
QII51011-12.0.0

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
June 2012

June 2012
QII51011-12.0.0
18. Mentor Graphics Precision Synthesis
Support
This chapter documents support for the Mentor Graphics® Precision RTL Synthesis
and Precision RTL Plus Synthesis software in the Quartus® II software design flow, as
well as key design methodologies and techniques for improving your results for
Altera® devices.

The topics discussed in this chapter include:

■ “Altera Device Family Support”

■ “Design Flow” on page 18–2

■ “Creating and Compiling a Project in the Precision Synthesis Software” on
page 18–5

■ “Mapping the Precision Synthesis Design” on page 18–5

■ “Synthesizing the Design and Evaluating the Results” on page 18–9

■ “Exporting Designs to the Quartus II Software Using NativeLink Integration” on
page 18–10

■ “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 18–15

■ “Incremental Compilation and Block-Based Design” on page 18–24

This chapter assumes that you have set up, licensed, and installed the Precision
Synthesis software and the Quartus II software. You must set up, license, and install
the Precision RTL Plus Synthesis software if you want to use the incremental synthesis
feature for incremental compilation and block-based design.

f To obtain and license the Precision Synthesis software, refer to the Mentor Graphics
website at www.mentor.com. To install and run the Precision Synthesis software and
to set up your work environment, refer to the Precision Synthesis Installation Guide in
the Precision Manuals Bookcase. To access the Manuals Bookcase in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Altera Device Family Support
The Precision Synthesis software supports active devices available in the current
version of the Quartus II software. Support for newly released device families may
require an overlay. Contact Mentor Graphics for more information.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII51011
http://www.altera.com/common/legal.html
http://www.mentor.com
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51011-12.0 (QII HB, Vol 1, Ch19: Mentor Graphics Precision Synthesis Support)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Mentor+Graphics+Precision+Synthesis+Support+http://www.altera.com/literature/hb/qts/qts_qii51011.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera

18–2 Chapter 18: Mentor Graphics Precision Synthesis Support
Design Flow
The Precision Synthesis software also supports the FLEX 8000 and MAX 9000 legacy
devices that are supported only in the Altera MAX+PLUS® II software, as well as
ACEX® 1K, APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and FLEX
6000 legacy devices that are supported by the Quartus II software version 9.0 and
earlier.

Design Flow
The following steps describe a basic Quartus II design flow using the Precision
Synthesis software:

1. Create Verilog HDL or VHDL design files.

2. Create a project in the Precision Synthesis software that contains the HDL files for
your design, select your target device, and set global constraints. Refer to
“Creating and Compiling a Project in the Precision Synthesis Software” on
page 18–5 for details.

3. Compile the project in the Precision Synthesis software.

4. Add specific timing constraints, optimization attributes, and compiler directives to
optimize the design during synthesis.

1 For best results, Mentor Graphics recommends specifying constraints that
are as close as possible to actual operating requirements. Properly setting
clock and I/O constraints, assigning clock domains, and indicating false
and multicycle paths guide the synthesis algorithms more accurately
toward a suitable solution in the shortest synthesis time.

5. Synthesize the project in the Precision Synthesis software. With the design analysis
and cross-probing capabilities of the Precision Synthesis software, you can identify
and improve circuit area and performance issues using prelayout timing
estimates.

6. Create a Quartus II project and import the following files generated by the
Precision Synthesis software into the Quartus II project:

■ The technology-specific EDIF (.edf) netlist or Verilog Quartus Mapping File
(.vqm) netlist

■ Synopsys Design Constraints File (.sdc) for TimeQuest Timing Analyzer
constraints
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–3
Design Flow
1 If your design uses the Classic Timing Analyzer for timing analysis in the
Quartus II software versions 10.0 and earlier, the Precision Synthesis
software generates timing constraints in the Tcl Constraints File (.tcl). If you
are using the Quartus II software versions 10.1 and later, you must use the
TimeQuest Timing Analyzer for timing analysis.

■ Tcl Script Files (.tcl) to set up your Quartus II project and pass constraints

You can run the Quartus II software from within the Precision Synthesis software,
or run the Precision Synthesis software using the Quartus II software. Refer to
“Running the Quartus II Software from within the Precision Synthesis Software”
on page 18–10 and “Using the Quartus II Software to Run the Precision Synthesis
Software” on page 18–12 for more information.

7. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.

Figure 18–1 shows the Quartus II design flow using the Precision Synthesis software
as described in these steps, which are further described in detail in this chapter.

Figure 18–1. Design Flow Using the Precision Synthesis Software and Quartus II Software

VHDL Verilog HDL

Constraints and
Settings

Constraints and
Settings

Precision Synthesis

Timing and Area
Requirements

Satisfied

Forward-Annotated Projec
Configuration
(.tcl/.acf)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.v o/.vo)

Post Place-and-Route
Simulation File

(.v o/.vo)

Configuration/Programming Files
(.sof/.pof)

Program/Configure Device

Quartus II Software

Quartus II Timing Constraints
in SDC format (.sdc)

System
Verilog

Design Specifications

No

Yes
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–4 Chapter 18: Mentor Graphics Precision Synthesis Support
Design Flow
If your area or timing requirements are not met, you can change the constraints and
resynthesize the design in the Precision Synthesis software, or you can change the
constraints to optimize the design during place-and-route in the Quartus II software.
Repeat the process until the area and timing requirements are met.

You can use other options and techniques in the Quartus II software to meet area and
timing requirements. For example, the WYSIWYG Primitive Resynthesis option can
perform optimizations on your EDIF netlist in the Quartus II software.

f For more information about netlist optimizations, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook. For more
recommendations about how to optimize your design, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

While simulation and analysis can be performed at various points in the design
process, final timing analysis should be performed after placement and routing is
complete.

During synthesis, the Precision Synthesis software produces several intermediate and
output files, which are described in Table 18–1.

Table 18–1. Precision Synthesis Software Intermediate and Output Files

File Extension File Description

.psp Precision Synthesis Project File.

.xdb Mentor Graphics Design Database File.

.rep (1) Synthesis Area and Timing Report File.

.vqm/.edf (2)

Technology-specific netlist in .vqm or .edf file format.

By default, the Precision Synthesis software creates .vqm files for Arria series, Cyclone series, and Stratix
series devices, and creates .edf files for ACEX, APEX, FLEX, and MAX series devices. The Precision
Synthesis software can create .edf files for all Altera devices supported by the Quartus II software, but
defaults to creating .vqm files when the device is supported.

.tcl
Forward-annotated Tcl assignments and constraints file. The <project name>.tcl file is generated for all
devices. The .tcl file acts as the Quartus II Project Configuration file and is used to make basic project and
placement assignments, and to create and compile a Quartus II project.

.acf
Assignment and Configurations file for backward compatibility with the MAX+PLUS II software. For
devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported from the
MAX+PLUS II .acf file.

.sdc

Quartus II timing constraints file in Synopsys Design Constraints format.

This file is generated automatically if the device uses the TimeQuest Timing Analyzer by default in the
Quartus II software, and has the naming convention <project name>_pnr_constraints.sdc. For more
information about generating a TimeQuest constraint file, refer to “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 18–10.

Notes to Table 18–1:
(1) The timing report file includes performance estimates that are based on pre-place-and-route information. Use the fMAX reported by the

Quartus II software after place-and-route for accurate post-place-and-route timing information. The area report file includes post-synthesis
device resource utilization statistics that can differ from the resource usage after place-and-route due to black boxes or further optimizations
performed during placement and routing. Use the device utilization reported by the Quartus II software after place-and-route for final resource
utilization results. See “Synthesizing the Design and Evaluating the Results” on page 18–9 for details.

(2) The Precision Synthesis software-generated VQM file is supported by the Quartus II software version 10.1 and later.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–5
Creating and Compiling a Project in the Precision Synthesis Software
Creating and Compiling a Project in the Precision Synthesis Software
After creating your design files, create a project in the Precision Synthesis software
that contains the basic settings for compiling the design.

To create a project, follow these steps:

1. In the Precision Synthesis software, click New Project in the Design Bar on the left
side of the GUI.

2. Specify the Project Name and the Project Folder. The implementation name of the
design corresponds to this project name.

3. Add input files to the project by clicking Add Input Files in the Design Bar. The
Precision Synthesis software automatically detects the top-level module/entity of
the design and uses it to name the current implementation directory, logs, reports,
and netlist files.

4. In the Design Bar, click Setup Design.

5. To specify a target device family, expand Altera and select the target device and
speed grade.

6. If you want, you can set a global design frequency and/or default input and
output delays. This constrains all clock paths and I/O pins in your design. Modify
the settings for individual paths or pins that do not require such a setting.

7. On the Design Center tab, right-click the Output Files folder and click Output
Options.

8. To generate additional HDL netlists for post-synthesis simulation, select the
desired output format. The Precision Synthesis software generates a separate file
for each selected type of file: EDIF and Verilog HDL or VHDL.

9. To compile the design into a technology-independent implementation, in the
Design Bar, click Compile.

Mapping the Precision Synthesis Design
In the next steps, you set constraints and map the design to technology-specific cells.
The Precision Synthesis software maps the design by default to the fastest possible
implementation that meets your timing constraints. To accomplish this, you must
specify timing requirements for the automatically determined clock sources. With this
information, the Precision Synthesis software performs static timing analysis to
determine the location of the critical timing paths. The Precision Synthesis software
achieves the best results for your design when you set as many realistic constraints as
possible. Be sure to set constraints for timing, mapping, false paths, multicycle paths,
and other factors that control the structure of the implemented design.

Mentor Graphics recommends creating an .sdc file and adding this file to the
Constraint Files section of the Project Files list. You can create this file with a text
editor, by issuing command-line constraint parameters, or by directing the Precision
Synthesis software to generate the file automatically the first time you synthesize your
design. To create a constraint file with the user interface, set constraints on design
objects (such as clocks, design blocks, or pins) in the Design Hierarchy browser. By
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–6 Chapter 18: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design
default, the Precision Synthesis software saves all timing constraints and attributes in
two files: precision_rtl.sdc and precision_tech.sdc. The precision_rtl.sdc file contains
constraints set on the RTL-level database (post-compilation) and the
precision_tech.sdc file contains constraints set on the gate-level database
(post- synthesis) located in the current implementation directory.

You can also enter constraints at the command line. After adding constraints at the
command line, update the .sdc file with the update constraint file command. You can
add constraints that change infrequently directly to the HDL source files with HDL
attributes or pragmas.

1 The Precision .sdc file contains all the constraints for the Precision Synthesis project.
For the Quartus II software, placement constraints are written in a .tcl file and timing
constraints for the TimeQuest Timing Analyzer are written in the Quartus II .sdc file.

f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. For
more details and examples of attributes, refer to the Attributes chapter in the Precision
Synthesis Reference Manual. To access these manuals in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Setting Timing Constraints
The Precision Synthesis software uses timing constraints, based on the industry-
standard .sdc file format, to deliver optimal results. Missing timing constraints can
result in incomplete timing analysis and might prevent timing errors from being
detected. The Precision Synthesis software provides constraint analysis prior to
synthesis to ensure that designs are fully and accurately constrained. The
<project name>_pnr_constraints.sdc file, which contains timing constraints in SDC
format, is generated in the Quartus II software.

1 Because the .sdc file format requires that timing constraints be set relative to defined
clocks, you must specify your clock constraints before applying any other timing
constraints.

You also can use multicycle path and false path assignments to relax requirements or
exclude nodes from timing requirements, which can improve area utilization and
allow the software optimizations to focus on the most critical parts of the design.

f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. To
access these manuals in the Precision Synthesis software, click Help and select Open
Manuals Bookcase.

Setting Mapping Constraints
Mapping constraints affect how your design is mapped into the target Altera device.
You can set mapping constraints in the user interface, in HDL code, or with the
set_attribute command in the constraint file.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–7
Mapping the Precision Synthesis Design
Assigning Pin Numbers and I/O Settings
The Precision Synthesis software supports assigning device pin numbers, I/O
standards, drive strengths, and slew-rate settings to top-level ports of the design. You
can set these timing constraints with the set_attribute command, the GUI, or by
specifying synthesis attributes in your HDL code. These constraints are
forward-annotated in the <project name>.tcl file that is read by the Quartus II software
during place-and-route and do not affect synthesis.

You can use the set_attribute command in the Precision Synthesis software .sdc file
format to specify pin number constraints, I/O standards, drive strengths, and slow
slew-rate settings. Table 18–2 describes the format to use for entries in the Precision
Synthesis software constraint file.

You can also specify these options in the GUI. To specify a pin number or other I/O
setting in the Precision Synthesis GUI, follow these steps:

1. After compiling the design, expand Ports in the Design Hierarchy Browser.

2. Under Ports, expand Inputs or Outputs.

1 You also can assign I/O settings by right-clicking the pin in the Schematic
Viewer.

3. Right-click the desired pin name and select Set Input Constraints under Inputs or
Set Output Constraints under Outputs.

4. Type the desired pin number on the Altera device in the Pin Number box in the
Port Constraints dialog box.

5. Select the I/O standard from the IO_STANDARD list.

6. For output pins, you can also select a drive strength setting and slew rate setting
using the DRIVE and SLOW SLEW lists.

You also can use synthesis attributes or pragmas in your HDL code to make these
assignments. Example 18–1 and Example 18–2 show code samples that make a pin
assignment in your HDL code.

Table 18–2. Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive strength set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

Example 18–1. Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example 18–2. VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is “P10”;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–8 Chapter 18: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design
You can use the same syntax to assign the I/O standard using the IOSTANDARD
attribute, drive strength using the attribute DRIVE, and slew rate using the
SLEW attribute.

1 For more details about attributes and how to set these attributes in your HDL code,
refer to the Precision Synthesis Reference Manual. To access this manual, in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Assigning I/O Registers
The Precision Synthesis software performs timing-driven I/O register mapping by
default. You can force a register to the device’s IO element (IOE) using the Complex
I/O constraint. This option does not apply if you turn off I/O pad insertion. Refer to
“Disabling I/O Pad Insertion” on page 18–8 for more information.

To force an I/O register into the device’s IOE using the GUI, follow these steps:

1. After compiling the design, expand Ports in the Design Hierarchy browser.

2. Under Ports, expand Inputs or Outputs.

3. Under Inputs or Outputs, right-click the desired pin name, point to Map Input
Register to IO or Map Output Register to IO, for input or output respectively,
and click True.

1 You also can make the assignment by right-clicking on the pin in the Schematic
Viewer.

For the Stratix series, Cyclone series, and the MAX II device families, the Precision
Synthesis software can move an internal register to an I/O register without any
restrictions on design hierarchy.

For more mature devices, the Precision Synthesis software can move an internal
register to an I/O register only when the register exists in the top-level of the
hierarchy. If the register is buried in the hierarchy, you must flatten the hierarchy so
that the buried registers are moved to the top-level of the design.

Disabling I/O Pad Insertion
The Precision Synthesis software assigns I/O pad atoms (device primitives used to
represent the I/O pins and I/O registers) to all ports in the top-level of a design by
default. In certain situations, you might not want the software to add I/O pads to all
I/O pins in the design. The Quartus II software can compile a design without I/O
pads; however, including I/O pads provides the Precision Synthesis software with
more information about the top-level pins in the design.

Preventing the Precision Synthesis Software from Adding I/O Pads
If you are compiling a subdesign as a separate project, I/O pins cannot be primary
inputs or outputs of the device; therefore, the I/O pins should not have an I/O pad
associated with them. To prevent the Precision Synthesis software from adding I/O
pads, perform the following steps:

1. On the Tools menu, click Set Options. The Options dialog box appears.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–9
Synthesizing the Design and Evaluating the Results
2. On the Optimization page, turn off Add IO Pads.

3. Click Apply.

These steps add the following command to the project file:

setup_design -addio=false

Preventing the Precision Synthesis Software from Adding an I/O Pad on an
Individual Pin
To prevent I/O pad insertion on an individual pin when you are using a black box,
such as DDR or a phase-locked loop (PLL), at the external ports of the design, perform
the following steps:

1. After compiling the design, in the Design Hierarchy browser, expand Ports.

2. Under Ports, expand Inputs or Outputs.

3. Under Inputs or Outputs, right-click the desired pin name and click Set Input
Constraints.

4. In the Port Constraints dialog box for the selected pin name, turn off Insert Pad.

1 You also can make this assignment by right-clicking the pin in the Schematic Viewer
or by attaching the nopad attribute to the port in the HDL source code.

Controlling Fan-Out on Data Nets
Fan-out is defined as the number of nodes driven by an instance or top-level port.
High fan-out nets can cause significant delays that result in an unroutable net. On a
critical path, high fan-out nets can cause longer delays in a single net segment that
result in the timing constraints not being met. To prevent this behavior, each device
family has a global fan-out value set in the Precision Synthesis software library. In
addition, the Quartus II software automatically routes high fan-out signals on global
routing lines in the Altera device whenever possible.

To eliminate routability and timing issues associated with high fan-out nets, the
Precision Synthesis software also allows you to override the library default value on a
global or individual net basis. You can override the library value by setting a
max_fanout attribute on the net.

Synthesizing the Design and Evaluating the Results
To synthesize the design for the target device, click Synthesize in the Precision
Synthesis Design Bar. During synthesis, the Precision Synthesis software optimizes
the compiled design, and then writes out netlists and reports to the implementation
subdirectory of your working directory after the implementation is saved, using the
following naming convention:

<project name>_impl_<number>

f After synthesis is complete, you can evaluate the results for area and timing. The
Precision RTL Synthesis User’s Manual on the Mentor Graphics website describes
different results that can be evaluated in the software.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–10 Chapter 18: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
There are several schematic viewers available in the Precision Synthesis software: RTL
schematic, Technology-mapped schematic, and Critical Path schematic. These
analysis tools allow you to quickly and easily isolate the source of timing or area
issues, and to make additional constraint or code changes to optimize the design.

Obtaining Accurate Logic Utilization and Timing Analysis Reports
Historically, designers have relied on post-synthesis logic utilization and timing
reports to determine the amount of logic their design requires, the size of the device
required, and how fast the design runs. However, today’s FPGA devices provide a
wide variety of advanced features in addition to basic registers and look-up tables
(LUTs). The Quartus II software has advanced algorithms to take advantage of these
features, as well as optimization techniques to increase performance and reduce the
amount of logic required for a given design. In addition, designs can contain black
boxes and functions that take advantage of specific device features. Because of these
advances, synthesis tool reports provide post-synthesis area and timing estimates, but
you should use the place-and-route software to obtain final logic utilization and
timing reports.

Exporting Designs to the Quartus II Software Using NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools, which allows you to run
other EDA design entry/synthesis, simulation, and timing analysis tools
automatically from within the Quartus II software.

After a design is synthesized in the Precision Synthesis software, the
technology-mapped design is written to the current implementation directory as an
EDIF netlist file, along with a Quartus II Project Configuration File and a
place-and-route constraints file. You can use the Project Configuration script,
<project name>.tcl, to create and compile a Quartus II project for your EDIF or VQM
netlist. This script makes basic project assignments, such as assigning the target
device specified in the Precision Synthesis software. If you select an Arria GX,
Stratix III, Cyclone III, or newer device, the constraints are written in SDC format to
the <project name>_pnr_constraints.sdc file by default, which is used by the Fitter and
the TimeQuest Timing Analyzer in the Quartus II software.

Use the following Precision Synthesis software command before compilation to
generate the <project name>_pnr_constraints.sdc:

setup_design -timequest_sdc

With this command, the file is generated after the synthesis.

Running the Quartus II Software from within the Precision Synthesis
Software

The Precision Synthesis software also has a built-in place-and-route environment that
allows you to run the Quartus II Fitter and view the results in the Precision Synthesis
GUI. This feature is useful when performing an initial compilation of your design to
view post-place-and-route timing and device utilization results, but not all the
advanced Quartus II options that control the compilation process are available.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–11
Exporting Designs to the Quartus II Software Using NativeLink Integration
After you specify an Altera device as the target, set the options for the Quartus II
software. On the Tools menu, click Set Options. On the Integrated Place and Route
page, under Quartus II Modular, specify the path to the Quartus II executables in the
Path to Quartus II installation tree box.

To automate the place-and-route process, click Run Quartus II in the Quartus II
Modular window of the Precision Synthesis toolbar. The Quartus II software uses the
current implementation directory as the Quartus II project directory and runs a full
compilation in the background (that is, the user interface does not appear).

Two primary Precision Synthesis software commands control the place-and-route
process. Use the setup_place_and_route command to set the place-and-route
options. Start the process with the place_and_route command.

Precision Synthesis software uses individual Quartus II executables, such as analysis
and synthesis (quartus_map), Fitter (quartus_fit), and the TimeQuest Timing
Analyzer (quartus_sta) for improved runtime and memory utilization during place
and route. This flow is referred to as the Quartus II Modular flow option in the
Precision Synthesis software. By default, the Precision Synthesis software generates a
Quartus II Project Configuration File (.tcl file) for current device families. Timing
constraints that you set during synthesis are exported to the Quartus II
place-and-route constraints file <project name>_pnr_constraints.sdc.

After you compile the design in the Quartus II software from within the Precision
Synthesis software, you can invoke the Quartus II GUI manually and then open the
project using the generated Quartus II project file. You can view reports, run analysis
tools, specify options, and run the various processing flows available in the Quartus II
software.

f For more information about running the Quartus II software from within the
Precision Synthesis software, refer to the Altera Quartus II Integration chapter in the
Precision Synthesis Reference Manual. To access this manual in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Running the Quartus II Software Manually Using the Precision
Synthesis-Generated Tcl Script

You can run the Quartus II software using a Tcl script generated by the Precision
Synthesis software. To run the Tcl script generated by the Precision Synthesis software
to set up your project and start a full compilation, perform the following steps:

1. Ensure the .edf or .vqm file, .tcl files, and .sdc file are located in the same directory.
The files should be located in the implementation directory by default.

2. In the Quartus II software, on the View menu, point to Utility Windows and click
Tcl Console.

3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl r

4. On the File menu, click Open Project. Browse to the project name and click Open.

5. Compile the project in the Quartus II software.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–12 Chapter 18: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
Using the Quartus II Software to Run the Precision Synthesis Software
With NativeLink integration, you can set up the Quartus II software to run the
Precision Synthesis software. This feature allows you to use the Precision Synthesis
software to synthesize a design as part of a standard compilation. When you use this
feature, the Precision Synthesis software does not use any timing constraints or
assignments, such as incremental compilation partitions, that you have set in the
Quartus II software.

h For detailed information about using NativeLink integration with the Precision
Synthesis software, refer to Using the NativeLink Feature with Other EDA Tools in the
Quartus II Help.

Passing Constraints to the Quartus II Software
The place-and-route constraints script forward-annotates timing constraints that you
made in the Precision Synthesis software. This integration allows you to enter these
constraints once in the Precision Synthesis software, and then pass them
automatically to the Quartus II software.

Refer to the introductory text in the section “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 18–10 for information on how to
ensure the Precision Synthesis software targets the TimeQuest Timing Analyzer.

The following constraints are translated by the Precision Synthesis software and are
applicable to the TimeQuest Timing Analyzer:

■ create_clock

■ set_input_delay

■ set_output_delay

■ set_max_delay

■ set_min_delay

■ set_false_path

■ set_multicycle_path

create_clock
You can specify a clock in the Precision Synthesis software, as shown in Example 18–3.

Example 18–3. Specifying a Clock using create_clock

create_clock -name <clock_name> -period <period in ns> -waveform {<edge_list>} -domain \
<ClockDomain> <pin>
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_using_nativelink.htm

Chapter 18: Mentor Graphics Precision Synthesis Support 18–13
Exporting Designs to the Quartus II Software Using NativeLink Integration
The period is specified in units of nanoseconds (ns). If no clock domain is specified,
the clock belongs to a default clock domain main. All clocks in the same clock domain
are treated as synchronous (related) clocks. If no <clock_name> is provided, the default
name virtual_default is used. The <edge_list> sets the rise and fall edges of the clock
signal over an entire clock period. The first value in the list is a rising transition,
typically the first rising transition after time zero. The waveform can contain any even
number of alternating edges, and the edges listed should alternate between rising and
falling. The position of any edge can be equal to or greater than zero but must be
equal to or less than the clock period.

If -waveform <edge_list> is not specified and -period <period in ns> is specified, the
default waveform has a rising edge of 0.0 and a falling edge of <period_value>/2.

The Precision Synthesis software maps the clock constraint to the TimeQuest
create_clock setting in the Quartus II software.

The Quartus II software supports only clock waveforms with two edges in a clock
cycle. If the Precision Synthesis software finds a multi-edge clock, it issues an error
message when you synthesize your design in the Precision Synthesis software.

set_input_delay
This port-specific input delay constraint is specified in the Precision Synthesis
software, as shown in Example 18–4.

This constraint is mapped to the set_input_delay setting in the Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The input pin name for the assignment can be
an input pin name of a time group. The software can use the clock_fall option to
specify delay relative to the falling edge of the clock.

1 Although the Precision Synthesis software allows you to set input delays on pins
inside the design, these constraints are not sent to the Quartus II software, and a
message is displayed.

set_output_delay
This port-specific output delay constraint is specified in the Precision Synthesis
software, as shown in Example 18–5.

This constraint is mapped to the set_output_delay setting in the Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The output pin name for the assignment can
be an output pin name of a time group.

Example 18–4. Specifying set_input_delay

set_input_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay

Example 18–5. Using the set_output_delay Constraint

set_output_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–14 Chapter 18: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
1 Although the Precision Synthesis software allows you to set output delays on pins
inside the design, these constraints are not sent to the Quartus II software.

set_max_delay and set_min_delay
The maximum delay for a point-to-point timing path constraint is specified in the
Precision Synthesis software, as shown in Example 18–6. The minimum delay for a
point-to-point timing path constraint is shown in Example 18–7.

The set_max_delay and set_min_delay commands specify that the maximum and
minimum respectively, required delay for any start point in <from_node_list> to any
endpoint in <to_node_list> must be less than or greater than <delay_value>. Typically,
you use these commands to override the default setup constraint for any path with a
specific maximum or minimum time value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or cells. The
-from and -to parameters specify the source (start point) and the destination
(endpoint) of the timing path, respectively. The source list (<from_node_list>) cannot
include output ports, and the destination list (<to_node_list>) cannot include input
ports. If you include more than one node on a list, you must enclose the nodes in
quotes or in braces ({ }).

If you specify a clock in the source list, you must specify a clock in the destination list.
Applying set_max_delay or set_min_delay setting between clocks applies the
exception from all registers or ports driven by the source clock to all registers or ports
driven by the destination clock. Applying exceptions between clocks is more efficient
than applying them for specific node-to-node, or node-to-clock paths. If you want to
specify pin names in the list, the source must be a clock pin and the destination must
be any non-clock input pin to a register. Assignments from clock pins, or to and from
cells, apply to all registers in the cell or for those driven by the clock pin.

set_false_path
The false path constraint is specified in the Precision Synthesis software, as shown in
Example 18–8.

The node lists can be a list of clocks, ports, instances, and pins. Multiple elements in
the list can be represented using wildcards such as * and ?.

In a place-and-route Tcl constraints file, this false path setting in the Precision
Synthesis software is mapped to a set_false_path setting. The Quartus II software
supports setup, hold, rise, or fall options for this assignment.

Example 18–6. Using the set_max_delay Constraint

set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 18–7. Using the set_min_delay Constraint

set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 18–8. Using the set_false_path Constraint

set_false_path -to <to_node_list> -from <from_node_list> -reset_path
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–15
Guidelines for Altera Megafunctions and Architecture-Specific Features
The node lists for this assignment represents top-level ports and/or nets connected to
instances (end points of timing assignments).

Any false path setting in the Precision Synthesis software can be mapped to a setting
in the Quartus II software with a through path specification.

set_multicycle_path
This multicycle path constraint is specified in the Precision Synthesis software, as
shown in Example 18–9.

The node list can contain clocks, ports, instances, and pins. Multiple elements in the
list can be represented using wildcards such as * and ?. Paths without multicycle path
definitions are identical to paths with multipliers of 1. To add one additional cycle to
the datapath, use a multiplier value of 2. The option start indicates that source clock
cycles should be considered for the multiplier. The option end indicates that
destination clock cycles should be considered for the multiplier. The default is to
reference the end clock.

In the place-and-route Tcl constraints file, the multicycle path setting in the Precision
Synthesis software is mapped to a set_multicycle_path setting. The Quartus II
software supports the rise or fall options on this assignment.

The node lists represent top-level ports and/or nets connected to instances (end
points of timing assignments). The node lists can contain wildcards (such as *); the
Quartus II software automatically expands all wildcards.

Any multicycle path setting in Precision Synthesis software can be mapped to a
setting in the Quartus II software with a -through specification.

Guidelines for Altera Megafunctions and Architecture-Specific
Features

Altera provides parameterizable megafunctions, including the LPMs, device-specific
Altera megafunctions, IP available as Altera MegaCore functions, and IP available
through the Altera Megafunction Partners Program (AMPPSM). You can use
megafunctions and IP functions by instantiating them in your HDL code or by
inferring certain megafunctions from generic HDL code.

If you want to instantiate a megafunction such as a PLL in your HDL code, you can
instantiate and parameterize the function using the port and parameter definitions, or
you can customize a function with the MegaWizard™ Plug-In Manager. Altera
recommends using the MegaWizard Plug-In Manager, which provides a graphical
interface within the Quartus II software for customizing and parameterizing any
available megafunction for the design. “Instantiating Altera Megafunctions Using the
MegaWizard Plug-In Manager” and “Instantiating Intellectual Property With the
MegaWizard Plug-In Manager and IP Toolbench” on page 18–17 describe the
MegaWizard Plug-In Manager flow with the Precision Synthesis software.

Example 18–9. Using the set_multicycle_path Constraint

set_multicycle_path <multiplier_value> [-start] [-end] -to <to_node_list> -from <from_node_list> \
-reset_path
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–16 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
f For more information about specific Altera megafunctions and IP functions, refer to
the IP and Megafunctions page of the Altera website.

The Precision Synthesis software automatically recognizes certain types of HDL code
and infers the appropriate function. The Precision Synthesis software provides
options to control inference of certain types of megafunctions, as described in
“Inferring Altera Megafunctions from HDL Code” on page 18–19.

f For a detailed discussion about instantiating functions versus inferring functions to
target Altera architecture-specific features, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook. This chapter also provides
details on using the MegaWizard Plug-In Manager in the Quartus II software and
explains the files generated by the wizard, as well as coding style recommendations
and HDL examples for inferring functions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard Plug-In
Manager

This section describes how to instantiate Altera megafunctions with the MegaWizard
Plug-In Manager, and how to generate the files that are included in the Precision
Synthesis project for synthesis.

You can run the stand-alone version of the MegaWizard Plug-In Manager by typing
the following command at a command prompt:

qmegawiz r

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files
The MegaWizard Plug-In Manager generates a Verilog HDL instantiation template
file <output file>_inst.v and a hollow-body black box module declaration <output
file>_bb.v for use in your Precision Synthesis design. Incorporate the instantiation
template file, <output file>_inst.v, into your top-level design to instantiate the
megafunction wrapper file, <output file>.v.

Include the hollow-body black box module declaration <output file>_bb.v in your
Precision Synthesis project to describe the port connections of the black box. Adding
the megafunction wrapper file <output file>.v in your Precision Synthesis project is
optional, but you must add it to your Quartus II project along with the Precision
Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the megafunction wrapper file <output file>.v in your
Precision Synthesis project and then right-click the file in the input file list, and select
Properties. In the Input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is turned on, the Precision Synthesis
software excludes the file from compilation and copies the file to the appropriate
directory for use by the Quartus II software during place-and-route.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–17
Guidelines for Altera Megafunctions and Architecture-Specific Features
Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
VHDL Files
The MegaWizard Plug-In Manager generates a VHDL component declaration file
<output file>.cmp and a VHDL instantiation template file <output file>_inst.vhd for
use in your Precision Synthesis design. Incorporate the component declaration and
instantiation template into your top-level design to instantiate the megafunction
wrapper file, <output file>.vhd.

Adding the megafunction wrapper file <output file>.vhd in your Precision Synthesis
project is optional, but you must add the file to your Quartus II project along with the
Precision Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the megafunction wrapper file <output file>.vhd in
your Precision Synthesis project and then right-click the file in the input file list, and
select Properties. In the Input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is turned on, the Precision Synthesis
software excludes the file from compilation and copies the file to the appropriate
directory for use by the Quartus II software during place-and-route.

Instantiating Intellectual Property With the MegaWizard Plug-In Manager
and IP Toolbench
Many Altera IP functions include a resource and timing estimation netlist that the
Precision Synthesis software can use to synthesize and optimize logic around the IP
efficiently. As a result, the Precision Synthesis software provides better timing
correlation, area estimates, and Quality of Results (QoR) than a black box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the MegaWizard Plug-In Manager.

2. Click Next to open the IP Toolbench.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Quartus II software generates a file <output file>_syn.v. This netlist contains the
“grey box” information for resource and timing estimation, but does not contain the
actual implementation. Include this netlist file into your Precision Synthesis project as
an input file. Then include the megafunction wrapper file <output file>.v|vhd in the
Quartus II project along with your EDIF or VQM output netlist.

1 The generated “grey box” netlist file, <output file>_syn.v, is always in Verilog HDL
format, even if you select VHDL as the output file format.

1 For information about creating a grey box netlist file from the command line, search
Altera's Knowledge Database. Alternatively, you can use a black box approach as
described in “Instantiating Black Box IP Functions With Generated Verilog HDL
Files”.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–18 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Instantiating Black Box IP Functions With Generated Verilog HDL Files
You can use the syn_black_box or black_box compiler directives to declare a module
as a black box. The top-level design files must contain the IP port mapping and a
hollow-body module declaration. You can apply the directive to the module
declaration in the top-level file or a separate file included in the project so that the
Precision Synthesis software recognizes the module is a black box.

1 The syn_black_box and black_box directives are supported only on module or entity
definitions.

Example 18–10 shows a sample top-level file that instantiates my_verilogIP.v, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Instantiating Black Box IP Functions With Generated VHDL Files
You can use the syn_black_box or black_box compiler directives to declare a
component as a black box. The top-level design files must contain the megafunction
variation component declaration and port mapping. Apply the directive to the
component declaration in the top-level file.

1 The syn_black_box and black_box directives are supported only on module or entity
definitions.

Example 18–10. Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
input clk;
output[7:0] count;

my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;

input clock;
output[7:0] q;

endmodule
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–19
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 18–11 shows a sample top-level file that instantiates my_vhdlIP.vhd, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Inferring Altera Megafunctions from HDL Code
The Precision Synthesis software automatically recognizes certain types of HDL code
and maps arithmetical and relational operators, and memory (RAM and ROM), to
efficient technology-specific implementations. This functionality allows
technology-specific resources to implement these structures by inferring the
appropriate Altera function to provide optimal results. In some cases, the Precision
Synthesis software has options that you can use to disable or control inference.

f For coding style recommendations and examples for inferring technology-specific
architecture in Altera devices, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style Guide in the
Precision Manuals Bookcase. To access these manuals, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Multipliers
The Precision Synthesis software detects multipliers in HDL code and maps them
directly to device atoms to implement the multiplier in the appropriate type of logic.
The Precision Synthesis software also allows you to control the device resources that
are used to implement individual multipliers, as described in the following section.

Example 18–11. Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS

PORT (
clk: IN STD_LOGIC ;
count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP
PORT (

clock: IN STD_LOGIC ;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN

vhdlIP_inst : my_vhdlIP PORT MAP (
clock => clk,
q => count

);
END rtl;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

18–20 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Controlling DSP Block Inference for Multipliers

By default, the Precision Synthesis software uses DSP blocks available in Stratix series
devices to implement multipliers. The default setting is AUTO, which allows the
Precision Synthesis software to map to logic look-up tables (LUTs) or DSP blocks,
depending on the size of the multiplier. You can use the Precision Synthesis GUI or
HDL attributes to direct mapping to only logic elements or to only DSP blocks.

The options for multiplier mapping in the Precision Synthesis software are described
in Table 18–3.

Setting the Use Dedicated Multiplier Option
To set the Use Dedicated Multiplier option in the Precision Synthesis GUI, compile
the design, and then in the Design Hierarchy browser, right-click the operator for the
desired multiplier and click Use Dedicated Multiplier.

Setting the dedicated_mult Attribute
To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value from Table 18–3, as shown in
Example 18–12 and Example 18–13.

The dedicated_mult attribute can be applied to signals and wires; it does not work
when applied to a register. This attribute can be applied only to simple multiplier
code, such as a = b * c.

Some signals for which the dedicated_mult attribute is set can be removed during
synthesis by the Precision Synthesis software for design optimization. In such cases, if
you want to force the implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE, as shown in Example 18–14 and Example 18–15.

Table 18–3. Options for dedicated_mult Parameter to Control Multiplier Implementation in
Precision Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers, regardless of the size of the multiplier.

AUTO Use logic (LUTs) or DSP blocks to implement multipliers, depending on the size of the
multipliers.

Example 18–12. Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example 18–13. Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

Example 18–14. Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–21
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 18–16 and Example 18–17 are examples, in Verilog HDL and VHDL, of using
the dedicated_mult attribute to implement the given multiplier in regular logic in the
Quartus II software.

Multiplier-Accumulators and Multiplier-Adders
The Precision Synthesis software also allows you to control the device resources used
to implement multiply-accumulators or multiply-adders in your project or in a
particular module.

The Precision Synthesis software detects multiply-accumulators or multiply-adders in
HDL code and infers an ALTMULT_ACCUM or ALTMULT_ADD megafunction so
that the logic can be placed in DSP blocks, or the software maps these functions
directly to device atoms to implement the multiplier in the appropriate type of logic.

Example 18–15. Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

Example 18–16. Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
output [15:0] result;
input [7:0] a;
input [7:0] b;
assign result = a * b;
//synthesis attribute result dedicated_mult OFF

endmodule

Example 18–17. VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT(

a: IN std_logic_vector (7 DOWNTO 0);
b: IN std_logic_vector (7 DOWNTO 0);
result: OUT std_logic_vector (15 DOWNTO 0));

ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
SIGNAL pdt_int: UNSIGNED (15 downto 0);

ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);
b_int <= UNSIGNED (b);
pdt_int <= a_int * b_int;
result <= std_logic_vector(pdt_int);

END rtl;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–22 Chapter 18: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
1 The Precision Synthesis software supports inference for these functions only if the
target device family has dedicated DSP blocks. Refer to “Controlling DSP Block
Inference” for more information.

f For more information about DSP blocks in Altera devices, refer to the appropriate
Altera device family handbook and device-specific documentation. For details about
which functions a given DSP block can implement, refer to the DSP Solutions Center
on the Altera website at www.altera.com.

f For more information about inferring multiply-accumulator and multiply-adder
megafunctions in HDL code, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style Guide in the
Precision Synthesis Manuals Bookcase.

Controlling DSP Block Inference
By default, the Precision Synthesis software infers the ALTMULT_ADD or
ALTMULT_ACCUM megafunction appropriately in your design. These
megafunctions allow the Quartus II software to select either logic or DSP blocks,
depending on the device utilization and the size of the function.

You can use the extract_mac attribute to prevent inference of an ALTMULT_ADD or
ALTMULT_ACCUM megafunction in a certain module or entity. The options for this
attribute are described in Table 18–4.

To control inference, use the extract_mac attribute with the appropriate value from
Table 18–4 in your HDL code, as shown in Example 18–18 and Example 18–19.

To control the implementation of the multiplier portion of a multiply-accumulator or
multiply-adder, you must use the dedicated_mult attribute.

Example 18–20 and Example 18–21 on page 18–23 use the extract_mac,
dedicated_mult, and preserve_signal attributes (in Verilog HDL and VHDL) to
implement the given DSP function in logic in the Quartus II software.

Table 18–4. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is inferred.

FALSE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is not inferred.

Example 18–18. Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

Example 18–19. Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–23
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 18–20. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL

module unsig_altmult_accum1 (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output [31:0] dataout;

reg [31:0] dataout;
wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa * datab;

//synthesis attribute multa preserve_signal TRUE
//synthesis attribute multa dedicated_mult OFF
assign adder_out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
dataout <= 0;
else if (clken)
dataout <= adder_out;

end

//synthesis attribute unsig_altmult_accum1 extract_mac FALSE
endmodule

Example 18–21. Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS

PORT(
a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;

END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS

SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
SIGNAL result_int: signed (15 DOWNTO 0);
ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

BEGIN
a_int <= signed (a);
b_int <= signed (b);
c_int <= signed (c);
d_int <= signed (d);
pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
result <= STD_LOGIC_VECTOR(result_int);

END rtl;
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–24 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
RAM and ROM
The Precision Synthesis software detects memory structures in HDL code and
converts them to an operator that infers an ALTSYNCRAM or LPM_RAM_DP
megafunction, depending on the device family. The software then places these
functions in memory blocks.

The software supports inference for these functions only if the target device family
has dedicated memory blocks.

f For more information about inferring RAM and ROM megafunctions in HDL code,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook, and the Precision Synthesis Style Guide in the Precision Synthesis Manuals
Bookcase. To access these manuals, in the Precision Synthesis software, click Help and
select Open Manuals Bookcase.

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based
incremental design flow is often an effective design approach. In an incremental
compilation flow, you can make changes to one part of the design while maintaining
the placement and performance of unchanged parts of the design. Design iterations
can be made dramatically faster by focusing new compilations on particular design
partitions and merging results with the results of previous compilations of other
partitions. You can perform optimization on individual blocks and then integrate
them into a final design and optimize the design at the top-level.

The first step in an incremental design flow is to make sure that different parts of your
design do not affect each other. You must ensure that you have separate netlists for
each partition in your design. If the whole design is in one netlist file, changes in one
partition affect other partitions because of possible node name changes when you
resynthesize the design.

You can create different implementations for each partition in your Precision
Synthesis project, which allows you to switch between partitions without leaving the
current project file. You can also create a separate project for each partition if you
require separate projects for a team-based design flow. Alternatively, you can use the
incremental synthesis capability in the Precision RTL Plus software.

f For more information about creating partitions and using incremental compilation in
the Quartus II software, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Precision RTL Plus Incremental Synthesis
The Precision RTL Plus incremental synthesis flow for Quartus II incremental
compilation uses a partition-based approach to achieve faster design cycle time.

Using the incremental synthesis feature, you can create different netlist files for
different partitions of a design hierarchy within one partition implementation, which
makes each partition independent of the others in an incremental compilation flow.
Only the portions of a design that have been updated must be recompiled during
design iterations. You can make changes and resynthesize one partition in a design to
create a new netlist without affecting the synthesis results or fitting of other partitions.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–25
Incremental Compilation and Block-Based Design
The following steps show a general flow for partition-based incremental synthesis
with Quartus II incremental compilation.

1. Create Verilog HDL or VHDL design files.

2. Determine which hierarchical blocks you want to treat as separate partitions in
your design, and designate the partitions with the incr_partition attribute. For
the syntax to create partitions, refer to “Creating Partitions with the incr_partition
Attribute” on page 18–25.

3. Create a project in the Precision RTL Plus Synthesis software and add the HDL
design files to the project.

4. Enable incremental synthesis in the Precision RTL Plus Synthesis software using
one of these methods:

■ On the Tools menu, click Set Options. On the Optimization page, turn on
Enable Incremental Synthesis.

■ Run the following command in the Transcript Window:

setup_design -enable_incr_synth r

5. Run the basic Precision Synthesis flow of compilation, synthesis, and place-and-
route on your design. In subsequent runs, the Precision RTL Plus Synthesis
software processes only the parts of the design that have changed, resulting in a
shorter iteration than the initial run. The performance of the unchanged partitions
is preserved.

The Precision RTL Plus Synthesis software sets the netlist types of the unchanged
partitions to Post-Fit and the changed partitions to Post-Synthesis. You can
change the netlist type during timing closure in the Quartus II software to obtain
the best QoR.

6. Import the EDIF or VQM netlist for each partition and the top-level .tcl file into the
Quartus II software, and set up the Quartus II project to use incremental
compilation.

7. Compile your Quartus II project.

8. If you want, you can change the Quartus II incremental compilation netlist type
for a partition with the Design Partitions Window. You can change the Netlist
Type to one of the following options:

■ To preserve the previous post-fit placement results, change the Netlist Type of
the partition to Post-Fit.

■ To preserve the previous routing results, set the Fitter Preservation Level of
the partition to Placement and Routing.

Creating Partitions with the incr_partition Attribute
Partitions are set using the HDL incr_partition attribute. The Precision Synthesis
software creates or deletes partitions by reading this attribute during compilation
iterations. The attribute can be attached to either the design unit definition or an
instance. Example 18–22 and Example 18–23 show how to use the attribute to create
partitions.

To delete partitions, you can remove the attribute or set the attribute value to false.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–26 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
1 The Precision Synthesis software ignores partitions set in a black box.

Creating Multiple Mapped Netlist Files With Separate Precision Projects
or Implementations

This section describes how to manually generate multiple netlist files, which can be
VQM or EDIF files, for incremental compilation using black boxes and separate
Precision projects or implementations for each design partition. This manual flow is
supported in versions of the Precision software that do not include the incremental
synthesis feature. You might also use this feature if you perform synthesis in a
team-based environment without a top-level synthesis project that includes all of the
lower-level design blocks.

Example 18–22. Using incr_partition Attribute to Create a Partition in Verilog HDL

Design unit partition:

module my_block(
input clk;
output reg [31:0] data_out) /* synthesis incr_partition */ ;

Instance partition:

my_block my_block_inst(.clk(clk), .data_out(data_out));
// synthesis attribute my_block_inst incr_partition true

Example 18–23. Using incr_partition Attribute to a Create Partition in VHDL

Design unit partition:

entity my_block is
port(

clk : in std_logic;
data_out : out std_logic_vector(31 downto 0)

);
attribute incr_partition : boolean;
attribute incr_partition of my_block : entity is true;

end entity my_block;

Instance partition:

component my_block is
port(

clk : in std_logic;
data_out : out std_logic_vector(31 downto 0)
);

end component;

attribute incr_partition : boolean;
attribute incr_partition of my_block_inst : label is true;

my_block_inst my_block
port map(clk, data_out);
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–27
Incremental Compilation and Block-Based Design
In the Precision Synthesis software, create a separate implementation, or a separate
project, for each lower-level module and for the top-level design that you want to
maintain as a separate netlist file. Implement black box instantiations of lower-level
modules in your top-level implementation or project.

f For more information about managing implementations and projects, refer to the
Precision RTL Synthesis User’s Manual. To access this manual, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

When synthesizing the implementations for lower-level modules, perform these steps
in the Precision Synthesis software:

1. On the Tools menu, turn off Add IO Pads on the Optimization page under Set
Options.

1 You must turn off the Add IO Pads option while synthesizing the
lower-level modules individually. Enable the Add IO Pads option only
while synthesizing the top-level module.

2. Read the HDL files for the modules.

1 Modules can include black box instantiations of lower-level modules that
are also maintained as separate netlist files.

3. Add constraints for all partitions in the design.

When synthesizing the top-level design implementation, perform these steps:

1. Read the HDL files for top-level designs.

2. On the Tools menu, click Set Options. On the Optimization page, turn on Add IO
Pads.

3. Create black boxes for lower-level modules in the top-level design.

4. Add constraints.

1 In a standard Quartus II incremental compilation flow, Precision Synthesis software
constraints made on lower-level modules are not passed to the Quartus II software.
Ensure that appropriate constraints are made in the top-level Precision Synthesis
project, or in the Quartus II project.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–28 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
Creating Black Boxes to Create EDIF Netlists
This section describes how to create black boxes to create separate EDIF netlists.
Figure 18–2 shows an example of a design hierarchy separated into various partitions.

In Figure 18–2, the top-level partition contains the top-level block in the design
(block A) and the logic that is not defined as part of another partition. In this example,
the partition for top-level block A also includes the logic in the sub-block C. Because
block F is contained in its own partition, it is not treated as part of the top-level
partition A. Another separate partition, B, contains the logic in blocks B, D, and E. In a
team-based design, different engineers may work on the logic in different partitions.
One netlist is created for the top-level module A and its submodule C, another netlist
is created for module B and its submodules D and E, while a third netlist is created for
module F. To create multiple EDIF netlist files for this design, follow these steps:

1. Generate an .edf file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the
source files.

2. Generate an .edf file for module F. Use F.v/.vhd as the source file.

3. Generate a top-level .edf file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you create black boxes for modules B and F, which were
optimized separately in the previous steps.

The goal is to individually synthesize and generate an .edf netlist file for each
lower-level module and then instantiate these modules as black boxes in the top-level
file. You can then synthesize the top-level file to generate the .edf netlist file for the
top-level design. Finally, both the lower-level and top-level .edf netlist files are
provided to your Quartus II project.

1 When you make design or synthesis optimization changes to part of your design,
resynthesize only the changed partition to generate the new .edf netlist file. Do not
resynthesize the implementations or projects for the unchanged partitions.

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In Verilog HDL, you must
provide an empty module declaration for any module that is treated as a black box.

Figure 18–2. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–29
Incremental Compilation and Block-Based Design
A black box for the top-level file A.v is shown in the following example. Provide an
empty module declaration for any lower-level files, which also contain a black box for
any module beneath the current level of hierarchy.

Creating Black Boxes in VHDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In VHDL, you must
provide a component declaration for the black box.

A black box for the top-level file A.vhd is shown in Example 18–25. Provide a
component declaration for any lower-level files that also contain a black box or for
any block beneath the current level of hierarchy.

Example 18–24. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
input data_in, clk, e, ld;
output [15:0] data_out;
wire [15:0] cnt_out;
B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));
// Any other code in A.v goes here.

endmodule
// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.
module B (data_in, clk, ld, data_out);

input data_in, clk, ld;
output [15:0] data_out;

endmodule
module F (d, clk, e, q);

input [15:0] d;
input clk, e;
output [15:0] q;

endmodule
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–30 Chapter 18: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
After you complete the steps outlined in this section, you have different EDIF netlist
files for each partition of the design. These files are ready for use with incremental
compilation in the Quartus II software.

Creating Quartus II Projects for Multiple EDIF Files
The Precision Synthesis software creates a .tcl file for each implementation, and
provides the Quartus II software with the appropriate constraints and information to
set up a project. When using incremental synthesis, the Precision RTL Plus Synthesis
software creates only a single .tcl file, <project name>_incr_partitions.tcl, to pass the
partition information to the Quartus II software. For details about using this Tcl script
to set up your Quartus II project and to pass your top-level constraints, refer to
“Running the Quartus II Software Manually Using the Precision Synthesis-Generated
Tcl Script” on page 18–11.

Example 18–25. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS

PORT (data_in : IN INTEGER RANGE 0 TO 15;
clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;
ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(

data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
COMPONENT F PORT(

d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;
BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here
END a_arch;
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

Chapter 18: Mentor Graphics Precision Synthesis Support 18–31
Incremental Compilation and Block-Based Design
Depending on your design methodology, you can create one Quartus II project for all
EDIF netlists, or a separate Quartus II project for each EDIF netlist. In the standard
incremental compilation design flow, you create design partition assignments for each
partition in the design within a single Quartus II project. This methodology provides
the best QoR and performance preservation during incremental changes to your
design. You might require a bottom-up design flow if each partition must be
optimized separately, such as for third-party IP delivery.

To follow this design flow in the Quartus II software, create separate Quartus II
projects and export each design partition and incorporate it into a top-level design
using the incremental compilation features to maintain placement results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Standard Incremental Compilation
Flow
Use the <top-level project>.tcl file generated for the top-level partition to create your
Quartus II project and import all the netlists into this one Quartus II project for an
incremental compilation flow. You can optimize all partitions within the single
Quartus II project and take advantage of the performance preservation and
compilation time reduction that incremental compilation provides. Figure 18–3 shows
the design flow for the example design in Figure 18–2 on page 18–28.

All the constraints from the top-level implementation are passed to the Quartus II
software in the top-level .tcl file, but any constraints made only in the lower-level
implementations within the Precision Synthesis software are not forward-annotated.
Enter these constraints manually in your Quartus II project.

Creating Multiple Quartus II Projects for a Bottom-Up Flow
Use the .tcl files generated by the Precision Synthesis software for each Precision
Synthesis software implementation or project to generate multiple Quartus II projects,
one for each partition in the design. Each designer in the project can optimize their
block separately in the Quartus II software and export the placement of their blocks
using incremental compilation. Designers should create a LogicLock region to
provide a floorplan location assignment for each block; the top-level designer should
then import all the blocks and assignments into the top-level project. Figure 18–4

Figure 18–3. Design Flow Using Multiple EDIF Files with One Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
top-level Precsion
Synthesis software

assignments.
Enter any lower level

assignments manually.
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

18–32 Chapter 18: Mentor Graphics Precision Synthesis Support
Conclusion
shows the design flow for the example design in Figure 18–2 on page 18–28.

Hierarchy and Design Considerations
To ensure the proper functioning of the synthesis flow, you can create separate
partitions only for modules, entities, or existing netlist files. In addition, each module
or entity must have its own design file. If two different modules are in the same
design file, but are defined as being part of different partitions, incremental synthesis
cannot be maintained because both regions must be recompiled when you change one
of the modules.

Altera recommends that you register all inputs and outputs of each partition. This
makes logic synchronous and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Precision Synthesis software
pushes the tri-states through the hierarchy to the top-level to make use of the tri-state
drivers on output pins of Altera devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the hierarchy.

f For more tips on design partitioning, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Conclusion
The Mentor Graphics Precision Synthesis software and Quartus II design flow allow
you to control how to prepare your design files for the Quartus II place-and-route
process, which allows you to improve performance and optimizes your design for use
with Altera devices. Several of the methodologies outlined in this chapter can help
you optimize your design to achieve performance goals and decrease design time.

Figure 18–4. Design Flow: Using Multiple EDIF Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
Precision Synthesis
software assignments.

Use f.tcl to import
Precision Synthesis
software assignments.

Use b.tcl to import
Precision Synthesis

software assignments.
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 18: Mentor Graphics Precision Synthesis Support 18–33
Document Revision History
Document Revision History
Table 18–5 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 18–5. Document Revision History

Date Version Changes

June 2012 12.0.0 ■ Removed survey link.

November 2011 10.1.1
■ Template update.

■ Minor editorial changes.

December 2010 10.1.0

■ Changed to new document template.

■ Removed Classic Timing Analyzer support.

■ Added support for .vqm netlist files.

■ Edited the “Creating Quartus II Projects for Multiple EDIF Files” on page 15–30 section for
changes with the incremental compilation flow.

■ Editorial changes.

July 2010 10.0.0 ■ Minor updates for the Quartus II software version 10.0 release

November 2009 9.1.0 ■ Minor updates for the Quartus II software version 9.1 release

March 2009 9.0.0
■ Updated list of supported devices for the Quartus II software version 9.0 release

■ Chapter 11 was previously Chapter 10 in software version 8.1

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size

■ Title changed to Mentor Graphics Precision Synthesis Support

■ Updated list of supported devices

■ Added information about the Precision RTL Plus incremental synthesis flow

■ Updated Figure 10-1 to include SystemVerilog

■ Updated “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 10–19

■ Updated “Incremental Compilation and Block-Based Design” on page 10–28

■ Added section “Creating Partitions with the incr_partition Attribute” on page 10–29

May 2008 8.0.0

■ Removed Mercury from the list of supported devices

■ Changed Precision version to 2007a update 3

■ Added note for Stratix IV support

■ Renamed “Creating a Project and Compiling the Design” section to “Creating and
Compiling a Project in the Precision RTL Synthesis Software”

■ Added information about constraints in the Tcl file

■ Updated document based on the Quartus II software version 8.0
June 2012 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

18–34 Chapter 18: Mentor Graphics Precision Synthesis Support
Document Revision History
Quartus II Handbook Version 13.1 June 2012 Altera Corporation
Volume 1: Design and Synthesis

	18. Mentor Graphics Precision Synthesis Support
	Altera Device Family Support
	Design Flow
	Creating and Compiling a Project in the Precision Synthesis Software
	Mapping the Precision Synthesis Design
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers and I/O Settings
	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision Synthesis Software from Adding I/O Pads
	Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design and Evaluating the Results
	Obtaining Accurate Logic Utilization and Timing Analysis Reports

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Precision Synthesis Software
	Running the Quartus II Software Manually Using the Precision Synthesis-Generated Tcl Script
	Using the Quartus II Software to Run the Precision Synthesis Software
	Passing Constraints to the Quartus II Software
	create_clock
	set_input_delay
	set_output_delay
	set_max_delay and set_min_delay
	set_false_path
	set_multicycle_path

	Guidelines for Altera Megafunctions and Architecture-Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated Verilog HDL Files
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated VHDL Files
	Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP Toolbench
	Instantiating Black Box IP Functions With Generated Verilog HDL Files
	Instantiating Black Box IP Functions With Generated VHDL Files

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Setting the Use Dedicated Multiplier Option
	Setting the dedicated_mult Attribute
	Multiplier-Accumulators and Multiplier-Adders
	Controlling DSP Block Inference
	RAM and ROM

	Incremental Compilation and Block-Based Design
	Creating a Design with Precision RTL Plus Incremental Synthesis
	Creating Partitions with the incr_partition Attribute

	Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations
	Creating Black Boxes to Create EDIF Netlists
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating Quartus II Projects for Multiple EDIF Files
	Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Flow

	Hierarchy and Design Considerations

	Conclusion
	Document Revision History

