
DebuggingDebugging

Real Time
Embedded Systems

www.atomicrhubarb.com/embedded
Lecture 1 – January 17, 2012

Topic

Section Topic

• Where in the books
– Catsoulis chapter/page
– Simon chapter/page
– Zilog UM197 (ZNEO Z16F Series Flash Microcontroller Contest Kit User Manual)

– Zilog UM171 (ZiLOG Developer Studio II—ZNEO User Manual)

– Zilog PS220 (ZNEO Z16F Series Product Specification)

– Zilog UM188 (ZNEO CPU Core User Manual)

– Assorted datasheets

My Program
doesn't work!

What do I
do now?

Look for bugs ...

bug: An elusive creature living in a
program that makes it incorrect. The
activity of "debugging", or removing
bugs from a program, ends when
people get tired of doing it, not when
the bugs are removed.

-- "Datamation", January 15, 1984

Debugging

 Embedded systems present special
problems for a programmer, because
they usually lack keyboards, screens,
disk-drives and other helpful user
interfaces and storage devices that are
present on business computers.

Debugging

 In Software
 Emulator/Simulator
 Debug routines

 In Hardware
 ICE - in-circuit emulator.
 OCD - On-circuit debugger.
 BDM - background debug module

Simulator

Emulator

 Inspect variables, memory, clock, call
stack, disassemble code.

 Very useful for debugging software
(algorithms and logic)

 Often not helpful for debugging
hardware drivers.

On-Chip Debugger

On-Chip Debugger

 Inspect variables, memory, clock, call
stack, disassemble code.

 Useful for debugging some types of
hardware drivers (accessing SFRs)

 Not always helpful for timing
dependent things or external
hardware.

Software Techniques

 Using an LED to indicate position in
code.

 Using LED array to display internal
values
 16-bit HEX
 7x 16-bit binary
 4x 32-bit binary

 Using printf to send data to serial port

Use of OCD

 If timing issues are suspected
 Save intermediate variables
 Step OVER that part of function.
 Examine variables after the fact in

watch/local window.

 Use In-Circuit Emulator

In Circuit Emulator

 Often called an ICE, is an invaluable
software developers tool in embedded
design.

 The processor or microcontroller of the
target hardware will be replaced by the
ICE. Often a smaller part of the emulator,
the pod, is put into the hardware, while
the main emulator functionality resides in
a box which is connected to the pod with
cables.

ICE ...

 An ICE can emulate the replaced
processor or uC in real time. The
developer loads the program into the
emulator and can then run, step and
trace into it, much like it is done on PC's.

 Many emulators have more advanced
features like performance analysis,
coverage analysis, a trace buffer and
advanced trigger and breakpoint
possibilities.

ICE

 The Z8 ICE
($3,000)

 No Z16
version yet!

ICE ...
 Inside the ICE, or usually on the pod, is a

processor of the kind the emulator
replaces, or a special bond-out version of
the same chip.

 Bond-out chips have normally internal
signals and/or busses bonded out to its
connector. This iwill allow the ICE and the
developer get a more complete picture of
the status of the chip.

 Often emulators that use bond-out chips
have more features then those that don't.

Write for test and debug

 Build a hardware abstraction
layer.
 Fix hardware bugs once
 Allows for rapid porting

to another platform
 Isolates hardware/software

problems.
 Allows for off-platform

debugging of logic/algorithms

Hardware

Abstraction

Application

Write for test

 Build a test scaffold
 Build reusable and repeatable

tests for verifying the
hardware function through
the abstraction layer.

 Allows you to isolate the
problems (in your application
or with the abstraction layer).

 Separates debugging the application
from debugging the hardware drivers.

Hardware

Abstraction

Test
Application

Another Platform

 Many times logic and
algorithms can be
developed on another
platform. One that supports
better debugging (gdb) or
less fooling around with
hardware.
 Replace hardware functions

with simulated hardware
functions.

Simulated
Hardware

Abstraction

Application

Debugging is twice as hard as writing
the code in the first place.
Therefore, if you write the code as
cleverly as possible, you are, by
definition, not smart enough to debug it.

-- Brian W. Kernighan

Code for Debug

 Write clear programs
 Cleverness is not usually clear.

 And often hard to figure out weeks/months
later.

 Comment your code.
 Particularly the hardware dependent parts.

 Watch compiler warnings
 Fill allocated memory with value, so you

can see it in the debugger.

Code for Debug

 Fill malloc'd space with some value
before you free it, so you can see it and
to invalidate the data so you will get an
error early in your development cycle if
you attempt to use it after it has been
freed.

 Check array bounds. Check string limits.
 Check return types for validity before

using.
 Check pointers for validity before using.

Code for debug

 Refactor regularly.
 Quick-and-dirty works for simple proof-

of-concept code. It will cause you
nothing but grief if it gets into your
production (professional) code.

Assert

 The Z16 API includes the assert macro
 #include <assert.h>

assert()

#define assert(e) if (!(e)) {\
printf("Assertion failure: %s, file: %s, line %d\n",\

#e,__FILE__,__LINE__);\
exit(1);\

}

Learn C

 Read. Practice. Examine compiler output
(dissassembly). Read some more.

 Pay attention to data types and what the
compiler is doing with them (automatic
promotion, casting, etc).

 C is complex enough on any system. Now
consider that with a bad compiler on a
limited resource system, with additional
features for hardware access, and limited
debugging capability.

More Hardware

 Learn to use basic functions of an
oscilloscope and logic analyzer.

 Use them to check your output signals
to verify your are generating what you
intended.

 Use them to check your input signals to
verify that you are receiving what you
think your are receiving.

Whats the difference bewteen
a Logic Analyzer and an

Oscilloscope?

Logic Analyzer VS
Oscilloscope

 Oscilloscopes are most useful in the
domain of analog signals, including
analyzing analog problems such as noise,
ringing (even when applied to digital
signals). They generally have a limited
number of input channels (1,2,4).

 Logic analyzers capture the state of
digital signals. They can have a wide
number of input channels (8,16,32). And
frequently include timing and data
analysis.

How do I use that
Oscilloscope thingy?

Oscilloscope

Volts/Div Time/Div

Time

Volts

0.01 sec

~3V

Don't forget the ground clip

TDS220

Dual Trace (2 V-T plots)

Triggering

 Determine when to start plotting V-T

Triggering

No hardcopy

 No. We don't have the optional module that
captures/prints a copy of the display.

 They are old and only support HP ink jet
printers with Centronix connectors (~1995).

Oscilloscope

 Oscilloscope Tutorial
 https://www.cs.tcd.ie/courses/baict

/bac/jf/labs/scope/
 XYZ's of Oscilloscopes

 http://www.tek.com/Measurement/c
gi-
bin/framed.pl?Document=/Measurem
ent/App_Notes/XYZs/index.html&Fra
meSet=oscilloscopes

So what can we really do with
an oscilloscope to help with

debugging software?

Use an oscilloscope to ...

1.Verify input signals (is the clock signal
really a clock?)

2.Use Timer output pins to verify timers
are actually working like you want (see
the clock and measure the time).

3.Use GPIO to indicate function calls or
function execution.

1. Verify input signals

PS/2 keyboard clock and data lines for an “a” keypress

2. Timer output pins

Verify timer is correct

50 ms

3. Function calls
Example

DebugVoltDivider

 Using an
oscilloscope to
indicate where
we are in the
code execution.

PA3
PA2

PA1
PA0

Your Debug Methodology

 Find a Development and Debug
methodology that works for you.

 The Ten Secrets of Embedded
Debugging

 http://www.embedded.com//showAr
ticle.jhtml?articleID=47208538

Embedded Debugging
 Know your tools
 Find memory problems early
 Optimize through understanding
 Don't put needles in your haystack
 Reproduce and isolate the problem
 Know where you've been
 Make sure your tests are complete
 Pursue quality to save time
 See, understand, then make it work
 Harness the beginner's mind

Know Your Tools

 “Good programmers need to be proficient
with a variety of tools. Each has a place,
... each has power.”
 Source Debugger
 Emulator/Simulator
 Simple printf
 In-Circuit Emulator
 Profilers
 Compiler/Assembler (yes, that's part of the

debug cycle)

Find Memory Problems Early

 “Memory problems are insidious. They fall
into three main types: leaks,
fragmentation, and corruption. The best
way to combat them is to find them
early.”

 malloc/free
 Use of mallc'd memory after free
 Not completely writing to flash (or being

interrupted), means we need to verify.

Optimize through
understanding

 Real time is more about reliability than
speed. That said, efficient code is critical
for many embedded systems. Knowing
how to make your code zing is a
fundamental skill that every embedded
programmer must master.

 The hard part is knowing which code to
make run fast.

 Know how your CPU is executing your
code. It's the only path to efficiency.

Don't put needles in your
haystack

 “Follow your good coding and design
guidelines, check your assumptions,
rethink your algorithms. If nothing
else, put an easily found tag in a
comment that this code is suspect.”

 In other words, follow good
programming practices.

Reproduce and isolate the
problem

 “... the critical first step is to reliably
duplicate the problem: recreate it
then defeat it. Get a sequence, any
sequence, that reliably shows the
problem and you're halfway there”

 Reduce your program to the minimum
that reproduces the bug/problem.

Know where you've been

 Version Control - “A backwards-traceable
record is a great way to make sure you
understand future problems.”

 “When you get your application or
module working in any significant
capacity, checkpoint it. Later, when it
stops working, even though "nothing has
changed," you will have a baseline to
check your assumptions.”

Make sure your tests are
complete

 “Coverage testing should be part of
every quality assurance process. How
many revisions and rewrites has your
code gone through over the years and
releases? Has your test suite grown
with the changes? Or do the tests only
exercise the features that existed in
version 1.0?”

Pursue quality to save time

 “... it costs 10 to 200 times more to fix
a bug at the end of the cycle than at
the beginning. The cost of a small bug
that makes it to the field can be
astronomical. Even if the bug doesn't
have a significant impact on
performance, it can significantly affect
perceived quality.”

Why is this?

Why?

 Programs grow more complex.
 Fixing later requires more thought to

figure out why things are …
 Documentation needs to be updated
 Other code depends on this

bug/feature
 Testing is now more complex

See, understand, make it work

 “real-time systems interact with a
dynamic world, ... traditional debuggers
can't reveal dynamic behavior
Questions like:
 How noisy is my sensor?
 How fast is the queue growing?
 When did the valve close?

 There simply cannot be answered by any
tool that stops the execution. These
questions deal directly with the dynamic
behavior of the real-world system.”

Harness the beginner's mind

 “Most debugging is the process of
learning more and more about your
application.

 The "beginner's mind" is a Zen concept
of emptying your mind so it can be
open to new solutions.”

Last Words

 Verify the easy/obvious first.
 Power, wires, proper timing, signals

as expected, examine data in
registers, calculations for size
overflow, improper castsing.

 Unfortunately the Z16 tools do not
contain some important tools. Like

 Version control
 Execution profiler/tracer

Last words (2)

 If developing embedded systems
professionally, pick your processor
after considering the quality of the
available tools (not just the instruction
set, cost of the processor, etc)

How do I use that
multi-meter thingy?

Use the alligator clip.
Use it carefully.

Use protoboard to get to hard to reach wires

When Done ...

 Turn off
 Retract the probe

tip
 Put back in case
 Don't loose the

pieces!

Debugging Summary

 Simulator
 On chip debugger
 Status LEDs
 printf
 Use output pins and oscilloscope
 Verify input signals with oscilloscope
 Verify output signals

Debugging summary ...

 Examine compiler output
 Turn off optimization
 Use online forums for Q&A

 Think
 Assume nothing, verify everything

