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Computer procedures for finite 
element analysis 

20.1 Introduction 
In this chapter we consider some of the steps that are involved in the development of a 
finite element computer program to carry out analyses for the theory presented in 
previous chapters. The computer program discussed here may be used to solve any 
one-, two-, or three-dimensional linear steady-state or transient problem. The program 
may also be used to solve non-linear problems as will be discussed in Volume 2. 

Source listings are not included in the book but may be obtained at no charge from 
the publisher’s internet web site (http://www.bh.com/companions/fem). Any errors 
reported by readers will be corrected frequently so that up-to-date versions will be 
available. 

The program is an extension of the work presented in the 4th edition.’>2 The version 
discussed here is called FEAPpv to distinguish the current program from that presented 
earlier. The program name is an acronym for Finite Element Analysis Program - 
personal version. It is intended mainly for use in learning finite element programming 
methodologies and in solving small to moderate size problems on single processor 
computers. A simple memory management scheme is employed to permit efficient 
use of main memory with limited need to read and write information to disk. 

The current version of FEAPpv permits both ‘batch‘ and ‘interactive’ problem 
solution. The finite element model of the problem is given as an input file and may 
be prepared using any text editor capable of writing ASCII file output. A simple 
graphics capability is also included to display the mesh and results from one- and 
two-dimensional models in either their undeformed or reference configuration. The 
available versions for graphics is limited to X-window applications and compilers 
compatible with the current Compac Fortran 95 compiler for Windows based systems. 
Experienced programmers should be able to easily adapt the routines to other systems. 

1. data input module and preprocessor 
2. solution module 
3. results module 

Figure 20.1 shows a simplified schematic for a typical finite element program 
system. Each of the modules can in practice be very complex. In the subsequent 

Finite element programs can be separated into three basic parts: 

http://www.bh.com/companions/fem
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I Data Input Module 
(Preprocessor) 

Solution and 
Output Module 
(Postprocessor) 

(*) 
Fig. 20.1 Simplified schematic of finite element program. 

sections we shall discuss in some detail the programming aspects for each of the 
modules. It is assumed that the reader is familiar with the finite element principles 
presented in this book, linear algebra, and programming in either Fortran or C. 
Readers who merely intend to use the program may find information in this chapter 
useful for understanding the solution process; however, for this purpose it is only 
necessary to read the user instructions available from the web site where the program 
is downloaded. 

This chapter is divided into seven sections. Section 20.2 describes the procedure 
adopted for data input, necessary to define a finite element problem and basic instruc- 
tions for data file preparation. The data to be provided consists of nodal quantities 
(e.g., coordinates, boundary condition data, loading, etc.) and element quantities 
(e.g., connection data, material properties, etc.). 

Section 20.3 describes the memory management routines. 
Section 20.4 discusses solution algorithms for various classes of finite element 

analyses. In order to have a computer program that can solve many types of finite 
element problems a command language strategy is adopted. The command language 
is associated with a set of compact subprograms, each designed to compute one or 
at most a few basic steps in a finite element process. Examples in the language are 
commands to form a global stiffness matrix, as well as commands to solve equations, 
display results, enter graphics mode, etc. The command language concept permits 
inclusion of a wide range of solution algorithms useful in solving steady-state and 
transient problems in either a linear or non-linear mode. 

In Section 20.5 we discuss a methodology commonly used to develop element 
arrays. In particular, numerical integration is used to derive element ‘stiffness’, 
‘mass’ and ‘residual’ (load) arrays for problems in linear heat transfer and elasticity. 
The concept of using basic shape function routines is exploited in these developments 
(Chapters 8 and 9). 

In Section 20.6 we summarize methods for solving the large set of linear algebraic 
equations resulting from the finite element formulation. The methods may be 
divided into direct and iterative categories. In a direct solution a variant of Gaussian 
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elimination is used to factor the problem coefficient matrix (e.g., stiffness matrix) 
into the product of a lower triangular, diagonal and upper triangular form. A solu- 
tion (or indeed subsequent resolutions) may then be easily obtained. A direct 
solution has the advantage that an a priori calculation may be made on the 
number of numerical operations which need to be performed to obtain a solution. 
On the other hand, a direct solution results in fill-in of the initial, sparse finite 
element coefficient array - this is especially significant in three-dimensional solutions 
and results in very large storage and compute times. In the second category.iterative 
strategies are used to systematically reduce a residual equation to zero, and thus 
yield an acceptable solution to the set of linear algebraic equations. The scheme 
discussed in this chapter is limited to solution of symmetric equations by a pre- 
conditioned conjugate gradient method. 

20.2 Data input module 
The data input module shown in Fig. 20.1 must obtain sufficient information to 
permit the definition and solution of each problem by the other modules. In the 
program discussed in this book the data input module is used to read the necessary 
geometric, material, and loading data from a file or from information specified by 
the user using the computer keyboard or mouse. In the program a set of dynamically 
dimensioned arrays is established which store nodal coordinates, element connection 
lists, material properties, boundary condition indicators, prescribed nodal forces and 
displacements, etc. Table 20.1 lists the names of variables which are used in assigning 
array sizes for mesh data and Table 20.2 indicates some of the main arrays used to 
store mesh data. 

Table 20.1 Control parameters 

Variable name Description Default 

NUMNP Number of nodal points in mesh 0 
NUMEL Number of elements in mesh 0 
NUMMAT Number of material sets in mesh 0 
NDM Spatial dimension of mesh none 
NDF Number of degrees of freedom per node (maximum) none 
NEN Number of nodes per element (maximum) none 
NDD Number of material property values per set 200 

Table 20.2 Variable names used for data storage 

Variable name (dimension) Type Description 

ID (NDF ,NUMNP , 2 )  
IE(NIE,NUMMAT) Integer Element pointers for degrees of freedom, history 

IX(NEN1,NIIMEL) Integer Element connections, set flag, etc. 
D (NDD , NUMMAT) Real Material property data sets 
F (NDF, "PI 2 )  
X(NDM, "P) Real Nodal coordinates 

Integer ( I )  Boundary codes; (2) Equation numbers 

pointers, material set type, etc. 

Real ( I )  Nodal forces; (2) and displacements 
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The notation used for the arrays often differs from that used in the text. For 
example, in the text it was found convenient to refer to nodal coordinates as xi ,  yi, 
zi, whereas in the program these are called X( 1, i )  , X(2, i), X (3 ,  i) , respectively. 
This change is made so that all arrays used in the program can be dynamically 
allocated. Thus, if a two-dimensional problem is analysed, space will not be reserved 
for the X(3, i )  coordinates. Similarly the nodal displacements in the text were 
commonly named ai; in the program these are called U ( 1 ,  i ) ,  U(2, i ) ,  etc., where 
the first subscript refers to the degrees of freedom at a node (from I to NDF). 

20.2.1 Control data and storage allocation 

The allocation of the major arrays for storage of mesh and solution variables is 
performed in a control program as indicated in Fig. 20.2. Since a dynamic 
memory allocation is used it is not possible to establish absolute values for the 
maximum number of nodes, elements or material sets. The value for the parameter 
NUM-MR defines the amount of memory available to solve a given problem and is 
assigned to the main program module; however, if this is not sufficient an error 
message is given and the program stops execution. 

To facilitate the allocation of all the arrays data defining the size of the problem is 
input by the control program as shown schematically in Fig. 20.2. The required data is 
shown in Table 20.1; however, the number of nodes, elements and material sets may 
be omitted and FEAPpv. f will use the subsequent input data to determine the actual 
size required. Using the size data the remaining mesh storage requirements are 
determined and allocated by the control program. 

20.2.2 Element and coordinate data 

After a user has determined the mesh layout for a problem solution the data must be 
transmitted to the analysis program. As an example consider the specification of the 
nodal coordinate and element connection data for the simple two-dimensional (NDM = 
2) rectangular region shown in Fig. 20.3, where a mesh of nine four-node rectangular 
elements (NUMEL = 9 and NEN =4) and 16 nodes (NUMNP = 16) has been indicated. To 
describe the nodal and element data, values must be assigned to each X(i ,  j) for 
i = 1,2 a n d j  = 1 to 16 and to each IX(k,n) for k = 1 to 4 and n = 1 to 9. In the 
definition of the coordinate array X, the subscript i indicates the coordinate direction 
and the subscriptj the node number. Thus, the value of X (1 ,3)  is the x coordinate for 
node 3 and the value of X(2,3) is the y coordinate for node 3. Similarly for the 
element connection array IX the subscript k is the local node number of the element 
and n is the element number. The value of any IX(k,n) (for k less than or equal to 
NEN) is the number of a global node. Values of k larger than NEN are used to store 
other data. The convention for the first local node number is somewhat arbitrary. 
The local node number 1 for element 3 in Fig. 20.3 could be associated with global 
node 3, 4, 7, or 8. Once the first local node is established the others must follow 
according to the convention adopted for each particular element type. For example, 
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Fig. 20.2 Control program flow chart. 

it is conventional to number the connections by a right-hand rule and the four-noded 
quadrilateral element can be numbered according to that shown in Fig. 20.4. If we 
consider once again element 3 from the mesh in Fig. 20.3 we have four possibilities 
for specifying the IX(k,3) array as shown in Fig. 20.4. The computation of the 
element arrays from any of the above descriptions must produce the same coefficients 
for the global arrays and is known as element invariance to data input. 

Data input modules 
In FEAPpv two subprograms PINPUT and TINPUT are available to perform data 
input operations. For example, all the nodal coordinates may be input using the 
subprogram 
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Fig. 20.3 Simple two-dimensional mesh. 

Fig. 20.4 Typical four-noded element and numbering options. 
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SUBROUTINE XDATA (X , NDM, NUMNP) 
IMPLICIT NONE 
LOGICAL ERRCK, PINPUT 
INTEGER NUMNP, NDM , N 
REAL*8 X (NDM, NUMNP) 
DO N = 1,NUMNP 
ERRCK = PINPUT(X(1,N) ,NDM) 
IF (ERRCK) THEN 

ENDIF 
END DO ! N 
END 
The above use of the PINPUT routine obtains NDM values from each record and assigns 
them to the coordinate components of node N. The data input routines obtain their 
information from the current input file specified by a user. The routines are also 
used in cases where input is to be provided from the keyboard. These input all data 
in character mode, and parse the data for embedded function names or parameters 
(use of functions and parameters is described in the user manual). Users who are 
extending the capability of the program are encouraged to use the routines to 
avoid possible errors. The subprogram TINPUT permits character data to precede 
numerical values use is given as 

ERRCK = TINPUT(TEXT,M,DATA,N) 
in which TEXT is a CHARACTER*15 array of size M and DATA is a REAL*8 array of size N. 

For cases where integer information is to be input the information must be moved. 
For example, a simple input routine for the IX data is 

SUBROUTINE IXDATA (IX , NENl , NUMEL) 
IMPLICIT NONE 
LOGICAL ERRCK, PINPUT 
INTEGER NUMEL, NENI , N, I 
INTEGER IX (NEN1, NUMEL) 
REAL*8 RIX ( 16) 
DO N = 1,NUMEL 

STOP ' Coordinate error: Node:',N 

ERRCK = PINPUT(RIX,NENI) 
IF(ERRCK) THEN ! Stop on error 

ELSE ! Move data to IX 
STOP ' Connection error: ELEMENT:',N 

DO I = 1,NENl 

END DO ! I 
IX(1,N) = NINT(RIX(1)) 

ENDIF 
END DO ! N 
END 
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While the above form is not optimal it is an expedient method to permit the arbitrary 
mixing of real and integer data on the same record. In the above two examples the 
node and element numbers are associated with the record number read. The form 
used in the routines supplied with FEAPpv include the node and element numbers 
as part of the data record. In this form the inputs need not be sequential nor all 
data input at one instance. 

For a very large problem the preparation of each node and element record for the 
mesh data would be very tedious; consequently, some methods are provided in 
FEAPpv to generate missing data. These include simple interpolation between missing 
numbers of nodes or elements, use of super-elements to perform generation of blocks 
of nodes and elements, and use of blending function methods. Even with these aids 
the preparation of the mesh data for nodes and coordinates can be time consuming 
and users should consider the use of mesh generation programs such as GiD3 to 
assist in this task. Generally, however, the data input scheme included in the program 
is sufficient to solve academic and test examples. Moreover the organization of the 
mesh input module (subprogram PMESH) is data driven and permits users to interface 
their own program directly if desired (see below for more information on adding 
features). The data-driven format of the mesh input routine is controlled by keywords 
which direct the program to the specific segment of code to be used. In this form each 
input segment does not interact with any of the others as shown schematically in the 
flow chart in Fig. 20.5. 

20.2.3 Material property specification - multiple element 
routines 

The above discussion considered the data arrays for nodal coordinates and element 
connections. It is also necessary to specify the material properties associated with 
each element, loadings, and the restraints to be applied to each node. 

Each element has associated property sets, for example in linear isotropic elastic 
materials Young’s modulus E and Poisson’s ratio Y describe the material parameters 
for an isotropic state. In most situations several elements have the same property 
sets and it is unnecessary to specify properties for each element individually. In 
the data structure used in FEAPpv an element is associated with a material set by 
a number on the data record for each element. The material properties are then 
given once for each number. For example, if the region shown in Fig. 20.3 is all 
the same material, only one material set is required and each element would refer- 
ence this set. To accommodate the storage of the material set numbers the IX 
array is increased in size to NENl entries and the material set number is stored in 
the entry IX(NEN1,n) for element n. In FEAPpv the material properties are stored 
in the array D (NDD ,NUMMAT), where NUMMAT is the number of different material 
sets and NDD is the number of allowable properties for each material set (the default 
for NDD is 200). 

Each material set defines the element type to which the properties are to be assigned. 
In realistic engineering problems several element types may be needed to define the 
problem to be solved. A simple example involving different element types is shown in 
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Fig. 20.5 Flow chart for mesh data input. 

Fig. 1.4(a) in Chapter 1 where elements 1, 2, 4, and 5 are plane stress elastic elements 
and element 3 is a truss element. In this case at least two different types of element 
stiffness formulations must be computed. In FEAPpv it is possible to use ten different 
user provided element formulations in any ana1ysis.t The program has been designed so 
that all computations associated with each individual element are performed in one 
element subprogram called ELMTnn, where M is between 01 and 10 (see Sec. 20.5.3 
for a discussion on the organization of ELMTnn). Each element type to be used is 
specified as part of the material set data. Thus if element type 1, e.g., computations 
performed by ELMTO1, is a plane linear elastic three- or four-noded element and element 
type 4 is a truss element, the data given for example Fig. 1.4(a) would be: 

t In addition, some standard element formulations are provided as described in the user instructions. 
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(a) Material properties 

Material Element Material property 
set number type data 

(b) Element connections 

Element Material set Connection 

1 2 
2 2 
3 1 
4 2 
5 2 

134 
1 4 2  
2 5  
3614 
4185 

where E is Young’s modulus, v is Poisson’s ratio and A is area. Thus, elements 1,2,4, 
and 5 have material property set 2 which is associated with element type 1 and element 
3 has a material property set 1 which is associated with element type 4. It will be seen 
later that the above scheme leads to a simple organization of an element routine which 
can input material property sets and perform all the necessary computations for the 
finite element arrays. 

More sophisticated schemes could be adopted; however, for the educational and 
research type of program described here this added complexity is not warranted. 

20.2.4 Boundary conditions - equation numbers 

The process of specifying the boundary conditions at nodes and the procedure for 
imposing specified nodal displacements is closely associated with the method adopted 
to store the global solution matrix, e.g., the stiffness matrix. In FEAPpv the direct 
solution procedure included uses a variable band (profile) storage for the global 
solution matrix. Accordingly, only those coefficients within the non-zero profiles 
are stored. 

While the nodal displacements associated with boundary restraints may be 
imposed using the ‘penalty’ method described in Chapter 1, a more efficient direct 
solution results if the rows and columns for these equations are deleted. As an 
example consider the stiffness matrix corresponding to the problem shown in 
Fig. 1.1; storing all terms within the upper profile leads to the result shown in 
Fig. 20.6(a) and requires 54 words, whereas if the equations corresponding to the 
restrained nodes 1 and 6 are deleted the profile shown in Fig. 20.6(b) results and 
requires only 32 words. In addition to a reduction in storage requirements, the 
computer time to solve the equations is also reduced. 

To facilitate a compact storage operation in forming the global arrays, a boundary 
condition array is used for each node. The array is named I D  and is dimensioned as 
shown in Table 20.2. During input of data, degrees of freedom with known value or 
where no unknown exists have a non-zero value assigned to I D  (i , j ,1>. All active 
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Fig. 20.6 Stiffness matrix: (a) total stiffness storage; (b) storage after deletion of boundary conditions. 

degrees of freedom have a zero value in the I D  array. After the input phase the values 
in I D  (i , j ,2) are assigned values of the active equation numbers. Restrained DOFs 
have zero (or negative) values. 

Table 20.3 shows the I D  values for the example shown in Fig. l.l(a), where it is 
evident that nodes 1 and 6 are fully restrained. 

The numbers for the equations associated with unknowns are constructed from 
Table 20.3 by replacing each non-zero value with a zero and each zero value by 
the appropriate equation number. In FEAPpv this is performed by subprogram 
PROFIL starting with the degrees of freedom associated with node 1 followed by 
node 2, etc. The result for the example leads to values shown in Table 20.4, and 
this information is stored in I D ( i ,  j ,2). This information is used to assemble all 
the global arrays. 

Table 20.3 Boundary restraint code values 
after data input of problem in Fig. 1 . 1  

Degree of freedom 

Node 1 2 

1 1 1 
2 0 0 
3 0 0 
4 0 0 
5 0 0 
6 1 1 
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Table 20.4 Compacted equation numbers 
for problem in Fig. 1.1 

Degree of freedom 

Node 1 2 

1 0 0 
2 1 2 
3 3 4 
4 5 6 
5 7 8 
6 0 0 

The above scheme may be modified in a number of ways for either efficiency or to 
accommodate more general problems. For problems in which the node numbers are 
input in an order which creates a very large profile it is advisable to employ a program 
to renumber the nodes for better efficiency (often called bandwidth minimization 
schemes). Using the renumbered node order the equation numbers may then be 
constructed. 

The solution of mixed formulations which have matrices with zero diagonals 
requires special care in solving for the parameters. For example in the q, formu- 
lation discussed in Sec. 11.2 it is necessary to eliminate all qi parameters associated 
with each & parameter when a direct method of solution without pivoting is used 
(e.g., those discussed in Sec. 20.6.1). This may be achieved by numbering the 
I D ( i ,  j ,2) entries so that qi have smaller equation numbers than the one for the 
associated &. 

The equation number scheme may be further exploited to handle repeating bound- 
aries (see Chapter 9, Sec. 9.18) where nodes on two boundaries are required to have 
the same displacement but the value is unknown. This is accomplished by setting the 
equation numbers to the same value (and discard the unused ones). Similarly, regions 
may be joined by assigning nodes with the same coordinate values the same equation 
numbers. 

All modifications of the above type must be performed prior to computing the 
profile of the global matrix. 

20.2.5 Loading - nodal forces and displacements 

In FEAPpv the specified nodal forces and displacements associated with each degree 
of freedom are stored in the array F (NDF, NUMNP ,2). The specified force values for 
degree of freedom i at node j are retained in F ( i ,  j , I )  and specified values for the 
corresponding specified displacements in F ( i  , j ,2).  The actual value to be used 
during each phase of an analysis depends on the current value stored in 
I D ( i ,  j , 1). Thus if the value of the I D ( i ,  j ,1) is zero a force value is taken from 
F ( i ,  j , 1) whereas if the value is non-zero a displacement value is taken from 
F ( i  , j ,2). For the example of Fig. 1.1, an 0.01 settlement of the node 1 can be 
input by setting F(1,2,2) = -0.01, where it is assumed that the second degree of 
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freedom is a displacement in the vertical direction. Similarly, a horizontal force at 
node 4 can be specified by setting F(1,4,1> = 5, (i.e., X4 in the figure). 

In many problems the loading may be distributed and in these cases the loading 
must first be converted to nodal forces. In FEAPpv there are some provisions included 
to perform the computation automatically. Users may develop additional schemes for 
their own problems and add a new input command in the subprogram PMESH. Other 
options could also be added to compute necessary nodal quantities. 

The necessary steps to add a feature in PMESH are: 

1. Increase the dimensioned size of the array WD which is a character array to store the 
command names. 

2. Set the value of LIST in the DATA statement to the new number of entries in WD. 
3. Add a new statement label entries to the GO TO statement. 
4. For each statement label entry add the program statements for the new feature. 

manual available at the publisher’s web site. 
The specific instructions to prepare data for FEAPpv are contained in the user 

20.2.6 Mesh data checking 

Once all the data for the geometric, material and loading conditions are supplied 
FEAPpv is ready to initiate execution of the solution module; however prior to this 
step it is usually preferable to perform some checks on the input data (and any 
generated values). 

After the mesh is input the program will pass to solution mode. During solution 
additional arrays may be required which can also exceed the available space in the 
blank common. The most intensive storage requirement is for the global coefficient 
matrix for the set of linear algebraic equations defining the nodal solution parameters. 
In direct solution mode a variable band, profile solution scheme is used for simplicity. 
The solver has the capability of solving both symmetric and unsymmetric coefficient 
arrays and this is generally adequate for one- and two-dimensional problems of 
moderate size. However, for three-dimensional applications the storage demands 
for the coefficient matrix can exceed the capabilities of even the largest computers 
available at the time of writing this volume. Thus, an alternative iterative scheme is 
included in FEAPpv using a simple preconditioned conjugate gradient solver. 

20.3 Memory management for array storage 
A single array is partitioned to store all the main data arrays, as well as other arrays 
needed during the solution and output phases. This is accomplished using a data 
management system which can define, resize or destroy an integer or real array. Depend- 
ing on the computer system used real arrays may be defined in the main program 
module FEAPpv. F in either single precision or double precision form. Using the data 
management system each array indicated in Table 20.2 is dynamically dimensioned to 
the size and precision required for each problem. The result is a set of pointers defining 
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the location in a single array located in blank common. Blank common is defined as 

REAL*8 HR 
INTEGER MR 
COMMON HR(1) ,MR(NUM-MR) 

and pointers are assigned into the array NP stored in the named common POINTERS 
given by 

INTEGER NP 
COMMON /POINTERS/ NP (NUM-NP) 

The size of each array is defined by parameters NUM-MR and “M-NP. While not 
strictly defined by programming standards the above size for HR is not limited to 1. 
By working outside the array bound real arrays may be defined up to size NUM_MR/2 
for the double precision indicated. Using this artifice of pointers subroutines may be 
called as 

CALL SUBX(MR(NP(5)), HR(NP(3311, . . . 1 

where the first argument is integer and the second real. The subroutine would then 
read 

SUBROUTINE SUBX(I1, R1, . . . . 
and real names associated with each array as determined by a programmer. At this 
stage the missing ingredient is assignment of values to each specific pointer. In 
FEAPpv this is accomplished by the subprogram PALLOC. This logical function 
subprogram associates a number with a name for each variable to be defined, 
changed or deleted. Each programmer must use a listing of this routine to understand 
which variable is being defined and whether the variable is to be real or integer. A 
specification of an array action is accomplished using the assignment statement 

SETVAL = PALLOCC NUM , NAME , LENGTH , PRECISION ) 
For example the statement 

SETVAL = PALLOCC 43 , ‘X’ , NDM*NUMNP , 2 ) 

defines the real array for the nodal coordinates to have a size as indicated in Table 
20.2. Similarly, the statement 

SETVAL = PALLOCC 33 , ‘IX’ , NENI*NUMEL , 1 ) 

defines an integer array for the element connection array. Repeating the use of the 
allocation statement with a different size (either larger or smaller) will redefine 
the size of the array. Similarly, use of the statement with a zero (0) size deletes the 
array from the allocation table. Accordingly, use of 

SETVAL = PALLOCC 33 , ‘IX’ , 0 , I ) 

would destroy the storage (and values) for the connection data. Thus, using the 
memory management scheme above it is possible to redefine a mesh in an adaptive 
solution scheme to add or delete specific element data. Alternatively, data may be 
used in a temporary manner by allocating and then deleting after use. 
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20.4 Solution module - the command programming 
language 

At the completion of data input and any checks on the mesh we are prepared to 
initiate a problem solution. It is at this stage that the particular type of solution 
mode must be available to the user. In many existing programs only a small 
number of solution modes are generally included. For example, the program may 
only be able to solve linear steady-state problems, or in addition it may be able to 
solve linear transient problems for a single method. In a research mode or indeed 
in practical engineering problems fixed algorithm programs are often too restrictive 
and continual modification of the program is necessary to solve specific problems 
that arise - often at the expense of features needed by another user. For this 
reason it is desirable to have a program that has modules for various algorithm 
capabilities and, if necessary, can be modified without affecting other users’ 
capabilities. The program form that we discuss here is basic and the reader can 
undoubtedly find many ways to improve and extend the capabilities to be able to 
solve other classes of problems. 

The command language concept described in this section has been used by 
the authors for more than 20 years and, to date, has not inhibited our research 
activities by becoming outdated. Applications are routinely conducted on personal 
computers and workstations using an identical program except for graphical display 
modules. 

20.4.1 Linear steady-state problems 

A basic aspect of the variable algorithm program FEAPpv is a command instruction 
language which is associated with specific program solution modules for specific 
algorithms as needed. A user needs only to understand the association between 
specific commands and the operations carried out by the associated solution 
modules. 

In a steady-state problem we are required to solve the problem given, for example, 
by 

r(k) = f -  Ka(k) (20.1) 

where k is an index related to the solution iteration number. We call the residual of 
the problem for iteration k and note that a solution results when it is zero. In a data- 
driven solution mode using the command language of FEAPpv the formulation of 
Eq. (20.1) is given by the command FORM, which is a mnemonic for form residual. 
In addition an incremental form of the solution of Eq. (20.1) is adopted in 
FEAPpv. Accordingly we let 

= a(k) + Aa(k) (20.2) 

(20.3) 
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Since the problem given by Eq. (20.1) is linear this iterative form must converge in one 
iteration. That is, if we solve the problem fork = 0 for any specified a('), the residual 
fork = 1 will be zero (to machine precision). The only exceptions to this will be: (a)  an 
improperly formulated or implemented finite element formulation for the stiffness 
and/or the residual; (b) an incorrect setting of the necessary boundary conditions 
to avoid singularity of the resulting stiffness matrix; or (c) the problem is so ill- 
posed that round-off in computer arithmetic leads to significant error in the resulting 
solution. 

In FEAPpv the command language statement to form a symmetric stiffness matrix 
is TANG, which is a mnemonic for tangent stzflness. An unsymmetric stiffness matrix 
can be formed by specifying the command UTAN. By now the reader should have 
observed that commands for FEAPpv are given by four-character mnemonics. In 
general, users can use up to 14 characters to issue any command, however, only 
the first four are interpreted by the program. Thus, if a user desires, the command 
to form the tangent may be given as TANGENT. Finally, to solve the systems of 
equations given by Eq. (20.3) the command SOLV is used. Thus to solve a steady- 
state problem the three commands issued are: 

TANGent 
FORM 
SOLVe 

The first two commands can be reversed without affecting the algorithm. 
The basic structure for all command language statements is: 

COMMAND OPTION VALUE-I VALUE-2 VALUE-3 

Since the above three statements occur so often in any finite element solution strategy 
a shorthand command option is provided in FEAPpv as 

TANGent,,l 

where a comma is used to separate the fields and leave a blank option parameter. Any 
positive non-zero number may be used for the VALUE-I parameter. 

A user can check that the solution is correct by including another FORM command 
after the SOLV statement. 

After a solution has been performed for the steady-state problem it is necessary to 
issue additional commands in order to obtain the solution results. For example, the 
commands 

DISPlacement ALL 
STRESS ALL 

will output all the nodal displacements and stresses in an outputjle specified at the 
initiation of running FEAPpv. Table 20.5 lists some of the commands available in 
the program. A complete list is available in the user manual. 

The variable algorithm program described by a command language program can 
often be extended as necessary without need to reprogram the modules. Additional 
options are described in the user manual. 
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Table 20.5 Partial list of solutions commands 

Command Option Value-1 Value2 Value-3 Description 

CHECk 

D I S P  

D T  
FORM 

LOOP 

MESH 
NEXT 
P L O T  

REAC 

S O L V  

STRE 

T A N G e n t  

TIME 
T O L  
UTAN 

A L L  N 1  N 2  N 3  

v1 

N 

O P T I O N  

A L L  

A L L  

N 1  

N 1  

N 1  

v1 
N 1  

N 2  

N 2  

N 3  

N 3  

Perform check of mesh 

Output displacement for nodes 
N 1  to N 2  at  increments of N 3  
A L L  outputs all 

( I S W  = 2)' 

Set time increment to V 1  
Form equation residual 
( I S W  = 6) 
Loop N times all instructions 
to a matching NEXT command 
Input changes to mesh 
End of L O O P  instruction 
Enter graphical mode 
or perform command O P T I O N  
Output reactions at nodes 
N1 to N 2  at increments of N 3  
A L L  outputs all 

(ISW = 6) 
Solve for new solution 
increment (after FORM) 
Output element variables 

N 1  to N 2  at  increments of N 3  
A L L  outputs all 

(ISW = 4) 
Form symmetric tangent 
Solve if N 1  positive 
(ISW = 3) 
Advance time by D T  value 
Set solution tolerance to V i  
Form unsymmetric tangent 
(ISW = 3) 

20.4.2 Transient solution methods 

The integration of second-order differential equations of motion for time-dependent 
structural systems can be treated using the command language program. The first- 
order differential equations resulting from the heat equation may also be similarly 
integrated. For the transient second-order case the residual equation is modified to 

(20.4) 

where C and M are damping and mass matrices, respectively, and a and a are velocity 
and acceleration, respectively. To solve this problem it is necessary to: 

1. specify the time integration method to be used (see Chapter 18); 
2. specify the time increment for the integration; 
3. specify the number of time steps to perform; 
4. form the residual 
5 .  form the tangent matrix for the specific time integration method; 
6 .  solve the equation for each time step; 
7. report answers as needed. 

r(k) = f - Ka(k)  - Ci(&) - 
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As an example we consider the Newmark method (GN22) as described in Chapter 
18, Sec. 18.33. Using Eq. (18.12) we can define the updates at iteration k as 

(20.5) 

(20.6) 

where a,,, and an+,  are expressed in terms of solution variables at time n. These 
equations may also be written in an incremental form as 

Comparing Eq. (20.7) with Eq. (20.3) we obtain 

Aafl = ip2At2Aafi 

Similarly 

(20.7) 

(20.8) 

(20.9) 

(20.10) 

Thus, selecting the incremental nodal displacements as the primary unknown, the 
residual equation for k + 1 may be written as 

,dk+l) = r(k) - K*A an+ ( k )  1 (20.1 1) 

where 

K* = c ~ K  + c ~ C  + c ~ M  

with 

c, = I 

(20.12) 

(20.13) 

2 
c3 = - 

obtained from the relations between the incremental displacement, velocity and 
acceleration vectors. As we have noted in Chapter 18 the changing of the primary 
unknown from displacement to acceleration or velocity or, indeed, changing the 
integration algorithm from Newmark to any other method only changes the residual 
equation by the parameters ci which define the tangent matrix K*. The other changes 
from different integration algorithms appear in the number of vectors required for the 
algorithm and the way they are initialized and updated within each time increment. 

In program FEAPpv the parameters ci are passed to each element routine as 
CTAN (i> together with the values of the localized nodal displacement, velocity and 
acceleration vectors. This permits an element module to be programmed in a general 
manner without knowing which integration method will be used during the solution 
specified in the command language instructions. In Sec. 20.5 we will discuss the steps 
needed to program the residual terms, as well as the stiffness and mass terms needed to 
form the global tangent matrix. 

P2At2 
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Here we note also that the steady-state algorithm discussed in the previous section 
merely requires that the velocity and acceleration vectors and the parameters c2 and c3 
be set to zero before calling an element module. Similarly, for a first-order system the 
acceleration vector and parameter c3 are set to zero prior to entering the element 
module. 

The command language instructions to solve a linear transient problem over 50 
time steps in which all results are reported at each time is given as 

TRANS,NEWMark 
DT, ,0.024 
TANG 
LOOP,time,50 

FORM 
SOLVe 
DISP, ALL 
STRE, ALL 

NEXT, time 

Selects Newmark Method 
Sets time increment to 0.024 
Form tangent matrix 
Loop 50 times to NEXT 
Form residual 
Solve equations 
Output nodal displacements 
Output element variables 
End of LOOP 

The issuing of the instructions TRANsient causes the parameters ci to be set for the 
Newmark method. The default for the transient option is the steady-state solution 
algorithm with c1 = 1 and c2 = c3 = 0. 

20.4.3 Non-linear solutions: Newton's methods 

The command language programming instructions may also be used to solve non- 
linear problems. For example, the steady-state set of non-linear algebraic equations 
given by the residual equation 

r(') = f - P(a(')) (20.14) 

in which P is a non-linear function of a is considered. A solution may be obtained by 
writing a linear approximation for the residual at k + 1 as 

r ( k + l )  - K ( ~ ) A ~ ( W  T = 0 (20.15) 

in which KT is some non-singular coefficient matrix used to obtain the increments 
Aa,,).. Now the update for a('+]) using Eq. (20.2) will not in general make r('+l) 
zero in one iteration. 

A common method to generate the coefficient matrix is Newton's method where 

(20.16) 

When properly implemented the norm of the residual should converge at a quadratic 
asymptotic rate. Thus if Ilrl( is the norm of the residual then for an approximation 
close to the solution the ratios for two successive iterations should be 

(20.17) 
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In general, this is the best one can obtain with the type of algorithm given by Eq. 
(20.15). 

In FEAPpv a norm of the solution is computed for each iteration and a check of the 
current norm versus the initial value is performed as indicated in Eq. (20.17). Once the 
value of the ratio of the norm is below a specified tolerance, convergence is assumed. 
The solution tolerance is set using the command language instruction TOL as indicated 
in Table 20.5 (the default value for the norm is The instructions to perform a 
solution using the algorithm indicated in Eq. (20.15) is given by 

LOOP,iteration,lO ! Perform a maximum of IO iterations 

NEXT, iteration ! End for LOOP instruction 

Once the ratio of the norms is reached, FEAPpv will exit the iteration loop and 
execute the instruction following the NEXT statement. If the element module used 
has a tangent matrix computed using Eq. (20.16) the asymptotic behaviour of 
Newton’s method should be attained. Failure to achieve a quadratic rate of 
convergence during the last few iterations indicates an incorrect implementation in 
the element module, a data input error, or extreme sensitivity in the formulation 
such that round-off prevents the asymptotic rate being reached. One can never 
achieve convergence beyond that where the round-off limit is reached. 

An alternative to the above program is the modified solution method in which the 
tangent is used from an earlier state. For example, the command language instruction 

TANG, , I ! Compute tangent, residual and solve 

set 

TANG ! 
LOOP,iteration, 10 ! 

FORM ! 
SOLVe ! 

NEXT,iteration ! 

Compute tangent 
Perform a maximum of 10 iterations 
Compute residual 
Solve equations 
End for LOOP instruction 

executes a modified Newton’s algorithm and, for general non-linear systems, results 
in less than a quadratic asymptotic rate of convergence (generally linear or less, so 
that if iteration k gives a ratio of order 

The execution of each TANG, WAN, FORM, etc. instruction uses the current problem 
type and time increment to define the parameters ci along with the current solution 
values for a@), a@) and a@) to calculate a tangent, residual, etc., respectively. 

Many additional solution algorithms may be established using the commands 
available in the program. Some of these are discussed in the user manual where 
topics ranging from time-dependent loading to general transient, non-linear solution 
strategies included in FEAPpv are described. Authors may be found in Volume 2. 

iteration k + 1 gives about 

20.4.4 Programming command language statements 

The command language module for FEAPpv is contained in a set of subprograms 
whose names begin with PMAC. The routine PMACR calls the other routines and 
establishes the limits on the number of commands available to the program. Included 
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SUBROUTINE UMACRl(LCT,CTL,PRT) 
IMPLICIT NONE 

C Inputs: 
C LCT - Command character parameters 
C CTL(3) - Command numerical parameters 
C PRT - Flag, output if true 
c outputs: 
C N.B. Users are responsible for command actions. 

IMPLICIT NONE 

LOGICAL PCOMP , PRT 
CHARACTER LCT*15 
REAL*8 CTL(3) 

CHARACTER UCT*4 
COMMON /UMACl/ UCT 

C Set command word to user selected name 

IF(PCOMP(UCT,’MACI’,4)) THEN 
UCT = ‘xxxx’ 
RETURN 

ELSE 

ENDIF 

END 

C Implement user solution step 

Fig. 20.7 Structure of a user command subprogram. 

in the current command list is an option to access a set of user subprograms named 
UMACRn where n ranges from 1 to 5. Each user subprogram has a structure as shown in 
Fig. 20.7. A user is required to select a four character name for xxxx which does not 
already exist in the command list in PMACR and to program the desired solution step. 

It should be noted that all arrays identified in the subprogram PALLOC can be 
accessed directly using the data management system described in Sec. 20.3. In 
addition data may be assigned to space in memory using the TEMPn array names 
that are also available in PALLOC. Thus it is not necessary to pass the names of 
arrays through the argument list of the subprograms UMACRn. Quite general routines 
can be created using these routines; however, if a more involved command is deemed 
necessary by a user the routines PMACRn may be modified to add additional instruc- 
tions. This is not an option which should be considered without a thorough study 
of the new solution option needed, as well as, options already available in the 
commands included. 

If it is decided to modify the PMACRn routines it is necessary to: 

to be added. 
1. Increase the size of the WD array in subprogram PMACR by the number of commands 
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2. Add the new command name to the list in the data statement for WD in subprogram 
PMACR noting which of the routines PMACRn will have the solution module added 
(the continue labels indicate the value of n). 

3. Increase the value of the variable NWDn in the data statement by the number of 
commands added for each n. 

4. Add the solution module to the subprograms PMACRn. This requires either a 
modification of a GO TO or an IF-THEN-ELSE program form in addition to 
adding the statements. 

Again users are reminded that extreme care must be exercised when adding 
commands in this way. Despite the fact that each command involves a specific 
solution step or steps there are some interactions between instructions that exist. If 
these are changed in any way the program may not function properly after new 
commands are added. This is particularly true for setting the parameters NWDn since 
if these are not correct transfer to incorrect locations in the list can occur. 

20.5 Computation of finite element solution modules 

20.5.1 Localization of element data 

When we want to compute an element array, e.g., an element stiffness matrix, S ,  or an 
element load or residual vector, P, we only need those quantities associated with the 
one element in question. The nodal and material quantities that are required can be 
determined from the node and material set numbers stored in the IX array for each 
element. In the program FEAPpv the necessary values are moved from each global 
array to a set of local arrays before the appropriate element routine, ELMTnn, is 
called. The process will be called localization. The quantities that are localized are: 

1. nodal coordinates which are stored in the local array XL (NDM, NEN) ; 
2. nodal displacements, displacement increments, velocity and acceleration which are 

3. nodal T-variables which are stored in the array TL(NEN1; 
4. equation numbers for assembly which are stored in the destination array LD(NEN) . 

The LD array described in Step 4 above is used to map the element arrays to the 
global arrays. Accordingly, for the following element array: 

stored in the array UL (NDF , NEN ,5)  ; 

the term S (i , j ) would be assembled into the global coefficient array (e.g., stiffness 
matrix) in the position corresponding to row LD(i) and column LD(j). Similarly, 
P ( i )  would be assembled into the position corresponding to the LD(i) value. That 
is, the LD array contains the equation numbers of the global arrays. The LD(i) assign- 
ment of the degrees of freedom for each node is made using the data stored in the 
ID(j ,k,2) array as shown in Table 20.2. 
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The localization process is the same for every type of finite element and is performed 
in the subprogram PFORM, which organizes all computations associated with elements 
using the connections given in the IX array. The maximum number of nodes actually 
connected to an element is determined and assigned to the parameter NEL, which 
may be less than the maximum NEN, and is determined by finding the largest non- 
zero entry in the IX array for each element number. Intermediate zero values are 
interpreted as no node connected. In this way FEAPpv permits the mixing of elements 
with different numbers of connected nodes, e.g., three-noded triangles can be mixed 
with four-noded quadrilaterals. Also different types of elements can be mixed such as 
two-noded shell elements with four-noded quadrilaterals. 

Since the current value of the nodal displacements and their increments, as well as 
the nodal velocities and accelerations for transient problems, is localized for all 
element computations, the program can be used to solve non-linear problems. This 
is, in fact, the only additional information required over that needed to solve linear 
problems and will be discussed further in Volume 2. 

20.5.2 Element array computations 

The efficient computation of element arrays (in both programmer and computer time) 
is a crucial aspect of any finite element development. The development of sub- 
programs to evaluate element stiffness and load arrays (or for non-linear problems 
tangent stiffness and residual arrays) can be efficiently accomplished by a combina- 
tion of appropriate numerical methods. In order to illustrate a typical development 
a statement of the essential steps is first given and then some details shown for the 
two-dimensional linear elastic problem. 

A flow chart describing two alternative methods for computing a stiffness matrix is 
shown in Fig. 20.8. Key steps in the computation are: 

1. use of appropriate numerical integration procedures; 
2. use of shape function subprograms (which are the same for all problems with the 

same required continuity); 
3. efficient organization of numerical steps. 

Gauss-Legendre quadrature formulae are usually utilized to compute element 
arrays since they provide the highest accuracy for a given number of integration 
points (see Chapter 9). In some instances it is desirable to use other formulae. For 
example, if a quadrature formula which samples only at nodes is used, the evaluation 
of an inertial term leads to a diagonal mass matrix which is more efficient in explicit 
dynamics calculations. 

Shape function subprograms allow a programmer to develop elements for many 
problems quickly and reliably. A shape function subprogram should evaluate both 
the shape functions and their derivatives with respect to the global coordinate 
frame. As an example consider the two-dimensional C, problem where we need 
only first derivatives of each shape function Ni. For the four-noded isoparametric 
quadrilateral we have 

N i = $ ( l  +tiO(l +qiq) (20.18) 
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Fig. 20.8 Element stiffness matrix computation: (a) general form; (b) form for constant material properties. 

where <, 77 are natural coordinates on the bi-unit square parent element and ti, vi their 
values at the four nodes. 

Using the isoparametric concept we have 

x = Nixi 

Y = NiYi 
(20.19) 
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with derivatives given by 

(20.20) 

(20.21) 

where J is the jacobian determinant and ( ),x denotes the partial derivative 
a( )/ax, etc. The above relations define the steps for the shape function subprogram 
given in Fig. 20.9 where it is assumed that the nodal coordinates have been transferred 
to the local coordinate array XL. 

This shape function routine can be used for all two-dimensional C, problems which 
use the four-noded element (e.g., two-dimensional plane and axisymmetric elasticity, 
heat conduction, flow in porous media, fluid flow, etc.). Shape function subprograms 
can also be used for the generation of mesh data.4 It is a simple task to extend the 
shape function routine to higher order elements (e.g., see the listing for subprogram 
SHAP2 in FEAPpv which includes options for up to nine-node quadrilaterals). Using 
such routines permits the use of elements which have individual edges with either 
linear or quadratic interpolation. 

The generation of the matrix products occurring in the stiffness matrix of elasticity 
problems deserves special attention since zeros often exist in the B and D matrices. 
Several methods can be used to reduce the number of operations performed. The 
first is to form explicitly the matrix products. While this involves extra hand compu- 
tations it is in fact elementary if performed on a nodal basis. For example, consider 
the two-dimensional axisymmetric linear elastic problem where 

(20.22) 

A two-dimensional plane problem may be considered by replacing r ,  z by x, y and 
setting the constant c to zero. For axisymmetry the constant c is unity. For an 
isotropic linear elastic material the moduli are given by 

(20.23) 

where D33 is the shear modulus given by (Dll - D12)/2. Thus for a typical nodal pair i 
a n d j  a contribution to the element stiffness Kij may be computed using 

Q.  J = DBj (20.24) 

and 

K~~ = B T Q ~  (20.25) 
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SUBROUTINE SHAPE(SS,XL, J,SHP) 

Shape funct ion rout ine  f o r  4-node quadr i l a t e ra l  

IMPLICIT NONE 

INTEGER I1 ,JJ , KK 
REAL*8 SS(2) ,XL(2,4), J,SHP(3,4) ,SI(4) ,TI@) ,XS(2,2) ,TEMP 
DATA SI / -0.5D0, 0.5D0, 0.5D0, -0.5DO/ 
DATA TI / -0.5D0, -0.5D0, 0.5D0, 0.5DO/ 

Compute shape funct ions and na tu ra l  coordinate der iva t ives  

DO I1 = 1,4 
SHP(1,II) = SI(II)*(0.5DO + TI(II)*SS(2)) 
SHP(2,II) = TI(II)*(0.5DO + SI(II)*SS(l)) 
SHP(3,II) = (0.5DO + SI(II)*SS(1))*(0.5DO + TI(II)*SS(2)) 

END DO ! I1 

Compute Jacobian and Jacobian determinant 

DO I1 = 1,2 
DO JJ = 1,2 
XS(I1,JJ) = O.ODO 
DO KK = 1,4 

END DO ! KK 
XS(I1,JJ) = XS(I1,JJ) + XL(II,KK)*SHP(JJ,KK) 

END DO ! JJ 
END DO ! I1 
J = XS(l,l)*XS(2,2) - XS(1,2)*XS(2,1) 
Transform t o  X,Y der iva t ives  

DO I1 = 1,4 
TEMP = ( XS(2,2)*SHP(l,II) - XS(2,1)*SHP(2,II))/J 
SHP(2,II) = (-XS(l, 2)*SHP(l, 11) + XS(1,l) *SHP(2,11) )/J 
SHP(1,II) = TEMP 

END DO ! I1 

END 

Fig. 20.9 Shape function subprogram for four-noded element. 

Thus, using Eqs (20.22) and (20.23) and setting 
C n.  - - N .  

J 

we obtain 

(20.26) 

(20.27) 
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and finally the stiffness as 

Accordingly, for each nodal pair it is required to perform 21 multiplications to form each 
K,, whereas formal multiplication of BTDBj including all zero operations would require 
48 multiplications. When the element stiffness matrix is symmetric it is only necessary to 
form the upper or lower triangular parts of K (the other half is formed from the sym- 
metry condition). A typical routine for the stiffness computation is given in Figs 20.10 
and 20.11 where it is assumed that the quadrature points are available as SG(1 ,L) 
equal to tL, SG(2,L) equal to qL, and SG(3,L) equal to the quadrature weight. 

The increments by NDF are to keep the stiffness array stored in nodal order with 
NDFxNDF submatrix blocks. This is required by FEAPpv to maintain proper com- 
patibility with the routine used to assemble the global arrays. 

SUBROUTINE ELSTIF(D, XL, AXI, NDF,NDM,NST, S) 
IMPLICIT NONE 

LOGICAL AX1 
INTEGER II,Il, JJ,Jl, L, LINT, NDF,NDM,NST 
REAL*8 DV, Dll,Dl2,D33, J, R 
REAL*8 D(*), XL(NDM,4), S(NST,NST) 
REAL*8 SG(3,4), SHP(3,4), Q(4,2), N(4) 

CALL INT2D(2,LINT, SG) ! Set up 2x2 quadrature points 

c Do numerical integration 

DO L = 1,LINT 
CALL SHAPE (SG (1, L) ,XL, J, SHP) 
DV = J*SG(3,L) ! SG(3,L) is quadrature weight 
D11 = D(l)*DV ! D(1) is D-11 modulus 
D12 = D(2)*DV ! D(2) is D-12 modulus 
D33 = D(3)*DV ! D(3) is shear modulus 

c Compute n-i = c*N-i/r 

R = O.ODO ! R is radius 
DO I1 = 1,4 

END DO ! I1 
DO I1 = 1,4 

R = R + SHP(3,II)*XL(l,II) 

IF(AX1) THEN 

ELSE 

ENDIF 

N(I1) = SHP(S,II)/R 

N(I1) = O.ODO 

END DO ! I1 

Fig. 20.10 Element stiffness calculation. Part 1 
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c Compute Q-j = D * B-j 

Jl = 1 
DO JJ = 1,4 
Q(1,l) = Dll*SHP(l,JJ) + D12*N(JJ) 
Q(2,l) = D12*SHP(l,JJ) + Dl2*N(JJ) 
Q(3,l) = D12*SHP(l,JJ) + Dll*N(JJ) 
Q(4,l) = D33*SHP(2, JJ) 
Q(1,2) = Dl2*SHP(2,JJ) 
Q(2,2) = Dll*SHP(2,JJ) 
Q(3,2) = D12*SHP(2, JJ) 
Q(4,2) = D33*SHP(l,JJ) 

C Compute stiffness term: k - i j  

I1 = I 
DO I1 = l,JJ 
S(I1 ,J1 ) = S(I1 ,J1 ) + SHP(1,II)*Q(l,l)+N(II)*Q(3,1) 

& + SHP (2,111 *Q (4,l) 
S(I1 ,JI+l) = S(I1 ,JI+l) + SHP(l,II)*Q(l,2)+N(II)*Q(3,2) 

t + SHP(2,II) *Q(4,2) 
S(Il+l,Jl ) = S(Il+l,Jl ) + SHP(2,II)*Q(2,1) 

t + SHP(l,II)*Q(4,1) 
S(Il+l,Jl+l) = S(Il+l, J1+1) + SHP(2,II)*Q(2,2) 

& + SHP( 1,111 *Q(4,2) 
I1 = I1 + NDF 
END DO ! I1 
Jl = Jl + NDF 
END DO ! JJ 

END DO ! L 

c Compute lower part by symmetry 

DO I1 = 1,NST 
DO JJ = 1,11 

END DO ! JJ 
S(I1,JJ) = S(JJ,II) 

END DO ! I1 

END 

Fig. 20.11 Element stiffness calculation. Part 2. 

An extension to anisotropic problems can be made by replacing the isotropic D 
matrix by the appropriate anisotropic one and then recomputing the Qj matrix. 

The computation of element stiffness matrices for two-dimensional plane and 
three-dimensional problems which have constant material properties within an 
element can be made more efficient than that given above. This is obtained by 
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noting from Appendix B that the internal energy may be written in indicia1 form as 

(20.29) 

where a, b, c ,  d are indices from the elasticity equations and range over the space 
dimension of the problem and i, j are nodal indices which range from 1 to NEL in 
each element. The element stiffness for the nodal pair i, j may be written as 

Ki{ = WiDabcd (20.30) 

where 

For isotropic materials 

(20.3 1 ) 

(20.32) 

where X and p are the Lamk elastic constants which are related to the usual elastic 
constants E and p as 

E p = -~ 
vE 

A =  
( l + v ) ( l - 2 v ) ’  2( 1 + v) 

Thus, the stiffness matrix for an isotropic material is given as 

Using this approach the steps to compute the element stiffness matrix for plane 
elasticity are given in Fig. 20.8(b). This procedure for computing stiffness matrices 
was noted in reference 5 and for plane problems results in about 25% fewer numerical 
operations than the procedure shown in Fig. 20.8(a). In three dimensions the savings 
are even greater. 

The computation of other element arrays can also be performed using a shape 
function routine. For example, the computation of the element consistent and 
diagonal mass matrices by the row sum method (see Appendix I) for transient or 
eigenvalue computations can be easily constructed. The consistent mass matrix for 
two- and three-dimensional problems is obtained from 

whereas the diagonal mass is computed from 

M j j = I I  p$dV 
v e  

(20.3 5 )  

In the above I is an identity matrix of size NDM and p is the mass density. A set of 
statements to compute the mass matrix for these cases is shown in Fig. 20.12 where 
the element consistent mass is stored in the square matrix S and the diagonal mass 
matrix is stored in the rectangular array P. 

The shape function routine may also be used to compute strains, stresses and 
internal forces in an element. The strains at each point in an element may be 
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C S(NST,NST) : Consistent mass array 
C P(NDM,NEL) : Diagonal mass array 

C Numerical integration loop 

DO L = 1,LINT 
CALL SHAPE(SG(l,L), XL, J, SHP) 
DMASS = RHO* J*SG (3, L) 
JI = 1 
DO JJ = 1,NEL 
JMASS = DMASS*SHP (3, JJ) 
P(1,JJ) = P(1,JJ) + JMASS 
I1 = I 
DO I1 = 1,NEL 
S(I1,JI) = S(I1,JI) + SHP((3,II)*JMASS 
I1 = I1 + NDF 

END DO ! I1 
JI = J1 + NDF 
END DO ! JJ 

END DO ! L 

C Copy using identity matrix 

J1 = 0 
DO JJ = 1,NEL 
DO KK = 2,NDM 

END DO ! KK 
I1 = 0 
DO I1 = 1,NEL 

P(KK,JJ) = P(1,JJ) 

DO KK = 2,NDM 

END DO ! KK 
I1 = I1 + NDF 

S(Il+KK,Jl+KK) = S(Il+I,Jl+l) 

END DO ! I1 
JI = JI + NDF 

END DO ! JJ 

Fig. 20.12 Diagonal (lumped) and consistent mass matrix for an isoparametric element. 

computed from 

E = B,(C)iUj (20.36) 

where 6 is the set of local natural coordinates and Ui are the nodal displacements at 
node i. A subprogram to compute the strains for the two-dimensional case given 
by Eq. (20.22) is shown in Fig. 20.13. Stresses are now computed as usual from 

CT = DE (20.37) 

or any other relationship expressed in terms of the strains. The above form is 
more general and efficient than saving the values in the Qi matrices during stiffness 
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SUBROUTINE STRAIN(XL, UL, SHF', NDM,NDF,NEN,NEL, EPS,R, AXI) 

IMPLICIT NONE 

LOGICAL AX1 
INTEGER NDM,NDF,NEN,NEL, I1 
REAL*8 XL(NDM,*) ,UL(NDF,NEN,*) ,SHP(3,*), EPS(4) ,R 

C Initialize strains and radius 

DO I1 = 1,4 

END DO ! I1 
R = O.ODO 

Sum strains from shape functions and nodal values 

DO I1 = 1,NEL 

EPS(I1) = O.ODO 

C 

EPS(1) = EPS(1) + SHP(l,II)*UL(l,II,l) 
EPS(2) = EPS(2) + SHP(2,1I)*UL(2,11,1) 
EPS(3) = EPS(3) + SHP(3,II)*UL(l,II,l) 
EPS(4) = EPS(4) + SHP(l,II)*UL(2,11,1) + SHP(2,1I)*UL(l,II,l) 
R = R  + SHP(3,II) *XL(l ,11) 

END DO ! I1 

C Modify hoop strain if axisymmetric; zero for plane problem 

IF(AX1) THEN 

ELSE 

ENDIF 

END 

EPS(3) = EPS(3)/R 

EPS(3) = O.ODO 

Fig. 20.1 3 Strain calculation for isoparametric element. 

evaluation and then computing the stresses from 

B = DBjiij Qiiii (20.3 8) 

This would require significant additional storage or saving and retrieving the Qi 
from backing store as given in reference 6. Moreover, it is often desirable to compute 
the stresses at points other than those used to compute the stiffness matrix as 
indicated in Chapter 14 for recovery processes. In non-linear problems the computa- 
tion of strains and stresses must also be performed directly. Thus, for all the above 
reasons it is desirable to compute strains as necessary using the technique given in 
Fig. 20.13. 

In FEAPpv the stresses must also be determined to compute element residuals. 
One of the main terms in the element residual is the internal stress term and here 
again shape function routines are useful. The internal force term for problems in 
elasticity (and, as will be shown in the Volume 2, also for finite deformation inelastic 
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C quadrature loop 

DO L = 1,LINT 

C Compute shape functions 

CALL SHAPE(SG(1 ,L) , XL, J, SHP) 
DV = J*SG(3,L) 

C Compute strains 

CALL STRAIN (xL, UL , SHF' , NDM, NDF , NEN , NEL, EPS , R , AXI) 
DO I1 = 1,NEL 
IF(AX1) THEN 

ELSE 

ENDIF 

N(I1) = SHP(3,II)/R 

N(I1) = O.ODO 

END DO ! I1 

C Compute stresses 

CALL STRESS (EPS , SIG) 
C Compute internal forces 

DO I1 = 1,NEL 
P(1,II) = P(1,II) - (SHP(l,II)*SIG(l, + SHF'(2,II)*SIG 

t + N (11) *SIG (3) *DV 
P(2,II) = P(2,II) - (SHF'(2,II)*SIG(2) + SHP(lYII)*SIG(4))*DV 

END DO ! I1 
END DO ! L 

Fig. 20.14 Internal force computation. 

problems) is given by 

p. = - BTcdV (20.39) 
v e  

The programming steps to compute are given in Fig. 20.14. 
The generality of an isoparametric Co shape function routine can be exploited to 

program element routines for other problems. For example, Fig. 20.15 gives the 
necessary program instructions to compute the 'stiffness' matrix for problems of 
the quasi-harmonic equation discussed in Chapters 3 and 7. 

20.5.3 Organization of element routines 

The previous discussion has focused on procedures for determining element arrays. 
The reader will note that the element square matrices for stiffness and mass were 
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C Quadrature loop 

DO L = 1,LINT 

C Compute shape functions 

CALL SHAPE(SG(l,L), XL, J, SHP) 
DV = J*SG(3,L) 
KK = D(l)*DV ! Conductivity times volume 

C For each JJ-node compute the D*B 

DO JJ = 1,NEL 
DO KK = 1,NDM 

END DO ! KK 
Q(KK) = Dl*SHP(KK, JJ) 

C For each 11-node compute the coefficient matrix 

DO I1 = 1,JJ 
DO KK = 1,NDM 

END DO ! KK 
S(I1, JJ) = S(I1, JJ) + SHP(KK,II)*Q(KK) 

END DO ! I1 
END DO ! JJ 

END DO ! L 

Fig. 20.1 5 Coefficient matrix for quasi-harmonic operator. 

both stored in the square array S while element vectors were stored in the rectan- 
gular array P. This was intentional since all aspects of computing element arrays 
for the program are to be consolidated into a single subprogram called the element 
routine. An element routine is called by the element library subprogram ELMLIB. As 
given here, the element library provides space for ten element subprograms at any 
one time, where as noted previously these are named ELMTnn with nn ranging 
from 01 to 10. This can easily be increased by modifying the subprogram ELMLIB. 
The subprogram ELMLIB is, in turn, called from the subprogram PFORM which is 
the routine to loop through all elements and perform the localization step to set 
up local coordinates XL, displacements, etc., UL and equation numbers for global 
assembly LD. The subprogram PFORM also uses subprogram DASBLE to assemble 
element arrays into global arrays and uses subprogram MODIFY to perform appropri- 
ate modifications for prescribed non-zero displacements. When an element routine is 
accessed the value of a parameter ISW is given a value between 1 and 10. The param- 
eter specifies what action is to be performed in the element routine. Each element 
routine must provide appropriate transfers for each value of ISW. A mock element 
routine for FEAPpv is shown in Fig. 20.16. 
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SUBROUTINE ELMTnn(D,UL,XL,IX,TL, S,P, NDF,NDM,NST, ISW) 

IMPLICIT NONE 

INTEGER NDF,NDM,NST, ISW, IX(NENl,*) 
REAL*8 D(*) ,UL(NDF,NEN,*) ,XL(NDM,*) ,TL(*) , S(NST,*) ,P(NDF,*) 
Input and output material set data 
IF (ISW . EQ . 1) THEN 

Check element for errors 
ELSEIF(ISW.EQ.2) THEN 

Form element coefficient matrix and residual vector 
ELSEIF(ISW.EQ.3 .OR. ISW.EQ.6) THEN 

Use D(*) to store input parameters 

Check element for negative jacobians, etc. 

The S(NST,NST) array stores coefficient matrix 
The P(NDF,NEL) array stores residual vector 

Output element results (e.g., stress, strain, etc.) 
ELSEIF (ISW. EQ .4) THEN 

Compute element mass arrays 
ELSEIF(ISW.EQ.5) THEN 
The S(NST,NST) array stores consistent mass 
The P(NDF,NEL) array stores lumped mass 

Compute element error estimates 
ELSEIF(ISW.EQ.7) THEN 

Project element results to nodes 
ELSEIF(ISW.EQ.8) THEN 

Project element error estimator 
ELSEIF(ISW.EQ.9) THEN 

Augmented lagragian update 
ELSEIF(ISW.EQ.10) THEN 

ENDIF 

END 

Fig. 20.16 Mock element routine functions. 

20.6 Solution of simultaneous linear algebraic equations 
A finite element problem leads to a large set of simultaneous linear algebraic 
equations whose solution provides the nodal and element parameters in the formula- 
tion. For example, in the analysis of linear steady-state problems the direct assembly 
of the element coefficient matrices and load vectors leads to a set of linear algebraic 
equations. In this section methods to solve the simultaneous algebraic equations 
are summarized. We consider both direct methods where an a priori calculation of 
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the number of numerical operations can be made, and indirect or iterative methods 
where no such estimate can be made. 

20.6.1 Direct solution 

Consider first the general problem of direct solution of a set of algebraic equations 
given by 

K a = b  (20.40) 

where K is a square coefficient matrix, a is a vector of unknown parameters and b is a 
vector of known values. The reader can associate these with the quantities described 
previously: namely, the stiffness matrix, the nodal unknowns, and the specified forces 
or residuals. 

In the discussion to follow it is assumed that the coefficient matrix has properties 
such that row and/or column interchanges are unnecessary to achieve an accurate 
solution. This is true in cases where K is symmetric positive (or negative) definite.t 
Pivoting may or may not be required with unsymmetric, or indefinite, conditions 
which can occur when the finite element formulation is based on some weighted 
residual methods. In these cases some checks or modifications may be necessary to 
ensure that the equations can be solved 

For the moment consider that the coefficient matrix can be written as the product 
of a lower triangular matrix with unit diagonals and an upper triangular matrix. 
Accordingly, 

where 

and 

K = L U  

r 1 o ... o 

(20.41) 

(20.42) 

(20.43) 

t For mixed methods which lead to forms of the type given in Eq. (1 1,14) the solution is given in terms of a 
positive definite part for q followed by a negative definite part for $. Thus, interchanges are not needed 
providing the ordering of the equation is defined as described in Sec. 20.2.4. 
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This form is called a triangular decomposition of K. The solution to the equations can 
now be obtained by solving the pair of equations 

Ly = b (20.44) 

and 

U a = y  (20.45) 

where y is introduced to facilitate the separation, e.g., see references 7-1 1 for 
additional details. 

The reader can easily observe that the solution to these equations is trivial. In terms 
of the individual equations the solution is given by 

Yl  =b1 
i- 1 

y .  1 1  = b .  - Lijyj i = 2,3,. . . , n  
j =  1 

and 

(20.46) 

(20.47) 

Equation (20.46) is commonly called forward elimination while Eq. (20.47) is called 
back substitution. 

The problem remains to construct the triangular decomposition of the coefficient 
matrix. This step is accomplished using variations on Gaussian elimination. In 
practice, the operations necessary for the triangular decomposition are performed 
directly in the coefficient array; however, to make the steps clear the basic steps are 
shown in Fig. 20.17 using separate arrays. The decomposition is performed in the 
same way as that used in the subprogram DATRI contained in the FEAPpv program; 
thus, the reader can easily grasp the details of the subprograms included once the 
steps in Fig. 20.17 are mastered. Additional details on this step may be found in 
references 9- 1 1. 

In DATRI the Crout form of Gaussian elimination is used to successively reduce the 
original coefficient array to upper triangular form. The lower portion of the array is 
used to store L - I as shown in Fig. 20.17. With this form, the unit diagonals for L are 
not stored. 

Based on the organization of Fig. 20.17 it is convenient to consider the coefficient 
array to be divided into three parts: part one being the region that is fully reduced; 
part two the region which is currently being reduced (called the active zone); and 
part three the region which contains the original unreduced coefficients. These regions 
are shown in Fig. 20.18 where thejth column above the diagonal and thejth row to 
the left of the diagonal constitute the active zone. The algorithm for the triangular 
decomposition of an n x n square matrix can be deduced from Fig. 20.17 and 
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6 Active zone [ K11 K12 K13 y---: L - 1 ' i ' 1 U11 _ _ _ _ _ _ _ _ I  = K11I : ; 
K21 K22 K23 

K31 K32 K33 

Sfep  7 .  Active zone. First row and column to principal diagonal. 

6 Reduced zone 
6 Active zone 

0 ; y U12=K12 y _ _ _ _ _ _ _ _ _ _  2 ! 2 p : l / u l l  . . . . . . . . . . . . . . . . . . . . . . .  k2=' : _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4 2  = K22 - L21 4 2  i i 
K31 K32 K33 

Step 2. Active zone. Second row and column to principal diagonal. Use first row of K to 
eliminate L,, Ull. The active zone uses only values of K from the active zone and 
values of L and U which have already been computed in steps 1 and 2. 

r Reduced zone 6 Active zone 

u u u13=K13 1 1;:; I:21 : 1 : 1.' o:l u %3 = K23 - k1 u13 

- 51 - - !53K - K 3 3  -: -LY - 32- - 5 3  2 i -0- - - - - - - - - u33 - - - = - - K33 - - - - - - L31 - - - u13 - - - - - - - L32 - - - u23 - - - : I 
L31 = K311u11 

L32 = (K32 - L31 u12)/u22 

Step 3. Active zone. Third row and column to principal diagonal. Use first row to 
eliminate L31 Ull; use second row of reduced terms to eliminate L3* UZ2 (reduced 
coefficient K32). Reduce column 3 to reflect eliminations below diagonal. 

Fig. 20.17 Triangular decomposition of K. 

Fig. 20.18 Reduced, active and unreduced parts. 
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Fig. 20.19 Terms used to construct Ujj and Ljj. 

Fig. 20.19 as follows: 

UII = KI1; L11 = 1 (20.48) 

For each active zonej from 2 to n, 

Uij = Klj (20.49) Ljl =u; 41 

1 ( m=l 

I I  
i- I 

L . . - -  K . . - C L . U .  Jm M I )  
J' - Uii J l  

(20.50) 
i- 1 

u.. 1J = K . .  1J - C L ~ ~ u ~ ~  i = 2,3,. . . , j - 1 
m =  I 

and finally 
L . .  = 1 

JJ 

j -  1 (20.51) 
u . . = K . . - x L .  JJ JJ Jm u .  mJ 

m = l  

The ordering of the reduction process and the terms used are shown in Fig. 20.19. The 
results from Fig. 20.17 and Eqs (20.48)-(20.5 1) can be verified by the reader using the 
matrix given in the example shown in Table 20.6. 

Once the triangular decomposition of the coefficient matrix is computed, several 
solutions for different right-hand sides b can be computed using Eqs (20.46) and 
(20.47). This process is often called a resolution since it is not necessary to recompute 



614 Computer procedures for finite element analysis 

1 2 4  

Table 20.6 Example: triangular decomposition of 3 x 3 matrix 

I :.5 

0.25 0.5 1 3 

Step 1 .  LI1 = 1, UII = 4 

Step 2. LZl = = 0.5, Ul2 = 2, U22 = 1, U22 = 4 - 0.5 x 2 = 3 

2 - 0 . 2 5 ~ 2  1 5  = - = 0.5 
3 3 

Step 3. L3l = a  = 0.25, U13 = 1, L32 = 

U23 2 - 0.5 x 1 1.5, L33 = 1, U33 = 4 - 0.25 x 1 - 0.5 x 1.5 = 3 

the L and U arrays. For large size coefficient matrices the triangular decomposition 
step is very costly while a resolution is relatively cheap; consequently, a resolution 
capability is necessary in any finite element solution system using a direct method. 

The above discussion considered the general case of equation solving (without row 
or column interchanges). In coefficient matrices resulting from a finite element formu- 
lation some special properties are usually present. Often the coefficient matrix is 
symmetric (Kij = Kji) and it is easy to verify in this case that 

Uij = LjiUii (20.52) 

For this problem class it is not necessary to store the entire coefficient matrix. It is 
sufficient to store only the coefficients above (or below) the principal diagonal and 
the diagonal coefficients. Equation (20.52) may be used to construct the missing 
part. This reduces by almost half the required storage for the coefficient array as 
well as the computational effort to compute the triangular decomposition. 

The required storage can be further reduced by storing only those rows and 
columns which lie within the region of non-zero entries of the coefficient array. 
Problems formulated by the finite element method and the Galerkin process normally 
have a symmetric profile which further simplifies the storage form. Storing the upper 
and lower parts in separate arrays and the diagonal entries of U in a third array is used 
in DATRI. Figure 20.20 shows a typical projile matrix and the storage order adopted 
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Fig. 20.20 Profile storage for coefficient matrix. 
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for the upper array AU, the lower array AL and the diagonal array AD. An integer array 
J D  is used to locate the start and end of entries in each column. With this scheme it is 
necessary to store and compute only within the non-zero profile of the equations. This 
form of storage does not severely penalize the presence of a few large columns/rows 
and is also an easy form to program a resolution process (e.g., see subprogram DASOL 
in FEAPpv and reference 10). 

The routines included in FEAPpv are restricted to problems for which the 
coefficient matrix can fit within the space allocated in the main storage array. In 
two-dimensional formulations, problems with several thousand degrees of freedom 
can be solved on today’s personal computers. In three-dimensional cases however 
problems are restricted to a few thousand equations. To solve larger size problems 
there are several options. The first is to retain only part of the coefficient matrix in 
the main array with the rest saved on backing store (e.g., hard disk). This can be 
quite easily achieved but the size of problem is not greatly increased due to the 
very large solve times required and the rapid growth in the size of the profile-stored 
coefficient matrix in three-dimensional problems. 

A second option is to use sparse solution schemes. These lead to significant 
program complexity over the procedure discussed above but can lead to significant 
savings in storage demands and compute time - especially for problems in three 
dimensions. Nevertheless, capacity in terms of storage and compute time is again 
rapidly encountered and alternatives are needed. 

20.6.2 Iterative solution 

One of the main problems in direct solutions is that terms within the coefficient matrix 
which are zero from a finite element formulation become non-zero during the 
triangular decomposition step. While sparse methods are better at limiting this fill 
than profile methods they still lead to a very large increase in the number of non- 
zero terms in the factored coefficient matrix. To be more specific consider the case 
of a three-dimensional linear elastic problem solved using eight-node isoparametric 
hexahedron elements. In a regular mesh each interior node is associated with 26 
other nodes, thus, the equation of such a node has 81 non-zero coefficients - three 
for each of the 27 associated nodes. On the other hand, for a rectangular block of ele- 
ments with n nodes on each of the sides the typical column height is approximately 
proportional to n2 and the number of equations to n3.  In Table 20.7 we show the 
size and approximate number of non-zero terms in K from a finite formulation for 
linear elasticity (i.e., with three degrees of freedom per node). The table also indicates 
the size growth with column height and storage requirements for a direct solution 
based on a profile solution method. 

From the table it can be observed that the demands for a direct solution are 
growing very rapidly (storage is approximately proportional to n5) while at the 
same time the demands for storing the non-zero terms in the stiffness matrix grows 
proportional to the number of equations (i.e., proportional to n3 for the block). 

Iterative solution methods use the terms in the stiffness matrix directly and thus for 
large problems have the potential to be very efficient for large three-dimensional 
problems. On the other hand, iterative methods require the resolution of a set of 
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Table 20.7 

Side Number of Non-zeros in K Profile storage data 
nodes equations 

Words (x Mbytes Col. Ht. Words ( x  Mbytes 

5 375 0.02 0.12 90 0.03 0.27 
10 3000 0.12 0.96 330 0.99 7.92 
20 24000 0.96 7.68 1260 30.24 241.82 
40 192000 7.68 61.44 4920 944.64 1551.12 

61.44 491.52 18440 28323.84 226584.72 80 1536000 

equations until the residual of the linear equations, given by 

(20.53) 

becomes less than a specified tolerance. 
In order to be effective the number of iterations i to achieve a solution must be quite 

small - generally no larger than a few hundred. Otherwise, excessive solution costs 
will result. At the time of writing this book the subject of iterative solution for general 
finite element problems remains a topic of intense research. There are some impressive 
results available for the case where K is symmetric positive (or negative) definite; 
however, those for other classes (e.g., unsymmetric or indefinite forms) are generally 
not efficient enough for reliable use in the solution of general problems. 

For the symmetric positive definite case methods based on a preconditioned 
conjugate gradient method have been particularly effective. 12-14 The convergence 
of the method depends on the condition number of the matrix K - the larger the 
condition number, the slower the convergence (see reference 9 for more discussion). 
The condition number for a finite element problem with a symmetric positive definite 
stiffness matrix K is defined as 

(20.54) 

where X1 and A, are the smallest and largest eigenvalue from the solution of the 
eigenproblem (viz. Chapter 17) 

K 8  = 8 A  (20.55) 

in which A is a diagonal matrix containing the individual eigenvalues Xi and the 
columns of @ are the eigenvectors associated with each of the eigenvalues. 

Usually, the condition number for an elasticity problem modelled by the finite 
element method is too large to achieve rapid convergence and a preconditioned 
conjugate gradient (PCG) is used.” A symmetric form of preconditioned system is 
written as 

Kpz = PKPTz = Pb (20.56) 

where 

Now the convergence of the 
Kp. The problem remains to 

P T z = a  (20.57) 

PCG algorithm depends on the condition number of 
construct a preconditioner which adequately reduces 
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the condition number. In FEAPpv the diagonal of K is used, however, more 
efficient schemes incorporating also multigrid methods are discussed in references 
13 and 14. 

20.7 Extension and modification of computer program 
F€APpv 

The previous sections briefly discussed the basis for the program FEAPpv which is 
available from the publishers web site at no cost. The capabilities of the program 
are quite significant - mainly due to the flexibility of the command language solution 
strategy. However, the program can be improved in many ways. Improvements to 
increase the size of problems which can be solved have already been mentioned. 
Other improvements include additional command language statements to handle 
special needs of each user, preprocessors to assist in preparation of input data and 
postprocessors to permit a wider range of graphical output options. In the latter 
two instances the program GiD3 provides features which can greatly assist users in 
the preparation of mesh data and the display of resultst. 

In order to facilitate the addition of new input features and/or new command 
language statements the program FEAPpv includes a number of options for users 
to add subprograms without the need to modify the PMESH or the PMACRn routines. 

References 
1.  O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1.  McGraw-Hill, 

2. O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 2. McGraw-Hill, 

3. GiD - The Personal Pre/Postprocesor (Version 5.0). Barcelona, Spain, 1999. 
4. O.C. Zienkiewicz. The Finite Element Method in Engineering Science. McGraw-Hill, 

5 .  A.K. Gupta and B. Mohraz. A method of computing numerically integrated stiffness 

6. E.L. Wilson. SAP - a general structural analysis program for linear systems. Nucl. Engr. 

7. A. Ralston. A First Course in Numerical Analysis. McGraw-Hill, New York, 1965. 
8. J.H. Wilkinson and C .  Reinsch. Linear Algebra. Handbook for Automatic Computation, 

9. J. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathe- 

10. R.L. Taylor. Solution of linear equations by a profile solver. Eng. Comp., 2,344-50, 1985. 
1 1 .  G. Strang. Linear Algebra and its Application. Academic Press, New York, 1976. 
12. R.M. Ferencz. Element-by-element preconditioning techniques for large-scale, vectorized 

finite element analysis in nonlinear solid and structural mechanics. Ph.D thesis, Stanford 
University, Stanford, California, 1989. 

London, 4th edition, 1989. 

London, 4th edition, 1991. 

London, 2nd edition, 1971. 

matrices. Internat. J .  Num. Meth. Eng., 5, 83-9, 1972. 

Des., 25, 257-74, 1973. 

volume 11. Springer-Verlag, Berlin, 1971. 

matics, 1997. 

t Options to acquire GiD are also provided at the publishers web sit. 



References 61 9 

13. M. Adams. Heuristics for automatic construction of coarse grids in multigrid solvers for 
finite element matrices. Technical Report UCB//CSD-98-994, University of California, 
Berkeley, 1998. 

14. M. Adams. Parallel muiltigrid algorithms for unstructured 3D large deformation elasticity 
and plasticity finite element problems. Technical Report UCB//CSD-99- 1036, University 
of California, Berkeley, 1999. 


	Table of Contents
	20. Computer Procedures for Finite Element Analysis
	20.1 Introduction
	20.2 Data Input Module
	20.3 Memory Management for Array Storage
	20.4 Solution Module - The Command Programming Language
	20.5 Computation of Finite Element Solution Modules
	20.6 Solution of Simultaneous Linear Algebraic Equations
	20.7 Extension and Modification of Computer Program FEAPpv
	References


