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ABSTRACT 

This bachelor thesis systematically analyzes and discusses both the findings of 
the launch campaign and flight of the Horizon Acquisition Experiment (HORACE) 
and the main steps and decisions of its development. HORACE was part of the 
sixth cycle of the REXUS programme and was launched on May 28 2014 13:30 
(UTC+2) from Esrange Space Center (Kiruna/Sweden) on REXUS 16. It was the 
first basic step of research towards a new sensor system for attitude determination 
based on horizon acquisition using image data of ordinary cameras and image 
processing technologies.  

After an introductory chapter, which gives an overview of the experiment in 
general (the project frame, objectives and concept), both the main problems 
experienced during the campaign and flight and the main achievements of the 
experiment are systematically analyzed, using the payload data, as well as the 
experiment documentation, results of simulations, data of further investigation and 
recorded flight data of the sounding rocket. The main problems are: corruption of 
the file-system of the Measurement Unit; shifted electrical ground; interferences 
with the GPS-system of the RXSM and overexposure of the payload cameras. For 
all problems the observed behavior and performance of a specific setup is 
compared to the expected one, before the methods and results of the conducted 
analysis are presented and possible solutions outlined. 

To evaluate the achievements, the performance of all subsystems is compared to 
the corresponding requirements and the main steps and decisions of the 
development are explained and discussed. The subsystems leading to achieve-
ments are: electronics & electrical interfaces; thermal design; mechanical design; 
OBDH-software of the core systems; algorithm for horizon acquisition; communi-
cation middleware; measurement unit and ground station software. 

Summarizing both the problems and achievements leads to an overall mission 
evaluation of an 80% partial success, as the experiment design and imple-
mentation was very good, but several of the questions posed in the Experiment 
Objectives could only partially or indirectly be answered. 

In a last part an outlook on possible follow-up experiments is given and the most 
appealing directions for further development are outlined. Those are: re-flight on 
REXUS; upgrade to full attitude determination; miniaturization for satellite mission; 
porting to existing hardware. 
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INTRODUCTION & TECHNICAL BACKGROUND 

“Non omnis moriar” – “I will not wholly die” (Rudd, 2014), a phrase of the ancient 
Roman lyric poet Quintus Horatius Flaccus, who lived in the first century BC and is 
also known as “Horace”, fits quite well the scientific and technical background of 
the HORACE-Project – the Horizon Acquisition Experiment – since it was the first 
basic step towards a new sensor system for attitude determination of satellites 
during emergencies. 

Up to today many satellite missions still fail – or “die” – due to a malfunction of the 
attitude determination and control system (ADCS), which is an essential sub-
system for most satellites. The attitude – not to be confused with the position – 
must be determined and controlled more or less precisely to direct solar panels to 
the sun or communication antennas to the ground stations. If a satellite fails this 
essential task, it will run out of energy or cannot be commanded anymore and 
eventually will probably be completely lost. Therefore the ADCS must always work 
properly – not only during nominal phases of the mission, but also in emergency 
cases, when the satellite is switched to the so called safe mode. This might 
happen when the satellite is tumbling and spinning uncontrolled, for example after 
a collision with space debris or a malfunction of the main ADCS. To prevent the 
satellite from “wholly dying”, a new sensor system for attitude determination is 
envisioned, which is capable to (re)acquire a satellite’s attitude also during those 
emergency cases autonomously. An autonomous system is not only required to 
face the general trend towards more and more autonomous satellites but also 
because it is improbable to have a proper communication link to the satellite 
during an emergency. 

Among all possible types of attitude determination sensors a horizon sensor is 
considered to be the best approach for this scenario. No high accuracy is required, 
but it shall work while the satellite might spin with high rates (unlike star-trackers) 
and also during eclipse (unlike sun-sensors). As the central body (in most cases 
the earth) can be distinguished from the outer space also during eclipse and as 
motion modes in which the central body is never visible are very improbable, a 
horizon sensor seems to be a fair choice. 

Unlike existing horizon sensors the new sensor shall not work in the infrared 
spectrum but the visible spectrum, capturing images with an ordinary camera 
which are evaluated by powerful image processing algorithms for two reasons. 
Firstly, to reduce costs and therefore to make the sensor system also available for 
smaller missions. Secondly, the experiment works in the visible spectrum to 
artificially worsen the initial conditions and thus emphasizing the capabilities of the 
software components of the system. Hence, in an even later version the software 
will probably be that generic that it can process image-data from any camera. As 
many satellites already carry payload cameras therefore the whole “sensor 
system” may only be a software-package and does not require own hardware, 
making it even more suitable as a system for emergencies.  

The aim of the Horizon Acquisition Experiment was to prove or disprove the very 
basic feasibility of this approach for a new sensor system with a flight on a soun-
ding rocket. Such a flight was considered suitable as it would be possible to cap-
ture realistic, space-like images and the motion of the unguided and uncontrolled 
vehicle would be similar to the motion of a tumbling satellite. (Rapp, et al., 
HORACE Student Experiment Documentation - v4.0, 2014, pp. 7-8) 
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After one and a half year of development HORACE was conducted during the 
flight of REXUS 16 which was launched on May 28 2014 13:30 UTC+2 from 
Esrange Space Center, Kiruna/Sweden. 

Therefore, this thesis shall not only describe the design and development process 
but also evaluate the experiment and its flight performance, regarding both the 
main problems experienced during the launch campaign and the flight and the 
main achievements. After an introductory part, which provides a broad but short 
overview of the experiment, in the second chapter the main problems are analyzed 
and discussed thoroughly and possible solutions are outlined in separate 
subchapters by following a systematic approach. In the third chapter the main 
achievements, separated by the subsystems, are analyzed and discussed as well, 
following again a systematic approach and also regarding the development 
process. The findings of those both chapters are summarized to an evaluation of 
HORACE in general before finally in the last chapter an outlook on possible follow-
up experiments on the way to a full sensor system is given. 
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1 EXPERIMENT & PROJECT OVERVIEW 

In this introductory chapter a broad overview over the Horizon Acquisition Experi-
ment regarding the project frame of the REXUS programme, the objectives of 
HORACE and its basic concept is given, which includes all necessary information 
to understand the evaluation of the experiment conducted in the main part. 

As most of this fundamental information was already part of the experiment 
documentation, the corresponding chapters of the documents (in most cases 
(Rapp, et al., HORACE Student Experiment Documentation - v4.0, 2014) and 
(Mawn, Kaczmarczik, & Schmidt, 2014)) are often directly cited and where 
appropriate explained or summarized. Therefore, readers who are used to the 
HORACE-project (its backgrounds, objectives, concept and nomenclature) and the 
REXUS programme may skip some of the subchapters and only refer to them if 
questions arise, while others seeking for more detailed information may directly 
refer to the underlying cited documents. 

1.1 The REXUS Programme 

The Rocket (respectively Balloon) Experiment for University Student (REXUS/ 
BEXUS) programme is described by its organizers as following: 

“The REXUS/BEXUS programme allows students from universities and 
higher education colleges across Europe to carry out scientific and 
technological experiments on research rockets and balloons. Each year, 
two rockets and two balloons are launched, carrying up to 201 experiments 
designed and built by student teams. REXUS experiments are launched on 
an unguided, spin-stabilised rocket powered by an Improved Orion Motor 
with 290 kg of solid propellant. It is capable of taking 40 kg of student 
experiment modules to an altitude of approximately 90 km. The vehicle has 
a length of approx. 5.6 m and a body diameter of 35.6 cm. (…)  

The REXUS/BEXUS programme is realised under a bilateral Agency 
Agreement between the German Aerospace Center (DLR) and the Swedish 
National Space Board (SNSB). The Swedish share of the payload has been 
made available to students from other European countries through a 
collaboration with the European Space Agency (ESA). EuroLaunch, a 
cooperation between the Esrange Space Center of SSC and the Mobile 
Rocket Base (MORABA) of DLR, is responsible for the campaign 
management and operations of the launch vehicles. Experts from DLR, 
SSC, ZARM and ESA provide technical support to the student teams 
throughout the project.” (EuroLaunch, 2014) 

Unlike other larger university projects with student participation, during which 
students usually only take part in single steps or phases of the project, the 
relatively short project lifecycle of REXUS, nominally 1.5 years (Mawn, 
Kaczmarczik, & Schmidt, 2014, p. 20), makes it possible that the students take 
part in the whole project – from the first rough sketch for a proposal to the post-
flight evaluation. 

                                                                 
1
 in total for REXUS and BEXUS; each REXUS-rocket typically carries 4-5 experiments, thus 8-10 experiments are 

performed on REXUS each cycle. 
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Thus, after having been initiated by five Bachelor students of Aerospace Informa-
tion Technology from University of Würzburg in October 2012 HORACE became 
part of cycle 6 of the REXUS programme after the selection in December 2012. 
The experiment then was designed and implemented throughout 2013 and the 
campaign preparations and testing of the full experiment were carried out in spring 
2014. Finally, the launch campaign took place from May 19 2014 to June 02 2014 
at Esrange Space Center in Kiruna/Sweden and HORACE was successfully 
launched as payload of REXUS 16 on May 28 2014 13:30 UTC+2 reaching an 
altitude of 87km during its 14-minutes-long parabolic flight. 

1.2 Mission Statement 

The Mission Statement of HORACE was defined at a very early stage of the 
project and is given in (Rapp, et al., HORACE Student Experiment Documentation 
- v4.0, 2014, p. 8): 

“HORACE on REXUS 16 is a technology demonstration mission for 
autonomous earth detection on satellites. The aim is to prove or disprove 
the general technical feasibility of the outlined approach. 

During the mission the functionality and robustness of the general approach 
is tested under realistic, space-like conditions, by means of the HORACE 
Flight Segment. After post flight evaluation it shall be determined whether 
the approach of autonomous horizon acquisition with a camera in 
conjunction with image processing algorithms running on an embedded 
system connected to the camera is indeed apt to (re)acquire a satellite’s 
attitude under nominal or stress conditions.” 

Of this Mission Statement one has to especially keep in mind that the aim was not 
to develop a full sensor system for attitude determination via horizon acquisition 
and its demonstration, but only to “prove or disprove” the very basic feasibility of 
that general approach. As the results could not have been predicted (HORACE 
was the first step of research) it was important to keep the question between both 
options (proving or disproving) open. Otherwise, if one had aimed for example at 
proving the approach and had failed because the approach had not been suitable 
in general, the mission success would have been reduced although the acquired 
technical and scientific knowledge had been equivalent. 

1.3 Experiment Objectives 

The Experiment Objectives were defined early as well and are directly based on 
the Mission Statement: 

“With HORACE, whose development will be part of the mission, the following 
primary objectives shall be reached:  

 Investigate whether horizon acquisition can be performed accurately 
enough for attitude determination. 

 Determine whether the very dynamic and time-critical problem can be 
solved with an embedded system with reasonable time resolution and 
power consumption. 
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Secondary objectives are: 

 to show physical or systematic limits and problems of the general 
approach. 

 to determine, if a future attitude determination system following the 
general approach would be applicable also for small satellites.” 

(Rapp, et al., HORACE Student Experiment Documentation - v4.0, 2014, p. 9) 

One has to note again that all posed questions are kept open (“investigate 
whether…”, “determine whether…”, “show…”) and not limited to a single option for 
the same reason as for the more abstract Mission Statement (cf. ‎1.2). 
Furthermore, the development of the experiment itself – with only indirect link to 
the questions to be answered – is explicitly defined as part of the overall mission, 
which is important for the overall evaluation of the mission success (cf. ‎4). 

1.4 Experiment Concept 

This chapter summarizes chapter 1.4 (pp 9-10) and 4.1 (pp 32-34) of (Rapp, et al., 
HORACE Student Experiment Documentation - v4.0, 2014) and hence often 
combines information from both chapters in the same sentence. Please note that 
therefore and to increase simplicity and readability not every single piece of 
information is explicitly referenced. 

The complete Horizon Acquisition Experiment (HORACE) consists of the Flight 
Segment (FS), carrying out the actual experiment onboard of REXUS 16, and the 
Ground Segment. Within the FS there are five subsystems: the core system (CS), 
the power distribution unit (PDU), the camera, the measurement unit (MU) and the 
mechanical structure, whereas the Ground Segment consists of the ground station 
and both the electrical and mechanical ground support equipment (EGSE and 
MGSE) (cf. Figure ‎1-1). 

 

 

 

Figure ‎1-1: Hierarchy of HORACE (Rapp, et al., 2014, p. 9) 
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Within the Flight Segment (cf. Figure ‎1-2) the PDU conditions the unregulated 
power, which is provided by the REXUS Service Module (RXSM), to the voltages 
needed by each component and implements the hardware for the data interface to 
the RXSM (signals, telemetry and telecommand; optocoupler-circuits and RS-422-
to-RS-232-converter). 

The camera observes the outer environment of the REXUS-rocket and passes its 
image-data via the standardized GigE-Vision-Interface to the core system, a 
micro-ITX embedded PC, which first saves the image-data via SATA-II to a mass 
memory device (SSD) and then processes it for the actual horizon acquisition. The 
results of the image-processing are also stored to the SSD and parts of them are 
provided for downlink. Furthermore, the core system implements the protocols for 
telemetry (TM) and telecommand (TC) and is connected to the hardware-interface 
of the PDU via RS-232. 

The measurement unit, an Arduino Leonardo extended with a SD-card-shield and 
RS-232-interface, collects health data (temperatures and currents) at distinct 
points of the Flight Segment and stores them to its internal microSD-card or 
provides them via the RS-232-connection to the core system for downlink, 
according to the time-line of the experiment and the software-modes. Via this RS-
232-connection to the core system the two components involved in data-handling 
are time-synchronized to the mission elapse time (reset at LO) to ensure that all 
collected data can be matched for the post-flight evaluation. 

 

 

The mechanical structure simply mounts all components properly to the vehicle 
and protects the electronics from small pieces like screws possibly floating through 
the rocket during micro-gravity and thus causing short circuits. 

Figure ‎1-2: Flight Segment - experiment setup (Rapp, et al., 2014, p. 32) 
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The ground station receives the downlinked data and displays them in an 
appropriate manner on a Graphical User Interface (GUI). Using the same GUI also 
telecommands can be sent to the Flight Segment via the infrastructure of the 
REXUS Service System. The EGSE and MGSE are used for integration, 
assembly, preparation and testing. 

The Flight Segment works mostly autonomously already during countdown – 
except from only a few preparations and check-outs (clear memory etc.) – and it 
runs completely autonomously during flight. Nevertheless, TC can be received and 
executed throughout the complete timeline what was mostly used for testing. 

To gather more scientific data, two nearly identical setups of the outlined 
experiment were flown within the same 120mm high experiment module with also 
two interfaces to RXSM and thus also two ground stations. The MU is the only 
component which was not needed twice, hence introducing the distinction between 
the two setups: the Master, which is connected to the MU and the Slave, which is 
not. 
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2 ANALYSIS & DISCUSSION OF MAIN PROBLEMS 

In this chapter the main problems experienced before and during the launch 
campaign, especially the actual flight, are thoroughly analyzed, following a 
systematic approach: First the actual system setup (limited to the relevant 
subsystems for simplicity) which caused the problem is described before the 
expected behavior, respectively results are explained. In a third step the actually 
experienced and observed behavior or results are described. The fourth and fifth 
parts consist of the actual analysis of the discrepancy between expected and 
actual behavior, explaining firstly the methods and procedures of analysis with 
observations of the single steps and then drawing conclusions from this newly 
gained knowledge in the “discussion” part. As a last step possible solutions to face 
the issue in the future are outlined and explained. 

2.1 Corruption of the File-System of the Measurement Unit 

2.1.1 Setup of the Measurement Unit & the Experiment in General 

The Cold Flight Simulation2 was performed on May 27 2014 14:40 (UTC+2) and 
was one of the final tests before the hot countdown. Compared to all successful 
tests – especially to the Hot Flight Simulation3, which was conducted most recently 
only three days before (May 24 2014 15:40 UTC+2) – nothing had changed 
regarding the Measurement Unit. 

Moreover, the setup of the experiment in general, especially the Flight Segment, 
was the same setup as before, which also was intended to fly. A minor change 
compared to the successfully tested setup was that ferrite cores were placed 
around several cables of the Flight Segment to reduce the interference with the 
vehicle’s GPS-system (cf. ‎2.3). During the troubleshooting procedure for the same 
issue the Flight Segment was powered on and off approximately one minute later 
for several times without the supervision of the team. 

2.1.2 Expected Behavior 

All tests before were successful regarding the MU, no direct changes for the MU 
were introduced and the minor hardware change with the ferrite cores was 
expected not to affect the MU at all. Therefore, perfectly nominal behavior, i.e. 
passing all self-checks before gathering and downlinking health data, was 
expected also for the Cold Flight Simulation. 

2.1.3 Observed Behavior 

Unlike literally all tests – except the ones to test the self-checks itself by provoking 
failures – during the Cold Flight Simulation the self-checks for the microSD-card 
failed reproducibly: The read-SD-self-check should have opened a prepared file on 
the microSD-card and should have read the content, which should have been 
equal to a predefined constant. The write-SD-self-check should have created a 
new file, written a constant content and closed the file. When reopened and 
reread, the content should have been equal to the written constant. Finally the 

                                                                 
2
 Complete setup as for the Flight, complete time-line from T-600s to T+600s (including LO signal) conducted, but 

consumables (like pyro-cutters, scientific samples) not used. 
3
 Same as Cold Flight Simulation, but consumables are used (pyros fired, samples deployed etc.). As HORACE does not 

have consumables, there is no difference between those simulations for HORACE (unlike for other experiments). 
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written file should have been deleted again. Both tests reproducibly returned via 
TM that they were not successfully completed, as well as the “mu clear” command 
(to delete old data) returned “no file to delete” although there should be old data 
from the previous test (Hot Flight Simulation). 

Gathering and downlinking health data actually worked as expected, but without 
access to the microSD-card the MU would not have been able to store the data 
gathered during flight, i.e. it would have been lost. Thus, an issue with the 
microSD-card was assumed. 

2.1.4 Analysis of the Issue 

After disassembling the MU and replacing the microSD-card by a spare one, the 
self-checks were passed and the whole experiment performed perfectly nominally, 
confirming the assumption of a failure of the microSD-card. 

The failing microSD-card was obviously electronically intact as it could be recog-
nized with a USB-card-reader and an EGSE-laptop. But the files were neither cor-
rectly listed (some with a size of 0 bytes, another with a size larger than the 
capacity of the whole microSD-card), nor could any of them be opened with the 
EGSE-laptop, nor could new files be stored to the card (again with the EGSE-
laptop). 

Reformatting the card with FAT32 solved this problem and the card could be read 
again, respectively written to it via the USB-card-reader. Thus, a corruption of the 
FAT32-file-system was strongly assumed. 

2.1.5 Discussion of the Issue 

Further research has shown that it is a known issue that the file system may be 
corrupted when file-handles are still open and the files are not correctly flushed 
while the SD-card is removed (Arduino, 2014), (Gre, 2011). It is most likely that 
this issue also occurs when the whole Arduino with SD-shield and card is powered 
off while having file-handles open and files not being correctly flushed. That 
probably has been the case during the intense troubleshooting without supervision 
by the team for the issue with GPS (cf. ‎2.3.4) and its many short power-cycles. 
This seems plausible as during the first minute the self-checks are performed 
(during which file-handles are opened of course). Moreover, as soon as the 
experiment is put to flight-mode, the housekeeping-file stays open for the whole 
flight (until T+590s or manually switched to shut-down-mode via telecommand). 

2.1.6 Solution of the Issue 

Besides the replacement of the microSD-card, which was actually performed, 
there are some more possible solutions, which would have either prevented the 
issue a priori or would have minimized its impact. 

With supervision during the troubleshooting by the team it could have been 
ensured (if necessary with sending corresponding existing telecommands) that all 
file-handles were closed properly before power-off. That quite simple operational 
measure unfortunately was not possible due to operational reasons. 

Secondly, keeping the housekeeping-file only open, when data is actually written 
to it, may reduce the probability of the issue occurring. However, this was not 
suitable as opening and closing the file takes quite a long time. This would have 
even more worsened the trade-off regarding the sample-time (cf. ‎3.7.2). 
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Thirdly, as it is possible to reformat the SD-card directly via the Arduino and as 
there are even appropriate example-programs available, this functionality could 
have been implemented as telecommand to be remotely performed when 
necessary. But with the limited EEPROM (cf. ‎3.7.2) other – most likely more 
important – functionalities had to be traded for this security feature which was 
quite unlikely to be needed. Another similar possibility would have been a small 
utility program which reformats the card when being flashed to the MU, thus 
overwriting the actual flight-software. Therefore, it would not have been needed to 
disassemble the MU itself, whereas direct access to the experiment in general 
would still have been needed and further possibilities for failures due to the 
change of the software would have been introduced. Furthermore, this solution 
would have only worked because in fact solely the file system was corrupt and the 
microSD-card itself electrically intact. 

Hence, among those several possible solutions, except from the supervision by 
the team, the conducted one – simply replacing the microSD-card following a 
detailed prepared procedure – is considered to be the best one. 

2.2 Shifted Electrical Ground 

2.2.1 Setup of the Flight Segment in General 

As this issue was experienced first already during the Integration Week (ITW), but 
also during Bench Test and even the preparation during campaign and as the 
setup changed in between regarding minor aspects (replacement of data-storage 
devices or cables etc.), no exact setup is documented. All the slightly different 
setups, the issue was experienced with, have in common that the full Flight 
Segment was assembled as designed and all subsystems were working. 
Moreover, unlike during all tests before, during the tests on ITW the Flight 
Segment was electrically grounded via the structure (i.e. the experiment module). 

2.2.2 Expected Behavior 

Because the electrical design, especially the power system, was conceived 
according to the REXUS user manual (Mawn, Kaczmarczik, & Schmidt, 2014, p. 
52) no issues with the electrical ground, but a fully nominal proceeding of the time-
line-tests (from T-600s to T+600s) for both systems were expected. 

2.2.3 Observed Behavior 

Actually, during several of the time-line-tests the flight software of the master 
system completely crashed while the operating system stayed alive, requiring a 
reboot of the master core system or direct access to manually restart the flight 
software. However, the issue could not be reproduced in every test, but if it 
occurred, the master system was lost around T-30s. 

Thorough troubleshooting both during ITW and during Bench Test revealed only 
very late, that the grounding via the structure was the critical factor. Thus, the 
issue could at least be reproduced in most (still not in all) tests with the actual 
flight-setup of the Flight Segment. 

Nevertheless, although the issue could not be analyzed properly before campaign, 
the workaround solutions (cf. ‎2.2.6) reduced the impact of the issue to a level 
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which would not have limited the experiment’s performance during flight (though 
luckily it was not even experienced during flight). 

2.2.4 Analysis of the Issue 

With the knowledge of the grounding being the critical factor already during Bench 
Test basic analysis was performed. It was detected that the Flight Segment’s 
structure had a higher electrical potential than the ground of the power supply. The 
ground was shifted by 150mV, causing a stray current of about 27mA when the 
structure was shortened with the ground of the power supply. However, during 
Bench Test it was not possible to identify a specific component which caused the 
ground being shifted as it was not possible to run only single components (at least 
the PDU was always needed to power the other components). 

Furthermore, even in the meantime between the Bench Test and the campaign the 
issue could not be further investigated because the flight setup had to be delivered 
to EuroLaunch and it was not possible to reproduce the issue with a setup using 
spare parts. 

Therefore, further analysis was only possible after the campaign. By running the 
single subsystems and components independently from the others but in the same 
setup as flown it was revealed that presumably the core systems caused the 
shifted electrical ground (see all measured values in Table ‎2-1).  

Component Potential 

Master-CS: all interfaces connected ~50mV 

Master-CS: c
4
: SATA, Ethernet, RXSM; n.c.

5
: MU 47mV 

Master-CS: c: MU, Ethernet, RXSM; n.c.: SATA 48mV 

Master-CS: c: MU, SATA, RXSM; n.c.: Ethernet 48mV 

Master-CS: c: MU, SATA, Ethernet; n.c.: RXSM 47mV 

Master-CS: no interfaces connected 48mV 

Slave-CS: all interfaces connected ~100mV 

Slave-CS: c: SATA, Ethernet; n.c.: RXSM 109mV 

Slave-CS: c: SATA, RXSM; n.c.: Ethernet 111mV 

Slave-CS: c: RXSM, Ethernet; n.c.: SATA 110mV 

Slave-CS no interfaces connected 108mV 

Master-SSD 4mV 

Slave-SSD 4mV 

Master-Camera ~10mV 

Slave-Camera ~0mV 

Master-PDU (without load) 2mV 

Slave-PDU (without load) 2mV 

Table ‎2-1: potential between structure & ground of power supply, only single comp. run 

                                                                 
4 connected 
5 not connected 
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2.2.5 Discussion of the Issue 

Although apparently the core systems could be identified to cause the shifted 
electrical ground, it is not understood why it occurs despite the fact that the 
electrical design was conceived according to the REXUS user manual and all 
components including their cases should have been grounded via the appropriate 
lines of the interface cable to RXSM and furthermore why shortening the potential 
difference via the structure caused software crashes. This is due both to the lack 
of experience and knowledge of the team regarding electrical engineering and the 
complex electronics especially of the core system microITX-boards. 

The most probable explanation is that the manufacturing accuracy of the custom-
made heatsinks for the core systems (cf. ‎3.2.2) compared to the ones produced by 
the board’s manufacturer, respectively their conductivity (bare aluminum vs. 
eloxed aluminum) causes some pins of the board setting a potential to the 
structure and that the stray currents cause some low-level hardware interrupts to 
fire and thus crash the flight software. 

However, as the proposed solution (cf. ‎2.2.6) is very basic this lack of fully 
understanding the issue is not expected to impair the solution. 

2.2.6 Solution of the Issue 

As the issue was in fact already detected during ITW and analyzed with basic 
methods during Bench Test but could not be resolved completely, the team came 
up with two approaches of workaround solutions for the campaign to reduce the 
impact of the issue on the overall performance of the experiment and to fight its 
“symptoms”. 

Firstly, the master core system was replaced with a spare part as with that spare-
board the issue could not be reproduced in the meanwhile between Bench Test 
and the campaign. As the post-flight analysis showed the potential difference to 
the ground of this spare-board was lower than of the Slave. Thus, probably the 
overall shift of the ground was reduced to a lesser harmful level, as the issue was 
still, but less often, experienced with the replaced master core system. 

Secondly, as the shifted ground only caused the flight software but not the whole 
operating system to crash a software-watchdog on a lower application level (only a 
basic shell script) was implemented to restart the complex flight-software if it 
crashed (cf. ‎3.4.2) 

With those two measures it was guaranteed that the overall performance of the 
experiment would not be reduced due to the shifted ground although in fact they 
did not face the basic issue unlike the next outlined solution. However, that 
solution could not be carried out before flight as it would have introduced too many 
changes of the Flight Segment. 

The ground shifting causing harmful stray currents could simply be prevented by 
mounting all components (or at least the core systems) electrically insulated (e.g. 
with ceramic screws and varnishing the cases) to the bulkhead and explicitly 
grounding the cases via the power-cables. Hence, any potential put on the case by 
any component could not only flow off directly but also stayed localized to the 
single component and would not cause malfunctions of others due to uncontrolled 
stray currents. 
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2.3 Interferences with the GPS-System of the RXSM 

2.3.1 Setup of the Rocket-Payload in General 

The whole payload of REXUS 16 as it was intended to fly was fully assembled for 
the Hot Flight Simulation. This includes all experiment modules as well as the 
Recovery Module, the Service Module and the nosecone being mechanically 
mounted and all cabling connected and put through the cable-feed-through at 
180°. Especially the GPS-antenna located in the nosecone was operated so close 
to the HORACE Flight Segment and the antenna-cable was put through said 
cable-feed-through for the very first time. 

There were no other changes regarding HORACE, both hardware and software, 
introduced in this test compared to the other previous successful interference 
tests. 

2.3.2 Expected Behavior 

As all previous interference tests, like the Bench Test during campaign preparation 
with the same setup but not mechanically fully assembled, were successful without 
any interferences occurring, the same excellent behavior was expected during the 
Hot Flight Simulation. 

2.3.3 Observed Behavior 

Totally unexpectedly a reproducible interference with the GPS-system of RXSM 
occurred as soon as the experiments were powered on at T-600s of the timeline 
which induced such loud noise to all channels of the GPS-signal that the GPS-fix 
was lost and the position could not be determined any more. 

2.3.4 Analysis of the Issue 

The troubleshooting, conducted right after the test to identify the source of the 
interference by MORABA-staff but without the team’s direct supervision (which 
presumably lead to the SD-card issue, cf. ‎2.1), showed that of the four 
experiments HORACE was the one which caused the interference. 

During further investigation back home after the launch campaign the problem 
could be reproduced using an own GPS-receiver placed approximately as far from 
the experiment as in the rocket’s actual configuration with the following results: 

By removing (i.e. not to power) more and more components from the setup the 
SATA-connection between the SSDs and the core systems could be identified as 
the source of the interference. 

Shielding all parts being involved in this connection (both SSD and CS, as well as 
the cabling) with a tin can eliminated the interference, whereas the induced noise 
remained loud with only partial shielding (e.g. SSD and CS in separate tin cans, 
cabling unshielded). 

When signals of many GPS-satellites could be received with good quality, the 
GPS-fix remained stable despite of the interference. 

Using the SSD not with the CS but with a laptop via an USB-to-SATA-adapter 
caused the same interferences, whereas there were no problems using the CS 
with a common SATA-HDD. 

Grounding the SSD as described in (Mp3Car.com Inc., 2010) had no effects. 
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2.3.5 Discussion of the Issue 

As some, even if only few, customers of other SSDs reported about similar issues 
(Mp3Car.com Inc., 2010) and as the interference did not occur with a common 
SATA-HDD, it is most probable that the SSD itself is the source of the noise in the 
GPS-frequencies. However, it cannot be explained why shielding both of CS and 
SSD but not the cable still caused interferences. 

Because of both little knowledge within the team about high-frequency-electronics 
and no special high-frequency-equipment being available for the team, this 
conclusion drawn from the outlined very basic analysis may be questionable and 
shall be verified by experts and with better equipment before taking measures. 

2.3.6 Solution of the Issue 

With having identified the SSDs as the most probable source of interference, 
replacing them by another model would be the easiest measure to face the issue. 
However, as the conclusion this measure is based on is quite uncertain and other 
models obviously causing similar problems, it remains uncertain if that indeed 
solved the issue. Therefore, if this option is chosen, it shall be tested very carefully 
and earlier than just during campaign short before the scheduled launch. 

The very basic measures taken during the campaign itself – placing ferrite cores 
around several cables hoping to thus reduce the interference – were absolutely 
ineffective. 

Therefore the only effective measure would be to shield CS and SSD, including 
the cabling within the same case. To improve the shielding, either tin instead of 
aluminum shall be used for the case or special varnish for electromagnetic 
shielding (containing ferrites) shall be applied. But as placing both CS and SSD in 
the same box would affect not only the mechanical design but also the 
accessibility of the SSDs, which is important for operations, taking this measure 
should be thoroughly considered as well. 

2.4 Overexposure of the Payload-Cameras 

2.4.1 Setup of Cameras & Core Systems 

Both cameras were run with the settings uploaded with “wxPropView(x64)” the 
manufacturer’s utility software for the camera during ITW regarding the 
appropriate procedure (Bergmann & Rapp, 2014). Those settings, having been 
determined to be the best suitable ones during Integration and exported to a XML-
file with the same utility-software (called “default-settings” in the following), were 
tested at component level with high performance (outdoors on a sunny day) before 
ITW and with lower performance (indoors, artificial light sources) both on 
component and full system level before ITW as well as during ITW. After ITW the 
camera settings were never touched again – neither changed, nor rechecked. 

Right at the beginning of the launch campaign a software update was installed on 
both core systems. However, as it did not introduce any changes regarding the 
usage of and communication with the cameras, it was equivalent to the 
successfully tested version, using the cameras via the “device specific” software 
interface. 
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2.4.2 Expected Behavior & Performance 

It was expected that the cameras of both Master and Slave would provide not only 
valid but well exposed (as auto-adjustment of exposure time was enabled in the 
default-settings) image-data to the core systems, which would record them from T-
60s to T+590s and pass it on to the algorithm for horizon acquisition during flight. 
Furthermore, it was expected that at least after the yoyo-despin of the rocket the 
horizon acquisition would be successful. 

That there will possibly be problems with the exposure of the cameras during 
flight, when they alternately watch the dark space and bright earth and sun due to 
the rocket’s rotation, was a known risk. Therefore, it was tested with the best effort 
possible for the team but no problems, both on full system and component level, 
were revealed. In contrast, there should not have been any problems before lift-off 
– as the cameras should have had enough time to adjust the exposure time 
automatically while standing still on the launcher. 

2.4.3 Observed Behavior & Performance 

During flight no horizon could be detected, neither by the Master nor the Slave, 
although all systems worked in the nominal way and the video-footage of RXSM, 
which was downlinked live, showed that the horizon should be clearly visible. 
Thus, already at the end of the flight operations an issue with the payload-cameras 
of HORACE was expected. This turned out to be right, as the stored video-data 
both of the Master and Slave, which was accessible only after recovery, showed 
that all data was valid video-frames, but most of them were completely 
overexposed during flight as well as when the rocket was still on the launcher 
before lift-off. So, the frames were either completely white – when looking into the 
sun or down on earth –, completely black – when looking to the space –, or 
showed some blue color gradients – when the horizon should have been perfectly 
visible. Of course, with this raw-data no horizon acquisition was possible for the 
algorithm. 

Especially the fact that the overexposure already occurred before lift-off led to the 
hypothesis that the auto- adjustment of the exposure time did not work at all or not 
sufficiently. 

Figure ‎2-1: example images, T-50s; left: Master; right: Slave 
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Figure ‎2-2: example images Master; clockwise from upper left: T+46s, T+79s, T+87s, 
T+97s 

Figure ‎2-3: example images Slave; clockwise from upper left: T+57s, T+74s, T+87s, 
T+90s 
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2.4.4 Analysis of the Issue 

The thorough analysis of this issue conducted during the post-flight evaluation 
back in Würzburg showed that in fact there was a problem with the auto-
adjustment of the exposure time of the cameras. Although indoors with the same 
full system setup as flown the issue could not be reproduced, even looking out of 
the window (again with the same setup) on a sunny day or being outside caused 
at least partial or total overexposure of the images. Auto-adjustment of the 
exposure time did not work at all for that setup. 

The spare camera, which was not flown, provided perfect images both in- and 
outdoors while it was not operated by a core system but with an EGSE-laptop and 
wxPropView with the camera settings “as they were”. Moreover, even while 
looking directly into the sun color gradients and shapes were still visible. After 
having reimported the default-settings and uploaded to the spare camera (again 
with wxPropView), also the spare camera only provided overexposed images 
when being outdoors used with wxPropView. 

Then the settings of all three cameras (Master, Slave, spare), which were currently 
set, were downloaded and the corresponding XML-files were compared line by line 
(with standard tools for difference-check). The comparison showed that in fact all 
settings were partly different and did not match the default-settings-file – even the 
settings of the spare camera, which was only programmed with the default-
settings some steps of the analysis before. However, the entries which seemed to 
be relevant were identical: “auto-exposure” was enabled, the “area of interest” for 
auto-exposure (which part of the image shall be exposed best) set to “full” and the 
“auto average gray” value (desired average brightness of the auto-exposed image) 
set to reasonable 57%. 

Additionally, it was discovered that outdated releases of wxPropView, which were 
shipped with the cameras, were used both on the EGSE-laptops (release 2.5.17 
from Nov 12 2013) and the team’s PC in the lab (updated on Jan 07 2014 from 
2.5.17 to 2.5.18 released on Dec 12 2013) although a new version is released 
nearly every month. The default-settings were created with the lab PC (v2.5.18), 
whereas it was uploaded with the EGSE-laptops (v.2.5.17) during ITW. As the 
manufacturer’s change-log of the software does not say anything about importing 
or exporting XML-files or uploading or downloading settings to the cameras, this 
difference of versions shall not be relevant (e.g. by introducing incompabilities) 
(Matrix Vision GmbH, 2014). 

In contrast the entry in the change-log for version 2.9.0 released June 26 2014 – 
which was nearly one month after flight – says in the bug-fix section that 
“[l]oad[ing] settings from XML file now works properly” (Matrix Vision GmbH, 
2014), implying that it did not in previous releases. Because this bug-fix – unlike 
others – does not tell which version introduced the bug, it has to be presumed that 
importing XML-files does not work correctly with the used versions (v.2.5.17 and 
v2.5.18). Thus, to determine whether the bug of wxPropView was the single 
reason for the problem, the latest release (v2.9.2) was installed to the lab PC, all 
settings manually set and exported to a XML-file. This file was not only drastically 
smaller in size than the other ones (created with v2.5.17/18), but also the relevant 
entries (auto-exposure enabled, area of interest for auto-exposure, auto average 
gray) were missing completely, while the problem of overexposure remained. 
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To make things even worse and less transparent, there are two software-
interfaces/modes to use the camera with: “device specific” and “GenICam”. 
“device specific” is the manufacturer’s custom interface to that specific camera-
model. In contrast, “GenICam” is a generic, standardized, but therefore also much 
more complex, interface used by various manufacturers for many cameras. 
wxPropView uses the “GenICam”-interface for customizing the camera settings, 
whereas in the flight-software of the core systems the cameras are used with the 
“device specific”-mode. Obviously, as unfortunately only discovered during this 
analysis, both modes share some of the camera settings, so that changing them 
via wxPropView with “GenICam” applies also to the “device specific” mode, but 
others – among the relevant ones for auto-adjustment of exposure time – are not 
shared. This means setting them via wxPropView with “GenICam” does not affect 
the same parameters of the “device specific” mode. 

2.4.5 Discussion of the Issue 

To summarize, quite a cascade of mistakes and failures led to the fatal issue of 
the overexposure of the cameras. 

First of all, there was the absolute non-transparency and partial malfunction of 
wxPropView. Not only the import and export function for XML-files obviously did 
not work correctly, which was not sufficiently given warning of, but also the fixed 
version is probably not intended to import/export the relevant settings (as the 
entries are missing in the XML-files). Therefore, the complete procedure of 
uploading settings to the cameras, the team worked with, was obsolete and most 
probably did not even affect the relevant settings. Instead of importing settings-
files, apparently the settings should have been manually adjusted for each camera 
and uploaded directly. Additionally, the fact that the two different modes to use the 
camera share some settings caused the team to assume that all settings apply for 
both modes and not to worry about uploading them in another mode than actually 
using the camera within the Flight Segment. That turned out to be a false 
assumption, which is again not completely the team’s mistake as it was not 
documented precisely and unambiguously enough. 

Secondly, there is the insufficient testing. The tests which would have been 
sufficient (e.g. outdoors on a sunny day) were only performed at component level, 
that means with wxPropView, and, following the same false assumption as 
mentioned above, were not repeated on full system level – neglecting the fact that 
regarding the overall project schedule further full system tests would have only 
been possible during winter, when the low-cost option (testing outdoors on a 
sunny day) would not have been available, as well as there were no other 
sufficient facilities available for the team. Furthermore, the settings with fixed 
exposure time unfortunately happened to be good enough for the full system tests 
(indoors with less powerful light-sources), which obviously were not sufficient 
although performed with best possible effort. 

2.4.6 Solution of the Issue 

There are mainly two possibilities to face this issue. First, the flight software of the 
core system could be changed, using the camera in “GenICam”-mode instead of 
“device specific”. Thus the settings uploaded via wxPropView are valid also for the 
core system. But as the usage of the “GenICam”-interface is quite complex – the 
reason why it was not used in the first place – and one still has to rely on the 
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functionality of wxPropView, which still might be risky, the second possibility is 
recommended: Via the “device specific”-interface all settings can be applied by 
any C++-program quite easily (only two lines of code for each setting). Therefore, 
it is possible to simply set all needed settings directly with the flight software of the 
core systems during the boot- and initialization-procedures, which was already 
tested successfully. The main disadvantage – and again the main reason why this 
possibility was not taken in the first place – is that with this solution any changes of 
the camera settings to be done would also affect the flight software of the core 
systems (in worst case requiring recompilation and a complete software-update), 
thus reducing the modularity and increasing the complexity of the experiment. 
Implementing the possibility to apply or change the settings via telecommand 
(additionally to autonomously loading some default-settings during initialization) 
would on the one hand totally ban the need of updates of the flight software, but 
on the other hand increase complexity even further – not only from a technical but 
also an operational point of view. Furthermore, as it is unlikely to have to change 
the settings when the best are found once, the impact of the disadvantage of 
software updates is quite small and possibly would not justify implementing the 
telecommands. 

Additionally to this direct measure to face the issue, it is strongly recommended to 
improve the test procedures and performance of available facilities for the full 
system tests regarding the brightness of light sources. Possibly external partners 
with adequate expertise and facilities have to be found. 

As another indirect measure, which probably could have prevented the failure at 
least in the last nick of time, it is suggested to implement the possibility to downlink 
some single video-frames via telemetry during stand-by-mode. Thus, at the latest 
during the hot countdown – if not even in one of the numerous test more or less 
before –, and not only after flight, the issue would have been recognized with the 
possibility to abort the countdown and fix the problem. Of course, this also 
increases the overall complexity, but as on the other hand so far the only way to 
access the image data requires direct access to the SSDs and is a quite lengthy 
procedure – and therefore was not performed during Bench Test or campaign 
preparation –, this trade-off seems to be fair. 



Analysis & Discussion of Main Achievements 

 

26 

 

3 ANALYSIS & DISCUSSION OF MAIN ACHIEVEMENTS 

In this chapter the main achievements of HORACE both during flight and the 
overall project are thoroughly analyzed and discussed in an approach similar to 
the analysis and discussion of the main problems in chapter  2. Firstly, the require-
ments and constraints which are relevant for the treated subsystems are summa-
rized and explained. Where applicable also the IDs of relevant requirements 
referring to (Rapp, et al., HORACE Student Experiment Documentation - v4.0, 
2014, pp. 13-20) are given. Secondly, the concept for the design and the main 
steps of its implementation are outlined, focusing on the reasons for design 
decisions as well as on the “evolution” of the design and not the final design itself 
as the latter is already described in detail in the Student Experiment 
Documentation (especially chapter 4) (Rapp, et al., HORACE Student Experiment 
Documentation - v4.0, 2014). In a last step the results, respectively the actual 
performance, are presented and discussed as well as evaluated regarding the 
relevant requirements. 

3.1 Electronics & Electrical Interfaces 

3.1.1 Relevant Requirements & Constraints 

Although the focus of HORACE was on the software for the horizon acquisition, of 
course some hardware was needed to execute the software on. Proper communi-
cation infrastructure and a power system were also necessary. From those basic 
functional requirements for the electronics, a lot of performance and design 
requirements are derived – most of them depending on the algorithm’s 
performance (e.g. for data-transfer-speed or data storage size), the electronics 
itself (e.g. for the output-voltages and currents the PDU must provide) or the 
constraint of being a payload on REXUS 16 (e.g. regarding the interfaces or 
environment). 

The significant lack of experience in electrical engineering, the limited financial 
budget as well as the relatively short project-life-cycle were additional severe 
constraints on the electrical design. 

3.1.2 Design & Implementation 

To face the team constellation with only little experience in electrical engineering 
and to keep costs low and development time short, it was decided already in a 
very early stage to use components off-the-shelf and standardized interfaces 
wherever possible. Whenever that was only partly possible, for example in the 
case of the PDU and the Arduino-shield, things were kept as simple as possible. 
This decision severely influenced the whole experiment design and development 
as the number of suitable models being available for each of the main components 
was quite limited and the requirements for intra-experimental interfaces introduced 
several dependencies and thus narrowed the choice even further. 

As expected, the development and manufacturing of the PDU needed several 
iterations of prototyping and nearly complete redesign to finally have a highly 
efficient PDU with a fully functional data- and signal-interface between CS and 
RXSM. The team even had to make use of supervision by ZARM for the 
dimensioning of the LC-circuits to reduce the feedback-ripple to the required level. 
With this experience and today’s point of view, the decision, not to use own 
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auxiliary power units but to draw all needed power from RXSM, seems to have 
been fair. This was a crucial decision as the PDR-panel actually requested to 
implement auxiliary power units as the high and conservative preliminary 
calculations for the power budget of HORACE potentially would have exceeded 
the total available power provided by RXSM. To keep simplicity the team instead 
offered to forego the chance to fly two systems (Rapp, et al., HORACE Student 
Experiment Documentation - v2.0, 2013, pp. 30-31). 

The power budget was reduced drastically from worst case 95.66W (respectively 
16Wh for the complete flight, incl. 50% margin; (Rapp, et al., HORACE Student 
Experiment Documentation - v1.0, 2013, p. 34)) after PDR to worst case 67.16W 
(11.2Wh, incl. 50% margin; (Rapp, et al., HORACE Student Experiment 
Documentation - v1.1, 2013, p. 38)) due to various design changes. Additionally, it 
would have been possible to deploy a low-power mode for the slave system. 
Eventually, with the complete setup on the table it was even lower (49.1W, 
respectively 8.2Wh, measured, incl. 50% margin; (Rapp, et al., HORACE Student 
Experiment Documentation - v4.0, 2014, p. 96)). Therefore, EuroLaunch approved 
to fly two systems although no auxiliary power units were implemented for 
HORACE. 

3.1.3 Discussion of the Performance during Flight 

The actual power consumption, nominally regulated and distributed during flight by 
the PDUs and logged by RXSM, was for both systems nearly constant. The slave 
system drew 0.5352A from the unregulated power (28-32V), which equals a total 
power consumption of 2.74Wh, whereas the master system consumed a bit more 
(0.5315A, 2.76Wh) as the MU was also powered via the Master-PDU (cf. 
Figure ‎3-1). 
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Figure ‎3-1: HORACE total power consumption recorded by RXSM; Ubus - voltage of 
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The measurements of currents, collected during flight by the MU with an average 
sample time of 46ms and 10th-degree average filter (thus equivalent to average 
210Hz of single samples) for each CS, also shows nearly constant power 
consumption (cf. Figure ‎3-2). The Master-CS drew 0.77A @12V (1.56Wh), which 
is more than half of the total power consumption, whereas the Slave-CS, 
according to the logged data, averagely consumed 0.89A (1.82Wh). 

 

 

This data clearly shows no correlation between the actual algorithmic workload for 
the horizon acquisition and the power consumption(cf. ‎1.3 – 2nd primary objective), 
which is mainly caused by the core systems working to full capacity the whole time 
due to the massive overhead (e.g. operating system, complete experiment control, 
TM/TC, cf. ‎3.4.3). Moreover, the question whether horizon acquisition for attitude 
determination is also applicable for small satellites (cf. ‎1.3 – 2nd secondary 
objective) can only partly be answered: The given power consumption is above the 
capabilities of small satellites but exceeds them not too much although the flown 
experiment was not optimized for low power consumption at all. Hence, the 
chances that a future operational sensor-system is applicable for small satellites 
regarding the power consumption are good. 

The discrepancy between the power consumption of the core systems – both had 
nearly the same workload and therefore are supposed to consume the same 
power budget – can be explained by a static error which was caused by a static 
magnetic field within the rocket falsifying the measurements of the sensitive 
analog hall-sensor. It was neither possible to calibrate the sensor before flight, as 
the error only occurred while the rocket was fully assembled, nor could it be 
reproduced afterwards to determine the exact value of the offset. Also the louder 
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noise, which exceeds the required accuracy of ±100mA, and the clearly visible 
peaks, are supposed to be caused by external magnetic fields. This is plausible as 
the cable between the analog sensor and the ADC of the MU led through the 
same cable feedthrough as all cables of the rocket (experiment power, experiment 
data-interfaces, GPS etc.) and the peaks can be correlated with some events 
causing high currents (switching motors, pyro-cutter-events) in those cables, 
inducing dynamic magnetic fields and thus inducing voltages in the sensor-cable. 

Also regarding the electrical interfaces, it was a good decision to “keep it simple” 
and to only use standard interfaces, and as well only polarized standard 
connectors, as all interfaces worked perfectly nominal and the risk of major 
damage of components due to changed polarity was banned. 

Except from the issues of the overexposure of the payload-cameras (cf. ‎2.4; P-E-
10, P-E-12), the interference with GPS (cf. ‎2.3; D-E-01, D-E-02) and the shifted 
Ground (cf. ‎2.2), which caused the appropriate requirements not to be met during 
flight, all other requirements for the electronics were perfectly met, thus creating a 
mostly functional electrical platform for the actual experiment. 

 

3.2 Thermal Design 

3.2.1 Relevant Requirements & Constraints 

Actually, for the performance of HORACE, i.e. derived from the Mission 
Statement, there are no direct requirements on thermal aspects, but as during the 
preflight preparations and during flight itself the experiment may be exposed to 
harsh temperature conditions from -30°C up to +50°C within the module (Mawn, 
Kaczmarczik, & Schmidt, 2014, p. 60), a proper thermal design was necessary to 
guarantee the full functionality of all components and the experiment as a whole. 
This is reflected in D-M-04 and D-M-05 for the most critical parts, which are 
directly derived from the constraint of being payload on REXUS. 

3.2.2 Design & Implementation 

Especially the components off-the-shelf, like the camera or the embedded PC, 
selected due to the design decision explained in ‎3.1.2, led to discrepancies 
between the expected temperature profile and the temperature ranges specified in 
the datasheets, while for other even more common components (SD-card, RAM) 
no temperature ranges were specified at all. The discrepancies of low tempera-
tures during start up as well as high temperatures during the vacuum of flight were 
considered most critical, but manageable. Extremely low temperatures during start 
up might be harmful when electronic parts fail to power on due to the low tempera-
tures, whereas once running the situation would improve due to the power con-
sumption and heat dissipation of the components itself. High temperatures, even 
within the specified ranges, during flight may lead to partial overheating as in 
vacuum passive cooling is possible only via the structure and not by convection. 
Other discrepancies were not considered to be critical as they either would not 
affect the experiment’s performance or could be faced quite easily, for example by 
properly packaging and insulation during shipment (Rapp, et al., HORACE Student 
Experiment Documentation - v4.0, 2014, pp. 56-58). 
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The discrepancies of low temperatures during start up were shown to be uncritical 
by testing. In a combined thermal test all components were cooled to -40°C and 
successfully powered on several times showing full functionality (Scharf, Test #2.5 
Report, 2013). 

Before testing the discrepancies of high temperatures in vacuum conditions 
potential hotspots within the experiment were identified with a basic method: 
Based on the relative heat dissipation of all components while both idling and 
under full stress with ambient temperature of 21°C and normal pressure, the heat 
distribution within the module was numerically simulated for vacuum conditions 
using special software packages. The heat caused by friction during reentry on the 
outer surface was neglected as the holes for the cameras were closed by 
protective windows and as another numerical simulation showed that the heat 
would barely transfer to the components because they were thermally decoupled 
from the module itself. The core systems and PDUs turned out to be hotspots and 
thus, it was decided to use heatsinks, which are thermally coupled to the rest of 
the structure to dissipate as much heat as possible, to passively cool those parts 
(Rapp, et al., HORACE Student Experiment Documentation - v4.0, 2014, pp. 58-
59). Whereas for the PDU the heatsinks had to be designed from scratch, original-
ly it was planned to use standard heatsinks provided by the manufacturer of the 
embedded PCs for the core systems. However, thermal vacuum tests unveiled 
that the standard heatsinks are not suitable for vacuum conditions, as under full 
stress with convection missing the heat dissipated by the CPU causes overheating 
of the nearby southbridge, which withstands only much lower temperatures than 
the CPU (Scharf, Test #1.2 Report, 2013).Therefore, a modified heatsink for the 
embedded PCs with a groove, which thermally decouples CPU and southbridge, 
was designed. 

3.2.3 Discussion of the Performance during Flight 

The evaluation of the temperature data, collected at six points of the Flight 
Segment (camera, PDU, core system for each setup) with a sample-rate of 1Hz 
and an accuracy of ±0.5°C and logged by the MU throughout the flight, proves that 
the thermal design was both sufficiently and reasonably conceived and dimen-
sioned. As seen in Figure ‎3-3 all temperatures were perfectly nominal within the 
ranges specified in the components’ datasheets although the maximum tempera-
tures (between 52°C and 57°C) are a bit higher than expected (50°C). This 
difference is simply caused by the ambient temperature (ca. 15°C) during the 
countdown being much higher than expected (0°C or below) as the launch cam-
paign took place not until end of May although it was originally scheduled for 
February or March like all previous campaigns. 

The temperature of the master core system was constantly 0°C with only a single 
peak to 85°C (both not in scale) as the electrical connection to the sensor was lost 
during preflight preparations and no time was left to replace the sensor. Probably 
the connection was unexpectedly regained during flight for a short moment (less 
than 2sec) as 85°C is the nominal return of the sensor when reading the 
temperature during the sensor-initialization, thus causing the peak in a single 
sample. 

All other temperatures drastically increase from around T+20s on, as until this time 
the pressure logged by the REXUS Service Module reached its minimum and so 
cooling of the components by convection was no longer possible. 
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According to the RXSM-data the module was pressurized again with 0.5bar 
around T+350s and hot air (estimated ca. 50°C) rushed in. Thus, cooling by 
convection – but due to the little temperature difference between the air and the 
components only little, if any – was possible again causing the temperatures of 
both cameras and the Slave-CS to settle around T+400s and to even decrease a 
bit. In contrast, the temperatures of both PDUs kept increasing and only started to 
settle around T+600s. This can be explained as the PDUs were significantly cooler 
than the other parts and thus unlike the other components they probably were 
heated by the inrushing hot air. Additionally, the heatsinks of the PDUs are 
coupled to the main structure only indirectly and have only small surface itself. 
Hence, the cooling both by convection and dissipation was worse than for the 
other components. 

All in all, with the conceived thermal design, a perfect – sufficiently for the harsh 
temperature conditions but also not over-dimensioned and thus not causing an 
unnecessary increase of weight of the Flight Segment – thermal platform was 
created for the experiment. 

3.3 Mechanical Design 

3.3.1 Relevant Requirements & Constraints 

Besides the only functional requirement for the mechanical design – to ensure the 
visibility of the horizon during flight – and the derived performance and design 
requirements (e.g. specific percentages of visibility, to mount the cameras in 
certain ways or to use two cameras), like for the thermal design (cf. ‎3.2) the main 
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part of the mechanical requirements was based on the constraint of being payload 
of REXUS 16. Therefore, the experiment shall not harm or interfere neither with 
the vehicle, nor the launcher, nor the Service System, nor other experiments. 
Furthermore the Flight Segment had to fit to the defined mechanical interface and 
had to survive the expected mechanical stress (vibrations, pressure difference, g-
forces etc., (Mawn, Kaczmarczik, & Schmidt, 2014, p. 38)) to guarantee a fully 
functional experiment and protect sensible electronic parts properly during flight. 
From the operational point of view easy access both to connectors and data 
storage devices was a soft requirement. 

Another constraint put on the team was, like for the electrical design (cf. ‎3.1.1), the 
lack of knowledge and experience about mechanical engineering especially CAD-
drawings as well as only limited possibilities for manufacture (e.g. no access to the 
services of the University’s workshop). 

3.3.2 Design & Implementation 

To face the lack of experience and knowledge a new team member, Matthias 
Bergmann, was recruited shortly after PDR, which was strongly recommended by 
the PDR-panel. Matthias had also little experience, as because of the lack of 
proper engineering faculties at the University of Würzburg nearly everyone. But as 
explained in ‎3.3.1 the requirements for the mechanical design were quite basic 
and as for the beginning it was his only main responsibility he had enough time to 
read up on mechanics and the used CAD-software. 

For the preliminary design the components were placed on two bulkheads – one 
bottom-mounted and one wall-mounted – and several PCBs were not even boxed. 
Those two aspects of the mechanical design were identified as improvable during 
PDR. Therefore and caused by changes of the electrical design (cf. ‎3.1.2) the 
mechanical design was nearly completely changed between PDR and CDR. 
Instead of two bulkheads, one single standard bulkhead was wall-mounted appro-
ximately in the middle of the module with the standard brackets. This bulkead was 
then populated with the components from both sides in a highly symmetrical 
manner, to utilize the volume of the only 120mm high module best and to keep the 
center of gravity close to the rockets roll-axis. Moreover, all electronic parts which 
were not properly protected by own housings were placed into aluminum boxes. 
Those boxes were mainly meant to protect the electronic components from 
possibly loosened parts like screws floating through the rocket during micro-gravity 
causing shorts on PCBs. The boxes were, unlike few other parts which required 
high manufacturing accuracy, manufactured by the team at one team-member’s 
personal home workshop to reduce costs (Rapp, et al., HORACE Student 
Experiment Documentation - v4.0, 2014, pp. 47-48). 

As it was expected that during descent phase hot gases may rush into the module 
through the camera holes, if they were not closed and as tests have shown that 
the cameras themselves would probably not withstand those temperatures, with a 
very late design change (right after CDR) the holes were closed with protective 
windows although it was tried to avoid windows in the first place due to their 
possible optical impact on the captured images (Rapp, et al., RID Report - Post-
CDR: Thermal Protection of Optical System, 2013). 

Despite all efforts the final design exceeded the required maximal total height 
within the module (a gap of 10mm is required to avoid mechanical interferences) 
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as eight nuts reached into the forbidden zone by 4mm each. However, that was no 
severe issue as HORACE was on top of the payload stack without another expe-ri-
ment in the nosecone thus there was nothing to interfere with and an exception for 
the required height was approved by EuroLaunch (Rapp, et al., HORACE Student 
Experiment Documentation - v4.0, 2014, p. 34). 

Because the vibration tests performed during ITW with the complete experiment 
setup were perfectly successful without any screw being loosened, in contrast to 
the original plan it was decided not to lock the screws with locktite as that would 
have complicated the access to the components at a late stage (as indeed it was 
needed due to the SD-card failure, cf. ‎2.1.4) or after recovery. 

3.3.3 Discussion of the Performance during Flight 

The flight proved the mechanical design to be perfectly suitable for its basic 
function of protecting the experiment from the high mechanical stress. The 
experiment returned in an excellent state without any component being broken or 
any loosened screw.  

Because the exception for the interference requirement was approved long prior to 
launch, also all requirements regarding mechanical interfaces and interferences 
are met. 

As far as one could tell from the bad image data and as calculations were made in 
advance (Scharf, Analysis Report, 2014) also the mechanical requirements 
regarding the visibility of the horizon are considered to be met. 

3.4 OBDH-Software of the Core System 

3.4.1 Relevant Requirements & Constraints 

In fact, there were several mostly independent functional requirements which were 
meant to be fulfilled by the OBDH-Software of the core systems. Besides the 
execution of the horizon acquisition itself (which is discussed in detail in ‎3.5) the 
core system software was in charge of saving all scientific data and implementing 
the data interfaces to RXSM both for up- and downlink as well as the data inter-
face to the MU. Furthermore, for operational reasons as an uplink was not 
available during flight, the CS-software had to autonomously control the whole 
experiment and its proper conduct during flight and partly also during countdown. 

The main constraint put on the software development was the decision made for 
the electrical design (cf. ‎3.1.2) to use an off-the-shelf micro-ITX computer as core 
system. Especially the limitation of electrical data interfaces and the necessity to 
run the actual OBDH-software on top of an operating system were caused by this 
constraint. 

3.4.2 Design & Implementation 

To ensure the least possible impact of the operating system on the actual OBDH-
software, the minimalistic Linux-distribution “Arch-Linux” was chosen and only 
needed features were activated and customized manually. Thus, the OBDH-
software itself was developed as a “normal” C/C++-application for Linux and was 
started by a small shell-script, which was executed directly after booting the OS. 
The shell-script additionally implemented the functionality of a software-watchdog 
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and would restart the flight-application after a fatal crash (as it was experienced 
during testing several times due to the shifted ground, cf. ‎2.2) 

Because the different required functions, defined in (Rapp, et al., HORACE 
Student Experiment Documentation - v4.0, 2014, pp. 62-70) as software-tasks, 
should be kept as independent from each other as possible for security and 
reliability (so that errors of single tasks would not lead to a complete crash), they 
were implemented in four separate threads (based on POSIX threads), which only 
share protected buffers where necessary. 

The Control-Thread initializes all other threads and the buffers for data-exchange 
and controls the correct proceeding of the time-line according to the software-
modes (Rapp, et al., HORACE Student Experiment Documentation - v4.0, 2014, p. 
62) by activating and deactivating the other threads. Furthermore, it performs the 
system-self-checks during stand-by and executes telecommands provided as 
package-objects (cf. ‎3.6.2) by the Communication-Thread in a shared RXSM-
receive-buffer. Moreover, it pushes command-packages (both for telecommands 
and for time-sync) to the MU-send-buffer as well as interprets MU-data-packages 
(popped out of the MU-receive-buffer), reformats it and pushes to the RXSM-send-
buffer, as it also does with own data to be downlinked (like self-check-results). 

The VideoSaver-Thread fetches the image data provided by the camera via the 
GigE-Vision-interface, saves them to the SSDs and provides them for the 
Algorithm-Thread via a shared buffer. 

The Algorithm-Thread is only activated during flight. It processes the image data 
provided by the VideoSaver, writes its results to the SSDs and provides them for 
downlink by pushing appropriate packages to the RXSM-send-buffer. 

The Communication-Thread has control over both RS-232 interfaces, receives the 
uplink-data-stream from ground, respectively the downlink-data-stream from the 
MU, parses them and provides the data-packages in the appropriate buffers. 
Moreover, it builds the byte-stream of the packages which are to be sent and are 
provided in the buffers by other threads. This applies both for telecommands from 
ground and time-sync-packages, which shall be sent to the MU, and health-data 
from the MU, which shall be forwarded to ground. Finally, the Communication-
Thread also sends the data via the RS-232-interfaces. In addition, the thread 
captures signals (LO, SOE, SODS), which also arrive at the RS-232-interface 
connected to RXSM. 

Those threads are dynamically scheduled by the operating system, what caused 
heavy losses of the overall speed. However, as the whole software was not 
optimized regarding speed at all but regarding reliability due to the limited 
development-time, there shall be plenty possibilities of speed-optimization. 

3.4.3 Discussion of the Performance during Flight 

Despite experienced crashes of the master core system’s OBDH-software during 
testing at ITW and Bench Test, which were correlated to the shifted ground 
(cf. ‎2.2), the OBDH-software ran perfectly stable on both core systems during 
countdown and flight. Thus, the timeline was conducted nominally, all scientific 
data was stored correctly and the communication via the RS-232-interfaces was 
stable – meeting all functional requirements. 
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But the usage of an OS, its dynamic scheduling and the fact that all those 
functionalities were implemented in the OBDH-software of the core systems 
introduced so much overhead compared to the important functions (gathering and 
processing image data) that especially P-S-03 (required a frame-rate of processed 
images of 30fps) was severely missed: The frame-rate of captured images was 
around 10fps (Master: 9.8fps; Slave: 9.6fps) and the frame-rate of processed 
images was even lower (cf. ‎3.5.3). 

On the other hand, as reliable but slow software is in case of a REXUS-experiment 
better than fast but unstable software and as the software was not speed-
optimized, the overall performance of the OBDH-software for the core systems 
during flight is considered to be excellent. 

3.5 Algorithm for Horizon Acquisition 

3.5.1 Relevant Requirements & Constraints 

The main objective of HORACE was to investigate whether horizon acquisition 
using image-data from an ordinary camera is applicable for attitude determination. 
Therefore, of course, several software requirements aiming at this objective were 
defined. The main functional requirement for the part of the overall software which 
is called “algorithm” and which is basically independent from the rest of the OBDH-
software was to detect the horizon line in image data provided by a camera and 
whenever this step was successful to calculate from this information the position of 
the 2D projection of the center of the earth. 

Along came several performance requirements for this functionality: The 2D-vector 
to the earth center was required to be accurate in the sub-pixel-scale. The system 
should have processed 30fps and percentages of successful horizon acquisitions 
depending on the quality of the processed image were set. A horizon acquisition 

was defined to be successful when both        ⁄       and   ⁄      hold, 
where   is the calculated earth radius,   the real earth radius in the image and   
the Euclidian distance between the calculated and the real earth center of the 2D 
projection. Those criteria as well as the percentages for successful acquisitions 
were set very early, even before the performance of the algorithm could be at least 
roughly estimated, and therefore turned out to be both unlikely to be met and also 
little informative to actually evaluate the algorithm’s performance. 

As for the rest of the OBDH-software, the decision for the electrical design 
(cf. ‎3.1.2) to use a microITX-board with operating system as core system, which 
also executed the algorithm for horizon acquisition, was the main constraint being 
put on the algorithm-design. 

3.5.2 Design & Implementation 

Although in the very first place there were two possible branches to detect the 
horizon line – either an approach following the detection of edges and contours 
between parts differing in the brightness or segmentation between parts differing 
in the colors – only the edge detection was pushed forward, as early tests had 
shown that it would be the simpler to implement, faster and more efficient method. 
(Rapp, et al., HORACE Student Experiment Documentation - v1.1, 2013, pp. 42-
43) 
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After preprocessing steps, which skip images because of their overall brightness 
(either too dark or too bright) and binarize the image with a threshold filter, outer 
edges (which are not encircled by other edges) are detected. Out of those outer 
edges the longest is assumed to be the horizon and extrapolated to a circle by a 
least-square method whose center and radius are the wanted results. The 
threshold filter is dynamically set proportional to the average brightness of the 
image. 

If the image is processed correctly and not prematurely skipped, either the results 
are returned or, if the results do not match the expected ones (being out of 
predefined bounds due to image disturbances),– following the divide-and-conquer-
principle – the image is divided into sub-images, which then are processed 
independently following the same method. For more detailed information about the 
algorithmic approach itself refer to (Barf, 2014). 

The fact that with the given electrical design the software had to run on top of an 
operating system was in contrast to the effects on the algorithm’s performance an 
advantage for the development and implementation. Therefore, it was possible to 
use openCV, a very powerful and fast open-source library for image processing, 
which led to reduced development effort. Additionally, thanks to the usage of 
openCV it was easy to first implement a stand-alone software of the algorithm to 
make early testing (e.g. with simulation videos or footage of former REXUS-teams) 
and experimental determination of parameters (like threshold or bounds for the 
algorithm’s results) possible. As finally also the algorithm was meant to be one of 
the mostly independent threads of the core system software (cf. ‎3.4.2), the effort to 
port the stand-alone version and implement the algorithm as part of the OBDH-
software stayed small as well. 

3.5.3 Discussion of the Performance during Flight 

Due to the overexposure of the cameras (cf. ‎2.4) not a single horizon was 
detected both by the Master and Slave during the whole flight. However, all 
images provided by the cameras, which were valid though containing no 
information for the horizon acquisition, were correctly processed, i.e. skipped, by 
the fully operational algorithm. Thus, both the rate of false positives (detected 
horizon although there was none) and the rate of false negatives (no detected 
horizon although horizon was visible) of both systems are 0%. Furthermore, as the 
performance requirements on successful horizon acquisitions are only related to 
images in which the horizon is indeed visible, technically they are met although no 
conclusion about the algorithm’s performance can be drawn. 

During flight the Master processed 1719 frames in total (first processed frame 
#849 at T+0.599s, last processed frame #6589 at T+585.777s) resulting in an 
average frame-rate of processed 2.9fps. The Slave’s performance was similar: 
1656 processed frames (from #812 at T+3.740s to #6423 at T+586.379s, 2.0fps in 
average). So the requirement of 30fps of processed frames was severely missed. 
Closer evaluation of the time needed for the processing of each frame, which was 
saved by the algorithm via two timestamps (start-of-calculation and stop-of-
calculation), showed that indeed the algorithm took only between 50ms to 70ms 
(equivalent to 14-20fps) for most of the frames with only few outliers (cf. 
Figure ‎3-4). Of course, those calculation-times do not properly reflect the average 
performance of the algorithm, as nearly all images presumably were not fully 
processed but prematurely skipped, but that does not explain the discrepancy 
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between the calculation-times of single frames and the average frame rate of 
processed images during flight. 

 

As it can be seen regarding the IDs of the first and the last and the total numbers 
of processed images, apparently the algorithm did not even look at a lot of 
recorded images. This can be explained with the massive workload-overhead of 
the core systems, which was caused by the operating system, its dynamic 
scheduling and the bundle of functionalities the core system software had to fulfill 
(cf. ‎3.4.3). Hence, the Algorithm-Thread was probably suspended by the operating 
system that often and that long, sometimes even during the procession of an 
image causing the heavy outliers of the calculation time, that the algorithm could 
only process every 4th or 5th recorded image or even the buffer between the 
VideoSaver-Thread and the algorithm, which was limited in size, flew over. 

However, in general the performance of the algorithm during flight was excellently 
nominal and would have resulted in valuable scientific data, if the provided input-
images had not been overexposed. 

3.5.4 Discussion of the Performance in Simulation 

As the data gathered during the flight provided only little information (cf. ‎3.5.3) 
about the algorithm’s actual performance, it was decided to thoroughly evaluate 
not only the flight data but also of a simulation carried out after the campaign with 
the stand-alone version of the algorithm (cf. ‎3.5.2). Using Cinema4D a model of a 
satellite tumbling at a height of 200km above the earth carrying a camera with 
nearly the same properties as the payload-cameras of the actual experiment setup 
was created and rendered from the point of view of the satellite’s camera. The 
resulting footage was then processed by the algorithm. 

The advantage of the simulation is that the complete model (especially the relative 
position of the camera to the earth) is known and thus an evaluation using 
mathematical methods is possible and not every single image has to be manually 
evaluated (as also the flight data would have had to be evaluated, if it had 
contained usable information (Rapp, et al., HORACE Student Experiment 

Figure ‎3-4: histogram of calculation times; red - Master; blue - Slave 
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Documentation - v4.0, 2014, p. 99)). On the other hand, the model, of course, 
does not exactly describe the reality – for example the atmosphere could only 
roughly be modeled. 

To compare both the known data of the simulation and the algorithm’s results, 
some transformations are necessary, which are explained in the following and 
conducted by a Matlab-Script (see appendix for the raw data and script). 

The global coordinate system of the simulation is earth centered and fixed. The 

camera-position is given in km by vector    and its rotation to the global 
coordinate system by the Cartesian matrix (        ), where    is the camera’s 
view axis (normal to the image-plain),    lies horizontally in the image-plain 

starting at the center of the image and respectively    vertical. 

Therefore, the projection of the earth center to the image-plain in global 

coordinates is the dot-product of    and    multiplied by    being normalized. 

   
 ⟨  |  ⟩    

‖  ‖
 

To get the 2D vector from the image center to the projection,    and    are 

subtracted and transformed to the camera-coordination system by left-
multiplication with the inverse matrix of the camera orientation and disregarding 
the third component of the result: 

   (        )
   (     ) 

The angular direction is hence the arcus-tangent of the ratio between the 

coordinates of    (which have to be converted to a right handed coordinate system 
by multiplying the second coordinate with -1): 
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The given results of the algorithm    in pixels are already in the camera-
coordinate-system and right handed, but have to be centered to the image center 
by subtracting offsets (half the image-resolution each component): 
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The angular direction is again the arcus-tangent between both components of      
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The angular difference        is calculated for every of the   successful 
horizon acquisitions and the results plotted to a histogram summarizing the values 

for   to √  classes and counting their occurrence/absolute frequency. Figure ‎3-5 
shows the results with a Gaussian fit to the data. The offset of the mean of only 
0.03° as well as the outliers are most likely to be caused by the dynamic 
adjustment of the threshold filter which leads to larger errors in mostly dark images 
(but ensures that the horizon can be detected at all also with bad illumination). 
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As no mathematical solution to convert the vector    from km to pixels or      vice 

versa was found, the norm of both vectors, unlike the angular direction, cannot be 
directly compared (e.g. to calculate a difference). However, plotting them for each 
image (cf. Figure ‎3-6) already shows a clear correlation, which fits to the camera 
movement observed in the simulation-video, and the calculation of the correlation-

coefficient reveals a real high correlation (                       ), suggesting 
that not only the direction but also the actual position of the projected earth center 
was calculated quite accurate. 

Figure ‎3-5: histogram of angular difference for simulation 

Figure ‎3-6: comparison of vector-lengths between algorithm results & simulation 
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Also, the criterion to determine whether the horizon is visible in the image was too 
complicated to be solved in a close form. Therefore, the image-frames which do 
not show the horizon were simply manually counted (horizon always visible except 
from #2257 to #2673) and thus decided whether a false positive or false negative 
occurred. For the whole simulation not a single false positive (horizon detected 
where is none) occurred and the rate of false negatives (10.29%) was only slightly 
above the required value (10%). Most of the false negatives occurred when the 
horizon was nearly out of the image, thus the line presumably was too short for 
proper extrapolation and therefore skipped. In other cases the horizon, also for the 
human eye, seemed very straight, so that small errors due to the dynamic 
threshold filter probably caused an infinite (or at least very large) radius for the 
least-square-fit exceeding the defined upper bounds. 

All those results show that the algorithm for the horizon acquisition works 
excellently although it was not possible to prove that properly under space-like 
conditions during flight due to the overexposure of the cameras (cf. ‎2.4). As the 
calculated results especially for the angular direction with an error of only ±0.6° 
(offset of mean + standard derivation) are even stronger than the criteria actually 

required (e.g.   ⁄      equals in worst case a difference of ±5.7° for the angular 
direction) an explicit evaluation regarding those criteria is waived. 

3.6 Communication Middleware 

3.6.1 Relevant Requirements 

One of the functional requirements for the software was to downlink specific data 
for two reasons: Downlinking a minimum set of scientific data during flight should 
ensure that at least some evaluation of the experiment would be possible if the 
payload data could not be recovered (e.g. if complete payload was lost or data 
storage devices broken). Additionally, during countdown the downlinked data 
should help to check out the experiment and to be sure that the experiment is 
ready to fly. 

Several design requirements specifying which data shall be downlinked in which 
states come along with those functional requirements. 

Moreover, it was required to provide a system-wide unique timestamp all sub-
systems are synchronized with to ensure that data from different subsystems can 
be joined. 

3.6.2 Design & Implementation 

Actually those requirements do not directly lead to the stringent necessity of a 
communication middleware or framework, but as the relevant design requirements 
imply and the definitions of all data interfaces and different data packages to be 
exchanged or stored (Rapp, et al., HORACE Student Experiment Documentation - 
v4.0, 2014, pp. 72-73) clearly show, the communication infrastructure of HORACE 
was quite complex. 

To avoid ending with a total mess of the protocols being implemented anywhere 
within the implementation of the software of the involved subsystems, it was 
decided to bundle all functionality related to storing data to data storage devices or 
exchanging data between different subsystems in a special “communication”-
namespace. Furthermore, as for example the definition of data interfaces (Rapp, 
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et al., HORACE Student Experiment Documentation - v4.0, 2014, pp. 41-44) 
show, between different interfaces and packages there are many similarities (like 
beginning with a two-byte long sync-word). Therefore, it seemed to be fair to follow 
an object-oriented approach and to systematically group similar functionalities into 
a class hierarchy (cf. Figure ‎3-7):  

 

  

 

DataFrame is a wrapper class for the protocols between different subsystems 
(Rapp, et al., HORACE Student Experiment Documentation - v4.0, 2014, pp. 41-
44) and is split into four child-classes (TMFrame, TCFrame, TMForward, 
TCForward) according to the interfaces (either RXSM ↔ CS or CS ↔ MU) and the 
direction of communication. 

Figure ‎3-7: UML-class-diagram of the communication-middleware, showing inheritance 
and associations; member-variables & -methods not shown for simplicity 
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A DataPackage is either a SendPackage and is wrapped into a corresponding 
DataFrame-Object or a SavePackage and is meant to be directly written to a data 
storage device. 

All DataPackages consist of a set of PackageComponents, which represent the 
different defined fields (Rapp, et al., HORACE Student Experiment Documentation 
- v4.0, 2014, pp. 72-73) and convert and store the passed data in char-arrays with 
the appropriate length. 

Therefore, building for example a TMFrame creates a char-vector, appends the 
class-specific values like the sync-word and calls the building-method of the 
wrapped DownlinkPackage, which itself again only iterates over all its 
PackageComponents and appends their data (char-arrays with different length) to 
the returned char-vector. 

Parsing received data goes exactly the other way round: First the data is 
unwrapped from the overhead of a DataFrame and by means of this overhead it is 
decided which child-class’ (of DataPackage) parse-method is called. This method 
again constructs the specific PackageComponent-objects, which eventually hold 
the actual values. 

With this structured hierarchy of all specified data-packages and protocols and a 
SerialHandler-class, which takes control of the buffers and the actual electrical 
data interfaces (RS-232 in most cases), all functionalities regarding exchange or 
storage of data could be standardized and thus easily used by all subsystems 
except from the Measurement Unit, whose EEPROM was too small to import the 
whole communication middleware (cf. ‎3.7.2). Especially the development effort for 
the ground station software was drastically reduced by this reusability (cf. ‎3.8.2). 

3.6.3 Discussion of the Performance during Flight 

Not only the advantage of saving development time but also the performance of 
the communication middleware during countdown and flight proved that it has 
been a fair decision to implement it although it was not directly required. 

During countdown no irregularities were experienced at all. Health data from the 
MU as well as all expected status reports from both core systems were received 
and all telecommands correctly uplinked as the expected responses were received 
at the ground station. 

Also during shutdown-mode the Master received valid health data with reasonable 
values as well as no corruption of packages saved by the Measurements could be 
detected. 

As only the algorithm’s results were both stored and downlinked, the correspon-
ding packages are the only ones which can be directly compared and thus make 
numerical statements about the performance of the communications of REXUS 16 
in general but also of the communication middleware of HORACE possible. 

Of more than 1650 downlinked frames only 1 frame received by the Slave was 
corrupted and the following 4 completely lost. As this loss of downlink data took 
place between T+296s and T+299s and can be time-correlated to the loss of 4 
downlinked frames of the Master between T+295s and T+297s, it is most likely 
that during this time the radio-link in general was bad. Two more frames of the 
Master were corrupted (at T+252s and T+278s) and one pair of successive 
received frames was swapped compared to the transmitted ones (at T+396s). 
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Whereas the corrupted frames may simply be transmission errors, the swapping 
might have occurred as the first frame was “stuck” in the ground station’s receive-
buffer (cf. ‎3.8.3). 

Both on the Master and Slave the last 13 packages, which should have been 
saved to the SSD, were empty (file-size 0 bytes), which was probably caused as 
not all internal buffers of the SSDs were flushed when the power was switched off. 
This was a known issue but not further pushed to be solved as those last frames 
were expected to be completely useless for the scientific evaluation (no more 
horizon visible at that altitude). But – as a fun fact – 12 of them could properly be 
downlinked before power-off. Hence, if they had contained any relevant data, they 
would not have been lost. The same happened to the last several (Master: 35; 
Slave: 30) images which should have been saved to the SSDs (but were 
completely lost as image-data was not downlinked), backing the thesis that it was 
an issue with the SSD-buffers. 

All in all the communication middleware provided a stable software infrastructure 
for all functionalities regarding data transfer and data storage of HORACE and 
thus contributed to the corresponding requirements and hence the experiment in 
general although the design and implementation of the middleware was not 
directly required. 

3.7 Measurement Unit 

3.7.1 Relevant Requirements & Constraints 

The main functionality which was carried out by the Measurement Unit was to 
gather health- and housekeeping data of the experiment (F-E-06), downlink them 
during stand-by (F-S-16) to check out the experiment before lift-off and store them 
to own data storage during flight (D-S-01). Additionally to the experiment checkout, 
with the gathered health data some of the questions stated in the Experiment 
Objectives (cf. ‎1.3 – 2nd primary objective & 2nd secondary objective) should be 
answered (cf. also ‎3.1.3). Several other performance and design requirements 
both regarding the hard- and software, (e.g. for sensor-accuracy and sample rates, 
write speed and size of data storage) come along with that functionality. 

The main constraints introduced for this subsystem originate from the selected 
component (due to the design decision of the electrical design, cf. ‎3.1.2) – an 
Arduino Leonardo with micro-SD-shield and additional RS-232 interface – and its 
limited hard- and software capabilities. 

3.7.2 Design & Implementation 

As the measurement of health data by any subsystem for itself would falsify the 
results – especially regarding the power consumption, which was relevant most for 
the Experiment Objectives –, it was decided at a very early stage of design to 
carry out this task using a special subsystem – the Measurement Unit. According 
to the decision for the electrical design to use components off-the-shelf (cf. ‎3.1.2) 
the Arduino Leonardo extended with a micro-SD-shield and native RS-232 
interface was selected as it met all hardware requirements, was cheap and 
considered to be easy to use as the Arduino platform is especially known for its 
low entry level and lively community. 
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As there is only one data interface to RXSM available for each of the two quasi 
identical setups of the experiment, but the Measurement Unit also has to be 
controlled (both by the signals of RXSM and telecommand) and needs access to 
the telemetry-interface, it was decided to control it via the core system’s RS-232-
interface. The CS basically forwarded all signals and commands as they arrived, 
independently from the actual content of the message, to the MU as well as the 
data to be downlinked provided by the MU. The CS also provided a time-synchro-
nization via the same RS-232 interface to ensure that the data from both systems 
could be matched for the evaluation. The fact that the MU was the only subsystem 
which was not redundant in the setup of two identical experiments led to the 
distinction between those two into a Master, which controlled the MU, and a Slave. 
Despite being controlled by the CS the MU basically worked autonomously: After 
power-on and initialization self-checks (try to read and write the SD-card) were 
performed before gathering sensor data following a static scheduling and either 
downlinking or saving the data according to the current state of a simple state-
machine. 

In fact, thanks to many open source libraries and example programs it was really 
easy to get started on the platform and implement the basic functions like 
gathering sensor data, use the SD-card and serial interfaces. But the simplified 
programming language (based on C++) with special language structs and modified 
compiler and linker turned out to be a crux for advanced purposes as it severely 
complicated the modularization of the software. Hence, the final application (with 
around 1000 lines of code) is barely modularized, what makes it hard to debug 
and maintain. 

But besides the software platform also the hardware was quite limited. For 
example, the EEPROM was very limited in size and mainly consumed by needed 
libraries for the serial interfaces and sensor access. Therefore, it was impossible 
to directly import the communication middleware (cf. ‎3.6), but the needed parts 
had to be manually adapted. Furthermore, security features (e.g. to remotely 
format the SD-card to solve the SD-card failure (cf. ‎2.1)) could not be 
implemented. Also regarding the security of gathered data and sample rate a 
trade-off had to be made as flushing the write buffers after every single sample 
exceeded the desired sample rate. 

3.7.3 Discussion of the Performance during Flight 

Because the issue of the SD-card failure could be solved before the hot 
countdown and flight (cf. ‎2.1.6), the general performance of the Measurement Unit 
was excellent as all tasks were conducted nominally and the whole software flow 
through the different states during countdown and flight was nominal as well. 
However, as already discussed in ‎3.2.3, a temperature sensor was lost during 
assembly and no time was left to replace it and the required measurement error of 
one current sensor was exceeded due to interferences with external magnetic 
fields (cf. ‎3.1.3). Thus the corresponding performance requirements were only 
partly met. 

Although the desired sample time was exceeded every second while flushing the 
write buffers (ca. 140ms instead of ca. 40ms), the average sample time of 46ms 
was sufficient to meet the corresponding performance requirements and all other 
requirements were also met. 
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A minor discrepancy was detected in the saved data regarding the time synchroni-
zation with the core system, which only slightly affected the quality of the saved 
data. Throughout the flight the time-offset, which holds the time difference be-
tween the MU’s internal and the global clock of the CS (see (Rapp, et al., 
HORACE Student Experiment Documentation - v4.0, 2014, p. 43) for the definition 
of the time-sync-protocol), was decreased by ca. 790ms and increased by ca. 
800ms again one second later for nine times in total with a quite constant rate of 
once per minute. This is most probably caused by the dynamic scheduling of the 
operating system of the CS and its insufficient real-time capabilities. If one 
command-package from the CS to the MU was delayed (e.g. by unexpected 
suspension by the operating system) that much that in the meantime a second 
time-pulse was sent, this would cause the MU to turn back its clock from the time 
of the second pulse to the time received with the first delayed package and simply 
ignore the second received package (as no new time-pulse was received in the 
meanwhile). The time-sync would be regained causing the MU to turn its clock 
forward again when the next time-pulse and its corresponding command-package 
arrive, which is nominally the case one second later. Thus, the timestamps logged 
by the MU are ambiguous at nine points for one second each, which – as nothing 
interesting or relevant happened during those periods – only slightly affects the 
overall quality and integrity of the gathered data. 

To sum, up the Measurement Unit worked nearly perfectly, meeting only two 
requirements only partly, and thus provided valuable data not only for checking out 
the experiment during countdown but also for the evaluation of the thermal and 
electrical design as well as to answer two main questions of the Experiment 
Objectives. 

3.8 Ground Station Software 

3.8.1 Relevant Requirements 

As the Flight Segment was required to downlink selected data both for scientific 
and operational reasons (to at least have a minimal set of scientific data if the 
payload was lost, respectively to check out the experiment during countdown), of 
course also a ground station was needed to receive the data. For the operations it 
was important that the ground station would not only properly save all received 
data but also display them in real-time and in an appropriate manner to thoroughly 
monitor the experiment. Also the capability to send telecommands and not only to 
receive telemetry was required for operations of both countdowns and tests. 

More detailed and soft requirements, especially for the GUI and regarding 
usability, were worked out during design and implementation, mostly by feedback 
of the operators. 

3.8.2 Design & Implementation 

Originally, it was planned to implement the ground station software in Python as it 
is a quite easy script-language, some team-members already had experience with 
regarding GUI-design and implementation. But as it was realized that the powerful 
communication middleware (cf. ‎3.6) could completely be reused for the ground 
station – thus nearly the complete data and most of the functional layer (receiving 
and interpreting telemetry, formatting and sending telecommands) were already 
implemented –, it was decided to implement the ground station software in C++ as 
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well. This decision not only saved a lot of development time but also minimized the 
risk of bugs (the middleware was already thoroughly tested and even if there were 
bugs, for example regarding formatting and interpreting packages, they were likely 
to be neutralized). 

To minimize the impact of possible bugs, the backend directly saved the received 
byte-stream before interpreting it to display the contained information and to store 
the values to comma-separated files. Hence, even with malfunctions of the 
frontend all raw-data was saved for later evaluation. 

The same software was used both for the Master and Slave as the behavior of 
both systems was, except from the availability of health data (cf. ‎3.7), nearly the 
same. Therefore, to avoid distraction of the operator, simply some functions were 
disabled or hidden when using the ground station in slave-mode. The GUI-
frontend was designed in a clearly structured and intuitive manner (Rapp, et al., 
HORACE Student Experiment Documentation - v4.0, 2014, pp. 76-77) with 
different views for different modes and colored indications so that the operator 
could monitor all important data simultaneously. 

Furthermore, several security features were implemented to prevent accidental 
actions of the operator during stress situations (as the hot countdown for sure was 
one). For example, double confirmation was required for critical actions; it was 
impossible to quit the whole software, if the serial connection was established and 
the telecommands, needed during a nominal countdown, were provided as short-
cut-buttons. 

3.8.3 Discussion of the Performance during Flight 

The ground station software ran absolutely stable and behaved nominally through-
out the whole campaign including all test countdowns, the hot countdown and the 
flight. 

The only issue was that sometimes – not really reproducible – probably due to 
some problems with the driver of the RS232-interface of the EGSE-laptops single 
telemetry frames got “stuck” in the buffers. But as the frames were not lost but only 
displayed belatedly (in most cases, latest when the next frame arrived) and as the 
issue was known, it did not narrow the performance of the ground station software 
at all. 

Thus, the ground station software met all requirements and helped to gather 
scientific data and to check out the experiment during countdown and testing. So it 
contributed to reach full functionality of the experiment in general terms in an 
excellent way. 
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4 SUMMARY & GENERAL EVALUATION 

With the given scientific data gathered during flight, which is deficient due to the 
overexposure of the cameras of both systems (cf. ‎2.4), it is neither possible to 
“prove [n]or disprove the general technical feasibility” (cf. ‎1.2) of horizon acquisi-
tion with ordinary cameras and powerful image processing algorithms for attitude 
determination (cf. ‎3.5.3). However, the simulation showed that the algorithm itself 
with an accuracy of ±0.6° (cf. ‎3.5.4) is likely to be sufficient for attitude determina-
tion (cf. ‎1.3 – 1st primary objective) – especially in emergency cases during which 
also only roughly determined attitude information would be better than none – 
although that could not be proven under “realistic, space-like conditions” (cf. ‎1.2). 

The actually achieved time resolution of approximately 2fps of processed image-
frames (cf. ‎3.5.3) is much lower than required and is not considered to be 
“reasonable” (cf. ‎1.3 – 2nd primary objective). But the further evaluation showed 
that this was mainly due to the massive overhead to be executed by the core 
systems. So, the time resolution of particularly the algorithm was much higher 
(about 20fps, cf. ‎3.5.3) and was close to the required value. Therefore, the time 
resolution is considered to be “reasonable” in terms of the Experiment Objective 
despite of the low actual value. The same applies to the overall power-consump-
tion: Of course, the power consumption of both the core systems and the total 
Flight Segment (cf. ‎3.1.3) exceed a satellite’s power budget (especially in 
emergency cases). But regarding again the functional overhead, which also 
increased the power-consumption, and furthermore the fact that the experiment 
was not optimized towards low-power-consumption, the achieved performance 
seems to be “reasonable” in terms of the Experiment Objective. 

Regarding the secondary objectives (cf. ‎1.3) as systematical limits, the camera 
and the threshold filter could be identified. Both the quality of the provided images 
and the parameters of the threshold filter severely affect the quality of the results 
(cf. ‎3.5.3 and ‎3.5.4). Whereas for the camera simply a better component could be 
selected if necessary (respectively the issue fixed), the parameters for the 
threshold filter must either be carefully experimentally determined or dynamically 
set by a higher autonomous logical unit. The applicability of a future complete 
sensor system for small satellites can be answered only indirectly, as HORACE 
was not optimized towards that. Several other projects (like STELLA (Balagurin, 
Wojtkowiak, & Kayal, 2011)) have proven that image processing applications can 
be run on hardware which is applicable for small satellites. As during the 
development of HORACE no severe increase of complexity of the image 
processing software compared to the existing applications was experienced, it can 
be expected that a full sensor system would also be applicable for small satellites 
in the future. 

Due to the deficient scientific data gathered during flight and the design itself, as 
pointed out, several of the questions posed in the Mission Statement and 
Experiment Objectives could only be partially or indirectly answered. That of 
course decreases also the overall mission success. 

On the other hand, the experiment development, which explicitly is defined as 
“part of the mission” (cf. ‎1.3), has been nearly perfectly successful. During the 
project lifecycle all challenging milestones were excellently and always in time 
reached. The overall design and implementation of the experiment in general was 
profound (cf. ‎3), meeting most requirements and leaving only few issues open, 
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which despite of their severe impact on the experiment performance are from the 
technical point of view only minor issues. Thus, the experiment could be delivered 
in time to EuroLaunch and it was successfully launched and fully operational 
throughout the whole flight. 

Regarding all those factors, all remaining issues but also all achievements, which 
were obtained, the whole mission “HORACE on REXUS 16” is considered to be an 
80% partial success. 
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5 OUTLOOK ON FUTURE EXPERIMENTS 

As HORACE was only the very first basic study and unfortunately left several of 
the posed questions partially open or could only indirectly answer them (cf. ‎4), it 
will for sure take several more steps until the final aim of an operationally used 
sensor system for emergency cases, which is also applicable for small satellites, 
will be reached. 

The results of HORACE and the experiences gathered throughout the project 
suggest several possible directions for follow-up experiments. The four most 
appealing possibilities are outlined in the following raising no claim to 
completeness which may – respecting resources like manpower, budget and time 
– also be combined to some extend although they are presented in closed 
subchapters. 

5.1 Re-Flight on REXUS 

The obviously easiest way to close the gap between the posed questions and the 
answers available from HORACE would be a re-flight of the experiment on a 
sounding rocket. Of course, the issues which limited the performance of HORACE 
(cf. ‎2) shall be eliminated preferably following the outlined solutions (cf. ‎2.x.6). 

But as firstly a generally identical experiment is unlikely to be selected twice for the 
REXUS-programme and secondly the full two year life-cycle must be accom-
plished leaving much time for adjustments, some more improvements are 
suggested. 

Especially the flight-software of the core systems should be optimized regarding 
the overall speed (cf. ‎3.4.3) so that the overhead is reduced and the ratio between 
saved image-frames (ca. 10fps, cf. ‎3.4.3) and actual processed images (ca. 2fps, 
cf. ‎3.5.3) is balanced and thus more scientific data collected. 

Furthermore, the evaluation methods could be significantly improved. As outlined 
in the evaluation plan of HORACE – if proper scientific data would have been 
collected as expected – the available data would have required to “manually” 
evaluate every single frame regarding the success of the horizon acquisition. 
(Rapp, et al., HORACE Student Experiment Documentation - v4.0, 2014, p. 99) 
This would have been necessary because neither the RXSM collected appropriate 
reference data with the needed accuracy, nor resources were left to develop 
another subsystem performing reference measurements. (Rapp, et al., HORACE 
Student Experiment Documentation - v2.0, 2013, p. 30) This could probably be 
done throughout the development and integration phase of another REXUS-cycle 
as other subsystems could be directly adapted. For instance, it is suggested to 
replace the Measurement Unit, whose benefit would only be little as the thermal 
design was proven to be good (cf. ‎3.2.3), with a subsystem accurately determining 
the attitude of the vehicle using Inertial Measurement Units (IMU). 

To handle both the drift of IMUs and the wide required range (rotation: 0-4Hz, 
acceleration: 0-20g (Mawn, Kaczmarczik, & Schmidt, 2014, p. 38)), probably sen-
sor fusion methods must be applied to reach the desired accuracy. Additionally, 
the comparison of the results of the horizon acquisition with the recorded attitude 
is probably a challenging mathematical problem, thus this improvement would 
surely take some effort. The advantage would be that – except from the changes 
required to eliminate the experienced issues – the already flight-proven expe-
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riment setup including most hardware-parts could be reused, causing a drastic 
saving of time both for development and implementation as well as financial 
budget. 

5.2 Upgrade to Full Attitude Determination 

The conversion of the vector resulting from the horizon acquisition from pixels to 
(kilo)meters is a key factor towards a full attitude determination via the horizon 
acquisition but could not be solved in the scope of this thesis and only a 
correlation was shown (cf. ‎3.5.4) as it was not the focus of this thesis. 

 

If this mathematical problem was solved together with the height   of the satellite 
above ground, which can be calculated from the results of the horizon acquisition 
as shown in (Barf, 2014), the triangle of Figure ‎5-1 would be fully described. Thus, 

the distance   from the Earth Center to the sensor-plain could be easily calculated 
and the projection of the Earth Center to the sensor-plain (cf. ‎3.5.4) could be 
inverted. The result would be a 3D-vector (instead of 2D in the sensor-plain) from 
the satellite to the Earth Center within the camera-frame. If this vector is also 
known in a reference-frame, the full attitude information relatively to the reference-
frame could easily be calculated. The most suitable reference-frame would be the 
ECI-frame and the vector to the Earth Center would be given by the satellites 
position, which, if not determined directly, can also be very well predicted using 
mathematical models like SGP4. 

If adapted for a satellite, this improvement of basically the software shall 
implement the functionality to either receive position-information from the OBDH-
computer or to predict the position itself using SGP4, being regularly updated with 
NORAD-Two-Line-Elements. 

If adapted for REXUS, the position shall be either determined directly within the 
experiment (e.g. using GPS) or be matched with the data from RXSM after the 
flight. Similar to the pure re-flight (cf. ‎5.1) only few changes of the design and 
setup in general would be required and thus time and money would be saved. 

5.3 Miniaturization for Satellite Mission 

One would have to make much more effort, of course, if the experiment was 
miniaturized and ported to real embedded hardware to fly it as payload of a small 
satellite. From the point of view of the horizon acquisition this step is already 
prepared, as in (Barf, 2014) a profound application for the horizon acquisition was 

Figure ‎5-1: side view, projection of earth center to sensor-plain 
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developed. As it uses only standard C++-libraries and follows coding directives for 
software of space projects, the porting of the horizon acquisition itself shall be no 
problem whereas the complete hardware and basic software (control, communica-
tion-interfaces etc.) has to be redesigned. 

Furthermore, if one takes no intermediate step, the requirements for the miniatur-
ized experiment will be much more challenging not only regarding size and power 
consumption but also regarding redundancy, space conditions, possibility for on-
orbit software updates or adjustment of parameters, etc. Additionally, as outlined 
in ‎5.1, a possibility to compare the results of the horizon acquisition payload with 
reference data must be guaranteed, as due to bandwidth limitations it is unlikely 
that all image-data can be downlinked for evaluation. 

Because of the high complexity it is strongly recommended to demonstrate the 
functionality of the miniaturized experiment on a flight with a sounding rocket 
before its launch on a satellite. That experiment shall then clearly separate the 
payload from the functions the satellite’s OBDH-computer would fulfill later. Hence, 
additionally to the horizon acquisition payload, which shall be exactly the same as 
intended to fly on the satellite, another subsystem is needed, which on the one 
side implements the interface to the sounding rocket and on the other side 
simulates the satellite-bus (both regarding data-handling and power distribution). 

5.4 Porting to Existing Hardware 

Another possible direction, which would save the effort of hardware development, 
would be to port the experiment’s software to an existing platform of embedded 
hardware which is used for similar operational scenarios and is available to the 
Chair of Aerospace Information Technology from other projects like ASAP 
(Wojtkowiak, Balagurin, Fellinger, & Kayal, 2013) or STELLA (Balagurin, 
Wojtkowiak, & Kayal, 2011). This would be very challenging like the miniaturization 
(cf. ‎5.3) but for other reasons. Firstly, the given hardware for data-handling would 
put severe constraints on the software and probably a totally different technology 
(FPGA instead of RISC-processor) is used so that even the more portable version 
of the horizon acquisition of (Barf, 2014) cannot be used. Secondly, especially the 
optical system probably is not appropriate for the application of horizon acquisition 
as it was not designed for that. Although the long term goal is generic software, 
this would require the algorithms for the horizon acquisition to be drastically 
improved already now. 

As well as for the miniaturization (cf. ‎5.3) intermediate steps or at least the 
demonstration on a sounding rocket are strongly recommended due to the high 
level of complexity. 
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6 ABBREVIATIONS, LISTS OF FIGURES & REFERENCES 

6.1 Abbreviations 

Most of the abbreviations are standard-abbreviations of the REXUS-Programme 
and are therefore listed here although they might not be used in this thesis. 
Further abbreviations (either specific for HORACE or common in general but 
newly introduced to the context of REXUS by HORACE) are written in italics. 

AIT  Assembly, Integration and Test 

ADC  Analog Digital Converter 

ADCS  Attitude Determination and Control System 

BEXUS Balloon Experiments for University Students 

CAD  Computer Aided Design 

CDR  Critical Design Review  

COG  Centre of Gravity 

CPU  Central Processing Unit 

CRP  Campaign Requirement Plan  

CS  Core System 

DLR  Deutsches Zentrum für Luft- und Raumfahrt 

EAT  Experiment Acceptance Test  

EAR  Experiment Acceptance Review 

ECI  Earth Centered Inertial (coordinate system) 

ECTS  European Credit Transfer System 

EEPROM Electrically Erasable Programmable Read-Only Memory 

EGSE  Electrical Ground Support Equipment 

EIT  Electrical Interface Test  

EPM  Esrange Project Manager 

ESA   European Space Agency  

Esrange Esrange Space Center 

ESTEC European Space Research and Technology Centre, ESA (NL) 

ESW  Experiment Selection Workshop 

FAR  Flight Acceptance Review 

FAT  File Allocation Table (file system) 

FPGA  Field Programmable Gate Array 

FS  HORACE Flight Segment 

FST  Flight Simulation Test 

FRP  Flight Requirement Plan 

FRR  Flight Readiness Review 

GigE  Gigabit Ethernet 

GPS  Global Positioning System 

GSE  Ground Support Equipment 

GUI  Graphical User Interface 

HDD  Hard Drive Disk 

HORACE Horizon Acquisition Experiment 
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HK  House Keeping 

H/W  Hardware 

ICD  Interface Control Document 

ID  Identifier 

IMU  Inertial Measurement Unit 

ITW  Integration Week 

I/F  Interface 

IPR  Integration Progress Review 

JMU  Julius-Maximilians-Universität Würzburg 

LO  Lift Off 

LT  Local Time 

LOS  Line of Sight  

Mbps  Mega Bits per second 

MFH  Mission Flight Handbook 

MGSE  Mechanical Ground Support Equipment 

MORABA Mobile Raketen Basis (DLR, EuroLaunch) 

MU  Measurement Unit 

NORAD North American Aerospace Defense Command 

OBDH  On-Board-Data-Handling 

OP  Oberpfaffenhofen, DLR Center 

OS  Operating System 

PCB  Printed Circuit Board (electronic card) 

PDR  Preliminary Design Review  

PDU  Power Distribution Unit  

POSIX Portable Operating System Interface 

PST  Payload System Test 

RAM  Random Access Memory 

RBF  Remove Before Flight 

REXUS Rocket-borne Experiments for University Students 

RID  Review Item Discrepancy 

RISC  Reduced Instruction Set Computing 

RXSM  REXUS Service Module 

SATA  Serial Advanced Technology Attachment 

SD-card Secure Digital Memory Card 

SED  Student Experiment Documentation  

SGP4  Simplified General Perturbations 

SNSB  Swedish National Space Board  

SODS  Start Of Data Storage 

SOE  Start Of Experiment 

SSC  Swedish Space Cooperation 

SSD  Solid State Disk 

STW  Student Training Week  

S/W  Software 
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T  Time before and after launch noted with + or - 

TBC  To be confirmed 

TBD  To be determined 

TC  Telecommand 

TM  Telemetry 

USB  Universal Serial Bus 

UTC  Coordinated Universal Time 

WBS  Work Breakdown Structure  

WP  work package 

XML  Extensible Markup Language 
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APPENDIX 

 

The appendix can be found on the enclosed DVD, which contains the following 
documents and files sorted in a directory-structure as outlined below. 

Please note that all documents always remain property of the author(s)/issuing 
institution(s). Therefore, they may only be copied, distributed, licensed or changed 
with explicit permission, if not explicitly stated otherwise in the document. 

Thesis 

File-Name BA-thomas-rapp_final_20Aug14.pdf 

Description this thesis 

File-Format Portable Document File (PDF) 

Author Thomas Rapp (Team HORACE) 

 

Issue Investigation 

File-Name Issue-Investigation.zip 

Description all gathered data regarding the issues (cf. ‎2) 

File-Format ZIP-archive 

Author Thomas Rapp, Arthur Scharf, Florian Wolz (all Team HORACE) 

 

Flight Data 

File-Name master_2014-05-28-12-30-38-flightmode.txt 

Description calculation data downlinked during flight, saved by ground station 

File-Format comma-separated text-file 

Author Team HORACE 

 

File-Name master_2014-05-28-12-30-38-housekeeping.txt 

Description health data downlinked during CD & flight, saved by ground station 

File-Format comma-separated text-file 

Author Team HORACE 

 

File-Name master_AFTER_LO.avi 

Description video footage of flight of M-CS , recorded raw-data converted to avi 

File-Format AVI-movie 

Author Team HORACE (conversion: Jochen Barf) 
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File-Name master_BEFORE_LO.avi 

Description video footage of CD of M-CS , recorded raw-data converted to avi 

File-Format AVI-movie 

Author Team HORACE (conversion: Jochen Barf) 

 

File-Name master_calc_sorted.csv 

Description calculation-data of M-CS , recorded raw-data converted to csv 

File-Format comma-separated text-file 

Author Team HORACE (conversion: Sven Geiger) 

 

File-Name MU-data.xlsx 

Description health-data flight of MU , recorded raw-data converted to xlsx & 
evaluated 

File-Format MS Excel 2010 Spreadsheet 

Author Team HORACE (conv.: Sven Geiger, eval.: Thomas Rapp) 

 

File-Name RXSM_140528130652_RXS16_flight.xls 

Description flight data recorded by RXSM 

File-Format MS Excel 97-2003 Spreadsheet 

Author EuroLaunch 

 

File-Name slave_2014-05-28-12-30-41-flightmode.txt 

Description calculation data downlinked during flight, saved by ground station 

File-Format comma-separated text-file 

Author Team HORACE 

 

File-Name slave_AFTER_LO.avi 

Description video footage of flight of S-CS , recorded raw-data converted to avi 

File-Format AVI-movie 

Author Team HORACE (conversion: Jochen Barf) 
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File-Name slave_BEFORE_LO.avi 

Description video footage of CD of S-CS , recorded raw-data converted to avi 

File-Format AVI-movie 

Author Team HORACE (conversion: Jochen Barf) 

 

File-Name slave_calc_sorted.csv 

Description calculation-data of S-CS , recorded raw-data converted to csv 

File-Format comma-separated text-file 

Author Team HORACE (conversion: Sven Geiger) 

 

Simulation 

File-Name sim_evaluation.m 

Description Matlab-Script for evaluation of the simulation (cf. ‎3.5.4) 

File-Format m-file (Matlab-script/function) 

Author Thomas Rapp (Team HORACE) 

 

File-Name simulation_cinema4d_header.txt 

Description header information for the raw-data of Cinema4D 

File-Format comma-separated text-file 

Author Arthur Scharf (Team HORACE) 

 

File-Name simulation_cinema4d_rawdata.txt 

Description raw-data of Cinema4D (cf. ‎3.5.4) 

File-Format comma-separated text-file 

Author Arthur Scharf (Team HORACE) 

 

File-Name simulation_HORACE_header.csv 

Description header information for the raw-data of the algorithm 

File-Format comma-separated text-file 

Author Jochen Barf (Team HORACE) 
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File-Name simulation_HORACE_results.csv 

Description raw-data of the algorithm (cf. ‎3.5.4) 

File-Format comma-separated text-file 

Author Jochen Barf (Team HORACE) 

 

File-Name simulation_video_with_results.avi 

Description simulation video, results of algorithm imprinted 

File-Format AVI-movie 

Author Jochen Barf, Arthur Scharf (Team HORACE) 

 

References 

This section includes all cited references which are not publicly available. 

 

File-Name RX16_HORACE_AR_v1.3_25Jan14.zip 

Description (Scharf, Analysis Report, 2014), including its appendix 

File-Format ZIP-archive 

Author see ‎6.3 

 

File-Name RX16_HORACE_CDR_RID_01_v1.1_08Aug13_final.pdf 

Description (Rapp, et al., RID Report - Post-CDR: Thermal Protection of Optical 
System, 2013) 

File-Format Portable Document File (PDF) 

Author see ‎6.3 

 

File-Name RX16_HORACE_PRO_S_55_saving_settings_to_camera_v1-
0_13Mar14.docx 

Description (Bergmann & Rapp, 2014) 

File-Format MS Word 2010 Document 

Author see ‎6.3 

 

File-Name RX16_HORACE_SEDv1-0_28Jan13.pdf 

Description (Rapp, et al., HORACE Student Experiment Documentation - v1.0, 
2013) 

File-Format Portable Document File (PDF) 

Author see ‎6.3 



APPENDIX 

 

62 

 

File-Name RX16_HORACE_SEDv1-1_27Mar13.pdf 

Description (Rapp, et al., HORACE Student Experiment Documentation - v1.1, 
2013) 

File-Format Portable Document File (PDF) 

Author see ‎6.3 

 

File-Name RX16_HORACE_SEDv2-0_06Jun13.pdf 

Description (Rapp, et al., HORACE Student Experiment Documentation - v2.0, 
2013) 

File-Format Portable Document File (PDF) 

Author see ‎6.3 

 

File-Name RX16_HORACE_SEDv3-0_03Sep13.pdf 

Description HORACE Student Experiment Documentation – v3.0, not cited in 
the thesis but appended for completeness. 

File-Format Portable Document File (PDF) 

Author Team HORACE 

 

File-Name RX16_HORACE_SEDv4-0_27Jan14.pdf 

Description (Rapp, et al., HORACE Student Experiment Documentation - v4.0, 
2014) 

File-Format Portable Document File (PDF) 

Author see ‎6.3 

 

File-Name RX16_HORACE_TR1.2_v1.0_24Oct13.zip 

Description (Scharf, Test #1.2 Report, 2013), including its appendix 

File-Format ZIP-archive 

Author see ‎6.3 

 

File-Name RX16_HORACE_TR2.5_v1.0_07Sep13.zip 

Description (Scharf, Test #2.5 Report, 2013), including its appendix 

File-Format ZIP-archive 

Author see ‎6.3 
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