Use expansive mode; avoid use of buffer or file wrapping options. Flush the shared memory buffer more
often by tuning:

* The shared memory buffer size
* The shared memory buffer’s flush percentage
* Increase the priority of the user trace daemon

¢ Bind the user trace daemon to a CPU with minimal activity

See “Preventing Trace Events Loss’ on page A-1 and Chapter 4 for more information.

What can | do if trace events are not appearing in an ntrace display?

Press Refresh, fill out the Search Form, fill in valuesin theinterval control area, use theinterval scroll bar,
keep pressing the Zoom Out push button until you see trace events, examine adisplay object configuration
so you know what it is“listening” for, add or reconfigure display objects on the grid. See Chapter 6 for more
information.

My trace event timings occasionally have huge gaps of time between them. What is the cause?

You are probably running your application on a Series 6000 system and are calling cl ock_settinme().
This system call can corrupt the system interval timer which NightTrace uses for trace event timings.

C-1

NightTrace Manual

Q:
A:

C-2

How can | prevent kernel trace events from being lost?

* Verify that the raw kernel trace output file is on alocal file system and not an NFS file sys-
tem.

* Ask your system administrator to increase the size of TR_BUFFER_COUNT kernel tunable
parameter (PowerMAX Only)

* Increase the priority of the kernel trace daemon

¢ Bind the kernel trace daemon to a CPU with minimal activity

Glossary

This glossary defines terms used in the documentation. Termsin italics are defined here.

Ada task

Add

Apply

argument

boolean table

buffer-wraparound mode

button

click

An Adatask is a construct of statements which logically execute in parallel with
other tasks within an Ada program (process). Tasks communicate asynchronously
via variables whose visibility is defined by normal Ada scoping rules. Tasks
communicate synchronously via rendezvous between a calling and accepting task.

A push button that creates a new macro, qualified event, or qualified state on the
current display page.

A push button that validates and saves all changes. The same functionality is
available by pressing <Enter> in amodified field.

See trace event argument.

A pre-defined string table defined inthe/ usr /11 b/ Ni ght Trace/ t abl es file.
It associates O with f al se and all other valueswith t r ue.

The mode that causes the nt r aceud daemon to treat the shared memory buffer asa
circular queue and to overwrite the oldest trace events with the newest ones; this
means that nt r aceud intentionally discards the oldest trace events to make room
for the newest ones. Invoke nt r aceud with the - buf f er wr ap option to obtain
this behavior. The two other nt r aceud modes are expansive mode and file-wrap-
around mode.

See mouse button, push button, and radio button.

To press and release a mouse button without moving the pointer. Usually you do
thisin NightTrace to select menu items, push buttons, or radio buttons.

Glossary-1

NightTrace Manual

Close

color display

Column

configuration

configuration file

Configuration Form

Configure

context switch

context switch line

control

Glossary-2

A push button that closes a dialog box. This can aso be a menu item that makes a
window close.

An X server display that contains greater color variety than black, gray, and white.
See also monochrome display.

A display object that constrains the width of StateGraphs, EventGraphs, Data-
Graphs, and Rulers.

The definition of a display object, macro, qualified event, or qualified state.

An NightTrace-generated ASCII file that holds display pages, macro, qualified
event, and qualified state definitions. This can also be a hand-edited table file, con-
taining definition of string tables and/or format tables.

The NightTrace form that allows you to define a display object’s data content,
constraints, and graphic attributes, the value of a macro or the constraints of a
qualified event or qualified state.

A push button that reconfigures and renames the selected macro, qualified event, or
qualified state.

An action that occurs inside the kernel. Its functions are to save the state of the
process that is currently executing, to initialize the state of the processto be run, and
to begin execution of the new process.

A vertical line superimposed on an exception graph or a syscall graph on a kernel
display page. It indicates that the kernel has switched out the process that was
previously running on the CPU and switched in a new process.

See mouse button, push button and radio button.

CPU box

current instance of a state

current time

current time line

current trace event

cursor

daemon definition

DataBox

DataGraph

Default Kernel Page

Glossary

A GridLabel on akernel display page. It identifieswhich logical central processing
unit the displayed data corresponds to. Logical CPU numbers are related to, but not
necessarily identical to, physical CPU numbers.

The instance of a state which has begun but has not yet completed. Thus, the cur-
rent time line would be positioned within the region from the start event up to, but
not including, the end event.

Thetimein the interval up to which all display objects on a display page have been
updated.

The dashed vertical bar that represents the current time in a Column.

The last trace event on or before the current time line.

See text cursor.

The configuration of a particular trace daemon which includes daemon collection
modes and settings, daemon priorities and CPU bindings, and data output formats,
as well as which trace event types are handled by that daemon.

A display object that displays possibly variable textual or numeric information.

A scrollable display object that graphically displays a bar chart of an expression’s
value asit changes over the interval.

A menu item that automatically creates a display page to depict context switches,
interrupts, exceptions, and system calls with display objects for each CPU on the
system.

Glossary-3

NightTrace Manual

Default Page

Delete

device table

dialog box

dimmed

disabled

discarded trace event

display object

display page

dotted area

Glossary-4

A menu item that automatically creates a display page with a SateGraph for each
trace event logging process in your trace event file(s).

Remove the selected macro, qualified event, or qualified state.

A pre-defined, dynamically generated string table in the vect or s file created by
nt r ace when consuming raw kernel trace data files. string table contains the
names of the devicesthat are currently configured in the kernel.

A transient secondary window that accepts input or conveys a message, for example
information, errors, warnings, and questions. This construct is occasionaly called a
pop-up window.

See disabled.

To flag a component, such as a menu item or push button, as temporarily unavail-
able by graying out the label.

A trace event that nt r aceud intentionally did not log in buffer-wraparound or
file-wraparound mode.

A user-configured graphical component of a display page that shows trace events,
states, trace event arguments, other numeric and text data. Display objects include
thefollowing: GridLabels, DataBoxes, Columns, StateGraphs, EventGraphs, Data-
Graphs and Rulers.

The NightTrace window that allows you to layout display objects and see trace
event and state information in them. You can store display pages in configuration
files.

Seegrid.

drag

duration

Edit mode

ellipses (...)

end function

event

Glossary

To press and hold down a mouse button while moving the mouse. Usually you do
thisin NightTrace to position adisplay object.

The period of time between the start and end trace events of some state.

The display-page mode that allows you to create, edit, and configure display
objects, macros, qualified events, and qualified states. The other display-page mode
is View mode.

An indicator at the end of a menu item that tells you this selection makes a dialog
box appear. Also, an indicator in command line option summaries and syntax
listings that tells you more than one occurrence of the previous syntactic component
is allowed.

A state function that provides information about the ending trace event of the last
completed instance of a state. The state to which the end function applies is either
the qualified state specified to the function, or the state being currently defined.
Thus, if aqualfied state is not specified, end functions are only meaningful when
used in expressions associated within a state definition.

See trace event.

event_arg_dbl_summary table

event_arg_summary table

EventGraph

A pre-defined format table defined in/ usr/ i b/ Ni ght Trace/t abl es. It
contains formats for statistical displays of trace event matches and type double
arguments.

A pre-defined format table defined in/ usr/ i b/ Ni ght Trace/t abl es. It
contains formats for statistical displays of trace event matches and type long
arguments.

A scrollable display object that graphically displays trace events as vertical linesin
a Column.

Glossary-5

NightTrace Manual

event ID

event-map file

event_summary table

event table

event tag

exception

exception graph

expansive mode

expression

Exit

Glossary-6

Seetrace event ID.

User-generated ASCI| file that lets you associate or map short mnemonic tags or
labels with numeric trace event IDs. The kernel’s event-map file is
{usr/lib/N ghtTrace/ event map.

A pre-defined format table defined in /usr/1i b/ Ni ght Trace/tabl es. It
contains formats for statistical displays of trace event matches and trace event time
gaps. It determines the default event-summary output format.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
maps al known numeric trace event I1Ds with symbolic trace event tags.

See trace event tag.

An event internal to the currently executing process that stops the current execution
stream. Exceptions can be suspended and resumed.

A SateGraph on akernel display page. It displays states representing exceptions
executing on the associated CPU.

The (default) mode that causes the nt r aceud daemon to copy dl trace events that
ever reach the shared memory buffer to the indefinitely-sized trace event file.
Invoke nt r aceud without the - f i | ewr ap and - buf f er wr ap options to obtain
this behavior. The two other nt r aceud modes are buffer-wraparound mode and
file-wraparound mode.

A combination of operators and operands that evaluate to avalue. Operandsinclude
constants, macro calls, function calls, qualified events, and qualified states.

A menu item that terminates an NightTrace session.

file-wraparound mode

flushing the buffer

font

format function

format table

function

gap

global process identifier

Global Window

graphical user interface

Glossary

The mode that causesthe nt r aceud daemon to overwrite the oldest trace eventsin
the beginning of the trace event file with the newest ones; this means that
nt r aceud intentionally discards the oldest trace events to make room for the
newest ones. Invoke nt r aceud with the - fi | ewr ap option to obtain this
behavior. The two other nt r aceud modes are expansive mode and buffer-wrap-
around mode.

The process of the nt r aceud daemon copying trace events from the shared
memory buffer to atrace event file.

A style of text characters.

A function that alowsyou to display astring.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding dynamically-formatted
and generated character string. You hand-edit format tables into configuration files.
Therelated structure is astring table.

A pre-defined NightTrace entity that may be used in an expression. NightTrace pro-
vides several classes of functions: trace event, multi-event, start, end, multi-state,
offset, summary, format, and table functions.

The period of time between two trace events, possibly the end of one state and the
beginning of another.

See PID.

The NightTrace window that displays summary statistics pertaining to your trace
event files and allows you to open NightTrace-related files.

The mechanism NightTrace uses to receive input and provide displays. It is based on
the X Window System and Motif.

Glossary-7

NightTrace Manual

grid

GridLabel

GUI

Help

host system

icon

instrumented code

interrupt

interrupt graph

The region of the display page filled with parallel rows and columns of dots that
holds display objects.

A display object that displays constant textual information.

See graphical user interface.

A menu item that presents the online manua using the HyperHelp viewer.

The system on which the NightTrace GUI is running.

The small graphical image and/or text label that represents a window or window
family when the window is minimized. The text label is either the window title or
an abbreviated form of thetitle. Iconified windows are still active.

Seetrace event ID.

Source code after you have put callsto NightTrace library routinesinto it.

An event external to the currently executing process; an interrupt stops the current
execution stream to begin execution of a higher-priority execution stream. There are
device-related and software-generated interrupts. Interrupts have an associated
priority known as the interrupt priority level (IPL), which allows an interrupt to
interrupt the execution stream of a lower-1PL interrupt.

A DataGraph on akernel display page. It displays states representing interrupts
executing on the associated CPU.

interrupt priority level (IPL) register

Glossary-8

A system register than can be used by the NightTrace library to prevent reschedul-
ing and interrupts during trace event logging.

interval

interval control area

interval timer

Kernel Trace Event File

keyboard

Glossary

A time period in the trace session delimited by the Time Start and Time End fields
of theinterval control area.

The region of the display page that holds nine numeric fields that define and
manipulate the interval and the display objects on the grid.

The system timer on the NightHawk 6000 Series and TurboHawk systems that
NightTrace uses to timestamp trace events.

A trace event file is generated by a kernel trace daemon. Thisfile contains raw ker-
nel data and is automatically transformed into afiltered file (with a new filename
using the“ . nt f " suffix) by nt r ace. Either araw kernel trace event file or afil-
tered file may be specified to nt r ace. The filtering process also creates a vectors
file which is formed by appending a“ . vec” suffix to the origina trace event file
name.

A traditional input device for entering text into fields. In this manual, thisis a
standard 101-key North American keyboard.

last completed instance of a state

last exception box

last interrupt box

last syscall box

The most recent instance of a state that has already completed. Thus, the current
time line would be positioned either on, or after, the end event for a state.

A DataBox on a kernel display page. It displays the last exception prior to the
current time line that executed (and may still be executing) on the associated CPU.

A DataBox on a kernel display page. It displays the name of the last interrupt prior
to the current time line that executed (and may still be executing) on the associated
CPU.

A DataBox on akernel display page. It displaysthelast syscall prior to the current
time line that executed (and may still be executing) on the associated CPU.

lightweight process identifier

See LWPID.

Glossary-9

NightTrace Manual

lost trace event

LWPID

macro

mark

match

menu

menu bar

message display area

monochrome display

A trace event nt r aceud was unable to log. Several nt r aceud options exist to
prevent this trace event loss.

An integer that represents an operating system lightweight process identifier. It
makes up the second half of a PID.

A user-defined named expression stored in a configuration file. When you call a
macro, precede the macro name with a dollar sign.

The solid triangle on a Ruler that points to a particular time.

A trace event or state that meets user-defined qualifying configuration criteria

A list of user-selectable choices.

The horizontal band near the top of a window that contains a list of labeled
pull-down menus.

The scrolling region of the Global Window or the display page that holds textual
statistics, as well as error and warning messages.

A black, gray, and white X-server display. See also color display.

most recent instance of a state

mouse

Glossary-10

If the current time line is positioned within a current instance of a state, then it is
that instance of the state. Otherwise, it isthe last completed instance of a state.

In this manual, a three-button pointing device for point-and-click interfaces.

mouse button

multi-event function

multi-state function

name_pid table

name_tid table

New Page

NightTrace

NightTrace thread

NightTrace thread identifier

Glossary

A part of the mouse that you can press to alter aspects of the application. Each
mouse button has a different purpose. Button 1 is usually for selecting or dragging.
Button 2 is usually for moving display objects. Button 3 is usually for resizing
display objects. You can make multiple selections by simultaneously pressing
<Shift> and clicking mouse button 1. You may click, drag, press, and release
mouse buttons.

Multi-event functions return information about ocurrences of events, or relation-
ships between occurrences of events, before the current time line.

Multi-state functions return information about instances of states, or relationships
between instances of states, before the current time line.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associates node |D numbers with the the name of each node's process ID table.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associates node I|D numbers with the the name of each node's thread ID table.

A menu item that creates an empty display page.

The interactive debugging and performance analysis tool that is part of the Night-
Star tool kit. It consists of the nt r aceud daemon, NightTrace library routines, and
the nt r ace display utility. This product allows you to log trace events and data
from applications written in C, Fortran, or Ada; these applications may be composed
of one or more processes, running on one or more CPUs. You can then examine
these trace events and those from the kernel through the nt r ace display utility.

A process, thread or Ada task (or a set of any combination of these) that is
associated with a uniquely named trace context. The thread name is derived from
the argument specified tothet r ace_open_t hread() function.

SeeTID.

Glossary-11

NightTrace Manual

NightView

node

node box

node ID

node name

node_name table

node PID table

node TID table

NT_ASSOC_PID

Glossary-12

A symbolic debugger that is part of the NightStar tool kit. It lets you debug C and
Fortran applications; these applications may be composed of one or more processes,
running on one or more CPUs. Among other things, NightView can automatically
patch trace event logging routines into your executable application.

A system from which a trace event file can come from.

If the RCIM synchronized tick clock is used to timestamp events, thisisa GridLabel
on akernel display page. It identifies which node to which the displayed data corre-
sponds.

A unique identifier internally assigned by NightTrace to every node that has an
trace event filein atrace file analysis.

The name of a system from which atrace event file can come.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associates node |D numbers with node names.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associ ates process identifiers (PIDs) with process names for a particular node. The
name of each node'stableispi d_nodename where nodename is the node's name. |If
kernel tracing, thistableis stored in thevect or s file.

A pre-defined, dynamically generated string table. It isinternal to NightTrace. If
user tracing, it associates NightTrace thread ID numbers with thread names for a
particular node. If kernel tracing, thistableis not used. The name of each node's
tableist i d_nodename where nodename is the node's name.

An overhead trace event that nt r aceud logs at the beginning and end of each
process.

NT_ASSOC_TID

NT_CONTINUE

ntrace display utility

ntraceud

object

offset

offset function

OK

Open

ordinal trace event number

panel

Glossary

An overhead trace event that nt r aceud logs at the beginning and end of each
thread and Ada task.

An overhead trace event that nt r aceud logs for multi-argument trace events.

The part of NightTrace that graphically displays trace events, trace event data, and
states for debugging and performance analysis.

The NightTrace daemon process that allows you to log user-defined trace events
and data from user applications written in C, Fortran, or Ada. These applications
may be composed of one or more processes, running on one or more CPUs.

See display object.

The number that identifies the position of a trace event in the chronologi-
cally-ordered sequence of trace events, regardless of the trace event ID. Counting
starts from zero. For example, if atrace event with trace event ID 71 is the third
trace event in the trace session, then its offset is 2.

A function that takes an expression that evaluates to an offset as a parameter.

A push button that acknowledges the warning in a dialog box.

A menu item and push button that opens an existing file.

See offset.

A window component that groups related buttons, for example push buttons.

Glossary-13

NightTrace Manual

PID

PID table

point

pointer

pop-up window

press

pull-down menu

push button

qualified event

qualified state

Glossary-14

A 32-bit integer that represents an operating system process. The following syntax
numerically specifiesaPID: raw_PID’'LWPID. The operating system process i den-
tifier (raw PID) is contained in the upper 16 bits and the lightweight process identi-
fier (LWPID) is contained in the lower 16 bits.

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names. If kernd tracing, the pi d
string tableinthevect or s file.

To move the mouse so the mouse pointer is positioned at the place of interest.

A graphical symbol that represents the mouse pointer’s current location in the
window. The shape of the pointer shows the current usage. Usually a pointer is
shaped like an arrow pointing to the upper left.

See dialog box.

To hold down a mouse button without releasing it or to depress a keyboard key.

A list of related choices called menu items pulled down from the menu bar. Click
on amenu item to select it.

A graphic image of alabeled button. Click on apush button to select it.

A user-defined named event configuration that consists of a set of one or more trace
events, possibly restricted by an If-Expression, CPU List, TID List, PID List,
and Node List. Qualified events provide a mechanism for referencing trace events
configurations within certain functions. These definitions are stored in configuration
files.

A user-defined named state configuration that consists of a set of one or more
states, possibly restricted by a Start-Expression, End-Expression, CPU
List, TID List, PID List, and Node List. Qualified state provides a mechanism

radio button

raw PID

RCIM

Glossary

for referencing state configurations within certain functions. These definitions are
stored in configuration files.

A graphic, labeled diamond-shape that represents a mutually exclusive selection
from related radio buttons. Click on aradio button to select it.

A 16-bit integer that makes up the first half of a PID.

Real-Time Clocks and Interrupts Module. It provides a synchronized clock,
edge-triggered interrupts, real-time clocks and programmable interrupts. Some set
of interrupts can be distributed and sent to all connected RCIMs. The RCIM hard-
ware is available via a standard PCI mezzanine card (PMC).

RCIM synchronized tick clock

Read

record

region

release

Reset

Restore

The primary clock on an RCIM. It is a64-bit non-interrupting counter that counts
each tick of the clock (400 nanoseconds). When connected to other RCIMs, the
synchronized tick clock provides atime base that is consistent for al connected sin-
gle board computers.

A menu item and push button that read an existing file.

See trace event.

The period of time between the mark and the current time.

To let go of the currently-pressed mouse button.

A push button that cancels (undoes) all unapplied changes.

A push button that cancels al changes since the dialog box was displayed.

Glossary-15

NightTrace Manual

Ruler

running process box

Save

Save As

Save Text

Save Text As

SBC

scroll bar

Search Form

selection

Glossary-16

A scrollable display object that appears as a hash-marked timeline within a Column.
The Ruler may also contain reverse video “L” s indicating lost trace events and
user-defined marks.

A DataBox that shows the process that is executing at the current time line on the
associated CPU. If the RCIM moduleis used to timestamp events, this DataBox will
show the process that is executing at the current time line on both the associated
CPU and node.

A menu item and push button that overwrite an existing configuration file with the
current display page.

A menu item that saves the current display page in anew configuration file.

A menu item that overwrites an existing summary text file with text from the
summary display area.

A menu item that saves the current summary text from the summary display area
into a new summary text file.

Single-board computer.

The narrow, rectangular graphic device used to change a display that would not
otherwise fit in the window. It consists of atrough, a slider, and arrowhead buttons.
If the slider does not fill the trough, there is a gap on one or both sides.

The NightTrace form that allows you to define criteria to be used to locate a trace
event in atrace event file by its configured characteristics and itslocation in the file.

The display object that you clicked on. Alternatively, a selection may be the region
of atext field you dragged the mouse over. For menu items, push buttons, and radio
buttons NightTrace indicates selection by highlighting your choice. For display

separator

session

shared memory buffer

slider

spin lock

start function

State

state function

Glossary

objects, NightTrace places handles on the display object. For dragged-over text
fields, NightTrace displays that text in reverse video.

A line that groups related window components or menu components.

A collection of one or more daemon definitions.

The intermediate destination of trace events before nt r aceud copies them to the
trace event file on disk.

The graphic part of a scroll bar that you move in the trough to change the display.
This component is sometimes called a thumb.

A device used to protect aresource, for example, the shared memory buffer.

A state function that provides information about the start event of the most recent
instance of a state. The state to which the start function applies is either the quali-
fied state specified to the function, or the state being currently defined. Thus, if a
qualfied state is not specified, start functions are only meaningful when used in
expressions associated within a state definition. In addition, start functions should
not be used in a recursive manner in a Start Expression; a start function should
not be specified in a Start Expression that applies to the state definition contain-
ing that Start Expression. Conversely, an End Expression may include start
functions that apply to the state definition containing that End Expression.

A state is bounded by two trace events, a start event and an end event. An instance
of a state is the period of time between the start event and end event, including the
start and end events themselves. Additional conditions may be specified in a state
definition to further constrain the state. Instances of states do not nest; that is, once
astate becomes active, events that might normally satisfy the conditions for the start
event areignored until the end event is encountered. See also qualified state.

The class of NightTrace functions which provide information about states, includ-
ing: start functions, end functions, and multi-state functions.

Glossary-17

NightTrace Manual

StateGraph

state_summary table

streaming

string table

Summarize Form

summary display area

summary function

summary syscall

syscall

Glossary-18

A scrollable display object that graphically displays states as bars and trace events
asvertical linesin a Column.

A pre-defined format table defined in/ usr/1i b/ Ni ght Trace/t abl es. It
contains formats for statistical displays of state matches, state durations, and state
time gaps. It determines the default state-summary output format.

The method used by the NightTrace Session Manager of sending trace data from
daemons directly to the NightTrace display.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding static character string.
You hand-edit string tablesinto configuration files. The related structure is a format
table.

The NightTrace form that allows you to obtain trace event and state statistics, such
as minimum, maximum, average, and total values of gaps, durations, and trace
event arguments.

The scrolling region of the Summarize Form that holds textual summary
statistics.

A function that takes another expression as a parameter (except for
summary_mat ches()).

A system call that is a special type of exception. A syscall is made when a user
program forces atrap into the operating system via a special machine instruction. A
syscall is used to request a given service from the kernel. Many library routines
supplied as part of the operating system make syscalls to accomplish their functions.
Syscalls can be suspended and resumed.

System call.

syscall graph

syscall table

table

table function

tag

task

task ID

text cursor

thread

thread ID

Glossary

A SateGraph on a kernel display page. It displays states representing system calls
(syscalls) executing on the associated CPU.

A pre-defined, dynamically generated string tablein thevect or s file. This string
table contains the names of all the possible system calls (syscalls) that can occur on
the system.

See format table and string table.

A function that allows you to extract information from user-defined and pre-defined
string tables and format tables.

See trace event tag.

See Ada task.

A 16-bit integer chosen by the Ada run-time executive that uniquely identifies an
Ada task within an Ada program.

The blinking vertical bar in an editable text field that shows your current edit
position within thefield.

A sequence of instructions and associated data that is scheduled and executed as an
independent entity. Every UNIX process linked with the Threads Library contains at
least one, and possibly many, threads. Threads within a process share the address
space of the process.

A 16-bit integer chosen by the threads library that uniquely identifies a thread
within agiven process.

Glossary-19

NightTrace Manual

TID

TID table

timestamp

Time Base Register

time quantum

trace context

trace event

trace event argument

Glossary-20

A 32-bit integer that represents a unique context to which trace events can be
associated. The following syntax numerically specifiesa TID: raw_PID’task_id,
raw_PID’thread_id, or raw_PID’0 (if neither Ada tasks nor threads are in use).
The operating system process ID (raw PID) is contained in the upper 16 bits and
either athread ID, task ID, or zero is contained in the lower 16 bits.

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates NightTrace thread identifiers (TIDs) with thread names. This table is not
used in kernel tracing.

The time at which a specific trace event was logged. This provides the means by
which the chronology of the trace events logged by multiple processes can be
assembled. The timestamp is obtained from the system interval timer, the Time
Base Register, or the RCIM synchronized tick clock, depending on either the system
architecture or user-specified optionsto nt r aceud.

The system timer on the Power Hawk/PowerStack systems that NightTrace uses to
timestamp trace events.

The fixed period of time for which the kernel allocates the CPU to a process.

All trace points are associated with alog file (established viat r ace_start)anda
thread name (established viat race_open_t hr ead). If two processes (or tasks,
or threads) are associated with the same log file and thread name, then they are said
to have the same trace context. If they differ in log file, thread name, or both, then
they have different trace contexts.

A user-defined point of interest in an application’s source code that NightTrace
represents with an integer trace event ID. Alternatively this may be a predefined
point of interest in the kernel. Along with the trace event 1D, NightTrace records the
timestamp when the trace event occurred, any arguments logged with the trace
event, and the logging process identifier (PID).

A user-defined numeric vaue logged by an application via atrace event.

trace event file

trace event function

trace event ID

trace event tag

trace point

trough

vector table

View mode

widget

window

Glossary

An nt r aceud-created binary file that contains sequences of trace events and data
that your application and the nt r aceud daemon logged.

The class of NightTrace functions that provide information about trace events. They
operate on either the qualified event specified to that function or, if unspecified, the
current trace event. Trace event functions include multi-event functions.

An integer that identifies a trace event. User trace event IDs are in the range
0- 4095, inclusive. Kernel trace event IDs arein the range 4100- 4300, inclusive.

A symbolic name mapped to a numeric trace event ID in an event-map file.

A place of interest in the source code. In user tracing, at each trace point in your
application you call atrace event logging routine to log a trace event, possibly with
additional data describing part of your program’s state at that time. Kernel trace
points and trace events are already defined and embedded in the kernel source.

The graphic part of a scroll bar that holds the slider.

A pre-defined, dynamically generated string table in thevect or s file. This string
table contains the interrupt and exception vector names associated with the system
on which the kernel tracing was performed.

The display page mode that allows you to see, search for, and summarize trace
event information in the message display area, the summary display area, and
display objects on the grid; create, edit, and configure macros, qualified events, and
qualified states. The other display-page mode is Edit mode.

A window component, for example a scroll bar or push button.

A rectangular screen area that permits the display and/or entry of data. The Night-
Trace display utility consists of several windows.

Glossary-21

NightTrace Manual

window manager

The program that controls window placement, size, and operations.

wraparound mode

The mode that causes the nt r aceud daemon to intentionally discard old events.
There are two forms of wraparound mode: buffer-wraparound and file-wrap-
around. The other nt r aceud mode is expansive mode.

Glossary-22

Symbols

Xdefaultsfile 5-2, 5-8, B-1, B-5

Xresourcesfile 5-2, 5-8

/dev A-3

/dev/spl A-3

/etc/conf/mtune.d/trace A-2

Jusr/bin/ntrace 5-3

Jusr/bin/ntraceud 4-2

Jusrfinclude/ntrace.h 2-1, 2-24, 4-23

Jusr/lib/libntrace.a 2-24

{usr/lib/NightTrace/feventmap 5-11, 5-14, 11-6

{usr/lib/NightTrace/examples 2-25, 5-35

/usr/lib/NightTrace/lexamples/entry _exit.c 2-25

{usr/lib/NightTrace/examples/entry_exit_map 5-35

/usr/lib/NightTrace/examples/entry _exit page 5-35

/usr/lib/NightTrace/tables 5-14, 5-16, 5-20, 5-20, 9-77,
9-78, 9-80, 10-8

Jusr/lib/X11/fonts 5-8, 8-3, B-1

A

Adalanguage 1-3
compiling and linking 2-25
Adatask identifier 8-8, 9-10, 9-25, 9-40, 9-51, 9-64
Add push button 9-2
Apply push button 6-9, 6-12, 6-17, 8-10, 9-3, 10-3, 10-8
ar g function 9-9, 9-20
arg_dbl function 9-21
ar g1 function 5-19, 8-5, 9-9, 9-81, 10-7, 10-8
ar g2 function 8-5, 9-12
avg function 9-72

Background Color configuration parameter 8-3, 8-9
Background Color field 8-3

Backward radio button 10-2

boolean table 5-16, 8-6

Box

Index

CPU 11-10
last exception 11-13
last interrupt 11-12
|ast syscall 11-15
Node 11-11
running process 11-10
Buffer-wraparound mode 2-21, 4-4, 4-13, 4-17, 4-18,
A-1,A-4
Button
dimmed. see Button
disabled
disabled 5-27, 7-4
grayed out. see Button
disabled

C

C language 1-3
compiling and linking 2-25
source considerations 2-1
C thread identifier 8-8
Cancel push button 5-30, 5-31
Center push button 6-9
Clear push button 10-9, 10-10
cl ock_settime(3C) routine 2-1, C-1
cl ock_synchroni ze(1M command 2-8
Close menu item 7-19, 10-10
Close push button 8-11, 9-2, 9-3, 10-4, 10-5
Color display 11-16, B-1, B-4
Column 5-29, 6-2, 6-3, 6-4, 7-5, 7-9, 7-13, 8-1, 9-7, B-4
moving 7-5
resizing 7-5
selecting 7-5
Comments
configuration file 5-12
event-map file 5-10
Common configuration parameters 8-1
Configuration file 5-9, 5-11
Configuration form 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,
8-17,8-19,9-4
DataBox 8-13
DataGraph 8-17

Index-1

NightTrace Manual

EventGraph 8-16

Expression 9-2

GridLabdl 8-12

Macro 9-6, 9-7

Qualified Event 9-81

Quadlified State 9-83, 9-84

Ruler 8-19

StateGraph 8-14
Configuration form radio button

Text Gravity 8-4

Text Justify 8-3
Configuration parameters

Background Color 8-3, 8-9

common 8-1

CPU List 8-2,8-6

End-Events 8-15

End-Expression 8-15

Event Color 8-15

Event List 8-2, 8-4

Expression 9-4, 9-7

Fill Style 817

Font 8-3

Fonts 8-9

Foreground Color 8-3, 8-9

If-Expression 8-2, 8-4

Lost Event Color 8-19

MacroDefinition 9-7

Mark Color 8-19

Maximum 8-18

Minimum 8-18

Name 8-2

NodelList 8-3, 8-9

PID List 8-3, 8-7

QualifiedEvent 9-82, 9-83

QualifiedState 9-84, 9-85

Start-Events 8-15

Start-Expression 8-15

Text 8-12

Text Gravity 8-4, 8-10

Text Justify 8-3, 8-9

Then-Expression 8-2, 8-5, 9-4, 9-76, 9-78, 9-79,

9-80

TID List 8-3, 8-8
Configure menu 8-1
Configure push button 9-2
Configuring

display object 8-1
Conserving disk space 4-28, A-1, A-4
Constant string literals 5-18, 9-13, 9-77
Constant times 9-6
Content ... menu item 8-1
Context switch 11-1, 11-4

lines 11-11, 11-13, 11-15
Counters 7-13, 8-13

Index-2

cpp(1l) command 2-24
CPU box 11-10
cpu function 8-5, 9-26
CPU List configuration parameter 8-2, 8-6
CPU List field 8-2, 9-81, 9-83, Glossary-14
CPU number
logical 8-6,11-10
physical 11-10
Create menu 7-6, 7-8
Create mouse operation 7-6
crossref trace flush_and_trace trigger 4-17
Current time 6-2
Current Timefield 6-7, 6-11, 6-13
Current timeline 6-2, 6-2, 11-9, 11-12, 11-13
centering 6-9
manipulating 6-9
Cursor. see Text field
cursor
Cutoff 4-4, 4-5, 4-18, A-3, C-1

D

DataBox 5-29, 7-12, 8-13, 9-79, 9-82, 10-11, 11-10,
11-12,11-13, 11-16, B-4
configuration form 8-13
using as acounter 7-13, 8-13
DataGraph 5-30, 6-4, 7-16, 8-17, 11-12, B-4
configuration form 8-17
Fill Style configuration parameter 8-17
Maximum configuration parameter 8-18
Minimum configuration parameter 8-18
Debugger
NightView 1-4, 2-1
Default Kernel Page menu item 5-27, 11-6
Default Page menu item 5-27, 5-28
Default push button 5-23
Deletemenu item 7-18
Delete push button 9-2
Deselect All menu item 7-18
devicetable 5-17, 11-4, 11-17
device _nodenametable 5-17, 11-18
df (1M command 4-12, 4-14, A-2, A-3
Dialog box
File Selection 5-33
Macro 9-4, 9-6, B-3
Open Config File ... 5-30
Qualified Event 9-81, B-3
Qualified State 9-83, B-3
Read Event-Map File ... 5-31
Warning 5-32, 5-34, 7-19, B-3
Dialog box. see Window
Dimmed

button. see Disabled
button
push button. see Disabled

push button
Dimmed field label 5-27
Dimmed label 5-27
Dimmed menu item. see Disabled menu item
Directory
/dev A-3
[etc/conf/mtune.d A-2
/usr/lib/NightTrace 5-11, 5-14, 5-16, 5-20, 9-77,
9-78, 9-80, 10-8, 11-6
Jusr/lib/NightTrace/examples 2-25, 5-35
usr/lib/X1l/fonts 5-8, 8-3, B-1
Disabled button 5-27, 7-4
Disabled menu item 5-27, 7-4, 7-18, 10-10
Disabled push button 5-27, 7-4
Disabling
IPL usage 4-4, 4-9, 4-28, A-3
library routines 2-1, 2-16, 2-24
page locking 4-4, 4-11, 4-28, A-3
trace events 2-17, 4-4,4-24
tracing 2-16, 2-24
Discarding trace events 2-21, A-1, A-4, C-1
Display
color 5-2,11-16, B-1,B-4
monochrome 5-2, 7-14, B-1, B-4
DISPLAY environment variable 5-2
Display object 1-3,5-1, 7-1, 7-8
Column 5-29, 6-2, 6-3, 6-4, 7-5, 7-9, 7-13, 8-1, 9-7,
B-4
configuring 8-1
creating 7-1, 7-5
DataBox 5-29,7-12, 8-13,9-79, 9-82, 10-11, 11-10,
11-12,11-13, 11-16, B-4
DataGraph 5-30, 6-4, 7-16, 8-17, 11-12, B-4
EventGraph 5-30, 6-4, 7-15, 8-16, 9-7, B-4
GridLabel 5-29, 7-12, 8-12, 11-10, 11-11, B-4
loading 7-6
moving 5-22, 7-5, 7-7
overlapping 7-8
placement 5-22, 7-6
properties 7-9
resizing 5-22, 7-5, 7-7
Ruler 5-30, 6-9, 7-17, 8-19, A-1, B-4
selecting 7-5, 7-6
StateGraph 5-28, 5-29, 6-4, 7-14, 8-14, 9-7, 9-84,
10-12,11-13, 11-16, B-4
usage flowchart 7-12
Display object configuration parameters
Background Color 8-3, 8-9
common 8-1
CPU List 8-2, 8-6

Index

End-Events 8-15
End-Expression 8-15
Event Color 8-15
Event List 8-2, 8-4
Fill Style 8-17
Font 8-3, 8-9
Foreground Color 8-3, 8-9
If-Expression 8-2, 8-4
Lost Event Color 8-19
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
Node List 8-3, 8-9
PID List 8-3,8-7
Start-Events 8-15
Start-Expression 8-15
Text 8-12
Text Gravity 8-4, 8-10
Text Justify 8-3, 8-9
Then-Expression 8-2, 8-5, 9-4, 9-76, 9-78, 9-79,
9-80
TID List 8-3,8-8
Display page 5-27, 6-2, 7-2, 11-6, B-2
X resources B-2
Display page area
grid 6-4, B-2
interval control area 6-11
interval push buttons 6-8
interval scroll bar 6-7, C-1
message display area 6-1, 6-4, 6-9, 6-14, 7-3, 7-7,
7-15, 7-16
Do Not Move Current Time radio button 10-3
Dotted area. see Grid

Duration
state 9-57
E

Edit menu 7-17

Edit mode 5-27, 6-1, 7-4
Editing operation
delete character 6-16
insert character 6-16
positioning 6-18
replace character 6-17
restore the default 6-17
undo 6-17
Enabling
trace events 2-17, 4-4, 4-26
End functions 9-45
end_ar g function 9-47

Index-3

NightTrace Manual

end_ar g_dbl function 9-47
end_cpu function 9-52
end_i d function 9-46
end_I| wpi d function 9-50
end_node_i d function 9-54
end_node_nane function 9-56
end_num ar gs function 9-48
end_of f set function 9-53
end_pi d function 9-48
end_pi d_t abl e_nane function 9-55
end_r aw_pi d function 9-49
end_t ask_id function 9-51
end_t hread_i d function 9-51
end_ti d function 9-52
end_tid_tabl e_nane function 9-55
end_ti e function 9-54
End-Events configuration parameter 8-15
End-Eventsfield 8-15, 9-7, 9-85
End-Expression configuration parameter 8-15
End-Expression field 8-15, 9-4, 9-7, 9-83, 10-7,
Glossary-14

Environment variable

DISPLAY 5-2
Event

gap 9-32

matches 8-6, 8-13, 9-33

qualified 9-81

summary type 10-12

tag. see Trace event

tag

Event Color configuration parameter 8-15
Event Color field 8-15
Event Count field 6-12, 6-13
Event End field 6-7, 6-12, 6-13
Event ID. see Trace event

ID
Event List configuration parameter 8-2, 8-4
Event List field 8-2, 9-83, 9-85, 10-5, 10-7
Event radio button 10-6
Event Start field 6-7, 6-11, 6-13
Event summary 10-11
event table 5-14, 8-5
Event. see Trace event
event_arg_dbl_summary table 5-20, 8-6
event_arg_summary table 5-20, 8-6, 10-8
event _gap function 9-32
event _mat ches function 8-13, 9-33
event_summary table 5-20, 8-6, 10-7
EventGraph 5-30, 6-4, 7-15, 8-16, 9-7, B-4

configuration form 8-16

Event-map file 2-13, 5-4, 5-9, 5-9, 5-15, 5-31, 5-34, 8-2,

11-6
eventmap file 5-11, 5-14, 11-6

Exception 5-5, 5-7, 11-3, 11-13, 11-17, 11-18, 11-20

Index-4

graph 11-13

reference 11-21
resumption 11-3, 11-13
suspension 11-3, 11-13

exec(2) service 2-7,2-10
Exit menuitem 5-32
Expansive mode 4-2, 4-4, 4-5, 4-12, 4-13, 4-14, A-1,

A-4

Expression configuration parameter 9-4, 9-7
Expression field 9-7
Expressions 9-4

constant string literals 5-18, 9-13, 9-77

functions 9-9

macros 5-9, 5-11, 5-27, 5-30, 7-18, 8-2

operands 9-5

operators 9-4

quaified events 5-9, 5-10, 5-11, 5-27, 5-30, 7-18,
8-4,9-81

qualified states 5-9, 5-11, 5-27, 5-30, 7-18, 8-4,
9-83

Expressions menu 9-1

Field

Background Color 8-3

CPU List 8-2,9-81, 9-83, Glossary-14

Current Time 6-7, 6-11, 6-13

editing operations 6-16

End-Events 8-15, 9-7, 9-85

End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,
Glossary-14

Event Color 8-15

Event Count 6-12, 6-13

Event End 6-7, 6-12, 6-13

Event List 8-2, 9-83, 9-85, 10-5, 10-7

Event Start 6-7, 6-11, 6-13

Expression 9-7

File Name 5-33, 5-34

Filter 5-35

Filter-Expression 9-4, 10-7

Font 8-3

Foreground Color 8-3

If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,
10-8, Glossary-14

Increment 6-7, 6-12, 6-14

Lost Event Color 8-19

MacroDefinition 9-7

Mark Color 8-19

Maximum 8-18

Minimum 8-18

Name 8-2

No Event List 10-5
Node List 8-3, 9-81, 9-83, Glossary-14
PID List 8-3, 9-81, 9-83, Glossary-14
QualifiedEvent 9-82
QualifiedState 9-84
Start-Events 8-15, 9-7, 9-85
Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8
Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,
10-12
Text 8-12
Then-Expression 8-2
TID List 9-81, 9-83, Glossary-14
TimeEnd 6-7, 6-11, 6-12, 10-3, 10-6
Time Length 6-11, 6-13
Time Start 6-7, 6-11, 6-12, 10-3, 10-6
Zoom Factor 6-12, 6-13
Field editing 6-16
multiple fields 6-14
singlefields 6-12
Field label
dimmed 5-27, 7-4
File
Xdefaults 5-2, 5-8, B-1, B-5
Xresources 5-2,5-8
/dev/spl A-3
/etc/conf/mtune.d/trace A-2
usr/bin/ntrace 5-3
Jusr/bin/ntraceud 4-2
Jusrfinclude/ntrace.h 2-1, 2-24, 4-23
usr/lib/libntrace.a 2-24
{usr/lib/NightTrace/feventmap 5-11, 5-14, 11-6
{usr/lib/NightTrace/fexamples/entry_exit.c 2-25
/usr/lib/NightTrace/examples/entry _exit map 5-35
/usr/lib/NightTrace/examples/entry _exit page 5-35
/usr/lib/NightTrace/tables 5-14, 5-16, 5-20, 5-20,
9-77, 9-78, 9-80, 10-8
configuration 5-9, 5-11
event-map 2-13, 5-4, 5-9, 5-9, 5-15, 5-31, 5-34, 8-2,
11-6
filter 5-35
NightTrace kernel trace event 5-5, 5-7, 5-27
rgb.txt 5-8, 8-3, 8-15, 8-19, B-1, B-5
traceevent 1-5, 2-5,4-1, 4-12, 4-13, 5-9, A-4
trace. see trace event
vectors 5-5, 5-15, 11-2, 11-17, 11-18
File menu 5-26, 7-18, 10-9
File Namefield 5-33, 5-34
File Selection Dialog Box 5-31, 5-32,5-33, 7-19, 10-10,
B-3
File system
NFS A-2, A-3,C-2
File-wraparound mode 4-4, 4-5, 4-12, A-1, A-4
Fill Style configuration parameter 8-17
Filter 5-35

Index

Filter field 5-35
Filter-Expression field 9-4, 10-7
Finding. see Searching
Flushing shared memory buffer 2-20, 4-5, 4-13, 4-18,
4-21,4-28, A-1, A-2
Font configuration parameter 8-3, 8-9
Font field 8-3
Fonts 5-8, 8-3, B-1
Foreground Color configuration parameter 8-3, 8-9
Foreground Color field 8-3
fork(2) service 2-7
Form
Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,
8-17,8-19,9-2, 9-4
DataBox configuration 8-13
DataGraph configuration 8-17
EventGraph configuration 8-16
GridLabel configuration 8-12
Macro configuration 9-6, 9-7
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
Ruler configuration 8-19
Search 9-4,10-2, B-3, C-1
StateGraph configuration 8-14
Summarize 9-4, 10-12, 10-14, B-3
Format
functions 9-75
f or mat function 8-5, 9-4, 9-7, 9-80, 10-7, 10-8
Format table 5-9, 5-17, 9-79
event_arg _dbl_summary 5-20, 8-6
event_arg_summary 5-20, 8-6, 10-8
event_summary 5-20, 8-6, 10-7
get _f or mat function 5-20, 8-6, 9-4, 9-7, 9-79,
10-7,10-8
state summary 5-20, 8-6, 10-7
Fortran language 1-3
compiling and linking 2-25
source considerations 2-2
Forward radio button 10-2
Functions 9-9
arg 9-9,9-20
arg_dbl 9-21
argl 519, 8-5,9-9, 9-81, 10-7, 10-8
arg2 8-5,9-12
avg 9-72
cpu 8-5,9-26
end 9-45
end_arg 9-47
end_arg_dbl 9-47
end_cpu 9-52
end _id 9-46
end_| wpid 9-50
end _node_id 9-54
end_node_nane 9-56

Index-5

NightTrace Manual

end_num args 9-48

end offset 9-53

end_pid 9-48
end_pid_tabl e_nane 9-55
end_raw pid 9-49

end task id 951
end_thread_id 9-51
end tid 9-52

end tid table nane 9-55
end tinme 9-54

event _gap 9-32

event natches 8-13, 9-33

start_arg 9-35
start_arg_dbl 9-36
start_cpu 941
start _id 9-9, 9-35
start_| wpid 9-39
start_node_id 9-43
start_node_nane 9-45
start_num args 9-37
start_offset 9-42
start_pid 9-37
start_pid_tabl e_nanme 9-44
start_raw pid 9-38

format 9-75 start _task id 9-40

formt 8-5, 9-4,9-7,9-80, 10-7, 10-8 start _thread id 9-39

get format 5-20, 8-6, 9-4, 9-7, 9-79, 10-7, 10-8 start _tid 941

get item 9-4,9-77 start _tid table name 9-44
get _string 5-17,5-18, 5-19, 8-5, 9-4, 9-75 start_tinme 9-42

id 85,9-19, 9-79, 9-81 state dur 9-57

[wpi d 9-23 state_gap 9-9,9-57

max 9-71, 10-7, 10-8
max_of fset 9-73,10-8
mn 9-71, 10-7, 10-8

m n_of fset 9-73,10-7,10-8
multi-event 9-32

multi-state 9-56

node id 9-28

node nane 9-30

num args 9-21

offset 9-59

of f set 5-19, 9-27

of fset _arg 9-60

of fset _arg_dbl 961

of f set_cpu 9-66

of fset id 9-60,9-73,9-74
of fset | wpid 9-63

of fset _node_id 9-67

of f set _node_nane 9-68
of f set_num args 9-61
of fset_pid 9-62

of f set _pid_table_name 9-67

of f set _process_nane 9-69
of fset_raw pid 9-63

of fset task id 9-64

of fset _task nane 9-69

stat e_mat ches 9-58
state_status 9-58, 9-85
sum 9-72

summary 9-4, 9-70
sumrary_mat ches 9-74, 10-8
table 9-75

task id 9-25
task_name 9-31
thread_id 9-24

t hread_nane 9-32

tid 8-6,88,9-25
tid_table_nanme 9-29
time 9-27,9-83

trace event 9-19

G

Gap
event 9-32
state 9-57

get _f or mat function 5-20, 8-6, 9-4, 9-7, 9-79, 10-7,

10-8
get _i t emfunction 9-4, 9-77

of fset thread id 9-64
of f set _thread_nane 9-70

get _string function 5-17, 5-18, 5-19, 8-5, 9-4, 9-75
Global processidentifier 7-8, 8-5,8-7, 9-10, 9-22, 9-37,

of fset_tid 9-65

of fset_tid_table_nanme 9-68

of fset _time 9-66

pi d 85,87, 9-22, 9-79
pi d_t abl e_nane 9-29
process_name 9-7,9-30
raw_pi d 9-23

start 9-34

Index-6

9-48, 9-62, 10-4, 10-6, 11-2

Global Search radio button 10-3
Global Window area

message display area 5-10, 5-25
Graph

data 5-30, 6-4, 7-16, 11-12

event 5-30, 6-4, 7-15, 9-7

exception 11-13

interrupt 11-12
state 5-28, 5-29, 6-4, 7-14, 9-7, 9-84, 10-12, 11-13,
11-16
syscall 11-15
Graphical user interface 5-1, B-1
resources 11-16
Grayed out button. see Disabled button
Grid 6-4,B-2
GridLabel 5-29, 7-12, 8-12, 11-10, 11-11, B-4
configuration form 8-12
Text configuration parameter 8-12
GridObject B-4
GUI. see Graphical user interface

Hardclock interrupts 5-7, 11-12, 11-20
Help
ntrace 5-4
ntraceud 4-7
Help menu 5-33
hf 77(1) command 2-2

Iconified window 5-22
i connect (3C) routine 11-19
i d function 8-5, 9-19, 9-79, 9-81
i dt une(1M command 4-14, 4-16, A-2
If-Expression configuration parameter 8-2, 8-4
If-Expressionfield 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,
10-8, Glossary-14
Increment field 6-7, 6-12, 6-14
I nter-process communication 2-4
Interrupt 5-5,11-1, 11-2, 11-12, 11-17, 11-18, 11-19,
11-20
device-related 11-20
graph 11-12
hardclock 5-7,11-12, 11-20
non-device-related 11-19
user-level 4-9, 4-11
Interval 1-6, 6-1
control area 6-11
push buttons 6-8
scroll bar 6-7, C-1
Interval Manipulation radio buttons 10-3
Interval radio button 10-6
Interval Search radio button 10-3
IPL register
disabling 4-9

Index

failureto attach 2-8
use 4-9

Kernel

buffer allotment A-2

display page 5-27, 11-6

NightTrace trace event file 5-5, 5-7, 5-27
Kernel tracing 1-1, 5-15, 8-2, 8-6, 11-1

L abel
dimmed 5-27, 7-4
Language
Ada 1-3, 2-25
C 1-3,2-1,2-25
Fortran 1-3, 2-2, 2-25
L ast exception box 11-13
Last interrupt box 11-12
Last syscall box 11-15
libntrace.a 2-24
Library routines 2-1
disabling 2-1
overloading in Ada 2-2
return values 2-1
trace close thread 2-22
trace _disabl e 2-16, 4-24
trace_di sabl e_all 2-16,2-24
trace_di sabl e_range 2-16, 4-24
trace_enabl e 2-16, 4-26
trace_enable_all 2-16
trace_enabl e_range 2-16, 4-26
trace_end 2-7,2-20, 2-23, 4-4, 4-17, 4-21
trace_event 2-11,7-8
trace_event_arg 2-11
trace_event _dbl 2-11
trace_event _flt 2-11
trace_event _four_arg 2-11
trace_event _two_dbl 2-11
trace_event _two_flt 2-11
trace flush 2-20,4-4, 4-5, 4-13, 4-14, 4-17,
4-28,A-2, A-3
trace_open_t hread 2-9, 2-15, 2-18, 2-22, 6-4,
7-17,8-3
trace_start 2-5,2-10, 2-15, 2-18, 2-23, 4-1,
4-28,C-1
trace_trigger 2-20,4-4,4-17,A-2, A-3, A-4
Lightweight process identifier 8-7, 9-10, 9-23, 9-39,

Index-7

NightTrace Manual

9-50, 9-63
Loading
trace event 5-7, A-5
Locating. see Searching
Logging
traceevent 1-3, 1-4,4-12, 4-13, 4-24, 4-26, A-4,
C-1
Loss
traceevent 2-15, 2-21, 4-16, 4-28, 7-17, 8-19, A-1,
C-1
Lost Event Color configuration parameter 8-19
Lost Event Color field 8-19
LWPID 8-7,9-10, 9-23, 9-39, 9-50, 9-63
| wpi d function 9-23

M

Macro
Configuration form 9-6, 9-7
dialog box 9-6
Expression configuration parameter 9-4, 9-7
MacroDefinition configuration parameter 9-7
MacroDefinition configuration parameter 9-7
MacroDefinition field 9-7
Macros 5-9, 5-11, 5-27, 5-30, 7-18, 8-2, 9-81
Map file. see Event-map file
Mark
inside Ruler 7-17, 8-19
manipulating 6-9
push button 6-9
representation 6-9
Mark Color configuration parameter 8-19
Mark Color field 8-19
Matches
event 8-6, 8-13, 9-33
state 8-6, 9-58
summary 9-74
max function 9-71, 10-7, 10-8
max_of f set function 9-73, 10-8
Maximum configuration parameter 8-18
Maximum field 8-18
Maximum value 8-18, 9-71, 9-73
Memory size 4-4, 4-5, 4-16, A-3, C-1

Menu
Configure 8-1
Create 7-6, 7-8
Edit 7-17
Expressions 9-1
File 5-26, 7-18, 10-9
Help 5-33
Tools 10-1, 10-5
Menu item

Index-8

Close 7-19, 10-10
Content ... 81
Default Kernel Page 5-27, 11-6
Default Page 5-27,5-28
Delete 7-18
Deselect All 7-18
desensitized 5-27, 7-19
dimmed. see Menu item
disabled
disabled 5-27, 7-4, 7-18, 10-10
Exit 5-32
New Page 5-27
Open Config File ... 5-12, 5-27, 5-30, 5-36
Read Event-Map File ... 5-10, 5-31, 5-36
Save 7-18
Save As... 7-19
Save Text 10-10
Save Text As... 10-10
Search ... 10-1
Select All 7-18
Summarize... 10-5
Messagedisplay area 5-10, 5-25, 6-1, 6-4, 6-14, 7-3, 7-7,
7-15, 7-16
statistics 6-9
m n function 9-71, 10-7, 10-8
m n_of f set function 9-73, 10-7, 10-8
Minimum configuration parameter 8-18
Minimum field 8-18
Minimum value 8-18, 9-71, 9-73
Mode
buffer-wraparound 2-21, 4-4, 4-13,4-17,4-18, A-1,
A-4
Edit 5-27,6-1, 7-4
expansive 4-2,4-4,4-5,4-12, 4-13, 4-14, A-1, A-4
fileewraparound 4-4, 4-5, 4-12, A-1, A-4
radio buttons 7-3
View 5-28, 6-1, 6-6, 7-4, 9-7, 10-1, 11-6
Monochrome display 5-2, 7-14, B-1, B-4
Motif 1-7,5-2
Mouse
pointer shapes 5-22
Mouse button
1 5-21, 6-2, 6-3, 6-8, 6-9, 6-16, 7-5, 7-6
2 6-3, 6-4, 6-8, 6-9, 6-16, 7-5, 7-7, 7-15, 7-16
3 6-3, 6-4, 6-10, 6-16, 7-5, 7-7, 7-16
M ouse operation
create 7-6
move 7-7
resize 7-7
select 7-6
Move mouse operation 7-7
npadvi se(3C) routine A-4
Multi-event functions 9-32
Multi-state functions 9-56

Name configuration parameter 8-2
Namefield 8-2
name_pid table 5-16, 11-17
name tid table 5-16
New Page menu item 5-27
Next push button 10-3, 10-5
NFSfilesystem A-2, A-3,C-2
NightStar tool kit 1-1
NightTrace
environment defaults 4-2
product 1-1
NightTrace thread identifier 7-8, 8-5, 8-6, 8-8, 9-10,
9-25, 9-41, 9-52, 9-65, 10-4, 10-6
NightView debugger 1-4, 2-1
No Event List field 10-5
Node box 11-11
Node identifer 9-28
Node identifier
ending trace event 9-54
offset 9-67
starting trace event 9-43
Node List configuration parameter 8-3, 8-9
Node List field 8-3, 9-81, 9-83, Glossary-14
Node name 9-30
ending trace event 9-56
ordinal trace event 9-68
starting trace event 9-45
node_i d function 9-28
node_narne function 9-30
node nametable 5-16, 11-17
NT_ASSOC PID 6-4
NT_ASSOC TID 6-4
NT_CONTINUE 2-9, 2-13, 4-16, 5-6

NT_M_BUFFERWRAP. see Buffer-wraparound mode

NT_M_DEFAULT. see Expansive mode
NT_M_FILEWRAP. see File-wraparound mode
ntrace 1-3,5-1

format tables 5-9, 5-17

functions 9-9

invoking 5-3

notation conventions 5-24

operands 9-5

operators 9-4

performance considerations 5-7, 10-2, A-5

string tables 5-9, 5-13

viewing strategy 6-5
ntrace field

Background Color 8-3

CPU List 8-2, 9-81, 9-83, Glossary-14

Current Time 6-7, 6-11, 6-13

End-Events 8-15, 9-7, 9-85

Index

End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,
Glossary-14

Event Color 8-15

Event Count 6-12, 6-13

Event End 6-7, 6-12, 6-13

Event List 8-2, 9-83, 9-85, 10-5, 10-7

Event Start 6-7, 6-11, 6-13

Expression 9-7

File Name 5-33, 5-34

Filter 5-35

Font 8-3

Foreground Color 8-3

If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,
10-8, Glossary-14

Increment 6-7, 6-12, 6-14

Lost Event Color 8-19

MacroDefinition 9-7

Mark Color 8-19

Maximum 8-18

Minimum 8-18

Name 8-2

No Event List 10-5

NodeList 8-3, 9-81, 9-83, Glossary-14

PID List 8-3,9-81, 9-83, Glossary-14

QualifiedEvent 9-82

QualifiedState 9-84

Start-Events 8-15, 9-7, 9-85

Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8

Text 8-12

Then-Expression 8-2

TID List 9-81, 9-83, Glossary-14

TimeEnd 6-7, 6-11, 6-12, 10-3, 10-6

Time Length 6-11, 6-13

Time Start 6-7, 6-11, 6-12, 10-3, 10-6

Zoom Factor 6-12, 6-13

ntrace functions 9-9
ntrace macros 5-9, 5-11, 5-27, 5-30, 7-18, 8-2
ntrace mode 7-3

Edit 5-27, 6-1, 7-4
radio buttons 7-3
View 5-28, 6-1, 6-6, 7-4, 9-7, 10-1, 11-6

ntrace option

-end (load events before constraint) 5-7, A-5

-filestats (list statistics and trace events) 5-6, 5-26,
A-1

-flat (set flat color) 5-8

-help (help) 5-4

-listing (list trace events) 5-4, 5-10

-nohardclock (strip hardclock) 5-7, A-5

-process (load process's events) 5-7, A-5

-start (load events after constraint) 5-7, A-5

-version (version) 5-4

-Xoption (use X(1) options) 5-8

ntrace qualified events 5-9, 5-10, 5-11, 5-27, 5-30, 7-18,

Index-9

NightTrace Manual

8-4,9-81
ntrace qualified states 5-9, 5-11, 5-27, 5-30, 7-18, 8-4,
9-13, 9-35, 9-36, 9-37, 9-38, 9-39, 9-40, 9-41,
9-42, 9-43, 9-44, 9-45, 9-46, 9-47, 9-48, 9-49,
9-50, 9-51, 9-52, 9-53, 9-54, 9-55, 9-56, 9-57,
9-58, 9-59, 9-83
ntrace window
Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,
8-17, 8-19, 9-2,9-4
Display Page 5-27, 6-2, 11-6
File Selection Dialog Box 5-31, 5-32, 5-33, 7-19,
10-10, B-3
Global 5-3, 5-6, 5-10, 5-25, 11-6, A-1, B-2
iconified 5-22
Macro configuration 9-6, 9-7
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
resizing 5-24, 5-26
Search 9-4, 10-2, B-3,C-1
Summarize 9-4, 10-12, 10-14, B-3
ntrace window component
menu bar 5-23, 5-24
pull-down menu 5-23, 5-24
push button 5-23, 6-8
radio button 5-23
scroll bar 5-23
scroll region 5-23
text field 5-23
ntrace.h 2-1, 2-24, 4-23
ntraceud
buffer-full cutoff. see ntraceud
cutoff
cutoff 4-4, 4-5,4-18, A-3, C-1
daemon 1-3, 4-1
flush mechanism 4-4
help 4-7
invoking 4-28
memory size 4-4, 4-5, 4-16, A-3, C-1
page-fault handling 4-4
performance considerations 4-1, 4-17, 4-18, A-1
quit running 4-21, 4-28, 4-29
reset 4-20
shared memory buffer size. see ntraceud
memory size
deepinterva 4-3, 4-4, 4-17
statistical information 4-22, A-1
timeout interval 4-4, 4-5, 4-17, A-3
trace event file size 4-4, 4-12
trace event logging 4-4
version information 4-8
ntraceud mode
buffer-wraparound 2-21, 4-4, 4-13, 4-17, 4-18, A-1,
A-4

Index-10

expansive 4-2,4-4,4-5,4-12, 4-13, 4-14, A-1, A-4
fileewraparound 4-4, 4-5, 4-12, A-1, A-4
ntraceud option

-bufferwrap (buffer-wraparound mode) 4-4, 4-13,
4-17,4-18, A-1, A-4

-cutoff (cutoff percentage) 4-4, 4-5, 4-18, A-3, C-1

-disable (disable logging) 4-4, 4-24

-enable (enable logging) 4-4, 4-26

-filewrap (file-wraparound mode) 4-4, 4-5, 4-12,
A-1,A-4

-help (help) 4-7

-ipldisable (do not set IPL) 4-4, 4-9, 4-28, A-3

-lockdisable (do not lock pages) 4-4, 4-11, 4-28,
A-3

-memsize (memory size) 4-4, 4-5, 4-16, A-3, C-1

-quit (quit running) 4-21, 4-29

-reset (reset ntraceud) 4-20

-stats (statistical information) 4-22, A-1

-timeout (timeout interva) 4-4, 4-5, 4-17, A-3

-version (version information) 4-8

num ar gs function 9-21

0]

Object. see Display object

Offset 5-7, 6-4, 6-11, 6-13, 6-15, 7-8, 9-9, 9-12, 9-13,
9-59, 9-60, 9-61, 9-62, 9-63, 9-64, 9-65, 9-66,
9-67, 9-68, 9-69, 9-70, 10-4, 10-11, 10-13

of f set function 5-19, 9-27

Offset functions 9-59

of f set _ar g function 9-60

of f set _ar g_dbl function 9-61

of f set _cpu function 9-66

of fset i d function 9-60, 9-73, 9-74

of f set _| wpi d function 9-63

of f set _node_i d function 9-67

of f set _node_nane function 9-68

of f set _num ar gs function 9-61

of f set _pi d function 9-62

of f set _pi d_t abl e_nane function 9-67

of f set _pr ocess_nane function 9-69

of f set _raw pi d function 9-63

of f set _task_i d function 9-64

of f set _t ask_nane function 9-69

of fset _thread_i d function 9-64

of f set _t hread_nane function 9-70

of f set _ti d function 9-65

of fset _tid_tabl e_nane function 9-68

of f set _ti me function 9-66

Open Config File ... menuitem 5-12, 5-27, 5-30, 5-36

Open push button 5-30

Operands

constants 9-5
functions 9-9
macros 5-9, 5-11, 5-27, 5-30, 7-18, 8-2
qualified events 5-9, 5-10, 5-11, 5-27, 5-30, 7-18,
8-4,9-81
qualified states 5-9, 5-11, 5-27, 5-30, 7-18, 8-4,
9-13, 9-35, 9-36, 9-37, 9-38, 9-39, 9-40,
9-41, 9-42, 9-43, 9-44, 9-45, 9-46, 9-47,
9-48, 9-49, 9-50, 9-51, 9-52, 9-53, 9-54,
9-55, 9-56, 9-57, 9-58, 9-59, 9-83
Operandsin expressions 9-5
Operatorsin expressions 9-4
Options. see ntrace option
Options. see ntraceud option
Options. see System configuration option

P _PLOCK A-3
Page

configuration file 5-9, 5-11

default 5-27, 5-28

default kernel 5-27, 11-6

display 7-2,11-6, B-2

lock disable 4-11

lock privilege 4-28, A-3

new 5-27
Parameters. see Configuration parameters
Performance considerations

ntrace 5-7,10-2, A-5

ntraceud 4-1, 4-17,4-18, A-1
PID 7-8, 8-5, 8-7, 9-10, 9-22, 9-37, 9-48, 9-62, 10-4,

10-6, 11-2

pi d function 8-5, 8-7, 9-22, 9-79
PID List configuration parameter 8-3, 8-7
PID List field 8-3, 9-81, 9-83, Glossary-14
pid table 5-15, 8-5, 11-18
PID table name 9-29
pid_nodenametable 5-16, 11-17
pi d_t abl e_nane function 9-29
Pointer shapes 5-22
Pop-up window

Open B-3

Read B-3

SaveAs 7-19, B-3

SaveTextAs 10-10, B-3
Pop-up window. see Dialog box
Pre-defined tables 5-14, 5-20, 11-4, 11-16
Prev push button 10-3, 10-5
printf(3S) routine 5-11, 5-18, 9-80
Privilege

page lock 4-28, A-3

Index

Process
ntrace 5-7
Processbox 11-10
Process identifier
ending trace event 9-55
offset 9-67
starting trace event 9-44
Process identifier table name 9-29
Process name 9-30
ordinal trace event 9-69
pr ocess_nane function 9-7, 9-30
Pull-down menu. see Window component
pull-down menu
Push button
Add 9-2
Apply 6-9, 6-12, 6-17, 8-10, 9-3, 10-3, 10-8
Cancel 5-30, 5-31
Center 6-9
Clear 10-9, 10-10
Close 8-11, 9-2, 9-3, 10-4, 10-5
Configure 9-2
default 5-23
Delete 9-2
dimmed. see Push button
disabled
disabled 5-27, 7-4
grayed out. see Push button
disabled
Mark 6-9
Next 10-3, 10-5
on configuration form 8-10
Open 5-30
Prev 10-3, 10-5
Read 5-31
Refresh 6-10
Reset 6-9, 8-11, 9-3, 10-3, 10-8
Restore 8-11, 9-3, 10-9
Search 10-4
Summarize 10-6, 10-9, 10-10
Zoom In 6-10, 6-12
Zoom Out 6-10, 6-12, C-1
Zoom Region 6-10

Q

Qualified events 5-9, 5-10, 5-11, 5-27, 5-30, 7-18, 8-4,
9-81,9-81
Configuration form 9-81
diadog box 9-81
QualifiedEvent configuration parameter 9-82, 9-83
Qualified states 5-9, 5-11, 5-27, 5-30, 7-18, 8-4, 9-13,

Index-11

NightTrace Manual

9-35, 9-36, 9-37, 9-38, 9-39, 9-40, 9-41, 9-42, Ruler 5-30, 6-9, 7-17, 8-19, A-1, B-4

9-43, 9-44, 9-45, 9-46, 9-47, 9-48, 9-49, 9-50, configuration form 8-19
9-51, 9-52, 9-53, 9-54, 9-55, 9-56, 9-57, 9-58, Lost Event Color configuration parameter 8-19
9-59, 9-83, 9-83 Mark Color configuration parameter 8-19
Configuration form 9-83, 9-84 run(1) command A-4
dialog box 9-83 Running process box 11-10

QualifiedState configuration parameter 9-84, 9-85
QualifiedEvent configuration parameter 9-82, 9-83
QualifiedEvent field 9-82
QualifiedState configuration parameter 9-84, 9-85
QualifiedState field 9-84

Save As... menuitem 7-19
Save menu item 7-18
Save Text As... menu item 10-10

R Save Text menu item 10-10
Scroll bar 5-23, 6-7, C-1
Radio button Scroll Current Time to Event radio button 10-3
Backward 10-2 Scroll region 5-23
Do Not Move Current Time 10-3 Search ... menu item 10-1
Edit mode 7-3, 7-18 Search Constraints radio buttons 10-2
Event 10-6 Search Direction radio buttons 10-2
Forward 10-2 Search form 9-4, 10-2, B-3, C-1
Global Search 10-3 default search behavior 10-4
Interval 10-6 Search form push buttons
Interval Manipulation 10-3 Apply 10-3
Interval Search 10-3 Close 10-4, 10-5
Region 10-6 Next 10-3, 10-5
Scroll Current Time to Event 10-3 Prev 10-3, 10-5
Search Constraints 10-2 Reset 10-3
Search Direction 10-2 Search 10-4
State 10-6 Search form radio buttons
Summary Range 10-6 Backward 10-2
Summary Type 10-6 Do Not Move Current Time 10-3
Text Gravity 8-4 Forward 10-2
Text Justify 8-3 Global Search 10-3
Trace-Event File 10-6 Interval Manipulation 10-3
View mode 7-3 Interval Search 10-3
Zoom to Include Event 10-3 Scroll Current Time to Event 10-3
Raw PID 8-7,8-8 Search Constraints 10-2
rav PID 9-10, 9-23, 9-38, 9-49, 9-63 Search Direction 10-2
raw_pi d function 9-23 Zoom to Include Event 10-3
Read Event-Map File ... menu item 5-10, 5-31, 5-36 Search push button 10-4
Read push button 5-31 Searching
Record. see Trace event trace event 1-3, 1-6, 6-1, 6-5, 10-1, 10-1
Refresh push button 6-10 Select All menu item 7-18
Region radio button 10-6 Select mouse operation 7-6
Reset push button 6-9, 8-11, 9-3, 10-3, 10-8 Shared memory
Resize mouse operation 7-7 buffer 1-5, 4-13, 4-16
Resizing failureto attach 2-8
display objects 5-22, 7-5, 7-7 flushing 2-20, 4-5, 4-13, 4-18, A-1, A-2
windows 5-24, 5-26 SHMMAX 4-14, 4-16, A-2
Restore push button 8-11, 9-3, 10-9 Start functions 9-34
Return values 2-1 start_arg function 9-35
rgb.txt file 5-8, 8-3, 8-15, 8-19, B-1, B-5 start_arg_dbl function 9-36

Index-12

start_cpu function 9-41
start _id function 9-9, 9-35
start _| wpi d function 9-39
start _node_i d function 9-43
start _node_nane function 9-45
start_num ar gs function 9-37
start _of f set function 9-42
start _pi d function 9-37
start_pi d_t abl e_nane function 9-44
start_raw pid function 9-38
start task_id function 9-40
start _thread_i dfunction 9-39
start _tidfunction 9-41
start _tid_tabl e nane function 9-44
start _ti me function 9-42
Start-Events configuration parameter 8-15
Start-Eventsfield 8-15, 9-7, 9-85
Start-Expression configuration parameter 8-15
Start-Expression field 8-15, 9-4, 9-7, 9-83, 10-8
State 1-2, 2-14, 7-8, 7-14, 8-15, 11-12, 11-13
duration 9-57
gap 9-57
matches 8-6, 9-58
qualified 9-83
summary type 10-14
State radio button 10-6
State summary 10-12
stat e_dur function 9-57
st at e_gap function 9-9, 9-57
st at e_mat ches function 9-58
st at e_st at us function 9-58, 9-85
state_ summary table 5-20, 8-6, 10-7
StateGraph 5-28, 5-29, 6-4, 7-14, 8-14, 9-7, 9-84, 10-12,
11-13,11-16, B-4
configuration form 8-14
End-Events configuration parameter 8-15
End-Expression configuration parameter 8-15
Start-Events configuration parameter 8-15
Start-Expression configuration parameter 8-15
Statistics 10-1
multi-event 9-32
multi-state 9-56
ntrace 5-6, 6-9, A-1
ntraceud 4-22, A-1
summary 9-4, 9-70
String table 5-9, 5-13, 9-75, 9-77
boolean 5-16, 8-6
device 5-17,11-4, 11-17
device _nodename 5-17, 11-18
event 5-14, 8-5
get _i t emfunction 9-4, 9-77
get _stri ng function 5-17, 5-18, 5-19, 8-5, 9-4,
9-75
name_pid 5-16, 11-17

Index

name_tid 5-16

node name 5-16, 11-17

pid 5-15, 8-5, 11-18

pid_nodename 5-16, 11-17

syscall 5-17,8-6, 11-4, 11-17, 11-21

syscall_nodename 5-17,11-18

tid 5-15, 8-6

tid_nodename 5-16

vector 5-17, 8-6,11-2, 11-3, 11-17, 11-19

vector_nodename 5-17, 11-18
sumfunction 9-72
Summarize ... menu item 10-5
Summarizeform 9-4, 10-12, 10-14, B-3

Event summary type 10-12

State summary type 10-14

summary display area 10-7, 10-9, 10-10, 10-11,

10-12

Summarize form fields 10-6

Filter-Expression 9-4, 10-7

Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,

10-12

Summarize form push buttons

Apply 10-8

Clear 10-9, 10-10

Reset 10-8

Restore 10-9

Summarize 10-6, 10-9, 10-10
Summarize form radio buttons

Event 10-6

Interval 10-6

Region 10-6

State 10-6

Summary Range 10-6

Summary Type 10-6

Trace-Event File 10-6
Summarize push button 10-6, 10-9, 10-10
Summarizing

trace event 1-3, 10-5

trace session 1-6
Summary

event 10-11

matches 9-74, 10-8

state 10-12
Summary display area 10-7, 10-9, 10-10, 10-11, 10-12
Summary functions 9-4, 9-70
Summary Range radio buttons 10-6
Summary Type radio buttons 10-6
sunmmar y_mat ches function 9-74, 10-8
Summary-Expression field 9-4, 9-81, 10-7, 10-8, 10-11,

10-12

Syscall 11-4,11-15, 11-17

graph 11-15

resumption 11-4

suspension 11-4, 11-15

Index-13

NightTrace Manual

syscall table 5-17, 8-6, 11-4, 11-17, 11-21
syscall_nodenametable 5-17, 11-18
Systemcall 11-4,11-15, 11-17

Table
boolean 5-16, 8-6
device 5-17,11-4, 11-17
device _nodename 5-17, 11-18
event 5-14, 8-5
event_arg_dbl_summary 5-20, 8-6
event_arg_summary 5-20, 8-6, 10-8
event_summary 5-20, 8-6, 10-7
format 5-9, 5-17, 9-79
functions 9-75
name_pid 5-16, 11-17
name _tid 5-16
node name 5-16, 11-17
pid 5-15, 8-5, 11-18
pid_nodename 5-16, 11-17
pre-defined 5-14, 5-20, 11-4, 11-16
state summary 5-20, 8-6, 10-7
string 5-9, 5-13, 9-75, 9-77
syscall 5-17, 8-6, 11-4, 11-17, 11-21
syscall_nodename 5-17, 11-18
tid 5-15, 8-6
tid_nodename 5-16
vector 5-17,8-6,11-2, 11-3,11-17, 11-19
vector_nodename 5-17, 11-18
tablesfile 5-14, 5-16, 5-20, 5-20, 9-77, 9-78, 9-80, 10-8
Task name 9-31
ordinal trace event 9-69
task_i d function 9-25
t ask_nane function 9-31
Text configuration parameter 8-12
Text field 8-12
Background Color 8-3
CPU List 8-2, 9-81, 9-83, Glossary-14
Current Time 6-7, 6-11, 6-13
cursor 6-16
editing operations 6-16
End-Events 8-15, 9-7, 9-85
End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,
Glossary-14
Event Color 8-15
Event Count 6-12, 6-13
Event End 6-7, 6-12, 6-13
Event List 8-2, 9-83, 9-85, 10-5, 10-7
Event Start 6-7, 6-11, 6-13
Expression 9-7
File Name 5-33, 5-34

Index-14

Filter 5-35
Filter-Expression 9-4, 10-7
Font 8-3
Foreground Color 8-3
If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,
10-8, Glossary-14
Increment 6-7, 6-12, 6-14
Lost Event Color 8-19
MacroDefinition 9-7
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
No Event List 10-5
NodeList 8-3, 9-81, 9-83, Glossary-14
PID List 8-3,9-81, 9-83, Glossary-14
QualifiedEvent 9-82
QualifiedState 9-84
Start-Events 8-15, 9-7, 9-85
Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8
Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,
10-12
Text 8-12
Then-Expression 8-2
TID List 9-81, 9-83, Glossary-14
TimeEnd 6-7, 6-11, 6-12, 10-3, 10-6
Time Length 6-11, 6-13
Time Start 6-7, 6-11, 6-12, 10-3, 10-6
Zoom Factor 6-12, 6-13
Text Gravity configuration parameter 8-4, 8-10
Text Gravity radio button 8-4
Text Justify configuration parameter 8-3, 8-9
Text Justify radio button 8-3
Then-Expression configuration parameter 8-2, 8-5, 9-4,
9-76, 9-78, 9-79, 9-80
Then-Expression field 8-2
Thread event
ordinal 9-68
Thread identifier
ending trace event 9-55
offset 9-68
starting trace event 9-44
Thread identifier table name 9-29
Thread name 9-32
ordinal trace event 9-70
Thread names 5-4, 5-15, 8-3, 8-8, 10-4, 10-6
t hread_i d function 9-24
t hr ead_nane function 9-32
TID 7-8, 8-5, 8-6, 8-8, 9-10, 9-25, 9-41, 9-52, 9-65,
10-4, 10-6
tid function 8-6, 8-8, 9-25
TID List configuration parameter 8-3, 8-8
TID List field 9-81, 9-83, Glossary-14
tid table 5-15, 8-6

TID table name 9-29
tid_nodename table 5-16
tid_tabl e _nane function 9-29
TimeEnd field 6-7, 6-11, 6-12, 10-3, 10-6
ti me function 9-27, 9-83
Time Length field 6-11, 6-13
Time Start field 6-7, 6-11, 6-12, 10-3, 10-6
Timeout interval 4-4, 4-5, 4-17, A-3
Times
constant 9-6
Timestamp 1-2, 5-4, 6-7, 9-27, 9-42, 9-54, 9-66
Tools menu 10-1, 10-5
TR_BUFFER_COUNT tunable parameter A-2, C-2
TR_EXCEPTION_ENTRY trace event 11-3
TR_EXCEPTION_EXIT trace event 11-3
TR_EXCEPTION_RESUME trace event 11-3
TR_EXCEPTION_SUSPEND trace event 11-3
TR_INTERRUPT_ENTRY trace event 11-2
TR_INTERRUPT_EXIT trace event 11-3
TR_PAGEFLT_ADDRtraceevent 11-5, 11-13
TR_PROTFLT_ADDR traceevent 11-5, 11-13
TR_SWITCHIN trace event 11-2
TR_SYSCALL_ENTRY traceevent 11-4
TR_SYSCALL_EXIT trace event 11-4
TR_SYSCALL_RESUME trace event 11-4
TR_SYSCALL_SUSPEND trace event 11-4
Traceevent 1-2, 7-8
analysis 5-1
arguments 2-13, 5-4, 5-10, 5-12, 5-30, 7-8, 7-9,
7-16, 8-5, 9-20, 9-21, 9-35, 9-36, 9-37,
9-47, 9-48, 9-60, 9-61, 10-9
average size 4-16
context switch 11-2
disabling 2-17, 4-4, 4-24
discarding 2-21, A-1, A-4, C-1
display utility 5-1
enabling 2-17, 4-4, 4-26
exception 11-3
file 1-5, 2-5, 4-1, 5-9
filesize 4-12, 4-13, A-4
functions 9-19
ID 1-2,2-13, 2-17, 4-24, 4-26, 5-4,5-9, 5-10, 5-14,
5-29, 5-31, 8-2, 8-4, 8-5, 10-4, 10-6, C-1
information 7-15, 9-19
interrupt 11-2
loading 5-7, A-5
logging 1-3, 1-4, 4-12, 4-13, 4-24, 4-26, A-4, C-1
loss 2-15, 2-21, 4-16, 4-28, 7-17, 8-19, A-1, C-1
NightTrace kernd file 5-5, 5-7, 5-27
node identifer (ending trace event) 9-54
node identifer (offset) 9-67
node identifer (starting trace event) 9-43
node identifier 9-28
node name 9-30

Index

node name (ending trace event) 9-56
node name (ordinal trace event) 9-68
node name (starting trace event) 9-45
NT_ASSOC PID 6-4
NT_ASSOC TID 6-4
NT_CONTINUE 2-9, 2-13, 4-16, 5-6
offset 9-59
offset. see Offset
ordinal 9-67, 9-68, 9-69, 9-70
ordinal number. see Offset
PID table name 9-29
process identifer (ending trace event) 9-55
process identifer (offset) 9-67
process identifer (starting trace event) 9-44
process identifier table name 9-29
process name 9-30
process name (ordinal trace event) 9-69
searching 1-3, 1-6, 6-1, 6-5, 10-1, 10-1
summarizing 1-3, 10-5
syscall 11-4
tag 5-4, 5-9, 5-9, 5-10, 5-14, 5-29, 5-31, 10-4, 10-6,
11-6

task name 9-31
task name (ordinal trace event) 9-69
thread identifer (ending trace event) 9-55
thread identifer (offset) 9-68
thread identifer (starting trace event) 9-44
thread identifier table name 9-29
thread name 9-32
thread name (ordinal trace event) 9-70
TID table name 9-29
timestamp 1-2, 5-4, 9-27, 9-42, 9-54, 9-66
timing distortion 2-21, 4-17
TR_EXCEPTION_ENTRY 11-3
TR_EXCEPTION_EXIT 11-3
TR_EXCEPTION_RESUME 11-3
TR_EXCEPTION_SUSPEND 11-3
TR_INTERRUPT_ENTRY 11-2
TR_INTERRUPT_EXIT 11-3
TR_PAGEFLT_ADDR 11-5,11-13
TR_PROTFLT_ADDR 11-5,11-13
TR_SWITCHIN 11-2
TR_SYSCALL_ENTRY 11-4
TR_SYSCALL_EXIT 11-4
TR_SYSCALL_RESUME 11-4
TR_SYSCALL_SUSPEND 11-4

Trace event. see Event

Tracefile. see Trace event file

Tracepoint 1-2, 1-4, 2-13, 5-9

trace close thread 2-22

trace _di sabl e 2-16, 4-24

trace_di sabl e_all 2-16,2-24

trace_di sabl e_range 2-16, 4-24

trace_enabl e 2-16, 4-26

Index-15

NightTrace Manual

trace_enabl e all 2-16
trace_enabl e_range 2-16, 4-26
trace_end 2-7,2-20, 2-23, 4-4, 4-17, 4-21
trace_event 2-11,7-8
trace_event _arg 2-11
trace_event _dbl 2-11
trace_event flt 2-11
trace_event _four_arg 2-11
trace_event _two flt 2-11
trace_flush 2-20, 4-4, 4-5, 4-13, 4-14, 4-17, 4-28,
A-2,A-3
trace_open_t hread 2-9, 2-15, 2-18, 2-22, 6-4,
7-17, 8-3
trace_start 2-5,2-10, 2-15, 2-18, 2-23, 4-1, 4-28,
C-1
trace_trigger 2-20,4-4,4-17,A-2, A-3,A-4
Trace-Event File radio button 10-6
Tracing
disabling 2-16, 2-24
kernd 1-1, 5-15, 8-2, 8-6, 11-1
user 1-1

umask(1) command 4-1
User tracing 1-1
User-level interrupts 4-9, 4-11

\%

Variable

DISPLAY 5-2
vector table 5-17, 8-6, 11-2, 11-3, 11-17, 11-19
vector_nodename table 5-17, 11-18
vectorsfile 5-5, 5-15, 11-2, 11-17, 11-18
Version

ntrace 5-4

ntraceud 4-8
View mode 5-28, 6-1, 6-6, 7-4, 9-7, 10-1, 11-6
Viewing strategy

ntrace 6-5

W

Window
Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,
8-17, 8-19, 9-2,9-4
Display Page 5-27, 6-2, 11-6

Index-16

File Selection Dialog Box 5-31, 5-32, 5-33, 7-19,
10-10,B-3

Global 5-3, 5-6, 5-10, 5-25, 11-6, A-1, B-2

iconified 5-22

Macro configuration 9-6, 9-7

manager 5-22, 5-26, 6-11

Qualified Event configuration 9-81

Qualified State configuration 9-83, 9-84

resizing 5-24, 5-26

Search 9-4, 10-2, B-3, C-1

Summarize 9-4, 10-12, 10-14, B-3
Window component

menu bar 5-23, 5-24

pull-down menu 5-23, 5-24

push button 5-23, 6-8

radio button 5-23

scroll bar 5-23

scroll region 5-23

text field 5-23
Window. see Diaog box

X

X resources

display page B-2
X Window System

desk accessories 1-7

options 5-8

resources 1-7, 11-16
X(1) utility 5-8
xmodmap(1) utility 5-21
xrdb(1) command B-1
xterm(1) utility 1-7,5-8

Zoom Factor field 6-12, 6-13

Zoom In push button 6-10, 6-12

Zoom Out push button 6-10, 6-12, C-1
Zoom Region push button 6-10

Zoom to Include Event radio button 10-3

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

<
)
>
=
Q0
3
@

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

\YERIEL

o 0890398
Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

	NightTrace Manual
	Preface
	Contents
	Appendix A Performance Tuning
	Appendix B GUI Customization
	Appendix C Answers to Common Questions

	Introduction
	Overview
	What is NightTrace?
	User and Kernel Tracing
	Timestamp Source Selection
	Trace-Point Placement
	Languages Supported
	Processes and CPUs
	Information Displayed
	Searches and Summaries

	Logging and Analysis
	The User Trace Event Logging Procedure
	The Kernel Trace Event Logging Procedure
	The Trace Event Analysis Procedure

	Recommended Reading

	Adding Library Calls to Your Application
	Overview
	Language-Specific Source Considerationfcs
	C
	Fortran
	Ada

	Inter-Process Communication and Library Routines
	Understanding NightTrace Library Calls
	trace_begin()
	trace_open_thread()
	trace_event() and Its Variants
	trace_enable(), trace_disable(), and Their Variants
	trace_flush() and trace_trigger()
	trace_close_thread()
	trace_end()

	Disabling Tracing
	Compiling and Linking
	C Example
	Fortran Example
	Ada Example

	Exercise: Instrumenting Code

	NightTrace Session Manager
	Using the NightTrace Session Manager
	NightTrace Session Manager Menu Bar
	NightTrace
	Open Session
	Save Session
	Unsaved Changes

	Daemons
	Login
	Enter Password
	Attach Daemons

	Options
	Refresh Interval

	Tools
	Help

	Session Configuration File Name Area
	Daemon Details Area
	Daemon Control Area
	Enable / Disable Trace Events

	Daemon Definition Dialog
	Import Daemon Definition
	General
	Target
	Trace Events Output

	User Trace
	Locking Policies
	Shared Memory
	Timestamp Heartbeat
	User Event Buffer

	Events
	Load Event Names

	Runtime
	Scheduling
	CPU Bias
	NUMA
	Policies

	Streaming
	Streaming Options

	Generating Trace Event Logs with ntraceud
	Overview
	The ntraceud Daemon
	The Default User Daemon Configuration
	ntraceud Modes
	ntraceud Options
	Option to Get Help (-help)
	Option to Get Version Information (-version)
	Option to Disable the IPL Register (-ipldisable)
	Option to Prevent Page Locking (-lockdisable)
	Option to Establish File-Wraparound Mode (-filewrap)
	Option to Establish Buffer-Wraparound Mode (-bufferwrap)
	Option to Define Shared Memory Buffer Size (�memsize)
	Option to Set Timeout Interval (-timeout)
	Option to Set the Buffer-Full Cutoff Percentage (-cutoff)
	Option to Select Timestamp Source (-clock)
	Option to Reset the ntraceud Daemon (-reset)
	Option to Quit Running ntraceud (-quit)
	Option to Present Statistical Information (-stats)
	Option to Disable Logging (-disable)
	Option to Enable Logging (-enable)

	Invoking ntraceud
	Exercise: Logging Trace Events

	Invoking the ntrace Display Utility
	Overviewc
	X and NightTrace Vocabulary
	System Environment
	Invoking ntrace
	ntrace Options
	ntrace Arguments
	Understanding Trace Event Files
	Understanding Event-Map Files
	Understanding Page Configuration Files
	ntrace Tables
	String Tables
	Pre-Defined String Tables
	Format Tables
	Pre-Defined Format Tables

	Configuring Display Pages

	ntrace User Interface
	Using the Mouse
	Understanding Pointer Shapes
	Anticipating Window Layout
	Resizing Windows

	ntrace Notation Conventions
	ntrace Global Window
	Message Display Area
	Menu Bar
	NightTrace Menu Item
	New Page
	Default Page
	Open Config File
	Read Event-Map File
	Exit

	Tools Menu Item
	Help Menu Item

	The File Selection Dialog Box
	Typing in the Exact File Name
	Scrolling Through Existing File Names
	Typing in a Filter (File Name Pattern)

	Exercise: Displaying Trace Events

	Viewing Trace Event Logs with ntrace
	Overview
	Mouse Button Operations
	The Grid
	Viewing Strategy
	The Interval Scroll Bar
	The Interval Push Buttons
	The Interval Control Area
	Reading Fields
	Editing Single Fields
	Editing Multiple Fields

	Field Editing
	Editing Text Fields
	Positioning Within Text Fields

	Creating Display Objects
	Overview
	The Display Page
	Display Page Modes
	Edit Mode
	View Mode

	Operations on Display Objects
	Creating Display Objects
	Selecting Display Objects
	Moving Display Objects
	Resizing Display Objects

	Display Objects
	GridLabel
	DataBox
	Column
	StateGraph
	EventGraph
	DataGraph
	Ruler

	Editing Operations
	Select All
	Deselect All
	Delete

	File Operations
	Save
	Save As ...
	Close

	Configuring Display Objects
	Overview
	Common Configuration Parameters
	Display Object Name
	Event List
	If-Expression
	Then-Expression
	CPU List
	PID List
	TID List
	Node List
	Foreground Color
	Background Color
	Font
	Text Justify
	Text Gravity

	Configuration Form Push Buttons
	Specific Configuration Parameters
	GridLabel
	DataBox
	StateGraph
	EventGraph
	DataGraph
	Ruler

	Using Expressions
	Overview
	Expressions Menu
	Expression Dialog Boxes
	Expression Configuration Forms

	Expressions
	Operators
	Operands
	Constants
	Macros
	Functions
	Function Parameters
	Function Terminology
	Trace Event Functions
	id()
	arg()
	arg_dbl()
	num_args()
	pid()
	raw_pid()
	lwpid()
	thread_id()
	task_id()
	tid()
	cpu()
	offset()
	time()
	node_id()
	pid_table_name()
	tid_table_name()
	node_name()
	process_name()
	task_name()
	thread_name()
	Multi-Event Functions
	event_gap()
	event_matches()

	State Functions
	Start Functions
	start_id()
	start_arg()
	start_arg_dbl()
	start_num_args()
	start_pid()
	start_raw_pid()
	start_lwpid()
	start_thread_id()
	start_task_id()
	start_tid()
	start_cpu()
	start_offset()
	start_time()
	start_node_id()
	start_pid_table_name()
	start_tid_table_name()
	start_node_name()

	End Functions
	end_id()
	end_arg()
	end_arg_dbl()
	end_num_args()
	end_pid()
	end_raw_pid()
	end_lwpid()
	end_thread_id()
	end_task_id()
	end_tid()
	end_cpu()
	end_offset()
	end_time()�
	end_node_id()
	end_pid_table_name()
	end_tid_table_name()
	end_node_name()

	Multi-State Functions
	state_gap()
	state_dur()
	state_matches()
	state_status()

	Offset Functions
	offset_id()
	offset_arg()
	offset_arg_dbl()
	offset_num_args()
	offset_pid()
	offset_raw_pid()
	offset_lwpid()
	offset_thread_id()
	offset_task_id()
	offset_tid()
	offset_cpu()
	offset_time()
	offset_node_id()
	offset_pid_table_name()
	offset_tid_table_name()
	offset_node_name()
	offset_process_name()
	offset_task_name()
	offset_thread_name()

	Summary Functions
	min()
	max()
	avg()
	sum()
	min_offset()
	max_offset()
	summary_matches()

	Format and Table Functions
	get_string()
	get_item()
	get_format()
	format()

	Qualified Events
	Qualified States

	Using the Built-In Tools
	Overview
	Searching for Points of Interest
	Search Form Radio Buttons
	Search Form Push Buttons
	Search Form Fields

	Summarizing Statistical Information
	Summarize Form Radio Buttons
	Summarize Form Fields
	Summarize Form Push Buttons
	Menu Bar
	File Operations
	Save Text
	Save Text As ...
	Close

	Summary Display Area
	Event Summaries
	State Summaries

	Exercise: Using the Search Tool
	Exercise: Using the Summarize Tool

	Tracing the Kernel
	Overview
	Default Kernel Trace Points
	Context Switch Trace Event
	Interrupt Trace Events
	Exception Trace Events
	Syscall Trace Events

	Kernel Trace Points Not Enabled By Default
	Page Fault Event
	Protection Fault Event

	Viewing Kernel Trace Event Files
	Kernel Display Pages
	RCIM Default Kernel Display Page
	CPU Information
	Running Process Information
	Node Information
	Context Switch Information
	Interrupt Information
	Exception Information
	Syscall Information
	Color Information

	Kernel String Tables

	Kernel Reference
	Interrupts
	Non-Device-Related Interrupts
	Device-Related Interrupts

	Exceptions
	Syscalls

	Performance Tuning
	Overview
	Preventing Trace Events Loss
	Ensuring Accurate Timings
	Optimizing File System and CPU Usage
	Conserving Disk Space
	Conserving Memory and Accelerating ntrace

	GUI Customization
	Overview
	Default X-Resource Settings for ntrace
	Examples
	Exercise: Customizing Display Colors

	Answers to Common Questions
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

