INluminating the Security Issues Surrounding
Lights-Out Server Management

Anthony J. Bonkoski
University of Michigan

abonkosk@umich.edu

Abstract

Out-of-band, lights-out management has become a stan-
dard feature on many servers, but while this technology
can be a boon for system administrators, it also presents a
new and interesting vector for attack. This paper exam-
ines the security implications of the Intelligent Platform
Management Interface (IPMI), which is implemented on
server motherboards using an embedded Baseboard Man-
agement Controller (BMC). We consider the threats posed
by an incorrectly implemented IPMI and present evidence
that [IPMI vulnerabilities may be widespread. We analyze
a major OEM’s IPMI implementation and discover that
it is riddled with textbook vulnerabilities, some of which
would allow a remote attacker to gain root access to the
BMC and potentially take control of the host system. Us-
ing data from Internet-wide scans, we find that there are
at least 100,000 IPMI-enabled servers (across three large
vendors) running on publicly accessible IP addresses, con-
trary to recommended best practice. Finally, we suggest
defensive strategies for servers currently deployed and
propose avenues for future work.

1 Introduction and Roadmap

The Intelligent Platform Management Interface (IPMI) is
a standard for out-of-band system management that al-
lows operators to remotely administer machines at a layer
below the host system’s CPU and software [15]. Modern
IPMI implementations let administrators remotely moni-
tor the health of the hardware, control the system’s power
state, attach virtual boot media, and redirect the keyboard,
video, and mouse. All this functionality can be exercised
remotely over an IP network, typically with either a com-
mand line interface or a web-based front end [12, 21, 24].
Major server OEMs each have a special name for their
IPMI implementation, such as HP’s iLO, Dell’s iDRAC,
Oracle’s iLOM, and Lenovo’s IMM.

The core of an IPMI implementation is the Baseboard
Management Controller (BMC), an embedded microcon-

Russ Bielawski
University of Michigan

Jbielaws @umich.edu

J. Alex Halderman
University of Michigan
Jjhalderm@umich.edu

troller that is integrated into the system’s motherboard or
installed via a daughter card. The BMC has its own flash
storage and runs its own operating system, separate from
the host’s. It typically has access to the PCI bus, to the
on-board NIC via a “side-band” interface, and to a col-
lection of sensors and I/O ports [24]. Consistent with its
purpose, the BMC has almost total control of the server.

IPMI can be a convenient administrative tool, but, un-
der the control of attackers, it can also serve as a powerful
backdoor. Attackers who take control of the BMC can
use it to attack the host system and network in a variety
of ways. For example, they could install BMC-resident
spyware to capture administrative passwords when the
operator remotely accesses the host. They could use the
remote physical console to boot the host into a recov-
ery mode and gain root access, or they could use boot
media redirection to run a separate OS and obtain raw
access to the disks. Malware residing on the BMC could
be extremely difficult to detect, since it sits at an even
lower architectural layer than a BIOS- [9] or VM-based
rootkit [17, 22], and it would survive reinstallation of the
host OS or even complete replacement of the host’s stor-
age devices. We survey risks from compromised IPMI
devices in Section 3.

Given these risks, one might assume that IPMI devel-
opers exercise rigorous security precautions to protect
the BMC from remote compromise. To test this, we ana-
lyzed an IPMI implementation shipped by one large server
manufacturer, Supermicro, which is based on firmware
initially developed by ATEN Technologies. We find that
the firmware contains numerous textbook security flaws,
including exploitable privilege escalation, shell injection,
and buffer overflow vulnerabilities. We demonstrate a
proof-of-concept exploit against one of these problems—
a buffer overflow in the web interface’s login page—and
show that it can be used to remotely obtain a root shell on
the BMC. We describe our analysis in detail in Section 4.

Since BMC compromise is so dangerous, it has become
a recommended practice not to connect IPMI devices to



public networks. Instead, security best practice calls for
maintaining a physically isolated management network
or at least a separate management VLAN [11, 25]. Unfor-
tunately, we find that many server operators do not follow
these recommendations. In Section 5, we use data from
Internet-wide surveys to reveal public IP addresses of
over 100,000 IPMI devices, including more than 40,000
systems that our results suggest are remotely exploitable.
In Section 6, we attempt to draw lessons from IPMI se-
curity failures and suggest mitigations for developers and
users. The vulnerabilities we find, along with others pre-
viously found by Farmer [7] and Moore [19], suggest that
some [PMI manufacturers are systematically failing to
properly secure these devices and do not fully appreciate
the security implications of out-of-band management.
These problems are compounded because although
many IPMI implementations are based on GNU/Linux,
they are ultimately closed systems that present a mini-
mal interface compared to a general purpose OS. As a
result, system administrators have little ability to inspect
or control the internal operations. This prevents server
operators from applying existing defensive security tools
(e.g. Tripwire [16]) and complicates independent security
analysis. Even if problems are found and firmware up-
dates released, these updates typically need to be applied
manually. Many server operators may not realize how
important it is to keep their [PMI firmware up to date and
their management interfaces off of the public Internet.

2 Related Work

Until recently, little work has focused on IPMI security is-
sues, and research in this area remains in its infancy. Dan
Farmer was one of the first security researchers to develop
a deep interest in IPMI risks and published a discussion
of the technology and the potential threats it presents in
early 2013 [8]. Farmer also recently discovered an un-
documented debugging feature in Dell’s iDrac express 6
firmware that would let any user gain access to an SSH
root shell [7]. Our work builds on Farmer’s and exposes
other serious problems with IPMI. We also demonstrate
an even more dangerous attack against another vendor’s
implementation.

Recently, HD Moore disclosed multiple vulnerabilities
in two of the most popular uPnP libraries [18]. Among
the affected devices was the Supermicro IPMI implemen-
tation we analyze in this study. Moore et al. developed a
Metasploit module that exploits one of the vulnerabilities
and targets ATEN-based Supermicro IPMI systems [19].
Moore reported finding approximately 35,000 such sys-
tems publicly accessible and exploitable.

In general, malware targeting non-PC devices is a grow-
ing trend. One example is malware infecting home routers,
which are architecturally reminiscent of the IPMI imple-

mentations we studied. Both kinds of devices are low-
power embedded systems that frequently run Linux, often
expose web-based management interfaces on public IP
addresses, and can be leveraged to attack traditional PCs
connected to them. ISE recently released a detailed re-
port on security issues with common home and office
routers [14]. They suggest that almost every device they
examined had some critical security flaw, and they claim
38 independent router-related CVEs. We conjecture that
architecturally similar [PMI devices may suffer from simi-
lar flaws due to poor engineering and lack of security test-
ing, which poses a significant threat since IPMI-equipped
servers are more likely to be high value targets than home
networks.

Work by Novak et al. discussed the security issues
raised by remote management software, focusing on a
commercial product called Absolute Manage [20]. Like
the IPMI device we studied, that tool turned out to be
riddled with blatant vulnerabilities, and, since it was de-
signed to perform powerful management functions, an
attacker could gain full administrator privileges through
its exploitation. Novak et al.’s conclusion is similar to
ours: remote management tools are a particularly risky
class of systems and must be designed and implemented
with careful attention to security.

BMC malware can be compared to other malware that
resides at low levels of the computing stack. Malicious
BIOS firmware received substantial attention in the early
2000s [4, 9]. If an attacker can compromise a system’s
BIOS, he can insert a backdoor that persists for the life of
the machine and is difficult to detect or remove. IPMI mal-
ware carries similar threats and is likely easier to develop,
since many BMCs run a standard operating system. BMC
malware would also likely be easier to install remotely,
due to IPMI’s substantial network-facing attack surface.

3 IPMI Security Risks

IPMI’s growing popularity and powerful capabilities
make it a new and interesting attack vector. In this section,
we discuss features of typical IPMI implementations that
lead to heightened security risks, and we consider what an
attacker might to after compromising a vulnerable BMC.

3.1 Attack Surface

IPMI devices tend to have a large attack surface. In the
case of Supermicro’s IPMI implementation, the BMC op-
erates a web interface on TCP ports 80 and 443, a remote
KVM console system on port 5900, a virtual boot media
server on port 623, a system management architecture for
server hardware (SMASH) command line processor over
SSH on port 22, and an IPMI protocol interface on UDP
port 623 [24].



To control access to these interfaces, IPMI deployment
best practice calls for use of an isolated management
network [25]. Whether this advice is emphasized in offi-
cial documentation varies by manufacturer: HP explicitly
recommends it [11], while Supermicro’s user’s guide pro-
vides detailed instructions on which firewall ports to open
to allow remote connections [24]. Even if a management
network is in use, an attacker might be able to connect
to the BMC due to misconfiguration or breach of other
network systems or by compromising the host system,
so relying solely on a secondary network for security is
insufficient.

Many manufacturers ship servers with IPMI enabled
out of the box. In Supermicro’s implementation, IPMI is
turn on in the BIOS by default, and other default settings
cause the BMC to obtain an IP address automatically via
DHCP and to use either the dedicated management NIC or
the primary onboard NIC in a failover configuration [24].
This greatly increases the risk that uses will inadvertently
leave the BMC exposed on a public IP address. We note
that IPMI implementations typically provide remote man-
agement capabilities even when the host system is shut
down, so if IPMI is enabled the only way to eliminate the
risk of attack is to unplug the system from the network or
power supply.

3.2 Authentication Risks

All IPMI devices support basic authentication via user-
names and passwords [15]. Several manufacturers ship
devices with default administrative credentials, which
the system administrator may neglect to change. Dell’s
iDRAC IPMI has used default credentials listed directly in
its user manual (root/calvin) [5], as does the Supermi-
cro system we analyzed (ADMIN/ADMIN) [24]. The Super-
micro system also provides an undocumented Anonymous
user account that is enabled by default and configured as
an administrator [2].

Even if the user sets a strong password, it may be ex-
posed through insecure storage on the IPMI device. The
IPMI specification lists requirements for storing pass-
words in plaintext [15], and we confirmed that the Super-
micro device we tested stores all passwords as plaintext
in a single file (PSBlock) within the system’s nonvolatile
storage area. Administrators who operate a large number
of servers may reuse the same passwords across multiple
systems. Thus, compromising a single IPMI device might
give an attacker access to many machines.

3.3 Attack Scenarios

Attackers could subvert the BMC by guessing default
passwords, exploiting vulnerabilities, or flashing mali-
cious firmware. These lead to a number of dangerous
attack scenarios.

Subverting the host system An attacker with access to
the IPMI device can take advantage of its remote manage-
ment facilities to attack the host system or other machines
on the management network. Typical IPMI implementa-
tions provide a remote virtual console, redirecting the key-
board, video, mouse, and serial port over the network. An-
other common feature is virtual USB disk media, which
can be used to infiltrate or exfiltrate files or to provide
new boot media. The combination of these capabilities
and remote power cycling would allow an attacker to
seize control of most common server configurations. For
instance, they could restart the system and boot from a
virtual live CD, then directly copy or modify data on the
host’s storage devices.

BMC spyware If the attacker can install malware on
the BMC, it would have a powerful vantage point for spy-
ing on the system and its administrator. BMC spyware
could eavesdrop on remote management sessions, sniffing
passwords for the host machine and other network sys-
tems accessed from it. It could also potentially eavesdrop
on the physical server console via IPMI’s remote KVM
functionality.

Persistent BMC rootkits As the BMC operates inde-
pendently from the host’s operating system and CPU, it
provides an ideal hiding place for a stealthy, highly per-
sistent rootkit. A BMC rootkit could provide the attacker
with backdoor access that is hidden from IPMI access logs
and insusceptible to password changes. A BMC rootkit
would survive reinstallation of the host’s OS, or even
complete replacement of the host’s storage devices. Such
rootkits could even be designed to survive BMC firmware
updates by dynamically patching the new firmware.

Attacking the BMC from the host system An at-
tacker who compromises the host system could use it
to attempt to compromise the BMC. With the Supermicro
device we tested, software running on the host can re-
flash the BMC’s firmware via a KCS (keyboard-controller
style) interface, without any authentication or code sign-
ing [24]. Due to the closed nature of IPMI implemen-
tations, once attackers gain control of the BMC, it may
be extremely difficult to detect their presence or remove
them from the system.

IPMI botnets If widely used IPMI devices can be com-
promised remotely, they can be leveraged to create large
networks of bots. This is an attractive attack, because
although the BMC has limited processing power, most
servers have substantially more network bandwidth than
typical home PCs. Furthermore, the system operator is un-
able to run normal malware detection and removal tools
within the BMC, so IPMI bots may have longer lives
that their desktop equivalents. There have already been
anecdotal reports about IPMI devices being used for this
purpose in the wild [3].



4 Analysis and Attacks

To explore the potential for BMC compromise, we ana-
lyzed an IPMI implementation shipped by one large server
manufacturer, Supermicro. This process involved examin-
ing firmware binaries obtained from the company’s web-
site and performing exploratory probing using a server we
purchased. We ultimately discovered a range of vulnera-
bilities, and we developed two proof-of-concept exploits
to demonstrate some of the most critical problems.

The server we experimented with is a Supermicro SYS-
5017C-LF 1U rackmount system with a Super X9SCL-F
motherboard. The server’s BMC firmware was created by
ATEN Technology Inc., which also supplies IPMI systems
to other system vendors, and apparently customized by
Supermicro. The firmware runs on a Nuvoton WPCM450
BMC integrated into the motherboard. Our server shipped
with firmware version 1.86 for the X9 motherboard line,
which is the most recent revision and dates to November
2012. Internally, the BMC uses an ARM926EJ-S CPU
and runs Linux 2.6.17.

This IPMI device provides both a web-based front end
and an SSH interface with a SMASH command line pro-
cessor. We focused our investigation on the web interface.

Our analysis began with examination of the firmware
image file. Using binwalk [10], we found that it con-
tains two CramFS filesystem partitions and a compressed
Linux kernel. The first partition contains the root-level
mount point and the second contains the web resources,
including HTML, JavaScript, and CGI (Common Gate-
way Interface) programs written in C. At boot, the BMC’s
kernel mounts these partitions in read-only mode. It also
mounts a memory-backed /tmp partition and a 1.3 MB
flash-backed /nv partition, which is mounted in read-
write mode and used to store configuration and log files.

We proceeded to investigate the security of the
JavaScript and CGI programs through a combination of
code inspection, disassembly, and experimentation. This
led us to uncover a series of vulnerabilities.

4.1 Insecure Input Validation

An insecure design pattern that runs throughout the ATEN-
based web interface is that it appears to only perform input
validation in client-side JavaScript and HTML, without
any corresponding validation in the server-side CGI pro-
grams. This is dangerous, of course, because the attacker
can modify or bypass the client-side checks to send arbi-
trary data to the server.

In every instance we examined, input size checking
occurs entirely on the client. For example, on the login
page, the only input size validation on the username and
password fields is the text field limit set in the HTML. The
server-side login. cgi program that receives this input
does not perform size checks before performing strcpy,

function PrivilegeCallBack(Privilege)
{
//full access

if (Privilege == ’04’)
{
isSuperUser = 1;
GetDateTimeReq () ;
}

//only view

else if (Privilege == ’03’)

{
GetDateTimeReq ();
var_save_btn.disabled = true;
alert (lang.LANG_CANNOT_MODIFY);

}

//no access

else

{
var_refresh_btn.disabled = true;
var_save_btn.disabled = true;
alert (lang.LANG_NOPRIVI);

}

Figure 1: Bad Privilege Checking— The Supermicro
IPMI web interface checks user privileges with client-side
JavaScript, without corresponding server-side checks.

resulting in a buffer overflow. We further explore the
implications of this vulnerability in Section 4.3.

Similarly, input sanitization appears to happen either
in client-side code or not at all. This is especially prob-
lematic because several web page text fields present front
ends to shell commands. In these instances, the server
concatenates the input text with other parts of a Linux
shell command and executes them using the libc system
function. In many cases, no checks are performed in
either JavaScript or the back-end code, even for easily
validated formats such as IP addresses. This flaw leads to
multiple shell injection vulnerabilities, one of which we
exploit in Section 4.2.

The insecure client-side validation pattern applies
not only to input sanitization but also to user privilege
checks. The web interface manages user permissions
on the client side by initiating an AJAX request to re-
quest the current user’s permissions from the server and
then calling a context-specific JavaScript function called
PrivilegeCallback that is provided by the current
page. One implementation of this function is shown in
Figure 1. This appears to be the full extent of the device’s
privilege validation; the server does not further verify
the user’s permissions when handling a request. This al-
lows any IPMI user to escalate permissions to gain full
administrator access.



Primary NTP Server: 127.0.0.1'sleep 680

Figure 2: Shell Injection Vulnerability — The web in-
terface fails to sanitize inputs that are directly used in shell
commands. Here, the code in backticks gets executed.

4.2 Shell Injection Vulnerabilities

The lack of input sanitization leads to the potential for
shell-injection vulnerabilities in several functions. Out
of 67 CGI programs, we found 15 that call the system
function. While we did not check whether all 15 are vul-
nerable to shell injection, this provides an upper bound.
We did confirm that the CGI program responsible for up-
dating the date and time (config _date_time.cgi) has
a vulnerability in the IP address field used for NTP time
updates. An example of a shell injection that executes the
command “sleep 60 is shown in Figure 2.

The firmware ships with several commands that can
be used to construct useful shell-injection payloads.
HD Moore used the included openssl utility to im-
plement a connect-back shell as part of his uPnP ex-
ploit [19]. Our approach used wget to retrieve code from
another server and execute it. We piped the output to
the system log file, which we could then retrieve with
system_log.cgi. To ease the command injection, we
also wrote a psuedo-terminal in Python to abstract away
these HTTP requests. This approach gave us an indirect
root shell on the BMC, allowing us to explore the system’s
operation from the inside.

This shell-injection exploit was useful for our analysis
because it gave us a beachhead through which to explore
the running server from the inside. The attack requires an
IPMI user account, but this is still extremely dangerous
if, for example, the user has not changed the default login
credentials. Even without an account, an attacker can
still gain root access to the BMC by exploiting another
vulnerability, which we discuss below.

4.3 Buffer Overflow Vulnerabilities

There are numerous buffer-overflow vulnerabilities in
the web interface’s CGI programs due to lack of input
validation and bounds checking. One such example is
login.cgi, which uses the unsafe strcpy function to
manipulate user-controlled inputs. Figure 3 presents
a partial decompilation of the vulnerable code. The
cgiGetVariable function returns a pointer to a buffer
containing the requested CGI variable. As the listing
shows, this string, which is of unconstrained size, gets
copied into a fixed-size buffer without any length check-
ing, so long user inputs will overwrite the contents of
the stack. Thus, Supermicro’s ATEN-based IPMI web

int main(void)

char name [128],
char *temp;

pwd [24];

// ... initialize

temp = cgiGetVariable ("name");
strcpy (name, temp);
temp = cgiGetVariable ("pwd");
strcpy (pwd, temp);

// ... validate user

Figure 3: Exploitable Buffer Overflows in login.cgi —
The Supermicro IPMI web interface uses this server-side
code to handle HTTP POST requests from its login page.

interface has buffer overflows in its login page’s username
and password fields.

Many of the other CGI programs appear to have the
same kind of vulnerability. More generally, the pattern
in Figure 3 is an idiom the developers seem to have used
everywhere they handle POST requests: they use a call to
cgiGetVariable and then strcpy to a fixed-size stack-
based buffer. All these instances are potentially vulnera-
ble to buffer-overflow attacks.

There remains the question of how exploitable these
vulnerabilities are. In particular, does the BMC em-
ploy modern buffer-overflow defenses, such as DEP,
ASLR, and stack canaries? Using a combination of shell-
injection and disassembly, we determined that neither
DEP nor stack canaries are in use. There is a limited
ASLR implementation, but it only randomizes the loca-
tion of the stack and heap; all libraries are determinis-
tically mapped. We verified this configuration for DEP
and ASLR by examining the memory maps of processes.
The stack always had rwxp permissions on its pages, and
shared libraries were always mapped to the same locations
across various executions while the stack base address
varied.

4.4 Buffer Overflow Exploit

We created a proof-of-concept exploit for the vulnera-
ble login.cgi. To ease development, we leveraged the
root shell access gained via the shell-injection attack de-
scribed above to install a modified ssh-daemon that forks
a normal shell instead of the limited SMASH command
interpreter. We enabled core dumps and installed a cross-
compiled gdb to analyze them. We also temporarily dis-
abled ASLR until our basic exploit was working.



Higher Addresses

Shellcode:

Load address to
command payload

Call __libc_system()

Return Address

Saved stack pointer

Grows Down

Other local variables

char name[128] buffer

“ Storage for the
command payload

Lower Addresses

Figure 4: Exploit Memory Layout— Our proof-of-
concept exploit overflows the buffer name [128] onto the
stack. We reuse the allocated part of name to store a shell
command, which we execute with libc’s system().

Since the system does not use DEP, we chose to im-
plement a traditional stack-executed attack. That is, we
placed specially chosen ARM instructions on the stack
via the overflow and set the return address to jump to
the stack [1]. Our goal was to execute a shell command
via system; however, there were few bytes left for the
command payload after the shellcode, so we placed the
command in the allocated part of the name buffer. To
prevent the program from crashing before the function re-
turns, we have to ensure that one local variable (a pointer
to a structure in a shared library) remains intact, but this
value appears to be constant in practice. Figure 4 depicts
our exploit’s memory layout.

As a simple example payload, we decided to download
and launch a modified ssh-daemon that forks a root shell
when the incorrect password is entered. This modification
required changing only two instructions in the system’s
original SSH daemon.

Lastly, we had to overcome the randomized stack. This
proved simpler than one might suspect. ASLR is rela-
tively weak with a 32-bit address space [23]. The lower
12 bits are fixed due to 4 KB page alignment, and several
high-order bits are constrained by other reserved memory
regions (such as text, heap, and libraries). On the IPMI
device, we found that only 12 bits (12-23) were being
randomized, yielding a mere 4096 possibilities.

This search space is fairly easy to brute-force. However,
since the device uses a low-powered embedded processor,
it has difficulty handling continuous web requests. We
found that sending requests at intervals of around 200 ms
was tolerated by the system. At this rate, our exploit
succeeds within about 7 minutes on average.

It may be possible to develop an exploit that succeeds in
a single request by using a return-to-libc attack. However,
this approach is complicated because the stack pointer is
mangled during the overflow, and ARM calling conven-
tions pass parameters in registers.

Even without further optimization, our exploit is ex-
tremely dangerous because it can easily be parallelized to
attack many servers at once. We conservatively estimate
that it would take less than an hour to launch success-
ful parallel attacks against all of the 40,000 ATEN-based
Supermicro IPMI devices that we observed listening on
public IP addresses (see Section 5).

4.5 Vulnerable Models

To understand how widespread vulnerabilities like these
are across the Supermicro server product line, we down-
loaded the current set of IPMI firmware images available
on the company’s support site' as of May 23, 2013. Out
of 64 distinct firmware images, 30 appeared to use ATEN-
based software very similar to the implementation we
tested. We disassembled the login.cgi program from
each of these images, and all of them appear to contain
similar buffer overflow vulnerabilities. These vulnerable
firmware images apply to 135 Supermicro product models.
The problems may also affect IPMI devices from other
manufacturers that are based on similar ATEN firmware.

5 Network Measurements

Given the security risks of IPMI devices, best practice dic-
tates that they should not be accessible from the Internet.
One possible explanation for the widespread vulnerabil-
ities in the ATEN-based Supermicro implementation is
that the programmers assumed uses would follow this
advice and not connect the devices to public networks. Is
this a safe assumption?

In order to estimate the number of publicly accessi-
ble IPMI devices, we used data from an Internet-wide
network survey conducted in May 2013 using the ZMap
network scanner [6]. This dataset includes the X.509 cer-
tificates presented by all HTTPS servers in the public IPv4
address space listening on TCP port 443. We searched the
data for certificates that had the identifying characteristics
of default HTTPS certificates used by the web interfaces
for Supermicro, Dell, and HP IPMI implementations.

Uhttp://supermicro.com/support/bios/firmware0.aspx


http://supermicro.com/support/bios/firmware0.aspx

For Supermicro devices, we looked for certificates
with subjects containing “linda.wu@supermicro.com’ or
“doris@aten.com.tw”, which appeared in certificates from
different versions of the firmware. For Dell devices,
we looked for the string “iDRAC” in the certificate sub-
ject. For HP devices, we looked for subjects containing
“CN=ILO” and issuers containing “iLLO3 Default Issuer”
or “Hewlett Packard”. We spot-checked the landing pages
these servers displayed to guard against false positives.
Here are the device counts we found:

Platform Devices on Public IPs
Supermicro IPMI 41,545
Dell iDARC 40,413
HP iLO 23,376
Total 105,334

These data show that at least tens of thousands of
servers with IPMI are immediately at risk, and they may
be only the tip of the iceberg. Other versions of the same
firmware may have different certificate formats not in-
cluded in these totals, and security-aware server operators
may have generated non-default HTTPS certificates that
would not match our search patterns. Our figures here are
a lower bound on the number of IPMI-enabled devices
exposed on public IP addresses today.

6 Defenses and Lessons

The problems we uncovered carry lessons for server oper-
ators, system manufacturers, and IPMI developers.

For server operators, the most practical immediate de-
fenses are to keep IPMI firmware up to date, change
default passwords, and never configure IPMI devices on
public IP addresses. These devices should be isolated ei-
ther on a physically separate management network or on
a management VLAN [25]. Operators who do not need
IPMI should disable it entirely if possible. Although these
steps should already be considered security best practices,
the large number of IPMI devices currently listening on
public IPs suggests that many server operators are either
unaware that their devices are publicly reachable or obliv-
ious to the risks.

For IPMI developers and server OEMs, our findings
should be a wakeup call. Given the power that IPMI pro-
vides, the blatant textbook vulnerabilities we found in
a widely used implementation suggest either incompe-
tence or indifference towards customers’ security. While
some OEMs recommend helpful precautions such as ded-
icated management networks [13], this should not be an
excuse to shift blame to users who fail to heed this ad-
vice and suffer damage because of vulnerabilities in IPMI

firmware. We believe that properly securing IPMI will
require OEMs to take a defense-in-depth approach that
combines hardening the implementations with encourag-
ing users to properly isolate the devices.

Securing IPMI will require security expertise on the
part of developers and careful scrutiny during system de-
sign, engineering, and testing. A starting point would be
to adopt standard defense mechanisms, such as password
salting and hashing, automatic firmware updates protected
by digital signatures, and the use of DEP, ASLR, and stack
canaries. Implementations should also be examined by
qualified penetration testers. Even then, with such a large
attack surface, vulnerabilities are bound to slip through,
but they will likely be more difficult to find and exploit.

There are a variety of special-purpose security features
that IPMI implementers should consider adding in fu-
ture firmware. The most basic is to ensure that IPMI is
disabled until explicitly turned on by the user. Another
proactive security mechanism would be to have the BMC
periodically check that it has not been accidentally at-
tached to a public network, perhaps by requesting that a
server operated by the vendor attempt to connect to it. If
the connection is successful, the BMC could temporarily
disable itself and alert the operator.

The problems we found may represent a kind of
“impedance mismatch” between the server community
and the low-power embedded systems community. Server
owners are used to dealing with publicly accessible ma-
chines and have come to expect their systems to be
designed for the rigors of the Internet, while embed-
ded designers have long enjoyed the luxury of narrow
use-cases and isolated systems. These vantage points
must find synchrony. If these management systems are
to be connected—even indirectly—to public networks,
IPMI devices must be engineered with the same security
scrutiny as traditional server systems.

7 Future Work

Research into the security of fielded IPMI devices is still
at an early stage, and there are a number of promising
avenues for future work.

Analysis of other implementations Since our study
focused on one IPMI implementation from a single ven-
dor, we can only draw limited broader conclusions from
the vulnerabilities we found. They highlight potential
risks, but they do not prove that poor security engineering
is widespread in this class of devices. Further study is
needed to analyze IPMI products from other major ven-
dors, such as Dell, HP, Lenovo, and Oracle. Problems
that occur across many implementations might suggest
broader lessons or point to underlying root causes, and
would help establish the true scope of IPMI threats.



Firmware update exploitation The attacks we inves-
tigated work by exploiting vulnerabilities in the BMC’s
web interface, but firmware updates offer a separate and
interesting attack vector to explore. The BMC needs to
provide a secure and reliable update mechanism for it-
self, and the implementations we surveyed all support
updates both via the web front-end and using an out-of-
band process from the host machine’s OS. Only some
vendors provide signatures for firmware updates [11, 5],
and these are not always automatically verified. We en-
courage vendors to develop a more robust update process
that ensures that firmware updates nominally intended to
prevent against possible compromises do not become a
point of weakness themselves.

IPMI honeypots It is unknown whether IPMI vulnera-
bilities like the ones we uncovered are being intentionally
exploited in the wild. While there is anecdotal evidence
that some BMCs have been turned into spambots [3],
it is unclear whether attackers are specifically targeting
BMCs or whether their simplistic vulnerabilities have
allowed automated attack systems to compromise what
would otherwise appear to be underpowered machines.
We would like to address this question in future research
by establishing IPMI honeypots that are instrumented to
record evidence of attempted and successful attacks being
launched against these devices.

8 Conclusion

Out-of-band management is a technology of great value
to the IT community, but its benefits are accompanied by
significant security risks. IPMI’s remote administration
features can be powerful tools in the hands of an attacker,
and implementations tend to have large remotely accessi-
ble attack surfaces. Since BMCs operate independently of
the host system and CPU, cleverly written malware run-
ning there could potentially reside undetected indefinitely.
Unfortunately, due to the closed nature of BMC firmware,
server operators have few avenues to defend themselves
without vendor assistance.

To shed light on these risks, we analyzed the security
of one IPMI implementation, the ATEN-based Supermi-
cro BMC. We uncovered a wide range of vulnerabilities
and demonstrated two working attacks that allowed us
to gain root shell access. These problems pose an imme-
diate threat to many systems in the field; we found over
40,000 devices similar to the one we analyzed visible on
public IP addresses. We have disclosed these vulnerabil-
ities to ATEN and Supermicro, and we hope they will
provide firmware updates to fix the immediate problems.
In the meantime, we urge all IPMI users to ensure that
their management interfaces are not accessible from the
Internet.

In the long run, securing remote management systems
calls for a defense-in-depth approach. Vendors need to
apply careful security engineering practices, minimize
attack surfaces, and help users ensure that their systems
are appropriately locked down and isolated from public
networks. Unfortunately, our findings suggest that many
users and at least some IPMI vendors are unaware of
the security risks that out-of-band management entails.
We hope research like this that exposes vulnerabilities in
real implementations will lead to greater awareness and
understanding of those risks and coordinated efforts to
reduce them.

Acknowledgments

We thank Zakir Durumeric for providing Internet-wide
scan data. We also thank Eric Wustrow and Pat Pannuto
for their feedback and assistance. We are grateful to HD
Moore and the anonymous reviewers for their insightful
suggestions and comments. This work was funded in part
by NSF grant CNS-1255153.

References

[1] Aleph One. Smashing the stack for fun and profit. Phrack,
7(49), August 1996.

[2] Floris Bos. Supermicro IPMI documentation omission:
presence of second admin account. Full Disclosure mailing
list, October 2011. http://seclists.org/fulldisclosure/2011/
Oct/530.

[3] brc_cst. Supermicro IPMI security. Web Hosting Talk
forum post, October 2010. http://www.webhostingtalk.
com/showthread.php?t=992082.

[4] Michael Davis, Sean Bodmer, and Aaron LeMasters. Hack-
ing Exposed: Malware and Rootkits. McGraw-Hill, 2009.

[5] Dell. Integrated Dell Remote Access Controller 7
(iDRAC?7) user’s guide, 1.30.30 edition, December 2012.

[6] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
ZMap: Fast Internet-wide scanning and its security appli-
cations. In 22nd USENIX Security Symposium, August
2013.

[7] Dan Farmer. Dell backdoor, January 2013. http://fish2.
com/ipmi/dell/secret.html.

[8] Dan Farmer. IPMI: Freight train to hell, January 2013.
http://fish2.com/ipmi/itrain.html.

[9] John Heasman. Implementing and detecting an
ACPI BIOS rootkit. Talk at Black Hat Europe,
2006. http://www.blackhat.com/presentations/bh-europe-
06/bh-eu-06-Heasman.pdf.

[10] Craig Heffner. Binwalk: Firmware analysis tool. https://
code.google.com/p/binwalk/.

[11] Hewlett-Packard. HP Integrated Lights-Out security, 7
edition, December 2010. http://bizsupport2.austin.hp.com/


http://seclists.org/fulldisclosure/2011/Oct/530
http://seclists.org/fulldisclosure/2011/Oct/530
http://www.webhostingtalk.com/showthread.php?t=992082
http://www.webhostingtalk.com/showthread.php?t=992082
http://fish2.com/ipmi/dell/secret.html
http://fish2.com/ipmi/dell/secret.html
http://fish2.com/ipmi/itrain.html
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://code.google.com/p/binwalk/
https://code.google.com/p/binwalk/
http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c00212796/c00212796.pdf

[12]

[13]

(14]

[15]

[16]

(17]

(18]

be/docs/support/SupportManual/c00212796/
c00212796.pdf.

Hewlett-Packard. HP ProLiant Lights Out-100 User
Guide, March 2010. http://bizsupportl.austin.hp.com/
be/docs/support/SupportManual/c02063205/
¢02063205.pdf.

Hewlett-Packard. HP iLO 3 User Guide, October
2012. http://bizsupport2.austin.hp.com/bc/docs/support/
SupportManual/c02774507/c02774507 .pdf.

Independent Security Evaluators. Exploiting SOHO
routers, April 2013. http://securityevaluators.com/content/
case-studies/routers/soho_router_hacks.jsp.

Intel, Hewlett-Packard, NEC, and Dell. Intelli-
gent Platform Management Interface Specification
v2.0, February 2004.  http://www.intel.com/content/
dam/www/public/us/en/documents/product-briefs/
second-gen-interface-spec-v2-rev1-4.pdf.

Gene H. Kim and Eugene H. Spafford. The design and im-
plementation of tripwire: a file system integrity checker. In
2nd ACM Conference on Computer and Communications
Security, CCS *94, pages 18-29, 1994.

Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad
Verbowski, Helen J. Wang, and Jacob R. Lorch. SubVirt:
Implementing malware with virtual machines. In 27th
IEEE Symposium on Security and Privacy, SP °06, 2006.

HD Moore. Security flaws in Universal Plug and Play:
Unplug, don’t play, January 2013. https://community.
rapid7.com/docs/DOC-2150.

[19]

[20]

(21]

(22]

(23]

[24]

[25]

HD Moore, Alex Eubanks, and Richard Harman.
Metasploit module for uPnP attack on Supermicro IPMI
devices, February 2013.  https://github.com/rapid7/
metasploit-framework/blob/master/modules/exploits/
multi/upnp/libupnp_ssdp_overflow.rb.

Jay Novak, Jonathan Stribley, Kenneth Meagher, and
J. Alex Halderman. Absolute pwnage: Security risks of re-
mote administration tools. In 15th International Financial
Cryptography Conference (FC), February 2011.

Weimin Pan and Haihong Zhuo. IPMI configuration on
ninth-generation Dell PowerEdge servers. Dell Power
Solutions, August 2006. http://www.dell.com/downloads/
global/power/ps3q06-20050317-Zhuo.pdf.

Joanna Rutkowska. Introducing Blue Pill. The Invisible
Things Lab’s blog, June 2006. http://theinvisiblethings.
blogspot.com/2006/06/introducing-blue-pill.html.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effective-
ness of address-space randomization. In //th ACM con-
ference on Computer and Communications Security, CCS
’04, pages 298-307, 2004.

Supermicro. SMT IPMI User’s Guide, 2.1c edition,
2013. http://supermicro.com/manuals/other/SMT_IPMI_
Manual.pdf.

Johannes Ullrich. IPMI: Hacking servers that
are turned “oft”. ISC Diary blog, June 2012.
https://isc.sans.edu/diary/IPMI%3 Aminimal+Hacking+
servers+that+are+turned+%220ff%22/13399.


http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c00212796/c00212796.pdf
http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c00212796/c00212796.pdf
http://bizsupport1.austin.hp.com/bc/docs/support/SupportManual/c02063205/c02063205.pdf
http://bizsupport1.austin.hp.com/bc/docs/support/SupportManual/c02063205/c02063205.pdf
http://bizsupport1.austin.hp.com/bc/docs/support/SupportManual/c02063205/c02063205.pdf
http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c02774507/c02774507.pdf
http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c02774507/c02774507.pdf
http://securityevaluators.com/content/case-studies/routers/soho_router_hacks.jsp
http://securityevaluators.com/content/case-studies/routers/soho_router_hacks.jsp
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2-rev1-4.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2-rev1-4.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2-rev1-4.pdf
https://community.rapid7.com/docs/DOC-2150
https://community.rapid7.com/docs/DOC-2150
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/upnp/libupnp_ssdp_overflow.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/upnp/libupnp_ssdp_overflow.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/upnp/libupnp_ssdp_overflow.rb
http://www.dell.com/downloads/global/power/ps3q06-20050317-Zhuo.pdf
http://www.dell.com/downloads/global/power/ps3q06-20050317-Zhuo.pdf
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://supermicro.com/manuals/other/SMT_IPMI_Manual.pdf
http://supermicro.com/manuals/other/SMT_IPMI_Manual.pdf
https://isc.sans.edu/diary/IPMI%3Aminimal+Hacking+servers+that+are+turned+%22off%22/13399
https://isc.sans.edu/diary/IPMI%3Aminimal+Hacking+servers+that+are+turned+%22off%22/13399

	Introduction and Roadmap
	Related Work
	IPMI Security Risks
	Attack Surface
	Authentication Risks
	Attack Scenarios

	Analysis and Attacks
	Insecure Input Validation
	Shell Injection Vulnerabilities
	Buffer Overflow Vulnerabilities
	Buffer Overflow Exploit
	Vulnerable Models

	Network Measurements
	Defenses and Lessons
	Future Work
	Conclusion

