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This document presents information on CloudRank-D --- a benchmark suite for private 
cloud, including a brief introduction and the usage of it. The information and specifications 
contained herein are for researchers who are interested in private cloud benchmarking. 
 
Publishing information: 
                     Release         1.0 
                     Date         6/10/2013 
 
Contact information: 
                     Emails:      jiazhen@ncic.ac.cn 
                                 quanjing@ict.ac.cn 
                                 wl@ict.ac.cn 
                     Website:     http://prof.ict.ac.cn/CloudRank/ 
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1. Background 

As information is growing explosively, more and more organizations are deploying private 
cloud system to process massive data. Private cloud infrastructure is provisioned for exclusive 
use by a single organization comprising multiple consumers (e.g., business units). It may be 
owned, managed, and operated by the organization, a third party, or some combination of 
them, and it may exist on or off premises1. However, there are few suitable benchmark 
suites for evaluating private cloud. For these reasons, we propose a new benchmark suite, 
CloudRank-D, to benchmark and rank private cloud computing system. We consider 
representative applications, manifold data characteristics, and dynamic behaviors of both 
applications and system software platforms into the design of CloudRank-D. 

2. Introduction of CloudRank-D 

In this part, we offer some basic information about CloudRank-D, particularly the workloads 
in it. For users who care about the reason why we choose these applications as workloads, 
please refer to the paper [2]. 

2.1. CloudRank -D 

CloudRank-D focuses on evaluating private cloud system that is shared for running big 
data applications. The first release consists of 13 applications that are selected based on their 
popularity in today's private cloud system. These workloads are all from real application 
scenarios which can help users get comparatively authentic system performance. The size of 
datasets for workloads are scalable which can be adapted for different cluster size. Our 
benchmark suite now runs on top of Hadoop3 framework, later will be extended to others. 
So before using CloudRank-D, users need to install some basic softwares. More details about 
installation in Chapter 3. 

2.2. Licenses of CloudRank-D 

CloudRank-D is available for researchers interested in pursuing research in the field of 
private cloud and data centers. Software components of CloudRank-D are all available as 
open-source softwares and governed by their own licensing terms. Researchers intending to 
use CloudRank-D are required to fully understand and abide by the licensing terms of the 
various components. For now, CloudRank-D is open-source under the Apache License, 
Version 2.0. Please use all files in compliance with the License. 
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2.3. Workloads of CloudRank-D 

2.3.1. Workloads in CloudRank-D 

The workloads in CloudRank-D are some representative algorithms from seven 
application scenarios which are frequently occurred in private cloud system showed in Table 
1. We will elaborate these workloads in Section 2.3.2. 

 
 Num Applications Source 

Basic Operations 
1 
2 
3 

Sort 
Word count 
Grep 

Hadoop 

Classification 
4 
5 

Naive bayes 
Support vector machine 

Mahout and 
Scientist search4 
(another one of 

our work) 
Clustering 6 K-means 

Mahout Recommendation 7 Item based collaborative filtering 
Association Rule Mining 8 Frequent pattern growth 

Sequence Learning 9 Hidden markov model Scientist search 

Data Warehouse  
Operations 

10 
11 
12 
13 

Grep select 
Rankings select 
Uservisits aggregation 
Uservisits-rankings join 

Hive-bench 

Table 1  Workloads in CloudRank-D 

2.3.2. Introduction of workloads 

2.3.2.1. Basic operation 

Sort 
The sort uses Hadoop Map/Reduce framework to sort the input data and write them 

into the output directory. The inputs and outputs must be sequence files (a special data 
format used in Hadoop) where the keys and values are BytesWritable (a kind of class in 
Hadoop). Users can use some tools to change TXT files into sequence files which can break 
this limitation. The Mapper and Reducer are predefined IdentityMapper and IdentityReducer 
(default map/reduce function). Both of them just pass their inputs to the outputs with simple 
process. There are some sorting process offered by Hadoop framework itself, which can sort 
these data to get correct results. 

 
WordCount 

WordCount reads text files and counts the number of occurrence of each word. The 
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input is text files and the output is also text files that each line of the file contains a word and 
its occurrence frequency, separated by a tab. Each Mapper takes a line as input and breaks it 
into words, it then emits a key/value pair. Each Reducer sums the counts for each word and 
emits a single key/value with the word and sum. As an optimization, the Reducer is also used 
as a Combiner (similar to Reducer) on the map outputs, which reduces the amount of data 
sent across the network by combining each word into a single record. 
 
Grep 

Grep extracts matching strings from text files and counts its frequency of occurrence. 
The program runs two Map/Reduce jobs in sequence. The first job counts how many times a 
matching string occurred and the second job sorts matching strings by their frequency and 
stores the output in a single output file. Each Mapper of the first job takes a line as input and 
matches the user-provided regular expression against the line. It extracts all matching strings 
and emits (matching string, 1) pairs. Each Reducer sums the frequencies of each matching 
string. The output is sequence files containing the matching string and frequency. The reduce 
phase is optimized by running a Combiner that sums the frequency of strings from local map 
output. 

2.3.2.2. Classifier 

Naive Bayes 
Naive Bayes classifier is a classical probabilistic classifier based on applying Bayes' 

theorem with strong (naive) independence assumptions. Here we use the input data set to 
drive the Mahout Naive Bayes classifier. 

Input dataset is 20 Newsgroups showed later in Section 2.4. Mahout Bayes Classifier will 
split dataset up into chunks. These chunks are then further split by country. From these splits, 
a classifier is trained to predict what country an unseen article should be categorized into. 

 
SVM--Support Vector Machines 

In machine learning, support vector machines (SVMs, also support vector networks) are 
supervised learning models with associated learning algorithms that analyze data and 
recognize patterns, used for classification and regression analysis. The basic SVM takes a set 
of input data and predicts, for each given input, which of two possible classes forms the 
output, making it a non-probabilistic binary linear classifier.5 

2.3.2.3. Cluster 

K-means 
K-means clustering is a method of cluster analysis which aims to partition n observations 

into k clusters in which each observation belongs to the cluster with the nearest mean which 
then put a partitioning of the data space into Voronoi6 cells. The problem is computational 
difficulty (NP-hard), however, there are efficient heuristic algorithms that are commonly 
employed and converge fast to a local optimum. This process is iterative, additionally, 
k-means clustering tends to find clusters of comparable spatial extent.7 

http://en.wikipedia.org/wiki/Probabilistic_logic
http://en.wikipedia.org/wiki/Binary_classifier
http://en.wikipedia.org/wiki/Linear_classifier
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2.3.2.4. Recommendation 

Item-based Collaboration Filtering 
Item-based collaboration filtering algorithm looks into the set of items. The target user 

has been rated and computed how similar they are to the target item i and then selects k 
most similar items {i1,i2,…,ik}. At the same time, their corresponding similarities {si1,si2,…,sik} 
are also computed. Once the most similar items are found, the prediction is then computed 
by taking a weighted average of the target user’s ratings on these similar items. We describe 
these two aspects, namely, the similarity computation and the prediction generation in 
details here. 

 

Figure 1  An simple example for IBCF algorithm 

Showed in Figure 1, if the user A likes items A and C, while the user B likes items A, B 
and C, we can infer that items A and C is more similar items from the history of these users 
preference. That is, if the user likes item A, he may also like item C and vice versa. Based on 
the data, the user C is to like the item A, so the recommendation system will recommend 
item C to the user C. 

2.3.2.5. Association rule mining 

Frequent Pattern-Growth 
The frequent pattern means patterns which appear frequently in the sample data sets, 

such as item-sets, subsequences and substructures. Compared to the conventional frequent 
pattern mining method Apriori, FP-growth extracts the concise information for frequent 
pattern mining and stores it into a compact structure, which is called FP-tree. With the help 
of FP-tree, FP-growth greatly reduces the price of Apriori. 
The steps of FP-growth are as follows: 

Firstly, database partition. Database is divided into consecutive partitions, and each 
partition is located on different machines. Each of these partitions is called shard. 

Secondly, computing the support count of each item. It can use a map/reduce job to 
finish it. And the computing process is similar to the application of WordCount in Hadoop. 

Thirdly, grouping. It divides entries in the F_list (F_list = {item1:count1, item2:count2, 
item3:count3…} ^ (count1> count2 > count3>…)) into Q groups, which constitute a G_list. 
Every group in the G_list is assigned a G_id, and each G_list contains a set of item collection. 

Similarity 

Item A 

Item B 

Item C 

User A 

User B 

User C 
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Fourthly, parallel FP-growth. It uses the second map/reduce job to complete it. The 
mapper completes the main function of database partition. It uses shard, mentioned in the 
first step, to handle each transaction in the shard database partition. The transaction is 
divided into items, and each item according to G_list is mapped to the right group. Through 
the mapper, items belonging to the same group are converged to a machine. Based on the 
complete data set from mapper, the reducer counts the result by FP-growth algorithm. 

Last, aggregation. We get the final results from the aggregation of results on each 
machine. 

2.3.2.6. Sequence learning 

Hidden Markov Model 
A HMM is a statistical Markov model in which the system being modeled is assumed to 

be a Markov process with unobserved (hidden) states. In a Hidden Markov model, the state 
is not directly visible, but the output, dependent on the state, is visible. Each state has a 
probability distribution over the possible output tokens. Therefore the sequence of tokens 
generated by an HMM gives some information about the sequence of states. Note that the 
adjective 'hidden' refers to the state sequence through which the model passes, not to the 
parameters of the model, even if the model parameters are known exactly, the model is still 
'hidden'. A Hidden Markov Model can be considered a generalization of a mixture model 
where the hidden variables (or latent variables), which control the mixture component to be 
selected for each observation, are related through a Markov process rather than 
independent of each other.8 

2.3.2.7. Data Warehouse Operations 

As we know, data are usually stored in data warehouse, so data warehouse operations 
are significant workloads in cloud system, so we adopt some operations from Hive-bench. 
Hive is a data warehouse tools based on Hadoop, and Hive-bench is a benchmark suite for it. 

 
Grep Select 

Grep Select is a Hive operation in the Hive-bench. There are two columns (key, field) in 
Table Grep, and the main operation is to select the matching strings which is similar to the 
Grep in basic operations. The difference is that operation here is done through the database. 

 
Ranking Select 

Table Ranking contains large amount of ranked URLs data, and have three columns 
(pageRank, pageURL, avg Duration). Ranking Select is used to retrieve some URLs which fulfill 
the requirements. This application aims to calculate the time of processing the large amount 
data. 
 
Uservisits Aggregation 

In this operation, the data is the records of user visits. The output is the processing 
result of the data. The operation processes the table data, calculates the total information 
grouped by some requirements. 
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Uservisits-rankings Join 
This operation is mainly about join operation. In Hive, only equality joins, outer joins, 

and left semi joins are supported, because other join operations are not fit for map/reduce 
framework. Hive converts joins over multiple tables into a single Map/Reduce job if for every 
table the same column is used in the join clauses. 

2.4. Original dataset for workloads 

In this part, we will introduce the datasets which are used to drive algorithms. All of these 
datasets have their own true semantics. Table 2 shows a description of dataset semantics. 
 

Application Data semantics 
Sort 

Automatically generated Wordcount 
Grep 

Naive bayes 20news and wikipedia 
Support vector machine Scientist search 

K-means Sougou corpus 
Item based collaborative filtering Ratings on movies 

Frequent pattern growth 

Retail market basket data 
Click-stream data of a on-line news portal 

Traffic accident data 
Collection of web html document 

Hidden morkov model Scientist search 
Grep select 

Automatically generated table 
Ranking select 

Uservisits aggregation 
Uservisits-rankings join 

Table 2  Semantics of Datasets. 

Basic operation (Sort, WordCount, Grep) 
The input data set for all these three workloads can be generated by using 

RandomWriter and RandomTextWriter, which are provided by Hadoop itself. RandomWriter 
writes 10 giga (by default) of random data to HDFS using Map/Reduce. Each map takes a 
single file as input and writes random BytesWritable keys and values to the HDFS sequence 
file. The maps do not emit any output and the reduce phase is not used. The specifics of the 
generated data are configurable.9 The configuration variables are: 

 

Name Default Value Description 

test.randomwriter.maps_per_host 10 Number of maps/host 

test.randomwrite.bytes_per_map 1073741824 Number of bytes written/map 
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test.randomwrite.min_key 10 minimum size of the  key in bytes 

test.randomwrite.max_key 1000 maximum size of the key in bytes 

test.randomwrite.min_value 0 minimum size of the value 

test.randomwrite.max_value 20000 maximum size of the value 

Table 3  Common configuration variables in Hadoop 

Classifier (Naive Bayes and SVM) 
Naive Bayes: 

Input data set: 20 Newsgroups 
The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup 

documents, partitioned (nearly) evenly across 20 different newsgroups. The 20 newsgroups 
collection has become a popular dataset for experiments in text applications of machine 
learning techniques, such as text classification and text clustering. We will use Mahout Bayes 
Classifier to create a model that would classify a new document into one of the 20 
newsgroup.10 This dataset is called wikipediainput in the package we provide. 
SVM: 

Dataset for SVM comes from Scientist Search. Scientist Search is a search engine, which 
collects almost 227683 researchers’ personal information and 20005225 research webs to 
provide searching service on academic. 
 
Cluster (K-means) 

We take sogou corpus as input of k-means algorithm. The data in sogou corpus comes 
from a Chinese news website called Sohu, which collects almost 100 thousand documents 
processed by hand finish.11 
 
Recommendation (Item based collaborative filtering) 

These datasets are from MovieLens web site12. MovieLens predicts rating that users give 
to a movie based on existing data. When a new user logs in MovieLens, he needs to rate for 
15 movies from 1 point to 5 point, with a 0.5 point interval, and these datasets will be used 
as base data to predict user’s preference. 
 
Association rule mining (Frequent pattern growth) 

These data for association rule mining are real statistic information, including retail 
market basket data, click-stream data of an on-line news portal, traffic accident data and 
collection of web html document.13 
Sequence learning (Hidden morkov model) 

The dataset for this application is also from Scientist Search, which is same as the 
dataset for SVM mentioned above. 
 
Data warehouse operation (Hive-bench) 

There are three tables, including Table Grep, Table Ranking and Table Uservisits. Table 
Grep contains two columns (key, field), Table Ranking is a sorted table of html pages with 
three columns (pageRank, pageURL, kavgDuration), and Table Uservisits which records users 
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browsing history with nine columns (sourceIP, destURL, visitDate, adRevenue, userAgent, 
countryCode, languageCode, searchWord, duration). These datasets are generated by data 
generation tools, users can find them in our package under cloudrank-d/datagen/. The 
introductions of these tools are given in 4.2.7. 

2.5. Methodology of CloudRank-D 

2.5.1. Skeleton 

There is a system platform, users want to benchmark it, and they always running some 
workloads on it, what’s more, they also hope these workloads can be come near the real 
world workloads to make the results more receivable. Users also need some intuitional 
directly observed metrics to estimate whether the system platform works well or not. 
Through this statistics, they can feedback it to workloads, to get the peak system 
performance then to achieve their goals. This procedure is showed below. 

 
Figure 2  CloudRank-D Methodology 

The real workloads account for much in system benchmarking, but for some reasons, 
users can't get real workload as usual, then we need to simulate the workload more close to 
real scenarios. Our benchmark is flexible to combine workloads to fit various scenarios, and 
easy to extent, here, we also provide methods to let users adjust their workloads 
approaching the ones in real world. Different from most existing benchmarks, workloads we 
provide are independent separately, and for most of workloads, their input data size are 
scalable, which allow users to customize their own workload combinations as wish. For 
example, users can run application HMM with 2G or 4G, SVM with 4G and so on. Next, we 
will introduce how to get more real workloads, relate contents also in our slide: 

CloudRank-D: A Benchmark Suite for Private Cloud System. 

Link: http://prof.ict.ac.cn/CloudRank/download.html 

http://prof.ict.ac.cn/CloudRank/
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2.5.2. Configurable Workloads with Tunable Usage Patterns 

2.5.2.1. Scalable applications and input data sets 

 

 
Obtain a suitable workloads combination 

Firstly, users should estimate the total number of jobs they plan to run according to 
basic information of cluster. We offer a simple formula here. 

Formula 1: 

Total job number = Number of machines in cluster * Number of cores in each machine * 
Hardware threads number of each core 

Users can use this formula to calculate a primitive total job number. Next, for simulating 
more real workloads, we advise that users have a general idea about their jobs in advance. 
Users may realize that there are more classification jobs in cluster, then they can raise the 
proportion of classification workloads in total. If users don’t have such thoughts about their 
own workloads, here, we give a reference ratio according the PowerBy page about Hadoop. 
These statistic data comes from 2009. 

 

 

Figure 3  The usage of percentages of applications in private clouds reported in14 

From this table, we can get a rough application ratio, now, we use this statistics to 
construct the workloads ratio. We make workloads in CloudRank-D to accordance with the 
statistic data by abstract main operations in them. For example, in Figure 3, reporting takes 
17%, and in our benchmark, Hive-bench operations meet basic operations in reporting, so 
we firstly set the ratio of Hive-bench jobs is 17%. Table below is listing the correspondence 
between them. This is just a basic configuration, users can adjust it if need. 
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Text indexing 16% Basic operations 
Log processing 15% Basic operations 
Web crawling 15% Classification & Association Rule 

Mining & Cluster & Recommendation 
& Sequence learning 

Data mining 7% 
Machine learning 11% 
Reporting 17% Hive-bench 
Data storage 17% Hive-bench 

Table 4  Recommended ratio settings for workloads combination 

For there are no image processing-like operations in our benchmark, users can add 2% 
to other applications. 

Now, if users want to run 200 jobs, then the number of each applications may like this. 

 

Figure 4  An example of number of each applications 

Configure the size of different applications 
We introduce how to mix the workload from category dimension just now, here, we 

change to take job size into account. So, how to set proportion of different size? We extent 
statistic data from Taobao15 report to job size. In Taobao report, the Map Number and its 
percentage statistic is showed in Table 5. For each Map sets 128M, we can infer the jobs size 
reversely, like results in Table 5. 

 

 

Table 5  Job Size Statistics 
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2.5.2.2. Jobs submission patterns 

 

 
Submission interval 

From the Facebook report16, they sampled job inter-arrival times at random from the 
Facebook trace, and this distribution of inter-arrival times was roughly exponential with a 
mean of 14 seconds. Users can schedule their jobs according to this conclusion. Please notice 
that, this is just Facebook's case, not fit for every environments, users can treat this as a 
configuration parameters during the system testing. 
 
Submission order 

After getting the workloads, users also need to decide how to send them to the system. 
There are some basic solutions, and users can send their workloads according to some other 
methods. The most simply, users can sent workloads randomly, this submission order ignore 
the relationship between jobs, like certain kind of workloads are sent intensively. Beside, 
Users can submit several job from one kind of workloads firstly, then sent another. Because 
different applications will use different components in cluster, like CPU bound applications 
will occupy the CPU resource in cluster, and I/O bound applications will request for I/O 
bandwidth, reasonable delivered sequence can make a important effect on cluster 
performance. 

2.5.3. Metric 

We want to find a metrics which is directly perceived, and easy to compare and get. The 
FLOPS (Floating-point operation per second) is used usually when to evaluate HPC (High 
Performance Computing) cluster, but it's not fit for private cloud, because private cloud 
focuses on the data processing, not the CPU capacity, what’s more, there are fewer 
floating-point operations in private cloud than HPC cluster. So we need a metrics which can 
reflect some other features, like disk I/O, or memory access. Now, we choose two intuitively 
metrics: 

Data processed per second / Data processed per joule 

Users just need to record the total data input size, the total run time, and total energy 
consumption (which need a power meter). The calculate formulas are: 

            DPS=Total data input size / Total run time 
DPJ=Total data input size / Total energy consumption 
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3. Prerequisite Software Packages 

Our benchmark suite is now deployed on Hadoop. We adopt some machine learning 
algorithms from Mahout and some database operations based on Hive, so we also need to 
install Mahout and Hive in advance. 
Hadoop 

We recommend version 1.0.2, which was used and tested in our environment. 
Version 1.0.2 download link: 
mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-1.0.2 
Other version: 
http://www.fayea.com/apache-mirror/hadoop/common/ 

Mahout 
We recommend mahout-distribution-0.6, which was used and tested in our 

environment.  
Download link: 
http://mirrors.tuna.tsinghua.edu.cn/apache/mahout/ 

Hive 
We recommend version 0.6.0, which was used and tested in our environment.  
Download link: 
http://hive.apache.org/releases.html#Download 

CloudRank-D 
CloudRank-D contain several algorithm implementation, scripts, and test data for users, 

and users can download the whole package from our website. 
Download link: 
http://prof.ict.ac.cn/CloudRank/download.html 

3.1. Brief introduction of basic softwares 

3.1.1. Hadoop 

Hadoop is a MapReduce implementation and contains two main components: the HDFS 
file system and the MapReduce infrastructure. HDFS is short for Hadoop Distributed File 
System, which supports to store data on low-cost hardware and is more suitable to deal with 
applications with big data set. MapReduce is a kind of programming model and usually used 
for distributed computing with data stored in the distributed file system.17,18 

3.1.2. Mahout 

Mahout is an open-source program of Apache Software Foundation, which provides 
several scalable machine learning and data mining algorithm implementation to help 
developers conveniently develop intelligence applications. At present, there are three public 
versions of mahout. Mahout includes cluster, classification, collaborative filtering and many 

http://www.fayea.com/apache-mirror/hadoop/common/
http://mirrors.tuna.tsinghua.edu.cn/apache/mahout/
http://hive.apache.org/releases.html#Download
http://prof.ict.ac.cn/ICTBench/download.html
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other classical algorithms. Moreover, it can be expanded into cloud application through the 
library offered by Apache Hadoop. In our benchmark, we choose cluster, classification, 
sequence learning, association rules mining and collaborative filtering recommendation from 
Mahout.19 

3.1.3. Hive 

Hive is a data warehouse infrastructure in common use built on top of Hadoop for 
providing data summarization, query, and analysis. Hive can change the structure data files 
into a database table, provides integrated SQL functions, and also can put SQL carried out on 
MapReduce.20  

Please note: Hive is based on Hadoop, so users should ensure that there have installed 
Hadoop before installing Hive. 

3.2. Set up 

3.2.1. Setting up Hadoop  

As we mentioned above, our benchmark now runs on Hadoop framework, so we need 
deploy Hadoop environment at first. To install Hadoop on cluster, users have to unpack the 
Hadoop package on all the cluster nodes with same path. Here, we use $HADOOP_HOME to 
stand for installation path, so the $HADOOP_HOME of each node should be the same. 
What’s more, users should add $HADOOP_HOME into the system environment variable. 

3.2.1.1. Create a Hadoop user 

Creating a Hadoop user can improve flexibility of system management. This requires 
root privileges and the commands can be different in various Linux distributions such as 
useradd vs adduser. Here, we give some common commands.  

 
$ sudo groupadd hadoop 
$ sudo useradd -g hadoop hadoop 
$ sudo passwd hadoop (to setup the password) 

3.2.1.2. Preparing SSH 

SSH (Secure Shell) is a common remote login session protocol. It can provide security 
assurance for the machines message transfer. Here are the commands.  

 
$ su - hadoop (switching user) 
$ ssh-keygen -t rsa -p "" (generating assembly key file, press enter for any prompts) 
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 
$ ssh localhost (answer yes to the prompt) 
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For more information, users can reference the following website: 
http://www.openssh.org/ 

3.2.1.3. Configuration on Hadoop 

Hadoop is implemented in JAVA, so there should be JDK in machine. Put the Hadoop 
package to the specified directory, then unpack the package. Here, we just give an example 
for installation, users can specify own path as wish, and be sure that there are permissions 
on relate files operations. 

 
$ tar -zxvf hadoop-1.0.2.tar.gz 
$ cd hadoop-1.0.2 
  
Then set the user-group permissions, 
 
$ chown -R hadoop:hadoop hadoop-package-name  

 

Update the ~/.bashrc file (or an equivalent configuration file if use other shells) with the 
following: 

 
export HADOOP_HOME=/path/to/hadoop(e.g., /home/username/hadoop-1.0.2/) 
export JAVA_HOME=/path/to/jdk(e.g., /usr/lib/jvm/java-6-sun) 

 
In the HADOOP_HOME folder (the main Hadoop folder), make the following 

modifications to the configuration files under directory conf. The main files users need to 
modify are listed below: 

 
hadoop-env.sh，core-site.xml ，hdfs-site.xml，mapred-site.xml，master and slaves 

 
hadoop-env.sh 

Editing the conf/hadoop-env.sh and specifying the Java JDK location (JAVA_HOME), 
users need to set the JAVA_HOME according to their java installation path. 

 
export JAVA_HOME=/path/to/jdk 

 
core-site.xml  

In conf/core-site.xml, add 
 
<configuration> 
<property> 
<name>fs.default.name</name> 
<value>hdfs://localhostname:9100</value> 
</property> 
</configuration> 

http://www.openssh.org/
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hdfs://localhostname:port/ assign the host and the port. 

 
hdfs-site.xml 

In conf/hdfs-site.xml, add 
 
<configuration> 
<property> 
<name>dfs.name.dir</name> 
<value>/opt/hadoop/hadoopfs/name1,/opt/hadoop/hadoopfs/name2</value>  
<description> description </description> 
</property> 
<property> 
<name>dfs.data.dir</name> 
<value>/opt/hadoop/hadoopfs/data1,/opt/hadoop/hadoopfs/data2</value> 
<description> </description> 
</property> 
<property> 
<name>dfs.replication</name> 
<value>1</value> 
</property> 
</configuration> 

 
dfs.name.dir is the file system path which enduringly stores the namespace and 

transaction logs by NameNode.  
dfs.data.dir is the local path for saving data by DataNode. 
Parameter ‘replication’ represents the number of block replications. The default value is 

3. It will warn if the number of machines in cluster is smaller than replication value.  
Please notice：users had better not to create directory name1、name2、data1、data2 in 

advance. Hadoop will create them after initialized. And, if users want to choose a folder of 
themselves, please make sure the folder with read/write permissions. 
 
mapred-site.xml 

In mapred-site.xml, add 
 
<configuration> 
<property> 
<name>mapred.job.tracker</name> 
<value>node1:9200</value> 
</property> 
</configuration> 
 
The host and port is at which MapReduce job tracker runs.  
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masters and slaves 
Configuring the masters and slaves to set the NameNode and the DataNode, users had 

better use the hostname, and ensure machines can communicate pairwise. 
 
master：write the hostname of master into file 
Example: node1 
slaves：write the hostname of slaves into file 
Example: node2 

 
Please note: There are other parameters that should be tuned to fit different needs, 

such as  
mapred.tasktracker.map.tasks.maximum, mapred.tasktracker.reduce.tasks.maximum,  
mapred.map.tasks, mapred.reduce.tasks.  
For now we use the default values. 

 
After configuring, users can copy the hadoop document to other nodes, and modify the 

relate parameters in order to be suitable for new machines. For example, users have to 
modify the JAVA_HOME according the new machines installation path. 
 
Start and Stop  

Users have to format a new distribute file system (HDFS) when the Hadoop is installed 
first, here is the command. 

 
$ cd hadooppackage 
$ bin/hadoop namenode -format 
 
Check the distribute file system, if success, there will be these two directories 

/opt/hadoop/hadoopfs/name1 and /opt/hadoop/hadoopfs/name2 on master. 
 

To start Hadoop, input the command below on master, 
 
$ bin/start-all.sh 
 
Master will start all slaves after executing this command. Users can check whether there 

are /opt/hadoop/hadoopfs/data1 and /opt/hadoop/hadoopfs/data2 on master and slaves 
to make sure it works. They can also use the command below to get the state of cluster. 

 
$ bin/hadoop dfsadmin –report 
 
To stop Hadoop, input the command below on master, 
 
$ bin/stop-all.sh 
 
Users need to input this command on master, then the master will close itself and the 
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slaves. All operations above will be recorded into log by daemon. Default path is 
${HADOOP_HOME}/logs. 

For more information about Hadoop installation, the following link provides a 
step-by-step guide to install Hadoop on a single node. 

Link: http://wiki.apache.org/hadoop/  

3.2.2. Setting up Mahout 

Unpack the package, 
 
$ tar -zxvf mahout-0.6.tar.gz 
 
It’s easy to install Mahout. Users just need to add Mahout path to env var of computer, 

that is, modify the file .bashrc. The commands are， 
 
$ vim /root/.bashrc 
 
add, 
 
export MAHOUT_HOME=/path/to/mahout-distribution-0.6 
export PATH=${MAHOUT_HOME}/bin:${PATH} 

 
make the change work, 
 
$ source /root/.bashrc 
 
test, 
 
$ bin/mahout –help 
 
If it lists much information about usage, that means it has installed the Mahout 

successfully. Link: 
https://cwiki.apache.org/MAHOUT/mahout-wiki.html#MahoutWiki-Installation%252FSetup 

3.2.3. Setting up Hive 

Entering the directory which put the Hive package, our suggestion is that users had 
better put Hadoop package and Hive package on same directory to make management 
convenient. Unzip the Hive compressed package, 

 
$ tar -xzv hive-0.6.0-bin.tar.gz 

 
modify the file .bashrc,  
 
$ cd /root/ 

http://wiki.apache.org/hadoop/
https://cwiki.apache.org/MAHOUT/mahout-wiki.html#MahoutWiki-Installation%252FSetup
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$ vim .bashrc  
 
insert the following information, 
 
export HIVE_HOME=path/to/hive(e.g.,/ home/username/hive-0.6.0-bin) 
export HIVE_CONF_DIR=$HIVE_HOME/conf 
export HIVE_LIB=$HIVE_HOME/lib 
export CLASSPATH=$CLASSPATH:$HIVE_LIB 
export PATH=$HIVE_HOME/bin/:$PATH 
 
save the file, and run the command below to make the evn var effect, 
 
$ soure /root/.bashrc 
 
enter bin/hive to test Hive, 
 
$ hive 
 
If it shows information as the following, then users have succeeded to install hive. 
 
“Hive history file=/tmp/root/hive_job_log_root_201208101534_1723482760.txt” 
For more information, refer to: 
https://cwiki.apache.org/Hive/adminmanual-installation.html 

3.2.4. Setting up CloudRank-D 

Users just need to decompress the package on the specified directory.  
 
$ tar -zxvf cloudrank-d.1.0.tar.gz 
 
In our CloudRank-D package, there are three main folders basedata, datagen，

and cloudrankrun, which store original dataset, data generation tools and scripts 
respectively. 

The configuration file is config.include under cloudrankrun/configuration/, which is 
used to configure the path. Notice that, users always have to modify this configuration file 
based on their environment. Specific parameters will be described on part files structure and 
explanation in chapter 4.1 and the details about usage is described in 4.2. 

4. How to use CloudRank-D 

Now, we explain the scripts we provide. These scripts help users conduct the CloudRank-D 
more conveniently. 

https://cwiki.apache.org/Hive/adminmanual-installation.html
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4.1. Files structure and explanation  

After unpacking the package, users will see three main folders basedata, cloudrankrun 
and datagen. All the datasets we use are stored under basedata. While, under cloudrankrun, 
there are several subfolders, including association rule mining, classification, hive-bench, 
sequence-leaning, base-operations, cluster recommendation and configuration. Scripts for 
each algorithm are placed in appropriate catalogs with almost same file structure, so here 
we just give explanation on one or two of them. Under datagen, there are htmlgen and 
teragen which are two tools to generate datasets used in data warehouse operations. We 
will introduce them in 4.2.7. 
 
basedata/ 

Table 6 lists the corresponding relationship between applications and original datasets. 
The datasets can be seen under basedata/ 

 

Category Application Original Datasets 

Base-operations 

Sort 

Generated  WordCount 

Grep 

Classification 

Naive Bayes wikipediainput (1.95G) 

Support Vector 
Machine 

svm-data (1.96G) 

Clustering K-means 

low(default) sougou-low-tfidf-vec (121K) 

mid sougou-mid-tfidf-vec (4M) 

high sougou-high-tfidf-vec (16M) 

Recommendation 
Item based 

collaboration filtering 
ibcf-data (1.95G) 

Association rule mining 
Frequent 

pattern-growth 

low(default) fpg-accidents.dat (3.97M) 

mid fpg-retail.dat (33.86M) 

high fpg-webdocs.dat (1.38G) 

Sequence-leaning Hidden markov model hmm-data (1.95G) 

Hive-bench 

Grep select 

Generated 
Ranking select 

Uservisits aggregation 

Uservisits-ranking join 

   Table 6  The corresponding relationship between application and original datasets 

cloudrankrun/ 
configuration/ 
Subfiles: 

config.include: record related configurations 
Parameters: 
basedata_dir: data storage path in local 
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tempdata_dir: temporary data storage directory 
Temporary data is generated during the data preparatory phase, and will  be 

deleted after final data are uploaded to HDFS. 
hdfsdata_dir: corresponding HDFS directory 
basejars_dir: the path of basic jars 
hadoop_example_jar: the name of hadoop-examples-jar, users need to  change 

this name in terms of the Hadoop jars release they use. 
Notice: please modify these paths according to machine configuration before running 

applications. 
 
file_all.include: record the datasets now existing on HDFS. Users can refer to this file to 

write batch scripts. This file only reflects the operations on HDFS through our scripts, that 
means, if user delete the datasets directly by Hadoop commands, these operations will not 
be refresh in this file. 

 
associationrulemining/ 
Here is the file structure and explanation: 

  associationrulemining/fpg/ 
 
                           Category  Abbreviation for Frequent pattern-growth Algorithm 

Subfiles: 
prepare-fpg.sh: upload the dataset to HDFS 
After carrying out the command predict_fpg.sh, local data will be uploaded to HDFS with 

specified path (Default HDFS directory is /cloudrank-out). This phase is prepared for Hadoop, 
because Hadoop is a software framework that provides a distributed manipulation of vast 
amount of data, so we need to use HDFS to support Hadoop distributed processing ability. 

For this application, the command has three parameters: low, mid, high, to stand for 
three datasets with different size. 

 
e.g.: ./prepare-fpg.sh low  

It will choose the dataset fpg-accidents.dat which is also default configuration. 
 

run-fpg.sh：run the workload 
This command also has three parameters with one-to-one correspondence to the 

“prepare-fpg.sh” . 
e.g: run-fpg.sh low/mid/high 

 
delete-fpg.sh: delete dataset on HDFS 
This command will delete the dataset of fpg algorithm on HDFS. For example, if you run 

delete-fpg.sh low, it will delete low size dataset stored on HDFS. 
 
file.include : stores the dataset now existing on HDFS 
After executing prepare-fpg.sh, there are some records like fpg_file=XXX in this file. This 

file stores the name of datasets of this algorithm now existing on HDFS which will give users 
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reference to select dataset they want to run. For example, fpg_file=fpg-webdocs.dat-high, 
means there are fpg-webdocs with parameter high on HDFS now. 

 
Notice: Different workloads have their own parameters, we will elaborate them in 4.2. 
 

datagen/ 
There are two folders in this directory, htmlgen and teragen. They are all data generation 
tools, more details showed in 4.2.7. 

4.2. Run the CloudRank-D 

In this part, we will describe the testing scripts which make CloudRank-D easy to use. 
When users want to run some applications, they just need to execute corresponding scripts. 
For example, if users are going to run SVM, they enter into the directory 
/cloudrankrun/classification/SVM/ to get its scripts, then type the command to run it. 
 

Please notice that users should make sure the dataset storage path is in accord with 
the specified path in script config.include under /cloudrankrun/. 

4.2.1. Basic operation 

Sort 
Scripts path:   /cloudrank-d/cloudrankrun/base-operations/sort  
HDFS path:    /cloudrank-data/ (input) 
             /cloudrank-out/  (output) 
 
Command:   ./prepare-sort.sh 10g 
Parameter： the size of dataset users want to specify, it can be m/M, g/G, t/T. 
Explanation:  it will produce 10GB data for sort. Script will adjust parameter byte_per_map 

and maps_per_host in config-sort.xml according to current deployment. Then 
RandonWriter generates data using this new configuration file with path 
/cloudrank-data/rtw-sort-10G on HDFS. 

 
Command:   ./run-sort.sh 10g 
Explanation:  run sort application with dataset /cloudrank-data/rtw-sort-10G, and the 

results are placed in /cloudrank-out/rtw-sort-10G-out on HDFS. 
 

Wordcount 
Scritps path:  /cloudrank-d/cloudrankrun/base-operations/wordcount 
HDFS path:   /cloudrank-data/  (input) 
            /cloudrank-out/  (output) 
 
Command:   ./prepare-wordcount.sh 10g 
Parameter:   the size of dataset users want to generate, it can be m/M, g/G, t /T. 
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Explanation:  it will produce 10g dataset for wordcount. Script will adjust parameter 
byte_per_map and maps_per_host in config-sort.xml according to current 
deployment. Then RandontextWriter generates dataset using this new 
configuration file with path /cloudrank-data/rtw-wordcount-10G on HDFS. 

 
Command：  ./run-wordcount.sh 10g 
Explanation:  run with dataset /cloudrank-data/rtw-wordcount-10G, and the results are 

/cloudrank-out/rtw-workcount-10G-out on HDFS. 
 

Grep 
Scritps path:   /cloudrank-d/cloudrankrun/base-operations/grep 
HDFS path:    /cloudrank-data/ (input) 
             /cloudrank-out/ (output) 
 
Command:    ./prepare-grep.sh 10g 
Parameter:    the size of dataset users want to generate, it can be m/M, g/G, t/T. 
Explanation:  it will produce 10g dataset for grep. Script will adjust parameter 

byte_per_map and maps_per_host in config-sort.xml according to current 
deployment. Then RandontextWriter generates dataset using this new 
configuration file with path /cloudrank-data/rtw-grep-10G on HDFS. 

 
Command：   ./run-grep.sh 10g 
Explanation:  run grep with dataset /cloudrank-data/rtw-grep-10G, and the results are 

placed in /cloudrank-out/rtw-grep-10G-out on HDFS. 

4.2.2. Classifier 

Naive Bayes 
Scripts path:   /cloudrank-d/cloudrankrun/classification/NaiveBayes/  
Dataset path:  /basedata/wikipediainput 
HDFS path:    /cloudrank-data/ (input) 
             /cloudrank-out/  (output) 
 
Command:   ./prepare-bayes.sh 2 
Parameter： the multiple of original dataset users want to expand. 
Explanation:  execute the data preparation, it will copy the original dataset according to 

parameter, then upload the new dataset onto the HDFS. The new dataset path 
is /cloudrank-data/bayes-SIZE. For example, if the basic dataset is 2.1G, then 
the new dataset will be /cloudrank-data/bayes-4.2G on HDFS. 

 
Command：   ./run-bayes.sh 2 
parameter：   the parameter here is corresponding to that in prepare-bayes.sh. 
Explanation： This command will choose dataset bayes-4.2G to run bayes application. The 

dataset must be generated in advance. Users can refer to file.include to check 
the dataset now existing on HDFS. The result will be at 
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/cloudrank-out/bayes-4.2-out. 
 
Command:    ./delete-bayes.sh 2 
Parameter:    to delete extended data with 2 multiple of basic dataset on HDFS 
Explanation:  delete dataset on HDFS, for this command, it will delete the dataset 

bayes-4.2G on HDFS. 
 
Support Vector Machine 
Scripts path：  /cloudrank-d/cloudrankrun/classification/SVM/  
Dataset path： /basedata/svm-data 
HDFS path:    /cloudrank-data (input) 
             /cloudrank-out (output) 
 
Command:   ./prepare-svm.sh  2 
Parameter：  the multiple of original dataset 
Explanation:  execute the data preparation. It will copy the original dataset according to 

parameter, then upload the new dataset onto the HDFS. The new dataset path 
is /cloudrank-data/svm-SIZE. For example, if the basic dataset is 2.1G, then 
the new dataset is stored at /cloudrank-data/svm-4.2G on HDFS. 

 
Command：   ./run-svm.sh 2 
Parameter:     in accordance with prepare-ibcf.sh, used to specify dataset 
Explanation:  execute the SVM program with the specified dataset. For this command, it will 

run application with dataset SVM-4.2G (same as above). The dataset must 
be generated in advance. Users can refer to file.include to check the dataset 
now existing on HDFS. The result will be at /cloudrank-out/svm-4.2-out. 

 
Command:     ./delete-svm.sh 2 
Parameter:     to delete extended data with 2 multiple of basic dataset on HDFS 
Explanation:   delete dataset on HDFS, for this command, it will delete the dataset 

SVM-4.2G (same as above) on HDFS.   

4.2.3. Cluster 

K-means 
Scripts path:   /cloudrank-d/cloudrankrun/cluster/kmeans/  
Input：       /basedata/sougou-low-tfidf-vec 
        /basedata/sougou-mid-tfidf-vec 
        /basedata/sougou-high-tfidf-vec 
HDFS path:    /cloudrank-data  (input) 
     /cloudrank-out  (output) 
 
Command:    ./prepare-kmeans.sh low|mid|high 
Parameter:    low|mid|high (represent the dataset with different size) 
Explanation:   upload the basic dataset to the HDFS, and the path is /cloudrank-data/. 
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Command：  ./run-kmeans.sh low|mid|high 
Parameter：  low|mid|high (represent the dataset with different size) 
Explanation： the relationship between the parameter and the dataset is showed 
             below.   

 
Command:    ./delete-kmeans.sh low|mid|high 
Parameter：    low|mid|high (represent the dataset with different size) 
Explanation:   delete the corresponding dataset on HDFS.  

4.2.4. Recommendation 

Item based collaboration filtering 
Scripts path:  /cloudrankrun/recommendation/ibcf/ 
Input:       /basedata/ibcf-data 
HDFS path:   /cloudrank-data (input) 

 /cloudrank-out (output) 
 
Command：  ./prepare-ibcf.sh 2 
Parameter：  2 is the multiple of original dataset users want to expand 
Explanation： execute the data preparation. It will copy the original dataset, then upload the 

new dataset to HDFS. The new dataset path is /cloudrank-data/ibcf-SIZE. For 
example, if the basic dataset is 12MB, then the new dataset is stored at 
/cloudrank-data/ibcf-24M on HDFS. 

 
Command：  ./run-ibcf.sh 2 
Parameter:   in accordance with prepare-ibcf.sh, used to specify dataset 
Explanation:  execute the IBCF program with the specified dataset. For this command, it will 

run application with dataset ibcf-24M (same as above). The dataset must be 
generated in advance. Users can refer to file.include to check the dataset now 
existing on HDFS. The result will be stored at /cloudrank-out/ibcf-24M-out. 

 
Command:    ./delete-ibcf.sh 2 
Parameter:    to delete extended data with 2 multiple of basic dataset on HDFS 
Explanation:  delete dataset on HDFS, for this command, it will delete the dataset ibcf-24M 

on HDFS. 

4.2.5. Association rule mining 

Frequent pattern-growth 

Parameter Input(HDFS) Output (HDFS) 
low /cloudrank-data/sougou-low-tfidf-vec /cloudrand-out/kmeans-low-out 
mid /cloudrank-data/sougou-mid-tfidf-vec /cloudrand-out/kmeans-mid-out 
high /cloudrank-data/sougou-high-tfidf-vec /cloudrand-out/kmeans-high-out 
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Script path:   /cloudrank-d/cloudrankrun/associationrulemining/fpg/ 
Input data set: /basedata/fpg-accidents.dat 

 /basedata/fpg-retail.dat 
 /basedata/fpg-webdocs.dat 

HDFS path：  /cloudrank-data (input) 
 /cloudrank-out  (output) 

 
Command：  ./prepare-fpg.sh low|mid|high   
Parameter：  low|mid|high respects the different data sets 
Explanation:   this command will send the specified dataset to HDFS. 

 
Command：   ./run-fpg.sh low|mid|high 
Parameter：   low|mid|high respects the different data set 
Explanation： the relationship between the parameter and the dataset is showed 
below. 

4.2.6. Sequence learning 

Hidden markov model 
Scripts path:  /cloudrank-d/cloudrankrun/sequence-leaning/ 
Input data set: /basedata/hmm-data 
HDFS path:  /cloudrank-data  (input) 

 /cloudrank-out  (output) 
 
Command:   ./prepare-hmm.sh 2 
Parameter:   2 is the multiple of basic dataset users want to expand 
Explanation:  expand the basic dataset according to parameter, then upload new dataset to 

HDFS. HDFS path is /cloudrank-data/hmm-SIZE. For example, if basic dataset 
is 510M, then the new dataset is /cloudrank-data/hmm-1020M. 

 
Command：  ./run-hmm.sh 2 
Parameter:    to drive hmm application with 2 multiple extended data  
Explanation:  execute the HMM program with the specified dataset. For this command, it 

will run application with dataset hmm-1020M. The dataset must be generated 
in advance. Users can refer to file.include to check the dataset now existing on 
HDFS. The result will be stored at the /cloudrank-out/hmm-SIZE-out on HDFS. 

 
Command:    ./delete-hmm.sh 2 

Parameter Input（HDFS） Output（HDFS） 
low /cloudrank-data/fpg-accidents.dat /cloudrand-out/fpg-low-out 
mid /cloudrank-data/fpg-reduce.dat /cloudrand-out/fpg-mid-out 
high /cloudrank-data/fpg-webdocs.dat /cloudrand-out/fpg-high-out 
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Parameter:    to delete extended data with 2 multiple of basic dataset on HDFS 
Explanation:  delete dataset on HDFS, for this command, it will delete the dataset 

hmm-1020M on HDFS. 

4.2.7. Data warehouse operations 

To run this application, firstly, users need to use data generation tools to generate 
dataset. These tools can specify size of dataset, the things users need to do is just modifying 
the configuration. 

Folders htmlgen and teragen under /datagen store all scripts, and htmlgen will 
produce two tables called Ranking01.data and UserVisits01.data with specified size, while, 
teragen will produce Table Grep. 
htmlgen:  
Scripts path:    /cloudrank-d/datagen/htmlgen/ 
Command:     ./generateData.py 
Explanation:   The configuration file is config.txt, users can change the Rowcount for 

UserVisits to decide the size of dataset. And, users need to specify the path 
that stores the generated dataset, because this tool will delete the files 
under the specified directory, our suggestion is to create a new directory to 
store the dataset, then move them to /cloudrank-d/basedata/. 

teragen: 
Scripts path:    /cloudrank-d/datagen/teragen 
Command:     sh teragen.pl 
Explanation:   The configuration file is teragen.pl itself. Users can modify the parameter 

NUM_OF_RECORDS to specify the size of data. 
 
Scripts path:    /cloudrank-d/cloudrankrun/hive-bench/ 
HDFS path:    /data/grep/    (input) 

   /data/ranking/    (input) 
   /data/uservisits/    (input) 
   /output/hadoop_bench/ (output) 

Notice: Users need to create these folders on HDFS in advance. 
 

Command:      ./prepare.sh 
Explanation:     upload datasets to HDFS with path showed above. 
Grep select 
Command:     ./benchmark_gs.sh 
Explanation：    main operation in grep_select  

SELECT *  
FROM grep  
WHERE field LIKE '%XYZ%'  

Ranking select 
Command：     ./benchmark_rs.sh 
Explanation：    main operation in rankings_select 

SELECT pageRank, pageURL  
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FROM rankings  
WHERE pageRank > 10  

Uservisits aggregation 
Command：      ./benchmark_ua.sh 
Explanation：    main operation in rankings, uservist 

SELECT sourceIP, SUM(adRevenue)  
FROM uservisits  
GROUP BY sourceIP  

Uservisits-rankings Join 
Command：     ./benchmark_ruj.sh 
Explanation：    main operation in uservisits_aggre 

SELECT sourceIP, avg(pageRank), sum(adRevenue) as totalRevenue  
FROM rankings R  
JOIN  
( SELECT sourceIP, destURL, adRevenue  
FROM uservisits UV  
WHERE UV.visitDate > '1999-01-01' AND UV.visitDate < '2000-01-01' )  
NUV ON (R.pageURL = NUV.destURL)  
group by sourceIP  
order by totalRevenue DESC limit 1  

4.3. Customize workloads 

In this chapter, we will give a demonstration to show how to use CloudRank-D if users 
have a existing cluster by using the contents in chapter 2.5. 

Firstly, users need to decide how many jobs they need to run, using Formula 1 
mentioned in chapter 2.5. 

For example:    Total job number = 100 * 2 * 1 =200  
100 is the number of machine in cluster 
2 is number of core in each machine 
1 is the number of hardware threads in each core 

Secondly, get the number of each applications. Here, we use the ratio showed in Table 
4. 

200 * 31% = 62 
200 * 35% = 70 
200 * 34% = 68 

According to this value, we set 62 jobs of basic operations, 70 jobs of association, 
classifications, and so on, 68 jobs of Hive-bench operations. 

Thirdly, we calculate the size of for each applications referring the statistic showed in 
Table 5. For example: 

62*40.57%＝26   62*39.33%＝24  
62*12.03%＝7   62*8.07%＝5 

This means we will set 26 jobs with size between 128M and 1.25G in basic operations 
(sort, wordcount, grep). Using these methods, we can get a job list. We use exponent 
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distribution with 14s to generate random variable which means the interval between two 
jobs, and can send job using random model. 

Lastly, users can use script we provide to process these workloads in batch. Later, we 
will offer a automation tool to put all these producers in integration. 

 
An example of scripts usage. 

Preparation phase 
prepare.sh 
cd associationrulemining/fpg/ 
sh prepare-fpg.sh high 
cd ../.. 
cd classification/NaiveBayes 
sh prepare-bayes.sh 1 
cd ../.. 
cd classification/svm 
sh prepare-svm.sh 1 
sh prepare-svm.sh 2 
cd ../.. 

This script uploads association rule mining with high parameter, bayes with original size 
(2G), and svm with original size(2G) to HDFS. 

 
Running phase 
run.sh 
cd associationrulemining/fpg/ 
sh run-fpg.sh high 
cd ../.. 
sleep 2s 
cd classification/NaiveBayes 
sh run-bayes.sh 1 
cd ../.. 
sleep 2s 
cd classification/svm 
sh run-svm.sh 1 
sh run-svm sh.2 
cd ../.. 

This script runs these three workloads, please notice that users should also input the 
command with parameter, because maybe there are more than one dataset for one 
application. More, users can use perf21 or vTune22 to capture the machine performance 
statistical data to further their researches. 
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