

Xiria Product Family

User manual 994.570 G01 05

User manual Xiria Product Family

994.570 G01 05

Eaton Industries (Netherlands) B.V.

 $\hbox{P.O. box 23, 7550 AA Hengelo, The Netherlands}$

tel: +31 74 246 91 11
e-mail: info.electric@eaton.com
internet: www.eaton.eu/electrical

Service emergency

Eaton - Electrical Solutions & Services :

tel: +31 74 246 68 88

Administrative of	lata	
Issue number:	G01 05	
Date of issue:	24-05-2013	
Translation of:		

Checked by	
Job title:	Product Manager
Name:	A.R.A. Pikkert / B. ter Hedde
Date:	
Initials:	

CONTENTS

1.	GENERAL	5
1.1	Explanation of used warnings	5
1.2	Safety relating to medium-voltage installations	5
1.3	Tools, aids and protection equipment	5
1.4	Product standards and guidelines used	6
1.5	Product information	6
2.	XIRIA SYSTEM DESCRIPTION	10
2.1	Xiria System description	10
2.2	Cross-section, single line diagram and list of functions	11
2.3	Technical specifications, general	12
3.	INSTALLING THE UNIT	13
3.1 3.1.1 3.1.2	Environmental requirements	13
3.2.1 3.2.2 3.2.3 3.2.3 3.2.4 3.2.5	Installing the unit Lifting Travelling Preparation prior to installation. Setting up the unit Securing to the floor.	14 15 16
3.3 3.3.1 3.3.2 3.3.3 3.3.4	Connecting the cables Types of cables Cable assembly instructions Replacing the cable connection cone Applying test current and test voltage to the cable	16 17 19
3.4	Connection of station earthing	20
3.5	Access to secondary compartment	
4.	OPERATION	
4.1	Details of control panel	22
4.2 4.2.1 4.2.2 4.2.3	Manual switching Switching operating position on/off Switch cable earthing on/off Gaining access to cable	22 24
4.3 4.3.1 4.3.2 4.3.3 4.3.4	Interlocks	27 27 27

4.4	Signals	29
4.4.1	Voltage detectors	29
4.4.2	Overcurrent indicator	29
4.4.3	Trip indicator	29
4.5	Short-form instructions	30
5.	REMOTE SIGNALLING AND REMOTE CONTROL	31
5.1	Connection	31
5.2	Remote signalling (option)	31
5.3	Remote control	31
5.3.1	24 V DC Remote tripping (option)	31
5.3.2	24 V DC Remote closing (option)	32
5.4	24 V DC Tripping for external protection	32
5.5	Local closing	32
6.	INSPECTION AND MAINTENANCE	33
6.1	Introduction	33
6.2	Inspections	33
6.2.1	Inspecting cable connections	33
6.2.2	Inspecting switching functions	
6.2.3	Inspection of the moisture absorbing agent	
6.2.4	Testing voltage detection	
6.2.5 6.2.6	Inspecting the protection relay	
6.3	Decommissioning the unit	
6.3.1	Material processing after dismantling	
7.	ACCESSORIES AND OPTIONS	35
7.1	Supplied accessories	35
APPE	ENDIX 1 – FLOOR PLANS	39
APPE	ENDIX 2 – VOLTAGE DETECTING SYSTEM (WEGA)	45
	,	
	ENDIX 3 – ORION 3.0	
APPE	ENDIX 4 – SHORT CIRCUIT INDICATOR	49
APPE	ENDIX 5 – TARIFF METERING 12KV	50

1. GENERAL

The user must have authority to perform switching operations, which means being qualified in accordance with locally applicable guidelines, government legislation and inhouse company regulations with respect to the operation of medium-voltage installations.

Legal and other regulations and documents pertaining to accident prevention, personal safety and environmental protection must be observed.

Operations involving the repair of the switchgear unit are to be carried out by or under the responsibility of Eaton. Information with respect to these operations is, therefore, not included in this manual.

1.1 Explanation of used warnings

The manual uses the following names and signs to highlight important (safety) information:

LIFE HAZARD

This warning indicates that non observance of the specified (safety) instructions WILL result in serious and permanent bodily injury or even death.

WARNING

This warning indicates that non observance of the specified (safety) instructions COULD result in serious bodily injury or even death.

Note

This note provides the user with additional information. The user's attention is drawn to possible problems.

TIP

Tips provide the user with suggestions and advice on how to make certain tasks easier or more convenient.

1.2 Safety relating to medium-voltage installations

LIFE HAZARD

Operations on medium-voltage installations can be life threatening if the necessary procedures are not observed.

Always take suitable precautions before working on a medium-voltage installation. All personnel involved in operations carried out on, with or near electrical installations require to have been instructed on the safety requirements, safety rules and instructions applicable to the operation of the installation. Personnel must wear

suitable clothing which fits the body closely. The person in charge of the operations must ensure that all requirements, regulations and instructions are complied with. The Xiria unit has been designed to ensure that it exceeds applicable regulations. Furthermore, primary component enclosures are arc-resistant and interlocks have been fitted to prevent dangerous operations.

Operations when the unit has been isolated

Switching off prior to carrying out operations on an isolated system is subject to a number of essential requirements.

- 1. switching off;
- 2. complete isolation;
- 3. protection from reactivation;
- 4. checking whether the unit is dead;
- 5. provide short-circuit proof protective earthing and a visible work-in-progress earth when needed.
- 6. provide protection with respect to active components in the vicinity.

Safe layout of the work area

Ensure that access and escape routes are free at all times. Do not leave flammable materials in or near access and escape routes. Flammable materials must not be stored in areas which could be affected by arcs.

In the event of a fire

Never attempt to extinguish a fire on the switchgear unit before it is completely dead, this applies to both primary and secondary switchgear. Even if non-conducting extinguishing materials are used, electricity may pass through the extinguishing equipment. Never extinguish a fire on the unit with water. Prevent water from flowing into the unit. Keep well clear of the unit while the fire is being extinguished in the area around the unit.

1.3 Tools, aids and protection equipment

Tools, aids and protection equipment must meet the requirements of national and international standards insofar as they are applicable.

Drawings and documents

Recent documents of the electrical installation must be available in order to gain sufficient understanding of the schematic layout of the switchgear unit.

Warning signs

If necessary, suitable warning signs shall be placed on the switchgear unit during operations to highlight possible hazards. The warning signs must comply with the applicable standards, insofar as they apply.

Performing measurements safely on the unit

Suitable and safe measuring equipment must be used for measuring safely on the unit. These instruments must be checked before and after use. The instruments must also be inspected periodically in accordance with the applicable regulations.

F₄**T**◆**N** 994.570 G01 05 5

1.4 Product standards and guidelines used

Table 1: Current product standards used

Standard	Title
IEC62271-1	Common specifications for high-voltage switchgear and control gear standards
IEC62271-100	High-voltage alternating-current circuit-breakers
IEC62271-102	Alternating current disconnectors and earthing switches
IEC62271-103	High-voltage switches
IEC62271-200	A.C. metal-enclosed switchgear and control gear for rated voltages above 1 kV and up to and including 52 kV
IEC62271-304	Additional requirements for enclosed switchgear and control gear from 1 kV to 72.5 kV to be used in severe
	climatic conditions
IEC60529	Degrees of protection provided by enclosures
IEC60044-1	Instrument transformers - Part 1: Current transformers
IEC60044-2	Instrument transformers - Part 2: Inductive voltage transformers
EN50181	Plug-in type bushings above 1 kV up to 36 kV
ISO 9001-2000	Quality
ISO 14001	Environmental management

1.5 Product information

The unit is equipped with type plates on the inside walls of the cable connection compartments (see Figure 1-1 to Figure 1-6).

The panel type plate includes:

- switch type;
- · technical specifications;
- serial number and year of manufacture.

Eaton Industrie Medium Voltag P.O. box 23, 7 The Netherland	E:	_	Business Worldwide	
M.V. SWITCH	GEAR		IEC	62271-200
system: XIRIA	r2.9 AIR INSU	LATED	w.o	. no.: 539660
Serialno: 1034	XIRA290850041		Yea	ar of man.: 2010
U _r 24 kV	U _p 125 kV	U _d 50	kV	f _r 50/60 Hz
I _r 630 A	I _k 16 kA	I _p 40 k	Α	t _k 1 s
IAC AFL	Ua 24 VDC			
Main switching	g device: 16kA-1s			

Figure 1-1: Example of system type plate

CIRCUIT-BREAKER	२	IEC 62271-100
type: NVR12AA-2	402 R2.9	
U _r 24 kV	U _p 125 kV	I _r 200 A
I _k 16 kA	t _k 0.6 s	I _c 31.5 A
I _{sc} 16 kA	DC _{component} 35%	L _{ma} 16 kA
U _a 24 VDC		
Operating sequence	O-3 min-CO-3 min-C	co
Classification E2 C2		

Figure 1-2: Example of panel type plate for circuit-breaker

GENE	RAL PURPO	IEC 62	2271-102		
type:	SVR14AA-2	406	R2.9		
U _r	24 kV	Up	125 kV	l _r	630 A
l _k	16 kA	t _k	1 s	I _{ma}	16 kA
I ₁	630 A	I _{2a}	630 A	I _{4a}	31.5 A
I _{6a}	240 A	I _{6b}	55 A	n	100
Ua	24 VDC				
Classi	ification E3				
For m	ore information	n refe	r to main name	plate	

Figure 1-3: Example of panel type plate for load-break switch

CURRE	NT TRANSI	FORMER	IEC 60044-1			
type:	CTB 90		Make:	EATON		
	75/5 A		L1-L2	-L3		
	5 VA	Cl. 0,2 ext. 120%				
	/ A					
	VA	Cl. 0,2 ext. 120%				
	/ A					
	VA	Cl. 0,2 ext. 120%				
I _p 50 /	Α	l _k 20 kA	t _k 3 s			

CURRENT TRANSF	ORMER	IEC 60044-1
type: WIC1-W3	H1	Make: ELEQ
S1 – S2	28,8/0,075 A	L1 – L2 – L3
	0.1 VA CI. 5P80	
C-D	28,8/0,288 A	L1 – L2 – L3
Test winding	10 A 3 s.	
For system informati	on refer to main pla	te

Figure 1-5: Rating plate of a current transformer for protection

Figure 1-4: Rating plate of a current transformer for metering

VOLTAG	E TRANS	FORMER		IEC 600	044-2
type:	UNECAK	12 D1.E		Make:	ELEQ
•	•				
A-N	10000/v3	3			
a1-n	100/√3	7,5 V	Cl. 0,2	S	th. 400VA
da-dn	100/3	30 VA	CI. 3P	S	th. 100VA

Figure 1-6: Rating plate of a voltage transformer

1,9 U_r - 8h

Technical data:

12-28-75 kV

General:

7.5 24	12	7.2	3.6	kV	Rated voltage
5 125	75 / 95	60	40	kV	Impulse withstand voltage
3 50	28/38/42	20	10	kV-1m	Power frequency withstand voltage
	 60	50-		Hz	Rated frequency
	 D	IP31			Degree of protection in service
	 (IP2>			Degree of protection with doors/covers open
					Classification according to IEC 62271-200:
	 2B	LS0			Loss of service continuity
	 	PM			Partition class
	 	AFI			Internal Arc Classification (IAC)
)-1 20-1	20-1	20-1	20-1	kA-s	Internal arc resistance
6-1 16-1	16-1	16-1	16-1	kA-s	Internal arc resistance with absorber
	 -40	25 -		°C	Ambient air temperature range
	 0	100		m	Maximum altitude
	 	100		W	Average Watt losses per panel
	 	<70		dB(A)	Sound emission
	 	100			Average Watt losses per panel

994.570 G01 05 7

Xiria

Busbar system:						
Rated normal current	Α		630)		
Rated short-time withstand current	kA-s	20-1	20-1	20-1	20-1	20-1
Rated short time withstans current alternative	kA-s	20-3	20-3	20-3	20-3	20-3
Rated peak withstand current	kA	50	50	50	50	50
Circuit-breakers:	^		000	(500/000		
Rated normal current	Α					
Rated breaking current	kA kA	20	20	20	20 50	20
Rated short-circuit making current	kA	50	50	50	50	50
Rated Capacitive Switching Current Class	۸		_			
Rated Cable Charging Breaking Current DC Time Constant	A		~	-		
	msec %					
DC Component Mechanical Endurance Class	70					
Mechanical Endurance Class as Earth Switch						
Mechanical Endurance Class Disconnector						
Electrical Endurance Class						
Electrische classificatie als aardingsschakelaar						
Rated short-time withstand current	kA	20-1		20-1	20-1	20-1
Rated short-time withstand current alternative	kA	20-1	20-3	20-3	20-1	20-3
Minimum tripping time	msec					
Mechanism type	111366				- CO	
Woonanian type			0 0 111111	00 3111111	00	
Load break switches:						
Rated normal current	Α		63	0		
Rated active load break current	Α					
	, ,		63	0		
Rated short-circuit making current	kA	50	63 50	0 50		
Rated short-circuit making current Rated short-time withstand current				-		
	kA	50	50	50	50	 50
Rated short-time withstand current	kA kA-s	50 20-1 20-3	50 20-1 20-3	50 20-1 20-3	50 20-1	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative	kA kA-s kA-s	50 20-1 20-3	50 20-1 20-3 31.	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3 	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3 M2 5	50 20-1 20-3 5 000x	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3 M2 5 MC	50 20-1 20-3 5 000x	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3 M2 5 MC	50 20-1 20-3 5 000x	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class as Earth Switch	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3 M2 5 MC	50 20-1 20-3 5 000x	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3 M2 5 MC B3 E2	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class as Earth Switch Remote control options:	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3 M2 5 MC E3	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class as Earth Switch Remote control options: Wiring diagram	kA kA-s kA-s	50 20-1 20-3	50 20-1 20-3 M2 5 MC E2	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class as Earth Switch Remote control options: Wiring diagram Standard auxiliary voltage	kA kA-s kA-s	50 20-1 20-3	50 20-1 20-3 M2 5 M0 E3 E2	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class as Earth Switch Remote control options: Wiring diagram Standard auxiliary voltage	kA kA-s kA-s	50 20-1 20-3	50 20-1 20-3 M2 5 	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class Electrical Endurance Class as Earth Switch Remote control options: Wiring diagram Standard auxiliary voltage Auxiliary voltage with voltage converter	kA kA-s kA-s	50 20-1 20-3	50 20-1 20-3	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class as Earth Switch Remote control options: Wiring diagram Standard auxiliary voltage Auxiliary voltage with voltage converter Auxiliary voltage tolerances	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3
Rated short-time withstand current Rated short-time withstand current alternative Rated Cable Charging Breaking Current Mechanical Endurance Class Mechanical Endurance Class as Earth Switch Mechanical Endurance Class Disconnector Electrical Endurance Class Electrical Endurance Class as Earth Switch Remote control options: Wiring diagram Standard auxiliary voltage Auxiliary voltage with voltage converter Auxiliary voltage tolerances Watt losses controller K7	kA kA-s kA-s	50 20-1 20-3 	50 20-1 20-3	50 20-1 20-3 5	50 20-1 20-3	50 20-1 20-3

Xiria

Table 2: Explanation of type plate data in accordance with IEC

Variable	Description	Unit
system		-
r.	Release	-
IEC	IEC reference	-
type	Type switching device	-
serial no.	Serial number	-
year of man.	Year of manufacturing	-
w.o.no.	Works order number	-
f_r	Rated frequency	Hz
I ₁	Rated mainly active load breaking current	А
I _{2a}	Rated distribution line closed-loop breaking current	А
I _{4a}	Rated cable-charging breaking current	А
l _{6a}	Rated earth-faulth breaking current	А
I _{6b}	Rated cable- and line-charging breaking current under earth-fault conditions	А
Ic	Rated cable-charging breaking current	А
I _k	Rated short-time withstand current	kA
I _{ma}	Rated short-circuit making current	kA
I _p	Rated peak withstand current	kA
l _r	Rated normal current	А
I _{r T-off}	Rated normal current of the circuit-breaker in the transformer panel	А
I _{sc}	Rated short-circuit breaking current	kA
n	Number of operations for mainly active load breaking	-
t _k	Rated duration of short-circuit	s
Ua	Rated supply voltage of auxiliary circuits	V
U _d	Rated short-duration power-frequency withstand voltage (1 minute)	kV r.m.s
U _p , U _w	Rated lightning impulse withstand voltage (peak)	kV
Ur	Rated voltage	kV
U _r .t	Rated voltage factor and corresponding rated time	Vs
Isolation level	Rated isolation level	kV
Class M, E, C	Classification according to IEC	-
Operating sequence	Rated operating sequence	-
VA	Rated output	VA
CL	Accuracy Class	-
IAC	Internal Arc Classification	-
AFLR	Authorised personal only F = Front L = Lateral R = Rear	-

994.570 G01 05 9

2. XIRIA SYSTEM DESCRIPTION

2.1 Xiria System description

The Xiria switchgear panels are available for applications up to 24kV.

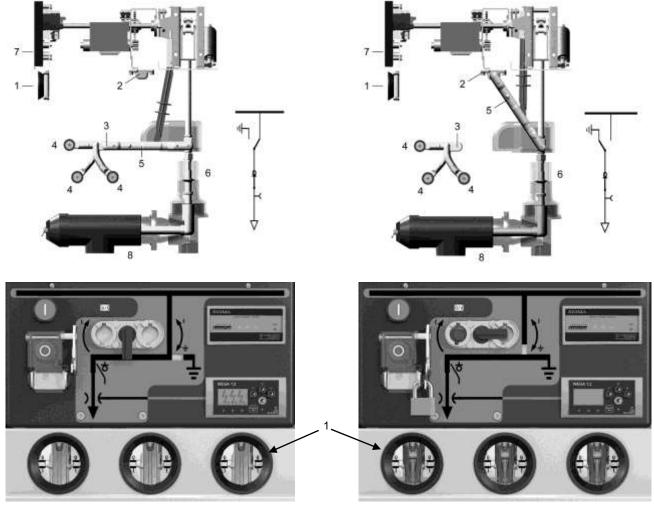
The system is fully metal enclosed and a highly compact and safe unit is achieved using high-quality internal insulation.

All live primary components of the unit and the main components of the drive mechanisms are housed in a fully sealed enclosure. This prevents any dust, moisture and other environmental factors from affecting the proper operation of the system.

The enclosure is also arc resistant and thus provides conditions of optimum safety for the operator. The cable compartments are available as an option in arc-proof configuration.

Different panel versions are available, among others:

- a vacuum load-break switch for ring cable connections;
- a vacuum circuit-breaker for the protection of mains transformers and cable connections.


The versions can be supplied in any combination and sequence.

The Xiria panels includes immediately visible position indication using viewing windows (1) on the control panel, see Figure 2-1.

The separation between cable and busbar system and the position of the vacuum interrupter are directly visible through the viewing windows. This also provides safe, visible and integrated earthing in combination with the short-circuit proof load-break switch or circuit-breaker.

Cables are connected with cable connection cones suitable for use with plugs.

2.2 Cross-section, single line diagram and list of functions

Cable connected to the busbar

Figure 2-1: Panel cross-sections and single line diagrams

- 1. Viewing window
- 2. Earth contact change-over switch
- 3. Busbar contact change-over switch
- 4. Main busbars
- 5. Change-over switch
- 6. Vacuum interrupter
- 7. Control panel
- 8. Cable connection

The position of the disconnector can be viewed via the windows (1).

Functions, load-break switch panel

- · Connect cable to busbar.
- · Disconnect cable.
- Connect cable to earth.
- Test cable.

Functions, circuit-breaker panel

• Connect cable to busbar.

Cable connected to earth

- Disconnect cable.
- Connect cable to earth.
- Protect outgoing feeder from overcurrents.
- Test cable.

F-T-N 994.570 G01 05 11

2.3 Technical specifications, general

Item	Explanation	Specification			
Weight of the heaviest			Nett (kg)	Gross (kg)	See delivery note for the
transport unit	1 panel		320	350	exact value
	2 panels		350	380	
	2 panels with p	olinth	410	440	
	3 panels		430	460	
	3 panels with p	olinth	520	550	
	4 panels		550	590	
	4 panels with p	olinth	670	710	
	5 panels		660	710	
	5 panels with p	olinth	810	860	
	Metering pane and CT's)	I (exclusive VT's	250	280	
	Metering panel (inclusive VT's and CT's)		400	430	
			Height incl.		Refer to the floor plan in
Unit dimensions	Width (mm)	Height (mm)	plinth (mm)	Depth (mm)	Appendix 1
1 panel	500	1325	1575	600	
2 panels (block type)	760	1305	1555	600	
3 panels (block type)	1110	1305	1555	600	
4 panels (block type)	1460	1305	1555	600	
5 panels (block type)	1810	1305	1555	600	
Metering panel	850	1325	1575	750	
Unit dimensions incl. packing					
1 panel	500	1600	1850	800	
2 panels (block type)	1200 1600		1850	800	
3 panels (block type)	1200 1600		1850	770	
4 panels (block type)	1555 1600		1850	770	
5 panels (block type)	1860	1600	1850	800	
Metering panel	1200	1600	1850	800	
Lifting and transport facilities		d with special lifting	-	t may only be	
Facilities to secure the Xiria		The base of the unit has openings to secure the unit to the floor, see section 3.2.5			

3. INSTALLING THE UNIT

3.1 Environmental requirements

3.1.1 Transport, assembly and storage conditions

If the temperature and humidity conditions specified in the order cannot be guaranteed during the transport, assembly and storage of the unit, preventive measures must be taken in consultation with Eaton.

Care should be taken not to damage the unit, even if the packaging has not been removed. The packaging is only intended to prevent minor damage.

During shipment all switches are to be switched to the earthed position (switch closed and change-over switch in earthed position).

Special preventive measures may be required to avoid:

- moisture absorption in the packaging as a result of rain, snow or condensation;
- vibrations during transport;
- damage to the pressure relief valves. If the unit is shipped by air, it should be carried in a cargo bay in which the air pressure is maintained at 1 atmosphere ±10% throughout the entire flight.

3.1.2 Ambient conditions

Item	Condition
Requirements for the floor and wall of the building.	 Minimum permissible floor loading 500 kg/m². The floor must be level and have a smooth finish to ensure that the carrier frame of the unit is evenly supported Provide cable recesses according to the floor plan (see Appendix 1). The cable recesses in the floor can be sealed to prevent rising damp. Polyurethane with a compact cellular structure can be used for this.
Requirements for clearances around the Xiria:	 At least 60 mm at the top. This is equivalent to a minimum height of 1365 mm for the operating area. Left and right hand side minimum 50 mm. Sufficient space should be available at the front and along the entire length of the unit for operational purposes and to be able to work safely with the normal test equipment. When the IAC classification is applied according to IEC62271-200 an arc channel shall be taken into consideration, see section 3.2.4.
Requirements for escape routes	When the unit is installed in an accessible area, escape routes shall be provided according to the local requirements.
Ambient conditions (IEC 62271-1)	Class –25 °C indoor.

3.2 Installing the unit

The unit is supplied packaged on a wooden pallet. Provision for lifting is fitted to the top of the unit, see Figure 3-1. The unit is secured to the pallet with bolts. Leave the unit on the pallet as long as possible, preferably until it reaches the assembly location.

The unit can be handled simply and safely providing the pallet and standard lifting equipment are used.

The installation of the unit includes the following actions:

- 1. Lifting.
- 2. Travelling.
- 3. Preparation prior to installation.
- 4. Installing the unit.
- 5. Securing to the floor.

E 17 • N 994.570 G01 05 13

3.2.1 Lifting

WARNING

The person in charge of lifting the Xiria unit must hold a certificate issued by the relevant authorities to certify that he/she is authorised to carry out these operations.

After installation the lifting equipment (1) must not be removed.

3.2.2 Travelling

The unit is supplied packaged on a wooden pallet. This means that it can be moved simply and safely on a pallet truck. Leave the unit on the pallet as long as possible and carry it on the pallet right up to the assembly location.

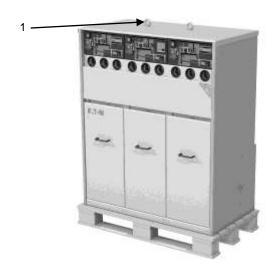


Figure 3-1: Fitting the lifting equipment

Figure 3-2: Single panel

Figure 3-3: Metering panel

14 994.570 G01 05 F.T.N

3.2.3 Preparation prior to installation

The location of the unit is required to meet the conditions stated in par. 3.1.2.

- 1. Remove the packaging and check the contents.
- 2. Remove the doors of the left- and right-hand panels, see Figure 3-4.

TIP

The door can only be removed if the panel is in the 'Cable earthed' position. See procedure in section 4.2.2.

- 3. Remove the 4 fixing bolts (1) (2 either side), see Figure 3-5 and then remove the pallet.
- 4. When positioning the unit check that:
 - the cable openings in the floor are in the correct position;
 - the floor is clean and level;
 - · the unit is not damaged.
- Slide the unit across the floor to its final location, if necessary. Apply a lever to the base plinths only. Take care not to damage the unit.

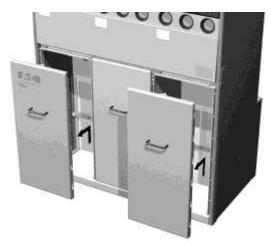


Figure 3-4: Opening the cable access door

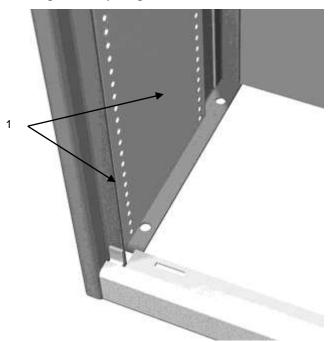


Figure 3-5: Location of fixing bolts

F-T-N 994.570 G01 05 15

3.2.4 Setting up the unit

The Xiria system has been designed in accordance with the recommendations set out in IEC 62271-200 which theoretically prevents internal faults from occurring. Moreover, when set up correctly, a Xiria unit will comply with this IEC standard for setting up with an arc channel. The pressure relief flaps in the Xiria enclosure are located at the rear and bottom of the unit, and they can be connected to the arc channel of the building.

The pressure relief flaps at the rear can be sealed off using a cover plate available separately as an option.

For further information see also the floor plan drawings in Appendix 1.

3.3 Connecting the cables

3.3.1 Types of cables

Single-core cables can be connected to the unit.

Three-core cables can be connected, if the dimensions of the associated splitting point fit into the cable compartment. See for the available space for cable connection plugs Table 3.

The following rules apply to a set-up with an arc channel:

- The channel is to be connected to a location where no danger can occur to personnel.
- The bore of the channel is to be a minimum of 0.15 m² and the channel itself requires to be capable of withstanding overpressure of at least 0.5 bar.
- The area the arc channel is connected to must be capable of withstanding the overpressure also.

3.2.5 Securing to the floor

- The Xiria unit must be fixed to the floor in four locations.
- The drilling pattern for fixing and cable holes is included in Appendix 1, 'Floor plan'.
- Use washers under bolt heads/nuts.

Table 3: Maximum dimensions for cable connectors inside the Xiria cable compartment

			Cable com	Door lock		
Panel type			Arc resistant	Non arc resistant		
			A (mm)	A (mm)	B (mm)	C (mm)
Circuit-breaker	200 A	Elbow plug connector type A	238	240	36	37
Circuit-breaker	500 A	Bolted T connector type C	195	197	36	37
Circuit-breaker	630 A	Bolted T connector type C	195	197	36	37
Load break switch	630 A	Bolted T connector type C	277	279	36	37

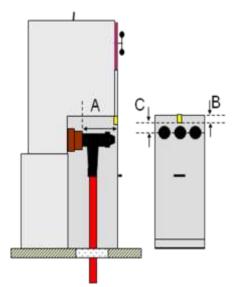


Figure 3-6: Xiria cable compartment

Table 4: Short-circuit capacity in relation to cable cones used

	Cone type EN 50181	I [A]	Maximum short-circuit current	Plug type	Cable type
Load-break switch	С	630	17.5-24kV 16kA-1s 3.6-12kV 20kA-1s	bolted T-plug M16	Cu/Al XLPE Cu/Al XLPE
Circuit- breaker	А	200	17.5-24kV 16kA-0.6s 3.6-12kV 20kA-0.4s	plug type L plug	Cu/Al XLPE Cu/Al XLPE
Circuit- breaker	С	500	17.5-24kV 16kA-1s 3.6-12kV 20kA-1s	bolted T-plug M16	Cu/Al XLPE Cu/Al XLPE

3.3.2 Cable assembly instructions

Strain relief

Strain relief prevents mechanical forces from being transmitted to other parts of the unit via the cable connection point.

Each panel is provided with three single phase plastic cable clamps or one three phase plastic cable clamp (Figure 3-7).

Assembly (standard)

WARNING

At delivery each cable cone type C is provided with a "temporarily" mounted allen key transport bolt M16 x 30.

These bolts must be removed before connecting the cable.

- Plinths can be removed for each panel when fitting the cables if so desired.
- Connect the cables to ensure that no mechanical forces are created at the cable connection point.
 The maximum torque for a C-type cone is 70 Nm.

The weight of the cable and tensile forces originating from the cable must be absorbed by the cable clamp blocks on the cable support.

- Secure all cables using cable clamp blocks. This is in order to enable the short-circuit forces to be absorbed in the event of any short-circuit occurring.
- Seal all cable recesses in the floor properly. Use polyurethane with a compact cellular structure, for instance. This will protect the cable connection compartment from rising damp and vermin.
- The cable clamp blocks are mounted on an adjustable frame in the cable connection compartment. The bolts through the plastic cable clamps must be tightened to a torque of 20 Nm.

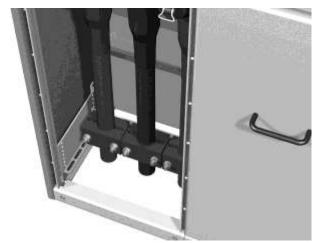


Figure 3-7: Cables with plastic cable clamps

F-T-N 994.570 G01 05 17

Assembly steps if current transformers are installed around the primary cable

The same steps should be followed as described at the standard assembly. For easy connection of the primary cables the current transformers in the cable compartment can be removed and remounted. For this the following steps should be taken:

- Open the cable compartment according to the standard instructions.
- Remove the current transformers for protection (A) by removing the two bolts on the front (B). The secondary wiring does not need to be disconnected.
- Behind these current transformers a mounting plate fixed with bolts (C) becomes visible.
 Remove these bolts and remove the mounting plate.
- The current transformers for metering (D) can now be lifted and removed, also remove the tywrap from the secondary wiring. The secondary wiring does not need to be disconnected.
- Lead the primary cables through the current transformers and remount the current transformers as described above.

After remounting the current transformers the earth screen connections of the primary cables must be connected to earth via the premounted earth wires (F). In this case any earth current through these connections will not influence the metering results.

Connection of the primary cables when cable side voltage transformers are installed

Due to the limited mounting space inside the cable compartment the primary cables and the voltage transformers are connected with connectors make Tyco type RSTI 58. The connectors and cables for the voltage transformers are pretested and preassembled on the cable cones of the circuit-breaker. Parallel on these preassembled connectors the connectors (type RSTI CC58) for the primary main cables can be mounted at site.

Figure 3-8

- 1. Current transformers for protection
- 2. Current transformers for metering
- 3. Cable clamps
- 4. Cable side voltage transformers

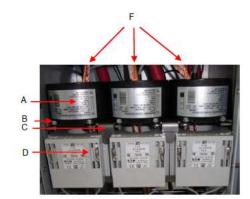


Figure 3-9

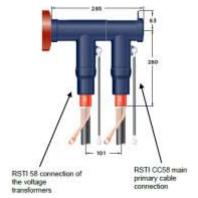


Figure 3-10: Cable connector

994.570 G01 05

3.3.3 Replacing the cable connection cone

Damaged cable connection cones can be easily replaced by our service department. A different type of cone can also be fitted in the circuit-breaker panel at a later stage. Two types are available, A and C in accordance with EN 50181. Contact Eaton for further details.

3.3.4 Applying test current and test voltage to the cable

If cable side voltage transformers are installed in the panel make sure the primary cables are disconnected from the pre-assembled connectors for the cable side voltage transformers.

The unit is suitable as standard for the following test voltages, for a maximum of 10 minutes per phase:

System	Test voltage
voltage	(DC or AC-peak value)
24 kV	60 kV
17.5 kV	45 kV
12 kV	30 kV
7.2 kV	30 kV

WARNING

Test accessories are needed to apply test current and test voltage to the connected cables.

- 1. Earth the unit in accordance with section 4.2.2.
- Install the specified test accessories in accordance with the instructions of the plug and test accessory suppliers.
- The switch must not be activated until you and the person responsible for the unit are satisfied that the earthed connection can be opened safely with the switch.
- The unit requires to be earthed again in accordance with section 4.2.2 before the test accessories are removed on completion of the work.
- 5. Safety precautions:
 - The unit must be isolated from any possible normal source of supply, other than the test device.
 - Under no circumstances must it be possible for the unit to be powered up again by any source other than the external supply used for voltage testing.
 - The applicable safety measures must be applied with respect to all personnel present during voltage testing.

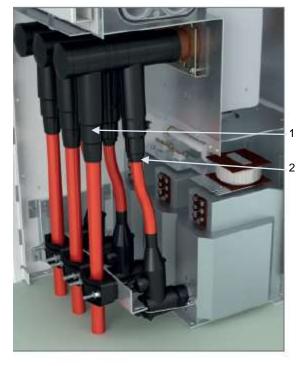


Figure 3-11

- 1. Primary cable
- 2. Pre-assembled connectors

F-**T**-**N** 994.570 G01 05 19

3.4 Connection of station earthing

The Xiria unit can be connected either to the left or to the right of the station earthing. An earth bar, to which the earth screens of the power cables and the system earth can be connected, is located at the rear of every cable connection compartment.

See Figure 3-12.

The earth bar is provided with 10 mm holes on both ends outside the unit for the connection of the system earth. Three M8 nuts are mounted on the earth bar in each cable compartment for the connection of the earth screens of the power cables.

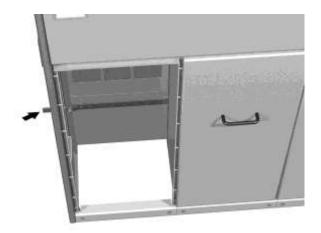


Figure 3-12: Earth bar

3.5 Access to secondary compartment

The front plate requires to be removed in order to gain access to the secondary compartment.

Procedure (standard)

- 1. Remove the screws at the bottom of the front plate, see Figure 3-13.
- 2. Move the bottom of the front plate forward, lower it and remove it, see Figure 3-14.
- 3. The secondary compartment is now accessible.

Figure 3-13: Position of front plate fixing screws



Figure 3-14: Removing the front plate

Procedure (Xiria E with top-unit)

- 1. Open top-unit with key.
- 2. The secondary compartment is now accessible, see Figure 3-15.

Figure 3-15

- Open integrated low voltage compartment, see Figure 3-16.
- 2. The secondary compartment is now accessible.

Figure 3-16

994.570 G01 05 21

4. OPERATION

4.1 Details of control panel

The Xiria unit is equipped with two types of control panel, one for the load-break switch panel and one for the circuitbreaker panel.

- 1. Earthed position interlock for padlock max. 12 mm.
- 2. Padlock facility for off pushbutton
- 3. Off pushbutton with anti-reflex flap
- 4. Electrical closing pushbutton for motor control (option)
- 5. Switch position indicator
- 6. Switch control point
- 7. Switch function indicator
- 8. Selector control knob
- 9. Change-over switch control point
- 10. Change-over switch position indicator
- 11. Trip indicator CB (option)
- 12. Ammeter CB (option)
- 13. Cable side voltage detector
- 14. Short-circuit indicator LBS (option)
- 15. Inspection window
- 16. Moisture indicator
- 17. Door interlock

Figure 4-1 provides a summary of the control units on the control panels.

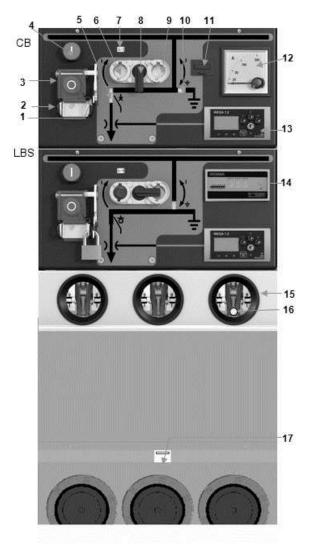


Figure 4-1: Control panels

4.2.1 Switching operating position on/off

In the operating position the cable is connected to the main busbar of the unit. Here, the switch (5) is ON and the change-over switch (8) is in the busbar position. Initial position:

In the neutral position (see Figure 4-2):

4.2 Manual switching

- the switch is OFF, see switch (4) position indicator;
- the change-over switch is in earthed position, see change-over switch (9) position indicator;
- The selector (7) is in the central position.

This initial position has been selected to ensure that all switching operations are described. If the change-over

switch is already in the busbar position, for instance during switching on, switching with this change-over switch is omitted.

Procedure for switching on the operating position

- Turn the selector (7) clockwise until the control point of the change-over switch (8) is revealed.
- 2. Place the operating handle with the arrow pointing down in the control point of the change-over switch (8). Switch the change-over switch to the busbar position by turning the handle anti-clockwise as far as it will go, i.e. to approximately 190°. Additional resistance will be noticeable towards the end of this rotation. The handle cannot be removed until busbar position of the change-over switch has been reached.

- Remove the handle and check that the position indicator (9) of the change-over switch indicates the busbar position.
- 4. Turn the selector anti-clockwise until the switch control point (5) is revealed.
- 5. Place the operating handle with the arrow pointing up in the switch control point (5). Switch the cable to busbar by turning the handle clockwise as far as it will go, i.e. to approximately 190°. The mechanism will switch audibly at that point.
- Remove the handle and check that the position indicator (4) of the switch indicates the ON position.
 In the viewing window the closed operating position is also visible (see Figure 4-3).
- 7. Turn the selector (7) back to the central position, both openings (5) and (8) will then be covered.

Note

On performing wrong switching operations the operation handle will bend to avoid damaging the mechanism.

Procedure for switching off the operating position

- 1. Press the opening button (3).
- Check that the position indicator (4) of the switch indicates the OFF position.
 In the viewing window the opened operating position is also visible, see Figure 4-4.
- 3. Turn the selector (7) back to the central position, both openings (5) and (8) will then be covered.

Procedure for switching the operating position to the neutral position

- Turn the switch off with the opening button (3). Check that the position indicator on the switch (4) indicates the OFF position.
- 2. Turn the selector (7) clockwise so that the control point for the change-over switch (8) is revealed.
- 3. Place the operating handle with the arrow pointing up in the control point of the change-over switch (8). Turn the change-over switch in earthed position by rotating the handle190° clockwise until you start to feel some resistance. Additional resistance will be noticeable towards the end of this rotation. The handle cannot be removed until earthing position of the change-over switch has been reached.
- 4. Remove the handle and check that the position indicator (9) of the change-over switch indicates the earthed position.
- 5. Turn the selector (7) back to the central position, both openings (5) and (8) will then be covered.



Figure 4-2:Neutral position

Figure 4-3: Closed operating position

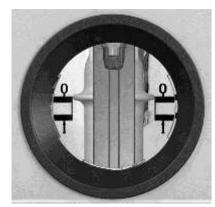


Figure 4-4: Opened operating position

F.1 **N** 994.570 G01 05 23

4.2.2 Switch cable earthing on/off

In the operating position, the cable is connected to the main busbar of the unit; the switch is ON and the changeover switch is in the busbar position.

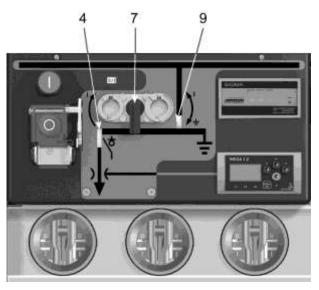


Figure 4-5: Panel in neutral position

Initial position:

In the neutral position (see Figure 4-5):

• selector (7) is in the central position.

• the switch is OFF, see switch (4) position indicator;

• the change-over switch is in earthed position, see

position indicator of change-over switch (9);

Figure 4-6: Panel in earthed position

Procedure for switching cable earthing on

- Check the position indication to verify that the changeover switch is in the earthed position. An additional option is available to inspect the position of the change-over switch through windows (14) at the front, see Figure 4-5. Check the position of all three phases: use a torch to provide additional light through an adjacent window;
 - check the position of the change-over switch; Figure 4-7 shows the change-over switch in the earthed position;
 - Figure 4-8 shows the busbar position; repeat this procedure for the other two phases.
- 2. If the panel is not in neutral position, put it in this position now, see section 4.2.1.
- 3. Turn the selector anti-clockwise, the control point of the switch (5) is revealed.
- 4. Use the built-in voltage detector to check that the cable is dead.

Arrows and dots visible:

Detector is functioning correctly and the cable is live:

Arrows and dots not visible: cable is dead.

Note

The visible dot shows that the detector is functioning correctly in accordance with the demands for voltage detecting systems as described in VDE 0682 art. 415.

This is a continuous internal function check.

Figure 4-7: Change-over switch in the earthed position

Figure 4-8: Change-over switch in the busbar position

- 5. When the arrows and dots are not visible then check the operation of the voltage detection using the voltage detection tester (18) see Figure 4-9:
 - a. insert the tester plugs in the contact sockets "earth" and L1. Test the detector by pressing the tester button.
 - The tested phase arrow and dot should now be present;
 - b. repeat the test for L2 and L3.
 - if one or more arrows and dots do not appear, this
 might be the result of a faulty voltage detector.
 Should this be the case contact Eaton. Ensure by
 other means that the cable is dead before carrying
 out any further switching operations.
- 6. When the arrows and dots are visible then the functionality of the voltage detector can be tested as follows:
 - a. Connect a wire from the tester between the contact sockets "earth" and L1. The arrow and dot indication from this phase must disappear.
 - b. Repeat this test with the phases L2 and L3.

Note

The detector also has a piezo test button on the front for testing the LCD screen only.

- 7. Earth the cable by turning the switch ON. Insert the operating handle with the arrow pointing up in the switch control point. Turn the handle 190° clockwise. You will hear the mechanism switch. Remove the operating handle. The cable is now connected to earth.
- 8. Put the selector in the central position so that both control openings are covered.

The integrated earthing of the Xiria panel is now ON; the cable is earthed to be short-circuit proof through the switch. The earthed position can now be locked as described in par. 4.3.2.

Procedure for switching cable earthing off

- 1. Check whether the cable earthing can be switched off.
- Remove the padlock from the earthed position interlock (if it is still in place), as described in par. 4.3.2.
- 3. Switch OFF the switch of the relevant panel with push button (3).
- 4. Check that the position indicator on the switch (4) indicates the OFF position.
- 5. Rotate the selector (7) back to the central position; both openings will be covered.

The panel is back in the neutral state:

switch OFF;

FAT•N

• change-over switch to earth.

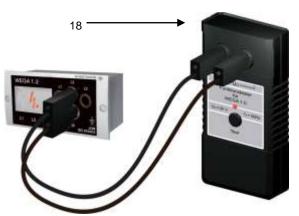


Figure 4-9: Using the tester

4.2.3 Gaining access to cable

Note

When gaining access to the cable, the following basic rules apply at all times:

- · Disconnect the cable at both ends.
- The panel must be in the closed earthed position.
- Secure this internal earthing by locking it with a personal padlock.
- Verify that the cable can never be made live from the other end.
- On request a visible back-up earth can be installed in accordance with the cable plug supplier's instructions.

Procedure

- Switch on the integrated cable earthing in accordance with the instructions in section 4.2.2.
- 2. To open the cable connection compartment:
 - check, using the single line diagram and position indicators, whether the cable on the panel to be opened is earthed;
 - open the cable connection compartment by lifting the door and moving it forward
 Figure 4-10.
- Put up a "cable earthed" warning sign.
- Use a high voltage tester to verify that the cable is dead. Follow the cable connection supplier's instructions.

Note

The cable compartments are available as an option in arc-proof design. The cable access doors of this optional version are not interchangeable with the standard doors.

- Now if requested a visible back-up earth can be installed by:
 - connecting the earth terminal on the back-up earth to the earth bar in the cable connection compartment, see Figure 4-12;
 - fit the earthing equipment, according to the plug supplier's instructions, to all three phases of the cable connection, see Figure 4-11.

TIP

It is still possible, however, to open the switch or circuit-breaker in this situation. This may be necessary in order to measure the cable. If the switch requires to be interlocked against being closed on in this situation, the scissor-type interlock (section 4.3.4) can be used for this purpose.

6. The panel requires to be returned to the neutral position on completion of the operations.

Proceed as follows:

- remove the back-up earthing equipment when this is mounted;
- connect the cable connection plugs according to the supplier's instructions;
- close the cable access door;
- · remove any earthing interlocks fitted;
- open the switch.
- · check the position indicator.

TIP

The above switching operations are summarised for experienced users in tables shown in section 4.5.

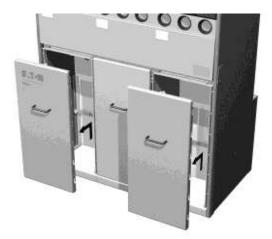


Figure 4-10: Opening the cable connection compartment

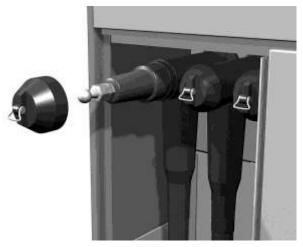


Figure 4-11: Example of an isolated plug with an earthing point

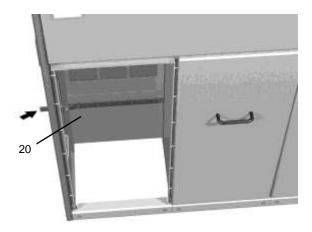


Figure 4-12: Earth bar in the cable connection compartment

4.3 Interlocks

The Xiria unit is equipped as standard with built-in interlocks to prevent accidental switching operations. These interlocks are mechanical interlocks.

LIFE HAZARD

Undesirable switching operations could result in the following:

- danger to personnel (operating and service personnel);
- · failure of power supply;
- · damage to the unit.

WARNING

If a (switching) action cannot be achieved with normal operating force:

- Check against section 4 whether the action to be carried out is permissible;
- Notify Eaton-ESS if the action is permissible according to the switching tables but cannot be accomplished with normal operating force.

4.3.1 Built-in interlocks

The following interlocks have been applied:

- Interlock to prevent cable access from being opened if cable is not earthed. Note: Once the cable access has been opened, the panel can be switched off to carry out cable tests; this interrupts the cable-earth link.
- Interlock to prevent operation of the change-over switch when the circuit-breaker or load-break switch is active.
- In order prevent reflex attempts to switch off a shortcircuit after switching on, the opening button is equipped with an anti-reflex flap (1).

A number of switching positions can also be interlocked with padlocks.

WARNING

After any temporary absence, check that the necessary interlocks and eventually mounted back-up earths are still in place.

4.3.2 Earthed position interlock

The earthed position interlock is intended to prevent the cable earthing from being interrupted unintentionally. Cable earthing is achieved via the load-break/circuit breaker switch; it therefore requires to be locked against opening to be sure that the cable is earthed.

Once this interlock has been installed, the following operations are no longer possible:

- Turning off the switch with the opening button.
- Electrical disconnection of the switch by the protective relay.
- Opening the door of the cable compartment.

The earthed position interlock can be installed if (see section 4.2.2):

- the change-over switch is in the earthed position;
- the switch is ON;
- the cable access door is closed;
- the flap in front of the opening button is fully placed in front of this button.

The interlock is used as follows, see Figure 4-13

- 1. Turn the selector (7) anti clockwise.
- 2. Place the cover flap fully in front of the opening button (A)
- 3. Pull part B to the front, part C will automatically move downward and part B stays in position (Figure 4-13 C).
- Put the hasp of the padlock (D) through the hole on the right (Figure 4-13 D).
 - The hasp diameter can be 1-12 mm.
- 5. The earth position is now interlocked, including the cable access door and the opening button.
- 6. Put up a "cable earthed" warning sign if needed.

Remove the interlock as follows:

- 1. Remove the padlock D (Figure 4-13 D).
- Push part C upwards, part B will automatically move backwards (Figure 4-13 C).
- 3. The earth position interlock is removed.

Figure 4-13

F 1 1 · N 994.570 G01 05 27

4.3.3 Interlock for circuit-breaker/load-break switch opening button

The interlock on the opening button is to prevent the switch from being unintentionally opened. Once this interlock is in place, the flap in front of the opening button can no longer be lifted. The switch can no longer be switched off manually. However, switching off by the protective relay, if fitted, or the optional remote control remains possible. This interlock can be applied in every position of the panel.

Installation is as follows:

Hook a padlock (19) through the hole below the opening button, see Figure 4-14.

A paslock with a hasp of 1 - 12 mm can be applied.

This interlock is intended to prevent the unintentional closing of the switch and operation of the change-over switch.

When the interlock is in place, the operating handle cannot be inserted in the control points. However, turning off via the opening button and by the protective relay of the circuitbreaker remain possible.

Installation is as follows:

- 1. Turn the selector (7) anticlockwise until the switch control point is revealed.
- 2. Fit the scissor-type interlock (21) in control aperture, see Figure 4-15.
- Engage the scissors so that the openings are aligned.
 Pass a padlock (19) through both holes, see
 Figure 4-16.

Figure 4-14: Padlock on opening button

Figure 4-15: Installing the scissor-type interlock



Figure 4-16: Padlock on scissor

4.4 Signals

The Xiria unit features voltage detectors on the cable side and can be fitted with overcurrent indicators and trip indicators as options.

4.4.1 Voltage detectors

The Xiria unit features voltage detectors in the control panel (12) conform IEC 61243-5 with LRM interface.

The voltage detector includes an LCD screen with indication arrows and dots, one for each phase, see Figure 4-17. These arrows and dots are present when the cable is live.

The voltage detector detects wheather the operating voltage is present at the cable connection of the panel concerned.

Note

The visible dot shows that the detector is functioning correctly in accordance with the demands for voltage detecting systems as described in VDE 0682 art. 415.

This is a continuous internal function check.

In combination with the ORION 3 tester the voltage detectors can also be used for phase comparison between two adjacent live cables.

See appendix 4 for further information.

4.4.2 Overcurrent indicator

The overcurrent indicator (13), see Figure 4-18 is activated by an overcurrent.

See Appendix 5 for further information.

4.4.3 Trip indicator

The trip indicator (10), see Figure 4-19, indicates whether the switch has been switched off by the protection relay. Resetting can be done by hand via the reset button on the front.

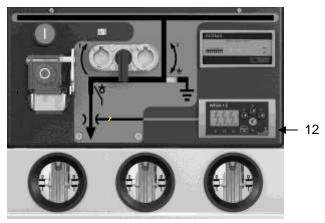


Figure 4-17: Voltage detectors



Figure 4-18: Overcurrent indicator

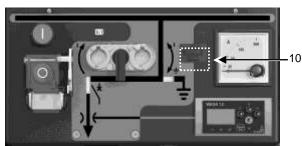


Figure 4-19: Trip indicator

E -T • N 994.570 G01 05 29

4.5 Short-form instructions

In these short-form instructions the following procedures are described:

- From closed service position to closed and locked earthed position.
- From closed and locked earthed position to closed service position.

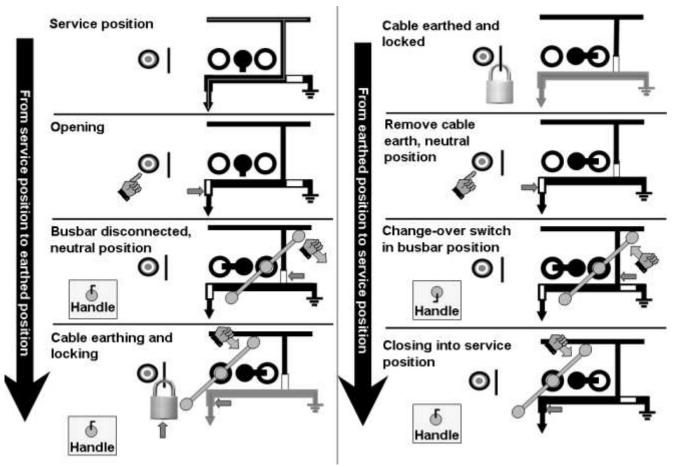


Figure 4-20: Short-form instructions

5. REMOTE SIGNALLING AND REMOTE CONTROL

TIP

For correct connection and operating voltages see the circuit diagrams delivered with the unit.

Remote signalling and electric remote control are available as options for Xiria switchgear units.

Note

Remote control is suitable for a maximum switching frequency of once a minute.

5.1 Connection

The unit concerned is fitted in the secondary space behind the front plate or in the top-unit with a cable duct (2) and secondary terminal strip (1).

The wiring to be connected to the terminal strip can be brought in through the side wall either from the left or the right-hand side or via the flexible plate (3) in the top plate of the top-unit.

5.2 Remote signalling (option)

The positions of the:

- · load-break switch or circuit-breaker;
- · change-over switch;
- (optional) trip indicator;
- (optional) overcurrent indicator;

are connected to the terminal strip using auxiliary contacts.

5.3 Remote control

5.3.1 24 V DC Remote tripping (option)

The panels concerned are provided with:

- · auxiliary contacts as described under remote signalling;
- a controller;
- a trip coil.

If the supply voltage < > 24 V DC, then an optional universal voltage converter is mounted.

For on-site commissioning:

- 1. Check that the power supply is live.
- Use the position indicator (9) to check whether the change-over switch is fully in the busbar position or in the earthed position.
- 3. Use the position indicator (4) to check whether the load-break switch or circuit-breaker is closed.
- 4. The control knob for the selector (7) should be in the central position.
- Tripping will follow once the closing contact on the relevant terminals of the terminal strip is closed.

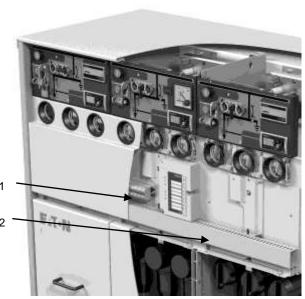


Figure 5-1: Secondary space with cable duct and terminal strips

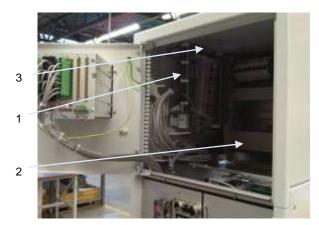


Figure 5-2

E 1 • N 994.570 G01 05 31

5.3.2 24 V DC Remote closing (option)

The panels concerned are provided with:

- · auxiliary contacts as described under remote signalling;
- a controller;
- · a trip coil;
- a closing motor;
- a closing pushbutton on the frontside of the panel. If the supply voltage < > 24 V DC, then an optional universal voltage converter is mounted.

For on-site commissioning:

- 1. Check that the power supply is live.
- Use the position indicator (9) to check that the change-over switch is fully in the busbar position.
- 3. The control knob for the selector (7) should be in the central position.
- Closing will follow once the load-break switch or circuit-breaker is opened and the closing contact on the relevant terminals of the terminal strip is closed. The closing procedure starts with the spring being tensioned, the actual closing takes place after approx. 12 seconds.

5.4 24 V DC Tripping for external protection

(option only for circuit-breaker)

The panels concerned are provided with a trip coil only for 24 V DC. An optional universal voltage converter is not possible in this design.

For on-site commissioning:

- 1. Check that the supply voltage is live.
- Use the position indicator (9) to check whether the change-over switch is fully in the busbar position.
- Tripping will follow once the circuit-breaker is closed and the tripping contact on the relevant terminals of the terminal strip is closed.

5.5 Local closing

The panels concerned can also be switched on locally using the local electrical closing pushbutton. This is subject to the same conditions as the remote closing cycle.

Press the electrical closing pushbutton in order to close (1).

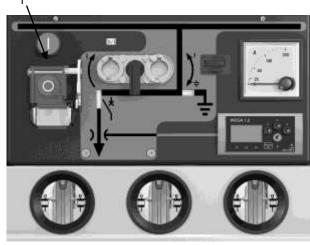


Figure 5-3: Control elements

6. INSPECTION AND MAINTENANCE

6.1 Introduction

The XIRIA unit is theoretically a maintenance-free system. No specific components need to be maintained. All primary, live components are maintenance-free and are housed in a sealed gas-tight enclosure. All other components have also been designed to be maintenance free.

The following components can be inspected:

- correct fixing of cable and earth connections;
- · enclosure for damage and contamination;
- protection relay;
- switching functions;
- · voltage detection;
- · the overcurrent indicator.

6.2 Inspections

6.2.1 Inspecting cable connections

Inspect the cable connection in accordance with the following procedure:

- Open the cable connection compartment in accordance with the procedure described in section 4.2.3.
- 2. Clean the compartment with a dry cloth.
- Check the cable plug connection according to the plug supplier's instructions. Ensure that the cable does not impart any mechanical strain on the plug. The cable forces are to be absorbed by the cable support, see 'Strain relief' in section 3.3.2.
- Check the cable support. The cables must be secure in the cable clamp blocks. Check that the bolts are still tightened to a torque of 20 Nm, see Cable assembly instructions in section 3.3.2.
- 5. Check the earth connections:
 - between cables and earth strip;
 - between earth strip and enclosure;
 - between earth strip and system earth;
- 6. Close the cable connection compartment.

6.2.2 Inspecting switching functions

Inspect the switching functions in accordance with the following procedure:

- Check with the person responsible for the unit whether the relevant unit is disconnected and ready for inspection.
- Verify, in consultation with the person responsible for operations, that the relevant panel is disconnected so that the inspection can be carried out safely. Satisfy yourself at the same time that the cable connected is and will remain dead.
- 3. Place the switch in the OFF position and the changeover switch in the earthed position, see section 4.2.
- 4. Complete all switching operations described in section 4.5 Short-form instructions. Always carefully check that the operation produces the desired result. Check the position indicators on the control panel and the actual position of the change-over switch and the vacuum interrupter through the viewing windows. See section 4.2.2.
- If an operation has not produced the required result according to the position indicators or when the actual position of the change-over switch is checked, shut down the unit and inform Eaton-ESS.

F.1**↑**N 994.570 G01 05 33

6.2.3 Inspection of the moisture absorbing agent

Check the operation of the moisture absorbing agent in the unit with a colour indicator. This is located behind the centre viewing window of the right-hand panel (see Figure 6-1).

The indicator should be pale blue in colour.

Under normal operating conditions the moisture level inside the Xiria unit is <15% due to the Silica Gel bag placed inside before the enclosure is sealed.

When the moisture indicator turns to pink instead of blue the moisture level inside the switchgear unit is more than 40%.

The type testing of the Xiria unit has been carried out with the enclosure flaps open under normal atmospheric humidity conditions of > 50-60%.

When a too high level of humidity is detected by a pink coloured indicator (e.g. at annual inspection), then the unit can still be safely switched but arrangements should be made for the unit to be taken out of service.

A first visual inspection can be made to check for damages to the outside of the enclosure, but where there is no visible damage detected, Eaton can assist in a further investigation into the loss of integrety of the enclosure and possible rectification.

6.2.4 Testing voltage detection

Refer to Appendix 2 of this manual for inspection and maintenance of the voltage detection system.

6.2.5 Inspecting the protection relay

Refer to the manual provided by the relay manufacturer for inspection and maintenance of the protection relay.

6.2.6 Inspecting the overcurrent indicator

Refer to Appendix 4 of this manual for inspection and maintenance of the overcurrent indicator system.

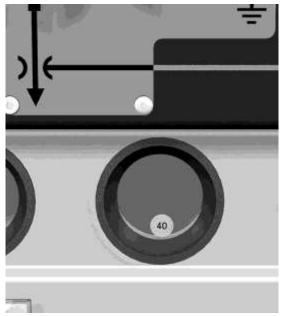


Figure 6-1: Moisture indicator

6.3 Decommissioning the unit

6.3.1 Material processing after dismantling

Eaton pays a great deal of attention to the environmentally-friendly design aspects of its units and installations. Eaton designs and manufactures in accordance with the ISO 14001 environmental standard. As far as we are currently aware, Xiria designs do not include any raw materials or other materials that pose a threat to the environment. It is reasonable, therefore, not to expect any problems when Xiria products are processed as waste products at the end of their service life. The materials used in Xiria units are suitable for re-use. At the end of the service life of a unit, specialised companies will be able to dismantle a unit which has been disposed of. All materials used are suitable for recycling.

An 'Environmental declaration', stating which materials and material quantities are used in Xiria installations, is available upon request.

Check out local regulations prior to dismantling your old installation.

TIP

Eaton can deal with dismantling the unit, as well disposing of and processing materials.

7. ACCESSORIES AND OPTIONS

7.1 Supplied accessories

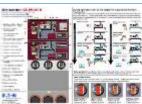
Accessories

668251

Operating handle 135 mm for ON-OFF switching of the circuit-breaker and the load break switch and for busbar-earth position selection of the change-over switch.

668270

Operating handle 510 mm needed for operation of a Xiria unit inside a compact transformer station with limited access in the front area.



688644

Document holder on the side to store documents and the short operating handle.

Quick reference card, showing the basic operations for ON-OFF switching, earthing and testing. Available in multiple languages.

Operating and maintenance manual, available in multiple languages.

F-T-N 994.570 G01 05 35

Xiria

665417	Scissor type interlock, used in combination with a padlock inserted in the	30
	access hole for the vacuum Interrupter. It prevents switching ON and it prevents the operation of the change-over switch.	6-1
107926	Padlock, used in combination with the scissor type interlock and for padlocking the earth interlock on the front.	6
107079	Warning sign, used when a panel is switched ON in earthed position and any further manual operation is not allowed.	OD ENTINESSON
	Rear cover, used when the switch room has no rear internal arc exhaust channel.	
E6055889	Adapter WIC1-PC3. Used to connect the WIC1-1PE protection relay to a computer (laptop) via a USB connection for setting the protection parameters or retrieving the data stored in the relay memory. Including connection cables and software.	OFO.
E6055901	Tester type WIC1-TU. Used for on site diagnostic test of the WIC1 protection relay.	
E6046006	Phase sequence indicator type Orion 3.0. Used for voltage test, phase sequence test and interface test of the voltage detecting unit type WEGA. The WEGA units are used on Xiria switchgear since December 2009.	
E6046005	Phase sequence indicator type Orion Compare. Simplified version of the Orion 3.0. Used for voltage test and phase sequence test of the voltage detecting unit type WEGA. These voltage indication units are used on Xiria switchgear since December 2009.	
E6046007	Functional tester for WEGA voltage detecting units. The WEGA units are used on Xiria switchgear since December 2009.	

36 994.570 G01 05 F.T.N

		ns
•	v	

E6042323 Short circuit indicator type SIGMA. It detects short-circuit currents in medium-voltage distribution networks. It consists of a display unit accommodated in a plug-in housing for panel mounting and three current transformers for short circuit sensing. 668002 Short circuit indicator type ALPHA-M. It detects short-circuit currents in medium-voltage distribution networks. It consists of a display unit accommodated in a plug-in housing for panel mounting and three current transformers for short circuit sensing. The ALPHA-M unit is provided with a small mechanical generator on the front to reset and test the short circuit indication. Cable fixing clamps for primary cables. 665868 36-52 mm single phase cables. 665997 26-38 mm single phase cables. 665867 75-100 mm three phase cables. Voltage detector with LCD screen make Horstmann type WEGA 1.2 E6015230 3-4.15 kV E6015231 6-7.2 kV 10-15 kV E6015232 E6015233 17.5-24 kV Voltage detector with LCD screen make Horstmann type WEGA 2.2. Equal to the 1.2 version, however including aux.voltage connection and signalling contacts. 6038501 Mounting plate for mounting a WEGA detector in existing front panel with legacy LED indication. Ammeter make ELEQ with current transformer in phase L2 in cable compartment (on circuit-breaker only). Trip indicator (for circuit-breaker only). E665245 SZ4H without aux. contact. E665246 SZ5H with aux. contact.

E665258 Protection relay make Woodward SEG type WIC1-1PE Setting via adapter for computer connection.

EAT • N 994.570 G01 05

Options

E569882

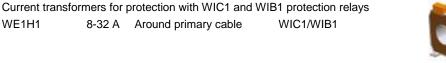
Protection relay make Woodward SEG type WIC1-2PE Setting via DIP switches on the front.

E569884

Protection relay make Woodward SEG type WIC1-3PE Setting via HEX switches on the front.

E6056904

Protection relay make Woodward SEG type WIB1-2PE Setting via DIP switches on the front.



E6031210

Protection device type TLF (Time Limit Fuse protection) Setting via LV fuses on the front. Fuses are make GE Power Controls type XF.

E6056903 WE1H1

E665267	WE2H1	16-56 A	Cone A	WIC1/WIB1
E665251	W3H1	32-112 A	Cone A	WIC1/WIB1
E665252	W4H1	64-224 A	Cone A	WIC1/WIB1
E665253	W5H1	128-448 A	Cone A	WIC1/WIB1
E6014721	WE2H3	16-56 A	Cone C	WIC1/WIB1
E6014719	W3H3	32-112 A	Cone C	WIC1/WIB1
E6014720	W4H3	64-224 A	Cone C	WIC1/WIB1
E6015274	W5H3	128-448 A	Cone C	WIC1/WIB1

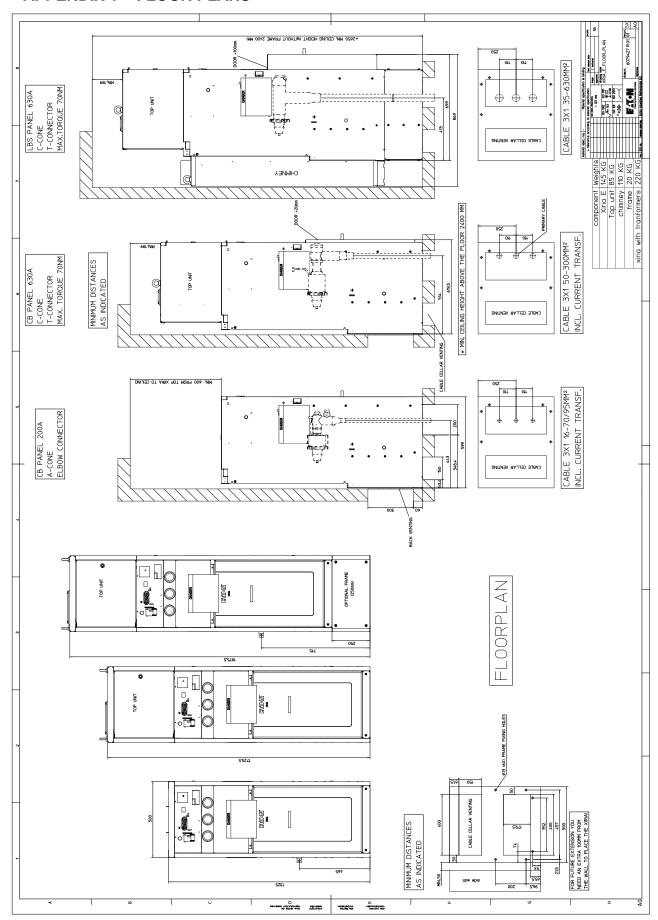
Legacy options (still available)

612441

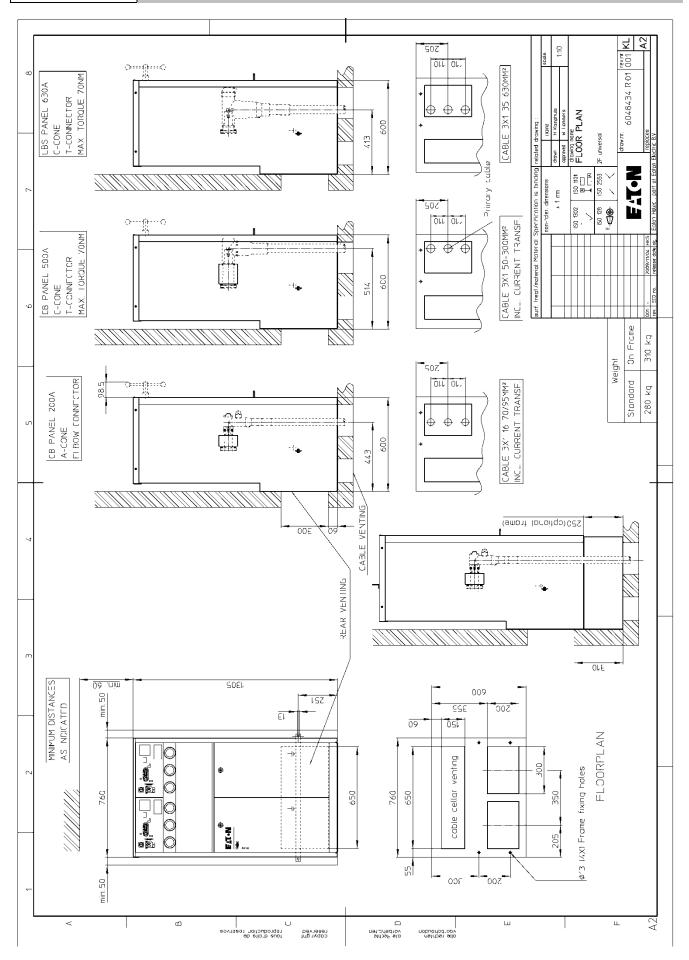
Piezo tester type CL.

Used for legacy voltage detection units with LED type voltage detection type JB. Production of these voltage detectors has been stopped end 2009.

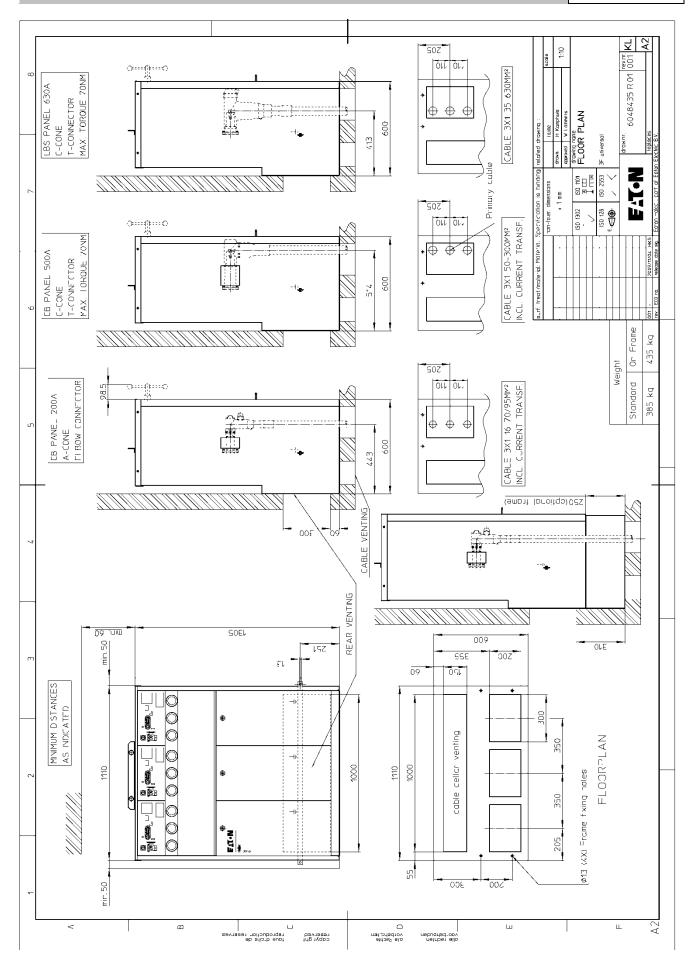
E569987


Phase sequence indicator type SPC6000

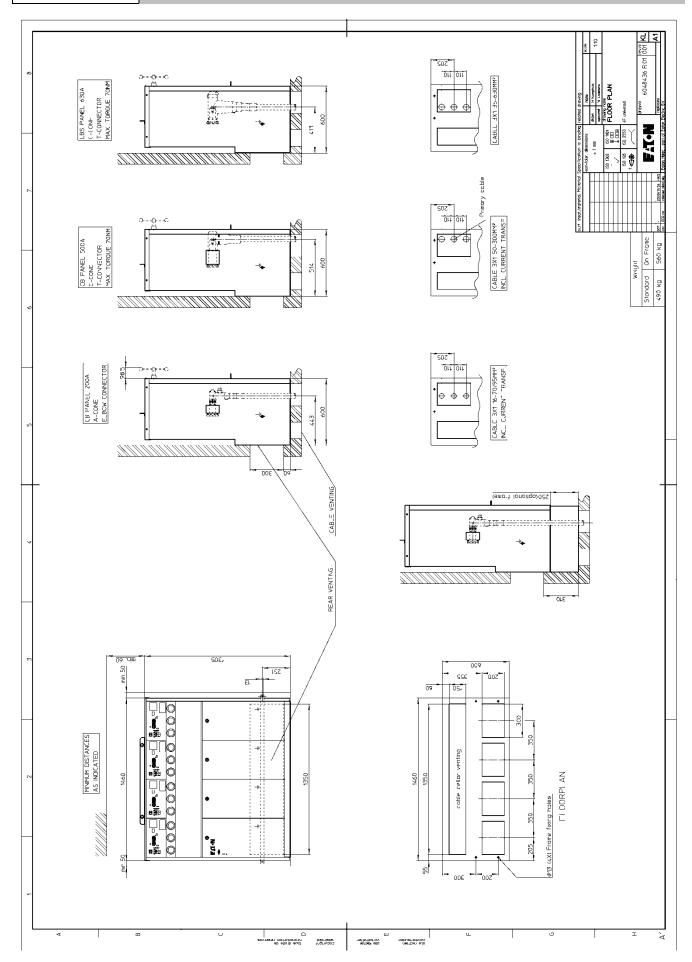
Used for legacy voltage detection units with LED type voltage detection type JB. Production of these voltage detectors has been stopped end 2009.

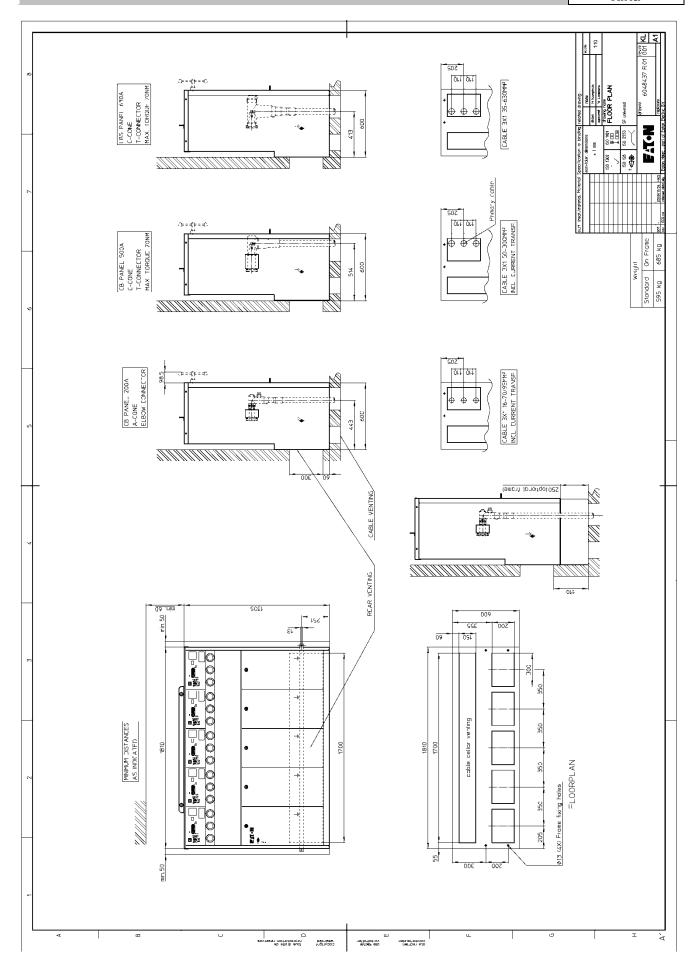

994.570 G01 05

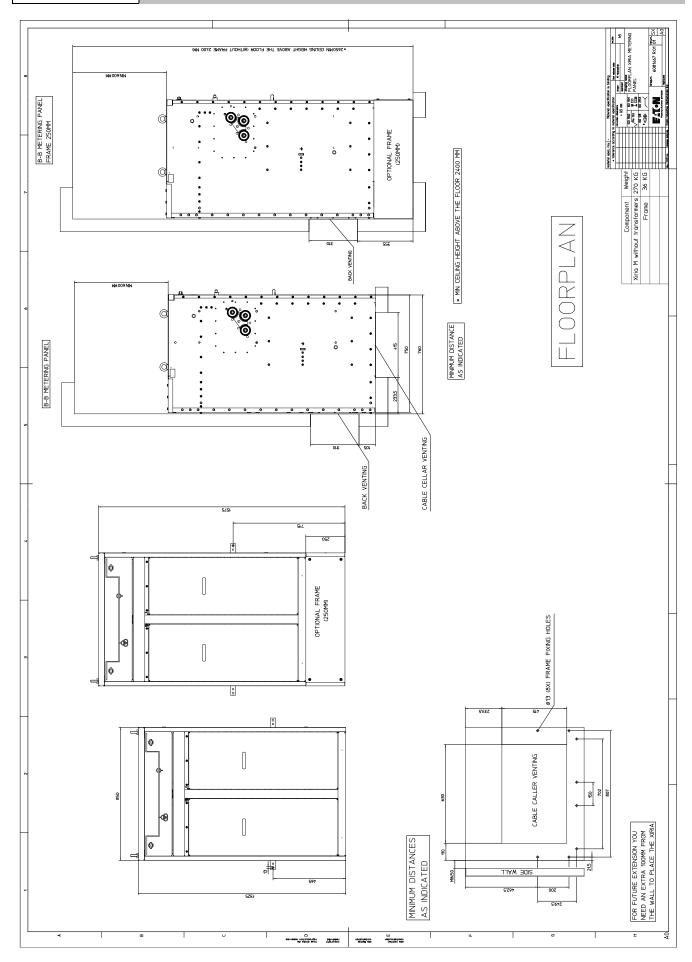
APPENDIX 1 – FLOOR PLANS



994.570 G01 05 39




40 994.570 G01 05 FAT•N


994.570 G01 05 41

42 994.570 G01 05 F:T•N

994.570 G01 05 43

44 994.570 G01 05 F:T•N

APPENDIX 2 - VOLTAGE DETECTING SYSTEM (WEGA)

Instructions for Use

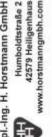
Integrated voltage detecting system Typ WEGA 1.2

Specification for application

General

Storage, care and transport

Maintenance test


Maintenance

Operating instruction

Technical data

1. General

detecting systems of the valid VDE 0682 part 415 (IEC 81243-5), which are capacitively connected to single The integrated voltage detecting system WEGA 1.2 is in compliance with the requirements for voltage pole with live parts

operating status of medium voltage systems according to VDE 0105 part 1 and 100 and includes a LRM The WEGA 1.2 is designed for fitting into switch-gears. It serves for determination and indication of the interface for all three phases.

The display can be verified by using the integrated display test function in installed state or if the voltage is not present.

2. Specification for application

WEGA 1.2 may only be used for determination of operating status and for taking a phase comparison of high voltage systems in accordance with VDE 0105 part 1 and 100 Special care should be taken in observing the following

- Integrated voltage detecting systems WEGA 1.2 may only be implemented by an electrician or
- Integrated voltage detecting systems WEGA 1.2 may only be used in accordance with the permitted rated voltage (raled voltage of the medium voltage system) and rated frequency. Adaptation to the prevailing operating voltage can be made with capacitors by manufacturer. by electrically trained persons

 - The equipment has to be handled exactly as specified in the operating instruction (5). The positive display "Voltage present" according to VDE 0682 part 415 is granted, if WEGA 1.2 is operated according to its rated voitage and rated frequency and the adaption with capacitors was done accordingly
- Indication appears in three-phase networks in the range from 45% to 120% of the rated voltage, but not less than 10% of the rated voltage
 - Integrated voltage detecting systems VEGA 1.2 may only be used indoor.
 If has to be ensured that voltage is not present (ail-pole) before entering a medium voltage area.
 - At unfavourable lighting conditions it may be useful to shadow the LCD-display or to illuminate if ٠
- Phase comparison is possible by using a phase comparator in accordance to VDE 0682 part 415 (LRM Systems) which has to be plugged into the earth point and one of the three test points. Integrated voltage detecting systems WEGA 1.2 is designed for continuous operation

3. Design

The integrated voltage detecting system WEGA 1.2 is located in a panel-mounted housing containing the PCB with the electronic circuits and the tasted bake points for over voltage. The display is designed as an LCD in the front symbols shown in red). Arranged on the front panel are also an earth point and three test points for comeding a phase comparator for LRM-interfaces. On the back the rectangular connectors for the four unshielded cables are located

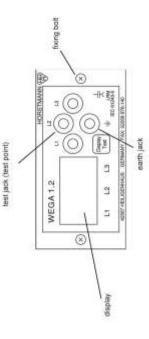


Figure 1: Integrated voltage detecting system WEGA 1.2 (front)

4. Technical data

4.1 Electrical details:

All the symbols are turned off in the switchgear condition with all-poles switched off disconnected. Means that the current flowing through the detecting system fulfills the requirements for integrated voltage detecting systems (VDS) of VDE 0882 part 415. This constant monitoring makes a maintenance test not necessary. Means , Voltage present. The display appears in the range of 0.1...0,45"UN. -25°C...+55°C (according to the operating temperature of switchgear) 3kV...36kV (rated voltage of the switch gear) generated by the voltage to be tested RM-System for every phase Operating temperature No indication Rated frequency Rated voltage Arrow Power supply nterface

4.2 Mechanical details:

panel-mounted housing for panel cut-out A 96 x 48 according to DIN 43700 130 g LRM-System - distance of sockets 14 mm, dameter of pute 4 mm 96mm x 48mm x 26 mm, 92" x 45" mm polycarbonate IP 54 otection class Earth-Nest point Panel opening Dimensions

4.3 Matching capacitors:

For an adaption to couple capacity, cables and rated voltages it is possible to insert matching capacitors by the

#025172-001

4025112-005 Juni-07

FATON 994.570 G01 05 45

4.4 Connection diagram

In figure 2 the back view is shown.

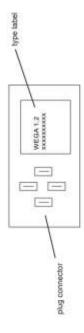


Figure 2: Connection diagram and contact configuration

Operating instructions

Functional control

The function test can be done in installed and active state (arrow or arrow and dot are displayed) or in the non-installed condition as well

Testing in the active state:

This is carried out by short-circuiting the earth and one of the three test points on the front. The display of

Testing in the inactive state

the corresponding phase must disappear

There are two different test methods available:

By pushing the key "Display Test" all symbols of the display will be activated for a short time to verify the function. This key can be pushed also in an active state (i.e. at least at one phase the voltage is present). All symbols will be activated in that case

- Using the functional tester for WEGA.
- Connect both lines of the function tester with one of the three test points of WEGA 1.2 and the
- Switch on the function tester
- On the display of the WEGA 1.2 the related symbols (arrow and dot) will appear

Functional tester, Horstmann Order-No: 52-0211-010

Voltage testing:

integrated voltage detecting system WEGA 1.2 can be use for continuous operation. Voltage detection is permanently done. The condition "voltage present" is displayed by arrows and respectively arrows and dots. For detailed mearing of symbols during voltage testing see point 4 Technical Data.

1002112-001

If the WEGA displays *voltage not present* on all three phases the device must be tested! During this test it must display in the way specified above, otherwise it may be damaged and mustn't be used any longer for voltage detection.

Phase comparison is possible by using an external phase comparator in accordance to VDE 0682 part 415, for example the ORION 3.0 (product Horstmann) which has to be plugged in the earth and test point (LRM

system). These test points are accessible after removing the protective cap.

While using an external phase comparator the display of WEGA 1.2 may lapse. Display returns immediately after unplugging the external phase comparator. After finalisation of the phase comparison protective caps have to be closed again.

6. Storage, care and transport

Integrated voltage detecting systems WEGA 1.2 must be stored and transported under dry and dust-free conditions. Any damage must be avoided

Damaged units, i. e. those, of which the functional capacity and reliability is no longer ensured, or whose lettering is illegible, mustn't be used

The user must always check that the unit is in perfect operating conditions

In case of claims which result in disregarding the operation instructions the warranty will expire and

we are not liable for consequential damages. 7. Maintenance

Please check to ensure that the integrated voltage detecting system WEGA 1.2 is in a clean and dry condition; otherwise the unit is maintenance-free. After using the test points the protective cap has to be closed again. Integrated voltage detecting systems WEGA 1.2 don't contain any batteries or other parts, changeable or replaceable by customer. 8. Maintenance test

Appearance of the dot means that the current flowing through the detecting system fulfills the requirements for integrated voltage detecting systems (VDS) of VDE 0682 part 415. This constant monitoring makes a maintenance test not necessary.

Order,-No: 51-1200-001

Equipment:

Order- No: 52-0211-010 Order- No: 51-0206-006 Functional tester WEGA

Measuring module NO-M

Order- No: 51-0207-010 (for measuring the current of the measuring socket) 4025112-001

Juni-07

ntegrated voltage detecting system

Type WEGA 2.2

1. General

The integrated voltage detecting system VECA2.2 is a three-phase indication device which is designed to display the operating voltage of medium-voltage sembligate installations. The device complies with the requirements of the IEC 61243-5 standard (VDE 0682 Part 415) for capacitive voltage detecting systems

The following states of a medium voltage network are shown:

Arrow indication per phase Additional dot per phase Acitage present and naimenance test is passed. Vonage present

Indication of flashing wrench per phase No dot and arrow indication Errors in the system / active zero voltage: No voltage present.

The voltage detecting systems can be adapted by the manufacture to different swebtygears by matching capacitors.

Additional Amotions

- Relay signal when at least one of all three phases indicates voltage present (arrow)
- Relay signal when at least one of all three phases indicates, no voltage present (no arrow)
- Active ,voltage not present, indication by means of three flashing tool symbols on the display
 - Three-phase LRM interface for the connection of a phase
- comparator, e.g. the ,Orlon 3.0' type, made by Horstmann Gridiel
 - Display test via button on the front panel

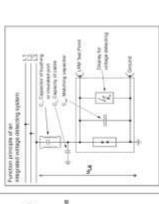
Permanently backit symbols for improved identification of the

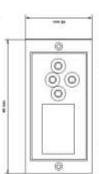
voltage indication also in case of bad visibility conditions.

Universal voltage supply (auxiliary voltage): 24 to 230V AC or DC

2. Design

Housing


The impegrated voltage detecting system WEGA 2.2 is located in a plug-in bousing for panel mount (for dimensions see drawing) suitable for a panel cut-out size of 92 x are located on the front persel. A removable plag serves to protect the jacks against dust and corroson. On the rear of the housing there are the corrections for the measuring signals, relays and auxiliary voltage. 45 mm. The LCD display, the display test button and the three-phase LRM interface


The voltage conditions are indicated on the LC display. The individual symbols (arraw, dot and wrench) appear in red cultur. Pushing the button on the front parels, a display test can be carried out activating all symbols on the display for a short

functions (relay control, furnished of symbols and active zero indication) require auxiliary voltage supply auxitiny energy because it is fed from the measuring signal. Even if the auxitizery The indications of the arrow and dot symbols on the display do not require any voltage supply fails, the indication functions wit remain active. The additional

Postlach 10 02 81 • 42567 Heiligenhaus Germany Tel. +49 2056 976-400 Fast +49 2056 876-400 Infeants www.horstnamngmbh.com e-maii. info@horstnamngmbh.com Dipl.-Ing. H.Horstmann GmbH
Postfach 10 02 81 • 42567 Heitgenhaus

August 2009 2025/22-001

Connections

The following connections are located on near side:

11,12,13 4-pole flat connector

Connection of the earth socket to the frame and to the shield in case of coax cable Connections for the capacitive taps of the switchgear unit Earth symbol

NO or NC of the relay , Vottage Present' NO or NC of the relay ,No Vottage Present' 3-pole plug-in connector element

2-pole plug-in connector element. 000

Auxiliary voltage -

24, 230V (AC or DC)

Displays (LCD symbols)

Arrow: This indication means yotkage present according to IEC 81243-5 (VDE 0682, Part 415). It appears in the range of 0.10 ... 0.45 * U. This indication means that the current through the indication device at a value of Univ.3 corresponds to its respective delipoint. Due to this permanent monitoring of current it is not necessary to perform a maintenance lest Det

The occurrence of the following errors lead to darkening of the arrow and dot symbols and the tool symbol appears

Flashing wrench

Y

on the respective phase indication:

Earth fault.

Interruption of the connection cable

Short-carait of the connection line

If the overall system is in voltage-tree condition (U < 0.10 ° U.), all of the three wrenches (active zero-voltage indication) start flashing

4. Display Test

This test can be camel out with the switchges until in voltage-free condition. The artist and dot symbols are not indicated. When the auxiliary voltage is switched on, the LCD display will be illuminated and the three tool symbols start fleahing. By gently pushing the "Display Test" button all symbols of the LCD display will be illuminated for a short time.

5. Relay signals

Each of the two relays has a change-over contact with a common connection (C - Common), a normally closed contact (MC - normally order contact (MC - normally open). The relays contacts are electrically leotated from the measuring vallage and auditary voltage. Depending on the value of the measuring signal the following relay functions will be tripped:

	Pre- No Voltage Present	OFF	NO	NO	NO	140
Heray	"Vohaga Pre- sent"	NO	NO	NO	OFF	064
Arriellmen	voltage	NO	No	NO	NO	955
-	63	U > 0.45 * U.	U < 010 * U,	U < 0.10 * U.	U < 0.10 * U.	ANY
The second second second	2	U > 0.45 * U,	U > 0.45 * U.	U < 0.10 + U,	U < 010 > U	ANY
1000	5	U > 0.45 * U.	U > 0.45 * U,	U > 0.45 * U,	U < 0.10 = U	ANN

Characteristics of the switching contacts of the relay: 250 V AC, 5 A

6. Ordering information

When ordering the following values should be supplied

- operating voltage U,
- capacity of bushing or insulated post
- connector (4.8 or 6.3 mm flat connector)

Order	er No.
51-22 dagkay illumination and deplay test	200-001

APPENDIX 3 - ORION 3.0

(according to VDE 0682, Section 415 and IEC 61243-5)

Type ORION 3.0

Phase Monitor / Voltage Tester / Interface Monitor

The phase monitor/voltage tester/interface monitor, Type CRION 3.0, is a microcontrolled display unit for capacitive test points with LRM interface according to the standards stated above. It is a combined display unit with which the following sets can be carried out:

- voltage of two phases.

phase position of these voltages relative to each other
 respain tests on coupling parts (formation exponduring).
 Mechanical and electrical adaptation to HE interfaces can be made with IRE_LEM_adaptific rithdrinent (2 pieces Order No. 52-0206-001).

Technical data:

3.2 µA with rated voltage For phrase angle 4.15 according to VDE 0682. Section 415 For phrase angle >60° according to VDE 0682. Section 415 5.0 VDE 0682. Section 415 50 VB 2. McOhm LRM system (4 to 5) V (70 to 90) V with adapter Design:
Response votage LRM
Response votage HR
Response vatue with repeat tests on couping parts. Display phase balance.

Display phase unbalance

Degree of protection: Power supply: Temperature range Rated frequency.

Battery service life:

IP 40 2 BR 2/3A fithium batteries, each 1.2 Ah, 2 x 3 V

Battery check

Unit's self-bisting: Sound level of audible indicator: Total weight Dimensions. Length of measuring lines:

6 years, at 8 to 10 operating cyclesiday and 230 days/year constantly affective in operating activated every time unit is turned on >57 dB врргох 340 g 157 x 84 x 30 mm 1.5 m евсh mode

Operating modes:

all 0.LEDs are off. Ready model to the voltage display light up (constant display), all the others are off. The duration of the ready mode is about 50 s.

Voltage display:

Notinge displays red LED allocated to the measuring line connes on (constant display), the allocated green LED is off.

Phase display.

Both messuring lines are plugged in, both voltage displays are red, the display purpose between a consistency consistency green display or springe unblance (species) are displayed in the display or present between displaying and display must be shown. As song as none or only one voltage display or an explanation of springer during interface monitroing line is plugged in, no phase display will be allowed.

For voltage display's red. ED allocated to the messuring line common or (constant display), the allocated green LED is off, interface conditions untilled it > 3.2 µÅ.

The ned fastlay and at the same intervals an audible agnal is entitled the green LED is off, interface conditions not fulfilled (2.5 µÅ < 1.4.2 ± ½ µÅ.)

Operating instructions:

Turning on the unit and checking its functions:

Unit in off mode, no measuring lines plugged in
 Depress the burillor unit is 0 ELDs come or (misc. 15 s)
 Release the burillor, the unit cames out its set/kest = subsequent to correct conclusion of the test, the unit goes into ready mode.

Voltage monitoring:

Und in ready mode, one measuring line plugged in
 elecated green LED still displayed.
 No voltage at test point
 alrocated red LED displayed.

Voltage available at test point.

Phase monitoring:
 Unit in ready mode, both measuring sines plugged in both or one test point display in vollage — no phase display both test points display voltage available:
 phase display's green LED on — both phases halancd phase display's red LED on — both phases unbalanced phase display's red LED flashing— both phases unbalanced

Please note. The phase display is switched normally with a phase difference between 15° and 90°.

4. Interface monitoring:

Monitoring is executed automatically (within 2.s) when a measuring line is plugged in. Unit in ready mode, one measuring line plugged in:

allocated green LED still on.

No voltage at less point interface monitoring will not be carried out alocated red. ED on (contrained depoint):
Voltage available at test point and interface conditions fulfilled repeated less passed.

Repeated less passed.

Silocated red LED flashing and aucible signal emitted:
Voltage available at less point but interface conditions not fulfilled. repeated test failed

depressing Extending the switched-on period in the ready mode: The duration of the ready mode can be re-started by briefly of the button (approx. 0.5 s). The self-test wit not be repeated.

6. Turning off the unit:

automátically 60 s after leaving the ready mode or by prolonged depression of the button (approx. 2 s) after leaving

The ready mode or 15 s after the button has been depressed when the unit is switched

Special adapters LR-LRM adapter (for jack connectors) Order No. 52-0206-002

ALSTOM (AEG)-IVIS adapter Order No. 52-0206-003

on or when the battery is dead • when the battery is dead • when the battery is dead in an order of suppressions of the suppression of the switched of suppressions.

51-0206-006 Order No. ORSON inct. HR-LRM adapter and case Ordering information:

Special adapter HR1-LRM (U_a<U_n,) Order No. 52-0206-006

WEFA adapter, 20kV Order No. 52-0206-005

WEFA adapter, 10kV Order No. 52-0206-004

177

VOLTAGE TESTER PHASE MONITOR INTERFACE MONITOR ORION DWOFF

48 994.570 G01 05

APPENDIX 4 - SHORT CIRCUIT INDICATOR

Short-Circuit Indicator

- Ultra bright LED with 180° viewing angle
 - Detection of short-circuit currents with trip level ≥ 200 A
- Response value either as fixed factory setting or with self-adjusting feature
 - Double-flashing upon second excitation

XIRIA (70 mm Ø) set consisting of 3 cts SVS (44 mm Ø) set consisting of 3 cts

EATON Holec EATON Holec

49-6010-032 49-8010-048 GA + GE (98 x 96 mm) HM6 (80 mm Ø)

Schneider Electric Ormazabal / F&G

49-8010-011 49-6010-044

49-6010-038

8 DJ + 8 DH, SIMOSEC (95 mm Ø)

set consisting of 3 cts with cable length of 0,89 , 0,99 and 1,09 m SAFERING, RGC, SAFEPLUS (3 m cable length) FBX plug type (for pole plate 3 mm) MINEX, G.I.S.E.L.A. of plug type SAFERING, RGC, SAFEPLUS FBA, GLA, GMA (92 mm Ø) Drieschor AHEVA AHEVA ABB ABB 49-6012-009 49-6010-030 49-8012-004 49-6012-007 49-8012-015

Short-circuit current transformers for mounting on bushings

for RMU make

Order No.

Posttach 10 02 61 • 42567 Heligenhaus Germany Tal. +49 2056 976-0 Fax. +49 2056 976-140 Inserts wew horstmanignth, com Ensel, info@horetmanignth, com

Dipl.-Ing. H.Horstmann GmbH

Special transformers after consulation

Short-circuit current transformer for mounting on insulated cables

A CONTRACTOR OF THE PARTY OF TH	nnecting cable	nnecting cable
9 mm Type	5-52 3 mc	5-52 Bmc
der No. 6	19-6011-040 1	9-6011-043 1

Accessories

Order No.	
040401-0008	Disassembly clip for housing removal
040804-0009	Housing spring for 2 mm front cover plate
040804-0010	Housing spring for 3 mm front cover plate

Trip ourrent (I _a)	(100 A), 200 A, 300 A, 400 A, 600 A, 900 A, 1000 A either fixed setting or settle adjustment (I_{ij}): Self-adjustment in relation to the operating current (I_{ij}): $I_{ij} < 100$ At $I_{ij} = 400$ At $I_{ij} > 100$ At $I_{ij} = 4 \times I_{ij} I_{ij} = 1000$ A
Response time	40 ms or 80 ms delay time
Time reset	1,2,4 or 8 h
Remote reset and remote setting	via external momentary contact
Temperature range	-30 °C to +70 °C
Power supply	Longille lithium cell battery, shelf life ≥ 20 Jahre, 1000 flash hours
Relay contact	Permanent of momentary contact (1s) 230 V AC / 1,0 A / 82.5 VA 220 V DC / 1,0 A / 35 W (mex)
Order No.	37-1111-002 SIGMA
	37-1121-002 SIGMA, AC/DC connection

April 2008 2023711-003

FATON 994.570 G01 05 49

Technical

pre-fixed time, by closing of an externally connected relay contact, or manually via push-button. Moreover, a

If the phase current exceeds either the preset trip current for the duration of the programmed response time or the previously flowing operating current by a defined factor (self-adjustment), the fault-affected phase will

be indicated by a brightly flashing LED, consequently activating the remote indication contact. If a second tripping occurs within the reset time, for example when automatic re-closing is in process, a signal will be given by a double flashing LED. The device is arranged to be reset automatically in accordance with a

The short-circuit indicator consists of one display unit in a plug-in housing, and three current transformers,

which are connected by measurement connection with the device.

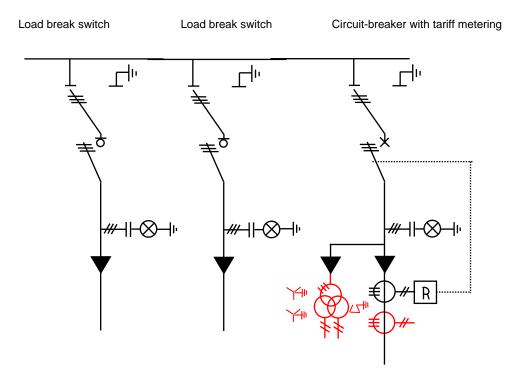
The SIGMA type Short-Circuit Indicator serves to detect short-circuits in medium-voltage networks.

time, and the kind of remote indication contact (permanent or momentary contact) can be selected via front

The current transformer type is provided with factory setting. The trip current, the response time, the reset

function test can be carried out either by means of this button or by an external relay contact.

APPENDIX 5 – TARIFF METERING 12KV


A5.1 The system

A5.1 Standard system description

The Xiria system with tariff metering type MA consists of a three- or four panel switchboard with a circuit-breaker in the right panel. This circuit-breaker is provided with built-in cable side current- and voltage transformers for tariff metering.

The other panels can be in any design. All panels can be hand operated or provided with the standard Xiria options.

A5.1.2 Single line diagram of a three panel unit with tariff metering (example):

50 994.570 G01 05 **F.T•N**

A5.1.3 Design specification of a switchboard with tariff metering with cable side current- and voltage transformers in the right panel:

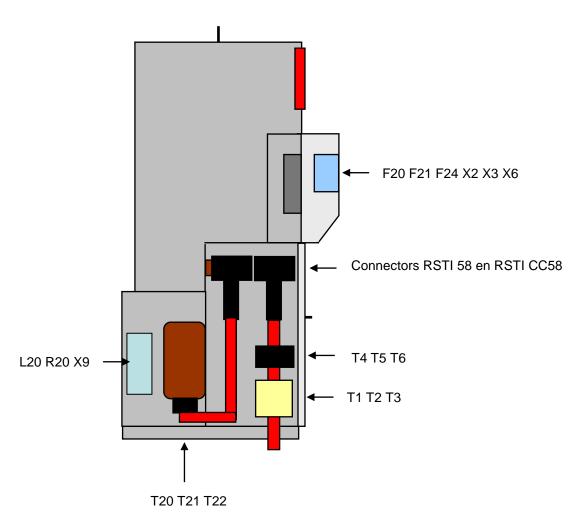
Choke coil and resistor for the anti- ferro resonance filter (L20-R20)

Current transformers for metering phase L1, L2 and L3 (T1-T2-T3)

Current transformers for protection phase L1, L2 and L3 (T4-T5-T6)

Voltage transformers for metering phase L1, L2 and L3 (T20-T21-T22)

Earth connectors X9, X6

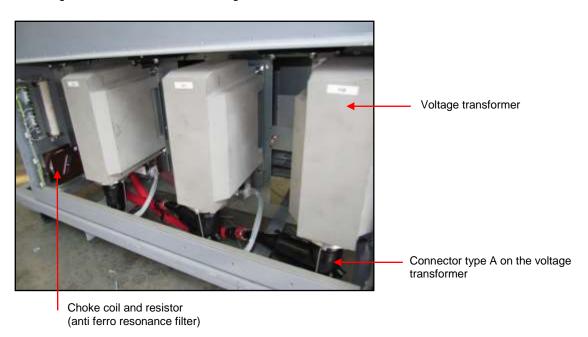

DIN00 knife-type fuses for secondary connection of the voltage transformers (F20 en F21)

MCB for the tertiary windings of the voltage transformers (F24)

Terminal strip for external metering equipment (X2 and X3)

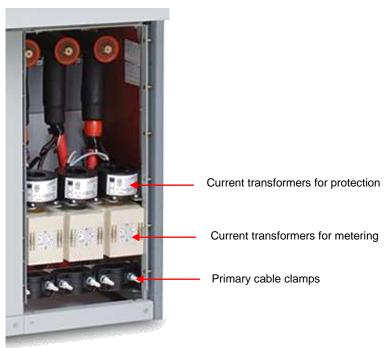
Primary connectors for internal connection of the voltage transformers (RSTI 58)

Front primary connectors for the main primary cables (RSTI CC58)



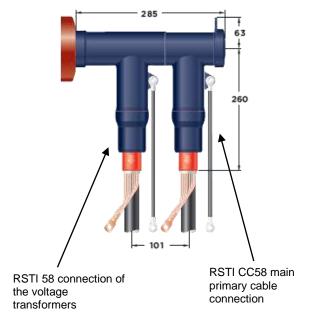
F-T-N 994.570 G01 05 51

Voltage transformers:


The voltage transformers are mounted inside the switchgear at the rear. They are connected with preassembled internal primary cables to the circuit-breaker in the most right panel (number 3). Also the choke coil and the resistor for the anti ferro resonance filter connected to the tertiary windings are mounted in this part of the switchgear. The connections on the voltage

transformers are made with earth screened connectors type A. The connections on the cable cones of the circuit-breaker (panel 3) are made with earth screened connectors type C, mounted in parallel with the connectors for the primary cables. Due to the limited mounting space inside the cable compartment these connectors are make Tyco type RSTI 58 and RSTI CC58.

Current transformers:


The current transformers for metering and protection of the circuit-breaker (panel 3) are mounted inside the cable compartment around the primary cables. They are mounted on a metal sub frame for easy removing/remounting without disconnecting the secondary wiring when the primary cables are mounted.

52 994.570 G01 05 F.T.N

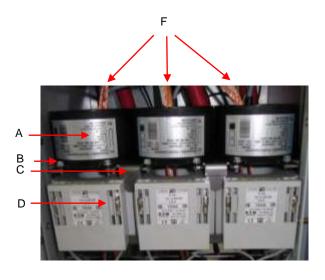
A5.1.4 Connection of the primary main cables and the voltage transformers:

Due to the limited mounting space inside the cable compartment the primary cables and the voltage transformers are connected with connectors make Tyco type RSTI 58. The connectors and cables for the voltage transformers are pretested and preassembled on the cable cones of the circuit-breaker. (panel 3). Parallel on these preassembled connectors the connectors type RSTI CC58 for the primary main cables can be mounted at site.

A5.1.5 Removing/remounting the current transformers

For easy connection of the primary cables the current transformers in the cable compartment can be removed and remounted.

Removing when the primary cables are mounted:

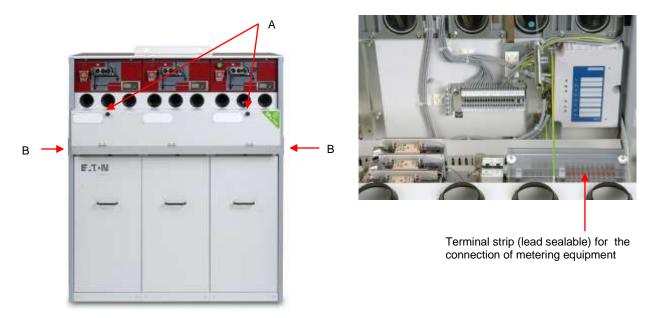

- Open the cable compartment according to the standard instructions.
- Remove the current transformers for protection (A) by removing the two bolts on the front (B).
 The secondary wiring does not need to be disconnected.
- Behind these current transformers a mounting plate fixed with bolts (C) becomes visible. Remove these bolts and remove the mounting plate.
- The current transformers for metering (D) can now be lifted and removed, also remove the tywrap from the secondary wiring. The secondary wiring does not need to be disconnected.

Remounting:

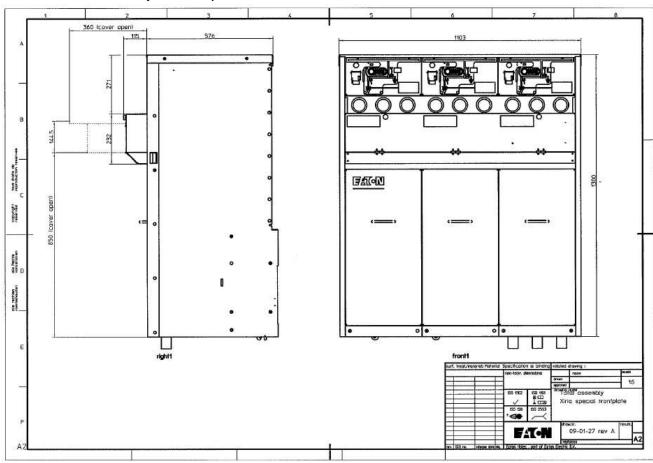
Lead the primary cables through the current transformers and remount the current transformers as described above.

REMARK

After remounting the current transformers the earth screen connections of the primary cables must be connected to earth via the premounted earth wires (F). In this case any earth current through these connections will not influence the metering results



FAT•N 994.570 G01 05 53


A5.1.6 Allocation of the secondary connections for metering:

The switchboard is provided with a secondary front compartment. Two thumb screws (A) are used to secure the cover in closed position. When opened the cover turns

to the front and the secondary components can be accesssed. The wiring for the connection of external metering equipment can be connected through the holes in both side posts (B). The rectangular metal cover plates (B) must be removed to get access.

Dimensions of the secondary front compartment:

54 994.570 G01 05 F.T•N

FAT•N 994.570 G01 05 55

56 994.570 G01 05 F.T•N