
 
www.robotshop.com  

Adafruit Wave Shield User Guide 

RB-Ada-04 

 

Introduction......................................................................................................................... 3 
FAQs ................................................................................................................................... 4 

Can this shield play MP3 files? What about WMA, Ogg, AAC…?............................... 4 
What sort of audio can it play? ....................................................................................... 4 
What does it sound like? ................................................................................................. 4 
Can this shield record audio?.......................................................................................... 4 
What pins are used by the shield?................................................................................... 4 

Overview............................................................................................................................. 5 
Voltage regulator ............................................................................................................ 5 
SD/MMC card holder ..................................................................................................... 5 
The microcontroller/Arduino .......................................................................................... 6 
DAC ................................................................................................................................ 7 
Analog output.................................................................................................................. 8 

Parts list............................................................................................................................... 9 
Make it .............................................................................................................................. 12 
How to Use it .................................................................................................................... 27 

Step 1: Format............................................................................................................... 27 
Step 2: Check the file.................................................................................................... 30 

Option 1. Use iTunes ................................................................................................ 31 
Option 2. Use SoX .................................................................................................... 33 
Option 3. Use Audacity............................................................................................. 33 

Step 3. Start up Audacity and open the file .................................................................. 34 
Step 4. Split and Mix a stereo track .............................................................................. 36 
Step 5. Convert to 16 bit audio ..................................................................................... 37 
Step 6. Convert to 22-KHz or less ................................................................................ 38 
Step 7. Prepare to export ............................................................................................... 38 
Step 8. Export! .............................................................................................................. 39 

Troubleshooting & Extras................................................................................................. 41 
Getting Stack overflow errors? ..................................................................................... 41 



Get more RAM & Flash! .............................................................................................. 41 
Generating speech......................................................................................................... 41 
Sound sample library .................................................................................................... 41 
Digital audio player....................................................................................................... 41 
PI party! ........................................................................................................................ 41 

Sample Code ..................................................................................................................... 42 
 
 



Introduction 
 
The shield comes with an Arduino library for easy use; simply drag uncompressed wave 
files onto the SD card and plug it in. Then use the library to play audio when buttons are 
pressed, or when a sensor goes off, or when serial data is received, etc. Audio is played 
asynchronously as an interrupt, so the Arduino can perform tasks while the audio is 
playing. 
 

• Can play any uncompressed 22KHz, 16bit, mono Wave (.wav) files of any size. 
While it isnt CD quality, it is certainly good enough to play music, have spoken 
word, or audio effects  

• Output is mono, into L and R channels, standard 3.5mm headphone jack and a 
connection for a speaker that is switched on when the headphones are unplugged  

• Files are read off of FAT16 formatted SD/MMC card  

• Included library makes playing audio easy  
 
While the shield has been tested and works well, here are some points to keep in mind 
 

• The audio playback library uses 10K of flash - so if you want to use an NG 
arduino, you'll need to upgrade to an Atmega168 chip  

• About 600 bytes of SRAM are used to buffer the audio and keep track of file data, 
so RAM-heavy projects may not work well  

• The shield can't play MP3, WMA, Ogg or other compressed audio files. It can 
only play uncompressed PCM/WAV files. Converting audio to WAV format is 
very easy, and is often the default format for many audio programs.  

• Files are stored as 8.3 name format, and can only be placed in the root directory. 
That means you can only have ~512 files (but they can be any size).  

Ideas for what you can use it for. 
  

• Make a portable audio player  

• Use the AT&T text-to-speech site to make snippets of speech that you string 
together for a talking project, like..  

• Talking temperature sensor  

• Talking clock  

• Interfaces for sight-impared people  

• Doorbell that plays a cool tune  

• Jukebox/music-box that plays a song when its opened, or a coin is inserted  

• Security system that warns the intruder  

• Audio looper for musical effects and performances  

• Synthesizer with different sounds  

• Really freaky halloween props that scream  

• Display (like a point-of-sale box) that you can plug into to hear the message  
 



FAQs 
 

Can this shield play MP3 files? What about WMA, Ogg, AAC…?  

 
No, compressed audio requires either a specialized chip (which is expensive) or a very 
powerful chip. The Arduino microcontroller can't uncompress MP3 on the fly and to keep 
the shield inexpensive, no mp3 decoder chip is included.  

What sort of audio can it play?  

 
It can play uncompressed Wave files (.wav format). This is a standard format and pretty 
much every audio program can convert your music or audio into wave format. Make sure 
the sample rate is mono, 22KHz (or less) and 16-bit (or less).  

What does it sound like?  

The best way to determine if the quality is good enough for your project is use Audacity 
and go thru the steps in the User Manual for converting MP3s (and other files) to 
22KHz/16-bit format. 

Can this shield record audio?  

 
There is no hook-up for a microphone, so there is no easy way to record audio. There is 
also not enough program space on the current Arduino chips (atmega168) to support 
recording audio and saving it to the SD card as well as playback.  

 

What pins are used by the shield?  

Pins 13, 12, 11 are always used by the SD card (they are the only pins that have a high 
speed SPI interface). Then there are 5 other pins used to talk to the DAC and SD card, but 
they can be set to connect to any arduino pin. However, by default, the library is 
configured to use pins 10 (for SD card) and pins 2, 3, 4 and 5 for the DAC. To chanage 
these pins requires modifying the library - the pins are referenced by their 'hardware' pin 
names (ie PORTD, etc) not by arduino pins. That means pins 6, 7, 8, 9 and the 6 analog 
in pins (also known as digital i/o pins 14-20) are available 



Overview  
 
Here is an explanation of how the wave shield works. We'll go section by section. You'll want to refer 
to the schematic  
 

Voltage regulator  

The easiest thing to understand is the 3.3V voltage regulator. This takes the 5V supply from the 
Arduino and converts it to a nice 3.3V supply. This is necessary because SD/MMC cards only work 
on 3.3V. If you give them 5V they'll burn out & die! 

The voltage regulator used is the MCP1700-330, which can provide up to 250 mA of current. There 
are 4 capacitors associated with the regulator. C1 and C2 are the input capacitors; they stabilize the 
5V input. C3 and C4 are the output capacitors, they stabilize the 3.3V output  

There is a jumper that allows you to skip the regulator and use the 'built in' 3.3V supply from the 
Arduino. However, it is not suggested as that supply is not guaranteed to provide the current 
necessary. 

SD/MMC card holder  

 

SD/MMC cards are very popular, small, and inexpensive. The card holder is what allows you to 
remove and replace the card easily. They can be removed/replaced thousands of times. The top three 
'pins' are CD, WP and COMMON_SW. CD stands for "card detect" this is a mechanical switch that 
closes when the card is inserted. WP stands for "write protect", this is a mechanical switch that closes 
when the card has the little side tab slid down to 'lock'. COMMON_SW is the common connection for 
the two switches. We simply connect this to ground. Thus CD and WP will be grounded when active 

At the bottom are the power supplies. There are 2 mechanical ground connections and a logic ground. 
There is also the logic power connection, connected to the 3.3v regulator 



 

In the middle are the data connections. DAT1 and DAT2 are for advanced/high-speed SD card 
interfacing. We don't do this so they are left disconnected. DATA_OUT is the serial data out from the 
card, which is connected to the SPI port of the Arduino. DATA_IN is the input and SCLK is the 
clock input. Since they must be 3.3V and the Arduino usually sends 5V data, we use voltage dividers 
(R2, R3, R4 and R5) to reduce the inputs down.  

CS is the select line, used to tell the MMC that we want to send it data. This line is pulled low (to 
ground) when we want to send data to the card. That means we need to make sure when we don’t have 
anything connected, the pin is pulled high to ~3.3V. We use R6 as the pull-up and zener diode D1 to 
keep the voltage at 3.3V. R1 allows the diode to bias properly when the Arduino pulls the pin high.  

The microcontroller/Arduino  

The library contains a bunch of specialized code. The first part is a 'FAT16' library, this is a set of 
functions that allow the chip to read the SD card, locate files and read their contents. The method it 
does this by is particularly detailed and you can read the SD/MMC and FAT16 manuals if you're 
interested 

 
Image stolen from Microsoft. Take that, Bill!  

Once it opens a file and is ready to read it, it looks through the first section of the file. If it's a Wave 
file, there will be all sorts of information stored in this header that will indicate the channels 
(mono/stereo/etc), bits-per-sample (8 to 32), sample rate (ie 16KHz) etc. Basically, the firmware 
verifies that it is mono channel, 16 or less bits-per-sample and 22KHz or less sample rate. Then it sets 
up the audio interrupt that will go off sample-rate times a second. For example, if its a 22KHz audio 
sample, the interrupt will go off 22,000 times a second!  



 
Image from wikipedia  

The audio is encoded in PCM format. This means "pulse Code Modulation". Lets say its a 16bit, 
22khz wave. The audio waveform is sliced up 22,000 times a second and a corresponding value (up to 
16 bits - from 0 to 65,635) is read from the waveform, then that value is stored in the file. Each sample 
is a unique value. The file is not compressed. This means the files are very large but the quality is very 
very good.  

The SD card can provide 512 bytes at a time. This is buffered inside the Arduino's RAM so that we 
have smooth playback. (Techinally, its a double-buffer which means we read 256 bytes and play 256 
bytes, then swap.) The audio interrupt picks one sample at a time and sends the data to the DAC 
(digital/analog converter) 

DAC  

The DAC is a very simple device. When you send it data it will convert that digital information back 
into an analog signal! 

 

You'll notice it actually doesn't get the orignal waveform perfect. The more bits of digital data, the 
higher quality of audio reproduction. CDs have 16-bits per sample. While it would have been nice to 
have a 16-bit DAC, the best option for this design was a 12-bit dac. (That's still quite good.) 

The microcontroller/Arduino uses the DAC_CS (chip select), DAC_CLK (data clock), DAC_DI 
(data), and DAC_LATCH (convert the digital to analog) pins to send the sample data over. The DAC 
also has a Vref input, this is the reference voltage that it uses to define the maximum analog value it 
can generate. There is a very low low-pass filter connected to it (C6 and R8) so that any digital noise 
(there is -a lot-) will not make it into the audio signal.  

There is another low-pass filter connected to the output of the DAC (R7 and C8). This is for filtering 
out the 'square wave' component you see in the recreated-audio wave. Even though the noise is only 
1/4096'ths of the signal (about 1.2mV) its still noise and these two components filter out anything 
above 11KHz. The reason the filter cut-off frequency is 11KHz and not 22KHz is that if you sample at 



22KHz you will only be able to reproduce frequencies at half that rate, 11KHz. This is the Nyquist 
theory. It is sneaky but true. If you try to sample 16KHz waveform at 22KHz it will actually sound 
much -lower-, it will play at 6KHz (it is 'mirrored' around 11KHz)  

Analog output  

Finally there is the volume control and output stage. The potentiometer acts as a simple volume 
control. It simply divides down the analog signal from 5Vpp down to as low as 0Vpp. The pot is 
'audio' type which means that the voltage changes logarithmically, which our ears interpret as linearly. 

The analog signal then goes into a high-output, rail-to-rail opamp. This op-amp can provide up to 
100mA per channel. The two channels are hooked up in parallel for up to 200mA output (at 5V). This 
means it can provide 1/8 W into an 8ohm speaker (or 1/4 W into 4ohm speaker). This isn't enough for 
a boom-box but its good for headphones and small speakers. The output is filtered through a bypass 
capacitor C9 which will keep any DC voltage from going to the speaker, which could damage it.  

The headphone jack is stereo, which both mono channels connected in parallel. This gives the most 
power output. There are internal switches in the jack so that when the headphones are removed, the 
audio flows to the 'speaker connection' next to the jack. 



Parts list  

Check to make sure your kit comes with the following parts. Sometimes we make mistakes so double 
check everything!  

Image Name Description 
Part # & 
Datasheet  

Distributor Qty 

 

IC1 

3.3V linear 
voltage 
regulator, 
250mA 
current  

MCP1700-
3302E/TO 

Digikey 
Mouser 

1 

 

IC2 12-bit DAC  MCP4921 
Digikey 
Mouser 

1 

 

IC3 
High-current 
opamp  

TS922IN 
or 
TS922AIN 

Digikey 
Mouser 

1 

 

 
SD/MMC 
card holder  

Tyco 
1734234-1  

Digikey 1 



 

TM1 

10K Audio 
thumbwheel 
potentiometer.  
Includes pot, 
thumbwheel 
and tiny 
screw  

311-
1204F-
10K 

Mouser 1 

 

X1 

Stereo 
headphone 
jack with 
switches  

STX-
3100-5N 
or 
STX-
3100-5NB 

Mouser 
Digikey  

1 

   

R1 

1/4W 5% 
1.0K resistor 
Brown Black 
Red Gold  

  
Digikey 
Mouser 

1 

   

R7 

1/4W 5% 
1.5K resistor 
Brown Green 
Red Gold  

  
Digikey 
Mouser 

1 

   

R3, 
R5, R6  

1/4W 5% 
4.7K resistor 
yellow purple 
red 

  Digikey 3 

   

R2, R4 

1/4W 5% 10K 
resistor 
Brown, 
Black, 
Orange, Gold  

  
Digikey 
Mouser 

2 

   

R8 

1/4W 5% 
100K resistor 
Brown, 
Black, 
Yellow, Gold  

  Digikey 1 



 

C8 

0.01uF 
ceramic 
capacitor 
(103)  
May look 
deceptively 
like the 0.1uF 
ceramic 
capacitors! 
Lately has 
been shipped 
in an 'axial' 
(not 'radial' 
package. See 
instructions 
for details. 

   1 

 

C2, 
C3, 
C5, 
C6, C7  

0.1uF ceramic 
capacitor 
(104)  
Looks 
deceptively 
like the 
0.01uF 
ceramic 
capacitor!  

  
Digikey 
Mouser 

5 

 

C1, 
C4, C9 

100uF / 6V 
capacitor  

  
Digikey 
Mouser 

3 

 

D1 
3.6V Zener 
diode  

1N5227B 
Digikey 
Mouser 

1 

 

RESET 
6mm tactile 
switch  

B3F-1000 
Digikey 
Mouser 

1 



 

ICSP 
6-pin ICSP 
header  

  
Digikey 
Mouser 

1 

 

 
36 pin male 
header (1x36)  

  
Digikey 
Mouser 

1 

  PCB Circuit board   
Adafruit 
Industries 
RobotShop  

1 

 

Make it  

 

Get ready by placing the PCB in a vise  

 

We're going to the SD card first. While surface 
mount parts are a little tougher than thru-hole, 
this piece has pin spacing of 0.1" so it is quite 
easy. Doing it first also gives us lots of working 
room. The holder should 'snap' perfectly into 
place thanks to two bumps on the bottom.  



 

 

 

We'll start with the four side tabs that are used to 
mechanically secure the card holder in place. 
Heat up the metal tab and the pad (the silver 
square beneath it) for 3 seconds with a hot 
soldering iron, then poke just a bit of solder in. 
Do this for all three corners. Once this is done 
you should not be able to lift the card holder  

 

Now go thru and solder the 8 leftmost pins that 
stick out from the holder. The three rightmost 
pins are thinner and closer together so they are 
tougher to solder. Luckily they are not used and 
you simply skip them (although the photo shows 
them done). Check that you have no solder 
bridges - the pins should not be soldered to the 
metal body of the holder or to each other  



 

 

 

Next, we will solder all of the many resistors. The 
10K resistors R2 and R4 are first. Form them into 
staples (as shown left with a 100 ohm resistor), 
then place them so they sit flat against the PCB, 
in the correct locations. Resistors don't have 
polarity so they can go in 'either way' and work 
fine! Once placed, bend the leads out so the 
resistors dont fall out. If you're using an NG 
Ardiuno, replace R2 with a 1.0K-2.0K resistor 

 

Solder the leads to the pads (metal ring) by 
heating both with the side-tip of the iron for 3 
seconds and then poking in a bit of solder  



 

 

Use your diagonal cutters to clip the leads off just 
above the solder joint  

 

Next place the three 4.7K resistor R3 R5 and R6. 
Make sure they go in the right locations! If you're 
using the shield on an NG arduino, use a piece of 
wire instead of R5 

 

Solder and clip the leads of the three resistors  



 

 

 

Finish up the resistors by placingR8 (100Kohm), 
R1 (1.0K) and R7 (1.5K). In the photo, R1 is 
shown as 1.5K...this is a mistake! (It was too 
flakey for me and I reduced the resistance). Make 
sure you place a 1.0K resistor in R1! Solder the 
components  

 

Next comes the 3.6V zener diode. A diode is sort 
of resistor-shaped except that it has a black stripe 
on one end. Diodes are polarized and must be 
placed the correct way to work so make sure that 
the black stripe on the diode matches the white 
stripe on the silkscreen position indicator 



 

 

 

Next is the 0.01uF ceramic capacitor C8. The 
tricky part here is that in older kits there are many 
0.1uF ceramic capacitors in the kit that look 
identical to the 0.01uF! 
The way to tell the difference is look for the 103 
printed on it. If it says 104 then it's a 0.1uF. Make 
sure it says 103! This capacitor forms the output 
low-pass filter for the audio so its important to 
have the right value.  
Lately I have been shipping kits with axial (long-
ways) package, not radial (side-ways) package. 
These are longer (see left) and are easy to bend 
over for soldering. This way there is less 
confusion. Either way, try to spot the 103 
marking 

 

Place the capacitor right next to R7. 
Ceramic capacitors are non-polarized and can go 
in 'either way'  

 

Solder and clip the small capacitor leads  



 

 

Once you're sure you have C8 correct, you can 
place the remaining 0.1uF ceramic capacitors C2, 
C3, C5, C6 and C7.  
Ceramic capacitors are non-polarized and can go 
in 'either way'  

 

 

Solder and clip the capacitors  



 

Next is the DAC (digital-analog converter) IC2. 
This is what turns the data into music. Make sure 
you pick the DAC to solder in here; it says 
MCP4921 on it and has a stylized M. 
The chip has a notch in one end and that notch 
must line up with the notch in the silkscreen. In 
this photo, that’s on the right.  

 

Flip over the board and solder in each pin of the 
chip. The pins are already quite short so you 
don’t have to clip them  

 

Next is the operational-amplifier (op-amp) IC3. It 
is used to buffer and amplify the output, so that it 
can drive a small speaker or headphones.  
This is a similar-looking chip to the DAC. Again, 
check that the notch matches the silkscreen notch. 
In this photo, that’s to the left. Solder it in, just 
like you did with the DAC  

 

Next is the 3.3V regulator IC1 that provides a 
nice power supply to run the SD card. The 
regulator comes in a semi-circular package, so 
make sure it matches up with the silk-screened 
image. 



 

 

 

Turn the board over and solder/clip the three 
leads.  

 

Next is the reset button and the ICSP header. 
These let you reset the Arduino manually, and 
reprogram it directly with a AVR programmer. 
The button will snap in, it’s symmetric so it goes 
in 'either way'. The header is also symmetric, 
make sure the long end sticks up  



 

 

Solder in both components. Their leads are pretty 
short so you don’t need to clip them.  

 

 

Next are the three electrolytic capacitors C1 C4 
and C9.  
Electrolytic capacitors are polarized so make sure 
they go in the right way! The long lead is the 
positive lead, make sure that goes into the hole 
marked with a + as shown here.  



 

If you're planning to stack another shield on top 
of this one, you may want to bend the capacitors 
so they lay flat.  

 

Next is the headphone jack. It snaps into place 
right at the edge of the PCB.  

 

Solder the jack in place. You may want to clip the 
legs a little if you can, so that it will sit better on 
the Arduino.  

 

Next is the volume potentiometer TM1. This is an 
audio-type 10K pot. It will slip into place pretty 
easily.  



 

 

Solder all 5 pins of the potentiometer. Use plenty 
of solder so that it has a lot of mechanical 
strength 

 

 

Next, break the 36-pin header strip into smaller 
sections so that the shield can be placed on the 
Arduino. You can use pliers or diagonal cutters. 
Clip off 2-6pin and 2-8pin pieces.  



 

 

 

If you're using a Diecimila Arduino, place the 6 
and 8 pin headers into the female sockets.  
If you have an NG Arduino, you can place a 3-
pin female header (not included) as shown, which 
will let you use the reset button.  

  

 

Place the shield PCB onto the Arduino so that all 
the holes match up with the header.  



 

 

Solder in each and every pin of header  

 

 

Next you can install the thumbwheel. Use a #0 
screwdriver. Align the thumbwheel so it 'grabs' 
the potentiometer, and then gently screw it in 
place. 



 

Pins 13, 12 and 11 are used to talk to the SD card 
and can’t be changed. The rest of the pins, 
however, are more flexible. Still, for all the 
examples on the site we'll be using this wiring, so 
it is suggested to just go with this. 
You can use any sort of wire. Solder the jumper 
wires in place. 

 

Hooray you are done! Now onto the user 
manual... 

  



How to Use it 
 
Introduction  

 
The wave shield uses SD/MMC cards. They are extraordinarily popular, sometimes even 
available in grocery stores! They are used in MP3 players, cameras, audio recorders, etc. 
You can use any card that can store 32 MB to 1.0 GB. A 1 gigabyte card can hold 380 
minutes of uncompressed audio for the shield, and costs $5  

 

You'll also need a way to read and write from the SD card. Sometimes you can use your camera and 
MP3 player - when its plugged in you will be able to see it as a disk. Or you may need an SD card 
reader 

 

Step 1: Format  

The wave shield needs the SD card to be formatted in FAT16 format 



To format the card, place it into your card reader, then right click on the disk and select Format... 

 

Make sure that in the File system pulldown menu, that FAT is selected and not FAT32 



 

And click Start 

If you get the Properties of the card you will see it is FAT formatted. This card has some files on it so 
its not completely empty  



 

Intro  

The wave shield is designed to play a very specific type of audio. If your music sample is in MP3 
format, or 44KHz wav, you'll want to convert it to the right format. This way you will get the highest 
quality audio  

Step 2: Check the file  

If you have a wave file already, you should check to see if its already in a proper format. That way 
you will save yourself some time! In windows, right-click on the file, and select Properties then click 
on the Summary tab  



 

This file is 16KHz, 16-bit, mono PCM. Since thats below the maximum (22KHz, 16-bit, mono PCM) 
you are good to go. No need to convert the file  

OK lets say the file is an MP3 or 44KHz or stereo wave file. We will need to convert it down. 

Option 1. Use iTunes  

You can do the conversion easily with iTunes (available for Mac/Windows) if you have your music in 
iTunes already this will be super fast to convert multiple files! 

You'll have to set the preferences first, but you only have to do it once 



 

Go to the Advanced->Importing tab. Make sure it is set to 22KHz (or less), 16bit (or less) and Mono 
channels. Click OK  

 

Next find the files you want to convert. Select Convert Selection to WAV from the menu  



 

Then simply drag the sounds onto an SD card  

 

Option 2. Use SoX  

 

Option 3. Use Audacity  

If you dont have or don't want to use iTunes you can convert files (one at a time) with Audacity 

This is pretty easy. You can use the free Audacity software - available for windows, linux or mac 



 

Grab it from the download page and install it on your computer  

Step 3. Start up Audacity and open the file  

Start up Audacity 

 

Select File->Open... and open the file. In my case its an MP3 



 



Audacity will spend some time uncompressing and opening the file and then present you with 
something like this 

Step 4. Split and Mix a stereo track  

Next, if you have a stero track, you'll probably want to turn it into a mixed mono track. That way it 
will sound most like the original. Click on the title and select Split Stereo Track  

 

Next, when you mix a track you'll end up adding both of them together. This means that if both sides 
are loud, you'll get distortion. Reduce the gain on both tracks to -6dB 

 



Then convert both tracks to Mono by clicking on each title. Make sure you do it for both tracks! 

 

Now to mix! From the menu select Project -> Quick Mix 

 

A few seconds later, you have converted your stereo track to mono!  

Step 5. Convert to 16 bit audio  

If your audio rate is higher than 16-bit, you will want to downconvert it. Click on the track title and 
select Set Sample Format -> 16-bit 



 

Step 6. Convert to 22-KHz or less  

Finally, make sure the audio file will be saved as 22KHz. If the the track label says 44KHz you will 
want to convert it.  

At the bottom of the window there is a little button named Project rate: Make sure this is 22KHz or 
less  

 

Step 7. Prepare to export  

Check the Preferences menu item and select the File Formats tab. Make sure the Uncompressed 
Export Format is WAV (Microsoft 16 bit PCM)  



 

You only have to do this once!  

Step 8. Export!  

Finally, you're ready to export the file. Select Export as WAV... from the pulldown  

 



It may take a few seconds to convert and save the file  

 

Finally, check the file Properties. It should be 16 bit, mono, 22KHz (or less) and PCM format  

 

OK! Now you can go to the next step, which is formatting an SD card and copying files over  

 



Troubleshooting & Extras 

Getting Stack overflow errors?  

 
These examples are all tested to work with v13 or higher, so try to use that if possible!  

 

Get more RAM & Flash!  

 
Before you try to play audio, you'll want to free up some Arduino RAM, so that you don't 
end up with a nasty stack-overflow. Especially if you're running a Atmega168-based 
Arduino! 
Follow these instructions on how to get more RAM by reducing the input Serial library 
buffer. You dont need to do this if you're using an ATmega328 (although, hey it wont 
hurt!) 
Note that the library is pretty big (about 10K) so if you want to do a lot more, I suggest 
upgrading to an ATmega328. The shield was designed with the expectation that this part 
would be available. 
 

Generating speech  

 
If you want a human voice in your project, you can use the free generator at AT&T Text-
to-Speech demo page. It will create a 16KHz, 16-bit audio file so you can use the audio 
'right out of the box'  
http://www.research.att.com/~ttsweb/tts/demo.php#top 
 

Sound sample library  

 
There is huge a collection of C.C available online. Attribution licensed sound samples! A 
lot of it is already mono, 16 or 22KHz 
http://wiki.laptop.org/go/Sound_samples 
 

Digital audio player  

This is the simplest example. It plays every audio file it finds on the SD card in a loop. This sketch is 
also included in the library 

PI party!  

This example shows how to use the AT&T text-to-speech website to speak the first 2640 digits of pi. 
The number is stored in flash, each digit is spoken one at a time.  



Sample Code 
 
#include <AF_Wave.h> 

#include <avr/pgmspace.h> 

#include "util.h" 

#include "wave.h" 

 

AF_Wave card; 

File f; 

Wavefile wave;      // only one! 

 

#define redled 9 

 

uint16_t samplerate; 

 

void setup() { 

  Serial.begin(9600);           // set up Serial library at 9600 bps 

  Serial.println("Wave test!"); 

 

  pinMode(2, OUTPUT);  

  pinMode(3, OUTPUT); 

  pinMode(4, OUTPUT); 

  pinMode(5, OUTPUT); 

  pinMode(redled, OUTPUT); 

   

  if (!card.init_card()) { 

    putstring_nl("Card init. failed!"); return; 

  } 

  if (!card.open_partition()) { 

    putstring_nl("No partition!"); return; 

  } 

  if (!card.open_filesys()) { 

    putstring_nl("Couldn't open filesys"); return; 

  } 

 

 if (!card.open_rootdir()) { 

    putstring_nl("Couldn't open dir"); return; 

  } 

 

  putstring_nl("Files found:"); 

  ls(); 

} 

 

void ls() { 

  char name[13]; 

  int ret; 

   

  card.reset_dir(); 

  putstring_nl("Files found:"); 

  while (1) { 

    ret = card.get_next_name_in_dir(name); 

    if (!ret) { 

       card.reset_dir(); 

       return; 

    } 

    Serial.println(name); 



  } 

} 

 

uint8_t tracknum = 0; 

 

void loop() {  

   uint8_t i, r; 

   char c, name[15]; 

 

 

   card.reset_dir(); 

   // scroll through the files in the directory 

   for (i=0; i<tracknum+1; i++) { 

     r = card.get_next_name_in_dir(name); 

     if (!r) { 

       // ran out of tracks! start over 

       tracknum = 0; 

       return; 

     } 

   } 

   putstring("\n\rPlaying "); Serial.print(name); 

   // reset the directory so we can find the file 

   card.reset_dir(); 

   playcomplete(name); 

   tracknum++; 

} 

 

void playcomplete(char *name) { 

  uint16_t potval; 

  uint32_t newsamplerate; 

   

  playfile(name); 

  samplerate = wave.dwSamplesPerSec; 

  while (wave.isplaying) {      

 // you can do stuff here! 

 delay(500); 

   } 

  card.close_file(f); 

} 

 

void playfile(char *name) { 

   f = card.open_file(name); 

   if (!f) { 

      putstring_nl(" Couldn't open file"); return; 

   } 

   if (!wave.create(f)) { 

     putstring_nl(" Not a valid WAV"); return; 

   } 

   // ok time to play! 

   wave.play(); 

} 

 


