
 1

DDeevveellooppeerr’’ss SSDDKK::
HHaannddbbooookk ffoorr IInntteeggrraattiioonn UUssiinngg

RRoosssswwaarree’’ss VViirrttuuaall TTeerrmmiinnaall AAccttiivveeXX
CCoonnttrrooll

At Rossware Computing, we first developed this control for use within several of
our own products. Actually (and to be more precise), its immediate predecessor
was developed as a VB6 form and associated code, which were simply
incorporated (as such) into each of our apps as needed it. The advent of required
PA-DSS certification spawned new thinking. We realized it would be much more
expedient to certify a single ActiveX component — as opposed to several
applications that each, independently, implement a particular code set.

For such reason, we converted our already well-proven form and code into an
ActiveX control (sometimes hereinafter abbreviated as “VT”). Now, any
application that wants to use this Virtual Terminal needs only to incorporate the
ActiveX control, and make appropriate calls thereto. VT handles all card-related
info, conducts the desired transactions, and thoroughly sequesters sensitive data
within its own processes. Since an incorporating application does not in itself
handle (or even begin to touch) such data, it is taken out of scope so far as PA-
DSS certification is concerned.

Any and every developer who so chooses is free to use VT, and without any
charge or obligation except one. From the end-user’s perspective, VT may not be
implemented to work in conjunction with any merchant account, except as setup
under the auspices of Rossware Computing as the registered reseller, and with
Merchant Warehouse (hereinafter “MW”) as the gateway company.

For end-user instruction as concerns retail use of Rossware’s Virtual Terminal,
please see the user manual at:

http://rossware.net/MiniManuals/VirtualTerminalHandbook.pdf.

Chapter 1
Adding the Virtual Terminal OCX to Your Project

The VirtualTerminal.ocx control may be acquired from Rossware, as one of a few
files contained in a .zip folder, obtainable at:

http://rossware.net/downloads/VT/vt_sdk.zip.

Like any ActiveX component, by design VT should be capable of incorporation
within applications written in a wide variety of programming languages and

 2

environments. For purposes of simplicity within this Handbook, we will assume
you are using VB6. If otherwise, please adapt as appropriate.

Steps for incorporation are as follows:

1. Add VirtualTerminal.ocx to your c:\Windows\System32 (or other
appropriately applicable) folder.

2. Add any other needed Windows runtimes. In particular, you will need
msxml3.dll (which is also provided in the vt_sdk folder). You will also
need standard VB6 runtimes, which most platforms already have
installed.

3. Open or create the project in which you want to add VT.

4. From the Add Components tab, find and add the previously installed
instance of VirtualTerminal.ocx.

5. Open or create the form in which you want the VT interface to appear.
From the VB6 Toolbox, select the VirtualTerminal, and add it to your
form.

6. Position the control as desired, and size its dimensions as appropriate to
accommodate its contents.

7. Write code to access the control’s methods, as per programming
purposes and intent.

Details, as applicable to Step 7, are what we turn to now.

Chapter 2

Writing Code to Access Methods

VirtualTerminal.ocx has just three methods, as follows:

1. .ShowForGeneralOpen

Use this method to activate the VT interface for general user
interaction. In other words, the interface is activated in a mode
where the user can run as many transactions and in whatever amount
as wanted. There are no arguments in the call, and no information
(i.e., regarding transactions conducted) comes back to the calling
client.

This method makes the interface into the equivalent, more or less, of
a stand-alone terminal.

 3

2. .ShowForParticularXaction

Use this method to activate the VT interface for a particular
transaction that, typically, is advance-specified by the calling client as
to Amount and Ticket Reference. The method is a Function, and
returns as True if the transaction is successful, False if it is not. It
incorporates the following arguments:

Amnt Used by the calling client to specify the amount

desired for the transaction
TcktNumbr Used by the calling client to specify a string

value that’s used, within the transaction, as the
merchant’s identifier for the transaction
(typically this consists of an InvoiceNumber)

rtrnAmount VT returns the amount actually transacted
(negative value designates a credit)

rtrnRefNmbr VT returns the ReferenceNumber, as provided
by MW, on the transaction

AllowZeroStart Optional. Calling client should set as true if
wanting VT interface to accept an initial Amnt
specification of -0-

CNm Optional. Calling client may use this argument
to specify probable name on card, as
potentially used for keyed entry (the VT
interface provides user with means of easy
insertion on verification name is actually what’s
on card)

CStrtNmbr Optional. Calling client may use this argument
to specify the number portion of the customer’s
street address (similar purpose to CNm, above)

CZip Optional. Calling client may use this argument
to specify the zipcode of the customer’s street
address (similar purpose to CNm and
CStrtNmbr, above).

Please note that, in contrast to .ShowForGeneralOpen, this method
makes the VT interface into a specific transaction agent. In this
mode, the latter fulfills a request as requested by the client caller, and
reports back on the result.

3. .EndOpenState

This method (like the one just described) is also a Function. It is used
to assure VT closes, as a process, when it should, and that it does so
in a good and proper manner. It returns as True when closing is
complete. You should write your application so that neither it, nor

 4

any form that displays the VT closes until this method is first called,
and returned as True.

The reason this is important is because there is typically a period of
one to three seconds (sometimes more), after a transaction has been
initiated by the user, and prior to the response being returned by
Merchant Warehouse. Absent the precaution as provided by this
method, it’s possible a calling client could close itself while the Virtual
Terminal is still waiting for a response from MW. It’s possible,
furthermore, the response could come back indicating a successful
transaction — while in the meantime the application (and/or its
applicable processes) have already closed, and therefore fail to
register the transaction.

Please follow good practices and assure you do not let your calling
interface close until after this call is successfully completed.

For programming with VirtualTerminal.ocx, all you must do is write the very
simple code as needed to call (and utilize per your own programming intent) these
methods.

Chapter 3
Error Handling

The Virtual Terminal has one event that’s deliberately provided and exposed. It is
the .Error event. The event will trigger when and if the Virtual Terminal
encounters an error in execution. For optimum programming, you should place a
handler in the VirtualTerminal_Error procedure.

Chapter 4
The “VT-Test” Sample Program

Also provided in the vt_sdk.zip folder is very simple VB6 project that invokes the
methods of VirtualTerminal.ocx. It is a simple program. It has no modules, no
classes, and no user controls. There is only one, very basic form containing three
objects: the VirtualTerminal (internally named “VT”), and two command buttons.

There is so little code involved as to be nearly comical. Following is a snapshot
that shows (aside from what’s cutoff at the far-right) its entirety.

 5

That’s right. The above is all the code as strictly required for an application that
harnesses all three VT methods, and appropriately responds to the .Error event.
For a person with even minimal programming skills, it should be child’s play to see
how this code works, and to fathom how one might similarly implement within his
or her own application.

This sample program is also provided in compiled format (Test_VT.exe). This
allows you — using just two files, Test_VT.exe and VirtualTerminal.ocx — to fully
run the VT interface, and to experiment with functionality (at least assuming your
platform is otherwise appropriately runtime-equipped and that you possess an
appropriate MW merchant test account for testing purposes). In fact, with a real
merchant account you could even run real/live transactions — using nothing more
that’s specific to the purpose than the two files here described.

Chapter 5
Description of Processes within the Virtual Terminal

This section describes underlying structure and processes within the VT, and is not
directly needed for programming integration. If your sole interest is in creating
the integration, this section (indeed, the remainder of this handbook) may be
skipped.

 6

The VT GUI is divided into six functional areas.

The first provides textboxes for the user to insert his or her Merchant Credentials.

These are the particular strings that identify and authenticate the user/merchant
to MW. Since there are no major security concerns as connected to Merchant
Credentials, VT direct-stores them (i.e., without encryption) in the platform’s
system registry.

 7

The second section is where the user may type cardholder information for a keyed
(card-not-present) transaction.

The user may activate this section by clicking on the provided button. Information
as typed here is never stored anywhere. It exists solely as text in the displayed
textboxes – meaning when removed from those boxes (or when the boxes
themselves are closed) the data is extinguished in its entirety — at least so far as
any involvement by VT and/or its operating platform is concerned. This data’s
presence in/on the platform is thoroughly transitory, in other words, and is never
in any circumstance written to non-volatile memory.

Of course, if used in a transaction with MW, the applicable text will be forwarded
(as part of the transaction, and via a Secure Socket Layer connection) to that
entity, and presumably may persist in MW systems to whatever extent MW allows.

 8

The third functional area is used in conjunction with connecting to an MCR device
for card swiping.

If the device connects via USB, the end-user needs to check the applicable button.
In reaction, the VT scans for and connects to the device. If the device connects
via serial port, the end-user should provide the correct CommPort number within
the dropdown provided (and in reaction the VT will appropriately connect). The
third option in this section (provided by a button that contains rather small print)
is used to initiate a swipe with any MCR device that mimics keyboard-based input.

Much like Merchant Credentials, settings in this section are saved in the platform’s
system registry.

 9

Though not visible as such in the illustration, the fourth functional area becomes a
momentary-display textbox during and/or immediately after a swipe.

This textbox contains actual data as swiped from the card (albeit in disguised-to-
the-user format, with actual/true characters replaced by asterisks, much as in a
typical password-input interface). Aside from when momentarily included in an
actual transaction message (via Secure Socket Layer), this textbox is the only
place such swiped data is ever placed by VT.

Just like with keyed-in data, this data is never “stored” anywhere. As soon as its
containing box is closed (an object that’s maintained purely in volatile ram), the
data is totally and thoroughly extinguished.

 10

The fifth functional area is for specifying details about the desired transaction (i.e.,
amount, type, etc.).

Though unrelated to security purposes, nothing in this section is stored. It is used
solely for the duration (and as needed) for a particular transaction.

 11

The sixth functional area contains two buttons.

One is for opening the user handbook (same as referenced on this document’s first
page).

The other will activate, and turn to an operative green color, when other elements
in the GUI are appropriately setup for a transaction. The user clicks on it, of
course, to initiate a transaction.

 12

The sixth functional area (note that when functionally appropriate, it will
supersede the area consumed by the third area) is used to communicate with the
user, indicating such matters as when the VT is scanning for an MCR device, when
one is located, when the setup is ready for a swipe, and so on.

Additionally, once a successful transaction has been conducted, this area displays
information concerning the result.

Chapter 6

Under the Hood: How VT Completes a Transaction

This is another section that is not truly needed if your sole interest is in integrative
use of VT. Much as it’s easy to drive a car without knowing how the engine works,
details here are not required reading.

VT uses MW’s Merchantware 3.0 interface.

Under that system, communication between VT and MW (client and gateway) is
conducted using web services via an https secure socket layer (ssl) connection.
This connection encrypts the communication stream, assuring impossibility of any
meaningful interception.

 13

