

WATER SENSOR SYSTEM (RECEIVER)

DIYANA BINTI MUHAMAD

Project Report Submitted as Partial Fulfilment

 of the Requirement for the

 Degree in Bachelor of Electrical Engineering

(Telecommunication)

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MALAYSIA

NOVEMBER 2006

 iii

Specially Dedicated to

My beloved Mother; Nik Aeshah Nik Mustapha, Father; Muhamad

Mat Salleh, Siblings and Friends

For their eternal support, motivation, encouragement and inspiration

throughout my journey of education.

 iv

ACKNOWLEDGMENT

Alhamdulillah, for His Blessing, I finally have completed my final year

project for Bachelor Degree of Electrical Engineering (Telecommunication). There

are several people whom I would like to thank for involving in making this project

successful. Without any help from these people, I am sure that it would be much

difficult for me to accomplish the objectives of the project.

First of all, I would like to take this opportunity to express my deepest

appreciation to my supervisor Prof. Dr. Norsheila Bt. Fisal who had guided me,

giving support and motivation during the project.

This project is collaboration between me and Zatulfarha Md. Yaman.

Therefore I would like to convey my outmost gratitude to her for giving fully

cooperation and always be with me during up and down throughout entire project.

Most importantly, I would like to thank my parents and family for their

encouragement and support. Last but not least, thousand appreciations to Mr. Arif ,

Mr. Ajis, Che Mazru , Nordiyana Kamaruddin and all individuals who have directly

or indirectly offered help, support and suggestions, contributing towards the

successful completion of water sensor system.

 v

ABSTRACT

Nowadays, Wireless Sensor Network (WSN) has become very popular. The

availability of low-cost, high performance and practical usage of the embedded

processor, radios and sensor has lead to the used of wireless sensor communication

in humans life. The application of WSN is very wide. It can be used as habitat

monitoring, health monitoring, and sensing others environmental data such as

temperature, humidity, light, water and etc remotely at distance. The purpose of this

project is to develop a sensor system which able to monitor increments of water level

at computer. Water sensor system consists of two nodes which are transmitter and

receiver. Transmitter will sense four levels increment of the water and sent to the

receiver end wirelessly. Then the receiver will capture the signal, demodulate,

process data, display on LEDs and send to PC. Water sensor system can be used as

an early warning system to monitor flood. This report elaborates the development of

receiver node that includes the hardware and software design. The receiver node is

built using ATmega8535 as it processor, superheterodyne receiver module as it

communication tool and computer to display the sensor value. This system

implements the non-standard protocol for point to point communication between two

nodes. All programming is written in C language. GUI is also developed as an

additional feature to the system (using VB 6.0). The results obtained in this project

are taken using USART terminal, oscilloscope and GUI interface. It is observed that

the frame sent is successfully received and displayed at the receiver end with very

small time interval between transmitted and receive frame.

 vi

ABSTRAK

Rangkaian pengesan tanpa wayar (RPTW) telah menjadi semakin popular

pada masa kini. Dengan adanya pemproses terbenam, radio dan pengesan yang

berharga rendah, pertasi tinggi dan juga praktikal untuk digunakan telah membawa

kepada penggunaan sistem pengesan tanpa wayar dalam kehidupan manusia.

Aplikasi RPTW adalah meluas. Ianya boleh digunakan sebagai pemerhati

habitat, pemerhati kesihatan dan pengesan elemen persekitaran seperti suhu,

kelembapan, cahaya, air dan sebagainya pada jarak jauh. Projek ini adalah bertujuan

untuk membina sebuah sistem pengesan yang mampu mencerap takat kenaikan air di

komputer. Sistem ini terdiri daripada dua nod iaitu stesen pemancar dan penerima.

Stesen pemancar akan mengesan empat takat kenaikan air dan menghantarnya

secara tanpa wayar ke stesen penerima. Kemudian stesen penerima akan menangkap

isyarat, mengubah ke bentuk digital , memproses, memapar ke LED dan menghantar

data ke komputer. Sistem ini sesuai digunakan sebagai sistem amaran awal untuk

mengesan banjir. Laporan ini mengemukakan pembagunan nod penerima termasuk

rekaan perkakasan dan rekaan perisian. Nod penerima dibina menggunakan

ATmega8535 sebagai pemprosess, Modul frekuensi radio sebagai alat komunikasi

dan komputer untuk paparan.Sistem ini menggunakan rekaan protokol bukan-

standard untuk komunikasi nod ke nod. Semua atucara ditulis dalam bahasa

pengatucaraan C. Selain itu, antaramuka- pengguna bergrafik turut dibangunkan

sebagai ciri tambahan kepada sistem (menggunakan VB 6.0). Keputusan yang

diperolehi diambil dengan menggunakan terminal USART, osiloskop dan

antaramuka pengguna- bergrafik. Di dapati bingkai yang di hantar berjaya diterima

oleh stesen penerima. Perbezaan masa diantara bingkai yang dihantar and bingkai yg

diterima adalah sangat kecil .

 vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF FIGURES x

 LIST OF TABLE xii

 LIST OF ABBREVIATIONS xiii

 LIST OF APPENDICES xiv

1 INTRODUCTION

 1.1 Project Background 1

 1.2 Problem Statement 2

 1.3 Project Objectives 3

 1.4 Scope of Works 3

2 TLIERATURE REVIEWS

 2.1 Introduction to Wireless Sensor Network 5

 2.2 Network Modeling 7

 viii

 2.3 Wireless and RF Communication System 9

3 RECEIVER NODE DEVELOPMENT

 3.1 Introduction 11

 3.2 Hardware Development 14

 3.2.1 Processor 15

 3.2.2 RF Module 15

 3.2.3 Circuit Design 16

 3.2.4 Additional Tools 18

 3.2.4.1 RS-232 Circuit 18

 3.2.4.2 ISP Cable 21

 3.3 Software Development 23

 3.3.1 Software Tools 25

 3.3.1.1 Programmer Notepad

(WINAVR) 25

 3.3.1.2 PonyProg 2000 26

 3.3.1.3 Microsoft Visual Basic 28

 3.3.2 Main Program 28

 3.3.3 Graphical User Interface 31

4 RESULT AND DISCUSSIONS

 4.1 Overview 34

 4.2 System Hard wares 34

 4.3 System Software 36

 4.4 Measured Voltage 37

 4.5 Data Transmission 38

 4.5.1 Wired Connection 38

 4.5.2 Wireless Connection 40

 4.6 Result from Graphical User Interface 42

5 CONCLUSION AND FUTURE WORKS

 5.1 Conclusion 45

 ix

 5.2 Future Works 46

 REFERENCESS 48

 APPENDICE 50

 x

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Flash Flood that strike Kuala Lumpur 2

2.1 The OSI layer 8

2.2 Block Diagram of Superheterodyne Receiver 10

3.1 Block Diagram of Water Sensors System 12

3.2 Flow chart of developing the receiver node 13

3.3 Block Diagram for Receiver node 14

3.4 Pin Connection of RF Receiver Module 16

3.5 Receiver Node Schematic diagram 17

3.6 Receiver Node Prototypes (Finishing Product) 18

3.7 Pin Configuration and Block Diagram of Max232 19

3.8 RS-232 Schematic 20

3.9 RS-232 Interface Cable 20

3.10 ISP Cable 21

3.11 ISP Schematic 22

3.12 Flow of Software development 24

3.13 Window of Programmer Notepad (WINAVR) 25

3.14 PonyProg2000 Window Application 27

3.15 Flowchart for Receiver Node 29

3.16 Frame Format 29

3.17 Flow chart to detect error at Receiver End 31

3.18 Flowchart for GUI development 31

3.19 Visual Basic 6.0 window environment 32

3.20 Form designed for Water Sensor System 33

4.1 The receiver end prototype: (a) Top view, (b)Side view 35

 xi

4.2 Output Window resulting from compilation 36

4.3 Porting Hex code using Ponyprog200 software 37

4.4 Measured Supply voltage for input processor board 38

4.5 Result taken from Usart Terminal (wired connection) 39

4.6 Result taken from Oscilloscope (Wired connection) 39

4.7 Result taken from Usart Terminal (wireless connection) 40

4.8 Result taken from Oscilloscope (Wireless connection) 42

4.9 GUI result: (a) No level, (b) Level 1, (c) level 2, (d)

level 3 and (e) level 4 43

5.1 The PCB Design for Receiver module 46

 xii

LIST OF TABLE

TABLE NO TITLE PAGE

3.1 Function of ISP Connector Pin Header 23

 xiii

LIST OF ABBREVIATIONS

AM Amplitude Modulation

AVRGCC AVR-GNU Compiler Collection

AVR RISC AVR Reduced Instruction Set Computer

COM Serial Communication port

CPU Central Processor Unit

EEPROM Electrically Erasable Programmable Read Only

Memory

GUI Graphical User Interface

IF Intermediate Frequency

ISP In-Circuit Serial Programmable

LED Light Emitting Diode

MHz Megahertz

OS Operating System

OSI Open System Interconnection

PC Personal Computer

PCB Printed Circuit Board

RF Radio Frequency

RT-OS Real Time Operating System

RX Receiver

SRAM Static Random Access Memory

TCP/IP Transmission Control Protocol/ Internet protocol

TX Transmitter

USART Universal Synchronous Asynchronous Receiver

Transmitter

VB Visual Basic

WSN Wireless Sensor Network

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Source Code of Water Sensor System 50

B Make file for AVR Microcontroller 54

C Source code for GUI 62

D Ponyprog 2000’s User Manual 64

CHAPTER 1

INTRODUCTION

1.1 Project Background

Water sensor system is another application of Wireless Sensor Network

(WSN). This system enable user to monitor four increment of water level remotely at

PC or LEDs on receiver board. For a prototype, this project only develops two nodes

which are transmitter node and receiver node. Transmitter node consists of water

sensor board connected to processing board (contain microcontroller and RF

module). Meanwhile, at the receiver end, there are processing board (contain

microcontroller and RF module) connected to the computer.

The nonstandard communication protocol was implemented in the system.

The error detection codes and addresses are attached to the data before transmitted.

This application is using radio signal with frequency of 433MHz to transmit data

wirelessly to the receiver. The type of communication implemented in the system is

simplex communication where transmitter node continuously sends data to receiver

without waiting for acknowledgement. While, at the other end a receiver is ready to

receive data from transmitter.

Water sensor system is suitable to be used as an early warning system to

detect flood. The sensor node is suitable to be setup near the river banks or drain to

sense the increment of the water while the receiver node can be install at the resident

 2

house or police station so that whenever water exceed the critical level, police can

alarm resident low lying area to be prepared.

1.1 Problem Statement

Malaysia is a tropical country. Generally, the country is frequently hits by

heavy rain all year around cause by north- east monsoon and south-west monsoon

which later lead to floods. Usually major floods occur at the east coast and north side

of the country during the north-east monsoon.

However, nowadays the scenario is slightly different where flood can

happened anytime and anywhere whenever heavy rains occur. Flash-flood is a new

type of flood that strike urban area like Johor Bharu and Kuala Lumpur in a very

short period. Without any warning, this catastrophic may cause a lot of negative

impact such as damaged properties, public utilities, cultivation, loss of lives and also

caused hindrance to social and economic activities. Average annual flood damage is

reported as high as RM100 millions [3].

Figure 1.1 Flash Flood that strike Kuala Lumpur

 3

The government of Malaysia has developed many strategies to reduce the

impact and the negative effect of the floods. The floods control strategies include

construction of multi purpose dam, properly plan and designed the urban drainage

system, river bed deepening and widening, etc. The development of all above

strategies is very costly and will take longer time to be finished. Therefore, at a mean

time, flood forecasting and warning system is being considered as the most effective

non-structural measure to minimize the losses of properties and human lives due to

floods.

As mention before, water sensor system can be implement for this purpose.

Beside it low costs, this system is also easy to be installed and maintained in a very

short time.

1.2 Project Objectives

The objectives of this project include:

• To develop receiver node that will receive data from the sensor node using

wireless transmission and processing.

• To implement nonstandard protocol for communication between sensor and

receiver node at data link and physical layer.

• To display the level of the water level using LED on receiver board

• To monitor the changes of water level remotely on computer in a very small

time interval.

 4

1.3 Scope of Works

The works involve in this project includes Hardware and Software

development. This project will developed receiver node using ATmega8535 as

processor and RF receiver module with frequency range 433MHz as communication

device. Since the computer will be used to display the data value, an interface circuit

between receiver node and computer need to be built (RS-232 circuit).In addition;

ISP cable is developed as a utility to load the hex file to the microcontroller.

The most important element of wireless sensor system is communication

between nodes and data processing. This function can be implemented on the nodes

through programming. Software developments involve some programmings which

enable the receiver node to perform tasks such as receive data frame from

transmitter, check header, address and checksum, extract data from the frame,

display on LED and send data to the PC. Graphical User Interface is also

developed as additional feature to the system. All programming are written in C

language accept for GUI which written in Visual Basic 6.0.

CHAPTER 2

LITERATURE REVIEWS

There are many relevant and similar projects on wireless sensor system. In

this section the discussion will be made on the wireless sensor network (WSN), OSI

network modeling and OOK amplitude modulation scheme which are relevant to the

project.

2.1 Introduction to Wireless Sensor Network

The advances in science and technology are deeply intertwined. This has lead

to next evolutionary development of wireless sensor network application in building,

utilities, industrial, and home, shipboard and transportation systems automation. The

concept of wireless sensor networks is based on a simple equation:

Sensing + CPU + Radio = Thousands of potential applications

As soon as people understand the capabilities of a wireless sensor network,

hundreds of applications spring to mind. It is a straightforward combination of

modern technology [4].

The most important element in the WSN is sensory data from the real word.

Sensory data comes from multiple sensors of different modalities in distributed

locations. The application of WSN can divided into three classes which are

 6

environmental data collection, security monitoring, and sensor node tracking [4]. The

majority of wireless sensor network application will fall into one of these classes.

The environment data collection is normally use by research scientist to

collect several sensor readings from a set of points in an environment over a period

of time in order to detect trends and interdependencies. The data need to be collect

for analyzing is usually from hundreds of points spread throughout the area.

Examples of environment sensory data are habitat monitoring, humidity,

temperature, etc. The application of Water sensor system lies in this class.

The second class of sensor network application is security monitoring which

composed of nodes that are placed at fixed locations throughout an environment that

continually monitor one or more sensors to detect any variance. A main difference

between security monitoring and environmental monitoring is that security networks

are not actually collecting any data. Each node has to frequently check the status of

its sensors then transmit a data report when there is a security violation. Therefore,

the latency of the data communication across the network to the base station has a

critical impact on application performance [4].

A third class is the tracking of a tagged object through a region of space

monitored by a sensor network. Example of applications include as distance sensor,

velocity sensor, object tracking etc. Unlike sensing or security networks, node

tracking applications will continually have topology changes as nodes move through

the network. [4].

The second element of wireless sensor system is CPU. The purposes of CPU

are for data processing and perform standard communication protocol. The TCP/IP,

point to point or other non-standard protocol may be embedded into the processor to

make the communication possible between nodes

 7

The concept of wireless sensor system is to monitor the sensory data remotely

from the actual observable area. Therefore, the radio frequency communication is

required for data transmission in long range distance.

2.1 Network Modeling

The communication protocol is the key element in data transmission for

Wireless Sensor System. It is the set of rules governing the exchange of data between

2 entities. It is used for communication between entities in the system [1]. In

communication system, the task is broken up into modules. The services offered by

the modules are grouped into layers where each layer provide/used service to/

provide by other layers. There are two types of standard layering model in data

communication which are TCP/IP and OSI Model.

Open System Interconnection (OSI) model is a set of protocols that attempt to

define and standardize the data communications process. The OSI model is set by the

International Standards Organization (ISO). The OSI model has the support of most

major computer and network vendors, many large customers, and most governments,

including the United States [Definition of OSI Model from Wikipedia].

The concept is to describe how data communications should take place. It

divides the process into seven groups, called layers. The layers in the OSI model are

physical, data link, network, transport, session presentation and application. Each

layer performs a related subset of the function required to communicate with another

system (refer to figure 2.1). It relies on the next lower layer to perform more

primitive functions and to conceal the details of those layers [1]. Each layer also

provides service to the next higher layer. The function of each layer is well defined

therefore any changes in one layer will not required changes in any other layer.

 8

Application
Provide access to the OSI environment for user and also provides distributed information

services

Presentation
Provide independence to the application process from difference in data representation

(syntax)

Session
Provide the control structure for communication between applications; establish, manage,

terminate the connection between cooperating systems

Transport
Provide reliable transparent transfer of data between end points; provide end to end error

recovery and flow control

Network
Provide upper layers with independence from the data transmission and switching

technologies used to connect system; responsible for establishing, maintaining, and
terminating connections.

Data Link
Provide for the reliable transfer of information across the physical link; sends blocks (

frame) with necessary synchronization, error control and flow control

Physical
Concern with transmission of unstructured bit stream over physical medium; deals with
mechanical, electrical, functional, and procedural characteristics to access the physical

medium

Figure 2.1 The OSI layer

Water sensor system only deploys the two bottom layer of the model which is

data link and physical. The non- standard protocol is implemented for the system for

communication. The main task of the data link layer for this project is to take a raw

transmission facility and transform it into a line that appears free of transmission

errors in the network layer. The task is accomplished by input the data into data

frames, insert the error detection sequence bit, and transmit the frames sequentially.

Since the physical layer merely accepts and transmits a stream of bits without any

regard to meaning of structure, it is up to the data link layer to create and recognize

frame boundaries. This can be accomplished by attaching special bit patterns to the

beginning and end of the frame.

 On the other hand, the service offered by physical layer is to provide the

electrical and mechanical interface to the network medium (wireless link). This layer

gives the data-link layer (layer 2) its ability to transport a stream of serial data bits

between two nodes in the system; it conveys the bits that move along the link. It is

 9

also responsible for making sure that the raw bits get from one place to another, by

modulation technique, and deals with the electrical and mechanical characteristics of

the wireless link such as frequency used, type of modulation, communication device,

etc.

2.2 Introduction to Wireless and RF Communication System

The area of wireless communication is fairly broad especially in

technological research and development. It is deal with transmitting data via some

form of air waves. Wireless communication can de defined as any transfer of data

from one point to another using no wires. Radios, cell phones, satellite TVs, and

remote controls are just a few of the many technologies currently being used and

developed in the area of wireless communication.

The Water Sensor System use Amplitude Modulation scheme to transmit data

wirelessly to the receiver. It works by varying the strength of the transmitted signal

in relation to the information being sent. Hence the amplitude demodulator is used at

the receiver end to converse back the AM signal into digital output. Receiver node in

system is using super heterodyne receiver.

The super heterodyne principle, as used in radio receivers, allows certain

obstacles in high-performance radio design to be overcome [5]. All signal

frequencies are converted typically to a constant lower frequency before detection.

This constant frequency is called the intermediate frequency, or IF. In typical AM

(Medium Wave) home receivers, that frequency is 455 kHz, for FM VHF receivers,

it is usually 10.7 MHz.

 10

Figure 2.2 Block Diagram of Superheterodyne Receiver

Heterodyne receivers "beat" or heterodyne a frequency from a local oscillator

(within the receiver) with all the incoming signals. In mixer, the local oscillator

signal will multiplies with the incoming signal, producing beat frequencies both

above and below the incoming signal. The mixer stage produces outputs at both the

sum of the two input frequencies and at the difference. Either the higher or the lower

(typically) is chosen as the IF, which is amplified and then demodulated [5].

The advantage of Superheterodyne receiver is that most of the radio's signal

path has to be sensitive to only a narrow range of frequencies. Only the front end (the

part before the frequency converter stage) needs to be sensitive to a wide frequency

range. For example, the front end might need to be sensitive to 30 MHz, while the

rest of the radio might need to be sensitive only to 455 kHz, a typical IF frequency.

Other than that it also has superior characteristics to simpler receiver types in

frequency stability and selectivity [5].

CHAPTER 3

RECEIVER NODE DEVELOPMENT

3.1 Introduction

The purpose of water sensor system is to sense the increment of water

remotely at distance. In order to do so, block diagram for the whole system is

developed and the function for each block is clarified. Figure 3.1 shows the block

diagram of the overall system. For this project, water sensor can only sense four

increment of the water level. Then, this level is send to the microcontroller at

transmitter board for processing. The processor of transmitter end will process the

data by creating a data frame to be transmitted to the receiver node through USART.

This data frame represent in form of digital signal (0 and 1). In order to be transmitted

wirelessly, the data must be transformed into analog signal. RF Module will modulate

the data to analog signal using Amplitude modulation. Afterwards, this signal will be

 12

Figure 3.1 Block Diagram of Water sensors System

At the receiver end, RF Module will capture the signal and demodulate into

the original data. This data then will be passed to the microcontroller for further

process. The process that involve in receiver includes checking whether the data is

free from error then send to the PC and display on LED. If the data contained any

error, the data will be discarded and alert user through PC. Whenever the water

exceeds the forth level, an alarm will be on.

The thesis describes in details the methodology that is used to develop the

receiver node in term of hardware and software. The development processes are based

on the objective of the project which is to produce receiver node that has an ability to

receive data, do some processing and display on LEDs and Computer. Figure 3.2 has

shown the works flow in developing the hardware and the software of receiver node.

It start by choosing the right component to used for node’s processor, RF module and

other components that will used to indicate the water level such as LEDs and Buzzer.

The receiver node block diagram was constructed to simplify the schematic drawing.

After finished designing the schematic, the hardware was implemented. This

hardware will encounter several tests to ensure the reliability of the system

Sensor
Board

Micro
controller RF

Module
RF

Module
Micro RS-232 controller Circuit

 13

The nonstandard protocol that will be embedded to the system is clarified.

Software developments mostly concentrate in codes writing. Then those programs is

burned and run test. The programming and correction is continued until successful

result is obtained.

Start

Figure 3.2 Flow chart of developing the receiver node.

Setup Protocol that will be
used

Software Development

End

Test Program

Choose Component

Design Schematic

Implement Hardware

Test Hardware Circuit Correction

Correction

OK

OK

NO

Block diagram

NO

 14

3.1 Hardware Development

Choosing components are very important element in implementing the

hardware for every system. The components are chosen based on the function and

suitability for the system. The components used for the receiver node are AVR

Microcontroller (ATmega8535), RF receiver module with 433MHz operating

frequency, and RS-232 Interface Circuit.

Figure 3.3 shows the block diagram of the receiver node.ATmega8535 has

four I/O ports. Port A is connected to the LEDs and Buzzer. Port B is connected to

ISP cable for uploading the hex file. While RF receiver module and RS-232 are

connected to the Rx and Tx pin respectively at Port C.

LEDs
and

Buzzer

PORTA
ISP Cable PORTB

AVR
Microcontroller

ATmega8535

 RS-232
Interface
Circuit

RF
Receiver
Module

TX Rx

Figure 3.3 Block Diagram for Receiver node

 15

3.1.1 Processor

Microcontroller plays important role in water sensor system. It is the main unit

of the node device. Basically all programs will be run in this unit. Microcontroller

responsible for receiving data and check whether the data is free from error. Other

than that, it also responsible to on and off the LEDs according to the data and pass to

the PC.

Choosing a microcontroller is very important. Nowadays, there are many types

of microcontroller available in the market such as PIC from microchip,

microcontroller from Motorola, Intel, Rabbit 2000 and etc. In Wireless Sensor

System, power consumption and memory utilization is the significant element when

deciding the right processor [7].

Many WSN applications used 8-bit AVR RISC microcontroller as it

processor. ATmega8535 is one of the AVR- microcontroller families with 8K bytes

Flash Memory. It also has 512 bytes EEPROM, 512 bytes SRAM, 32 I/O line, and six

sleep mode and can operate in 4.5 to 5.5 Volts. This microcontroller is very suitable to

be used for embedded system.

3.1.2 RF Module

The data that is send from transmitter node is not critical like sending the text

message or picture or video file where the data must be accurate and error free. If

those data are spoiled, retransmission will be needed. However for this application the

data send to receiver end is fixed to only five values which are below level 1, level 1,

level 2, level 3 and level 4 of the water. Therefore the type of communication that is

suitable to be implemented for water sensor system is simplex communication. This

type of communication is where transmitter node will continuously send data to the

receiver without any concern whether the data is safely received at the receiver node.

 16

On the other hand, the receiver accepts data without sending any response to

the transmitter.

Hence, in this project, RF transmitter and receiver module is use to transfer

data from sensor node to receiver node wirelessly. Both RF modules are operating in

free licensed frequency which is 433MHz. The modulation scheme use for the system

is OOK-AM modulation. The receiver uses Superheterodyne receiver. The maximum

distance that can be implemented for the system is 100 meter. While the operating

voltage range for the receiver module is 4.5 to 5.5 Volts. Therefore, this module is

compatible to be connected directly to the AVR Microcontroller.

Figure 3.4 Pin Connection of RF Receiver Module

3.1.3 Circuit Designed

The circuit is designed based on the block diagram. Figure 3.5 shows the

schematic for Receiver Node. The microcontroller used 8 MHz external crystal

oscillator. Since the voltage range of ATmega 8535 is 4.5Volts to 5.5Volts. Therefore

the circuit cannot get direct supply from the Battery. In order to avoid any harm to the

microcontroller, Voltage Regulator is used to step down the voltage to appropriate

value.

 17

Figure 3.5 Receiver Node Schematic diagram

PortA0 until PortA4 of microcontroller is connected to the LED which

indicates the level of the water. LED0 specify water below all level. While LED1 for

level 1, LED2 for level 2 and so on. PORTA4 is also connected to the Buzzer so that

when the water level exceeds level 4 the LED 4 and the buzzer will on. The circuit

was implemented using the strip board (figure 3.6)

 18

Figure 3.6 Receiver Node Prototypes (Finishing Product)

3.1.4 Additional Tools

Additional tools needed to be developed for supporting the system application.

Those tools include RS-232 Circuit and ISP Cable.

3.1.4.1 RS-232 Circuit

The receiver node is connected to the PC for displaying purpose. The data is

sent in serial due to its simplicity and low hardware overhead compared to parallel

communication. Rs-232 is an IEA/TIA-232-E specification standard for serial binary

data interconnection between a DTE Data Terminal Equipment and DCE [Definition

of RS-232 from Wikipedia]. Unlike many standards, RS-232 specifies electrical,

functional and mechanical characteristic of three criteria which are common voltage

and signal levels, common pin-wiring configurations and a minimal amount of control

information between the host and peripheral systems.

 19

 RS-232 connector was originally developed to use 25 pins. The original

MAX232 Driver/Receiver and its related parts simply doubled and inverted the input

voltage to supply the RS-232 driver circuitry. This design enabled much more voltage

than actually required; it wasted power. The EIA-232 levels are defined as ±5V into

5k. With a new low-dropout output stage, Maxim introduced RS-232 transceivers

with internal charge pumps that provided regulated ±5.5V outputs. This design allows

the transmitter outputs to maintain RS-232-compatible levels with a minimum amount

of supply current [8]. MAX232 has two TTL/CMOS inputs, RS-232 inputs, two

TTL/CMOS outputs and RS-232 outputs (figure 3.7). One of the TTL/CMOS input

(pin 10 or 11) is connected to the Rx pin of AVR microcontroller. While one of the

RS232 input and output is connected to the RS232 connector (refer to figure 3.8).

Four 1uF capacitances are required to be connected (table in figure 3.7). The overall

schematic is shown in figure 3.8. This circuit is then implemented using strip board

(figure3.9)

Figure 3.7 Pin Configuration and Block Diagram of Max232

 20

Figure 3.8 RS-232 Schematic

Figure 3.9 RS-232 Interface Cable

 21

3.1.4.2 ISP (In-System Programmer) Cable

One of the advantages using AVR microcontroller the available software

package called the Atmel AVRISP. This software enable user to upload the source

code into microcontroller directly on board. Figure 3.10 show the ISP cable developed

using donut board.

Figure 3.10 ISP Cable

There are many types of AVRISP schematic diagrams available in the

Internet. However, figure 3.11 shows the simplest ISP schematic that used for this

project. This ISP cable is suitable for ATmega8535. 74LS245 is an octal tristate

buffer which used to provide the float state after the hex code has been written into

the AVR chip. Using LED is for indicating the PC start up and code is written into the

chip.

 22

Figure 3.11 ISP Schematic

There are four signals from AVR microcontroller need to be connected which

are MOSI, MISO, SCK and RESET. MISO/MOSI pins are used for all the CPUs

except ATmega103 which uses TXD/RXD pin instead [Warsuzarina Binti Mat

Jubadi; Nov, 2005]. Table 3.1 has shown the function of ISP Connector Pin Header.

 23

Table 3.1 Function of ISP Connector Pin Header

Name Function Description

MOSI Master Out- Slave In Data being transmitted to

the part being programmed

is sent on this pin

RESET Target MCU Reset Connect to target AVR.

Target AVR is

programmed while in

Reset State.

SCK Shift Clock Serial Clock generated by

the Programmer

MISO Master In Slave Out Data received from the part

being programmed is sent

on this pin

VCC ISP Power 5Volts Power supply for

ISP. ISP header must

supply power to the dongle

GND Ground Common Ground

3.2 Software Development

Software development is referring to development process in embedded the

application into the microcontroller and writing codes to display the data on the

computer. Figure 3.12 shows the flow chart of software development. All source code

was developed in C language except for GUI.

 24

Start

Develop Flow Chart

C Programming

Setup Make File

No
Compile ok?

Figure 3.12 Flow of Software development

C code is the high- level programming language which is easy to understand

and suitable for many systems-programming applications that had traditionally been

implemented in assembly language. The design goal are it could be compiled in a

straightforward manner using a relatively simple compiler, provide low-level access

to memory, generate only a few machine language instructions for each of its core

language elements, and not require extensive run-time support [9]. The language can

be used widely from embedded microcontrollers to supercomputers.

The source code is composed of the flow chart of the system. Then those code

need to be verified and compiled which can be download from ATMEL distributor

websites or others. AVR-GCC is one of the compiler which available in DOS and

Windows version. Others compiler existed such as WINAVR, AVRLib, CodeVision

AVR and etc. Next, the hex file produce is uploaded into the microcontroller. The

application is considered success when the target device works according to the plan.

Upload Program

Test ok?

End

Yes

No

Yes

 25

3.2.1 Software Tools

There are many software tools needed to support the development of water

sensor system starting from writing the source code to upload the hex file to the

microcontroller. Those soft wares are free and can be downloaded from internet

accept for software to develop GUI. The soft wares that utilized in this project

includes Programmer Notepad (WINAVR), PONY PROG and Microsoft Visual Basic

6.0

3.2.1.1 Programmer Notepad (WINAVR)

Programmer Notepad (WINAVAR) is an open source window based platform

to write the source code for the ATMEL series of RICS microcontroller. It is operate

in user-friendly environment which make the application easy to use. The WINAVR

are supported only in DOS command line platform [10]. The user needs to setup the

Makefile before compiling the program. Figure 3.13 shows the programmer Notepad

window in WINAVR. The most right window is the source codes while the left

window is output file generated after compiling the program.

Figure 3.13 Window of Programmer Notepad (WINAVR)

 26

The development tools for WINAVR includes the GNU GCC compiler for C

and C++, Assembler, Linker, Librarian, File Converter, other file utilities, C Library,

Programmer software, Debugger, In- circuit Emulator software, Editor/IDE, and

others support utilities. The compiler provided by this software is flexible and can be

hosted on many platforms where it can target many different processor or operating

systems (back-end), and can be configured in different languages (front-end).This

features is ideal for execute the User’s Makefile which in turn calls the compiler,

linker and other utilities used to develop software. Programmer Notepad then will

capture the output and display on window. If there is any error, user can simply

clicked on the error or warning and programmer notepad will automatically open file

and go to the error or warning line of the program.

3.2.1.2 PonyProg2000

After the source code is successfully compiled, the next step is to upload the

program to the AVR microcontroller. As mention earlier, AVR family allow

programmer to upload the source code directly to the microcontroller (on board).

Hence, this facility can be done by using AVRISP cable with PonyProg2000 software.

PonyProg is serial device programmer software with a user friendly GUI framework

available for Windows95, 98, 2000 & NT and Intel Linux. Its purpose is reading and

writing every serial device. At the moment it supports I²C Bus, Microwire, SPI

eeprom, the Atmel AVR and PIC micro[11].

 27

Hex code

Address

ASCII codes

Unused
memory

Figure 3.14 PonyProg2000 Window Application

Figure 3.14 shows the machine codes (hex file) resulting from compiling the

source code. Some configuration need to be done before using the software to

uploading the codes. At the beginning, user need to setup the interface by specify the

connector used (serial or parallel) between microcontroller and PC. Next, calibrate the

bus timing, define the device used (e.g. ATmega8535, PIC16xx83, etc) and setup the

configuration and security bits. Then, the hex file is opened and programmed to the

target device. The hex file consist of memory address, machine code presented in the

form of hexadecimal and ASCII. PonyProg also verify filled”0XFF” in the unused

memory.

 28

3.2.1.3 Microsoft Visual Basic 6.0

Visual Basic (VB) is an event driven programming language and associated

development environment from Microsoft. The language is rather very simple and

easy to understand where the codes are written using simple English-like words and

syntax. Its not only allows programmers to easily create simple GUI applications, but

also has the flexibility to develop fairly complex applications [Definition of Visual

Basic from Wikipedia].

Programming in VB is a combination of visually arranging components or

controls on a form, specifying attributes and actions of those components, and writing

additional lines of code for more functionality. Since default attributes and actions are

defined for the components, a simple program can be created without the programmer

having to write many lines of code [12].

3.2.2 Main Program

Generally, there are three significant tasks need to be performed by receiver

node which are receive data from transmitter, error detection and display.

The flowchart is constructed based on the task before writing the codes. This

is important in order to ease the code writing and can ensure that the program is not

away from main system application.

Refer to the figure 3.15; the program starts with initializing the USART

interrupt function. Those codes can be found in the ATmega8535 Datasheet. Water

Sensor System use Serial Communication to transfer between two microcontrollers

and PC. The sensor data is sent in a form of frame as shown in figure 3.16. Header is

used for frame synchronization. When receiver node receives first 2bytes data, it will

check whether it is a header or not.

 29

Then it will obtain the next coming data if the header is found.

Start

Initialized Port and Usart

True

Figure 3.15 Flowchart for Receiver Node

Figure 3.16 Frame Format

The second element in the frame is Address. It indicates the receiver port

name. Since this project only have two nodes with one sensor application. Therefore

the source port address will be less important.

Header Address Data Checksum

 2 Bytes 2Bytes 1Byte 1Bytes

Check checksum

Display on LED

Check Address

Data in?
No

Yes

Check Header
No

Yes

No
Yes

Store Data

No
Ok

Send to PC

 30

However, for many nodes and sensor application, the source address will be

significant to differentiate which sensor and node are the data refer to.

Error detection is another important aspect in data communication. Wireless

system application are likely interferes by noise. Regardless of the transmission

system designed, there will be errors, resulting in the change of one or more bits in a

transmitted frame. There are two types of error detection scheme existed in data

communication. The simplest approach is Parity check where parity bit is appended to

the end of the block of data. However when there are two or any even number of bits

are inverted due to error, an undetected error occurs [1].

Another most common and powerful method is the Cyclic Redundancy Check

(CRC). For a k-bit block of bits or message, the transmitter will generate a (n-k)-bit

sequence known as a frame check sequence (FCS) which is used later for receiver to

detect error. Nevertheless, this error detection scheme require complex program to be

implemented.

The easiest way to employ error detection which is used in Water Sensor

System is Checksum. It is an error- detecting code based on a summation operation

performed on the bits to be check. The formula to generate Checksum Code is:

 Checksum = ~ (Header1 + Header2 +Address1 + Address2 + Data)

This sequence code is then will be add up to the frame and transmit to the

other end. At the receiver, some calculation will be made to detect error. Processor

will Sum up all bytes including the Checksum value. For free- error transmission, the

expected summation result should be 0x1FF. If there is an error occurs, the data will

be discarded. Figure below shows the flowchart for error detection

 31

Chksum2= Header1+ Header2+ Addr1 +Addr2+ data+ Chksum

Figure 3.17 Flow chart to detect error at Receiver End

.

3.2.3 Graphical User Interface

GUI is used to display the water level at computer. It was developed using

Microsoft visual Basic 6.0. This software provide user friendly-environment platform

which simplify the development process.

Figure 3.18 Flowchart for GUI development

Figure 3.18 shows the flow processes of developing the GUI. First step, the

form is designed accordingly to the need of the system as shown in figure 3.20. It is

created using drag and drop techniques. A tool is used to place controls (e.g., text

Start

Design Form

Add function

Compile

End

Reprogram

Ok
Error

Chksum2=
0xFF?

No
Data Error

Yes

Data Ok

 32

boxes, buttons, etc.) on the window form (refer to figure 3.18). Controls used for this

GUI are labels; frame, Mscomm and timer. All controls have attributes and event

handlers associated with them. The values provided for each control is changed to the

suitable value (e.g. high, width, font, background color, caption, etc).This value can

be changed at the window properties (figure 3.18) The main control in the GUI is

Mscomm which allowed the reading function from PC com port. The control timer is

used to generate the current time when the application is run. There are nine labels on

the window form. One label used to display message indicating the water level, three

of the label is used to display day, date and time and others for animated graph.

Afterward, function is added for each of the control component on the window

form through coding. Since VB 6.0 is widely used software, hence the source code for

certain functions are available from Internet. However some modification need to be

done depend on application. The program for this GUI is presented in the Appendix-

Next, the source codes are compiled. Whenever error occurs, Visual basic will

automatically highlight the line in the program which contained error.

Controls
Tool

Figure 3.19 Visual Basic 6.0
Attributes
Value

Window
Properties
Window
form

window environment

 33

Figure 3.20 Form designed for Water Sensor System

Timer

Frame

Label

Labels

Labels

MScomm

CHAPTER 4

RESULTS AND ANALYSIS

4.1 Overview

This chapter analyses the simulation result attained for overall system. The

performance of data transmission between nodes for both wired and wireless

transmission is compared. The result are taken from the Oscilloscope, USART

terminal and GUI Interfaced.

4.2 System Hardware

Water Sensor System consists of two parts which are transmitter and receiver

end. The transmitter end comprises of sensor circuit, processing board and radio

transmitter module.

While, on the other end, the receiver part consists of Processing board, RS-

232 Interface Circuit and the computer. All hardware develops using stripe board

(Refer to following figure 4.1). Hard wares are build base on the function of receiver

node al already discussed in previous chapter.

 35

RS 232
Circuit

Radio
Receiver
Module

Processing
Board

(a)

(b)

Figure 4.1 The receiver end prototype: (a) Top view, (b) Side view

 The Radio receiver module is connected to the processing board through

receive USART terminal. While the RS-232 interfaces circuit is connected to the

board through Transmit USART Terminal. The RS-232 circuit is then connected to

the computer.

 36

4.1 System Software

After completing developing the hardware module, the next stage is software

development where the communication and data processing function is embedded in

the microcontrollers. The source code is written in the Programmer Notepad (WIN

AVR). Then the code was compiled to produce the hex file, list file and object file

.However only hex file will be used to be uploaded. Figure 4.2 shows the successful

compiled result on WINAVR window. The left window shows the source code while

the right shows the output window. The total memory size used for this system is

1989 bytes.

Output
window

Programming
window

Memory size
display

Figure 4.2 Output Window resulting from compilation

Then, the hex file produced is uploaded into the AVR-microcontroller using

PonyProg 2000. Figure 4.3 proved the hex code is successfully embedded into the

microcontroller. It would be better to erase the microcontroller’s memory before

writing the codes to the target device (especially if device is already contained any

 37

program). The notice window will pop-up to indicate that the uploading process is

completed and successful.

Figure 4.3 Porting Hex code using Ponyprog200 software.

4.2 Measured Voltage

The supply voltage, VCC which is connected to the AVR microcontroller must

be stable. The stability of the supply will affect the performance of the system

especially for wireless communication. The DC power supply unit was used for

testing, where the value can be easily verified. Figure 4.4 shows the signal taken

from VCC pin of ATmega8535 at oscilloscope. The value is 5.35Volts which still in

the range of microcontroller’s operating voltages. Although there are little spikes

existed, it is tolerable since the spiking voltage are below 5.5Volts.

 38

5.35Volt
(acceptable

range)

Figure 4.4 Measured Supply voltage for input processor board

4.3 Data Transmission

This section will elaborate the result obtained for data communication for the

system. The data transmission for this system uses the USART, with 8 bit frame

format, Big Indian byte order and baud rate of 1200 bps. The same baud rates are set

for both nodes for synchronization. The result is taken in two different system

layouts which are wired and wireless connection.

4.3.1 Wired Connection

The data sent from the transmitter node is in the form of frame which

includes 2 bytes header, 2 bytes address, 1 byte data and 1 byte checksum as

discussed in previous chapter. The following figures show the result taken from

USART terminal for both nodes using Usart terminal and Oscilloscope.

 39

Water level sends to
pc Frame receive taken

from USART-RX

Figure 4.5 Result taken from Usart Terminal (wired connection)

 Referring to figure 4.5, the red circle indicates the frame received at the

receiver end (pin USART RX). Then this frame is processed by checking the error. If

the frame is free from error, processor will then extracts data from the frame.

Afterward, this data will be send to the PC through pin USART –TX (green circle).

Transmitted
Bits Frame
from TX

node) Received Bits
Frame (Pin

USART RX)

Transmitted data
from RX node to
PC (pin USART

TX)

Start bit is “0”.Trigered
from 1->0 and the next

bit is data

Stop bit is”0” .
Triggered from 0 to 1
indicate the bit data

finished

Figure 4.6 Result taken from Oscilloscope (Wired connection)

 40

The result taken from oscilloscope has shown three different output which are

from transmitter node USART transmit pin, Receiver node USART receive and

transmit pin (refer to figure 4.6). The ATmega8535 has USART function which

automatically generates the start and the stop bit for every byte transmitted. The start

Bit and the stop bit is “0”. The bit will remain “1” when the line is idle. This is

clearly proven at the generated green signal. It is nearly impossible to observe the

start bit of the data frame (yellow and pink signal) because the oscilloscope shows

the continuous display.

4.3.2 Wireless Connection

After the wired transmission has been successfully implemented, the test for

wireless connection was made. Fortunately, the result obtained using wireless is

actually same as wired. This has been proven in the following figure.

Water level sends to pc

Frame receive from RF
module

 Figure 4.7 Result taken from Usart Terminal (wireless connection)

 41

Result from USART terminal shows two windows (figure 4.7). The right

window illustrate the receive frame taken from data out pin of RF module. The

frame consists of 6 bytes data which are 0x68, 0x66, 0x31, 0x32, 0x00 and 0xCE.

The first two byte is the frame header (ASCII code =“hf”). While the next two bytes

data are the address (ASCII=”12”) followed by water level (0x00). This value

indicates that there is no water sensed by water sensor. Finally, the last byte is the

checksum (~(0x68 +0x66+0x31+0x32+0x00) = 0xCE).

The left window show the data sent to the PC (taken from TX-Usart pin).

This time the data is sent without a frame. Please note that both windows are

captured at different time. That is why the data in the frame (right window) is not the

same as data sent to PC (left window). The 0x07 signify that water is now at level 3.

More clear result can be obtained by using oscilloscope. Referring to figure

4.8, there are three signals taken which are from transmitter node (USART-TX),

receiver node (USART-RX) and receiver node (USART-TX). It is observed that

transmitted bits frame is exactly the same as received bits frame. Also, notice that the

time interval between transmit and receive frame is very small which nearly 0sec.

The purple signal indicates the water level value. This data will be used by the PC to

display the real value.

 42

Transmitted
Bits Frame
taken from
TX node)

Received
Data taken
from RX

node to PC
(pin USART

RX)

Transmitted
Datafrom RX

node to PC (pin
USART TX)

Figure 4.8 Result taken from Oscilloscope (Wireless connection)

4.4 Result from Graphical User Interface

The Graphical User Interface was developed as additional features to the

system. When the sensor did not sense any water, it considers as low water level.

Therefore the first level is assigned with blue color (figure 4.9(a)). The message also

wills popup in the “water level” section. Then when the sensor sense the first level of

the water, the second level in GUI will assigns green color. This process will

continue until the water reached the highest level where the message “4 meter

(critical)” will appear on screen (figure 4.9(e)). The following figures have

summarized the operation of GUI for this system.

 43

(a)

(b)

(c)

 44

(d)

(e)

Figure 4.9 GUI result: (a) No level, (b) Level 1, (c) level 2, (d) level 3 and (e)

level 4

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

The main purpose of this project is to implement the application of wireless

sensor system. This project was designed based on ideas and theory of wireless

sensor network. Water detector has been chosen as a sensor detecting flood. In

general, this project is has successful in achieving all the objectives. The

communication between nodes using non-standard protocol is met. It is shown that

the receiver node can receive data from transmitter and display on LED and PC.

Besides early warning flood detection, water sensor system is also suitable to

be use for measuring water level in the dam. Klang valley always has a problem

related to water supply shortage due to decrement of water in the dam during

drought. Sometimes there is no notice or any warning from responsible body to the

residence. Resulting, resident has no opportunity to take a precaution action (Stack

up water supply).

 46

5.1 Future work

Event though water sensor system is considered success, however, it is only a

prototype and there are still has some weaknesses that need to be improved. In

future, few modifications can be done for real implementation. It is suggested that

instead of using transmitter and receiver module, transceiver also can be used so that

communication both ways can be applied.

This Water sensor system use non-standard protocol. Hence, the application

is limited for that system network only. This system can be improved by using

common standard protocol such as point to point or TCP/IP so that the system can be

deployed in real network application. For TCP/IP, MicroIP can be used along with

operating system application such as TinyOS or RT-OS.

The hardware designed in this project used strip board resulting large module

size. This size of module can be reduced by using PCB. The PCB designed can be

done via many tools and one of widely used tool is DXP Protel. Figure 5.1 shows the

receiver node design.

Figure 5.1 The PCB Design for Receiver module

 47

Other than that, water sensor used in this project is rather simple and cheap. It

has the ability to measure only four level of water. This feature can be improved by

using water sensor with better features.

Lastly, since this project has only two nodes. It is suggested that more then

two nodes is used to create a network. Function of the receiver node is to receive and

display the water level. These features can be enhanced by form a database system so

that interested parties can have access to the system through the Internet.

 48

REFERENCES

1. William Stallings. Data and Computer Communication. 7th edition. Prentice

Hall

2. Behrouz A. Forouzan. Data Communication and Networking. 2nd

edition.McGraw- Hill International Edition .2000

3. Permanent Flood Commission Committee. Web page. URL:

http://agrolink.moa.my/did/river/r_fcom.html

4. Jason Lester Hill. System Architecture for Wireless Sensor Networks.

University of California, Berkeley. Spring 2003.Web page. URL:

www.eecs.harvard.edu/~mdw/course/cs263/papers/jhill-thesis.pdf

5. Answer.com. Superheterodyen. Web page. URL: www. answer.com

6. National Instrument. Introduction to RF & Wireless Communications Systems.

Web page. URL: http://zone.ni.com/devzone/cda/tut/p/id/3541

7. Warsurina Bt. Mat Jubadi. Embedded TCP/IP in Sensor Nodes

(SENSORNETS). Universiti Teknologi Malaysia. November 2005

8. MAXIM. Fundamentals of RS-232 Serial Communications. Application notes.

Web page. URL:

http://www.maximic.com/appnotes.cfm/appnote_number/3262

 49

9. Brian W. Kerninghan, Dennis M. Ritchie. The C programming Language. 2nd

edition.Prentice Hall

10. WIN AVR - AVRfreaks. Web page. URL: http://ww.avrfreaks.net/AVRGCC

11. Ponyprog2000. Web page. URL: www.lancos.com/prog.html

12. Visual Basic-Wikipedia. Web page. URL:

http://en.wikipedia.org/wiki/Visual_Basic

13. Wikipedia. Web page. URL: http://en.wikipedia.org/wiki/Main_Page

14. ATMEL Corporation. Web page. URL: http://www.Atmel.com

15. Cplusplus resources. Web page. URL: http://www.cplusplus.com

16. VB Forums. Web page. URL: http://www.vbforums.com/

APPENDIX A

SOURCE CODE OF WATER SENSOR SYSTEM

 50

/**/
/**Title : Water Sensor System with Non-standart Protocol

 Description :Basically this protocol only involve datalink layer.
 The purpose of this protocol is to ensure the
 reliability of datatransmission between 2
entities
 (point to point).Below are the details used in
 this protocol:

 Error detection: Checksum
 Frame Structure:

 |------|---------|------|---------|
Flag	Address	Data	Chcksum
 2 2 1 1 -----> Bytes

 where, Flag: hf
 Address: 12
/***/

#define FOSC 8000000// Clock Speed
#define BAUD 1200
#define baudrate (FOSC/16/BAUD-1)

#include <avr/io.h>
#include <stdio.h>

#define TX 1 // set tx=1:Receiver while tx-0: receiver

/**/
/********** Declaration for Subroutine *************/
/***/
void USART_INIT(unsigned int UBRR);
void USART_TX(unsigned char data);
unsigned char USART_RX(void);
void delay_1m (unsigned char i);

/**/
/******** Main Program *****************************/
/**/
int main (void)
{
 #if(TX==0)
 #warning "TRANSMITTER"
 unsigned char sen_data;
 #else
 #warning "RECEIVER"
 unsigned char rx_data, ctr, sensor_data, chksum_;
 #endif

 unsigned char hdr[2] = "hf";
 unsigned char add[2] = "12";
 unsigned char chksum;

/**************************************/
/***** Initialize Timer0 & USART *****/
/*************************************/

 USART_INIT(baudrate);

 51

/**/
/***** Program for Transmitter *********/
/***************************************/

 #if(TX==0)
 /* Initialize ADC */
 DDRA = 0xF0;

 while (1) {
 /*read port a*/
 sen_data = PINA;
 /*calculate checksum: sum up all bytes in dataframe then invert (
1'scomplement)*/
 chksum = sen_data + hdr[0] + hdr[1] + add[0] + add[1];
 chksum = ~chksum;

 /*Send 2 bytes header*/
 USART_TX(hdr[0]);
 USART_TX(hdr[1]);
 /*send 2 bytes address*/
 USART_TX(add[0]);
 USART_TX(add[1]);
 /*send data*/
 USART_TX(sen_data);
 /*send checksum*/
 USART_TX(chksum);
 }
/***************************************/
/****** Program for Receiver***********/
/*************************************/
 #else
 ctr = 0;

 /* Set PortA as output (connected to LED)*/
 DDRA = 0xff;
 PORTA = 0;

 while (1) {
 /* wait for incoming data*/
 if (UCSRA & (1<<RXC)) {
 rx_data = UDR;

 /* Check 2 bytes header*/
 if (ctr < 2) {
 if (rx_data == hdr[ctr]) {
 ctr++;
 } else {
 ctr = 0;
 }
 /* Check 2 byte Address*/
 } else if ((ctr > 1) && (ctr < 4)) {
 if (rx_data == add[ctr - 2]) {
 ctr++;
 } else {
 ctr = 0;
 }
 /*copy and save data */
 } else if (ctr == 4) {
 sensor_data = rx_data;
 ctr++;
 /* copy check sum*/
 } else if (ctr == 5) {
 chksum = rx_data;
 ctr++;
 /* Check wheter data contained any error?*/
 } else {
 chksum_ = (hdr[0] + hdr[1] + add[0] + add[1] +
sensor_data + chksum);

 52

 /*If data is error free display on LED and send
to pC*/
 if (chksum_ == 0xff) {
 USART_TX(sensor_data);

 if (sensor_data == 0x1) {
 PORTA = 0x3;
 } else if (sensor_data == 0x3) {
 PORTA = 0x7;
 } else if (sensor_data == 0x7) {
 PORTA = 0xf;
 } else if (sensor_data == 0xf) {
 PORTA = 0x1f;
 } else {
 PORTA = 0x1;
 }
 /*If data error send ff to pc alert user*/
 } else {
 USART_TX(0xff);
 }
 ctr = 0;
 }
 }

 }

 #endif
}

/***************************************/
/*** Subroutine for Initialized USART**/
/**************************************/

void USART_INIT(unsigned int UBRR)
{

/* Set baud rate */
UCSRA &= 0xfd;
UBRRH = (unsigned char)((UBRR)>>8);
UBRRL = (unsigned char)(UBRR);

/* Enable receiver and transmitter */
UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, no parity, 1 stop bit */
UCSRC = (1<< URSEL) | (1<< UCSZ1) | (1<< UCSZ0);
}

/***/
/**** Subroutine for Transmit data through USART*****/
/**/

void USART_TX(unsigned char data)
{
 /* Wait for empty transmit buffer */
 while (!(UCSRA & (1<<UDRE))) ;

 /* Start transmission */
 UDR = data; // send least significant byte
}

/***/
/***Subrounite for Receive data through USART******/
/**/

unsigned char USART_RX(void) {

 53

 /* Wait for data to be received */
 while (!(UCSRA & (1<<RXC))) ;

 /* Get and return received data from buffer */
 return UDR;
}

/***/
/****** Subroutine Delay 1 ms************/
/**/

void delay_1m (unsigned char i)
{
 int j;
 while(i--)
 {
 j=11415; // 8Mhz Exteranl Crystal(CKSEL3..0 = 1,1,1,1)
 while(j--);
 }
}

}

APPENDIX B

MAKE FILE FOR AVR MICROCONTROLLER

 54

WinAVR Sample makefile written by Eric B. Weddington, Jörg Wunsch, et
al.
Released to the Public Domain
Please read the make user manual!

Additional material for this makefile was submitted by:
Tim Henigan
Peter Fleury
Reiner Patommel
Sander Pool
Frederik Rouleau
Markus Pfaff

On command line:

make all = Make software.

make clean = Clean out built project files.

make coff = Convert ELF to AVR COFF (for use with AVR Studio 3.x or
VMLAB).

make extcoff = Convert ELF to AVR Extended COFF (for use with AVR
Studio
4.07 or greater).

make program = Download the hex file to the device, using avrdude.
Please
customize the avrdude settings below first!

make filename.s = Just compile filename.c into the assembler code
only

To rebuild project do "make clean" then "make all".

MCU name
MCU = atmega8535

Output format. (can be srec, ihex, binary)
FORMAT = ihex

Target file name (without extension).
TARGET = wlevel

Optimization level, can be [0, 1, 2, 3, s]. 0 turns off optimization.
(Note: 3 is not always the best optimization level. See avr-libc
FAQ.)
OPT = s

List C source files here. (C dependencies are automatically
generated.)

SRC = main.c
#delay.c usart_tr_vadib_sairi.c ruzaini.c

 55

#usart_tr.c init.c blink.c usart_rx.c adc_adibsairi.c

If there is more than one source file, append them above, or modify
and
uncomment the following:
#SRC += foo.c bar.c

You can also wrap lines by appending a backslash to the end of the
line:
#SRC += baz.c \
#xyzzy.c

List Assembler source files here.
Make them always end in a capital .S. Files ending in a lowercase .s
will not be considered source files but generated files (assembler
output from the compiler), and will be deleted upon "make clean"!
Even though the DOS/Win* filesystem matches both .s and .S the same,
it will preserve the spelling of the filenames, and gcc itself does
care about how the name is spelled on its command-line.
ASRC =

List any extra directories to look for include files here.
Each directory must be seperated by a space.
EXTRAINCDIRS =

Optional compiler flags.
-g: generate debugging information (for GDB, or for COFF
conversion)
-O*: optimization level
-f...: tuning, see gcc manual and avr-libc documentation
-Wall...: warning level
-Wa,...: tell GCC to pass this to the assembler.
-ahlms: create assembler listing
CFLAGS = -g -O$(OPT) \
-funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums \
-Wall -Wstrict-prototypes \
-Wa,-adhlns=$(<:.c=.lst) \
$(patsubst %,-I%,$(EXTRAINCDIRS))

Set a "language standard" compiler flag.
Unremark just one line below to set the language standard to use.
gnu99 = C99 + GNU extensions. See GCC manual for more information.
#CFLAGS += -std=c89
#CFLAGS += -std=gnu89
#CFLAGS += -std=c99
CFLAGS += -std=gnu99

Optional assembler flags.
-Wa,...: tell GCC to pass this to the assembler.
-ahlms: create listing

 56

-gstabs: have the assembler create line number information; note
that
for use in COFF files, additional information about
filenames
and function names needs to be present in the assembler
source
files -- see avr-libc docs [FIXME: not yet described
there]
ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs

Optional linker flags.
-Wl,...: tell GCC to pass this to linker.
-Map: create map file
--cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref

Additional libraries

Minimalistic printf version
#LDFLAGS += -Wl,-u,vfprintf -lprintf_min

Floating point printf version (requires -lm below)
#LDFLAGS += -Wl,-u,vfprintf -lprintf_flt

-lm = math library
LDFLAGS += -lm

Programming support using avrdude. Settings and variables.

Programming hardware: alf avr910 avrisp bascom bsd
dt006 pavr picoweb pony-stk200 sp12 stk200 stk500

Type: avrdude -c ?
to get a full listing.

AVRDUDE_PROGRAMMER = stk500

AVRDUDE_PORT = com1 # programmer connected to serial device
#AVRDUDE_PORT = lpt1 # programmer connected to parallel port

AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep

AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)

Uncomment the following if you want avrdude's erase cycle counter.
Note that this counter needs to be initialized first using -Yn,
see avrdude manual.
#AVRDUDE_ERASE += -y

 57

Uncomment the following if you do /not/ wish a verification to be
performed after programming the device.
#AVRDUDE_FLAGS += -V

Increase verbosity level. Please use this when submitting bug
reports about avrdude. See
<http://savannah.nongnu.org/projects/avrdude>
to submit bug reports.
#AVRDUDE_FLAGS += -v -v

Define directories, if needed.
DIRAVR = c:/winavr
DIRAVRBIN = $(DIRAVR)/bin
DIRAVRUTILS = $(DIRAVR)/utils/bin
DIRINC = .
DIRLIB = $(DIRAVR)/avr/lib

Define programs and commands.
SHELL = sh

CC = avr-gcc

OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size

Programming support using avrdude.
AVRDUDE = avrdude

REMOVE = rm -f
COPY = cp

HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) -A $(TARGET).elf

Define Messages
English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:

 58

MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:

Define all object files.
OBJ = $(SRC:.c=.o) $(ASRC:.S=.o)

Define all listing files.
LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)

Combine all necessary flags and optional flags.
Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)

Default target.
all: begin gccversion sizebefore $(TARGET).elf $(TARGET).hex
$(TARGET).eep \
 $(TARGET).lss $(TARGET).sym sizeafter finished end

Eye candy.
AVR Studio 3.x does not check make's exit code but relies on
the following magic strings to be generated by the compile job.
begin:
 @echo
 @echo $(MSG_BEGIN)

finished:
 @echo $(MSG_ERRORS_NONE)

end:
 @echo $(MSG_END)
 @echo

Display size of file.
sizebefore:
 @if [-f $(TARGET).elf]; then echo; echo $(MSG_SIZE_BEFORE);
$(ELFSIZE); echo; fi

sizeafter:
 @if [-f $(TARGET).elf]; then echo; echo $(MSG_SIZE_AFTER);
$(ELFSIZE); echo; fi

Display compiler version information.

 59

gccversion :
 @$(CC) --version

Convert ELF to COFF for use in debugging / simulating in
AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
 --change-section-address .data-0x800000 \
 --change-section-address .bss-0x800000 \
 --change-section-address .noinit-0x800000 \
 --change-section-address .eeprom-0x810000

coff: $(TARGET).elf
 @echo
 @echo $(MSG_COFF) $(TARGET).cof
 $(COFFCONVERT) -O coff-avr $< $(TARGET).cof

extcoff: $(TARGET).elf
 @echo
 @echo $(MSG_EXTENDED_COFF) $(TARGET).cof
 $(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof

Program the device.
program: $(TARGET).hex $(TARGET).eep
 $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
$(AVRDUDE_WRITE_EEPROM)

Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
 @echo
 @echo $(MSG_FLASH) $@
 $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@

%.eep: %.elf
 @echo
 @echo $(MSG_EEPROM) $@
 -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
 --change-section-lma .eeprom=0 -O $(FORMAT) $< $@

Create extended listing file from ELF output file.
%.lss: %.elf
 @echo
 @echo $(MSG_EXTENDED_LISTING) $@
 $(OBJDUMP) -h -S $< > $@

Create a symbol table from ELF output file.
%.sym: %.elf

 60

 @echo
 @echo $(MSG_SYMBOL_TABLE) $@
 avr-nm -n $< > $@

Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
 @echo
 @echo $(MSG_LINKING) $@
 $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)

Compile: create object files from C source files.
%.o : %.c
 @echo
 @echo $(MSG_COMPILING) $<
 $(CC) -c $(ALL_CFLAGS) $< -o $@

Compile: create assembler files from C source files.
%.s : %.c
 $(CC) -S $(ALL_CFLAGS) $< -o $@

Assemble: create object files from assembler source files.
%.o : %.S
 @echo
 @echo $(MSG_ASSEMBLING) $<
 $(CC) -c $(ALL_ASFLAGS) $< -o $@

Target: clean project.
clean: begin clean_list finished end

clean_list :
 @echo
 @echo $(MSG_CLEANING)
 $(REMOVE) $(TARGET).hex
 $(REMOVE) $(TARGET).eep
 $(REMOVE) $(TARGET).obj
 $(REMOVE) $(TARGET).cof
 $(REMOVE) $(TARGET).elf
 $(REMOVE) $(TARGET).map
 $(REMOVE) $(TARGET).obj
 $(REMOVE) $(TARGET).a90
 $(REMOVE) $(TARGET).sym
 $(REMOVE) $(TARGET).lnk
 $(REMOVE) $(TARGET).lss
 $(REMOVE) $(OBJ)
 $(REMOVE) $(LST)

 61

 $(REMOVE) $(SRC:.c=.s)
 $(REMOVE) $(SRC:.c=.d)

Automatically generate C source code dependencies.
(Code originally taken from the GNU make user manual and modified
(See README.txt Credits).)

Note that this will work with sh (bash) and sed that is shipped with
WinAVR
(see the SHELL variable defined above).
This may not work with other shells or other seds.

%.d: %.c
 set -e; $(CC) -MM $(ALL_CFLAGS) $< \
 | sed 's,\(.*\)\.o[:]*,\1.o \1.d : ,g' > $@; \
 [-s $@] || rm -f $@

Remove the '-' if you want to see the dependency files generated.
-include $(SRC:.c=.d)

Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion coff
extcoff \
 clean clean_list program

APPENDIX C

SOURCE CODES FOR GRAPHICAL USER INTERFACE

 62

Private Sub Timer1_Timer()
masa.Refresh
masa.Caption = Time
End Sub
Private Sub Form_Load()

MSComm1.RThreshold = 1
MSComm1.InputLen = 2
MSComm1.CommPort = 1
MSComm1.Settings = "1200,N,8,1"
MSComm1.DTREnable = False
MSComm1.PortOpen = True
Tarikh = Date
masa = Time
Hari = WeekdayName(Weekday(Date, vbSunday))
End Sub

Private Sub Form_Unload(Cancel As Integer)

 MSComm1.PortOpen = False
End Sub

Private Sub MSComm1_OnComm()
Dim x As Long
Dim y As Long
Dim r As Long
 Dim sData As String ' Holds our
incoming data
 Dim lHighByte As Integer
 Dim Word1 As Long ' Holds the Word
result

 If MSComm1.CommEvent = comEvReceive Then ' If
comEvReceive Event then get data and display
 sData = MSComm1.Input
 lHighByte = Asc(Mid$(sData, 1, 1)) ' get 1st byte
 Word1 = lHighByte
 End If
 x = lHighByte

 If lHighByte = 46 & lHighByte = 57 Then
 MsgBox "THIS FRAME IS NOT FOR US!!"

 End If

 If x = &H1 Then
 Label3.Caption = "1 meter"
 Label1.BackColor = &HFF0000
 Label2.BackColor = &HFF00&
 Label4.BackColor = &HFFFFFF
 Label5.BackColor = &HFFFFFF
 Label6.BackColor = &HFFFFFF

 ElseIf x = &H3 Then
 Label3.Caption = "2 meter"
 Label1.BackColor = &HFF0000
 Label2.BackColor = &HFF00&
 Label4.BackColor = &HFFFF&
 Label5.BackColor = &HFFFFFF
 Label6.BackColor = &HFFFFFF

 63

 ElseIf x = &H7 Then
 Label3.Caption = "3 meter"
 Label1.BackColor = &HFF0000
 Label2.BackColor = &HFF00&
 Label4.BackColor = &HFFFF&
 Label5.BackColor = &H80FF&
 Label6.BackColor = &HFFFFFF

 ElseIf x = &HF Then
 Label3.Caption = "4 meter"
 Label1.BackColor = &HFF0000
 Label2.BackColor = &HFF00&
 Label4.BackColor = &HFFFF&
 Label5.BackColor = &H80FF&
 Label6.BackColor = &HFF&
 Else
 Label3.Caption = "WATER LOW"
 Label1.BackColor = &HFF0000
 Label2.BackColor = &HFFFFFF
 Label4.BackColor = &HFFFFFF
 Label5.BackColor = &HFFFFFF
 Label6.BackColor = &HFFFFFF

 End If

End Sub

APPENDIX D

PONYPROG2000 USER MANUAL

 64

How to use PonyProg2000 for the Microrobot
AVR Products(Rev 0.3)

Contents
What is PonyProg2000?

How to install?

Preparation

How to download a program using PonyProg2000

What is PonyProg2000?
PonyProg is a serial device programmer software with a user-friendly GUI framework

available for Windows95, 98, 2000 & NT and Intel Linux. Its purpose is reading and writing

every serial device. At the moment it supports I²C Bus, Microwire, SPI EEPROM, the Atmel

AVR and Microchip PIC micro.

For more details, visit http://www.lancos.com/e2p/ponyprog2000.html

How to install?
Run the setup.exe file.

Preparation
1. Supply proper power to the (CPU) board.

2. Connect the downloading adapter to the PC printer port. Then connect the

downloading adapter and the board with the flat cable.

3. Turn on the power switch on the board. Power LED turns on (when applicable).

4. Compile the source file you want to download.

How to download a program using PonyProg2000
Run the PonyPorg2000 program.

 65

Click on OK. The following window appears.

Click on OK. Select ‘Setup Calibration’.

Click on Yes button. The following window appears.

Click on OK.

Select ‘Setup interface Setup’ and set up as shown below (Parallel, Avr ISP I/O, LPT1)

and click on Probe. ‘Test Ok’ message appears. Click on OK. Click on OK.

 66

Select the device you want. (‘Device AVR micro XXX’, XXX is the device you want)

Select ‘Command Program Options’ and check as shown below. (Reload Files, Erase,

Write Program memory)

Click on OK.

Some devices require ‘Flash Fuse Bits Setting’ for the desired clock source setting. For

example, CKSEL3..0 bits of the ATmega8535 and Atmega8515 devices need to be set 1 to

 67

select the External Crystal clock source mode. Refer to ‘Clock Options’ of the device sheet

for the detailed bit setting.

If you need to set the bits, select ‘Command Security and Configuration Bits…’.

Click on Read button, uncheck the CKSEL3..0 bits and then click on Write button.

Fig 1.6 shows a ‘Security and Configuration Bits’ dialog box as an example.

Note: If the board has an AT90S-type CPU instead of ATmega-type, the setting is not

required.

Select ‘File Open Program File’ and load the *.rom(or *.hex) file.

Select ‘Command Program’ or press ‘Ctrl + P’ to start the downloading. If no ‘Program

Failed’ message appears, the downloading has been completed successfully.

www.microrobot.com

	Title
	Self- Declaration
	Dedication
	Acknowledgment
	Abstract
	Abstrak
	Table of Contents
	List of Figure
	List of Table
	List of Abbreviations
	List of Appendices
	Chapter 1 INTRODUCTION
	Chapter 2 LITERATURE REVIEWS
	Chapter 3 RECEIVER NODE DEVELOPMENT
	Chapter 4 RESULTS AND ANALYSIS
	Chapter 5 CONCLUSION AND FUTURE WORKS
	References
	Appendix A
	Appendix B
	AppendixC
	Appendix D

