bac 2

ompetitiveness and innovation

D Iglpa,",qGrowth H{:;) \?’“llk.)“ gramme

Deliverable

Project Acronym: Digipay4Growth

Grant Agreement number: 621052

Project Title: " Digipay4Growth: Governments, SMEs and consumers make expenditures
through a digital payment system that stimulates economic growth and job creation by
increasing sales and access to credits for SMEs. "

Deliverable 5.3 Cyclos IT implementation manual

Revision: [final draft December 2014]

Authors:
Hugo van der Zee (Social Trade Organisation)
Roder van Arkel (Social Trade Organisation)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

P Public

C Confidential, only for members of the consortium and the Commission Services

REVISION HISTORY AND STATEMENT OF ORIGINALITY

Revision History

Revision # Date Author Organisation Description of
revision

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both.

Help - administration

General

= Help - HOW TO

= Navigation in Cyclos
= Personal settings

User management

s Search & register user

= My contacts

= View connected users

= Change profile of user

= Make a payment to user

= Change credit limit of user

= Change group of user

= Activate, block, disable, remove users
= Manage user passwords

= Add user comment (remark)

= Assign product to user

= Manage access channels of user
= Assign broker to user

= Upload user document

= View configuration of user

= Manage advertisements of user
= Send message to users

= Payments overview

= User balances overview

= Manage account limits

Account configuration

s Currencies

= Accounts

= Account fees

= Transfer types

= Transfer fees

= Payment fields

= Payment status

= Payment filters

= Payment authorizations
= Payment qualifications (feedback)
s Scheduled payments
= Payment requests

General

Help - HOW TO

System configuration

= Networks

= Network wizard

= Groups

= Products

= Configurations

= Access channels

= Password types

= [anguages

= Advertisements categories
= Custom advertisements fields
= Web shop

= Custom profile fields

= Custom image categories
= Record types

= Agreements

= Message categories

= User identification methods
= Cyclos scripting

= |mports

= Cyclos license

Content management
= Documents

= Custom images

= Application translation
= Data translation

= Static content

= Menu & pages

= Mobile app pages

= Banners

= |ogos

= Themes

Reports & Alerts
= System reports
= System alerts
= User alerts
= Error logs

The administration help file can be accessed via the help icon in the functions windows. The help
contains an explanation of all administration features. Directly under the title of each help section the
location where to find the described feature is showed. The location is in italic and has a > sign in

front.

For the more complex configurations instruction video's are made and published at this page. New
features might not be covered yet in the video's. We will add video's along the way. Another helpful

resource is the cyclos feature list.

Note: Be aware that you need full administration features to be able to see all the functions that are

http://www.cyclos.org/documentation/cyclos-4-pro-instruction-videos/
http://www.cyclos.org/wp-content/uploads/2013/11/Feature_list.pdf

explained in the help file and instruction video's.

Navigation in Cyclos

Navigation in Cyclos is done via a main menu (horizontal bar) and sub menus that are shown at the
left or directly under the horizontal menu depending on the screen size. When navigating more than
one level deep (for example: view user profile) Cyclos will show a clickable ‘breadcrumb’ tree directly
under the horizontal menu.

Besides the menu you can use the ‘Quick actions’ that show up at the home page. What actions will
show up at this page can be defined in the the local preferences (Personal > Preferences >
Dashboard ations)

The ‘quick search’ (at the top right) can be used to search quickly for search for users, contacts or
advertisements. Operations that are related to users, for example editing the profile of a user or
setting a credit limit, can be done from the Profile > Actions section of the user profile.

Personal settings

> Menu: Personal

At this section you can change personal settings like changing your password, update your profile,
and view notifications. In the ‘configuration’ section you can define what dashboard actions will show

up at the entry (home) page, and the notifications that can be send to your Cyclos notifications inbox
and/or your e-mail address.

User management

Most administrator actions about users are done from the user profile. These user actions generally
are self explanatory. The actions that need additional explanation are described further in this help
section.

Search users & register user

> Quick search: Search Users

> Menu: Users - Management

> Dash board action: Search Users

> Dash board action: Register user

> As guest: Link: Register (top right)

The page where you can search for users has also the option to register new users. This can be
done by selecting the "New" button. If one or more groups exist (and you have permissions to
manage the group) you will have to select the group first.

If public registration is enabled (in the configuration) users can also register themselves via the

option 'Register' at the main page (when not logged in). More information about registration settings
can be viewed at: Manage configurations.

My contacts
> Menu: Users > Management > My contacts
Here you can manage (add & remove) contacts. Selecting a contact of the contact list will bring you

directly to the user profile of the contact. From the profile page you can perform user actions related
to the user (e.g. make payment or send message).

View connected users
> Menu: Users - Management - Connected users
> Menu: Users - Management - User profile

An administrator can view all connected users (see location above) of the users he can manage.
From the connected users list an administrator can disconnect them or go into their profile page.

Change profile of user
> Menu: Users - Management - User profile

From the user profile page you can click the edit icon (next to the username in the title) and update
the user profile fields. From the edit mode page you can also update the user addresses, phones and

profile pictures.

Make a payment to user
> View user profile - Banking - Payment system-to-user
> Menu: Banking - System payment - To user

From the above mentioned locations an administrator can perform a payment to a user (from a
system account). If there is more than one origin account you will have to select the system account
the payment will be done from. If there is one or more possible user (destination) account you will
have to chose one. Most systems have only one possible payment type defined. What means no
payment options will be shown.

Change credit limit of user

> View user profile - Accounts - Account limits

> Menu: System - Products - Select Member product - Account section
> View user profile - Banking- Account limits

> Menu: System - Banking - General overviews - Account limits

An administrator can define a personal credit limit for an individual user or a credit limit for a whole
group of users. This can be a negative credit limit what means the user can start with a zero balance
and go negative (mutual credit model). For economic models that work with positive balances a
payment coming from a system account will need to be configured in order to provide credit for
users. It is possible to define a default credit limit automatically for new registered users. To set a
negative default credit limit for a group of users go to a Member product with an account, then go to
the Account section and set the 'Max. negative account balance'. A initial positive balance can also
be configured in the Account section of a member product, under the option: Initial credit (you will
have to select a system-to-user transfer type).

Change group of user
> View user profile - User management - Groups

In the manage group page you can move users to other groups. Be aware that a different group could
have different products, what means the user could get different features and permissions. More
information about groups can be viewed at: manage groups.

Change user status (activate, block, disable, remove)
> View user profile - User management - (block, disable, remove)
> Menu: Users - Connected users

As an administrator you can block or disable users temporary. A user with the 'blocked' status
cannot login via any access channel but will be active in the system, what means other users can
see him/her and he/she can receive payments. Disabled users cannot login and are not visible by
other users in the system (except for brokers and administrators). Removing users is irreversible,
removed users cannot be set as active anymore. They will remain in the database for backup
reasons. When removing users all advertisement and profile pictures will be removed. The user and
transaction data will be kept, but will be only visible for administrators and brokers (with the
permissions).

The user search has a status option where you can filter by the above mentioned status, and also by
the 'pending' status. Pending users are users that have registered at the public registration page and
did not confirm by email yet.

Manage user passwords
> View user profile - User management - Passwords
An administrator or broker (with the permissions) can manage the passwords of the user from one

page. A password can be blocked and changed. It is also possible to reset the password. What
means a new password will be generated and send by e-mail.

Write user comment (remark)
> View user profile - User information - Remarks
> Menu: Users - User records - Remarks

Administrators can insert remarks (comments) for a user from user profile (link 'Remarks') and view a

history of remarks for that specific user. From the menu administrators can search for Remarks
given to all users.

Note: The remark is a 'user record’ defined in the default database that comes with Cyclos. Records
is a powerful feature in Cyclos that allows to store and retrieve data in an structured way. A remark is
a very simple example of a user record. More information about user and system records can be
found here.

Assign product to user
> View user profile - User management - Products
At this page you can view the (permission) products of a user and assign an individual product to a

user. Be aware that usually products are assigned at group or group set level. Information about
permission products can be viewed at the manage products help file.

Manage channels of user
> View user profile - User management - Channels access

Here you can define what channels the user has access to. This setting will overwrite the channels
defined in the product.

Assign broker to user
> View user profile - User management - Brokers
An administrator can assign a broker to a user and in the case a user has multiple brokers one

broker can be set as 'main' broker. Information about brokers can be viewed at the manage products
help file.

Upload user document
> View user profile - User information - Documents
An administrator or broker can upload a document (file) and attached it to a user. A typical individual

document would be a digital copy of a passport. The page will also show the shared documents
documents that are assigned to the user product.

View configuration of user
> View user profile - User management - Configuration
This page shows the 'active’ configuration of the user. The active configuration is the end result of

the combined configurations that are applied to the user. For more information on configurations
please view the configuration help file.

Manage advertisements of user

> View user profile - Advertisements - View user ads

> Menu: Users Advertisements - Search advertisements

Administrators can manage advertisements of a specific user from the user profile. Administrators
can search for advertisements of all users from the User management menu. The advertisement

permissions can be defined in the user product (Advertisements section). The visibility of
advertisements for guests is defined in the configuration (Visible advertisement groups).

Manage references of user
> View user profile - User information - References
Administrators can manage the references of a user from the user profile. It is possible to edit

existing references. If users exceed a certain number of maximum received or given negative
references an alert can be sent. This can be defined in the configuration (alert section).

Send message to users

> View user profile - User information - Send message from system
> Menu: Users - Messages - New message

> Menu: Users - Messages - Search messages

> Menu: Users - Messages - Mailing lists

Administrators can send an individual message from the user profile. When sending a message a

message category needs to be selected. From the user management menu (see location) an
administrator can send messages to an individual user or to user groups (mailing). It is possible to
send mailings via different channels, currently SMS and e-mail are supported. A history of sent and
and received messages is available under the Menu: Users - Messages - Search Messages. When
selecting a mailing form the mailing list it will give information about the mailing (e.g. number of
succesfully sent / failed messages).

Payments overview
> Menu: Banking - General overviews - Payments

Here you can have a quick overview about all the payments in the system. The latest (most recent)
payments are listed on top. It is possible to search/filter by various criteria.

User balances overview
> Menu: Banking - General overviews - User balances

This feature provides a way to have a quick overview of users and their account balances. The
feature consists basically list of users with their account balances. There are various search (filter)
options and a 'show on Map' option. The map shows only users that have addresses. The filter
options are mostly the same as the normal user search, and there are some additional filter options.
It is possible to filter on a balance 'range'. This will allow you for example to retrieve a list of all users
with account balances between 500 and 1500.

With the 'yellow range' option you can define colors that will appear in the search result list and the
Map. For example, when the yellow balance range is set -200 to 200’ the users balances that fall
within -200 and 200 will show up with as yellow (account balance in list or marker in the Map), users
below -200 will show up as red, and users above 200 as green. A default yellow range can be defined
in the account type. Be aware that the yellow range option does not filter' anything, it just defines
that the account balances for the given search result will be shown with colors according to the
balances. When clicking on a marker in the map it opens a pop-up with the user information (name
and balance) and it has a link to jump to the user profile. You can go back to the map with the
breadcrumb navigation. The map has a full screen option what makes it easier for results with many
users. You can go back from the full screen mode to normal display mode by clicking the 'x' at the
top right of the (full) screen.

Above the user balances list some information is displayed (based on the search result). Currently it
displays the total sum of positive/negative balances and average negative/positive balance.

Manage account limits
> Menu: Banking - General overviews - Account limits
Here you can have a quick overview about account limits. The latest (most recent) limit changes are

listed on top. Entering a account limit detail the limits can be changed. Thee same page has also a
log with the history of account limit changes.

Account configuration

Currencies

> Menu: System - Accounts configuration - Currencies

Before creating accounts a currency needs to be created. A currency has a format (pre and suffix)
and a symbol. When creating a new account a currency needs to be selected. When a transfer

number is defined in the currency all transactions within the currency realm will get a unique
(generated) transfer number.

Accounts

> Menu: System - Accounts configuration - Account types

> Menu: System - User configuration - Product (permissions) - Accounts

> Menu: Banking - System accounts - Account summary

Accounts in Cyclos can be either of the type "System" or "Member". Both types are related to a

currency and can contain units that can be transferred to and from other accounts (if transaction
types between these accounts exist). If a new account with the type "Member" is created it is just an

empty account type and cannot be accessed by members. In order to enable a member account an
administrator will have to enter a member product and associate the new account to the product. By
doing this all members with that product will have such a member account. Even though there is one
member account configured in the sytem each member will have their own account balance and their
own payments. Members can have zero, one or more member accounts (assigned via products), and
make payments between their own accounts, to other member accounts and to system accounts. A
member account can have a generic name visible for all account owners, for example, 'checking
account'.

Contrary to a Member account a System account is a single 'stand alone' account, it will just have
one account balance for example. A system account is not directly associated with specific users
but administrators can be given permissions (defined in a product) to make payments from the
account to other system or member accounts. A system account be either 'limited’, what means it
can be given a max negative and positive balance, or 'unlimited’, what means it can go indefitly
negative or positive.

Account fees

> Menu: System - Accounts configuration - Account types

> Menu: System - User configuration - Product (permissions) - Accounts
> Menu: Banking - System accounts - Account summary

Account fees are payments from members to a system account or the other way around. Usually
they are scheduled to run in a period (e.g. monthly) but they can be configured to be run manually as
well (by an administrator). Account fees are related to an account and can be activated for one or
more Member products. When an account fee is levied, all member groups that have been selected
in the account fee configuration will be charged. However, though the word "fee" suggests that
members are paying, an account fee can also be configured that a system account is the paying
party, and that members receive the fee. A typical account fee is a monthly contribution payment
from members to a system account (but it can be the other way around as well). Another example is
"demurrage" or "liquidity tax", where users pay over their positive balance through time, as a sort of
"negative interest".

Detailed information about authorizations and roles can be found in the online specification page.

Transfer types

> Menu: System - Accounts configuration - Account types - Transfer types
> Menu: System - User configuration - Product (permissions) - Accounts

> Menu: Banking - Account summary - Account - Transaction details

Transfers that have been done can be viewed in the Account summary page when clicking on a
transfer from the history list. Transfers can happen from or to 'system accounts™ and "user
accounts’, as explained in the account section above. Each transfer (or payment) will have a
Transfer type'. The transfer type defines the origin and the destination account type of the payment.
A new transfer is always created from within the origin account (the account of the payer). The
transfer type has many configuration options, for example 'max daily limit' or 'require authorization'.
The 'confirmation text' of a payment will show up in the confirmation dialog window when the user has
to confirm the payment. The transaction type can also be bound to a specific channel. For example,
a transfer type 'mobile payment' could be created and only be associated with the SMS channel. This
way the transfer type will only be available for SMS operations.

Transfer fees
> Menu: System - Accounts configuration - Account types - Transfer types - Transfer fees

A transfer fee allows to charge a fee automatically when a specific transaction occurs. For this
reason a transaction fee is configured 'within' a transfer. There are various ways to calculate the fee
(e.g. fixed amount, percentage of payment amount) and there are different options to define who will
be charged and who will receive the fee (destination). For example either the payer or payee can be
charged, or even another (fixed) user. The beneficiary (receiver) of a fee can be the payer or payee, a
system account, a fixed user or the broker of the payer or payee.

A typical example of a fee is a transaction fee on a trade transfer. If a broker receives the fee it
could be considered a 'broker commission'. There can be more than one fees attached to a
transaction. Because of the many ways fees can be configured it is not necessarily always a "fee".
For example it is possible to use a fee to "forward" and "distribute" payments to other accounts

http://www.cyclos.org/wiki4/index.php/Banking_-_Account_fees

(using the percentage option).

A normal fee will always be applied 'on top' of the orginal payment. For example, a fee of 3% on a
transction with the amount 100 will result in a total amount of 103 being debited. When using the
'deduct’ option the fee amount will be deducted from the original amount. That means in the above
example that the fee charged will also be 3, but the payment amount will be 97. When creating a new
fee you have to specify the 'transaction type' that will be used when the fee is charged. It is common
practice to create a new transacation type for a fee so that user can later filter on fee transfers. Fees
can also be charged within another currency.

Payment fields
> Menu: System - Accounts configuration - Payment fields
> Menu: System - Accounts configuration - Account types - Transfer types - Payment fields

If needed a custom payment field can be added to payment types, with specific validation and other
options. Just as a transfer fee a payment field can be added from within a transfer type. A payment
field needs to be created first in the account configuration (see location above) before they can be
added to a transfer type.

Payment status

> Account history - Transaction details - Status

> Menu: System - Accounts configuration - Payment status flows

> Menu: System - Accounts configuration - Account types - Transfer types - Transfer type details

It is possible to define status flows for specific transaction types. The first (initial) status of a flow is
set when the payment is performed. Users (with the correct permissions) can search in the account
history by status and each payment details will show the status and a history log with the status
changes. In the payment details page the status can be changed (to the next status) by members,
brokers and administrators, depending on the status flow and permissions.

Administrators can create and manage 'status flows'. Each status can have one or more 'possible
next' status. A status that has no 'next' status is considered as final (closed) what means that it
cannot be changed. There can be one or more possible 'initial' status, intermediate status and final
(closed) status per status flow, and there can be none, one, or various status flows per transaction
type. The transaction type will define what status flows it uses, and the initial status of each flow.

The status feature is very generic. It can be used for any payment type where you want to follow-up
actions that can be done (or must be done) after a payment has been made. A simple example of a
status flow would be an initial status 'open’, for example when a loan payment is made, and a (final)
status when the loan is repaid. Another example would be a member-to-member payment where the
payment receiver can set the payment status to 'product sent', after which the payer can set a final
payment status as 'product received'. These are very simple examples, any type of flow and status
can be configured. Each status flow and/or specific status can have their own permissions (none,
view only, modify). It also possible to implement specific behaviour of status field changes and
possible flows by creating a status extension point that uses a script of the type 'status’.

Payment filters

> Menu: System - Accounts configuration - Account types - Payment filters

It is possible to group transfer types into 'Payment filters'. These filters allow handy grouping together
of certain related transfer types so that you can use it as a filter in the account information list. For

example: different kinds of payments from a user to a system account can be grouped into one filter
with the name "System payments".

Payment authorizations

> Menu: System - Accounts configuration - Authorization roles

> Menu: System - Accounts configuration - Account types - Transfer type details

> Menu: System - User configuration - Product (permissions) - Accounts - Payments authorization
Cyclos can be configured so that payments need to be authorized first before the amount is really
transferred to the receiver's account. As long as the payment is not yet authorized, it will stay in the
"waiting for authorization" status. Both member (payer) and the authorizer will have access to a list

with pending payments that need authorization. The paying member and authorizer will be notified
and the authorizer can authorize (activate) or deny the payment.

If you want to enable authorization for a transaction type you have to select check box "requires
authorization" in the transfer type. Once the the transfer type is saved an extra tab called
"Authorization levels" will appear. There are three types of authorizers that can be defined in the
authorization configuration, the payee (reciever of the payment), the broker of the paying user, or an
administator. If you want an administrator to be an authorizer an ‘authorizion role' will need to be
created first (see location above). Once an authorization role is created you can use it in an
authorization level. After adding the role to an administrator group the administrators of the group will
be able to authorize the payment (at the level defined). It is possible to have more than one
authorization 'level'. This means that after a payment is authorizated another administrator or broker
would need to authorize. When the last level is autorized the payment will be done and the payer will
receive a notification.

Detailed information about authorizations and roles can be found in the online specification page.

Payment qualifications (feedback)
> Menu: System - User configuration - Product - Payment feedback

> Menu: System - Accounts configuration - Account types - Payment type - Enable payment
feedback

> Menu: System - User configuration - Product - Payment feedback
> View user profile - User informations - Feedbacks

It is possible to enable a feedback or 'qualification’ for payments. This is defined in the transfer type
and the user product (see above locations). Every time a user makes a payment he will be asked to
qualify the payment/trade. Payment qualifications have many options (defined in product). A user
can view the feedbacks that are given to other users. A user can disable payment feedbacks for
specific users. Qualifications can be disabled for specific users. This is common for frequent trading
partners (as you don't want to be required to qualify every payment).

Scheduled payments

> Menu: System - Accounts configuration - Account types - Transfer type
> Menu: System - User configuration - Product (permissions) - Accounts
> Menu: Banking - System accounts - Scheduled payments

A transfer type can be configured to allow 'scheduled payments'. A scheduled payment is a transfer
which is to happen in the future, but is already agreed upon and scheduled. It can be scheduled for a
single future date or multiple 'installments'. Upon each installment date the payment is debited from
the payer account. A user or system administrator can see an overview of the outgoing scheduled
payments, and optionally of all incoming scheduled payments as well. Depending on the
configuration a scheduled payment can be canceled, blocked, unblocked and processed in advance.

Payment requests

> Menu: Banking - Payment requests

> Menu: System - Accounts configuration - Account types - Transfer type
> Menu: System - User configuration - Product (permissions) - Accounts
> Menu: System - User configuration - Groups

A payment request is a way to request a payment to another user for a fixed amount and an expiry
date. The person that sends the payment request can also define if the repayment will have to be
paid for the whole amount or if it can be payed back with installments (scheduled payment). The
payment request can be accepted (or denied) by the receiver as long as the expiry date is not
reached. On every action or status change a notification will be sent to the sender and receiver of the
request. Payment requests can be sent to and from members, and to and from system accounts.
Different channels can be enabled for payment requests. For example, it is possible to send a
payment request from a phone by anb SMS. A request can also be sent from the web interface, and
received/accepted by SMS. In case the payment request is sent by SMS the text message will
contain a temporary code that the receiver will have to include in the reply (in order to accept).

System configuration

Networks

http://www.cyclos.org/wiki4/index.php/Transfer_authorization

> Menu: System - System configuration - Networks (global administrators only)

Networks are the highest level categorization in Cyclos. The network structure allows running
independent environments (networks) in the same (shared) system. Networks can only managed by
'global' administrators. Users that are in a global administrator group can create and manage new
networks, and give administrators permissions to manage specific networks. Global administrators
typically only define high level system administration such as adding languages, creating networks
and defining properties for networks, such as the network domain/URL. Each network will have a
built-in 'network administrators' group. Administrators that belong to this group have full permissions
over the network. Network administrators can configure a new system with all the available elements
such as products, account types, user groups, group sets, etc.

For any user in the system that is not a global administrator (e.g network administrators and normal
users) the network environment will appear as a single system. Running multiple networks in shared
(networked) environments is very similar to running separate Cyclos installations next to each other.
The main difference is that with a shared (networked) solution interaction among networks can be
enabled, for example user searches and payments. A global administrator can also define 'global’
elements such as 'global’ accounts, and make them available for specific networks so that they can
interoperate. The network administrators can add the global account to a local product. (see note
below)

If your installation runs a single project just one network would be enough. If there is only one
network in the system it will be marked automatically as the ‘default’ network. What means that when
accessing the main URL you will enter automatically in the network scope. If you want to login as
global (system) admin you will be always able to access the system with the global URL path. For
example: www.yourdomain.org/global). If you want to run more than one projects (networks) in a
single Cyclos installation you can just add new networks. In case you run more networks the default
network is usually just to display pages and informations for the ‘umbrella’ organisation.

Note: The first versions of Cyclos4 won't support interaction among networks yet. The structure is
prepared for this and it can be added at a later stage. The feature will be incremental. What means
that existing systems with networks can enable interaction when the feature becomes available.
Detailed information about networks can be found in the online specification page.

Network wizard
> Menu: System - System configuration - Networks (global administrators only) - New network

Setting up a system from scratch requires a considerable effort. In order to facilitate the setup and
configuration of a network a network wizard feature is available. The wizard will lead you step-by-step
through the setup. Each step has an input form and includes an explanatory text. The settings
defined with the wizard can be modified afterwards going to the specific entity. For example, if you
want to change an account name you can do that in the account configuration.

Even though the explanatory texts in the steps should be sufficient to setup a system we suggest to
have a good read through the Account configuration and System configuration sections.

Groups
> Menu: System - User configuration - Groups

A group is basically a container for users. Groups can be added to a 'group set', which in its turn is
just a container for one or more groups. Because groups contain little information it is a flexible way
to manage users. By editing a group an administrator can define the visibility of that group, this
means what users of other groups it can see. In case of an administrator group you can define what
other groups the administrators of this group can manage. By assigning products to groups (or group
sets) the users of those groups will get their permissions and rules. By adding a configuration to a
group the users of the group get their settings.

Note: It is not possible to add products to administration groups. The administration permissions are
defined directly in the group (permissions tab).
Detailed information about networks can be found in the online specification page.

Products
> Menu: System - User configuration - Products

All the business rules and permissions are defined in 'Products’. Therefore products play a very

http://www.cyclos.org/wiki4/index.php/Users_-_Groups
http://www.cyclos.org/wiki4/index.php/System_-_Networks

central role in the Cyclos system. The product structure allows maintaining rules and permissions in
a single entity. This avoids having to duplicate settings and permissions among various groups. A
product can be assigned to an individual user, a group and a 'group set'. Products are 'cumulative’,
this means that if a user has more than one product the sum of all permissions will be applied (in
case of conflicting settings the less restrictive will be applied). An administrator can always see from
the user profile the 'final' (combined) product of the user in the group.

There are two types of products. One for normal members and one for brokers. A user of a broker
product can register new users and have some level of access and control over these users. The
broker product defines in which groups the broker can create users and what permissions the broker
has over its users. A user can be assigned more than one broker but there will always be one 'main’
broker. The main broker will typically have more permissions over their users such as receiving a
commission. The name "broker" does not explain the function well because the broker function can
be used for different purposes. For example loan agents of micro finance systems where the agents
can register new members and retrieve information about the loan status of the members. Broker
products contain mostly broker permissions, and cannot have an own account, so if you want a
broker group that has an account you will need to add a member product (with an account) and a
broker product. You can define only one account per member product.

Configurations
> Menu: System - System configuration - Configurations
> Menu: System - User configuration - Groups - Select group - Configuration (tab)

All settings in Cyclos can are defined in a 'configuration’ (there are no 'system wide' settings in
Cyclos4). In the user group or group set you can define what configurations will be used (under the
configuration tab). When creating a new configuration you will have to 'extend' an existing one. This
means that a configuration is always part from a hierarchical configuration 'tree'. A lower level
configuration will always inherited the ‘higher configurations settings. For example, when a high level
configuration has the ‘Session timeout’ value set to 10 minutes, an administrator editing a lower level
configuration can change (overwrite) the value by selecting the ‘edit icon’ at the right of the session
timeout setting. Once edited a delete icon and a green lock will appear. When selecting the delete
icon the orginal (higher level) value will be restored. Clicking on the green lock the lock will turn
yellow and will be closed. This means that the setting cannot be overwritten by lower level
configurations. When a higher level configuration has blocked a setting in this way a grey lock will be
shown for administrators that view the setting at a lower level configuration, meaning they cannot
change the value.

Addresses & Phones
Addresses and phones are also defined in configuration. The options should be self explanatory. The
validation checks for phones and addresses are derived automatically from the localization section.

Registration options

In the configuration you can define if user can register themselves and what will be the groups
available for 'public registration'. This can be enabled in the configuration (option: Possible groups for
public registration). Normally you would require email validation when users can register them selves
(in configuration - 'Validate e-mail on'). If you don't want users to be directly active after they have
registered you could create an initial group for those users and set the default status 'non active' for
this group.

Email and SMS outbound
For a detailed description on email and SMS outbound configuration please view the online
specification page and the SMS quick steps wiki.

Content management, Layout
A configuration also defines content mamagenent items (menu, pages, SMS texts) and the layout
(themes, logo). Those elements are accessable via the menu: Content - Content Management.

Note1: In more complex systems with multiple groups and permission products it is good practice to
chose a clear hierarchical configuration structure. In the higher level configuration you would put all
content and settings that are common for all groups. For example language, layout, content pages,
possible access channel etc. In case you want specific behaviour for a group you can just extend an
existing (higher level) configuration and save it with the addtional changes you want. Once you add
the configuration to the group the new settings or content will be applied for that group. This approach
avoids having duplicated information in multiple configurations.

http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Details_.28tab.29
http://www.cyclos.org/wiki4/index.php/SMS_quick_steps

Note2: After changing the configuration settings be sure to save the configuration by clicking the
‘Save’ button at the bottom of the page.

Detailed information about the configurations can be found in the online specification page.

Access channels
> Menu: System - Configurations - Configuration details - Channels
> Menu: System - User configurations - Password types

Cyclos comes with the following built-in channels: Main web, SMS, and Web services for third party
access. In case of third party access it is good practice to limit access with the IP whitelist option.
This can also be done for system administrators. It is possible to add new channels, this will involve
some programming however. In the channel configuration the password type used to access the
channel can be defined. Cyclos has three predefined passwords (login password, transaction
password, PIN).

Access channel - SMS

The SMS channel comes with four built-in operations:

- Register: Users can register themselves by sending a message to the system.

- Account info: Users can retrieve account information such as account balance and payment
details.

- Payment: Users can be to other users or to a system account.

- Info text: An info text is an alias (registered in Cyclos) that will return a text messages when users
send an SMS with the alias. When a user sends an SMS with the alias Cyclos will return with
message that contains the text that belongs to the alias. Once SMS info texts are configured in the
Channel an administrator can edit and add SMS texts via the menu: Content - Content mamagement
- SMS texts. (Make sure that the admin group has the permissions to manage a configuration, or at
least 'Manage configuration - Manage content only' permissions)

It is also possible to add custom SMS operations (by writing an extension in Java).

In order for the SMS operations to funcion an SMS gateway provider needs to be configured in the
configuration (section: Outbound SMS messages).

Detailed information about the SMS operations and configuration can be found in the online
specification page and the SMS quick steps wiki.

Password types
> Menu: System - User configuration - Password types
Cyclos comes with built in password types (login password, PIN, transaction password). These can

be enabled for channels. For most systems the built in password types will be sufficient. In case it is
necesary new password types can be created and selected in the channels.

Languages

> Menu: System - System configuration - Languages

> Menu: System - System configuration - Configurations - Localization

Cyclos comes with built in languages. They are visible in a configuration (see location above). When

creating a new language you can use an existing (built-in) language as template. For any changes to
the Cyclos application translation you need to create a language first.

Advertisements categories
> Menu: System - System configuration - Advertisement categories

Cyclos comes with a default set of advertisement categories, but they can be changed. It is possible
to create levels of categories (a maximum of 3). When creating a new categories it is possible to
create various (sub) categories at once by putting a category per new line. Categories cannot be
removed when there are advertisements that use the category. What can be done in this case is to
de select the ‘Active’ box. This means that the category won’t show up in the new ad and search ads
pages.

Custom advertisements fields
> Menu: System - System configuration - Advertisement fields

http://www.cyclos.org/wiki4/index.php/SMS_quick_steps
http://www.cyclos.org/wiki4/index.php/System_-_Configurations
http://www.cyclos.org/wiki4/index.php/System_-_Configurations#SMS_channel_-_Details_page

It is possible to add advertisement fields. Various field types are possible (e.g. text field or date).
The fields will appear when adding a new ad and optionally in the advertisement search.

Web shop
> Menu: System - User configuration - Member product - Advertisements (section)

Users can have a web shop, through which they can sell products. The web shop can be seen as an
enhancement of the advertisements module. Cyclos supports multiple web shops. That means that
every user (with appropriate permissions) can have her/his own web shop. Products offered in a web
shop can be found by potential buyers through searching the advertisements and through the sellers
personal web page. Buyers can add products from the web shop in their shopping cart. When buyers
are done shopping they can checkout their shopping carts and pay for the products. The web shop
module is a large module and there are various possible configurations, for example sellers can
define delivery addresses, and set discounts for certain products. The Web shop managements
comes with stock management and automatic product numbering. The Web shop functionality can
be defined in permission products, when enabled the feature will appear for users under the 'business’
category in the main menu tool bar.

Detailed information about the advertisements and web shop can be found in the online specification

page.

Custom profile fields
> Menu: System - User configuration - Profile fields

It is possible to add custom profile fields. Various field types are possible (e.g. text field or date).
The fields have to be enabled in the user product.

Custom image categories
> Menu: System - System configuration - Custom image categories
> Menu: System - Content management - Custom images

An administrator can upload images (pictures) that can be used in the content management (e.g.
header, pages, messages). Before uploading an image a image category needs to be created.

Record types

> Menu: System - System configuration - Record types

> Menu: System - System configuration - Shared record fields

> Menu: Reports & data - System records

> Menu: Users - User records - Record name

> View user profile - User information - User record

Records are a powerful feature to store data in an organized way and be able to search for it. There
are two types of records; 'user' records, that are always bound to a user (member, broker or admin)
and 'system' records, that do not have a related user. A records consist of a group of custom fields.
You can define one or more custom fields for a record type. If you want to share a specific field

among various records you can create a shared record field first and add them to the record. Usually
records have their own (not shared) fields. These can be added directly from within a record.

In the permission products an administrator can define who will ‘have' user records and who has
permissions to add/modify/delete records. User records can be accessed from the User management
menu or directly from the user profile page. System records can be accessed from the 'Reports &
Data' menu. Records can be displayed in different layout formats (e.g. single page, normal list, tiled
list).

A simple example of a user record is a remark. A remark is a user record with just one text field that
can be modified by users (e.g. admins and brokers). System records can be very usefull in the
combination with the Cyclos scripting module. Detailed information about the user records can be
found in the online specification page.

Agreements

> Menu: System - User configuration - Agreements

> Menu: System - User configuration - Member product - Agreements
> View user profile - Accepted agreements

http://www.cyclos.org/wiki4/index.php/Advertisements
http://www.cyclos.org/wiki4/index.php/Users_-_Records
http://www.cyclos.org/documentation/cyclos-scripting/

A registration Agreement is a text that can be shown at the registration page. Users who want to
register MUST select a checkbox stating that they agree with this agreement in order to be able to
submit. Agreements are created by administrators and assigned to products. Once an agreement
has been accepted by a user (upon registration) and an administrator makes any change to the
agreement text a new version number of the agreement will be generated. There is a full history of
accepted agreements (per user) and the version that was accepted. When an agreement is added at
a later stage, or when a agreement text has been changed, existing users will be asked to accept the
agreement upon the first login. This is also the case for existing that are assigned new/other
products with different agreements.

Message categories
> Menu: System - System configuration - Messages categories
> Menu: Users - Messages - Search / New message

Message categories are used to organize the communication between members and administrators.
For example if a member wants to send a message to an administrator he/she has to select a
category. This helps to define the right person to answer the question. The categories are created by
the administrator. In the member product is defined what message categories are available of the
users, and in an administrator group permissions you can define what messages (categories) an
administrator can manage.

User identification methods
> Menu: System - System configuration - User identification methods

The user identification methods define how users can identify themselves in Cyclos. The most
common operation that needs user identification is the login name at the main web channel or mobile
POS (together with a credential like a password or PIN). A payment at a POS (Point of Sale) channel
also requires user indentification, which is typically a card, and third party applications that access
Cyclos also need to pass a user indentifcation. Per channel you can specify what user identifications
methods are allowed. It is possible to 'refine' the possible user identification methods (e.g. different
card types with different rules) per transaction type.

There are three types of user identification methods. The first one are the 'built-in' identification
methods: login name, e-mail and mobile phone. The second type are the 'tokens'. A typical token is a
card, which can be a number, QR code or NFC id. For third party access to Cyclos you can create
'access clients'. An access client can be managed by a user (member, broker or admin) in Cyclos. A
member access client will have the same permissions as the member that created it. In case of an
admin access client you would typically create a specific permission product for the access client(s).
Users that will enable their Mobile phone for POS payments will need an access client of type
'Mobile POS'. After creating the POS access client in Cyclos the Mobile POS device can be
activated. Once a POS device is activated it does not need user/password confirmation at start-up.
Another advange of using access clients for POS devices is that a user can manage his own
devices, for example (un)blocking them and retreiving information about payments done at a specific
POS.

The Cyclos wiki has a Quick steps page for setting op POS, Cards and Access clients in Cyclos.

Cyclos scripting
> Menu: System - System configuration - Tools

the Cyclos scripting module provides an integration layer that allows connecting from Cyclos to third
party software, as well executing custom tasks and operations within Cyclos self. The scripting
engine can access the full Cyclos services layer which makes it a powerful feature. For security
reasons only global administrators can add scripts. Network adminstrators can be given permissions
to bound the scripts to elements such as extension points (eg. payments, user profile), custom
validations (for fields), custom calculations (account fees, transaction fees), custom operations and
scheduled tasks.

Detailed information about Cyclos scripting can be found at the Cyclos scripting page

Imports
> Menu: System - Tools - Imports
> Menu: Banking - Tools - Import payments

The import functionality can import the following (user) information:
- Users together with all profile fields, addresses, phones and profile images

http://www.cyclos.org/wiki4/index.php/POS_%28Point_of_Sale%29_%26_Cards_quick_steps
http://www.cyclos.org/documentation/cyclos-scripting/

- Advertisements

- User records

- References

- Transactions

This information can be imported by clicking on the import button and following the import steps. If
the import button is not visible you need to give the administrators group the permission for this.

There are two typical uses for the import of transactions and for the ease of use the import
transaction feature has been split. The first is the migration of users and transactions from one
system to Cyclos. This is typically a one time task and is available under System - Tools. Another
typical use is the import of transactions that need to generate transactions in Cyclos, for example
user deposits in conventional currency. The latter function is more operational and is available under
the the Banking menu.

Detailed information about user import can be found in the online specification page.

Cyclos license
> Menu: System - System configuration - License

Cyclos needs a valid license key in order to run. There are three types of licenses: Free, Social and
Commercial.

Selecting 'Update now' will update the license. Commercial users can update the license offline.

For more information about licenses view the Cyclos license page

The license will be visible at the bottom of the user and admin manuals.

Note: The license option is only available in global mode.

Content management

Content management deals with layout and content. For the two first items (Documents and Custom
images) to be used a 'category' needs to be created first (in System - System configuration). After
the categories are created you can assign them to admin groups (view or manage permissions in
System - System configuration). In order to customize a language (Application translation) an admin
has to extend a built-in language first, and will need to set the permisson in an admin group to
manage the translation (as explained further on).

All other Content management items (menus, pages, logos, themes, banners, SMS texts) are part of
a configuration. This means that it is not necesary to create a category and set permissions. When
an admin has permissions to view or manage a configuration he will get automatically the
permissions to access the content items. When an admin selects a content item in the Content
management menu (e.g. Themes) and the admin has permissions to manage more than one
configuration, a list with available configurations will be showed first. Clicking on an configuration in
the list will open the content item for that specific configuration.

Documents
> Menu: Content - Content management - Documents
> Menu: System - System configuration- Document categories

An administrator can upload static and dynamic documents and assign them to users or to groups. A
document can be assigned to one user (individual document) or to a group of users (shared
document). A 'static' document can be any file, for example a picture or pdf file. It can be either a
shared or individual document. A 'dynamic' document can only be a shared document. It is a way to
have users fill in forms in a predefined format and include user data such as profile fields. A typical
use of a dynamic document is a loan contract that requires user input and user data, and which the
user will print and possibly sign. When a user selects a dynamic document a page will be shown.
This page can include images, (rich) text, profile fields (of the user), variables such as date and time,
and optionally input fields that the user needs to fill in before submitting. After a user submits the
form a result page will be shown with all the data included and formated. A print button will be shown
so that the user can print the document.

If you want to enable 'shared' documents you will have to create a document category first: System -
System configuraiton - Document categories.

http://license.cyclos.org/
http://www.cyclos.org/wiki4/index.php/Imports_quick_steps

Before documents can be added and viewed you need to set the permissions: admin group - User
data - Individual documents/ Shared documents).

If you want the member be able to see the documents you will have to give permissions in the user
product: Individual documents, View or Manage shared documents with categories.

Custom images
> Menu: Content - Content management - Custom images
> Menu: System - System configuration - Custom image categories

An administrator can upload custom images (pictures) that can be used in other content
management items (e.g. pages, footer, messages). Before uploading an image an image category
needs to be created. In order for an amdin to use an image category you will give the permissions:
System - User configuration - Groups (admin) - Content management - View/Manage images with
categories)

Application translation
> Menu: Content - Content management - Application translation

The application translation menu item appears as soon as a local language is defined (see language
section above). The application translation consist of the entire translation of Cyclos (menus, labels,
titles) and all internal messages, emails, notifications. You can search on the original translation and
the current translation (which includes your customized keys). By selecting a key from the list you
can customize the translation. You can import and export customized keys using the buttons at the
search window.

For a user of an admin (group) to be able to view/customize translations you need to set the
permissions in: System - User configuration - Groups - Permissions - Content management -
Application translation.

If an admin can manage more than one translations a list will be show first.

Data translation
> Menu: Content - Content management - Data translation

Cyclos has many 'dynamic' (non hard-coded) elements that do not exist in the Cyclos code but are
stored in the database. These entities are created by the network wizard or manually by
administrators. Some examples of dynamic entities are: accounts, transactions, password types,
message categories, menu items etc. It would be rather cumbersome to manage multiple
translations of dynamic entities in the entities forms self. The Data translation feature centralizes and
categorizes the translation of the dynamic entities.

Note: Currently only the global entities password types and channels can be translated (by global
admins). In future versions support for the other entities will be added, and network level access will
be added.

Static content
> Menu: Content - Content management - Static content

Cyclos has various 'static’ or 'built-in' pages that can be customized. For example the public home
(guests) page, the header, footer and the help pages. When selecting the pages from the 'Static
content' a rich text editor will open. You can insert an image by selecting the image icon (third from
the right). It is possible to insert html format by selecting the html option of the editor. You can
always revert to the original page by stopping customizing the page.

Detailed information about the static content can be found in the online specification page.

Menu & pages
> Menu: Content - Content management - Main web menu & pages

It is possible to add new menus items and submenus that will open content pages or external pages
(URL's). When creating a sub menu and content you can chose to place it directly in the menu bar or
under an existing menu (group). It is possible to define in the page who can view it (e.g. guests,
logged users) and the location where it is showed.

Detailed information about the static content can be found in the online specification page.

Banners

http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Static_content
http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Main_web_menu_.26_pages

> Menu: Content - Content management - Banners

Banners can be added at the left and/or right of the main Cyclos windows. When putting more than
the maximum amount of banners (defined in 'Configuration - Display - Maximum banners) the
banners will rotate. The rotating time can also be set in the Display section of the configuration. The
content of the banners can be managed with a rich text editor in the same way as the content pages
in the menu section (see above).

Detailed information about the banners can be found in the online specification page.

Mobile app pages
> Menu: Content - Content management - Mobile pages

It is possible to add pages that will appear in the mobile app. The pages will be shown after selecting
a shortcut icon in the mobile app home page (for logged users). When adding a new page a shortcut
icon can be selected.

Detailed information about the mobile app pages can be found in the online specification page.

SMS texts
> Menu: Content - Content management - SMS texts
> Menu: System - Configurations - Channels - SMS Channel - SMS operations

When SMS is activated it is possible to define SMS info texts.

The pages will be shown after selecting a shortcut icon in the mobile app home page (for logged
users). When adding a new page a shortcut icon can be selected.

Detailed information about the mobile app pages can be found in the online specification page.

Logos
> Menu: Content - Content management - Logos

When you upload new logos from this page the existing logos will be replaced automatically. If you
want to change the top section (header) this can be done in the content section.
Detailed information about the logos can be found in the online specification page.

Themes
> Menu: Content - Content management - Themes

A theme defines the layout (e.g. colors, menu bar size, font style) and system images (e.g. quick
access and remove icons). Any network in the system has a theme applied. This can be a theme
inherited from a higher level, or a theme managed directly at network level. Cyclos comes with
various 'built-in' themes and it is possible to create new themes as well.

There are three levels of customizing a theme. The first (easiest) level is done with a color picker.
This allows to create a new theme in a few minutes. The second level is done by changing common
theme elements by predefined LESS variables. Normally variables are used to group layout items
that logically share the same value (e.g. all window borders). The third customization allows to
customize the entire CSS file. When creating a new theme you have to option to create an empty
one, or extend an existing theme. It is also possible to import and export a theme.

Detailed information about themes can be found in the online specification page.

Reports & Alerts

System reports
> Menu: Reports & Alerts - Reports - System reports

At the system reports page you can retrieve overview of with the most important data such as the
number of users, advertisements, trade, and so on. It will basically show data over a period, though
some of the presented data is point data, which means that it can logically only be given on a certain
point in time. Most statistics are self explanatory. Options that might need some explanation are
described here below:

- Gross product: the total sum of earned (incoming) units on all accounts, with respect to the group-
and payment filters specified, and within the period specified.

- Number of transactions: the total number of transactions where at least one of the participating
members belongs to the specified groups in the group filter, and where the transaction belongs to the

http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Mobile_pages
http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Mobile_pages
http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Logos_.28tab.29
http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Themes_.28tab.29
http://www.cyclos.org/wiki4/index.php/System_-_Configurations#Banners

specified transfer type in the payment filter, and which took place in the specified period.

- Percentage of members not trading: The percentage of members who was not involved in any
incoming or outgoing transaction (with respect to group- and payment filters, and inside the specified
period).

System alerts

> Menu: Reports & Alerts - Alerts & Logs - System alerts

The system alerts will show alerts related to the entire system such as: application started,
scheduled task run, new version of translation file uploaded.

Note: A notification can be generated on system alerts, this can be configured in Menu: Personal -
Preferences - Notifications.

User alerts
> Menu: Reports & Alerts - Alerts & Logs - User alerts

Typical user alerts are: failed password attempts, new pending user, expired loan etc.
Note: A notification can be generated on user alerts, this can be configured in Menu: Personal -
Preferences - Notifications.

Error logs
> Menu: Reports & Alerts - Error logs

Errors that occur in Cyclos will show up in this list. An error is typically a software bug and needs to
be solved by the software development team.

Licensed to: Social Trade Organisation

Help

Help - HOW TO

Navigation in Cyclos
Update your profile

View your account information
Make a payment

Search for users

Search for advertisements
Place an advertisement

My Advertisement interests
Messages

Notifications

View documents

View & give references
Contacts

Notification settings

Help - HOW TO

The help file can be accessed via the help icon in the functions windows. The help contains an
explanation of all administration features. Directly under the title of each help section the location
where to find the described feature is shown. The location is in italic and has a > sign in front.

Navigation in Cyclos

Navigation in Cyclos is done via a main menu (horizontal bar) and submenus that are shown at the
left or directly under the horizontal menu depending on the screen size. When navigating more than
one level deep (for example: view user profile) Cyclos will show a clickable ‘breadcrumb’ tree directly
under the horizontal menu. Besides the menu you can use the ‘Quick actions’ that show up at the
home page. What actions will show up at this page can be defined in the the local preferences
(Personal > Preferences > Dashboard ations) The ‘quick search’ (at the top right) can be used to
search quickly for users, contacts or advertisements. Operations that are related to users can be
done from the Profile > Actions section of the user profile (for example make payment or set
reference).

Update your profile
> Menu: Personal > Profile or Top right menu: Person icon

Click on edit to change profile fields. In order to add & remove Addresses, Phones and images,
please select the corresponding Tab (when in Edit profile mode).

View your account information
> Menu: Banking >My accounts

At this page you can view your account(s) information such as the balance and the payments. In the
advanced option you can filter by specific criteria. Clicking on a payment will open the payment
details.

Make a payment

> Menu: Banking > Payment
At this page you can make a payment to another user or a payment to the system.

Search for users
> Menu: Users > Search or Top menu: Quick Search
From this page you can search for members. The member search will search in all member profile

fields. In the advanced option you can filter by specific criteria. You can use more than one keyword
in the search. You can also search all members by not specifying a keyword.

Search for advertisements

> Menu: Market place > Search advertisements or Top right menu: Quick Search

In this page you can search for advertisements. You can use the keywords search option to search
by more than one keyword. When you leave the keywords field blank all ads will be searched. In
order to view a list of advertisement categories you can select ‘Browse categories’. In the advanced
option you can filter by specific criteria. When clicking on the advertisement you will access the
details of the advertisement. In the details page you can go directly to the profile of the user
(publisher) or post a question about the advertisement.

Place an advertisement

> Menu: Market place > My advertisements > New

At this page you can insert a new advertisement. All fields are self explanatory. Make sure to insert
an image by selecting the ‘image’ link. You can update your advertisements by clicking on the ‘Edit
icon’. The edit mode will have a page (tab) for images. The image at the top of the list will show up in
the main search window.

My Advertisement interests
> Menu: Market place > Advertisements interests
At this page you can define ‘interests’ and receive notifications when somebody posts a new

advertisements that matches your interests. You can define how the notification will be sent in
Preferences > Notifications.

Messages
> Menu: Personal > Information > Messages or Top right menu: Message icon

Cyclos has an internal messaging system. You can send message to users or to the administration
(organisation). When sending a message to the administration you will have to select a message
category (e.g. support, loan request, complaint). Administrators and brokers can send individual
messages and bulk messages (mailings) to groups of users.

Notifications

> Menu: Personal > Information > Notifications or Top right menu: Bell icon

Notifications can be generated in Cyclos when a status is changed or an activity has been
performed. For example: a received payment, balance change, credit limit change, received

reference etc. The notifications can be send as e-mail and in the future other channels will be added
(SMS, USSD).

View documents
> Menu: Personal > Information > Documents
At this page you can view documents. This can be dynamic documents (web forms) or static

documents such as PDF and other files. The documents can be managed by the admin, and
optionally also by the user self (depending on the permissions).

View and give references
> Menu: Personal > Information > References or View user profile > Actions
The references system is a peer review system. User can assign a reference to other users. The

reference consists of a score on a pre-defined value scale, and a personal comment. User can see
the references to other users, and references given to them.

Contacts
> Menu: Users > Users > My Contacts or Top right menu: Quick Search
Here you can manage (add & remove) contacts. Selecting a contact of the contact list will bring you

directly to the user profile of the contact. From the profile page you can perform user actions related
to the user (e.g. make payment or send message).

Notification settings
> Menu: Personal > Preferences > Notifications or Top right menu: Envelope icon

This page will show a list with a history of your notifications. Notifications can be send on:
- Account events: payment received, credit limit modified

- Advertisements events: Ad expired, match of advertisement interest

- Access events: Password blocked, password disabled

- References events: Reference received, reference changed

Licensed to: Social Trade Organisation

Version: Cyclos 4.3 (for the documentation about another version please click here)
Copyright © 2004-2015 Social Trade Organization

Cyclos 4 PRO Documentation

Welcome to the Cyclos 4 PRO Documentation. First, this manual contains the Installation and
maintenance guide. Second, this manual will give a detailed description and some examples
of how to connect to Cyclos using the webservices. Subsequently, this manual explains the
Cyclos scripts, these scripts can be executed by clicking on a menu link, by a scheduled task
or by an extension point on a certain function. These scripts make it possible to add new
functions to Cyclos and customize Cyclos exactly to the needs of your payment system. Finally,
this manual will give an explanation of how to login to Cyclos from an external website. This
can be useful if you have a large CMS as a website and you want to have an integrated login
to Cyclos in this website.

There are some important documentation resources that are not part of this manual, these
can be found here:

* There are two (end user) Cyclos 4 manuals (make sure you are not logged into
communities.cyclos.org):

* Administrator manual

+ User manual

* Next to the manuals some functions are described with much more technical details in our
wiki:
» Configurations

+ Groups
* Networks

+ Advertisements

* Users records
* Transfer_authorization
+ SMS

* Imports
* Cyclos instruction videos:

* Cyclos 4 communities

+ Cyclos 4 PRO

http://www.cyclos.org/documentation
https://communities.cyclos.org/content/help/admin
https://communities.cyclos.org/content/help/user
http://www.cyclos.org/wiki4/index.php/System_-_Configurations
http://www.cyclos.org/wiki4/index.php/Users_-_Groups
http://www.cyclos.org/wiki4/index.php/System_-_Networks
http://www.cyclos.org/wiki4/index.php/Advertisements
http://www.cyclos.org/wiki4/index.php/Users_-_Records
http://www.cyclos.org/wiki4/index.php/Transfer_authorization
http://www.cyclos.org/wiki4/index.php/SMS_quick_steps
http://www.cyclos.org/wiki4/index.php/Imports_quick_steps
http://www.cyclos.org/documentation/cyclos-4-communities-instruction-videos
http://www.cyclos.org/documentation/cyclos-4-pro-instruction-videos

Table of Contents

1. Installation & MAINTENANCEcoviiiiiiiieie ettt e esaaesbeesaae e 1
1.7, INSEAllatioN SEEPS ..veiviiiiiiiiiete ettt s et s esan e e beesaee s 1
SYSEEIM FEQUITEIMENTES ..eiiiiiiiiiee ettt ettt e e e e e sabte e e s sabeeeessabsaeesssneaeesanns 1
TS =1 LI A2 O SRRRRR PR 1
Install PostgreSQL (database)cocueeeiieiieiieeieeeee e 2
INSTAll TOMCAL (WEID SEIVEI) wevvvveiiiiieiiiieeeeeeteeeeeteeeaeeeaereseaaeeeesesssesersssssesassssersssrssssssaraee 3
INSEAIl CYCIOS ettt sttt sttt e e st e e be e sabeenbaesareens 4
SEATUP CYCIOS vttt s be e bt e s sbeesbaessbeesaaessbeesnes 5
Problem SOIVING ...cociiiiiiiiiciece ettt be e sab e e sbe e sab e e beesnseebee e 5

1.2, AdjuSEMENTES (OPLIONAI) ..eeeiieieeee e 5
ENADIE SSLIHTTPS ..ottt ettt sttt s b et st bt st sbe e 5
Adjust TOMCAL/JAVA MEIMOIY ...eiiiieriieiieeieeite sttt ettt st be e st e sbeesaeesbeenee 6
CIUSTEIING ittt ettt s e st e e bt e s beesbaesabeesbeesabeessaesabeenbeenns 7

1.3 MAINTENANCE ...eviiiiiiiiiiice e bbb e 7
=% Lol U] o OO SU TP 7
RESTOIE e e 7

2. WED SEIVICES ..utiiiiiiiciiee ettt sttt et e et e e s bae e s ba e e s bt e e ssbaeessbaeessbaeessbeeenaseessres 8
B2 I Vg € e To [U ot o] o NSO 8
2.2, JAVA CHENTS oottt et e et e e e etae e e e eettaeeeeeabaeeeeensaeeeeesataeeeeesssaeeeennnns 8
[DL=] o1=] gTe 1=y o ol [OO PR TUP PO SROPRRPRROPO 8
Using services from a 3rd party Java applicationccceveevcieviienienniieniiecneesieen, 9
EXQMIPIES ettt naee e en 9
CONFIGUIE CYCIOS ettt sttt e 9

L= [g U <] T RSP 10

Search advertiSEMENTSooiiiiiiieeeeee e st sbe e 11

REEISTEI USEI ..eiiieiiieie ettt e e s e s s e e s sarree s snnnnees 11

Edit USEr Profile ..uioeiiiiiiie ettt s 14

LOZIN USEI eeiiiiiiiieee ettt ettt e st e e s st e e e s abbe e e s sabe e e e ssbbaeeessasbeeessssaeessnns 14

Get account iNFfOrMAtioN ..ocviiiieiiececce e s e 16

Perform PayMENTcooiiiiiiee et e 17

2.3 PHP ClIENTS ettt sttt sttt st st st aa e s beesbaesabeenaees 19
DEPENUENCIES .oevieiieiieeriteeteerte ettt st stt e s beesia e s beesbaesbeesatessbeessaesasaesssessbeenssesasens 19
Using services from a 3rd party PHP applicationcccccvvvvvieeniencieenienieeneennnn 20
EXQMIPIES ettt et s b e sbae e s br e e sbaeenanes 20
CONFIGUIALION .iiiiiiiieiieeeet ettt sttt sttt sbe et et 20

Y= [g U 1 <] T SRR 20

Search advertiSEMENTSooiiiiieeeeee et 21

LOBIN USEI ittt ettt sttt st e st esaba e e s abe e s sabaessabeesssbeessneeens 21

Perform payment from System tO USercccoviiviiiiniiniieenie e 22

Perform payment from USEr TO USEr ...cccivveeiiieiieenieeieeneeereesee e 22

Cyclos 4 PRO Documentation ii

A @ 1 a Y=Y gl ol [1=] 0} RS 23

EXQMIPIES ettt s aa e s b e sbr e e sbaeesares 25

2.5. Available services and APl Changescociirieriieniieeeieeeesee et 25
3 SCIIPEING ettt ettt e st e e e bt e e s bt e e s bt e e st e s abe e s nb e e sbb e e sbaeesbeeeean 27
3.1, SCrIPLING ENEINE ..eeiiiiiiiiiee ettt e s e st e e sba e e sabeeesabeeesabeessans 27
Variables bound tO all SCrIPLS .ouiiviiiriiiiieieeeee e 27

3.2, SCHIPT LYPES eeeeeiiieeeeiieee ettt ettt srr e e st e s st e e s sabtee e s abbeeesesnseeeeesansaeessannneeesaans 29
] o] =] Y PSP PRPRRUPRRPRRPO 29
Custom field Validation ..o 29
EXQMIPIES e sttt e 30

Dynamic custom field handlingcccooiiriiiniini e 31
EXQMIPIES ettt 33

Transfer fee CalCulation ... 33
EXQMIPIES ettt et e b e nb e et es 33

Account fee CalCUIAtioNcooviiiiiieieeeeee e 34
EXQMIPIES ettt s 34
PassSWOrd NANAIING ..co.eeoiieiieeeee ettt st s 34
EXQMIPIES ettt e 35
EXTENSION POINTS .eeeiiieiiiiiieeeee ettt s e e s e e s s eanre e e s ssnbaeeessanrees 35
User eXteNSION POINT c.uuiiiiiiiiieeeeeitee et e e s e e s sreee s ssbreeesssareeeessanneees 36

Address exXtenSioN POINT ...cocuiiieiieieeee et 37

Phone extensSion POINTcooieiierieeee ettt 37

User record extenSion POINTooiieriieiienie ittt 37
Advertisement eXtension POINTcoociiriirieinieeeee e 38
Transaction eXteNSION POINTcoiviiiieeiiiiieee e e err e e s sareee s 38
Transaction authorization extension POINtc.cccevvevviierienieenee e 39
Transfer eXtenSioN POINT ..o e 40
EXQMIPIES et 40

CUSTOM OPEIATIONS eeniviieiiiieiiie ettt ettt e e e sbe e s st essabeesnbeesbeeesabaeenas 42
EXQMIPIES ottt 44

Custom scheduled tasKS ... 46
EXQMIPIES oottt st e b et s 46

CUSTOM SIMS OPEIALIONS .eeiiiiiiiiieiitie et s 47
EXQMIPIES et 48
Outbound SMS NaNAIING ..ccveeriiiiiieeeee et 49
EXQMIPIES et sttt e ae s 49

INbouNd SMS hanNAIiNG ...ccc.eoviiiiiiiiiece e e 50
EXQMIPIES ittt st e st s 51

Transfer status NAaNAIINGocceviiiiiii e e 51
EXQMIPIES et 52

3.3. SOIULIONS USING SCIIPLS cueieiieiieeniieeieesite ettt sttt sbe e s e bt e st e beesaseesbeeeas 52
PayPal INTEEIatiON ...ccviiiiiieiieie ettt sttt st e bt e st nbeesane s 52

Cyclos 4 PRO Documentation iii

CECK The FOOT URL et e e e s e s s e s e s e s e s e aesesenenenenanas 53

Enable transaction number in CUrreNCY ...occeevvieeniieeniiecrieecee e 53
Create a system record type to store the client id and secret............ccc.c....... 53
Create an user record type to store each payment information 54
Create the lIDrary SCriPt ..o 54
Create the custom operation SCriPtcoceevvieieirieeeenie e 62
Create the cuStom OPEerationcccoieviiinienieeee e 63
Configure the system account from which payments will be performed
TO USEIS ettt s s s s 64
Configure the payment type which will be used on payments 64
Grant the administrator PErMISSIONSc..cocerierieiirienieeeeeee e 64
Setup the PayPal credentialsccccvvieiieniiiiiiieeeeee e 65
Grant the user permissions / enable the operationccocceevveeviieeieenveniiens 65
Configuring the SCript PArametersc.cvvvienieciiene e 65
Other conSIderationsc.ccecveriiiiiiiinieiic e 66
LOAN MOAUIE ettt ettt s saee e 66
Enable transaction number in CUrTeNCYccooveerieineeniieeceeeee e 67
Create the transfer status flOWc..cooeeiiiiiiininie e 67
Create the payment custom fieldscocvvveeriiiiieniiiie e 67
Configure the system account from which payments will be performed
TO USEI'S ittt s 68
Create the payment type which will be used to grant the loan 68
Configure the user account which will receive 10ansccoceeveevienieennenne 68
Create the payment type which will be used to repay the loan. 68
Create the lIDrary SCriPt ..o 69
Create the custom operation SCriPLocvveriieiienieeieere e 74
Create the extension POINt SCHPL c.eeviirierieeeeeeeeee e 74
Create the cuStom OPEerationccoceereeiieiieese s 75
Create the eXtenSion POINT ..o 76
Grant the administrator PErMISSIONSc..cecvirieriiiienierieeeeeee e 76
Enable the custom operation for users which will be able to receive
[OBNS e 76
T e U= = I [0} =41 o PP O PRSPPI 77
4.1. The following aspects should be considered:cccccovevieviniiinienenieneeeeeeee, 77
4.2, IMPOITANT NOTES eeiiiiiiieiiiiiiee ittt e s s bbe e s s sbbae e s sesbaeeeseans 78
4.3. Creating an alternate frontend to CYCIOScocevveviiiienieniiieneceeece e 79

Cyclos 4 PRO Documentation iv

1. Installation & maintenance

This is the installation manual for Cylcos 4 PRO. Be aware that Cyclos is server side software.
End users (customers) will be able to access Cyclos directly with a webbrowser or mobile
phone. If you have any problems when installing Cyclos using this manual, you can ask for
help at our forum.

1.1. Installation steps

System requirements
+ Operation system: Any OS that can run the Java VM like Windows, Linux, FreeBSD or Mac;

* Make sure you have at least 500Mb memory available for Cyclos (if the OS runs 64 bits, for
32bits 300Mb should be enough);

+ Java Runtime Environment (JRE), Java 7 is required,;
* Web server: Apache Tomcat 7 or higher;
+ Database server: PostgreSQL 9.3

+ Cyclos installation package cyclos_version_number.war;

Install Java

You can check if you have Java installed at this site: http://java.com/en/download/installed.jsp
If you don't have Java 7 installed proceed with the steps below:

Linux (Ubuntu)
* Install the openjdk-7-jdk package.

Windows

* Download and install the last Java Development Kit (JDK)

* Install the program to <install_dir> (for windows users e.g. C:\Program Files\Java
\jdk1.7.x_xx).

* Make sure your system knows where to find JAVA, in windows you should make an
environmental variable called "JAVA_HOME" which points to the <install_dir>:

* In windows XP: configuration > System > advanced > environmental variables.

* Inwindows 7: Control Panel > System and Security > System > Advanced system settings
> Environmental Variable

« To check if Java is correctly installed, go to the windows command line (type cmd and press
enter) and type:

Cyclos 4 PRO Documentation 1

http://www.cyclos.org/forum
http://java.com/en/download/installed.jsp
http://www.oracle.com/technetwork/java/javase/downloads/index.html

java -version

+ Now java will reply which version of it is installed

Install PostgreSQL (database)

Windows

+ If using Windows, download the latest version of PostgreSQL and PostGlIS:

+ PostgreSQL: http://www.postgresql.org/download/windows (for example the graphical
installer)

+ PostGIS: http://postgis.net/windows_downloads (PostGIS can also be installed using the
Stack Builder, that starts after PostgreSQL is installed. Also in this case use the default
options.)

Install both PostgreSQL and PostGIS by following the installer steps (use the default
options).

Make sure the bin directory is included in the system variables so that you can run psql
directly from the command line:

+ Go to: "Start > Control Panel > System and Security > System > Advanced system settings
> Environment Variables...".

* Then go to the system variable with the name "Path" add the bin directory of
PostgreSQL as a value, don "t forget to separate the values with a semicolon, e.g.:

*+ Variable name: Path
* Variable value: C:\Program Files\PostgreSQL\9.3\bin;

Go to the windows command line and type the command (you will be asked for the
password you specified when installing PostgreSQL):

psqgl -U postgres

If you see "postgres=#" you are in the PostgreSQL command line and you can follow the
instructions: Setup cyclos4 database (common steps for windows and Linux).

Linux

« If using Ubuntu Linux, these instructions are followed, type the following commands in a
terminal:

+ Install PostgreSQL and PostGIS (using the official PostgreSQL packages for Ubuntu)

echo "deb http://apt.postgresql.org/pub/repos/apt/ precise-pgdg main" \
| sudo tee /etc/apt/sources.|ist.d/ postgresql.|ist

‘ wget —quiet -O — https://ww. postgresqgl.org/ medi a/ keys/ ACCCACF8. asc | sudo apt-key add -

Cyclos 4 PRO Documentation 2

http://www.postgresql.org/download/windows/
http://postgis.net/windows_downloads
http://www.postgresql.org/download/linux/ubuntu/

sudo apt-get update

sudo apt-get install postgresql-9.3 postgresqgl-contrib-9.3 postgresql-9.3-postgis-2.1\
post gresql -9. 3-postgi s-2. 1-scripts

Access the postgresgl command line:

sudo -u postgres psql

If you see "postgres=#" you are in the PostgreSQL command line and you can follow the
instructions below.

Setup cyclos4 database (common steps for windows and Linux)

Create the user cyclos with the password cyclos. This password and username you will have
to enter in the cyclos.properties file in step 5, so if you do not use the cyclos as password
and username please write them down. Type in the PostgreSQL command line:

‘ CREATE USER cycl os W TH PASSWORD ' cycl os' ;

Create the database cyclos4, type in the PostgreSQL command line:

‘ CREATE DATABASE cycl os4 ENCODI NG ' UTF-8' TEMPLATE t enpl at e0;

Make sure the user cyclos can use the database cyclos4, type in the PostgreSQL command
line:

GRANT ALL PRI VI LEGES ON DATABASE cycl os4 to cycl os;

Create the PostGIS extensions on the database, type in the PostgreSQL command line:

\c cycl os4

create extension cube;

create extension eart hdi stance;
create extension postgis;

Exit the PostgreSQL command line by entering "\q" (and pressing enter).

Install Tomcat (web server)

Download Tomcat (7.0.x core) at http://tomcat.apache.org/
Extract the zipped tomcat file into a folder <tomcat home>.

Start tomcat: <tomcat home>/bin/startup.bat (Windows) or <tomcat home>/bin/startup.sh
(Linux). You might have to give the startup script file execute permissions.

Open a browser and go to http://localhost:8080/ and check if tomcat is working.

The default memory heap size of Tomcat is very low, we recommend increasing it (see
adjustments).

Cyclos 4 PRO Documentation 3

http://tomcat.apache.org/
http://localhost:8080/

Install Cyclos

Make sure tomcat is working on port 8080 of the local machine (if you don't run Tomcat as
root/admin make sure that the user has write access to the webapps directory)

+ Download the latest version of Cyclos from the license server. To download Cyclos from
the license server you first have to register on the license server. Registrering at the license
server allows you to use the free version of Cyclos. Please write down the loginname and
password you chose when registering for the license server (it will be needed later on).

* Unzip the cyclos_<version>.zip into a temporary directory.

+ Browse to the temporary directory and copy the directory web (including its contents) into
the webapps directory (<tomcat_home>/webapps) of the tomcat installation.

+ Rename this web directory to cyclos. This name will define how users access Cyclos. For
example, if you run the tomcat server on www.domain.com the URL would be http://
www.domain.com/cyclos. Of course it is also possible to run Cyclos directly under the
domain name. This can be done by extracting Cyclos directly in the root of the webapps
directory, or putting an Apache web server in front.

* In the folder <tomcat_home>/webapps/cyclos/WEB-INF/classes you'll find the file cyclos-
release.properties. The first thing to do is to copy this file and give it the name
cyclos.properties. The original name is not shipped, so in future installations you can just
override the entire folder, and your customizations won't be overwritten.

* Inthe cyclos.properties file you can set the database configuration, here you have to specify
the username and password, by default we use 'cyclos4' as database name and 'cyclos' as
username and password.*

cycl os. dat asource. jdbcUrl = jdbc: postgresql://1ocal host/cycl os4
cycl os. dat asour ce. user = cycl os
cycl os. dat asour ce. password = cycl os

* Some systems do not resolve localhost and the default postgress port directly. In case of
database connectivity problems you might try a URL:

cyclos.datasource.jdbcUrl = jdbc:postgresql://local_ip_address:postgressport/cyclos4
example: cyclos.datasource.jdbcUrl = jdbc:postgresql://192.168.1.1:5432/cyclos4

** Windows might not see linebreaks in the property file, if this is the case we advice you to
download an more advanced text editor such as Notepad++.

*** In windows problems might occur in the Cyclos versions 4.1, 4.1.1, 4.1.2 and 4.2. It can
help to set the cyclos.tempDir variable manual. Point it to the temp directory inside the
WEB-INF directory in Cyclos. E.g. "cyclos.tempDir = C:\Program Files\Tomcat7\webapps\cyclos
\WEB-INF\temp". In some cases even forward slashes need to be used.

Cyclos 4 PRO Documentation 4

https://license.cyclos.org/
http://notepad-plus-plus.org/

Startup Cyclos

(Re)start tomcat:
+ Unix: /etc/rc.d/rc.tomcat stop /etc/rc.d/rc.tomcat start
* Windows: use TomCat monitor (available after tomcat installaton

* You can also start trough <tomcat_home>/bin/startup.bat (Windows) or
<tomcat_home>/bin/startup.sh (Linux).

When tomcat is started and Cyclos initialized browse to the web directory defined in step
5 (for the default this would be http://localhost:8080/cyclos). Be aware starting up Cyclos
for the first time might take quite some time, because the database need to be initialized.
On slow computer this could take up to 3 minutes!

Upon the first start of Cyclos you will be asked to fill in the license information.

After submitting the correct information, the initialization process will finish, and you will
automatically login as (global) admininstrator.

Problem solving

Often problems can be easily detected by looking at the log files, the log files of tomcat can
be found in the logs folder inside tomcat. There are two relevant log files:

+ The Catlina log shows all relevant information about the tomcat server itself.

* The Cyclos log shows all relevant information about the services and tasks that run in
Cyclos.

If the logs can't help you to pin down the problem, you can search the Cyclos forum
(installation issues) if somebody encountered a similar problem.

If this still has no results, you can post the (relevant) part of the logs to the Cyclos forum
(installation issues), together with a description of the problem.

An example of an error that sometimes occurs is "WARN RequestContextFilter - Couldn’t
write on the temp directory"”. In this case the user that started tomcat doesn’t have the write
permission. This can be modified in Linux by executing the following commands as root
(normally the name of the user is tomcat):

chown -R tontat /var/lib/tontat 7/ webapps/cycl os
chnod -R 755 /var/lib/toncat 7/ webapps/ cycl os

1.2. Adjustments (optional)

Enable SSL/HTTPS

Enabling SSL is highly recommended on live systems, as it protects sensitive information,
like passwords, to be sent plain over the Internet, making it readable by eavesdroppers. If

Cyclos 4 PRO Documentation 5

http://localhost:8080/cyclos
http://www.cyclos.org/forum/viewforum.php?f=13
http://www.cyclos.org/forum/viewforum.php?f=13
http://www.cyclos.org/forum/viewforum.php?f=13
http://www.cyclos.org/forum/viewforum.php?f=13

the Tomcat server is directly used from the Internet, to enable SSL / HTTPS you first have to
enable (un-comment) the https connector in the file <tomcat_home>/conf/server.xml

<Connect or port="443" maxHtt pHeader Si ze="8192"
maxThr eads="150" mi nSpar eThr eads="25" naxSpar eThr eads="75"
enabl eLookups="f al se" di sabl eUpl oadTi meout ="t rue"
accept Count =" 100" schene="https" secure="true"
cl i ent Aut h="f al se" ssl Protocol ="TLS" />

Generate a key with the keytool from Java:

$JAVA HOWE bi n/ keyt ool -genkey -alias tontat -keyalg RSA -keystore /path/to/ny/keystore

After executing this command, you will first be prompted for the keystore password.
Passwords are *case sensitive*. You will also need to specify the custom password in
the server.xml configuration file, as described later. Next, you will be prompted for
general information about this Certificate, such as company, contact name, and so on.
This information will be displayed to users who attempt to access a secure page in your
application, so make sure that the information provided here matches what they will expect.
Finally, you will be prompted for the key password, which is the password specifically for this
Certificate (as opposed to any other Certificates stored in the same keystore file). You MUST
use the same password here as was used for the keystore password itself. (Currently, the
keytool prompt will tell you that pressing the ENTER key does this for you automatically). If
everything was successful, you now have a keystore file with a Certificate that can be used
by your server.

Adjust Tomcat/Java memory

The default memory heap size of Tomcat is very low. You can augment this in the following
way:

Windows

In the bin directory of Tomcat create (if it doesn't exist) a file called setenv.bat, edit this file
and add the following line:

set JAVA OPTS=- Xns128m - Xnx512m - XX: MaxPer nf5i ze=128M

Linux

In the bin directory of Tomcat create (if it doesn't exist) a file called setenv.sh, edit this file
and add the following line:

JAVA _OPTS="- Xms128m - Xmx512m - XX: MaxPer nSi ze=128M'

Cyclos 4 PRO Documentation 6

Clustering

Clustering is useful both for scaling (serving more requests) and for high availability (if a server
crashes, the application continues to run). The main reason for configuring a cluster in Tomcat
istoreplicate HTTP sessions. Cyclos, however, doesn't use Tomcat sessions, but handles them
internally. This way, there is no special Tomcat configuration to support a Cyclos cluster.

The Cyclos application, however, needs some small configurations to enable clustering.
Cyclos uses Hazelcast to synchronize aspects (such as caches) between cluster servers. To
enable clustering, find in cyclos.properties the line containing cyclos.clusterHandler, and set
it to hazelcast.

Some extra configuration can be performed in the WEB-INF/classes/hazelcast.xml file.
Basically, if the local network runs more than a single Cyclos instance, the group needs to be
configured. Configure all files belonging to the same group with the same group name and
password. It is also possible to change the default multicast to TCP/IP communication. Just
comment the <multicast> tag and uncomment the <tcp-ip> tag, setting up the hosts / ports
which will be part of the cluster. For a TCP/IP cluster, Hazelcast needs the host name / port of
at least one node already in a cluster (it is not necessary to set all other nodes on each node).

To setup high-availability at database (Postgresql) level, please, refer to this document.

1.3. Maintenance

Backup

All data in Cyclos is stored in the database. Making a backup of the database can be done
using the pg_dump command. The only file that you need to back-up (only once) will be the
cyclos.properties configuration file. The database can be backed up manually as follows (in
this example the name of the database is cyclos4 the username cyclos and the command will
prompt for the password cyclos):

pg_dunp —user name=cycl os —password - hl ocal host cycl os4 > cycl 0s4. sq

Restore

If you want to start using cyclos with the data from a backup. You can just import the backed
up database. In this example the name of the database is cyclos4 the username cyclos and
command will prompt for the password cyclos the name of the backup is cyclos4.sql make
sure to specify the path if your not in the same directory as the file:

psql —user nane=cycl os —password -hl ocal host cycl os4 < cycl 0s4. sq

Cyclos 4 PRO Documentation 7

http://hazelcast.org/
https://docs.google.com/document/d/1DATNrfdBBa9kUY0XqqYMGtrjbgboXOwmgNv4PoseCkk/pub

2. Web services

Here you will find information on how to call Cyclos services from 3rd party applications.

2.1. Introduction

The entire service layer in Cyclos 4 is accessible via web services. For a client to use a
web service, currently, he needs to provide the username and password (according to the
password configured on the Channels tab for the user configuration). It is planned for future
versions to have access clients, which will belong to an user, being used instead of the
username / password authentication.

The available service and APl change policy is described here. In terms of security, web
services are no more and no less secure than the regular web access, since the service layer
is shared, and the same permissions / authorizations are checked in both cases.

Cyclos offers two types of web services: one for native Java clients and another one which is
client-agnostic, using JSON requests / responses over HTTP. For the latter, a PHP client library
is generated from the services, mirroring all services and methods in a PHP-friendly way.

2.2. Java clients

Cyclos provides native Java access to services, which can be used on 3rd party Java
applications.

Dependencies

In order to use the client, you will need some JAR files which are available in the download
bundle, on the cyclos-4.x.x/web/WEB-INF/lib directory. Not all jars are required, only the
following:

+ cyclos-api.jar

* logdj-x.x.x.jar

* jcl-over-sif4j-x.x.x.jar

* slf4j-api-x.x.x.jar

* slf4j-log4j12-x.x.x.jar

* Spring-aop-x.X.X.x.jar

* spring-beans-x.x.x.x.jar
* spring-context-x.x.x.x.jar

* spring-core-X.X.x.x.jar

Cyclos 4 PRO Documentation 8

* spring-web-x.x.x.x.jar
« aopalliance.jar

Those jars, except the cyclos-api.jar, are provided by the following projects:

« Spring framework 4.x.x, distributed under the Apache 2.0 license.

« SLF4] logging framework 1.6.x, distributed under the MIT license.
+ Apache Log4] 1.2.x, distributed under the Apache 2.0 license.

+ AQOP Alliance (required by the Spring Framework), which is licensed as Public Domain.

Using services from a 3rd party Java application

The Java client for Cyclos 4 uses the Spring HTTP invokers to communicate with the server and
invoke the web services. It works in a similar fashion as RMI or remote EJB proxies - a dynamic
proxy for the service interface is obtained and methods can be invoked onit as if it were a local
object. The proxy, however, passes the parameters to the server and returns the result back
to the client. The Cyclos 4 API library provides the org.cyclos.server.utils.HttpServiceFactory
class, which is used to obtain the service proxies, and is very easy to use. With it, service
proxies can be obtained like this:

Ht t pServi ceFactory factory = new HttpServiceFactory();

factory.setRootUrl ("https://ww. my-cycl os. com net wor k") ;

factory. setlnvocati onDat a(new Ht t pServi cel nvocat i onDat a(" user nane", "password"));
Account Servi ce account Service = factory. get Proxy(Account Servi ce. cl ass);

In the above example, the AccountService can be used to query account information. The
permissions are the same as in the main Cyclos application. The user may be either a regular
user or an administrator. When an administrator, will allow performing operations over
regular users (managed by that administrator). Otherwise, the web services will only affect
the own user.

Examples
Configure Cyclos

All following examples use the following class to configure the web services..

i mport org.cyclos.server.utils.HtpServiceFactory;
i nport org.cyclos.server.utils.HtpServicel nvocati onDat a;

/**

* This class will provide the Cyclos server configuration for the web service
* sanpl es

&/

public class Cyclos {

Cyclos 4 PRO Documentation 9

http://projects.spring.io/spring-framework/
http://www.apache.org/licenses/LICENSE-2.0
http://www.slf4j.org/
http://en.wikipedia.org/wiki/MIT_License
http://logging.apache.org/log4j/1.2
http://www.apache.org/licenses/LICENSE-2.0
http://aopalliance.sourceforge.net/
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/remoting.html#remoting-httpinvoker
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/server/utils/HttpServiceFactory.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/services/banking/AccountService.html

private static final String ROOT_URL = "http://Iocal host: 8888/ engl and";

private static HtpServiceFactory factory;
static {
factory = new HttpServiceFactory();
factory. set Root Ur| (ROOT_URL) ;
factory. setlnvocati onDat a(Ht t pServi cel nvocat i onDat a. st at el ess(
"adm n", "1234"));

public static H tpServi ceFactory get ServiceFactory() {
return factory;

public static H tpServi ceFactory getServi ceFactory(
Ht t pServi cel nvocati onData i nvocati onData) {
Htt pServi ceFactory factory = new HttpServiceFactory();
factory. set Root Ur| (ROOT_URL) ;
factory. setlnvocati onDat a(i nvocati onDat a) ;
return factory;

Search users

i mport org.cycl os. nodel . users. users. User Det ai | edVQ,
i mport org.cycl os. nbdel . users. users. User Query;

i mport org.cyclos. services. users. User Servi ce;

i mport org.cyclos.utils. Page;

/**

* Provides a sanple on searching for users
*/

public class SearchUsers {

public static void main(String[] args) throws Exception {
User Servi ce userService = Cycl os. get Servi ceFactory(). get Proxy(
User Servi ce. cl ass);

/'l Search for the top 5 users by keywords

User Query query = new User Query();

query. set Keywords("John*");

query. set PageSi ze(5) ;

Page<User Det ai | edVO> users = user Servi ce. search(query);

System out. printf("Found a total of %l users\n",
users. get Total Count ());
for (UserDetail edVO user : users) {
Systemout.printf("* % (%)\n", user.getName(),
user. get User nane()) ;

Cyclos 4 PRO Documentation

Search advertisements

i mport org.cycl os. nodel . nar ket pl ace. adverti senents. Basi cAdQuery;
i mport org.cycl os. nodel . nar ket pl ace. adverti sements. Basi cAdVO,

i nport org.cyclos. servi ces. mar ket pl ace. AdSer vi ce;

i mport org.cyclos.utils. Page;

/**

* Provides a sanple on searching for advertisenents
*/

public class SearchAds {

public static void main(String[] args) throws Exception {
AdServi ce adService = Cycl os. get Servi ceFactory(). get Proxy(
AdSer vi ce. cl ass) ;
Basi cAdQuery query = new Basi cAdQuery();
query. set Keywords(" Gear");
query. set Hasl mages(true);
Page<Basi cAdVO> ads = adServi ce. search(query);
Systemout.printf(“Found a total of % advertisenents\n",
ads. get Tot al Count ());
for (BasicAdVO ad : ads) {
Systemout. printf("%\nBy: %\n%\n------- \n",
ad. get Nane(),
ad. get Onner () . get Name(),
ad. get Description());

Register user

inmport java.util.Arraylist;
import java.util.Arrays;
inport java.util.Collections;
import java.util.List;

i nport org.cyclos. nodel . system fi el ds. Cust onFi el dDet ai | edVG,

i nport org.cyclos. nodel . system fi el ds. Cust onFi el dPossi bl eVal ueVG,
i mport org.cycl os. nodel . users. addr esses. User Addr essDTO,

i nport org.cyclos. nodel . users. fields. User Cust onfi el dVal ueDTG,
i nport org.cyclos. nodel . users. groups. G oupVG,

i mport org.cycl os. nodel . users. phones. LandLi nePhoneDTO,

i nport org.cycl os. nodel . users. phones. Mobi | ePhoneDTG,

i nport org.cyclos. nbdel . users. users. Regi strationSt at us;

i mport org.cycl os. nodel . users. users. User Dat a;

i nport org.cyclos. nbdel . users. users. User Regi strati onDTG,

i nport org.cyclos. nbdel . users. users. User Regi strationResul t;

i mport org.cycl os. nodel . users. users. User Sear chCont ext ;

i nport org.cycl os. nbdel . users. users. User Sear chDat a;

i nport org.cyclos. services. users. User Servi ce;

i mport org.cyclos.utils. CustonFiel dHel per;

/**

* Provides a sanple on registering an user with all customfields,

addr esse

Cyclos 4 PRO Documentation

11

* and phones
*/
public class RegisterUser {

public static void main(String[] args) {
/] Get the services
User Servi ce userService = Cycl os. get Servi ceFactory(). get Proxy(
User Servi ce. cl ass) ;

/'l The avail abl e groups for new users are obtained in the search data
User Sear chDat a searchData = user Servi ce

. get Sear chDat a(User Sear chCont ext . REGULAR) ;
Li st <G oupVO> possi bl eGroups = searchData. getlnitial Goups();

/1 Find the consumers group
GroupVO group = null;
for (G oupVO current : possibleGoups) {
if (current.getNane().equal s("Consuners")) ({
group = current;
br eak;

/|l Get data for a new user
UserData data = user Servi ce. get Dat aFor New(gr oup. get 1d());

/] Basic fields

User Regi strati onDTO user = new User Regi strationDTQ();
user . set G oup(group);

user. set Nanme("John Smith");

user. set User name("j ohnsm th");

user.set Emai | ("john.smith@mil.conl);

user. set Assi gnPasswor d(true);

user. set Password("1234");

user. set Ski pActivati onEmai |l (true);

user . set Confi r mPasswor d(user . get Password()) ;
user . set For cePasswor dChange(true);

/1 Customfields
Li st <Cust onFi el dDet ai | edVO> cust onfi el ds = Cust onFi el dHel per
. get Cust onfi el ds(dat a. get Cust onFi el dActions());
Cust onfi el dDet ai | edVO gender = nul | ;
Cust onfFi el dDet ai | edVO i dNunber = nul | ;
for (Custonfiel dDetail edVO custonField : custonFields) {
i f (custonField.getlnternal Name().equal s("gender")) {
gender = custonfFiel d;
}
if (custonField. getlnternal Name().equal s("idNunmber")) {
i dNunber = custonFi el d;

}
user. set Cust onVal ues(new ArrayLi st <User Cust onFi el dVal ueDTC>()) ;

/1 Value for the gender customfield
User Cust onFi el dVal ueDTO gender Val ue = new User Cust onFi el dVal ueDTQ() ;
gender Val ue. set Fi el d(gender) ;
for (CustonFiel dPossi bl eVal ueVO possi bl eVal ue : gender
. get Possi bl eVal ues()) {

Cyclos 4 PRO Documentation

12

i f (possibl eVal ue. getVal ue().equal s("Mle")) {
// Found the value for 'Mle'
gender Val ue. set Enuner at edVal ues(Col | ecti ons
. si ngl eton(possi bl eval ue));
br eak;

}
user. get Cust onVal ues() . add(gender Val ue) ;

// Value for id nunber customfield

User Cust onFi el dVal ueDTO i dNurber Val ue = new User Cust onfFi el dVal ueDTQ() ;
i dNunber Val ue. set Fi el d(i dNurber) ;

i dNunmber Val ue. set Stri ngVal ue("123. 456. 789- 10") ;

user. get Cust onVal ues() . add(i dNunber Val ue) ;

/] Address

User Addr essDTO address = new User Addr essDTQ() ;

addr ess. set Name(" Hore") ;

addr ess. set AddressLi nel("John's Street, 500");
address.setCity("John's City");

addr ess. set Regi on("John' s Regi on");

address. set Country("BR"'); // Country is given in 2-letter |SO code
user. set Addresses(Arrays. asLi st (address));

/1 Landline phone

LandLi nePhoneDTO | andLi nePhone = new LandLi nePhoneDT(() ;
| andLi nePhone. set Nane(" Hone") ;

| andLi nePhone. set RawNunber (" +551133333333") ;

user. set LandLi nePhones(Arrays. asLi st (I andLi nePhone)) ;

/1 Mobile phone

Mobi | ePhoneDTO nobi | ePhone = new Mobi | ePhoneDTQ() ;
mobi | ePhone. set Nane(" Mobi |l e phone 1");

nobi | ePhone. set RawNunber (" +5511999999999") ;

user. set Mobi | ePhones(Arrays. asLi st (nobi | ePhone)) ;

/| Effectively register the user
User Regi strationResult result = userService.register(user);
Regi strati onStatus status = result.getStatus();
switch (status) {
case ACTI VE:
System out. println("The user is now active");
br eak;
case ACTI VE_GENERATED_PASSWORD:
System out. println("The user is now active,
+ "and a password has been emmil ed");
br eak;
case | NACTI VE:
System out.printIn("The user is in an inactive group,
+ "and needs activation by adm nistrators");
br eak;
case EMAI L_VALI DATI ON:
System out. println("The user needs to validate the e-mmil
+ "address in order to confirmthe registration");
br eak;

Cyclos 4 PRO Documentation

13

}

Edit user profile

i mport
i mport
i mport
i mport
i mport
i mport
i mport

public

import java.util.List;

org. cycl os. nodel . users. fiel ds. User Cust onFi el dVal ueDTO,
org.cycl os. nodel . users. users. Edi t Profi | eDat a;

org. cycl os. nodel . users. users. User DTG,

org.cycl os. nodel . users. users. User Det ai | edVG,

org.cycl os. nodel . users. users. User Locat or VO,

org.cycl os.server.utils. HtpServi ceFactory;

org. cycl os. servi ces. users. User Servi ce;

cl ass EditUser {

public static void main(String[] args) {

/] Get the services
Ht t pServi ceFactory factory = Cycl os. get Servi ceFactory();
User Servi ce userService = factory. get Proxy(User Servi ce. cl ass);

/'l Locate the user by usernane, so we get the id
User Locat or VO | ocat or = new User Locat or VQ() ;

| ocat or. set User nane(" soneuser") ;

User Det ai | edVO user VO = user Servi ce. | ocat e(l ocator);

/Il Get the profile data

EditProfil eData data = (EditProfileData) userService. getData(user VO
-getld());

User DTO user = data.getDIQ();

user. set Nane(" Some nodi fied nane");

Li st <User Cust onFi el dVal ueDTO> cust omVal ues = user. get Cust onVal ues();

for (UserCustonfiel dval ueDTO fi el dval ue : custonVal ues) {
if (fieldVvalue.getField().getlnternal Name().equal s("website")) {

fieldVal ue.setStringValue("http://new. url.con);

/1 Update the user
user Servi ce. save(user);

Login user

i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

java.util. List;

org. cycl os. nodel . access. LoggedQut Excepti on;

org. cycl os. nodel . access. channel s. Bui | t | nChannel ;
org. cycl os. model . banki ng. account s. Account Sunmar yVG,
org.cycl os. nodel . users. users. User Locat or VO,

org. cycl os. nodel . users. users. User Logi nDTQ,

org.cycl os. nodel . users. users. User Logi nResul t;
org.cycl os. nodel . users. users. User VO,

org.cycl os.server. utils. HtpServi ceFactory;

Cyclos 4 PRO Documentation

14

i mport org.cyclos.server.utils.HtpServicelnvocationDat a;
i nport org.cyclos. services. access. Logi nServi ce;
i mport org.cycl os. servi ces. banki ng. Account Servi ce;

/**

* Cycl os web service exanple: logs-in an user via web services.
* This is useful when creating an alternative front-end for Cyclos.
*/
ublic class Logi nUser
bl | L Us

public static void main(String[] args) throws Exception {
/1 This LoginService has the adm nistrator credentials
Logi nServi ce Logi nServi ce = Cycl os. get Servi ceFactory(). get Proxy(
Logi nSer vi ce. cl ass);

String renoteAddress = "192.168. 1. 200";

/'l Set the |ogin paraneters

User Logi nDTO parans = new User Logi nDTQ() ;

User Locat or VO | ocat or = new User Locat or VO(User Locat or VO. PRI NCI PAL,
"cl");

par ans. set User (| ocator) ;

par ans. set Passwor d("1234");

par ans. set Renot eAddr ess(r enot eAddr ess) ;

par ans. set Channel (Bui | t | nChannel . MAI N. get | nt er nal Nane()) ;

/1 Login the user
User Logi nResult result = Logi nService. | ogi nUser (parans);
User VO user = result.getUser();
String sessionToken = result.get SessionToken();
System out . println("Logged-in" + user.getNane()
+ " with session token = " + sessionToken);

/! Do sonething as user. As the session token is only valid per ip
/] address, we need to pass-in the client ip address again
Ht t pSer vi cel nvocat i onDat a sessi onl nvocati onData = Htt pServi cel nvocati onDat a
.stat ef ul (sessi onToken, renpteAddress);
/'l The services acquired by the following factory will carry on the
/'l user session data
Ht t pServi ceFactory userFactory = Cycl os
. get Servi ceFact or y(sessi onl nvocat i onDat a) ;
Account Servi ce account Servi ce = userFactory
. get Proxy(Account Ser vi ce. cl ass) ;
Li st <Account Summar yVO> accounts = account Servi ce. get Account sSummar y(
user, null);
for (Account SummaryVO account : accounts) {
System out. println(account.getName() + ", bal ance:
+ account . get Status() . get Bal ance());

/'l Logout. There are 2 possibilities:

/'l - Logout as admi nistrator:
Logi nServi ce. | ogout User (sessi onToken) ;

/1 - OR |logout as own user:

try {
user Fact ory. get Proxy(Logi nServi ce. cl ass). | ogout ();

Cyclos 4 PRO Documentation

15

} catch (LoggedQut Exception e) {
/] already | ogged out

Get account information

i nport java. mat h. Bi gDeci nal ;
import java.util.List;

i mport org.cycl os. nodel . banki ng. account s. Account Hi st or yEnt r yVQ,
i nport org.cyclos. nodel . banki ng. account s. Account Hi st oryQuery;

i mport org.cycl os. nodel . banki ng. account s. Account Sunmar yVGQ,

i mport org.cycl os. nodel . banki ng. account s. Account VO,

i mport org.cycl os. nodel . banki ng. account t ypes. Account TypeNat ur e;
i mport org.cycl os. nodel . banki ng. account t ypes. Account TypeVG,

i mport org.cycl os. nodel . users. users. User Locat or VO,

i nport org.cyclos. nodel . users. users. User VG,

i mport org.cyclos. nodel . utils. CurrencyAnmount DTO

i mport org.cycl os. servi ces. banki ng. Account Servi ce;

i nport org.cyclos.utils. Page;

/**

* Provides a sanple on getting the account information for a given user.
S

public class Get Accountl|nformation {

public static void main(String[] args) throws Exception {
Account Servi ce account Service = Cycl os. get Servi ceFactory(). get Proxy(
Account Servi ce. cl ass) ;

/'l Get the accounts sunmary

User Locat or VO user = new User Locat or VQ() ;

user. set User name(" some- user");

Li st <Account Summar yVO> sunmari es = account Servi ce. get Account sSummar y(
user, null);

/'l For each account, we'll show the bal ances
for (Account SummaryVO summary : summaries) {
Cur rencyAnount DTO bal ance = sunmary. get Bal ance() ;
System out. printf ("% has bal ance of % 2f %\n",
summary. get Name(),
bal ance. get Anount (),
bal ance. get Currency());

/1l Also, search for the |last 5 paynents on each account
Account Hi st oryQuery query = new Account Hi storyQuery();
query. set Account (new Account VO(sumrary. getl1d()));

query. set PageSi ze(5) ;

Page<Account Hi storyEntryVO> entries = account Servi ce
. sear chAccount Hi st ory(query);

for (AccountHistoryEntryVO entry : entries) {
Account VO rel at edAccount = entry. get Rel at edAccount () ;
Account TypeVO rel at edType = rel at edAccount . get Type();
Account TypeNat ure rel atedNature = rel at edType. get Nature();

Cyclos 4 PRO Documentation 16

/1l The fromor to...
String fromOTo;
if (relatedNature == Account TypeNat ure. SYSTEM {

/1 ... mght be the account type nanme if a system account
from>rTo = rel at edType. get Name() ;

} else {
/1 ... or just the user nane and | ogi n nane

User VO rel atedUser = (UserVO) rel atedAccount. get Omer ();
from>rTo = rel atedUser. get Nane() + " ("
+ rel atedUser. get Usernane() + ")";
}
/1 Display the amount, which can be negative or positive
Bi gDeci mal anpunt = entry. get Anount ();
bool ean debit = anount.conpareTo(Bi gDeci mal . ZERO) < 0;

Systemout.printf(“Date: %\n", entry.getDate());
Syst em out

.printf("%: %\n", debit ? "To" : "Front, fronOrTo);
System out. printf("Amount: % 2f\n", entry.getAmount());
System out. println();

}

System out. pri ntl p("***x*xsxxxny.

Perform payment

i nport java. mat h. Bi gDeci nal ;
import java.util.List;

i mport org.cycl os. nodel . EntityNot FoundExcepti on;

i mport org.cycl os. nodel . banki ng. | nsuf fi ci ent Bal anceExcepti on;

i mport org.cycl os. nodel . banki ng. MaxAnount ExceededExcept i on;

i mport org.cycl os. nodel . banki ng. MaxAnmount Per DayExceededExcept i on;

i mport org.cycl os. nodel . banki ng. MaxAnount Per Mont hExceededExcept i on;

i mport org.cycl os. nodel . banki ng. MaxAmount Per WeekExceededExcept i on;

i mport org.cycl os. nodel . banki ng. MaxTr ansf er sPer DayExceededExcept i on;

i mport org.cycl os. nodel . banki ng. MaxTr ansf er sPer Mont hExceededExcept i on;
i mport org.cycl os. nodel . banki ng. MaxTr ansf er sPer WeekExceededExcept i on;
i mport org.cycl os. nodel . banki ng. M nAnobunt ExceededExcept i on;

i mport org.cycl os. nodel . banki ng. M nTi neBet weenTr ansf er sExcept i on;

i mport org.cycl os. nodel . banki ng. account s. Account Oaner ;

i mport org.cycl os. nodel . banki ng. account s. Syst emAccount Omner ;

i nport org.cyclos. nodel . banki ng. t ransact i ons. Paynent VO,

i mport org.cycl os. nodel . banki ng. t ransacti ons. Per f or nPaynent DTQ,

i mport org.cycl os. nodel . banki ng. t ransacti ons. Perf or nPaynent Dat a;

i nport org.cyclos. nodel . banki ng. t ransacti ons. Transact i onAut hori zati onSt at us;
i mport org.cycl os. nodel . banki ng. t ransfertypes. Transf er TypeVO

i mport org.cycl os. nbdel . users. users. User Locat or VO,

i nport org.cyclos.server.utils.HttpServiceFactory;

i mport org.cycl os. servi ces. banki ng. Paynent Ser vi ce;

i mport org.cycl os. servi ces. banki ng. Transact i onSer vi ce;

import org.cyclos.utils. CollectionHel per;

/**

Cyclos 4 PRO Documentation

* Provides a sanple on perfornming a paynent between an user and a system
* account

*/

public class PerfornPaynent {

public static void main(String[] args) {
/] Get the services
Ht t pServi ceFactory factory = Cycl os. get Servi ceFactory();
TransactionServi ce transactionService = factory
. get Proxy(Transacti onServi ce. cl ass) ;
Paynment Servi ce paynent Service = factory
. get Proxy(Paynent Ser vi ce. cl ass) ;

/1 The payer and payee

Account Omner payer = new User Locat or VO User Locat or VO. USERNAME,
"user1");

Account Owner payee = SystemAccount Omer. i nstance();

/] Get data regarding the paynent
Per f or mPaynent Dat a dat a;
try {
data = transactionServi ce. get Paynent Dat a(payer, payee);
} catch (EntityNot FoundException e) {
System out . println("Sone of the users were not found");
return;

/]l Get the first avail abl e paynment type
Li st <Tr ansf er TypeVO> types = dat a. get Paynment Types() ;
Tr ansf er TypeVO paynment Type = Col | ecti onHel per. first(types);
if (payment Type == null) {
Systemout.println("There is no possible paynment type");

/1 The paynment anount
Bi gDeci mal anount = new Bi gDeci mal (10.5);

/] Performthe payment itself

Per f or mPaynent DTO paynment = new Per f or mPaynent DTQ() ;
paynent . set Type(paynent Type) ;

paynent . set Fron(dat a. get From()) ;

paynment . set To(dat a. get To()) ;

paynent . set Anount (anmount) ;

try {
Payment VO resul t = paynent Servi ce. per f or m(paynent) ;
/] Check whether the paynent is pending authorization
Transacti onAut hori zati onStatus auth = result
. get Aut hori zati onStat us();
if (auth == Transacti onAut hori zati onSt at us. PENDI NG_AUTHORI ZATI ON) {
System out. println("The paynment is pending authorization");
} else {
System out . println("The paynment has been processed");
}
} catch (InsufficientBal anceException e) {
Systemout. println("Insufficient balance");
} catch (MaxTransf er sPer DayExceededException e) {
System out . println("Mxi mum dai ly anpbunt of transfers "

Cyclos 4 PRO Documentation

18

+ e. get Max()
+ " has been reached");
} catch (MaxTransf er sPer WeekExceededException e) {
System out . println("Mxi mum weekly anpbunt of transfers "
+ e. get Max()
+ " has been reached");
} catch (MaxTransf er sPer Mont hExceededException e) {
System out. println("Maxi mum nonthly amount of transfers "
+ e. get Max()
+ " has been reached");
} catch (M nTi meBet weenTr ansf er sException e) {
Syst em out
.printIn("A mnimum period of tine should be awaited to nmake "
+ "a paynment of this type");
} catch (MaxAnount Per DayExceededExcepti on e) {
System out . println("Mxi mum dai ly anobunt of " + e.get MaxAnount ()
+ " has been reached");
} catch (MaxAnount Per WeekExceededException e) {
System out . println("Mxi mum weekly anpbunt of " + e.get MaxAnount ()
+ " has been reached");
} catch (MaxAnount Per Mont hExceededException e) {
System out . println("Mxi mum nont hly amount of "
+ e. get MaxAnmount ()
+ " has been reached");
} catch (MaxAnmount ExceededException e) {
System out. println("Maxi mum amount of " + e.get MaxAnmount ()
+ " has been reached");
} catch (M nAnpunt ExceededException e) {
System out. println("M ni mum anmount of " + e.getM nAnount ()
+ " has been reached");
} catch (Exception e) {
System out. println("The payment coul dn't be performed");

2.3. PHP clients

To make it easier to integrate Cyclos in PHP applications, a PHP library is provided. The
library uses web-rpc calls with J[SON objects internally, handling requests and responses,
as well as mapping exceptions. A PHP class is generated for each Cyclos service interface,
and all methods are generated on them. The parameters and result types, however, are not
generated, and are either handled as strings, numbers, booleans or generic objects (stdclass).

You can download the PHP client for the corresponding Cyclos version here.

Dependencies
* PHP 5.3 or newer
« PHP CURL extension (package php5-curl in Debian / Ubuntu)
« PHP JSON extension (package php5-json in Debian / Ubuntu)

Cyclos 4 PRO Documentation 19

http://www.cyclos.org/documentation/webservices/#other

Using services from a 3rd party PHP application

In order to use the Cyclos classes, we first register an autoload function to load the required
classes automatically, like this:

function |oad($c) {
if (strpos($c, "Cyclos\\") >= 0) {
i nclude str_replace("\\", "/", $c) . ".php";
}

}

spl _autol oad_regi ster("load");

Then, Cyclos is configured with the server root URL and authentication details:

Cycl os\ Configuration::setRootUrl ("http://192.168. 1. 27: 8888/ engl and") ;
Cycl os\ Confi guration::setAuthentication("adm n", "1234");

Afterwards, services can be instantiated using the new operator, and the corresponding
methods will be available:

$userService = new Cyclos\UserService(); $page = $userService->search(new stdclass());
Examples
Configuration

All the following examples include the configureCyclos.php file, which contains the following:
<?php

function |oad($c) {
if (strpos($c, "Cyclos\\") >= 0) {
i nclude str_replace("\\", "/", $c) . ".php";
}
}

spl _autol oad_register('load")

Cycl os\ Configuration::setRootUrl ("http://192.168. 1. 27: 8888/ engl and") ;
Cycl os\ Configuration::setAuthentication("adn n", "1234")

Search users
<?php

require_once 'configureCycl os. php'

$user Servi ce = new Cycl os\ User Servi ce();

Cyclos 4 PRO Documentation 20

$query = new stdcl ass();
$query->keywords = ' Consuner *'

$quer y->pageSi ze = 5

$page = $user Servi ce- >sear ch($query);

echo("Found a total of $page->total Count users\n");

if (!enpty($page->pageltens)) {

foreach ($page->pageltens as $user) {
echo("* $user->nanme (S$user->usernane)\n");

}

}

Search advertisements
<?php
requi re_once 'configureCycl os. php'

$adServi ce = new Cycl os\ AdService();
$query = new stdcl ass();
$query->keywords = ' Conput er *'
$quer y- >pageSi ze = 10
$query->orderBy = ' PRI CE_LONEST'
$page = $adService->search($query);

echo("Found a total of $page->total Count advertisenments\n");

if (!enpty($page->pageltens)) {

foreach ($page->pageltens as $ad) {
echo("* $ad->title\n");

}

}

Login user

<?php

/'l Configure Cyclos and obtain an instance of LoginService
requi re_once 'configureCycl os. php'
$l ogi nServi ce = new Cycl os\ Logi nService();

/'l Set the paraneters

$paranms = new stdcl ass();

$par ans- >user = array("principal" => $_POST[' usernane']);
$par ans- >password = $_POST[' password'];

$par ans- >r enot eAddr ess = $_SERVER[' REMOTE_ADDR' | ;

/1 Performthe |ogin
try {
$result = $l ogi nServi ce- >l ogi nUser ($par ans) ;
} catch (Cycl os\ Connecti onExcepti on $e) {
echo(" Cycl os server couldn't be contacted");
die();
} catch (Cycl os\ Servi ceException $e) {
switch ($e->errorCode) {

Cyclos 4 PRO Documentation

case ' VALI DATI ON :
echo("M ssing username / password");

br eak;

case 'LOA N :
echo("Invalid username / password");
br eak;

case ' REMOTE_ADDRESS_BLOCKED :
echo("Your access is blocked by exceeding invalid | ogi
br eak;
defaul t:
echo("Error while perform ng |ogin: {$e->errorCode}");
br eak;
}
die();
}

/'l Redirect the user to Cyclos with the returned session
header (" Locati on:

Cycl os\ Confi guration::getRootUrl ()

" ?sessi onToken="

$resul t - >sessi onToken) ;

Perform payment from system to user

<?php
requi re_once 'configureCycl os. php';

$transacti onService = new Cycl os\ Transact i onServi ce();
$paynent Servi ce = new Cycl os\ Paynent Ser vi ce();

try {
$data = $transacti onServi ce- >get Paynent Dat a(' SYSTEM ,

$paraneters = new stdcl ass();

$par anet ers->from = $dat a- >f rom

$par anet ers->to = $dat a- >t o;

$par anet er s- >t ype = $dat a- >paynent Types[0] ;
$par anet er s- >anount = 5;

echo("Not yet authorized\n");
} else {

}
} catch (Cycl os\ Servi ceException $e) {

echo("Error while calling $e->service. $e- >operati on:

}

Perform payment from user to user

<?php
requi re_once 'configureCycl os. php';

/! Performthe paynent fromuser cl to c2

$par anet ers->description = "Test fromsystemto user";

n attenmpts");

t oken

array(' usernane'

$paynent Resul t = $paynent Ser vi ce- >per f or n($par anet er s) ;
i f ($paynent Resul t->aut hori zationStatus == ' PENDI NG_AUTHORI ZATI ON') {

echo("Paynment done with id $paynment Result->id\n");

$e- >error Code") ;

=>"'cl"));

Cyclos 4 PRO Documentation

22

Cycl os\ Confi guration::setAuthentication("cl", "1234");

$transacti onServi ce = new Cycl os\ Transacti onServi ce();
$paynent Servi ce = new Cycl os\ Paynent Servi ce();

try {
$data = $transacti onServi ce- >get Paynment Dat a(
array(' username' => 'cl'),
array(' usernanme' => 'c2'));

$paraneters = new stdcl ass();

$par anet ers->from = $dat a- >f rom

$par anet ers->to = $dat a- >t o;

$par anet er s- >t ype = $dat a- >paynent Types[0] ;

$par anet er s- >anount = 5;

$par anet ers->descri ption = "Test paynent to user";

$paynent Resul t = $paynent Ser vi ce- >per f or n($par anet er s) ;

i f ($paynent Resul t->aut hori zationStatus == ' PENDI NG_AUTHORI ZATI ON') {
echo("Not yet authorized\n");
} else {

echo("Paynment done with id $paynment Result->id\n");
}
} catch (Cycl os\ Servi ceException $e) {
switch ($e->errorCode) {
case "VALI DATI ON':
echo(" Sone of the paraneters is invalid\n");
var _dunp($e->error);
br eak;
case "I NSUFFI Cl ENT_BALANCE" :
echo("Insufficient balance to performthe paynment\n");
br eak;
case "MAX_AMOUNT PER DAY EXCEEDED":
echo(" Maxi mum anount exeeded today\n");
br eak;
defaul t:
echo("Error with code $e->errorCode while perform ng the payment\n");
br eak;

2.4. Other clients

For other clients, a "REST level 0", or RPC-like interface is available, using JSON encoded
strings for passing parameters and receiving results from services. Each service responds
to POST requests to the following URL http[s]://cyclos.url/[network/]web-rpc/<short-service-
name>, where the short-service-name is the service with the first letter as lowercase. So,
for example, https://my.cyclos.instance.com/network/web-rpc/accountService is a valid URL,
being mapped to AccountService. For authentication, the username and password should
be passed as a HTTP header using the standard basic authentication - a header like:
"Authentication: Basic <Base64-encoded form of username:password>". Additional fields can

Cyclos 4 PRO Documentation 23

http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/services/banking/AccountService.html

be used to identify the user, not only the username, by prepending the "username" with the
following values:

+ username:<value> - Identify the user by the login name (same as not using any prefix at
all). For example: username:someuser

* id:<value>: Identify the user by the internal id. For example: id:1234567
+ email:<value>: Identify the user by e-mail. For example: email:someuser@email.com

* mobilePhone:<value> - Identify the user by mobile phone. For example: mobilePhone:
+555199999999

+ customField:<field>:<value> - Identify the user by custom field (by internal name) value.
For example: customField:externalld:1234567

+ customFieldld:<id>:<value> - Identify the user by custom field (by id) value. For example:
customFieldld:987654:1234567

The request body must be a JSON object with the ‘operation’ and ‘params’ properties, where
operation is the method name, and params is either an array with parameters, or optionally
the parameter if the method has a single parameter (without the array) or even omitted if
the method have no parameters. For objects, the parameters are expected to be the same as
the Java counterparts (see the JavaDocs for a reference on the available properties for each
object).

As result, if the request was successful (http status code is 200), an object with a single
property called result will be returned. The object has the same structure as the object
returned by the service method, or is a string, boolean or number for simple types. Requests
which resulted in error (status code distinct than 200) will have the following structure:

+ errorCode: A string generated from the exception java class name. The unqualified class
name has the Exception suffix removed, and is transformed to all uppercase, separated
by underlines. So, for example, for org.cyclos.model.ValidationException, the error code is
VALIDATION; for org.cyclos.model.banking.InsufficientBalanceException, the error code is
INSUFFICIENT_BALANCE, and so on.

+ Any other properties (public getters) the thrown exception has will also be mapped as a
property here, for example, org.cyclos.model.ValidationException holds a property called
validation which contains an object representing a org.cyclos.utils.ValidationResult.

Apart from that, all objects, when converted to JSON, will have a property called class, which
represents the fully-qualified Java class name of the source object. Most clients can just
ignore the result. However, when sending requests to classes that expect a polymorphic
object, the server needs to know which subclass the passed object represents. In those cases,
passing the class property, with the fully qualified Java class name is required. An example
is the AdService. When saving an advertisement, it could either be a simple advertisement
(AdvertisementDTO) or a webshop advertisement (AdWebShopDTO). In this case, a class

Cyclos 4 PRO Documentation 24

http://documentation.cyclos.org/4.3/ws-api-docs/
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/model/ValidationException.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/model/banking/InsufficientBalanceException.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/model/ValidationException.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/utils/ValidationResult.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/services/marketplace/AdService.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/model/marketplace/advertisements/AdvertisementDTO.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/model/marketplace/advertisements/AdWebShopDTO.html

property with the fully qualified class name is required. Note, however, that in most cases,
the class information is not needed.

Examples

Assuming that <root url> points to correct URL, and that the authentication header is
correctly passed, the following request can be performed to search for users: The same
example call previously shown in Java can be obtained by, posting the following JSON to
https://my.cyclos.instance.com/network/web-rpc/userService (assuming the correct request
headers / authentication):

"operation": "search",
"params": {
"keywords": "consumer",
"pageSi ze": 5

The resulting JSON will be something like:

{

"result": {
"class": "org.cyclos.utils.Pagel mpl",
“current Page": "0,

"pageSi ze": "20",

“total Count": "2",

"pagel tens": [

{

"class": "org.cycl os. nodel . users. users. User Det ai | edVO',
"id": "-2717327251475675143",
"name": "Consuner 1",
"usernane": "cl"

"class": "org.cycl os. nodel . users. users. User Det ai | edVO',
"id": "-2717467988964030471",

"nanme": "Consuner 3",

"usernane": "c3"

2.5. Available services and APl Changes

The available services are documented in the JavaDocs, under each org.cyclos.services
subpackage.

Cyclos 4 PRO Documentation 25

http://documentation.cyclos.org/4.3/ws-api-docs/

For the full set of APl changes, please, refer to the online documentation.

Cyclos 4 PRO Documentation

26

http://www.cyclos.org/documentation

3. Scripting

3.1. Scripting engine

The Cyclos scripting module (available from version 4.2 onwards) provides an integration
layer that allows connecting from Cyclos to third party software, as well executing custom
operations and scheduled tasks within Cyclos self. The scripting module offers an easy way
to customize and extend Cyclos, without losing compatibility with future Cyclos versions. The
scripting engine can access the full Cyclos services layer which makes it a powerful feature.
For security reasons only global administrators can add scripts. Network administrators
can be given permissions to bound the scripts to elements such as extension points
(eg. payment, user profile, advertisement), custom validations (for input fields), custom
calculations (account fees, transaction fees), custom operations and scheduled tasks. Any
internal entity in Cyclos (e.g. user, address, payment, authorization, reference etc.) can be
accessed by the scripts. When developing custom operations it is likely that you want to store
and use new values/entities. It is possible to create specific record types and custom fields
and make them available to the scripts. The record types can be of the type 'system' or 'user’
depending on the requirements.

On this page you will find links with documentation about the available extensions and
examples. In the future we will add a repository of useful scripts. If you wrote a script that
could serve other projects we will be happy to add it. Please post it on our Forum or send
it to info@cyclos.org.

Global admins can write and store scripts directly within Cyclos. Each script ‘type’ has its own
functions which have to be implemented. A network admin can chose from the available
scripts and bind them to Cyclos operations and events, or to new operations. The variables
used in the scripts can be managed outside the scripts in the extensions self (by the network
admin). This avoids the need for a global admin having to modify a script every time a new
or different input value is required. It is also possible to define additional information and
confirmation texts that can be displayed to the user when a custom operation is initiated or
submitted.

The scripting language currently supported is Groovy. It offers a powerful scripting language
that is very similar to Java, with a close to zero learning curve for Java developers. It is possible
to write scripts that will be available in a shared script library, so that other scripts within
the same context can make use of it. All scripts are compiled to Java bytecode which makes
them highly performatic. Currently Cyclos requires Java 7 or above. Be aware that JDK 7
versions ranging from 7u21 to 7u55 have bugs are buggy with regards to invokedynamic (see
information here). If you plan to use Cyclos scripting, make sure you either use 7u56+ or JDK 8

Variables bound to all scripts

Cyclos 4 PRO Documentation 27

http://www.cyclos.org/forum/viewforum.php?f=14
http://groovy.codehaus.org/
http://docs.codehaus.org/display/GROOVY/InvokeDynamic+support

When running, scripts have a set of bindings, that is, available top-level variables. At runtime,
the bindings will vary according to the script type and context. For example, each extension
point type has one or more specific bindings. On all cases, however, the following variables
are bound:

* scriptParameters: In the script details page, or in every every page where a script is chosen
to be used (for example, in the extension point or custom operation details page) there will
be a textarea where parameters may be added to the script. They allow scripts to be reused
in different contexts, just with different parameters. The text is parsed as Java Properties,
and the format is described here. The library parameters are included first (if any), then the
own script parameters (if any), then the specific page parameters. This allows overridding
parameters at more specific levels.

+ scriptHelper: An instance of org.cyclos.impl.system.ScriptHelper. It contains some useful
methods, like:

+ wrap(object[, customFields]): wraps the given object in a Map, with some custom
characteristics:

+ If the wrapped object contains custom fields, it will allow getting / setting custom field
values using the internal name

+ Values will be automatically converted to the expected destination type

+ If a list of custom fields are passed, then they are considered. If not, will attempt to
read the current fields for the object, which might not always be available (for example,
when creating a new record) or even no longer active (for example, when the product
of an user just removed a field, and the value is still there)

« Example:

def bean = scriptHel per.w ap(user)

def gender = bean. gender

/! gender will be a org.cyclos.entities.system CustonFi el dPossi bl eVal ue
/1 if gender is an enunerated field

def date = bean. custonDate

/! date will be a java.util.Date if custonDate is a date field

def rel atedUser = bean.rel at edUser

/1 relatedUser will be an org.cyclos.entities.users.User

/1 if relatedUser is linked entity field of type user

+ bean(class): returns a bean by type. The class reference needs to be passed.

+ addOnCommit(runnable), addOnRollback(runnable): Adds callbacks to be executed after
the main database transaction ends, either successfully or with failure. Be aware that
those callbacks will be invoked outside any transaction scope within Cyclos, so things like
scriptHelper.sessionData.loggedUser won't work (because it requires retrieving the User
object from the database). However, itis more efficient, as no new database access needs
to be done. This is mostly useful to notify an external application that some data has
been persisted in Cyclos (after we're 100% sure that the data is persistent). Keep in mind

Cyclos 4 PRO Documentation 28

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load%28java.io.Reader%29
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/system/ScriptHelper.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://www.cyclos.org/dev/current/scripting-api-docs/org/cyclos/entities/users/User.html

thatthere is a (very) small chance that the main transaction is committed / rolled back but
then the server crashes, and the callback weren't yet called. So, when synchronizing with
external systems, it is always wise to do some form of timeout / recovery mechanism.

+ addOnCommitTransactional(runnable), addOnRollbackTransactional(runnable): Same
as the non-transactional counterparts, but they are executed inside a new transaction
in Cyclos

+ sessionData: The currently bound org.cyclos.impl.access.SessionData.

« formatter:; A org.cyclos.impl.utils.formatting.Formatterimpl.

* Services and Handlers: All *ServiceLocal and *Handler objects are bound via simple
names, starting with lowercase characters. Services are bound as 'nameService'
and handlers as 'nameHandler'. For example, org.cyclos.impl.users.UserServicelocal
is bound as userService, and org.cyclos.impl.access.ConfigurationHandler is bound as
configurationHandler.

3.2. Script types
Library

Libraries are scripts which are included by other scripts, in order to reuse code, and are never
used directly by other functionality in Cyclos.

Each script (including other libraries) can have any number of libraries as dependencies.
However circular dependencies between libraries (for example, A depends on B, which
depends on C, which depends on A) are forbidden (validated when saving a library).

The order in which the code on libraries is included in the final code respects the
dependencies, but doesn't guarantee ordering between libraries in the same level. For
example, if there are both C and B libraries which depend on A, it is guaranteed that A is
included before B and C, but either B or C could be included right after A. So, in the example,
your code shouldn't rely that B comes before C. In this case, the library C should depend on
B to force the A, B, C order.

Contrary to other script types, libraries don't have bound variables per se: the bindings will
be the same as the script including the library.

Also, as libraries are just included in other scripts, no direct examples are provided here. The
provided example scripting solutions, however, use libraries.

Custom field validation

These scripts are used to validate a custom field value. The field can be of any type (users,
advertisements, user records, transactions and so on). The script code has the following
variables bound (besides the default bindings)

Cyclos 4 PRO Documentation 29

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/access/SessionData.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/utils/formatting/FormatterImpl.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/users/UserServiceLocal.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/access/ConfigurationHandler.html

+ object: The DTO which holds the custom field values. May be an instance of:

+ org.cyclos.model.users.users.UserDTO

+ org.cyclos.model.marketplace.advertisements.BasicAdDTO

» org.cyclos.model.users.records.UserRecordDTO

+ org.cyclos.model.banking.transactions.PerformTransactionDTO

* org.cyclos.model.contentmanagement.documents.ProcessDynamicDocumentDTO

* org.cyclos.model.system.operations.RunCustomOperationDTO

+ field: The org.cyclos.entities.system.CustomField.

+ value: The actual custom field value. Depends on the custom field type. May be one of:
+ String (for single line text, multi line text, rich text or url types)
+ Boolean (for boolean type)
* Integer (for integer type)
+ BigDecimal (for decimal type)

+ org.cyclos.entities.system.CustomFieldPossibleValue (for single selection type)

+ org.cyclos.entities.system.CustomFieldPossibleValue (for multiple selection type)

+ org.cyclos.model.system.fields.DynamicFieldValueVO (for dynamic selection type)

+ org.cyclos.entities.users.User (for user type)

The script should return one of the following:

* Aboolean, indicates that the value is either valid / invalid. When invalid, the general "<Field
name> is invalid" error will be displayed;

+ Astring, means the field is invalid, and the string is the error message. To concatenate the
field name directly, use the {0} placeholder, like: "{0} has an unexpected value";

* Any other result will be considered valid.

Examples

E-mail

To have a custom field which is validated as an e-mail, use the following script:

i mport org. apache. conmons. val i dat or. routi nes. Emai | Val i dat or

return Emmil Val i dator. getlnstance().isValid(val ue)

IBAN account number

To validate an IBAN account number as a custom field, the following script can be used:

Cyclos 4 PRO Documentation 30

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/users/users/UserDTO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/marketplace/advertisements/BasicAdDTO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/users/records/UserRecordDTO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/transactions/PerformTransactionDTO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/contentmanagement/documents/ProcessDynamicDocumentDTO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/system/operations/RunCustomOperationDTO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomField.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/system/fields/DynamicFieldValueVO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html

i nport org.apache. conmons. val i dat or. routi nes. checkdi gi t. | BANCheckDi gi t

return | BANCheckDi git.| BAN CHECK DI G T.isValid(val ue.replaceAl ("\\s", ""))

CPF Validation

In Brazil, people are identified by a number called CPF (Cadastro de Pessoas Fisicas). It has
2 veryfing digits, which have a known formula to calculate. Here's the example for validating
it in Cyclos:

import static java.lang.|nteger. parselnt

def bool ean validateCPF(String cpf) {
/] Strip non-numeric chars
cpf = cpf.replaceAl I ("[~0-9]", "")

/] Oobvious checks: needs to be 11 digits, and not all be the same digit
if (cpf.length() !'= 11 || cpf.toSet().size() == 1) {
return fal se

}

int add = 0
/] Check for verifier digit 1
for (int i =0; i <9; i++) add += parselnt(cpf[i]) * (10 - i)

int rev = 11 - (add % 11)
if (rev ==10 || rev == 11) rev = 0

if (rev != parselnt(cpf[9])) return false

add = 0

/] Check for verifier digit 2

for (int i =0; i < 10; i++) add += parselnt(cpf[i]) * (11 - i)

rev = 11 - (add % 11)
if (rev ==10 || rev == 11) rev = 0
if (rev != parselnt(cpf[10])) return false

return true

}

return val i dat eCPF(val ue)

Dynamic custom field handling

These scripts are used to generate the possible values for custom
fields of type ‘'dynamic selection'. Each possible value is an instance of
org.cyclos.model.system.fields.DynamicFieldValueVO. The field can be of any type (users,
advertisements, user records, transactions and so on).

The script code has the following variables bound (besides the default bindings):

+ field: The org.cyclos.entities.system.CustomField

Also, depending on the custom field nature, there are the following additional bindings:

Cyclos 4 PRO Documentation 31

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/system/fields/DynamicFieldValueVO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomField.html

User (profile) fields:

* user: The org.cyclos.entities.users.User. Even when registering an user, will always have
the 'group' property set with the org.cyclos.entities.users.Group instance.

Advertisement fields:

+ ad: The org.cyclos.entities.marketplace.BasicAd. Even on inserts, is guaranteed to have the
'owner’' property set with the org.cyclos.entities.users.User instance.

Record fields:

+ record: The org.cyclos.entities.marketplace.BasicAd. Even on inserts, is guaranteed to have
the 'owner' property set with the org.cyclos.entities.users.User instance.

Transaction fields:

« paymentType: The transaction type, asorg.cyclos.entities.banking.PaymentTransferType

« fromOwner: The org.cyclos.model.banking.accounts.AccountOwner performing
the payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

+ toOwner: The org.cyclos.model.banking.accounts.AccountOwner receiving the
payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

Custom operation fields:

+ customOperation: The org.cyclos.entities.system.CustomOperation.

* user: The org.cyclos.entities.users.User. Only present if the custom operation's scope is
user.

Dynamic document fields:

« document: The org.cyclos.entities.contentmanagement.DynamicDocument.

In all cases, the script must return either one or a collection of:

* List of array of Strings: In this case, each element will have only values, and the
corresponding labels will be the same values.

+ org.cyclos.model.system.fields.DynamicFieldValueVO (or compatible object / Map): The
dynamic field value, containing a value (the internal value) and a label (the display value).
The value must be not blank, or an error will be raised. If the label is blank, will show the
same text as the value. Also, the first dynamic value with 'defaultValue' set to true will show
up by default in the form.

Cyclos 4 PRO Documentation 32

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/Group.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/marketplace/BasicAd.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/Record.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/RecordType.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/PaymentTransferType.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomOperation.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/contentmanagement/DynamicDocument.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/system/fields/DynamicFieldValueVO.html

Examples
User profile field - values depending on the user group

This examples returns distinct values according to the user group. It should be used by an
user custom field (also called profile fields).

i mport org.cyclos. nodel . system fi el ds. Dynanmi cFi el dVal ueVO
def values =[]
/1 Common val ues
val ues << new Dynani cFi el dval uevVQ("commonl", "Common val ue 1")
val ues << new Dynami cFi el dVal uevVQ(" common2", "Comon val ue 2")
val ues << new Dynami cFi el dval uevVQ("common3", "Common val ue 3")
if (user.group.internal Name == "busi ness") {
/1 Values only avail able for businesses
val ues << new Dynami cFi el dval ueVQ(" busi ness1", "Busi ness val ue 1")
val ues << new Dynanmi cFi el dVal ueVQ(" busi ness2", "Busi ness val ue 2")
val ues << new Dynami cFi el dVal ueVQ(" busi ness3", "Busi ness val ue 3")
} else if (user.group.internal Nane == "consuner") {
/1 Val ues only avail abl e for consuners
val ues << new Dynami cFi el dVal uevVQ(" consuner 1", "Consumer val ue 1")
val ues << new Dynami cFi el dval uevVQ("consuner 2", "Consuner val ue 2")
val ues << new Dynani cFi el dval uevVQ("consuner 3", "Consuner val ue 3")
}
return val ues

Transfer fee calculation

These scripts are used to calculate the amount of a transfer fee (a fee triggered by another
transfer). The script code has the following variables bound (besides the default bindings):

« fee: The org.cyclos.entities.banking.TransferFee

« transfer: The org.cyclos.entities.banking.Transfer which triggered the fee.

The script should return a number, which will be rounded to the currency's decimal digits. If
null or zero is returned, the fee is not charged.

Examples
Charging a fee according to an user profile field

This example allows choosing a distinct fee amount based on a profile field of the paying user.
It is assumed a custom field of type single selection with the internal name rank. It should
have 3 possible values, with internal names bronze, silver and gold. The script then chooses
a different percentage according to the user rank.

if (transfer.fronBystem ({
/1 Only charge users
return O

Cyclos 4 PRO Documentation 33

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/TransferFee.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/Transfer.html

/| Dependi ng on an user customfield, we'll pick the fee anmount
def percentages = [bronze: 0.07, silver: 0.05, gold: 0.02]

def from = scriptHel per.wap(transfer.fromaner)

def rank = fromrank?.internal Name ?: "bronze"

def percentage = percentages[rank]

return transfer.anount * percentage

Account fee calculation

These scripts are used to calculate the amount of an account fee (a fee which is charged
periodically or manually over many accounts, according to the 'charged account fees' setting
in member products). The script code has the following variables bound (besides the default
bindings):

+ fee: The org.cyclos.entities.banking.AccountFee

« account: The org.cyclos.entities.banking.UserAccount

+ executionDate: The expected fee charge date (of type java.util.Date). When scheduled,
charges usually happen a bit after the exact expected date. For manual account fees, this
will be the time the fee has started.

The script should return a number, which will be rounded to the currency's decimal digits. If
null or zero is returned, the fee is not charged.

Examples
Charge a different amount according to the user rank

This example allows choosing a distinct account fee amount based on a profile field of the
paying user. It is assumed a custom field of type single selection with the internal name rank.
It should have 3 possible values, with internal names bronze, silver and gold.

/| Dependi ng on an user customfield, we'll pick the fee anmount
def ampbunts = [bronze: 10, silver: 7, gold: 5]

def user = scriptHel per.wap(account. owner)

def rank = user.rank?.internal Name ?: "bronze"

return anounts [rank]

Password handling

These scripts are used to check passwords. In order to use them, the password type's
password mode needs to be "Script". The script code has the following variables bound
(besides the default bindings):

* user: The org.cyclos.entities.users.BasicUser whose password is being checked

+ passwordType: The org.cyclos.entities.access.PasswordType being checked.

*+ password: The password value being checked (string).

Cyclos 4 PRO Documentation 34

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/AccountFee.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/UserAccount.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/BasicUser.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/access/PasswordType.html

The script should return a boolean, indicating whether the password is ok or not.

Examples
Matching passwords to the script parameters

Thisis a very simple example, which checks for passwords according to the script parameters.
The parameters can be set either in the script itself or in the password type. This example
is very insecure, and shouldn't be used in production. Normally, scripts to check passwords
would connect to third party applications, but this is just a very basic example.

/] Just read the password value fromthe script paraneters
return scriptParaneters[user.usernane] == password

Extension points

These scripts are used on extension points (user, user record, transfer, ...), and are attached
to specific events (create, update, remove, chargeback, ...). The extension point scripts have
2 functions:

« The data has already been validated, but not saved yet. In this function, we know that the
data entered by users is valid, but the main event has not been saved yet.

+ The data has been saved, but not committed to database yet. For example, if the script
code throws an Exception, the database transaction will be rolled-back, and no data will
be persisted.

Here are some example scenarios for performing custom logic, or integrating Cyclos with
external systems using extension points:

+ limit. When an user is performing a payment, an extension point of type transaction could
be used, in the function invoked after validation, to check the current balance. It the balance
is not enough for the payment and the user has credit limit, a payment from a system
account could be done automatically to the user, completing the amount for the payment.

+ A XA transaction could be done with an external system by creating data in the external
database in the function which runs after validating, then preparing the commit in the
function after the data is saved, and finally registering both a commit and a rollback
listener (see the ScriptHelper in default bindings) to either commit or rollback the prepared
transaction.

* It is also possible to 'bind' Cyclos entities with extension points. For example a payment
could create a new user record of a specific type and set some values in the record. When
a user record value is changed this could trigger another action, for example changing the
(bookkeeping) status of a payment.

« A simple notification of performed payments could be implemented by registering a
commit listener (see the ScriptHelper in default bindings) to implement the notification.

Cyclos 4 PRO Documentation 35

http://en.wikipedia.org/wiki/X/Open_XA
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/system/ScriptHelper.html

+ The profile information of an user needs to be mirrored in an external system. In this
case, an user extension point, with the create / update events can be used to send
this information. Additional information on addresses and phones can use the same
mechanism (they are different extension points). Finally, a change status event for users,
to the status REMOVED indicates that the user has been removed.

* There could be payment custom fields which are not filled-in by users when performing
payments, but by extension points of type transaction. Payment custom fields may be
configured to not show up in the form, only automatically via extension points.

+ An extension point on a new Cyclos avertisment could publish the advertisment as well in
an third party system.

These are just some examples. There are many possible uses for the extension points. In the
future we will publish usefull extension points at this site.

All extension points have the following additional variables bound to its execution:

« extensionPoint: The org.cyclos.entities.system.ExtensionPoint

« event: The org.cyclos.model.system.extensionpoints.ExtensionPointEvent. The specific
implementation depends on the extension point type.

+ context: A java.util.Map<String, Object> which can be used to store attributes to be shared
between, for example, the script which runs after the data is validaded, and the one which
runs after the data is saved

The following types of extension points exist:
User extension point

Extension points which monitor events on users. Additional bindings:

+ user: The org.cyclos.entities.users.User

Events:

* create: Anuser is being registered. IMPORTANT: When e-mail validation is enabled, the user
will be pending until confirming the e-mail. If you have e-mail confirmation enabled, this
event might not be what you need, but activate instead.

+ activate: An user is being activated for the first time. For example, if e-mail validation is
enabled, after the user confirming the e-mail address this event will be triggered. However,
the initial status for users (set in group) might be, for example, disabled. In that case, only
when the user is first activated this event will be triggered.

« update: An user profile (name, username, e-mail or custom fields) is being edited.
Additional bindings:

+ currentCopy: A detached copy of the user being edited, as org.cyclos.entities.users.User

Cyclos 4 PRO Documentation 36

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/users/users/UserStatus.html#REMOVED
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/ExtensionPoint.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/system/extensionpoints/ExtensionPointEvent.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html

« changeGroup: The user's group is being changed.

+ oldGroup: The current org.cyclos.entities.users.Group

* newGroup: The new org.cyclos.entities.users.Group

+ comments: The comments, as provided by the administrator when changing the group,

as string.
+ changeStatus: The user's status is being changed. Argument Map:

» oldStatus: The current org.cyclos.model.users.users.UserStatus

* newsStatus: The new org.cyclos.model.users.users.UserStatus

+ comments: The comments, as provided by the administrator when changing the status,

as string.
Address extension point

Extension points which monitor events on addresses. Additional bindings:

+ address: The org.cyclos.entities.users.UserAddress

Events:
* create:An address is being created.

+ update: An address is being updated. Additional bindings:

« currentCopy: A detached copy of the address being edited, as
org.cyclos.entities.users.UserAddress
+ delete: An address is being deleted.
Phone extension point
Extension points which monitor events on user phones. Additional bindings:
+ phone: The org.cyclos.entities.users.Phone
Events:
* create: A phone is being created.
« update: A phone is being updated. Additional bindings:
« currentCopy: A detached «copy of the phone being edited, as
org.cyclos.entities.users.Phone
+ delete: A phone is being deleted.
User record extension point
Extension points which monitor events on user records. Additional bindings:
Cyclos 4 PRO Documentation 37

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/Group.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/Group.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/users/users/UserStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/users/users/UserStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/UserAddress.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/Phone.html

« userRecord: The org.cyclos.entities.users.UserRecord

Events:
+ create: An user record is being created.
+ update: An user record is being created. Additional bindings:

« currentCopy: A detached copy of the wuser record being edited, as
org.cyclos.entities.users.UserRecord

+ delete: An user record is being created.
Advertisement extension point

Extension points which monitor events on advertisements. Additional bindings:

+ ad: The org.cyclos.entities.marketplace.BasicAd

Events:
+ create: An advertisement is being created.
+ update: An advertisement is being updated. Additional bindings:

+ currentCopy: An advertisement is being updated. Additional bindings:
org.cyclos.entities.marketplace.BasicAd

+ delete: An advertisement is being deleted.
Transaction extension point
Extension points which monitor events on performed transactions.

The following additional bindings are available for both preview and confirm events:

+ performTransaction: The org.cyclos.model.banking.transactions.PerformTransactionDTO

+ paymentType: The transaction type, as org.cyclos.entities.banking.PaymentTransferType

« fromOwner: The org.cyclos.model.banking.accounts.AccountOwner performing
the payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

« toOwner: The org.cyclos.model.banking.accounts.AccountOwner receiving the
payment (either org.cyclos.model.banking.accounts.SystemAccountOwner or
org.cyclos.entities.users.User)

« authorizationLevel: The org.cyclos.entities.banking.AuthorizationLevel of the transaction,
if it would be pending authorization, or null if already processed. For the confirm event, will
only be available in the script which runs after save.

Events:

Cyclos 4 PRO Documentation 38

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/UserRecord.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/UserRecord.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/marketplace/BasicAd.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/marketplace/BasicAd.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/transactions/PerformTransactionDTO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/PaymentTransferType.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/AccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/accounts/SystemAccountOwner.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/AuthorizationLevel.html

* preview: The user is previewing the transaction. Note that, as there is nothing really being
saved, both scripts will run at the same time, i.e., there's no phase 'after validate' and 'after
save'. Additional bindings:

preview: The org.cyclos.model.banking.transactions.TransactionPreviewVO

« confirm: The transaction has been confirmed, that is, is being performed. Additional
bindings:

transaction: The org.cyclos.entities.banking.Transaction. Only available for the script
which runs after save.

« change status: A scheduled payment status has changed. Additional bindings:

transaction: The org.cyclos.entities.banking.ScheduledPayment.

oldStatus: The previous status, as
org.cyclos.model.banking.transactions.ScheduledPaymentStatus.

newsStatus: The new status, as
org.cyclos.model.banking.transactions.ScheduledPaymentStatus.

+ change installment status: A scheduled payment installment status has changed.
Additional bindings:

installment: The org.cyclos.entities.banking.ScheduledPaymentinstallment.

oldStatus: The previous status, as
org.cyclos.model.banking.transactions.ScheduledPaymentinstallmentStatus.

newsStatus: The new status, as
org.cyclos.model.banking.transactions.ScheduledPaymentinstallmentStatus.

Transaction authorization extension point

Extension points which monitor transaction authorization actions. Additional bindings:

* transaction: The org.cyclos.entities.banking.Transaction

« currentLevel: The current org.cyclos.entities.banking.AuthorizationLevel

« comment: The comment entered by the user performing the action, as string

Events:

authorize: The transaction is being authorized. Be careful: there might be more
authorization levels which need to be authorized before the transaction is finally processed.
Additional bindings:

nextLevel: The next current org.cyclos.entities.banking.AuthorizationLevel. If the transfer
should be processed after the current authorization is saved, this value will be null.

deny: The transaction is being denied by the authorizer.

cancel: The transaction is being canceled by the performed.

Cyclos 4 PRO Documentation 39

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/transactions/TransactionPreviewVO.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/Transaction.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/ScheduledPayment.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/ScheduledPaymentInstallment.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentInstallmentStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/banking/transactions/ScheduledPaymentInstallmentStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/Transaction.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/AuthorizationLevel.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/AuthorizationLevel.html

Transfer extension point

Argument Map (common for all events):

« transfer: The transfer being affected.

Events:
« create: A transfer is being created.
+ chargeback: A transfer is being charged-back. Additional bindings:

+ chargeback: The org.cyclos.entities.banking.Chargeback. Only available in the script
which runs after the data is saved.

+ changeStatus: The transfer is being set to a new status. Additional bindings:

+ flow: The org.cyclos.entities.banking.TransferStatusFlow of the status being changed

» oldStatus: The current org.cyclos.entities.banking.TransferStatus

* newStatus: The new org.cyclos.entities.banking. TransferStatus

+ comments: The comments, as provided by the administrator when changing the status,
as string.

Examples
Granting extra credit (on demand) before payments

This example allows, with a custom profile field, to define an extra credit limit the user can use
on demand. When performing a payment, if the available balance is not enough, a payment
is performed from a system account to the user, up to the limit specified in that profile field.
Once the payment is done, the profile field is subtracted. This example expects the system
account to have the internal name debitAccount, and it should have a payment transfer type
to the user account. That payment transfer type should have the internal name extraCredit.
Finally, the custom profile field needs to have the internal name availableCredit, and needs
to be of type decimal, and enabled for the user. Then create an extension point of type
Transaction, enabled and for the confirm event.

i nport org.cyclos.entities.banking. Account

i mport org.cyclos.entities.banking. Paynent Tr ansf er Type

i nport org.cyclos.entities.banking. SystemAccount Type

i nport org.cycl os. nodel . banki ng. account s. Syst emAccount Oaner

i mport org.cycl os. nodel . banki ng. t ransacti ons. Per f or nPaynment DTO
i nport org.cycl os. nodel . banki ng. transfertypes. Tr ansf er TypeVO

/1l Only process direct paynents. Schedul ed paynents are ski pped
if (!(performlransaction instanceof PerfornPaynent DTO)) {
return

}

/] Cet the available credit as a profile field

Cyclos 4 PRO Documentation 40

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/Chargeback.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/TransferStatusFlow.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/TransferStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/TransferStatus.html

def payer = scri ptHel per.w ap(fromOaner)
Bi gDeci mal avail abl eCredit = payer. avail abl eCredit?. abs()

if (availableCredit == null || availableCredit < 0.01) {
/1 Nothing to do - no available credit
return

}

[/l Cet the account and bal ance
Account account = account Service. | oad(fronmOmer, paynentType.from
Bi gDeci mal avai |l abl eBal ance = account Servi ce. get Avai | abl eBal ance(account, null)
Bi gDeci mal needs = perforniransaction. anount - avail abl eBal ance
if (needs > 0 & needs < avail ableCredit) {
/'l Needs some extra credit, and has it available - make a paynent from system
/1 Find the system account and paynent type
Syst emAccount Type systemAccount Type = entityManager Handl er. fi nd(
Syst emAccount Type, "debitAccount")
Payment Tr ansf er Type paynment Type = entityManager Handl er. fi nd(
Payment Tr ansfer Type, "extraCredit", systemAccount Type)
Per f or nPaynment DTO credit = new Perf or mPaynent DTQ()
credit.from = SystemAccount Oaner. i nstance()
credit.to = fronDmer
credit.type = new Transfer TypeVQ(paynent Type. i d)
credit.amount = needs
paynment Ser vi ce. perform(credit)
/1 Now t here shoul d be enough credit to performthe paynent

/'l Update the user available credit
payer. avai | abl eCredit -= needs

Send an e-mail on every payment

This example allows, for the selected payment types in the extension point details, to send
an e-mail to an speficic address.

i mport javax.mail.internet.|nternetAddress

i nport org.cyclos. nodel . Val i dati onExcepti on
i mport org.cyclos.server.utils. MessageProcessi ngHel per
i nport org.springfranework. nail .javanail.M neMessageHel per

/] Get the e-nmil subject and body
def tx = scriptHel per.wap(transaction)
def vars = |
payer: tx.fronDaner. nane,
anmount: formatter.format(tx.currencyAnmount),
date: formatter.formatAsDat e(new Date()),
time: formatter.fornmat AsTi ne(new Date())
]
def subj ect = MessageProcessi ngHel per. processVari abl es(scri pt Paranet ers. subj ect, vars)
if (subject == null || subject.enpty) {
throw new Val i dati onException("M ssing the 'subject' script paranmeter")
}
def body = MessageProcessi ngHel per. processVari abl es(scri pt Paranet ers. message, vars)
if (body == null || body.enpty) {
throw new Val i dati onException("M ssing the 'message' script paraneter")

Cyclos 4 PRO Documentation 41

}
def toEmail = tx.emai

def fromEmail = sessionData.configuration.sntpConfiguration.fromAddress
def sender = mail Handl er. mai | Sender

/1 Send the message after conmit, so we guarantee the transaction is persisted when the e-mail is sent
scri pt Hel per. addOnCommi t {

def message = sender.createM neMessage()

def hel per = new M neMessageHel per (nessage)

hel per.to = new I nt er net Addr ess(t oEmai |l)

hel per.from = new | nternet Address(fronEmail)

hel per. subj ect = subj ect

hel per.text = body

/1 Send the message

sender. send nmessage

Custom operations

These scripts are invoked when an user runs a custom operation. A custom operation is
configured to return different data types, and the script must behave accordingly (see System
- Operations for more details).

Custom operations can have different scopes:

+ System: Those are executed by administrators (with granted permissions), directly from the
main menu

+ User: Custom operations which are related to an user, and can either be executed by
the own user (with granted permissions), from the main menu or run by administrator
or brokers (also, with granted permissions) when viewing the user profile. In both cases,
the custom operation needs to be enabled to users via member products. For example,
there might be operations which applies only to businesses, not consumers, and even
administrators with permission to run them shouldn't be able to run them over consumers.
It is enforced that administrators / brokers will only be able to run custom operations over
users they manage.

Bound variables:

+ customOperation: The org.cyclos.entities.system.CustomOperation

+ user: The org.cyclos.entities.users.User. Only present if the custom operation's scope is
user.

* inputFile: The org.cyclos.model.utils.FileInfo. Only present if the custom operation is
configured to accept a file upload, and if a file was selected.

« formParameters: A java.util.Map<String, Object>, keyed by the form field internal
name. The value depends on the field type. Could be a string, a number, a
boolean, a date, a org.cyclos.entities.system.CustomFieldPossibleValue or a collection of
org.cyclos.entities.system.CustomFieldPossibleValue.

Cyclos 4 PRO Documentation 42

http://www.cyclos.org/wiki4/index.php/System_-_Operations
http://www.cyclos.org/wiki4/index.php/System_-_Operations
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomOperation.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/User.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/utils/FileInfo.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomFieldPossibleValue.html

+ currentPage: An integer indicating the current page, when getting paged results. Starts with
zero. Only available if the result type is result page.

*+ pageSize: An integer indicating the requested page size when getting paged results. Only
available if the result type is result page.

+ returnUrl: Only if the custom operation return type is external redirect. Contains the url
(as string) which Cyclos expects the external site to redirect the user after the operation
completes.

*+ request: The org.cyclos.model.utils.Requestinfo. Only if the custom operation return type is
external redirect. Contains the information about the current request, so the script function
which handles the callback can identify the context to complete the process.

Return value: The required return value depends on the custom operation result type:

* Notification: The script must return a string which will be shown as a notification to the user.
If the string starts with the following special prefixes: [INFO], [WARN] or [ERROR], those
prefixes are removed from the notification and the notification style for the corresponding
typesis chosen (for example, shows a yellow notification with a warning icon when [WARN]).
If no such prefixes, assumes an information notificaiton.

* Plain text: The script should return a string, which is interpreted as plain text. The text is
shown in the page body and can be printed by the user.

* Rich text: The script should return a string, which is interpreted as HTML text. The text is
shown in the page body and can be printed by the user.

* File download: The script should return an instance of org.cyclos.model.utils.FileInfo, or an
object or Map with the same properties. The properties are:

+ content: Required. The file content. May be an InputStream, a File or a String (containing
the file content itself).

+ contentType: Required. The MIME type, such as text/plain, text/html, image/jpeg,
application/pdf, etc.

+ name: Optional file name, which will be used by browsers to suggest the file name to
save.

+ length: Optional file length, which may aid browsers to monitor the progress of file
downloads.

+ Page results: The script should return an instance of
org.cyclos.model.system.operations.CustomOperationPageResult, or an object or Map
with the same properties. The properties are:

* headers: Required. A list containing the column headers.

* results: Optional. A list of lists, containing the table cells. The inner lists should have the
same size as the headers.

Cyclos 4 PRO Documentation 43

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/utils/RequestInfo.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/utils/FileInfo.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/system/operations/CustomOperationPageResult.html

+ totalCount: Optional. The total count of records. For example, if all matching records are
1000, but the page size is 20, the results would normally have 20 records, and the total
count would be 1000. This allows paginating through the results. When not returned, the
results won't be paginable.

+ External redirect: The first script function must return a string, representing a valid URL.
That URL will be used to redirect the user to the external site. The second script function
(called after the external site redirects the user back to Cyclos) must return a string, which
will be shown as a notification to the user (with support for the same prefixes as the
Notification result type above). As the return url will make the Cyclos application have no
context (which is maintained as JavaScript in the browser page), the user will see the home
page with that notification.

Examples
Contact us page

This example allows creating a "contact us" page, which sends an e-mail to a specified
address. To use it, you will need the following content in the script parameters box:

t o=adm n@roj ect.org

fronrnor epl y@roj ect.org

subj ect =Cont act form

nessage=The nessage was sent.\nThank you for your contact.

mai | Header =An user has sent a contact formw th the follow ng data:
mai | Fr on¥Fr om

mai | Emai | =E- Mai | :

mai | Subj ect =Subj ect :

mai | Message=Message:

inval i dEmail =l nvalid e-nmail address

Then, use the following script code:

i nport javax.nmmil.internet.|nternetAddress

import org.cyclos.inpl.utils.validation.validations.PropertyValidations
i nport org.cyclos. nodel . Val i dati onExcepti on
i nport org.springfranework. nail.javanail.M neMessageHel per

def sender = mail Handl er. mai | Sender
def message = sender. createM neMessage()
def hel per = new M neMessageHel per (nessage)

if (PropertyValidations.email().validate(null, null, fornParanmeters.enmmil)) {
throw new Val i dati onException(scriptParaneters.invalidEmil);

}

hel per.to = new I nternet Address(scri pt Paranmeters.to)
hel per.from = new | nt er net Addr ess(scri pt Paraneters. from
hel per. subj ect = scri ptParaneters. subj ect

Cyclos 4 PRO Documentation 44

hel per.text =
${scri pt Paranet ers. mai | Header}

${script Paraneters. mai | Fron} ${fornParaneters. front
${scriptParaneters. mail Emai |} ${fornParaneters. email}
${scri pt Paranet ers. mai | Subj ect} ${fornParaneters. subj ect}
${scri pt Paranet ers. mai | Message} ${f or nPar anet ers. message}

sender. send nmessage

return scriptParaneters. nessage

Returning a string (notification / rich / plain text) and external redirect

Examples of a custom operation which returning a text (a notification in that case) can
be found in the loan solution example. An example of an external redirect is the PayPal
integration example.

Returning a file

This is an example where the user selects a document to download. It is assumed that the
custom operation has a form field of type single selection with internal name file. Then, each
possible value should have the internal name corresponding to a pdf file in a given folder.
Once the user chooses the file, it is downloaded.

i mport org.cycl os. nbdel . Val i dati onExcepti on

/1 Assune there is a pdf file for each possible value of the field
String fileName = fornParaneters.file.internal Nane
String dir = scriptParaneters.dir ?: "/usr/share/docunments"
File file = new File(dir, "${fileNane}.pdf")
if (!file.exists()) {
t hrow new Val i dati onException("File not found")
}
return [
content: file,
content Type: "application/pdf",
name: file.nane,
length: file.length(),
last Modified: file.lastMdified()

Returning a result list

In this example, an user can see the other users he has traded with (either performed or
received payments). The custom operation needs to have user scope and result type list.

i nport org.cyclos.entities.banking. QIransaction
import org.cyclos.entities.users. Quser

i mport com nysema. query.types. Qi st

Qlransaction t = Qlransacti on.transaction

QUser u = QUser. user

Cyclos 4 PRO Documentation 45

Li st<Obj ect> results = entityManager Handl er
.from(t)
.innerJoin(u)
.on(t.fromJser().id.when(user.id)
.then(t.toUser().id)
.otherwi se(t.fromJser().id)
.eq(u.id))
.where(t.fronser.eq(user).or(t.toUser.eq(user)))
. groupBy(u. usernanme, u.nane)
.orderBy(u. usernane. asc())
.list(new QList(u.usernane, u.nane, u.id.count()))
return [
headers: [
"Logi n name",
"Full nane",
"Transacti ons"
I,

results: results

Custom scheduled tasks

These scripts are called periodically by custom scheduled tasks. See System - Scheduled tasks
for more details.

The bound variables are:

+ scheduledTask: The org.cyclos.entities.system.CustomScheduledTask being executed

* log: The org.cyclos.entities.system.CustomScheduledTaskLog for this execution

Return value:
+ The script should return a string, which is logged as message, and can be viewed on the
application

Examples
Periodically update a static HTML page

In this example, every time the scheduled task runs, a static HTML file is updated. In the file,
it is written the total number of users and the balances of each system account.

i nport groovy.xnl . Mar kupBui | der

import org.cyclos.entities.users. Qlser

i nport org.cycl os. nodel . banki ng. account s. Account Sunmar yVO

i nport org.cycl os. nodel . banki ng. account s. Syst emAccount Oaner
i mport org.cycl os. nodel . users. groups. Basi cG oupNat ur e

i nport org.cyclos. nbdel . users. users. User St at us

def now = new Dat e()

QUser u = QUser. user

Cyclos 4 PRO Documentation 46

http://www.cyclos.org/wiki4/index.php/System_-_Scheduled_tasks
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomScheduledTask.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomScheduledTaskLog.html

int users = entityManager Handl er
.from(u)
. wher e(u. status. ne(User St at us. REMOVED) ,
u. group. nat ur e. eq(Basi cG oupNat ur e. USER_GROUP))
.count ()
Li st <Account Summar yVO> accounts = account Servi ce
get Account sSummar y(Syst emAccount Oaner . i nstance(), null)

File out = new File("/var/ww htm /summary. htm ")

def sessionData = bindi ng. sessi onDat a
def formatter = binding.formatter
Mar kupBui | der bui | der = new Mar kupBui | der (new Fil eWiter(out))
bui I der. htm {
head {
title "${sessionData. configuration.applicati onNanme} sumrary"
neta charset: "UTF-8"
}
body {
p{
b "Total users"
span ": ${users}"
}

accounts.each { a ->

p {
b a.nane
span " bal ance: ${formatter.format(a.bal ance)}"
}
}
br ()
br ()
br ()
p style: "font-size: small", "Last updated: ${formatter.fornmat(now}"

}

}
return "File ${out.absol utePath} updated"

Custom SMS operations

These scripts are invoked when an user executes a custom sms operation, as configured
in the sms channel in the configuration. The function should implement the logic for that
operation.

Bound variables:

+ configuration: The org.cyclos.entities.system.CustomSmsOperationConfiguration. With it,
it is possible to navigate up to the org.cyclos.entities.system.SmsChannelConfiguration.

+ phone: The org.cyclos.entities.users.MobilePhone

+ sms: The org.cyclos.impl.utils.sms.InboundSmsData, containing the operation alias and the
operation parameters

« parameterProcessor: The org.cyclos.impl.utils.sms.SmsParameterProcessor, which is a
helper class to obtain operation parameters as specific data types

Cyclos 4 PRO Documentation 47

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/CustomSmsOperationConfiguration.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/SmsChannelConfiguration.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/MobilePhone.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/utils/sms/InboundSmsData.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/utils/sms/SmsParameterProcessor.html

There are no expected return values for this script.

Examples
Pay taxi with an SMS message

In this example SMS operation, users can pay taxi drivers via SMS. It expects a single transfer
type for the SMS operations channel to be enabled, and the user performing the operation
needs to have permission to perform that payment. Besides, a custom profile field with
internal name taxild of type single line text, and marked as unique needs to be enabled for
the product of taxi owners. Then, in the configuration details, in the channels tab, enable SMS
operations and add an operation with alias taxi and the selected script. Then, customers can
perform the payment by sending an sms in the format: taxi <taxi id> <amount>

i nport org.cyclos. nodel . Val i dati onException

i mport org.cycl os. nodel . banki ng. Tr ansf er Except i on

i nport org.cycl os. nodel . banki ng. transacti ons. Per f or nPaynent DTO
i nport org.cycl os. nodel . banki ng. t ransacti ons. Per f or rPaynent Dat a
i mport org.cycl os. nodel . nessagi ng. sns. Qut boundSnsType

i nport org.cyclos. nodel . system fi el ds. Cust onFi el dVO

i nport org.cyclos. nodel . users. fiel ds. User Cust onFi el dVal ueVO

i mport org.cycl os. nodel . users. users. User Locat or VO

/! Read the paraneters
String taxild = paraneterProcessor.nextString("taxild")
Bi gDeci mal anpunt = paranet er Processor. next Deci mal ("anmount")

/!l Find the user by taxi id

def |ocator = new UserLocatorVQ()

| ocator.fieldVal ue = new User Cust onfi el dVal uevVQ([
field: new CustonFieldVQ([internal Name: "taxild"]),
stringVal ue: taxild

1

// Find the paynent type
Per f or mMPaynent Dat a data = transacti onServi ce. get Paynent Dat a(
phone. user, |ocator)
i f (data.paynent Types?.size == 0) {
t hrow new Val i dati onException("No possi bl e paynent types")

}

/1 Performthe payment
def pnmt = new PerformPaynment DTQ()
pnt.ambunt = anount
pnt.from = data.from
pnt.to = data.to
pnt.type = data. paynent Types][0]
try {
vo = paynent Servi ce. perforn(pnt)
out boundSnsHandl er . send(phone,
"The paynent was successful ",
Qut boundSnsType. SM5_OPERATI ON_RESPONSE)
// Al'so notify the taxi, for exanple, by connecting to the
/] taxi conpany system which notifies the taxi driver...

Cyclos 4 PRO Documentation 48

} catch (TransferException e) {
out boundSmsHandl er . send(phone,
"The paynent coul dn't be performed",
Qut boundSnsType. SMS_OPERATI ON_RESPONSE)

Outbound SMS handling

These scripts are invoked to send SMS messages. By default, Cyclos connects to gateways
via HTTP POST / GET, which can be set in the configuration. However, the sending can be
customized (or totally replaced) via a script. As in most cases the custom sending just wants
to customize some aspects of the sending, not all, it is possible that the script just creates
a subclass of org.cyclos.impl.utils.sms.GatewaySmsSender, customizing some aspects of it
(for example, by overridding the buildRequest method and adding some headers, or the
resolveVariables method to have some additional variables which can be sent in the POST
body).

Bound variables:

+ configuration: The org.cyclos.impl.system.ConfigurationAccessor

+ phone: The org.cyclos.entities.users.MobilePhone. May be null, if is a reply to an
unregistered user.

« phoneNumber: The international phone number, in the E.164 standard string. Never null.

* message: The SMS message to send

Return value:

* An org.cyclos.model.messaging.sms.OutboundSmsStatus enum value

*+ A string which represents the exact name of an OutboundSmsStatus enum value

« If nullis returned, it is assumed a sending success
Examples
Sending SMS requests as XML

This example posts the SMS message as XML to the gateway, and awaits the response before
returning the status:

import static groovyx.net.http. ContentType.*
i nport static groovyx.net.http. Method. *

i nport groovyx.net. http. HTTPBui | der

i nmport java.util.concurrent. Count DownlLatch

i mport org.cycl os. nodel . nessagi ng. sns. Qut boundSns St at us

/! Read the gateway URL fromthe configuration

Cyclos 4 PRO Documentation 49

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/utils/sms/GatewaySmsSender.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/system/ConfigurationAccessor.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/users/MobilePhone.html
http://en.wikipedia.org/wiki/E.164
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/messaging/sms/OutboundSmsStatus.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/messaging/sms/OutboundSmsStatus.html

def url = configuration. out boundSmsConfi gurati on. gat ewayUr |

/1 Send the POST request
def http = new HTTPBui |l der (url)
Count DownLat ch | atch = new Count DownLat ch(1)
def error = fal se
http. request (POST, XM.) {
/] Pass the body as a closure - parsed as XM
body = {
"sms- message"” {
"destination-phone" phoneNunber
text nmessage

}

response. success = { resp, xm ->
| at ch. count Down()

}

response.failure = { resp ->
error = true
| at ch. count Down()

}

/1 Await for the response
latch. awai t ()
return error ? Qut boundSnsSt at us. SUCCESS : Qut boundSnsSt at us. UNKNOAN_ERROR

Inbound SMS handling

These scripts are invoked when a gateway sends SMS messages to Cyclos. There are two
functions in this script: one to generate the gateway response and another one to resolve
basic SMS data from an inbound HTTP request. Both functions are optional, defaulting to the
normal behavior (when not using a script).

The common bound variables are:

+ configuration: The org.cyclos.impl.system.ConfigurationAccessor for the inbound SMS

+ channelConfiguration: The org.cyclos.entities.system.SmsChannelConfiguration

The functions are:

* Resolve basic SMS data: Function used to read aninbound sms request and return an object
containing the phone number, the SMS message and the splitted SMS message into parts.
Only the phone number and SMS message are required. If the message parts are empty,
it will be assumed the message will be split by spaces.

* Bound variables:

* request: The org.cyclos.model.utils.Requestinfo

* Return value:

Cyclos 4 PRO Documentation 50

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/system/ConfigurationAccessor.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/system/SmsChannelConfiguration.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/utils/RequestInfo.html

* Anorg.cyclos.impl.utils.sms.InboundSmsBasicData instance, or a compatible Object or
Map

* If null is returned, falls back to the default processing

+ Generate gateway response: Function used to determine the HTTP status code, headers
and body to be returned to the SMS gateway. It can be called either when the bare minimum
parameters - mobile phone number and sms message - were not sent by the gateway or
when the gateway has sent a valid SMS. Keep in mind that if an operation has resulted in
error, from a gateway perspective, the SMS was still delivered correctly, and the response
should be a successful one. Maybe when the bare minimum parameters weren't send,
the script could choose to return a different message. When no code is given, the default
processing will be done, returning the HTTP status code 200 with "OK" in the body.

* Bound variables:

* request: The org.cyclos.model.utils.Requestinfo Only present if the inbound SMS was
valid (there was a phone number and sms message)

* inboundSmsData: The org.cyclos.impl.utils.sms.InboundSmsData, which contains the
operation alias and parameters

* inboundSms: The org.cyclos.entities.messaging.InboundSms, which is a log of the
incoming message

* Return value:

+ An org.cyclos.model.utils.Responselnfo instance, or a compatible Object or Map

+ If null is returned, falls back to the default processing
Examples
Receiving a SMS with a custom format

This example reads the phone number from a request header, and the message from the
request body:

i mport org.apache. commons.io.lQUtils
i nport org.cyclos.inpl.utils.sns.|nboundSnsBasi cDat a

/'l Read the phone froma header, and the nessage fromthe body
| nboundSnsBasi cData result = new | nboundSnsBasi cDat a()

resul t. phoneNunber = request. headers. "phone-nunber"
result.message = |OUtils.toString(request.body, "UTF-8")
return result

Transfer status handling

These scripts are used to determine to which status(es) a transfer may be set after the current
status. By default, if no script is used, the possible next statuses (as configured in the transfer

Cyclos 4 PRO Documentation 51

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/utils/sms/InboundSmsBasicData.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/utils/RequestInfo.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/utils/sms/InboundSmsData.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/messaging/InboundSms.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/model/utils/ResponseInfo.html

status details page) will be available. Using a script, however, allows using finer-grained
controls. For example, an specific status could be allowed only by specific administrators,
or only under special conditions (for example, checking the account balance or any other
condition).

The script code has the following variables bound (besides the default bindings):

« transfer: The org.cyclos.entities.banking.Transfer

+ flow: The org.cyclos.entities.banking.TransferStatusFlow of the status being affected.

+ status: The org.cyclos.entities.banking.TransferStatus

The script should return one of the following:
+ Asingle org.cyclos.entities.banking.TransferStatus (only that status is available as next);

« An array / list / iterator of org.cyclos.entities.banking.TransferStatus (all are available as
next, possibly empty);

* Null - assumes the default behavior: the possible next configured in the status are
assumed.

Examples

Restricting a specific status for administrators

In this example, any user can change a transfer status in a given flow. However, only
administrators can set a transfer to the status with internal name finished.

i nport org.cycl os. nodel . access. Rol e

/1 Only adm nistrators can set the status to finished
return status. possibleNext.findAll { st ->

sessi onDat a. hasRol e(Role. ADM N) || st.internal Nane != "fini shed"
}

3.3. Solutions using scripts

Examples of solutions that require a single script can be found directly in the specific script
description page (links directly above). Solutions that need several scripts and configurations
can be found in this section.

PayPal Integration

It is possible to integrate Cyclos with PayPal, allowing users to buy units with their PayPal
account. This is done with a custom operation which allows users to confirm the payment
in PayPal and then, once the payment is confirmed, a payment from a system account
is performed to the corresponding user account, automating the process of buying units.
However, keep in mind the rates charged by PayPal, which vary according to some conditions.

Cyclos 4 PRO Documentation 52

http://www.cyclos.org/documentation/#bindings
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/Transfer.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/TransferStatusFlow.html
http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/entities/banking/TransferStatus.html
http://www.paypal.com/

To do so, first you'll need a PayPal premium or business account (for testing - using PayPal
sandbox - any account is enough). You'll need to go to the PayPal Developer page to create
an application, and get the client id and secret.

Then several configurations are required in Cyclos. Scripts can only be created as global
administrators switched to a network, so it is advised to use a global admin to perform the
configuration. Carefully follow each of the following steps:

Check the root URL

Make sure that the configuration for users use a correct root url. In System > System
configuration > Configurations, select the configuration set for users and make sure the Main
URL field points to the correct external URL. It will be used to generate the links which will be
sent to PayPal redirect users back to Cyclos after confirming / canceling the operation.

Enable transaction number in currency

This can be checked under System > Currencies select the currency used for this operation,
mark the Enable transfer number option and fill in the required parameters.

Create a system record type to store the client id and secret

Under System > System configuration > Record types, create a new system record type, with
the following characteristics:

+ Name: PayPal Authentication

* Internal name: paypalAuth

+ Display style: Single form

+ Editable: yes

For this record type, create the following fields:
+ ClientID
* Internal name: clientld
+ Data type: Single line text
* Required: yes
+ Client Secret
+ Internal name: clientSecret
+ Data type: Single line text
* Required: yes
+ Token

* Internal name: token

Cyclos 4 PRO Documentation 53

https://developer.paypal.com/webapps/developer/applications/myapps

+ Data type: Single line text
+ Token expiration
* Internal name: tokenExpiration
+ Data type: Date
Create an user record type to store each payment information
Under System > System configuration > Record types, create a new user record type, with the
following characteristics:
* Name: PayPal payment
* Internal name: paypalPayment
* Display style: List
+ Editable: checked

For this record type, create the following fields:
+ Payment ID
* Internal name: paymentld
+ Data type: Single line text
+ Required: no
+ Amount
* Internal name: amount
+ Data type: Decimal
+ Required: no
+ Transaction
+ Internal name: transaction
+ Data type: Linked entity
+ Linked entity type: Transaction
+ Required: no
Create the library script
Under System > Tools > Scripts, create a new library script, with the following characteristics:
+ Name: PayPal
+ Type: Library

* Included libraries: none

Cyclos 4 PRO Documentation 54

* Parameters:

Settings for the access token record type
aut h. recordType = paypal Aut h

auth.clientld = clientld

aut h.clientSecret = clientSecret

aut h. t oken = token

aut h. t okenExpirati on = tokenExpiration

Settings for the payment record type
payment . recor dType = paypal Paynent
payment . paynentld = paynent|d
paynent . anbunt = anpunt
payment . transacti on = transaction

Settings for PayPa

node = sandbox

currency = EUR

payment Descri ption = Buy Cyclos units

Settings for the Cyclos paynent
amountMul tiplier = 1

account Type = debitUnits

payment Type = paypal Credits

Messages
error.invali dRequest = Invalid request
error.transacti onNot Found = Transaction not found

error.not Approved = The paynment was not approved

* Script code:

i mport static groovyx.net.http.ContentType.*
i mport static groovyx.net.http.Method.*
i nport groovyx. net. http. HTTPBui | der

i mport java.util.concurrent. Count DownLat ch

i nport org. apache. cormons. codec. bi nary. Base64

i mport org.cyclos.entities.banking. Paynent Tr ansf er Type
i nport org.cyclos.entities.banking. SystemAccount Type

i nport org.cyclos.entities.users. RecordCustontield
import org.cyclos.entities.users. SystenRecord

i nport org.cyclos.entities.users. SystenRecordType

i nport org.cyclos.entities.users. User

i mport org.cyclos.entities.users. UserRecord

i nport org.cyclos.entities.users. UserRecordType

i nport org.cyclos.inpl.banking. Paynment Servi ceLoca

i mport org.cyclos.inpl.system Scri ptHel per

i nport org.cyclos.inpl.users. RecordServi ceLoca

i mport org.cyclos.inpl.utils.|dvask

i mport org.cyclos.inpl.utils.persistence. EntityManager Handl er
i nport org.cyclos. nodel . Entit yNot FoundExcepti on

error.transacti onAl readyApproved = The transaction was al ready approved
error.paynent = There was an error while processing the paynent. Pl ease

try again.

message. cancel ed = You have cancell ed the operation.\nFeel free to start again if needed
message. done = You have successfully conpl eted the payment. Thank you

Cyclos 4 PRO Documentation

55

i mport org.cycl os. nodel . banki ng. account s. Syst emAccount Oaner

i nport org.cycl os. nodel . banki ng. t ransact i ons. Paynent VO

i mport org.cycl os. nodel . banki ng. t ransacti ons. Perf or nPaynment DTO
i mport org.cycl os. nodel . banki ng. t ransfertypes. Transf er TypeVO

i nport org.cyclos. nodel . users. records. Recor dDat aPar ans

i mport org.cycl os. nodel . users. records. User Recor dDTO

/**

*/

cl ass PayPal Auth {
String recordTypeNane
String clientl dNane
String clientSecret Name
String tokenName
String tokenExpirati onName

Syst emRecor dType recordType
Syst emRecord record
Map<String, Object> w apped

publ i ¢ PayPal Aut h(Cbj ect bi ndi ng) {
def paranms = binding. scri pt Paranmeters
recordTypeNane = parans.'auth.recordType' ?: 'paypal Auth'
clientl dNane = parans.'auth.clientld ?: 'clientld
clientSecretName = parans. ' auth.clientSecret' ?: 'clientSecret’
tokenNane = parans.'auth.token' ?: 'token'

recordType = bi ndi ng. entityManager Handl er
.find(SystenRecordType, recordTypeNane)

/1 Should return the existing instance, of a single formtype.
// Ctherwise it would be an error
record = binding.recordService. newentity(
new Recor dDat aPar ans(recordTypel d: recordType.id))
if (!record.persistent) throw new ||| egal St at eException(
"No instance of systemrecord ${recordType. nane} was found")
wrapped = binding. scri pt Hel per.wap(record, recordType.fields)

public String getdientld() {
wr apped[cl i ent | dNane]
}
public void setCientld(String clientld) {
wr apped[clientldNane] = clientld
}
public String getdientSecret() {
wr apped[cl i ent Secr et Nane]
}
public void setClientSecret(String clientSecret) {
wr apped[cl i ent Secr et Name] = cl i ent Secret
}
public String getToken() ({
wr apped[t okenNane]

* Class used to store / retrieve the authentication information for PayPal
* A systemrecord type is used, with the following fields: client id (string),
* client secret (string), access token (string) and token expiration (date)

t okenExpi rati onName = parans.'auth.tokenExpiration' ?: 'tokenExpiration'

/! Read the record type and the paraneters for field internal nanes

Cyclos 4 PRO Documentation

56

}

public void set Token(String token) {
wr apped[t okenNanme] = token

}

public Date get TokenExpiration() {
wr apped[t okenExpi r ati onNane]

}

public voi d set TokenExpiration(Date tokenExpiration) {
wr apped[t okenExpi rati onName] = tokenExpiration

/**
* Class used to store / retrieve PayPal paynments as user records in Cyclos
*/
cl ass PayPal Record {
String recordTypeNanme
String paynent | dName
String anount Nanme
String transacti onNanme

User Recor dType recordType
Map<String, RecordCustonfield> fields

private EntityManagerHandl er entityManager Handl er
private RecordServicelLocal recordService
private ScriptHel per scriptHel per

publ i c PayPal Recor d(Obj ect binding) {
def params = binding. scri pt Paraneters
recordTypeNane = parans.' paynent.recordType' ?: 'paypal Paynent'
payrment | dNane = parans.' paynent.paynmentld' ?: 'paynentld
amount Name = parans. ' paynment.anmount' ?: 'anount'
transacti onNane = parans.' paynent.transaction' ?: 'transaction’

entityManager Handl er = bi ndi ng. entit yManager Handl er

recordServi ce = bindi ng.recordService

script Hel per = bindi ng. scri pt Hel per

recordType = bindi ng. entityManager Handl er. fi nd(User Recor dType, recordTypeNane)
fields = [:]

recordType. fields.each {f -> fields[f.internal Nane] = f}

/**
* Creates a paynent record, for the given user and JSON,
* as returned from PayPal's create paynent REST net hod
*/
public UserRecord create(User user, Nunber anount) ({
Recor dDat aPar ans newPar ans = new Recor dDat aPar ans(
[userld: user.id, recordTypeld: recordType.id])
User Recor dDTO dt o = recordServi ce. get Dat aFor New(newPar ans) . get DTQ()
Map<String, Object> wapped = scriptHel per.wap(dto, recordType.fields)
wr apped[ambunt Name] = anount

/'l Save the record DTO and return the entity
Long id = recordService. save(dt o)
return entityManager Handl er. fi nd(User Record, id)

Cyclos 4 PRO Documentation

57

/**

* Finds the record by id

*/
public UserRecord find(Long id) {
try {
User Record userRecord = entityManager Handl er. fi nd(User Record
if (userRecord.type != recordType) {
return null
}
return userRecord
} catch (EntityNot FoundException e) {
return nul
}
}
/**

* Renoves the given record, but only if it is of the
* expected type and hasn't been confirned
*/
public void renmove(User Record userRecord) {
if (userRecord.type != recordType) {
return
}
Map<String, Object> w apped = scri pt Hel per
.wrap(userRecord, recordType.fields)
if (wapped[transactionNane] != null) return
ent it yManager Handl er . renpbve(user Recor d)

/**
* Class used to interact with PayPal services
*/
cl ass PayPal Service {
String node
String baseUrl
String currency
String paynent Description

String account TypeNane
String paynent TypeNane
doubl e multiplier

Syst emAccount Type account Type
Payment Tr ansf er Type paynent Type

private ScriptHel per scriptHel per

private Paynent Servi ceLocal paynent Service
private |dMask idMask

private PayPal Auth auth

private PayPal Record record

publ i ¢ PayPal Servi ce(
bj ect bindi ng, PayPal Auth auth, PayPal Record record) {

this.auth = auth
this.record = record

i d)

Cyclos 4 PRO Documentation

58

script Hel per = bindi ng. scri pt Hel per
paynment Servi ce = bi ndi ng. paynment Servi ce
i dMask = bi ndi ng. appl i cati onHandl er. i dvask

def params = binding. scri pt Paraneters

nmode = parans. node ?: 'sandbox'
if (node != 'sandbox' && node != "live') {
throw new ||| egal Argunent Excepti on("lnvalid PayPal parameter " +
"mode' : ${npde}. Should be either sandbox or |ive")
}
baseUr| = npde == 'sandbox'
? '"https://api.sandbox. paypal .com : 'https://api.paypal.coni

currency = parans. currency

if (currency == null || currency.enpty) {
throw new |11 egal Argunent Excepti on(
"M ssi ng PayPal paranmeter 'currency'")

Enti t yManager Handl er emh = bi ndi ng. enti t yManager Handl er
account TypeNane = parans. account Type
i f (account TypeNane == null || account TypeNane. enpty)
throw new |11 egal Argunent Excepti on(
"M ssing PayPal paraneter 'accountType'")
paynment TypeNanme = par ans. paynment Type
i f (paynent TypeNane == null || paynent TypeNane. enpty)
throw new ||| egal Argurment Excepti on(
"M ssing PayPal paraneter 'paynent Type'")
account Type = enh. find(Syst emAccount Type, account TypeNane)
i f (!account Type. currency.transacti onNunber?. used) {
throw new ||| egal St at eException("Currency " + account Type.currency
+ " doesn't have transacti on nunber enabl ed")
}
payment Type = enh. fi nd(
Paynent Tr ansf er Type, paynent TypeNane, account Type)

mul tiplier = Doubl e. parseDoubl e(parans. amount Mul tiplier ?: "1")
payment Descri pti on = parans. paynent Descri ption ?: "*"

/**

* Creates a paynent in PayPal and the correspondi ng user record

*/

public Object createPaynent (User user, Nunber anpunt, String callbackUl) {

/] Create the UserRecord for this paynment
User Record user Record = record. create(user, anpunt)

Long nmaskedl d = i dMvask. appl y(user Record. i d)
String returnU |l = "${callbackUrl}?succes=true&r ecordl d=${ masked| d}"
String cancel Ul = "${cal |l backUrl}?cancel =t rue&recordl d=${ masked! d} "

def jsonBody = [
intent: "sale",
redirect_urls: [
return_url: returnUrl,

Cyclos 4 PRO Documentation

59

cancel _url: cancel Url
I,
payer: [
paynment _net hod: "paypal "
I,
transactions: [
[
descri ption: paynentDescription
amount : [
total : anount,
currency: currency

]
/'l Create the paynent in PayPal

bj ect json = postJson("${baseUrl}/vl/ paynents/paynent"”, jsonBody)

/'l Update the paynent id
def wrapped = scri pt Hel per.w ap(user Record)
wr apped[record. paynment | dNane] = json.id

return json

/**
* Executes a PayPal payment, and creates the paynent in Cyclos
*/
public Object execute(String payerld, UserRecord userRecord) {
bj ect wrapped = scri pt Hel per. w ap(user Recor d)
String paynentld = w apped[record. paynment | dNane]
Bi gDeci mal anpunt = wrapped[record. anount Nane]
Bi gDeci mal final Anbunt = amount * nultiplier

/| Execute the payment in PayPal

bj ect json = postJson(
"${baseUr|}/vl/ paynent s/ paynent/ ${ paynent | d} / execut e",
[payer _i d: payerld])

if (json.state == 'approved') {
/1 Performthe payment in Cyclos
Per f or nPayment DTO dt o = new Per f or mPaynent DTQ()
dto. from = Syst emAccount Oamner. i nstance()
dto.to = userRecord. user
dt o. amount = fi nal Anmount
dto.type = new Transfer TypeVQ(paynent Type. i d)
Paynment VO vo = paynent Servi ce. perf or m(dt 0)

/1 Update the record, setting the |inked transaction
wr apped[record. transacti onNane] = vo
user Recor d. | ast Modi fi edDat e = new Dat e()

}

return json

/**

* Perforns a synchronous request, posting and accepting JSON
*/

Cyclos 4 PRO Documentation

private postJson(url, jsonBody) {
def http = new HTTPBui | der (url)
Count DownLat ch | atch = new Count DownLat ch(1)
def responseJson = nul |
def responseError = []

/1l Check if we need a new token
if (auth.token == null || auth.tokenExpiration < new Date()) ({
refreshToken()

/1 Performthe request
http. request (POST, JSON) ({
headers.' Aut hori zati on' = "Bearer ${auth.token}"

body = j sonBody

response. success = { resp, json ->
responseJson = json
| at ch. count Down()

response.failure = { resp ->
responseError << resp.statusLi ne. st at usCode
responseError << resp. statusLi ne. reasonPhrase
| at ch. count Down()

| atch. awai t ()

if (!responseError.emty) {
t hrow new Runti meException("Error maki ng PayPal request to ${url}"
+ ", got error code ${responseError[0]}: ${responseError[1]}")

}

return responseJson

/**
* Refreshes the access token
*/
private void refreshToken() {
def http = new HTTPBui | der ("${baseUr|}/v1/ oaut h2/token")

Count DownLat ch | atch = new Count DownlLat ch(1)
def responsedson = nul |
def responseError = []

http. request (PCST, JSON) ({
String auth = Base64. encodeBase64String((auth.clientld + ":"
+ aut h. clientSecret). get Byt es("UTF-8"))
headers. ' Accept - Language' = 'en_US
headers. ' Aut hori zation' = "Basic: ${auth}"

send URLENC, [
grant _type: "client_credential s"

response. success = { resp, json ->

Cyclos 4 PRO Documentation 61

responseJson = json
| at ch. count Down()

}

response.failure = { resp ->
responseError << resp.statusLi ne. st at usCode
responseError << resp. statusLi ne. reasonPhrase
| at ch. count Down()

}

| atch. awai t ()

if (!responseError.emty) {
throw new Runti meException("Error getting PayPal token, " +
"got error code ${responseError[0]}: ${responseError[1]}")

}

/1 Update the authentication data

aut h. t oken = responseJson. access_t oken

aut h. t okenExpiration = new Date(SystemcurrentTimreM|1lis() +
((responseJson. expires_in - 30) * 1000))

}

/'l Instantiate the objects

PayPal Aut h aut h = new PayPal Aut h(bi ndi ng)

PayPal Record record = new PayPal Recor d(bi ndi ng)

PayPal Servi ce paypal = new PayPal Servi ce(bi nding, auth, record)

Create the custom operation script

Under System > Tools > Scripts, create a new custom operation script, with the following
characteristics:

« Name: Buy units with PayPal

+ Type: Custom operation

* Included libraries: PayPal

« Parameters: leave empty

* Script code executed when the custom operation is executed:

def result = paypal.createPaynent (user, fornParaneters.amunt, returnUrl)

def link = result.links.find {it.rel == "approval _url"}
if (link) {
return link.href + "&useraction=conmit"
} else {
throw new ||| egal St at eExcepti on("No approval url returned from PayPal ")
}

+ Script code executed when the external site redirects the user back to Cyclos:

i nport org.cyclos.entities.users. UserRecord

Cyclos 4 PRO Documentation 62

def recordld = request.paraneters.recordld as Long
def payerld = request. paraneters. Payerl D

/1 No record?
if (recordld == null) {
return "[ERROR] " +
(scriptParaneters.'error.invalidRequest' ?: "lInvalid request")

}

/1 Find the corresponding record
User Record userRecord = record. find(applicationHandl er.i dMvask.renpve(recordld))
if (userRecord == null) {

return "[ERROR] " +

(scriptParaneters.'error.transacti onNot Found' ?: "Transaction not found")

}

def wrapped = scri pt Hel per.w ap(user Record)

i f (request.paraneters.cancel) ({
/1 The operation has been cancel ed. Renpve the record and send a nessage
record. renmove(user Record)
return "[WARN] " + scriptParaneters.' nessage. cancel ed
?: "You have cancelled the operation.\nFeel free to start again if needed."

} else {
/| Execute the paynent
try {
def json = paypal . execut e(payerld, userRecord)

if (json.state == "approved') {
return scriptParaneters.' nessage. done
?: "You have successfully conpleted the paynent. Thank you."
} else {
return "[ERROR] " + scriptParaneters.'error.notApproved
?: "The paynment was not approved"
}
} catch (Exception e) {
return "[ERROR] " + scriptParaneters.'error. paynment
?: "There was an error while processing the payment. Please, try again."

Create the custom operation

Under System > Tools > Custom operations, create a new one with the following
characteristics:

« Name: Buy units with PayPal (can be changed - will be the label displayed on the menu)
« Enabled: yes

* Scope: user

« Script: Buy units with PayPal

* Script parameters: leave empty

* Result type: External redirect

* Has file upload: no

Cyclos 4 PRO Documentation 63

* Main menu: Banking
+ User management section: Banking

+ Information text: you can add here some text explaining the process - it will be displayed
in the operation page

+ Confirmation text: leave empty (can be used to show a dialog asking the user to confirm
before submitting, but in this case is not needed)

For this custom operation create the following field:

+ Name: Amount

* Internal name: amount

+ Data type: Decimal

« Required: yes
Configure the system account from which payments will be performed to users

Under System > Accounts configuration > Account types, choose the (normally unlimited)
account from which payments will be performed to users. Then set its internal name to some
meaningful name. The example configuration uses debitUnits as internal name, but it can be
changed. Save the form.

Configure the payment type which will be used on payments
Still in the details page for the account type, on the Transfer types tab, create a new Payment
transfer type with the following characteristics:

« Name: Units bought with PayPal (can be changed as desired)

* Internal name: paypalCredits (can be changed as desired, but this name is used in the
example configuration)

+ Default description: Units bought using PayPal (can be changed as desired, is the
description for payments, visible in the account history)

+ To: select the user account which will receive the payment

+ Enabled: yes

Grant the administrator permissions

Under System > User configuration > Groups, select the Network administrators group. Then,
in the Permissions tab:

* In System > System records, make the Paypal authentication record visible and editable

* In User data > User records, make the Paypal payment visible only (not editable, as it is not
meant to be manually edited)

Cyclos 4 PRO Documentation 64

+ Save the permissions
Setup the PayPal credentials

Click Reports & data > System records > Paypal authentication. If this menu entry is not
showing up, refresh the browser page (by pressing F5) and try again. Update the Client ID
and Client Secret fields exactly with the ones you got in the application you registered in the
PayPal Developer page. Remember that PayPal has a sandbox, which can be used to test the
application, and a live environment. For now, use the sandbox credentials. The other 2 fields
can be left blank. Save the record.

Once the record is properly set, if you want to remove it from the menu, you can just remove
the permission to view this system record in the adminitrator group page.

Grant the user permissions / enable the operation

In System > User configuration > Products (permissions), select the member product for users
which will run the operation. In the Custom operations field, make the Buy units with PayPal
both enabled and allowed to run. From this moment, the operation will show up for users in
the banking menu. Also on the Records enable the PayPal payment record.

Configuring the script parameters

Inthe PayPal library script, in parameters, there are several configurations which can be done.
All those settings can be overridden in the custom operation's script parameters, allowing
using distinct configurations for distinct operations. For example, it is possible to have distinct
operations to perform payments in distinct currencies. In that case, the script parameters for
each operation would define the currency again.

Here are some elements which can be configured:
* Internal names for the records used to store the credentials and payments.

+ Paypal mode: the 'mode' settings can be either sandbox or live, indicating that operations
are performed either in a test or in the real environment. To go live, you'll need a premium
or business account in PayPal, and you need to use the live credentials (client ID and client
secret) in Cyclos.

« Payment currency: the 'currency' defines the 3-letter, ISO 4217 code for the currency in
PayPal. Sometimes, according to country-specific laws, the currency used for payments
may be limited. For example, Brazilians can only pay other Brazilians in Reais.

+ Description for payments in PayPal: using the 'paymentDescription' setting.

« Amount multiplier: Sometimes it may be desired that the payment performed in Cyclos
isn't of the exact amount of the payment in PayPal. This can normally be resolved using
transfer fees, but it could also be handy to use this multiplier. If left in 1, the payment in
Cyclos will have the same amount as the one in PayPal. If greater / less than 1, the payment

Cyclos 4 PRO Documentation 65

https://developer.paypal.com/webapps/developer/applications/myapps
http://en.wikipedia.org/wiki/ISO_4217

in Cyclos will be greater / less than the one in PayPal. For example, if the multiplier is 1.05,
and the PayPal payment was 100 USD, the payment in Cyclos will have the amount 105.
Or, if the multiplier is 0.95 and the PayPal payment was 200 EUR, the payment in Cyclos
will be of 190.

+ System account from which the payment will be performed to users: the 'accountType'
setting is the internal name of the system account type from which payments will be
performed, as explained previously. Make sure it is exactly the same as set in the account

type.

« Payment type: the 'paymentType' setting is the internal name of the payment transfer type
used. Make sure it is exactly the same internal name set in the payment type that was
created in previous steps.

+ Messages: several messages (displayed to the user) can be set / translated here.
Other considerations

Make sure the payment type is from an unlimited account, so payments in Cyclos won't
fail because of funds. The way the example script is done, first the payment is executed in
PayPal and, if authorized, a payment is made in Cyclos. If this payment fails, there could be
an inconsistency between the Cyclos account an the PayPal payment. Improvements could
be done to the script, to handle the case where the Cyclos payment failed. To do this, the
ScriptHelper.addOnRollbackTransactional method can be used, for example, to notify some
specific administrator or to refund the PayPal payment. But this handling is outside the scope
of this example.

Loan module

Loan features in Cyclos 4 can be implemented using scripting. As loans tend to be very specific
for each project, having itimplemented with scripts brings the possibility to tailor the behavior
to each project.

The example provided works as follows:

« An administrator has a custom operation to grant the loan, setting the amount, number of
installments and first installment date.

+ Theloanis a payment from a system account to an user. It has a status, which can be either
open or closed.

+ The same custom operation also performs a scheduled payment from the user to system,
with each installment amount and due date corresponding to the loan installments. This
scheduled payment has (with a custom field) a link to the original loan. Also, the loan
payment has a link to the scheduled payment, making it easy to navigate between them.

+ Each installment will be processed at the respective due date, allowing users to repay the
loan with internal units. The administrator can, however, mark individual installments as

Cyclos 4 PRO Documentation 66

http://documentation.cyclos.org/4.3/scripting-api-docs/org/cyclos/impl/system/ScriptHelper.html#addOnRollbackTransactional%28java.lang.Runnable%29

settled, which means the installment won't be repaid internally, but with some other way
(for example, with money or using other Cyclos payments).

+ Oncethescheduled paymentis closed, an extension point updates the status of the original
payment to closed.
In order to configure the loan script, follow carefully each of the following steps:

Enable transaction number in currency

This can be checked under System > Currencies select the currency used for this operation,
mark the Enable transfer number option and fill in the required parameters.

Create the transfer status flow
Under System > Accounts configuration > Transfer status flows, create a new one, with the
following characteristics:
« Name: Loan status (can be changed as desired)
* Internal name: loan (can be changed as desired, but this name is used in the example
configuration)
After saving, create the following statuses:
+ Closed (can be changed as desired)
* Internal name: closed
* Open (can be changed as desired)
* Internal name: open
+ Possible next statuses: Closed
Create the payment custom fields
Under System > Accounts configuration > Payment fields, create a new one, with the following
fields:
* Loan
* Name: Loan (can be changed as desired)

* Internal name: loan (can be changed as desired, but this name is used in the example
configuration)

+ Data type: Linked entity
+ Linked entity type: Transaction
* Required: yes

* Repayment

Cyclos 4 PRO Documentation 67

+ Name: Repayment (can be changed as desired)

+ Internal name: repayment (can be changed as desired, but this name is used in the
example configuration)

+ Data type: Linked entity
+ Linked entity type: Transaction
+ Required: no
Configure the system account from which payments will be performed to users

Under System > Accounts configuration > Account types, choose the (normally unlimited)
account from which payments will be performed to users. Then set its internal name to some
meaningful name. The example configuration uses debitUnits as internal name, but it can be
changed later. Save the form.

Create the payment type which will be used to grant the loan

Still in the system account type details page for the account type, on the Transfer types tab,
create a new Payment transfer type with the following characteristics:

« Name: Loan (can be changed as desired)

* Internal name: loanGrant (can be changed as desired, but this name is used in the example
configuration)

+ Default description: Loan grant (can be changed as desired, is the description for payments,
visible in the account history)

+ To: select the user account which will receive the payment
+ Transfer status flows: Loan status
+ Initial status for Loan status: Open

« Enabled: yes
After saving, on the Payment fields tab, add the custom field named Repayment.
Configure the user account which will receive loans

Under System > Accounts configuration > Account types, choose the user account which
will receive payments. Then set its internal name to some meaningful name. The example
configuration uses userUnits as internal name, but it can be changed later. Save the form.

Create the payment type which will be used to repay the loan

Still in the user account type details page, on the Transfer types tab, create a new Payment
transfer type with the following characteristics:

+ Name: Loan repayment (can be changed as desired)

Cyclos 4 PRO Documentation 68

* Internal name: loanRepayment (can be changed as desired, but this name is used in the
example configuration)

+ Default description: Loan repayment (can be changed as desired, is the description for
payments, visible in the account history)

+ To: select the system account which granted the loan

+ Enabled: yes

* Allows scheduled payment: yes

* Max installments on scheduled payments: 36 (any value greater than zero is fine)
+ Show scheduled payments to receiver: yes

+ Reserve total amount on scheduled payments: no
After saving, on the Payment fields tab, add the custom field named Loan.
Create the library script

Under System > Tools > Scripts, create a new library script, with the following characteristics:
* Name: Loan

+ Type: Library

* Included libraries: none

* Parameters:

Loan configuration

| oan. account = debitUnits
| oan. type = | oanG ant

#| oan. description =

Repaynent configuration
repayment.account = userUnits
repaynment.type = | oanRepaynent
#repaynent . descri ption

Payment custom fields
field.loan = | oan
field. repayment = repaynent

Monthly conmpound interest rate (zero for none)
nont hl yl nterest Rate = 0

Transfer status configuration
status.flow = | oan

st at us. open = open
status. cl osed = cl osed

Custom operation configuration
operation. anbunt = anount
operation.installnments = installnments

Cyclos 4 PRO Documentation 69

oper at

Messa
nmessage
message
message
nmessage

on.firstDueDate = firstDueDate

ges
.invalidlnstall ments = The nunber of installnments is invalid
.invalidLoanAnbunt = Invalid | oan anpunt

.invalidFirstDueDate = The first due date cannot be | ower than tonorrow
.loanGranted = The | oan was successfully granted

* Script code:

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

class L
Map
Ent
Pay
Sch
Tra
Scr
Con

dou
Sys
Use
Pay
Pay
Tra
Tra

org.cycl os. entities. banki ng. Paynent

org.cycl os. entities. banki ng. Paynment Tr ansf er Type

org.cycl os. entities. banki ng. Schedul edPaynent

org.cycl os. entities. banki ng. Syst emAccount Type

org.cyclos. entities. banking. Transacti onCust onfi el d

org.cycl os. entities. banki ng. Transfer

org.cycl os. entities. banki ng. Transf er St at us

org.cyclos. entities. banking. Transfer St at usFl ow

org.cycl os. entities. banki ng. User Account Type

org.cycl os.entities.users. User

org. cycl os.inpl. banki ng. Paynent Servi ceLoca

org. cycl os. i npl . banki ng. Schedul edPaynent Ser vi ceLoca

org. cycl os. i npl . banki ng. Tr ansf er St at usSer vi ceLoca

org. cyclos.inpl.system Configurati onAccessor

org.cycl os.inpl.system Scri pt Hel per
org.cyclos.inpl.utils.persistence. EntityManager Handl er

org. cycl os. nodel . Val i dati onExcepti on

org. cycl os. model . banki ng. account s. Syst emAccount Oaner

org. cycl os. nodel . banki ng. transacti ons. Paynent VO

org. cycl os. nodel . banki ng. transacti ons. Per f or mPaynent DTO

org. cycl os. model . banki ng. transacti ons. Per f or nrSchedul edPaynent DTO
org. cycl os. nodel . banki ng. transacti ons. Schedul edPaymnent | nst al | nent DTO
org. cycl os. nodel . banki ng. transacti ons. Schedul edPaynent VO

org. cycl os. model . banki ng. transfers. Tr ansf er VO

org. cycl os. nodel . banki ng. t r ansf er st at us. ChangeTr ansf er St at usDTO
org. cycl os. nodel . banki ng. t ransf er st at us. Tr ansf er St at usVO

org. cycl os. model . banki ng. transfertypes. Transf er TypeVO

org.cycl os. server. utils. Dat eHel per

org.cyclos. utils.BigDeci mal Hel per

oan {

<String, Object> config

i t yManager Handl er entityManager Handl er

ment Servi ceLocal paynent Servi ce

edul edPaynent Ser vi ceLocal schedul edPaynent Servi ce
nsf er St at usServi ceLocal transferStatusService

i pt Hel per scri pt Hel per

figurationAccessor configuration

bl e nont hl yl nt er est Rat e

t emAccount Type systemAccount

r Account Type user Account

ment Tr ansf er Type | oanType

ment Tr ansf er Type repaynment Type
nsacti onCustonfi el d | oanFi el d
nsacti onCust onFi el d repaynent Fi el d

Cyclos 4 PRO Documentation

70

Tr ansf er St at usFl ow f | ow
Tr ansf er St at us open
Transfer Status cl osed

Loan(bi ndi ng) {
config = [:]
def paranms = binding. scri pt Paranmeters

[

'l oan. account': 'systemAccount',
‘loan.type': 'loanG ant',

'l oan. description': null
'repayment . account': 'userUnits’
‘repaynent.type': 'l oanRepaynent',
'repaynent. description': null
‘field.loan': 'l oan'
‘field.repaynent': 'repaynent’
"mont hlyl nterestRate' : null
‘status.flow : 'loan'
'status.open': 'open'
‘status.closed : 'closed
‘operation.amunt': 'anount'
‘operation.installments': 'installnments'

‘operation.firstDueDate': 'firstDueDate'

' message. i nval i dl nstal | nents’

' The nunber of installnents is invalid',

' message. i nval i dLoanAmount': ‘lInvalid | oan anmpunt'

' message. i nval i dFi r st DueDat €'

'The first due date cannot be | ower than tonorrow

' message. | oanGrant ed' :

' The | oan was successfully granted to the user'
].each { k, v ->

def value = params[k] ?: v

config[k] = val ue

}

entityManager Handl er = bi ndi ng. entit yManager Handl er
payment Servi ce = bi ndi ng. paynment Ser vi ce

schedul edPaynent Servi ce = bi ndi ng. schedul edPaynent Ser vi ce
transferStatusServi ce = bi ndi ng. transferStatusService
scri pt Hel per = bi ndi ng. scri pt Hel per

configuration = binding. sessi onDat a. configuration

systemAccount = entityManager Handl er. fi nd(
Syst emAccount Type, config.'loan.account')
i f (systemAccount.currency.transacti onNunber == nul
|| !'systemAccount. currency.transacti onNunber. used) {
throw new ||| egal St at eExcepti on(
"The currency ${systemAccount. currency. nane} doesn't
+ "have transaction nunber enabled")
}
| oanType = entityManager Handl er. fi nd(
Payment Tr ansf er Type, config.'loan.type', systemAccount)
user Account = entityManager Handl er. fi nd(
User Account Type, config.'repaynent.account')
repaynent Type = entityManager Handl er. fi nd(
Payment Tr ansf er Type, config.'repaynent.type', userAccount)
if (!repaynent Type. al | owsSchedul edPaynents) {
throw new ||| egal St at eExcepti on("The repaynment type " +
"${repaynent Type. nane} doesn't allows schedul ed paynment")

Cyclos 4 PRO Documentation

71

}
| oanFi el d = entityManager Handl er. fi nd(
TransactionCustonfield, config.'field.loan")
repaynment Fi el d = entityManager Handl er. fi nd(
Transacti onCustonFi el d, config.'field.repaynment')
if (!loanType. custonti el ds. contai ns(repaynmentField)) {
throw new I || egal St at eExcepti on("The | oan type ${l| oanType. nane} "
+ "doesn't contain the customfield ${repaynentFi el d. nanme}")
}
i f (!repaynent Type. cust onFi el ds. cont ai ns(l oanFi el d)) {
throw new ||| egal St at eExcepti on("The repaynment type "
+ "${repaynent Type. nane} doesn't contain the "
+ "custom field ${l oanFiel d. nane}")
}
flow = entityManager Handl er. fi nd(
TransferStatusFl ow, config.'status.flow)
open = entityManager Handl er. fi nd(
TransferStatus, config.'status.open', flow)
cl osed = entityManager Handl er. fi nd(
TransferStatus, config.'status.closed , flow)
mont hl yl nterest Rate = confi g. mont hl yl nt erest Rate?. toDouble() ?: O

def Bi gDeci mal cal cul at el nstal | ment Anount (Bi gDeci nal anount,
int installnents, Date grantDate, Date firstlnstallnentDate) {

/1 Cal cul ate the del ay
Dat e shoul dBeFirst Expiration = grantDate + 30
int delay = firstinstallnentDate - shoul dBeFirst Expiration
if (delay < 0) {
delay = 0

doubl e interest = nonthlylnterestRate / 100.0
doubl e nunmerator = ((1 + interest) **
(installments + delay / 30.0)) * interest
doubl e denominator = ((1 + interest) ** installnments) - 1
Bi gDeci mal result = anpunt * nunerator / denomi nator
return Bi gDeci mal Hel per.round(result, systemAccount.currency. precision)

def grant(User user, fornParaneters) {
Bi gDeci mal | oanAmount = fornParanet ers[config."' operation. amunt']
int installnments = fornParaneters[config.'operation.installnments']
Date firstDueDate = fornParaneters[config.' operation.firstDueDate']
Date m nDate = Dat eHel per. shi ft ToNext Day(
new Date(), configuration.timeZone)
if (installnents < 1 || installnents > repaynent Type. maxl nstal | nents)
throw new Val i dati onException(config.' message.invalidlnstallnents')
i f (1oanAmount < 1)
throw new Val i dati onExcepti on(config.' message. i nval i dLoanAmount')
if (firstDueDate < mi nDate)
throw new Val i dati onException(config.' message.invali dFirstDueDate')

[/l Grant the |oan

Paynent VO | oanVO = paynent Servi ce. per f or m(new Per f or nPayment DTQ([
from SystemAccount Oaner.instance(),
to: user,

Cyclos 4 PRO Documentation 72

type: new Transfer TypeVQ | oanType. i d),
armount : | oanAnmount ,
description: config.'loan.description'
1)
Payment | oan = entityManagerHandl er. find(Paynent, |oanVO. id)

/] Ensure the initial status is correct
Transfer |oanTransfer = | oan.transfer
if (loanTransfer == null) {
throw new ||| egal St at eExcepti on(
"The | oan was not processed (probably pending authorization)")

}
TransferStatus currentStatus = | oanTransfer. get Status(fl ow)
if (currentStatus != open) {
throw new |11 egal St at eExcepti on(
"The initial status for flow ${flow name} in ${l oanType. nane} "
+ "is not the expected one: ${open.nane},
+ "but ${currentStatus} instead")
}

/1 Performthe repaynent schedul ed paynent

Per f or nSchedul edPaynent DTO dt o = new Per f or nSchedul edPaynment DTQ()
def bean = scriptHel per.wap(dto, [loanField])
bean. from = user

bean.to = SystemAccount Oaner. i nstance()

bean.type = repaynent Type

bean. anbunt = | oanAnpunt

bean. descri ption = config.'repaynent.description'
bean.instal | nentsCount = installnents
bean.firstlnstall nentDate = firstDueDate

bean[| oanFi el d. i nternal Nane] = | oan

/1 Interest
if (nonthlylnterestRate > 0.00001) {
Bi gDeci mal install nent Anount = cal cul at el nst al | nent Anount (
| oanAnount, installnments, new Date(), firstDueDate)

dto.installments = []
Dat e dueDate = firstDueDate
for (int i =0; i <installnents; i++) {
def installment = new Schedul edPaynent | nstal | ment DTQ()
def instBean = scriptHel per.wap(installnment)
i nst Bean. dueDat e = dueDat e
i nst Bean. anount = i nstal | ment Anount
dto.install ments << install nment
dueDate += 30
}

bean. ambunt = install nent Amount * install nments

Schedul edPaynent VO r epaynment VO = schedul edPaymnent Ser vi ce. per f or n(dt 0)
Schedul edPaynent repaynment = entityManager Handl er. fi nd(
Schedul edPaynent, repaynent VO. i d)

/1 Update the loan with the repaynent |ink
bean = scri pt Hel per.wap(loan, [repaymentField])
bean[repaynment Fi el d. i nt er nal Nane] = repaynent

Cyclos 4 PRO Documentation

def cl ose(Schedul edPaynment schedul edPaynent) {
Payment | oan = scri pt Hel per. w ap(schedul edPaynent)
[l oanFi el d. i nt er nal Nane]

Transfer |oanTransfer = | oan.transfer
TransferStatus status = | oanTransfer. get Status(fl ow)
if (status != closed) {

/1 The |l oan was not closed: close it

transf er St at usServi ce. changeSt at us(new ChangeTr ansf er St at usDTQ([
transfer: new TransferVQ| oanTransfer.id),
newSt at us: new Transfer St at usVQ(cl osed. i d)

1))

}

Loan | oan = new Loan(bi ndi ng)

Create the custom operation script

Create a new script for the custom operation, with the following characteristics:

Name: Grant loan

Type: Custom operation
Included libraries: Loan
Parameters: leave empty

Script code executed when the custom operation is executed:

| oan. grant (user, fornParaneters)
return | oan. config.' nessage. | oanG ant ed'

Create the extension point script

Create a new script for the transaction extension point, with the following characteristics:

Name: Loan closing
Type: Extension point
Included libraries: Loan
Parameters: leave empty

Script code executed when the data is saved:

i nport org.cyclos. nodel . Val i dati onExcepti on
i nport org.cycl os. nodel . banki ng. t ransacti ons. Schedul edPaynent St at us

if (transaction.status == Schedul edPaynent St at us. CANCELED) {
/1 Shoul d never cancel a |oan schedul ed paynment
throw new Val i dati onException("Cannot cancel a |oan")

} else if (transaction.status == Schedul edPaynent St at us. CLOSED) {
// Cose the |oan

Cyclos 4 PRO Documentation

74

| oan. cl ose(transaction)

Create the custom operation

Under System > Tools > Custom operations, create a new one, with the following
characteristics:

« Name: Grant loan (can be changed, is the label displayed to users)
« Enabled: yes

+ Scope: User

« Script: Grant loan

* Script parameters: leave empty

* Result type: Notification

* Has file upload: no

* Main menu: Banking

+ User management section: Banking

+ Information text: you can add here some text explaining the process - it will be displayed
in the operation page

+ Confirmation text: add here some text which will be displayed in a confirmation dialog
before granting the loan

After saving, create the following fields:
+ Amount
+ Internal name: amount
+ Data type: Decimal
+ Required: yes
* Installment count
* Internal name: installments
+ Data type: Integer
+ Required: yes
+ First due date
* Internal name: firstDueDate
+ Data type: Date

* Required: yes

Cyclos 4 PRO Documentation 75

Create the extension point

Under System > Tools > Extension points, create a new of type Transaction, with the following
characteristics:

* Name: Close loan

+ Type: Transaction

+ Enabled: yes

+ Transfer types: Units account - Loan repayment (choose the loan repayment type)

+ Events: Change status

* Script: Loan closing

* Script parameters: leave empty
Grant the administrator permissions
Under System > User configuration > Groups, select the Network administrators group. Then,

in the Permissions tab:

* Under User management > Run custom operations over users, check the Grant loan
operation and save

« Under Accounts > Transfer status flows, make Loan visible, but not editable.
Enable the custom operation for users which will be able to receive loans

In System > User configuration > Products (permissions), select the member product for users
which will be able to receive loans. In the Custom operations field, make the Grant loan
operation enabled. Leave the run checkbox unchecked (or users would be able to grant loans
to themselves!).

You can permit users to to repay loan installments anticipated in Units. For this you have to
check in the member product 'process installment' and the user need to have permissions
to make a payment of the transaction type used for the loan repayments.

Cyclos 4 PRO Documentation 76

4. External login

Starting with Cyclos 4.2, using web services together with the right configuration, it is possible
to add a Cyclos login form to an external website. The user types in his/hers Cyclos username
and password in that form and, after a successful login, is redirected to Cyclos, where the
session will be already valid, and the user can perform the operations as usual. After the user
clicks logout, or his/hers session expires, the user is redirected back to the external website.

4.1. The following aspects should be considered:

* Itis needed to have an administrator whose group is granted the permission "Login users
via web services". This is needed because the website will relay logins from users their
clients to Cyclos.

+ The website needs to have that administrator's username and password configured in
order to make the web services call. Itis planned for Cyclos 4.3 the creation of access clients,
which will allow using a separated key instead of the username / password.

+ It is a good practice to create a separated configuration for that administrator. That
configuration should have an IP address whitelist for the web services channel. Doing that,
no other server, even if the adminitrator username / password is known by someone else,
will be able to perform such operations.

+ The Cyclos configuration for users needs the following settings:

* Redirect login to URL: This is the URL of the external website which contains the login
form. This is used to redirect the user when his session expires and a new login is needed,
or when the user navigates directly to some URL in Cyclos (as guest) and then clicks
"Login";

+ URL to redirect after logout: This is the URL where the user will be redirected after

clicking "Logout" in Cyclos. It might be the same URL as the one for redirect login, but
not necessarily.

* Finally, the web service code needs to be created, and deployed to the website. Here is an
example, which receives the username and password parameters, calls the web service to
create a session for the user (passing his remote address), redirecting the user to Cyclos.

<?php

/1 Configure Cyclos and obtain an instance of Logi nService
requi re_once 'configureCycl os. php';
$l ogi nServi ce = new Cycl os\ Logi nServi ce();

// Set the paraneters

$paranms = new stdcl ass();

$par ans- >user = array("principal" => $_POST[' usernane']);
$par ans- >password = $_POST[' password'] ;

$par ans- >r enot eAddress = $_SERVER[' REMOTE_ADDR | ;

Cyclos 4 PRO Documentation 77

/] Performthe |ogin
try {
$result = $l ogi nServi ce->l ogi nUser ($par ans) ;
} catch (Cycl os\ Connecti onException $e) {
echo("Cycl os server couldn't be contacted");
die();
} catch (Cycl os\ Servi ceException $e) {
switch ($e->errorCode) {
case ' VALI DATI ON :
echo("M ssing usernanme / password");
br eak;
case 'LOA N :
echo("Invalid username / password");
br eak;
case ' REMOTE_ADDRESS BLOCKED :
echo("Your access is blocked by exceeding invalid login attenpts");
br eak;
def aul t:
echo("Error while perform ng |ogin: {$e->errorCode}");
br eak;
}
die();
}

/'l Redirect the user to Cyclos with the returned session token
header (" Locati on

Cycl os\ Confi guration::getRootUrl ()

" ?sessi onToken="

$resul t - >sessi onToken) ;

4.2. Important notes

* In case there is a wrong configuration for the "Redirect login to URL" setting, it won't be
possible anymore to login to Cyclos. In that case, if the configuration problem is within
a network, it is possible to use a global administrator to login in global mode (using the
<server-root>/global/login URL), then switch to the network and fix the configuration. If
the configuration error is in global mode, you can use a special URL to prevent redirect:
<server-root>/global/loginlnoRedirect=true . However, this flag only works in global mode,
to prevent end-users from using it to bypass the redirect.

*+ Users should never have username / password requested in a plain HTTP connection.
Always use a secure (HTTPS) connection. Also, just having an iframe with the form on a
secure page, where the iframe itself is displayed in a plain page would encrypt the traffic,
but browsers won't show the page as secure. Users won't notice that page as secure, could
refuse to provide credentials in such situation.

Cyclos 4 PRO Documentation 78

4.3. Creating an alternate frontend to Cyclos

It is possible to not only place a login form in an external website, but to create an entire
fronted for users to interact with Cyclos. At first glimpse, this can be great, but consider the
following:

* Itis avery big effort to create a frontend, as there are several Cyclos services involved, and it
might not be clear without a deep analysis on the APl which service / method / parameters
should be used on each case.

« The API will change. Even if we try not to break compatibility, it is possible that changes
between 4.x to 4.y will contain (sometimes incompatible) changes to the API.

* You will always have a limited subset of the functionality Cyclos offers. You may think that
only the very basic features are needed, there will inevitably be the need for more features,
and the custom frontend will need to grow. By using Cyclos standard web, all this comes
automatically.

Neverthless, some (large) organizations might find it is better to provide their users with a
single, integrated interface. In that case the application server of that interface will be the
only one interacting with Cyclos (i.e, users won't directly browse the Cyclos interface). The
application will relay web service calls to Cyclos in behalf of users.

To accomplish that, it is needed to first login users in the same way as explained in
the previous section. However, after the login is complete, instead of redirecting users to
Cyclos, the application needs to store the session token, and probably the user id (as some
operations requires passing the logged user id) - both data received after logging in - in
a session (in the interface application server). Then, the next web service requests should
be sent using that session token and client remote address, instead of the administrator
credentials. The way of passing that data depends on the web service access type being used:

+ Javaclients: Create another HttpServiceFactory, using a stateful HttpServicelnvocationData.
Here is an example:

inport java.util.List;

i nport org.cycl os. nbdel . access. LoggedCQut Excepti on;

i mport org.cycl os. nodel . access. channel s. Bui | t | nChannel ;

i mport org.cycl os. nodel . banki ng. account s. Account Summar yVGQ,
i nport org.cycl os. nbdel . users. users. User Locat or VG,

i nport org.cycl os. nbdel . users. users. User Logi nDTG,

i mport org.cycl os. nodel . users. users. User Logi nResul t;

i nport org.cycl os. nodel . users. users. User VG,

i nport org.cyclos.server.utils.HttpServiceFactory;

i mport org.cyclos.server.utils.HttpServicel nvocati onDat a;
i nport org.cycl os. services. access. Logi nServi ce;

i nport org.cycl os. servi ces. banki ng. Account Ser vi ce;

| **

* Cycl os web service exanple: logs-in an user via web services.

Cyclos 4 PRO Documentation 79

http://documentation.cyclos.org/4.3/ws-api-docs/
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/server/utils/HttpServiceFactory.html
http://documentation.cyclos.org/4.3/ws-api-docs/org/cyclos/server/utils/HttpServiceInvocationData.html

* This is useful when creating an alternative front-end for Cyclos.
*/
public class Logi nUser {

public static void main(String[] args) throws Exception {
/1 This LoginService has the adm nistrator credentials
Logi nServi ce Logi nServi ce = Cycl os. get Servi ceFactory(). get Proxy(
Logi nServi ce. cl ass);

String renoteAddress = "192.168. 1. 200";

/1 Set the |ogin paraneters

User Logi nDTO parans = new User Logi nDTQ() ;

User Locat or VO | ocat or = new User Locat or VO(User Locat or VO. PRI NCI PAL,
"cl");

par ans. set User (| ocator);

par ans. set Passwor d("1234");

par ans. set Renpt eAddr ess(r enot eAddr ess) ;

par ans. set Channel (Bui | t | nChannel . MAI N. get | nt er nal Nane()) ;

/1 Login the user
User Logi nResult result = Logi nService. | ogi nUser (parans);
User VO user = result.getUser();
String sessionToken = result.get SessionToken();
System out . println("Logged-in" + user.getNane()
+ " with session token = " + sessionToken);

/! Do sonething as user. As the session token is only valid per ip
// address, we need to pass-in the client ip address again
Ht t pServi cel nvocati onDat a sessi onl nvocati onData = Htt pServi cel nvocati onDat a
.stat ef ul (sessi onToken, renpteAddress);
/'l The services acquired by the following factory will carry on the
/] user session data
Ht t pServi ceFactory userFactory = Cycl os
. get Servi ceFact or y(sessi onl nvocat i onDat a) ;
Account Servi ce account Servi ce = userFactory
. get Proxy(Account Servi ce. cl ass);
Li st <Account Summar yVO> accounts = account Servi ce. get Account sSummar y(
user, null);
for (Account SummaryVO account : accounts) {
System out. println(account.getName() + ", bal ance:
+ account . get Status(). get Bal ance());

/1 Logout. There are 2 possibilities:

// - Logout as admi nistrator:
Logi nServi ce. | ogout User (sessi onToken) ;

/1 - OR |logout as own user:
try {

user Fact ory. get Proxy(Logi nServi ce. cl ass). | ogout ();
} catch (LoggedQut Exception e) {

/1 already | ogged out

Cyclos 4 PRO Documentation

80

« PHP clients: In the configuration file, instead of calling Cyclos
\Configuration::setAuthentication($username, $password), call the following: Cyclos
\Configuration::setSessionToken($sessionToken) and Cyclos
\Configuration::setForwardRemoteAddress(true), which will automatically send the
$_SERVER['REMOTE_ADDR'] value on requests.

+ WEB-RPC: If sending JSON requests directly, instead of passing the Authentication header
with the username / password, pass the following headers: Session-Token and Remote-
Address.

Cyclos 4 PRO Documentation 81

	
	Table of Contents
	1. Installation & maintenance
	1.1. Installation steps
	System requirements
	Install Java
	Install PostgreSQL (database)
	Install Tomcat (web server)
	Install Cyclos
	Startup Cyclos
	Problem solving

	1.2. Adjustments (optional)
	Enable SSL/HTTPS
	Adjust Tomcat/Java memory
	Clustering

	1.3. Maintenance
	Backup
	Restore

	2. Web services
	2.1. Introduction
	2.2. Java clients
	Dependencies
	Using services from a 3rd party Java application
	Examples
	Configure Cyclos
	Search users
	Search advertisements
	Register user
	Edit user profile
	Login user
	Get account information
	Perform payment

	2.3. PHP clients
	Dependencies
	Using services from a 3rd party PHP application
	Examples
	Configuration
	Search users
	Search advertisements
	Login user
	Perform payment from system to user
	Perform payment from user to user

	2.4. Other clients
	Examples

	2.5. Available services and API Changes

	3. Scripting
	3.1. Scripting engine
	Variables bound to all scripts

	3.2. Script types
	Library
	Custom field validation
	Examples
	E-mail
	IBAN account number
	CPF Validation

	Dynamic custom field handling
	Examples
	User profile field – values depending on the user group

	Transfer fee calculation
	Examples
	Charging a fee according to an user profile field

	Account fee calculation
	Examples
	Charge a different amount according to the user rank

	Password handling
	Examples
	Matching passwords to the script parameters

	Extension points
	User extension point
	Address extension point
	Phone extension point
	User record extension point
	Advertisement extension point
	Transaction extension point
	Transaction authorization extension point
	Transfer extension point
	Examples
	Granting extra credit (on demand) before payments
	Send an e-mail on every payment

	Custom operations
	Examples
	Contact us page
	Returning a string (notification / rich / plain text) and external redirect
	Returning a file
	Returning a result list

	Custom scheduled tasks
	Examples
	Periodically update a static HTML page

	Custom SMS operations
	Examples
	Pay taxi with an SMS message

	Outbound SMS handling
	Examples
	Sending SMS requests as XML

	Inbound SMS handling
	Examples
	Receiving a SMS with a custom format

	Transfer status handling
	Examples
	Restricting a specific status for administrators

	3.3. Solutions using scripts
	PayPal Integration
	Check the root URL
	Enable transaction number in currency
	Create a system record type to store the client id and secret
	Create an user record type to store each payment information
	Create the library script
	Create the custom operation script
	Create the custom operation
	Configure the system account from which payments will be performed to users
	Configure the payment type which will be used on payments
	Grant the administrator permissions
	Setup the PayPal credentials
	Grant the user permissions / enable the operation
	Configuring the script parameters
	Other considerations

	Loan module
	Enable transaction number in currency
	Create the transfer status flow
	Create the payment custom fields
	Configure the system account from which payments will be performed to users
	Create the payment type which will be used to grant the loan
	Configure the user account which will receive loans
	Create the payment type which will be used to repay the loan
	Create the library script
	Create the custom operation script
	Create the extension point script
	Create the custom operation
	Create the extension point
	Grant the administrator permissions
	Enable the custom operation for users which will be able to receive loans

	4. External login
	4.1. The following aspects should be considered:
	4.2. Important notes
	4.3. Creating an alternate frontend to Cyclos

