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ABSTRACT

Abstract Enqglish
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Human activity pattern recognition from accelerometry data
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Second examiner
Dr. rer. nat. Uwe Mittag

Ambulant studies are dependent on the behavior and compliance of subjects in their
home environment. Especially during interventions on the musculoskeletal system,
monitoring physical activity is essential, even for research on nutritional, metabolic, or
neuromuscular issues. To support an ambulant study at the German Aerospace Center
(DLR), a pattern recognition system for human activity was developed. Everyday activi-
ties of static (standing, sitting, lying) and dynamic nature (walking, ascending stairs,
descending stairs, jogging) were under consideration. Two tri-axial accelerometers
were attached to the hip and parallel to the tibia. Pattern characterizing features from
the time domain (mean, standard deviation, absolute maximum) and the frequency
domain (main frequencies, spectral entropy, autoregressive coefficients, signal magni-
tude area) were extracted. Artificial neural networks (ANN) with a feedforward topology
were trained with backpropagation as supervised learning algorithm. An evaluation of
the resulting classifier was conducted with 14 subjects completing an activity protocol
and a free chosen course of activities. An individual ANN was trained for each subject.
Accuracies of 87,99 % and 71,23 % were approached in classifying the activity protocol
and the free run, respectively. Reliabilities of 96,49 % and 76,77 % were measured.
These performance parameters represent a working ambulant physical activity monitor-

ing system.
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Mustererkennung menschlicher Bewegungen in Beschleunigungsdaten
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Dipl.-Ing. (FH) Dennis Jos Prof. Dr. Oliver Kalthoff
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Bei ambulanten Studien ist das Mitwirken des Probanden (Compliance) von grof3er
Bedeutung. Besonders bei Interventionsstudien, die den menschlichen Bewegungsap-
parat untersuchen, ist es wichtig, die alltdglichen Aktivitdten in heimischer Umgebung
zu protokollieren. Kdrperliche Aktivitat hat Einfluss auf Messungen, die Auswirkungen
von Erndhrung, Stoffwechsel oder neuromuskularen Stimulationen quantifizieren. Zur
Unterstiitzung einer ambulanten Studie am Deutschen Zentrum fir Luft- und Raum-
fahrt (DLR) wurde ein System zur Erkennung menschlicher Bewegungen entwickelt.
Alltagliche Aktivitaten von statischer (Stehen, Sitzen, Laufen) und dynamischer Natur
(Gehen, Treppen auf- bzw. absteigen, Joggen) wurden untersucht. Zwei dreiachsige
Beschleunigungssensoren wurden an der Hifte und parallel zum Schienbein montiert.
Von den Beschleunigungssignalen wurden musterbeschreibende Merkmale aus dem
Zeitbereich (Mittelwert, Standardabweichung, Betragsmaximum) und Frequenzbereich
(Hauptfrequenzen, spektrale Entropie, autoregressive Koeffizienten, Flache der Signal-
amplituden) extrahiert. Kinstliche neuronale Netze (ANN) mit einer Feedforward-
Struktur wurden mit Backpropagation und tUberwachtem Lernen trainiert. Fir die Eva-
luation des daraus entstandenen Klassifikators absolvierten 14 Testpersonen einen
Aktivitatsparcours und einen freien Lauf mit beliebiger Reihenfolge von Aktivitaten. Fir
jeden Probanden wurde ein individuelles ANN trainiert. Genauigkeiten von 87,99 %
und 71,23 % wurden bei der Klassifikation des Aktivitatsparcours bzw. des freien Laufs
gemessen. Die Zuverlassigkeit der Klassifizierungen lag bei 96,49 % bzw. 76,77 %.
Diese Leistungsparameter beschreiben ein funktionierendes ambulantes Monitoring

System von kdrperlichen Aktivitaten.

Schlusselworter
Bewegungserkennung, Beschleunigungssensoren, kiinstliche neuronale Netze, ambu-

lantes Monitoring, Gberwachtes Lernen
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1. INTRODUCTION

1. Introduction

1.1. Motivation

With respect to future long duration space missions to Mars or beyond, muscle and
bone loss are a major concern at the astronaut’s health. Since these processes have
been studied insufficiently, there are no satisfying therapies or precautions available
yet. Consequently, counter actions are required to restore health and physical capa-
bility of astronauts during long duration space missions. Research in this field is pro-
gressing with immobilizing studies on earth, where the loading of muscles and bones is
reduced for a period of time. This unloading intervention can be applied either with bed
rest to the whole body or partly with a custom lower leg orthosis. Conditions and meta-
bolisms in muscles and bones are monitored before, during, and after the intervention.
Whereas during bed rest studies the subject is not allowed to get out of bed, an ortho-
sis study leaves the opportunity for the subject to move freely, because an ambulant
setting is feasible. Latter aspect involves that the daily physical activity of the subject is
unknown or can only be protocoled by the subject herselffhimself. Since physical acti-
vity has an influence on muscle and bone condition, there is a need to monitor the sub-
ject’s daily physical activity.

This master’s thesis is conducted on behalf of the German Aerospace Center
(DLR) in Cologne, Germany. In 2014, the Department of Space Physiology at the Insti-
tute of Aerospace Medicine will start the NutriHEP study. This study investigates the
influence of nutrition and neuromuscular stimulation on the local insulin sensitivity in
the calf muscle during immobilization. Subjects are partly immobilized by wearing the
custom-built HEPHAISTOS (HEP) orthosis on one leg. This orthosis, developed by
WEBER ET AL. [WDM*13], unloads the muscles of the lower limb while retaining the ap-
plication of body weight on the skeletal structure. It is designed for ambulant studies
and allows everyday locomotion. This directed immobilization of the calf muscle in-
duces muscle atrophy which affects insulin sensitivity. In the NutriHEP study, electrical
stimuli and a specific diet with lupine seeds will be tested for their effectiveness on in-
sulin sensitivity. Any influence on insulin sensitivity may affect the degree of muscle
loss. It is required to validate the relationship between muscle loss and orthosis inter-
vention. A possible side effect of wearing the orthosis may be that the subject is less
active. This whole body inactivity can call systemic effects on the insulin sensitivity of
the muscles [WSW13]. To locate interventional effects on the calf muscle only, it is
essential to show that the physical activity of the whole body remains the same. Activity

logging by the subject is neither reliable nor accurate. Therefore, an ambulant monitor-
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ing system of the physical activity is needed. Furthermore, a documentation of the sub-
ject’s compliance is required to ensure that the orthosis was worn throughout the study.

For an ambulant study, accelerometers are a low-cost and practical solution to
monitor physical activity. Tri-axial accelerometers are attached to the orthosis and the
subject’s hip to acquire data of acceleration. These data sets are used to assess differ-
ent daily physical activities, since “accelerometry is preferred because acceleration is
proportional to external force and hence can reflect intensity and frequency of human
movement” [YaHs10]. Classification methods are then applied to recognize patterns of
human activity in the acceleration data. Several solutions with different methods for this
process do exist, but no gold standard can be identified. Therefore, one aim of this the-
sis is to find a new combination of methods for activity recognition. The other aim is to
develop of a human activity recognition software program which will be ready to oper-
ate during the NutriHEP study.

In conclusion, this master’s thesis focuses on the definition and implementation
of an analyzing method which uses accelerometry data to identify, characterize and

allocate acceleration patterns to human physical activity.

1.2. Thesis outline

In chapter 2 the user requirements are acquired and derived into system requirements.
Chapter 3 is dedicated to explaining the materials and methods used in this thesis and
summarizing the state of research. Chapter 4 deals with decisions towards the archi-
tectural design and the data flow is visualized and explained in detail. In chapter 5, the
implementation of the concept into an operable software program is described and the
major functions and their source codes are covered. The evaluation of the software
program follows in chapter 6. Its results and the course of this thesis are discussed in a

final conclusion in chapter 7.



2. REQUIREMENTS

2. Requirements

2.1. User requirements

The aim of this thesis is to develop a software program which will be used during the
NutriHEP study. The conducting researcher of this study will be also the end user of
the software. Therefore, this person was interviewed to identify what her requirements
(Req) and expectations were. The following questions and statements of the research-

er imply the main aspects which were mentioned.

Reql “When did the subject do which body movement?”

The analysis software should have the ability to tell when and how the subject moved
wearing the HEP orthosis. Figure 2-1 shows an example of a daily overview. It was
created in collaboration with the conducting researcher. The diagram shows activity as

a function of time. Figure 2-1 is an example of a possible outcome of the software.

Activity profile - Day 3
Subject A

Activity

Running

Walking
Standing //\\ \; w/ orthosis
Sitting / \ ‘\

Lying

OtherS T T T T T T T T T T T T T T T T T T T T T T T°1

O L O O & ® o
G_owgb‘obo%g\lo @@@@@@Qo

Tlme

Figure 2-1: Example of graphical visualization for Reql



2. REQUIREMENTS

Reg2 “How long did the subject do which body movement?”

The analysis software should have the ability to tell how long the subject moved in a
certain way. According to the interviewee, a representation in the form of a pie chart
would be helpful, because it provides a proper overview of the relative distribution of

the different activities

Req3 “Was the orthosis worn the entire time?”

The analysis software should have the ability to tell when the orthosis was worn or not
worn by the subject. Figure 2-2 shows an example of a weekly overview, which was
created in collaboration with the conducting researcher. In this graphic, the compliance
is binary color coded. It is easy to detect time intervals where the orthosis was not worn
for a quick interrogation with the subject. Furthermore, this requirement implies that the

software should be applicable with the usage of an orthosis.

Subject A Orthosis not worn

Monday Tuesday | Wednesday | Thursday Friday Saturday
CWw 20
Cw 21

D orthosis worn I orthosis not worn

Figure 2-2: Example of graphical visualization for Req3

Reg4 “What does the data look like during unidentified activities?”
The analysis software should have the ability to show raw acceleration data collected

during unidentified activities for further manual investigation.

Reg5 “The software should be easy to use.”

Interviewing the conducting researcher of the NutriHEP study it turned out that the
computational skills of potential users may bear insecurities. It was stressed that the
handling of the software should be straightforward and intuitive. In addition, the re-
searcher proposed that there might be a lack of time during the data analysis of the
study. Therefore, a colleague with no experience in data analysis should be able to

work with the software.
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Req6 “The software should work as a standalone executable.”

The preliminary requirement implies that several persons will be working with the a-
nalysis software. Hence, the software should run on different work stations. A
standalone executable of the analysis software ensures parallel work on independent

computers.

Req7 “The software should be provided in English and German.”
The main language of the software should be English. However, it is possible that po-
tential users, as stated in Reqb, do not speak any English. Thus, the user should be

offered to choose between English and German version of the software program.

Req8 “The software should not be time consuming.”
The analysis software should have as many automatic procedures as possible. It
should not be too time consuming, because it is a supporting process of the NutriHEP

study.

Req9 “The software should work with a single sensor on any position.”
The analysis software should be usable beyond the NutriHEP study. Whereas Nutri-
HEP supplies the subject with two accelerometers (i.e. tibia and hip), the software

should also work with a single sensor and at any chosen body position.

Reql0 “The software should work with GCDC accelerometers.”

GCDC accelerometers are sensors manufactured by Gulf Coast Data Concepts
(Waveland, MS, USA). These accelerometers were used during the HEP study, a pre-
vious study run to develop the HEP orthosis. The NutriHEP study will be working with
these accelerometers as well. Therefore, the concept of the analysis software should
be focused on the processing of data acquired with GCDC accelerometers. In addition,
the software might offer the possibility for a post-hoc analysis of the HEP data.
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2.2. System requirements

Interpreting the previous user requirements, various system requirements (SysReq) for
the development of this software program arise. The analysis of acceleration data re-

guires numerous procedures and methods.

Interpreting Reql and Req2

Concluding from acceleration data to body movement is a common classification prob-
lem. It needs to be identified to which category a new observation belongs. From a
plethora of classification methods available, the following ones occur in many publica-
tions: Bayes classifier [LOYAQ9], decision tree classifier [LoYAQ09], and artificial neural
networks [HGP*11] [KLLK10]. Further explanation of these methods will be given in
chapter 3.3.

Classification algorithms cannot process raw signal data. Instead, they find cor-
relations and similarities in features. Features are properties of raw signals which allow
representing the characteristics of a signal by fewer values. Consequently, a feature
extraction of the acceleration data is needed to make it identifiable and classifiable.
Numerous methods of feature extraction are available. Algorithms derived from de-
scriptive statistics [HGP*11] [DSD*12] [GeMCO06] and the Fourier analysis [HGP*11]
[KLLK10] are mostly used. Further explanation of these methods will be given in
chapter 3.2.

The raw signal data from the accelerometers are not scaled in units of accelera-
tion, but in raw count data. Moreover, the signal data may contain noise or other inter-
ferences. To this end, the raw data has to run through another procedure before fea-
ture extraction. The conversion into units of acceleration is dependent on the accel-
erometer settings. Several filtering methods are used for noise reduction: moving aver-
age [KLLK10], low-pass filter [HGP'11] [GeMXO06] [LoYAO09], and band-pass filter
[YaHs10]. Further explanation of these methods will be given in chapter 3.1.

An evaluation of the classifying system is necessary to verify the accuracy of
the software program. Since no requirement for minimum accuracy was formulated, a
literature research had to be performed. Research showed that classification accuracy
varies from 80 % [KNEKO08] [LoYAQ9] [LKK*10] to over 90 % [PGKH09] [KWWM11]
[KLLK10] [KhLKO08] [HGP*11]. More detailed information of other literature will be cov-
ered in chapter 3.6. The required user’s accuracy is thus set to 80 % for the software

program.
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A numerical computing environment is needed to implement these procedures,
preferably one with built-in functions for signal processing and the chosen classification
method.

Interpreting Req3

The stated requirement is a two-class classification problem. The classification meth-
ods described above may also be applicable in this scenario. Finding a simple decision
rule, which only distinguishes between compliance and non-compliance, is however
less complex. Further explanation of this decision process will be given in
chapter 4.2.4.

Interpreting Req4 to Req9

Requirements Reg4 to Req9 are directed to the user interface and the application of
the software program and have no effect on the analyzing algorithm. Usage related
requirements (Reg4, Reg5, Req7, and Req8) are to be concerned when designing the
graphical user interface (GUI). Compiling software is necessary to compile a

standalone executable (Req6).

Interpreting Req10

Like with most mechanical sensors, accelerometers measure the impact they are ex-
posed to by changing voltage. These changes need to be converted into acceleration
data using specific calibration equations, which are to be investigated. Further explana-

tion of the conversion process will be given in chapter 3.4.

In conclusion, the following system requirements arise from the user requirements:
SysReql Classification method for pattern recognition

SysReq2 Feature extraction methods for signal description

SysReq3 Signal processing methods for pre-processing

SysReg4 Evaluation method for determining user’s accuracy

SysReq5 Activity classification with more than 80 % user’s accuracy

SysReg6 Numerical computing environment for programming

SysReq7 Decision rule for checking compliance

SysReq8 User-friendly graphical interface

SysReq9 Compiling software for generating standalone executables
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3. Materials and methods

Analysis of acceleration data needs various procedures and methods. First, the raw
data must obtain a pre-processing. Subsequently, the resulting signal is characterized
by certain features. Based on these combined feature patterns, different activities can
be identified by a classification method. Finally, the classifying system is tested in an
evaluation. According to these required procedures, several methods for pre-
processing, feature extraction, classification and evaluation are under consideration.

This chapter explains possible methods for further analysis.

3.1. Pre-processing methods

Filtering

Digital filters are used for separating signals that have been combined and for restoring
distorted signals. Analog filters are applicable for the same tasks, but digital filters
achieve better results. [Smit03] Moving average filters, as they are used in [KLLK10],
are mostly incorporated to filter out random noise. Each point in the output signal is
produced by averaging a number of points from the input signal. Incrementing the av-
eraging number leads to a decreased noise in the signal. However, the step response
is lowered. It is mainly used for its smoothing effect. Low-pass filters process an input
signal by passing only low-frequency components. They reduce the amplitude of high-
frequency signals above a specific cutoff-frequency. Hence, low-pass filters are used to
reduce high-frequency noise. Band-pass filters pass frequencies in a certain range.
Amplitudes of signals with frequencies outside this range will be reduced. They can be
incorporated by combining a low-pass and high-pass filter simultaneously. Therefore, a
band-pass filter has two cutoff-frequencies.

The filtering methods above are the basis of signal separation and restoration
and have been applied by HANSON ET AL. [HGP*11], KHAN ET AL. [KLLK10], LONG ET AL.
[LoYAO9] and many more. Numerous implementations of different filtering methods are
available and easy to include, but due to the manipulating effect, the possibility of los-

ing important information from the signal is present.
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Moving Window

To extract several features from a signal stream, the data needs to be divided by small
windows. This ensures an efficient computation time, considering the idea of the divide-
and-conquer paradigm. Additionally, it is inevitable for the classification of activities. A
window, which contains a certain number of data samples, can be identified as one
activity. Therefore, the window size corresponds to the resolution of activity classifica-
tion. For example, a window with a length of 10 seconds allows the classification of an
activity every 10 seconds. This is the case, if the next window is consecutive. The reso-

lution can be increased by using overlapping moving windows.

3.2. Feature extraction methods

During the process of feature extraction, several parameters are calculated from the
acceleration signal, representing the characteristics of an activity, and thus making
them identifiable. This section illustrates their basics, taken from the fields of descrip-
tive statistics and Fourier analysis.

3.2.1. Descriptive statistics

Mean value

The mean value describes the average value of a digital signal. Measuring with tri-axial
accelerometers, the individual means of all three axes in combination represent the
orientation of the sensor towards the gravitational field of the earth. It is easy to calcu-

late and an important indicator for body orientation.

Standard deviation

The standard deviation (SD) is a measure of dispersion from the signal’s mean value. It
appears plausible that more fluctuation of the signal corresponds with more activity of
the sensor, and consequently of the subject. It can serve as indicator for the dynamic
nature of a signal. The method for classifying the dynamic nature will be described in
chapter 4.2.2.

Absolute maximum

The maximum value refers to the highest peak within a defined time window. A nega-
tive or positive acceleration determines the direction of acceleration along its measur-
ing axis. Considering peaks in both directions, the maximum of the absolute values is

taken.
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Magnitude of acceleration vector

Acceleration is recorded using tri-axial accelerometers, which divide the experienced
impact into measurements in three spatial axes. Since these axes are linear indepen-
dent, they can be concatenated to a three-dimensional vector. The length of this vector
represents the efficient value of the resulting acceleration and is calculated with the
Euclidian norm. This absolute acceleration is mainly used for easier understanding in
graphical visualizations of acceleration. Classifying the dynamic nature of a signal in

chapter 4.2.2 will utilize this descriptive feature as well.

The descriptive methods above are considered as “traditional features that are used for
acceleration activity recognition” [GjGC10] and have been applied by HANSON ET AL.
[HGP*11], PREECE ET AL. [PGKHO09], BOUTEN ET AL. [BKV*97] and many more.

3.2.2. Fourier analysis

Human daily activities, such as walking, running or climbing stairs, have periodic
movement patterns. This suggests transforming the signal into the frequency domain
and investigating its spectral components with a Fast Fourier Transform (FFT). In this
representation, the main periods are represented by non-zero values at the cor-
responding frequency axis value [FDFC10]. It has been shown that different physical
activities contain different dominant main frequencies [HGP*11] [PGKHO09] [FCFD10].

Fast Fourier Transform

The Fourier Transform is the link between representing a signal in its time domain or in
its frequency domain. In the time domain the signal is represented with a time depen-
dency, the frequency domain shows a frequency dependency. Physical signals are
often acquired in a time-discrete manner, resulting in equidistant sampled data. The
Discrete Fourier Transform (DFT) is applicable for the numerical analysis of such sig-
nals. [Mll13]

10
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NEUBAUER [Neub12] explains that the DFT allocates to a finite signal series in

the time domain of length N withindex 0 <t <N -1

{x(O}ostsn-1 = {x(0),x(1), ..., x(N — 1)} Equation 3-1
adapted from [Neub12]
the finite spectral series in the frequency domain

{X(N}osren-1 = {X(0), X(1), ..., X(N — 1)} Equation 3-2
adapted from [Neub12]
consisting of N spectral values with index 0 < f < N — 1. The transformation rule is

N-1
. Equation 3-3
X() = ) x(e)- e I,
— adapted from [Neub12]
The DFT is written as
X(f) = DFT{x(t)}. Equation 3-4

adapted from [Neub12]
The FFT is another way to calculate the Discrete Fourier transform. It approaches the
same results like other methods, but is more efficient and less time-consuming. It can
reduce the computation time of an input signal by hundreds. [Smit03]

A divide-and-conquer application leads to a decreasing number of required op-
erations [Mull13]. According to the Radix-2 FFT algorithm by COOLEY AND TUKEY
[CoTu65] several symmetric properties allow a numerical efficient calculation of the
DFT [Neub12]. Implementations of the FFT allow signal analysis in the frequency do-
main without higher computational expense.

In MATLAB the FFT functions are based on the FFTW library [FrJo98] using the
Cooley-Tukey algorithm [CoTu65], to compute an N-point DFT (N needs to be com-
posite, i.e. N = N; - N,). First, N; transforms of size N, are computed, and then N,
transforms of size N;. The decomposition is applied recursively until the problem can
be solved using one of several machine-generated fixed-size codes. These codes in-
clude combinations of the Cooley-Tukey algorithm [OpSc10], a prime factor algorithm
[OpScl0], and a split-radix algorithm [DuVe90]. The computation time of the MATLAB
FFT function depends on the length of the transform. [Math13]

The FFT is a basic tool in signal analysis and an essential part of activity recog-
nition. It is written as

Y(f) = FFT{x(t)}. Equation 3-5
adapted from [Math13a]

11
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Periodogram

As stated in Equation 3-5, Y(f) gives the distribution of the Fourier coefficients in the
complex plane. The power of the input signal is the squared complex magnitude of
Y(f)(see Equation 3-6). Plotting it against its scaled frequency (see Equation 3-7)
shows the periodogram. [Math13a]

2 Equation 3-6

Pow(f) = |{Y(0)' Y,...Y (g - 1)} adapted from [Math13a]

{0,1, % — 1} Equation 3-7
Frq = (N) adapted from [Math13a]

Peak magnitude

Peak magnitudes are local maxima in the periodogram. Their frequencies represent the
most dominant frequencies in the input signal. The strongest frequency Frq,qin Can be
picked out by allocating the frequency with the highest power in the periodogram.
[Math13a]

Pow(Frqmqin) = max(Pow(f)) Equation 3-8
adapted from [Math13a]

Power spectral density

The power spectral density (PSD) describes the average distribution of the signal's
power in the frequency domain. The average power over a frequency band is com-
puted by the integral of the PSD, and not its peaks [Math13b]. For time discrete sig-
nals, the PSD is calculated from the DFT of the autocorrelation sequence [Beucll]. It

is used for the calculation of the spectral entropy (SE).

Spectral entropy

According to information theory, entropy describes the sum of all microstates in a bal-
anced system. A low number of different microstates appear in a consistent and uni-
form system with low entropy. In contrast, numerous variations of microstates cause
uncertainty and confusion, hence, high entropy. Entropy is defined as a measurement
of uncertainty or complexness of a system. [Alve07] [ShWe64]

For the differentiation between deterministic and random parts of a signal, en-
tropy is a helpful parameter. It can be frequency or magnitude independent and allows
comparing signals of different complexness. Several methods are available for the cal-
culation of entropy. To determine the SE a frequency dependent approach is neces-

sary. [AlveQ7]

12
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ERMES ET AL. [ErPCO08] define SE of an acceleration signal for a frequency band
[f. f2] as

~3F_. P(f)log(P(f) Equation 3-9
SE(f1.f2) = log(N[f3, f>]) ’ adapted from [ErPCO08]

where P(f;) represents the PSD value of the frequency f;. The PSD values are normal-
ized, resulting in a sum of one in the band [f;, f,]. The number of frequency compo-
nents in the corresponding band in the PSD is N[f, f2].

In their work, ERMES ET AL. [ErPCO08] used the SE for differentiation between
running or walking and cycling. KHAN ET AL. [KLLK10] claim SE to be their best discrim-
inating feature in recognizing resting, upper body, and lower body activity.

3.2.3. Miscellaneous features

Autoregressive coefficient
In signal processing, an autoregressive (AR) model is a representation form of a time
series signal. It is an estimation and characterization of how the output variables of a
signal depend on its own previous values. In addition, it has a direct link to the spec-
trum of the signal. [Dorf13]

Equation 3-10 defines the AR model of a random process y(t) in the discrete

time t, where a,,a,, ... , a, are the coefficients of the model, p the order of the model,

and £(t) the output uncorrelated error.
P

y(©) = ) a@y(t =D +e®

i=1

Equation 3-10

[KhLKO8]
The number of past values y(t — i), which were used to estimate the current value
for y(t), defines the order p of the AR model. [KhLK08]

The AR coefficient can be estimated with the Burg method. This method esti-
mates the reflection coefficients and uses them to estimate the AR coefficients recur-
sively. [Math13c]

DORFFNER evaluates AR coefficients as not exact descriptive, but sufficient esti-

mation. The computation is rated as efficient. [Dorf13]
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Signal magnitude area
The signal magnitude area (SMA) is defined as the area under the magnitude of the
root mean square of all three axes [ChPSO08]. It is calculated as

Equation 3-11

N
SMA = ;(lx(i)l) + (y@OD + (2D, [KLLK10]

where x(i), y(i), and z(i) represent the acceleration signal along x-, y-, and z-axis,

respectively.

3.3. Classification methods

Classification is the allocating of elements to classes according to their characteristics.
These characteristics are called features. In principle, elements with similar features

belong to the same class. [KramQ9]

Bayes classifier

A Bayes classifier is based on the Bayes theorem and used for probabilistic learning. It
requires a probabilistic model or cost function, which estimates all misclassifications or
unclassifiable data. Correct classifications do not occasion any costs. By minimizing
these costs, a Bayes classifier has the lowest possible probability of error. However, to
take observed data into account, independence assumptions have to be made which
tend to be inaccurate. [DeSS11] [LoYAQ9]

Decision tree classifier
A decision tree consists of internal nodes, branches and leaves. Every internal node
represents an attribute or feature. The branches are a test on the node, from which
they are coming from. Every leaf represents an output class. Decision trees are con-
structed according to a training set. For this purpose, there are different algorithms
available. A decision tree is applied to new data by running through the tree from the
root node to a leaf. The ending leaf corresponds to the classification result. Decision
trees describe relationships between features and output class by using simple deci-
sion rules. Therefore, they are easy to understand for the user. [B6hmO03] [Cimi07]

A decision tree classifier is a decision tree used for classification. Numerous
learning methods have been proposed. But most of them have a tree growing and

pruning phase in common. [Dobr09]
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Cluster analysis

Cluster analysis is an approach to find unknown classes (or clusters) in a set of data
objects. Every object has a number of features. Clusters are found, where features of
objects in the same cluster are as similar as possible and differentiate as much as pos-
sible from objects in other clusters. There are numerous clustering algorithms available
for structuring a pool of features, which are based on unsupervised learning. [Prus06]

Hidden Markov model

A hidden Markov model is a generative probabilistic model for analyzing time-series
data. At each time step, it consists of a hidden variable and an observable variable.
This Markov process is based on two assumptions. First, a hidden variable depends
only on the previous hidden variable. Second, an observable variable depends only on
the hidden variable at that time step. Estimations of probabilities between observable

and hidden variable allow a prediction and classification. [KNEKO08]

Conditional random field

A conditional random field is a discriminative probabilistic model and has the same
structure as the hidden Markov model. Instead of directed dependencies between vari-
ables, the conditional random field is an undirected graphical model. Conditional prob-
abilities have been replaced by corresponding potentials. Estimating these potentials
allows a classification. [KNEKO08]

Artificial neural networks

The human brain has one of the most complex structures found in nature. Its ability to
perform cognitive tasks is superior to modern computers, thanks to numerous neurons
working parallel. The human brain consists of approximately 100 billion (10*") neurons,
which are connected with one another by 10* to 10" synapses. Stimulated neurons
pass the signal on to other neurons. The signal of the stimulus can be amplified or re-
duced by the synapses (Hebbian theory). An artificial neural network (ANN) has a simi-
lar structure. It is a network of processing units with weighted connections to each oth-
er. [KramQ9]

Learning in an ANN means to adjust the weightings of the connections. A dis-
tinction is made between supervised and unsupervised learning. During supervised
learning, an ANN receives an example input and additionally information about the out-
put result. Backpropagation is a supervised learning algorithm and will be explained
later. Unsupervised learning is based on a self-organizing network without external
feedback. The network is able to adjust its structure according to the input data.
[KramQ9]
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Many types of ANNSs are suited for classification problems. An ANN as a classi-
fier requires a learning phase. It needs to be trained and learn how to classify chosen
features. With supervised learning a training set of input data is available, containing
example input features with known output class. In this phase, the classifier learns how
to classify input data correctly with the aim to be able to apply this knowledge to new
input data with unknown output. This ability to generalize knowledge requires a valida-
tion before practical use of the classifier. To this end, classification result and true class
affiliation are compared and its error estimated. It is important that this testing input is
not a subset of the training input. Too much training may result in overfitting. In this
case, the classifier is able to classify the training data correctly, but new similar test
sets tend to be misclassified. Its result is the unintended inability to generalize.
[KramQ9]

Hidden
Input

Qutput

Figure 3-1: Artificial neural network topology

One of the most common learning algorithms is backpropagation. This method
is based on supervised learning and requires a certain network topology. It usually
consists of an input layer, an output layer, and hidden layers between them (see Figure
3-1). Units in the input layer receive the input features. The output layer units provide
the response of the ANN to the input data. The connections between units are directed
to the next higher layer and not recurrent from higher to lower layer. This kind of net-
work is also known as feedforward network. The number of units per layer is depen-
dent on the feature dimension and the output classes. This type of ANN is preferred for

prediction and classification tasks. [Kram09] [AgBe00]
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The basic idea of backpropagation is minimizing the percentage of misclassifi-
cations. Learning means reducing the error by manipulating the connection weightings.
The name of this method refers to the way the error computed at the output layer is
propagated backwards to the lower layers. In the first of two phases, the forward pass,
initial values for the weightings are assumed. The input is propagated forward through
the network to the output layer. Consequently, the classification result is generated and
compared to the desired output. Its difference represents the error of learning. During
the second phase, this error is propagated backwards through the network to the input
layer, in order to change the connection weightings in such a way as to decrease the
value of the error. These phases are applied repeatedly with a set of training data until

the error converges or a time limit is exceeded. [Kram09] [BaHa00] [Kraw13]

3.4. Accelerometer

Accelerometers are sensors that measure acceleration. Acceleration is the rate of
change in velocity in respect to time. It is a vector and has magnitude and direction.
Accelerometers measure in units of g-force, which refers to the earth gravitational ac-
celeration of 9,81 m/s2. Accelerometers can measure vibrations, impacts, tilt angle, and
motion of objects. [SENSO08]

There are numerous types of accelerometers, which differ in principle of sens-
ing and sensing element. Capacitive accelerometers sense a change in electrical ca-
pacitance, which changes between a static and dynamic condition of the sensor. A
piezoelectric accelerometer is based on the piezoelectric effect. Certain crystals create
an electric charge as external stress like acceleration is applied. Piezoresistive accel-
erometers measure the change in electrical resistance of a material under mechanical
stress. Accelerometers based on the Hall Effect sense voltage variations in the mag-
netic field around the sensor. Magnetoresistive accelerometers have a similar structure
and function, but instead of measuring voltage, they measure changes in resistance
due to a magnetic field. Accelerometers based on micro-electromechanical systems
(MEMS) technology are small structures with dimensions in micrometer scale. This
technology is now being utilized to manufacture state of the art accelerometers.
[SENSO08]

GCDC accelerometer
As stated in Reql0, the type of accelerometer to use is determined. Gulf Coast Data
Concepts (GCDC) sell accelerometers based on MEMS. The 3-axis digital accelerome-

ter sensors are manufactured by Analog Devices, Norwood, MA, USA. They are typi-
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cally accurate to within 10 % using the conversion methods provided in the user manu-
als [GCDC10a] [GCDC13]. Most of these errors are due to an offset error, e.g. when
the sensor in rest reports gravitational acceleration of 1,1 g instead of 1,0 g.

Figure 3-2: USB Accelerometer X6-2 (GCDC, Waveland, USA)

During software development, an USB accelerometer model X6-1A is used for the hip
position, and an USB accelerometer model X6-2 (see Figure 3-2) is used for the tibia
position. Both have the same dimensions, but different types of power supply. The
X6-1A is powered by a single “AA” sized alkaline battery, while the X6-2 has an inter-
nal, hardwired 500 mAh lithium-polymer rechargeable battery [GCDC10b]. Since latter
battery is rechargeable via USB cable, it is used for the tibia position, so the sensor can
be attached permanently to the orthosis or shin guard. Replacing the battery would
loosen the attachment of the sensor. Using a rechargeable battery ensures the sensors
position and orientation. The X6-1A accelerometer is able to sample data at a minimal
sampling rate of 10 Hz and the X6-2 of 20 Hz. Both accelerometer models are capable
of measuring accelerations between -6 g and +6 g. The data measured by the accel-
erometers is saved as raw count data. According to their user manuals [GCDC10a]
[GCDC10b], the conversion algorithm is dependent on the settings of the accelerome-
ter. The gain setting changes the proportionality coefficient between count data and
g-force units (see Table 3-1). It is common to specify acceleration not in m/s2 but in

multiples of the gravitational force g (= 9.81 m/s?).

Table 3-1: Converting rules from raw counts data into g units [GCDC10a]

AD Resolution | Gain Setting Deadband Counts

12-bat Low 340xg
High 1024xg
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3.5. Evaluation methods

Confusion matrix

Proper function and correctness of a classifying system need to be validated and eval-
uated. A confusion matrix is a common method to evaluate performance parameters of
a multiclass-classifier [Ting10]. In a two-dimensional matrix a true test data set is com-
pared against its classification results. Test data with known classes or activities are
used as input, because their results are required to fill out a confusion matrix. Table 3-2
presents an example of a confusion matrix for a three-activity classifier to differentiate

between Standing, Walking and Running.

Table 3-2: Confusion matrix example

Classification result

Confusion matrix

Standing | Walking | Running | Accuracy
Standing 10 0 0 100,0%
True activity Walking 0 6 1 85,7%
Running 0 3 8 72,7% Average
Accuracy
Reliability | 100,0% | 66,7% 88,9% 86,15%
Average Reliability | 85.19% | 85,719 | Cveral
Accuracy

Number of classifications 28

The second row indicates that 7 data inputs were of the activity Walking. Six of those
were classified correctly, one was misclassified as Running. The numbers of correct
classifications are highlighted in green on the diagonal of the matrix. Off-diagonal ele-
ments contain misclassifications and are colored in red. The sum of a row is the total
number of inputs of one activity. The sum of a column is the total number of classifica-
tions of one activity class.

For every row, the accuracy can be calculated as the nhumber of correct classifi-
cations (green diagonal element) divided by the total number of inputs for this activity
(sum of row). This leads to an accuracy of 85,7 % for the activity Walking. Accuracy is
a measure of the degree to which the predicted activity of the classifier matches the
true input data [Sawell].
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For every column, the reliability can be calculated as the number of correct
classifications (green diagonal element) divided by the total number of classifications
for this activity (sum of column). This leads to a reliability of 66,7 % for the activity
Walking, meaning that two third of all Walking classifications actually represent Walking
in the input data. Accuracy and reliability can be calculated for every activity and are
written in yellow cells in Table 3-2. The averages of these values are performance pa-
rameters of the classifier.

Average accuracy and average reliability are highlighted in grey cells. A third
parameter is the overall accuracy. It is calculated as the total number of correct classi-
fied activities (diagonal elements) divided by the total number of input activities (num-
ber of classifications) [ITCI13].

Usability questionnaire

A new GUI has to be developed for the custom software. To evaluate the usability of
the software and its user interface, a full usability test would be appropriate. However,
such a test in all its dimensions is too time consuming and beyond the scope of this
thesis. Therefore, a rough quantification of the ease of use is accomplished by a short
usability questionnaire.

The conducting researcher of the NutriHEP study is asked to read the user
manual (see appendix 9.2) and to work on the software. If the user manual is not help-
ful for unpredictable problems, the developer will interfere. After completing several
tasks, the researcher is asked to fill out a usability questionnaire (see appendix 9.1).
This questionnaire was designed to give a short overview of the impressions of the
software to the user.

The results can be sighted in appendix 9.1 and are not described separately.

However, the discussion of the results will be covered in chapter 7.1.
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3.6. State of the art

This chapter describes the state of the art in human activity pattern recognition from
acceleration data.

An approach of activity recognition in a home environment with inexpensive an-
notation tools and easy installation was developed by VAN KASTEREN ET AL. [KNEKO08].
In their work, activities like showering, breakfast, dinner, or sleeping were under con-
sideration. For this, digital state change sensors were installed in a subject’'s home. A
Bluetooth headset was worn by the subject to annotate the current activity, thus, gen-
erating a ground truth data set with known output. Raw, point-of-change, and last-
observation data was classified with hidden Markov models and conditional random
fields. VAN KASTEREN ET AL. achieved the best reliability of 95,6 % and the highest ac-
curacy of 79,4% with conditional random fields and hidden Markov models,
respectively.

CHUNG ET AL. [ChPS08] focused in their publication on a real-time application of
activity recognition. With wireless MEMS accelerometers attached to a subject’s chest,
three kinds of activities (resting, walking, and running) were classified. SMA and medi-
an frequency were the only two features used as input for a decision tree. The ground
truth data for evaluation purposes was recorded by a following annotating researcher.
An accuracy of 81,25 % was achieved.

The focus of LONG ET AL. [LOYAQ9] was the comparison of a Bayes classifier
and a decision tree classifier in assessing daily energy expenditure. In this work, acti-
vities like walking, running, cycling, and driving were classified. In a naturalistic envi-
ronment without researchers, acceleration data was acquired with a single tri-axial ac-
celerometer placed on the waist. Annotations of activities for a ground truth data set
were written down by subjects. The allocating of acceleration data to activities was
done by hand. SD, periodicity, and orientation features were input for a decision tree
classifier and Bayes classifier. Accuracies of 72,8 % and 71,5 % respectively were
achieved.

KHAN ET AL. [KLLK10] were able to identify new features, which allow activity
recognition independent of the sensors position. The intention was to establish a
recognition system for an unsupervised free-living environment. A single tri-axial accel-
erometer was worn either in a chest pocket, in a trousers pocket (front or rear), or in an
inner jacket pocket. Classified activities include resting, walking, climbing stairs, run-
ning, cycling, and vacuuming. Again, a ground truth data set was ensured by having

the subjects use a Bluetooth headset with speech recognition. SE, AR coefficients, and
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SMA were the features of choice. A two-level recognition approach included ANNs and
linear discriminant analysis. An accuracy of 90 % was achieved.

LEE ET AL. [LKK"10] established a real-time activity recognition system, which
would serve as personal log life system. Every day activities were distinguished, includ-
ing driving and climbing stairs. Rather impractical non-wireless accelerometers were
attached to the chest. To generate a ground truth data set, camera recordings were
analyzed. Classification features were SD, SE, correlation among all axes, AR coeffi-
cients, SMA and tilt angle. Furthermore, stride length and step count were extracted for
calculating distance, speed, and energy expenditure. LEE ET AL. constructed a two-level
classifier, which first distinguishes between static and dynamic activities. On the sec-
ond level, two ANNs (static and dynamic) were trained with backpropagation algorithm.
An accuracy of 84,8 % was achieved.

In the NASA Glenn Research Center, HANSON ET AL. [HGP*11] worked on a
new method for tracking crewmember activity during space missions in reduced gravity
environment. They employed an enhanced zero gravity locomotion simulator to meas-
ure different types of locomotion under different gravitational influences. Two wireless
accelerometers, attached to footwear and waist, measured activities like walking and
running under earth gravity. Furthermore, walking, running, hopping, and loping under
1/6 earth body weight simulated activities under moon conditions. Ground truth data
was established by demanding certain activities. Features like signal peak, spread,
frequencies, power, and centroid were used as input for an ANN. It achieved an accu-
racy of 100 %.

KWAPISZ ET AL. [KWWM11] developed an activity recognition system with phone-
based accelerometers. Via a custom built smart phone application, data was acquired
from the built-in accelerometer. It was able to recognize walking, jogging, climbing
stairs, sitting, and standing. For generating a ground truth data set, the subjects were
asked to label every activity using the installed application. Mean, SD, root mean
square, time between peaks, average absolute difference, and binned distribution were
the features of choice. KwAPISZ ET AL. compared decision trees, logistic regression and
ANNSs as classifying method. These methods reached accuracies of 85,1 %, 78,1 %,

and 91,7 % respectively.
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4. Design concept

Different body movements cause different accelerations on several body parts. Every
movement appears to have its individual characteristic pattern in acceleration. An iden-
tification of acceleration patterns and their proper allocation to human activities can be
approached with several classification methods (see chapter 3.3). This chapter ex-
plains the choice of the classification method and the data flow process of the activity

recognition.

4.1. Classification with artificial neural networks

ANNSs are the method of choice for human activity pattern recognition. In the following,
it will be explained why ANNs are more suitable in this thesis than the other classifica-
tion methods described in chapter 3.3.

A Bayes classifier is based on naive independence assumptions. Those can be
wrong, but this does not imply that the classifier will fail. Instead, the classification per-
formance will be poor, because the features tend to have a similar distribution, and
differences are only in relations of the features. A Bayes classifier is not suitable, be-
cause there is no knowledge about the feature distribution and the relations. Their neg-
ative effects on the classification performance cannot be ruled out. [B6hmO03]

LONG ET AL. found out that, in general, a decision tree has the best performance
in activity classification. However, from a practical point of view, this classification is not
very suitable, because it needs a lot of implementation. If new activities need to be in-
corporated, a completely new decision tree classifier needs to be re-built. Manual tun-
ing by experts might also be necessary, because tree training is completed on isolated
activity events. This results in a low level of extensibility. [LoYAQ9]

A main disadvantage of cluster analysis is the readability of the results. They
are not easily comprehensible and need some kind of interpretation [HeKi08]. Further-
more, it is an unsupervised learning algorithm, which, according to WAGSTAFF, uses
“very general notions to identify patterns and interesting structure in data” [Wags02].
Unsupervised learning algorithms are unguided, and may tend to focus on uninterest-
ing patterns (e.g. patterns due to systemic errors). A supervised learning algorithm is
more suitable to the problem of human activity pattern recognition, because known
activities are to classify.

ANNs grew from basic research to establishing practical implementations of in-
novative applications [Karrl0]. Where linear models are unable to describe a model

accurately and the underlying relationships are not well known, a nonlinear neural net-
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work is helpful [HrLe05] [Tu96]. ANNs have a proven record of success in human acti-
vity recognition [HGP*11] [KLLK10] [KwWM11] [LKK*10]. Additionally, they are easy to
conceptualize, because numerous libraries and implementations are available. How-
ever, an ANN works as black box, because connection weightings of a trained ANN do
not reveal relationships between input features. But if the classification result is in fo-
cus, this issue is considered as reasonable compromise.

ANNs were often blamed for randomness in results and being unpredictable.
The latter accusation is without any reason, because same inputs always give the
same results as long as the weightings do not change. Consequently, the randomness
concerns the training process of the ANN. ANNs are initialized with random weightings,
i.e. the same training set can lead to different ANNs. However, if the validation error
during training converges and barely changes, the effect of randomness is marginal
and has no effect on the performances of an ANN. ANNs have a very robust perfor-

mance. However, the process of training is hard to comprehend. [DeSS11]

4.2. Dataflow process

The classification process with ANNs can be divided into two phases (see Figure 4-1).
In the first phase of training and testing, acceleration data is analyzed and its features
are extracted. The data with known output is randomly separated into training set and
testing set. The weightings of the ANN are adjusted until the validation error converges.
The result is a trained ANN, which is capable of classification of activities. The second
phase begins with the acquisition of new acceleration data with unknown classes. Its
features are extracted with the same functions as before. The trained ANN is then fed

with these input features and classified activities are the result.
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Figure 4-1: Training and classification concept

Classified
activity

For each subject, acceleration data is acquired from two sensors, placed parallel to the
tibia and close to the hip. Both data sets run through the same activity classification
algorithm, which is shown in Figure 4-2 as a flow diagram. The consecutive processes
of data acquisition, dynamic nature classification, feature extraction, and activity classi-

fication are visualized.
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Figure 4-2: Data flow diagram
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4.2.1. Data acquisition

Accelerometer

MEMS accelerometers are used from GCDC (see chapter 3.4). Their factory calibration
with 10 % accuracy is sufficient, because acceleration values, or more precisely ex-
tracted features, are compared relatively against each other. An offset error, which af-
fects the entire measurement, does not have an effect on the classification results.

GCDC write in their user manual that a lower sampling rate extends the operat-
ing time of the sensor [GCDC10b]. This suggests keeping the sampling rate as low as
possible. BOUTEN ET AL. [BKV*97] found frequencies up to 20 Hz to be sufficient to as-
sess daily physical activity using body-fixed accelerometers.

Further studies reviewed in [BKV*'97] recommend an ability to register accelera-
tions within an amplitude range of -12 g to +12 g for ankle placed sensors and a level
of -6 g to +6 g at waist. Both accelerometer models from GCDC are capable only of the
latter range. This would indicate a problem concerning the sensor at the tibia position.
However, these specifications are based on data acquired by BHATTACHARYA ET AL.
during tread mill runs with speeds up to 11 km/h [BMSG8Q]. In this thesis, light jogging
is the only type of running to be measured. Looking at the amplitude range of several
subjects lightly jogging, the accelerations at the tibia position did not exceed the range
of -6 gto +6 g.

In conclusion, the accelerometers are set to a sample rate of 20 Hz and a low
gain, so the detecting ranges from -6 g to +6 g. These settings allow assessing physi-

cal activity and additionally prolonging battery life.

Conversion

The data measured by the accelerometers is saved as raw count data. Its conversion
into acceleration data is inevitable. Gain settings change the proportionality coefficient
between count data and g-force units (see chapter 3.4). To make the software program
applicable for unknown future use, the conversion process is designed to choose the
corresponding proportionality coefficient according to the received data.

Signal noise can affect the outcome of the analysis. Such interference can be
lowered by filtering the data before the analysis. Literature review has shown that sev-
eral studies have applied different filter methods during pre-processing acceleration
data. HANSON ET AL. [HGP*11] used two accelerometers simultaneously, sampled the
data with 256 Hz (waist sensor) and 1024 Hz (foot sensor), and processed each data
set with a low-pass filter at 100 Hz. A sample rate of 2000 Hz and filtering by a

fourth-order low-pass filter with a cut-off frequency of 45 Hz was chosen by GENC ET
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AL. [GeMCO06]. Due to these chosen sampling rates, high frequency noises are present
and need to be filtered out. When a lower sampling rate is chosen, no antialiasing filter
is necessary on the accelerometry data [PGKHO09]. A moving average filter of order
three was incorporated by KHAN ET AL. [KLLK10] to filter out random noise. But with a
sampling rate of 20 Hz an average filter would smooth signal peaks, which may contain
important information about the acceleration within an activity. Therefore, no moving
average filter is applied.

In conclusion, the pre-processing contains the conversion of the accelerome-
ter's raw count data into g-force data according to the GCDC user manual [GCDC10a].
No kind of filtering is required, due to a low sampling rate of 20 Hz, which is sufficient to

asses daily physical activity [BKV*97].

4.2.2. Dynamic nature classification

Windowing

The signal is divided by 50 %-overlapping moving windows with a size of 6 seconds. In
this work, human activity, like walking or climbing stairs, is considered as physically
effective within a minimal lasting time of 6 seconds. Furthermore, a larger window size
results in a less precise time allocation of activities. However, a small window size is
unrewarding, because low numbers of samples affect the frequency analysis. An over-
lap of 50 % was proven to be successful by RAvI ET AL. [RDMLO5] and LEE ET AL.
[LKK*™10]. Additionally, unpublished tests with the window size were established and
came to the same result during the work with WEBER ET AL. [WDY*13]. The following

calculations are applied to every window data.

Classification of dynamic nature of activity

Dynamic nature describes the dispersion of an acceleration signal. The dynamic nature
of a human activity can be either static or dynamic. Static activities are activities, where
no movements of the interested body parts are noticeable (e.g. sitting or standing).
Dynamic activities are activities, where cyclic movements can be assumed (e.g. walk-
ing or climbing stairs). This differentiation is needed, because feature extraction meth-
ods in the frequency domain are not applicable to acceleration signals of static nature.
The SD of the absolute acceleration is considered as an easy-to-calculate parameter.
The absolute acceleration is the effective resulting value of all three spatial axes and is
approached by using the Euclidian norm calculation (see chapter 3.2.1). SD was prov-
en to be a good quantifier of an activity’s dynamic nature by FRANK ET AL. [FNRA10]

and WEBER ET AL. [WDY"13], because the SD correlates with the dispersion of a signal.
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A threshold is needed to distinguish the two types of dynamic nature. During the
work of WEBER ET AL., task related mean SDs for several activities were identified. Un-
published observations have shown that an SD threshold of 0,1 g is appropriate to dif-
ferentiate between static (<0,1 g) and dynamic (>0,1 g) activities. This decision rule is
applied for the classification of the dynamic nature of human activity. [WDY*13]

4.2.3. Feature calculation

Static activity classification

For the entire time phase where the activity is of static nature, time domain features are
extracted as described in chapter 3.2.1. Frequency domain features are not applicable
in this case. Descriptive methods, like mean, SD, and absolute maximum (see Table
4-1) are considered as ‘traditional features that are used for acceleration activity
recognition” [GjGC10] and have been successfully applied by HANSON ET AL. [HGP*11],
PREECE ET AL. [PGKHO09], BOUTEN ET AL. [BKV*97] and many more.

Dynamic activity classification
For the classification of dynamic activities, time and frequency domain features are
extracted.

The peaks of the power magnitude represent the main frequencies and are
qguantified by the first components of the FFT analysis. It seems reasonable to investi-
gate the frequencies in activity patterns, because different types of locomotion underlie
different frequency patterns. PREECE ET AL. [PGKHO09] showed in their work that the
magnitude of the first five components of an FFT analysis have the best classification
accuracies, with sensors worn on waist and ankle. However, in this thesis, the first
three components are used as describing feature. Furthermore, the periodicity was a
promising feature for Hanson et al. [HGP+11] and Lee et al. [LoYAQ9].

SE is a feature, which was mainly introduced by KHAN ET AL. [KLLK1Q]
[LKK+10]. They claimed it to be their best discriminating feature in recognizing resting,
upper body, and lower body activity. ERMES ET AL. [ErPCO08] used SE for differentiation
between running or walking and cycling.

KHAN ET AL. [KLLK10] also used the AR coefficients and the SMA as describing
features and produced promising results. In a preceding work, KHAN ET AL. [KhLKOS8]
found with autocorrelation analysis that an AR model of order 3 is most suitable. Addi-
tionally, CHANG ET AL. [ChPSO08] found different activities, like running and walking,
have different SMA levels. Whereas KHAN ET AL. [KLLK10] significantly improved the

recognition rate of dynamic activities with a combination of SMA with AR coefficients. It
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was the best discriminating feature for all activity classes and all sensor positions. A
proportional correlation between SMA and energy expenditure was approved by
MATHIE ET AL. [MCLCO04] and BOUTEN ET AL. [BKV*97].

Table 4-1: Feature list

Domain Feature Classification of
. Mean _ _
Time _ Static and dynamic
_ Standard deviation o
domain activities

Absolute maximum

First 3 peaks in power magnitude

Frequency | Spectral entropy

. - — Dynamic activities
domain Autoregressive coefficient

Signal magnitude area

4.2.4. Activity classification

Classification with neural network
The hierarchical order of multiple ANNs is based on the structure approached by LEE
ET AL. [LKK"10]. Their system consisted of three ANNs: state recognition, static activity
recognition, and dynamic activity recognition. In this thesis, a similar structure is used.
Instead of the state recognition ANN, a SD decision rule is implemented. This lowers
the complexity of the classifier and the training process.

The settings of the ANNs basically go according to HANSON ET AL. [HGP*11].
The hidden layer has a size of 20 neurons. HANSON ET AL. stated that a difference of
+ 5 neurons did not affect the results. The training data set is divided randomly into
training (70 %), validation (15 %) and testing (15 %) set. Scaled conjugate gradient
backpropagation is used as training function and the mean square error is the perfor-

mance parameter, which has to converge.
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Compliance check
A decision rule is incorporated to estimate the subject's compliance. The check for
compliance is only applicable during the NutriHEP study. In collaboration with the con-
ducting researcher, scenarios were elaborated concerning the wearing of the HEP or-
thosis. With the activity classification described above, a differentiation between static
and dynamic activities is possible. Looking at one time window, there are four possible
combinations of classifications:

1. Tibia and hip sensor both measure dynamic activities

2. Tibia and hip sensor both measure static activities

3. Tibia sensor measures dynamic activity and hip sensor measures static activity

4. Tibia sensor measures static activity and hip sensor measures dynamic activity
In the first two cases, the classifications seem consistent and the subject is either mov-
ing or not in motion at all. In the third scenario it can be assumed that the hip sensor is
not attached. Other explanations could be a sitting subject moving the leg or doing in-
door cycling. Nevertheless, it appears plausible that in the third scenario the subject is
still wearing the orthosis. The fourth scenario can be interpreted as a moving upper
body and static lower body. This combination of body movement is difficult to realize.
Attempts in generating such scenarios (e.g. with hula hoops) failed, because the tibia
sensor always detected dynamic activities as well. This finding leaves the explanation
of an unattached tibia sensor. In fact, the tibia sensor is permanently connected to the
orthosis, so the fourth scenario indicates that the orthosis is not worn.

The decision rule is not applied to every single pair of tibia and hip classifica-

tion. A window of 240 samples (= 12 seconds) is checked, if the fourth scenario ap-

plies. If it applies for all pairs of samples, the orthosis is considered as not worn.
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5. Implementation

This chapter describes the programing structures, which were developed to implement
the classification concept. All tools and programs used during this thesis are listed. The
main features of the software and their algorithms and basic functions are explained in

more detail.

5.1. Implementation environment

The software development uses the following external software:
e MATLAB R2012b v8.0.0.783 (The MathWorks, Inc., Natick, MA, USA)
¢ Neural Network Toolbox (The MathWorks, Inc., Natick, MA, USA)
e Signal Processing Toolbox (The MathWorks, Inc., Natick, MA, USA)
o MATLAB Compiler (The MathWorks, Inc., Natick, MA, USA)
e USB accelerometers X6-1A and X6-2 (Gulf Coast Data Concepts, Waveland,
MS, USA)

5.2. Preparation phase

This chapter explains the implemented code in MATLAB for the software functions
which are necessary beforehand. Only fundamental code lines are presented here. The

full program code is accessible on the appended CD.

5.2.1. Data import

Function name: retrieveData.m

This function allows automatic storing of acceleration data from a USB drive to a hard
drive. The GUI language is chosen by the calling main function. The user selects the
USB root drive. Its details and header information are retrieved. The function automati-
cally sorts the CSV-files in the following folder hierarchy: subject ID, calendar week,
and sensor position. This structure makes it easier to compare activities between dif-
ferent weeks. The files are renamed with date and time of starting acquisition. This

avoids overwriting of different data sets with the same naming.

Read out USB Sensor details from configuration file and header
The function checks for a TXT-file named “config.txt”. It contains information about the

subject and the body position the accelerometer was worn. How this information is
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changed in this file is explained in the user manual (see appendix 9.2). If no configura-
tion file is found, the software throws an error, saying that a wrong drive was chosen.
Starting time and date of the recorded data is read out through the data files them-
selves. Every data file contains a header with such information. This function is exclu-
sively adapted to GCDC accelerometers.

Import files from USB Drive

After checking for a valid saving path, the number of files for import is gathered. A gen-
erated progress bar, showing the computing progress according to the number of im-
ported files, is shown on the screen. For every file, date and time of acquisition are
read from the header. According to the date, the calendar week number is calculated
with an external function®. If the corresponding folder is not existent, it will be generat-
ed. After that, the data is renamed and copied to the right target folder. Any error in the
process described above, i.e. missing header information, will be noted in a list of failed
imported data. This list will be shown, after trying to copy every data file from the cho-
sen accelerometer. An abortion of the saving process is possible by closing the loading

progress bar window.

5.2.2. Time synchronization

Function name: timeSynchro.m

This function synchronizes two accelerometers, which experienced one shared event
(e.g. a light hit against each other). The separating time shift of both sensors is esti-
mated by the time difference of the peaks caused by the shared event. First, the func-
tion asks for two CSV-files, which recorded the shared event. The input of the sensors'
IDs is mandatory. Then, the user is asked to mark the peaks of the shared event. The
function calculates the time shift, saves it in a DAT-file, and plots the time synchronized

acceleration data for visual validation.

Import of two data sets of two different sensors

Both data sets are imported with the RAW Conversion.m function (see appended
CD). The naming of the sensors should be the hardware serial number or a unique
institutional naming, assuring an unambiguous identification. Consequently, naming the

sensors with the same ID is not possible.

! http://www.mathworks.com/matlabcentral/fileexchange/22663-weeknum/content/weeknum.m
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Calculation of absolute acceleration on all axes

To identify the peak of the shared event in the acceleration data, the absolute accelera-
tion on all axes is plotted. For its calculation the Euclidian norm is used (see
chapter 3.2.1).

%calculate the absolute acceleration

m A = length(dataX A);

dataAbs A = zeros(m A,1);

for i = 1:m A

dataAbs A(i, 1) = sqgrt(dataX A(i)”"2 + dataY A(i)"2 + dataz A(i)"2);
end

Choose and save timestamp of peak

After plotting the absolute acceleration on the screen, the user has to click on the peak
of the shared event for identification. This has to be done for both sensors in a specific
order. The software will indicate that the first signal is always the blue line. The times of

the chosen data points are saved for the following step.

Calculate time shift

The time shift is equal to the time difference between the saved time stamps in the step
before. The difference is calculated by the built-in et ime function, which estimates the
elapsed seconds between two date vectors. The time difference is multiplied by a thou-
sand and rounded to an integer number to provide a time shift in milliseconds. This

conversion is needed for proper function of the following step.

delta t = floor(etime (datevec (TimeA),datevec (TimeB))*1000) ;

Apply time shift on time array
Once the time shift is known, the time array can be manipulated. The shifting millisec-
onds are added to every date vector with the built-in function addtodate. The smallest

time dimension is millisecond and the added time has to be an integer number.

Visual validation and saving results

For a visual validation by the user, both time signals are plotted again with one being
shifted. If the results are unsatisfying, i.e. the peaks of the shared event are not match-
ing in time, the time synchronizing process has to start over. If the results are satisfy-
ing, the calculated time shift is saved in a DAT-file for future processing. It will be used

during the activity classification in chapter 5.4.1.

34



5. IMPLEMENTATION

5.3. Training phase

This chapter explains the implemented code in MATLAB for the software functions
which are necessary during the training phase of the ANNs. Only fundamental code

lines are presented here. The full program code is accessible on the appended CD.

5.3.1. Data conversion

Function name: multiple_RAW_Conversion.m

This function executes an import of all CSV-files in one folder. The raw data is convert-
ed into g-forces. If more than one file is present, the alphabetical order must corre-
spond to the chronological order of the files. First the number of input arguments is
checked, since this function has default inputs. If no pathname is given, a folder has to
be selected. The first file is imported and its header information is retrieved. The con-
version from raw count data into g-force data follows the instructions in the manual
from Gulf Coast Data Concepts. Finally, the absolute acceleration is calculated, and if

needed, everything gets plotted for visual representation.

Input validation

Two input variables are configurable, plot request and pathname. If a plot is requested,
this variable has the value 1 (default value). Any other value will not result in a plotting
screen at the end of this process. The pathname defines the folder containing the data

files for conversion. If no pathname is given, it has to be selected via a pop-up menu.

Import accelerometer raw data
All CSV-files are imported at once with the built-in dir function. From the first one, its
starting time, sampling rate and gain are read out from the header information. These

details are important for the conversion process and higher level functions.

Convert raw data to g-forces

According to the gain setting the correct calibration is chosen from the user manual
(see Table 3-1 on page 18). For a high gain setting, which is used to acquire accelera-
tions between -2 g and +2 g, the raw count data is divided by 1024. For a low gain set-
ting, allowing acquisition in a range from -6 g to +6 g, the raw count data is divided by
340. These calculation specifications are taken from the user manuals of X6-1A and
X6-2 accelerometers by GCDC [GCDC10a]. The time stamps, saved in the CSV-files,
are also retrieved and saved as time array. In the accelerometers time is saved as

elapsed seconds since the start of the measurement. Therefore, the relative time array
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needs to be converted into an array with absolute serial date numbers. This is accom-
plished by adding the start time to every time stamp with the built-in addtodate func-
tion. Again, the seconds need to be converted into milliseconds.

% Read out time array

rawT = raw.data(:,1);

% convert relative time array to absolute serial date number array

dataTime = zeros(length(rawT),1);

for i = l:length(rawT)

dataTime (i) = addtodate (startTime, floor (rawT (i) *1000), 'millisecond');
end

Import and convert rest of accelerometer raw data

The remaining CSV-files are imported and converted in the same manner as before.
Start time information is retrieved from every single header. An abortion of the conver-
sion process is possible by closing the loading progress bar window.

Plotting graphs of acceleration
If a graphical visualization is requested, absolute acceleration in one window and all
axes individually in the other window are plotted. To this end, the purpose-built func-

tions plotAbs.mand plotXYZ.m were programmed (see appended CD).
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5.3.2. Dynamic nature classification

Function name: dyn_natureClassification.m
This function classifies the dynamic nature of an acceleration signal, whether it is of
static or dynamic nature. To this end, the SD of the absolute acceleration is calculated.

If a certain threshold is exceeded the activity is considered as dynamic.

Classification using standard deviation

The threshold for differentiating between dynamic and static activities is set to 0,1 g.
For every moving window the SD of the absolute acceleration is calculated with the
built-in std function. With an if-else statement the dynamic nature is saved as static (0)
or dynamic (1). Additionally, the time stamp in or next to the middle of the data window

is saved.

threshold = 0.1;
% calc SD of absolute acceleration
if std(winData) < threshold

o)

dyn nature(2,i) = 0; s static activity
cllise

dyn nature(2,1i) = 1; % dynamic activity
end

% take timestamp in/next to the middle of window

dyn nature(l,i) = dataTime(winStart+halfWin-1);

37



5. IMPLEMENTATION

5.3.3. Feature extraction: time domain analysis

Function name: calcTime_movWin.m
This function extracts features of the time domain for classification purposes. First, the
data is divided into 50 %-overlapping moving windows. For every window mean, SD,

and absolute maximum of the data is calculated.

Calculate features for every window
All features in the time domain can be calculated with the built-in functions mean, std
and max. These three features are assembled in a feature matrix where every row con-
tains the features of one moving window. This is applied to every axis of the accelera-
tion data.
for i = 1:N
% calc mean of one axis
meanValue = mean (winData) ;
% calc standard deviation of one axis
stdvalue = std(winData);
% calcabsolut maximum acceleration in one axis
maxValue = max (abs (winData)) ;
% assemble features as array

featMatrix (:,1) = [meanValue; stdValue; maxValue];

end

5.3.4. Feature extraction: frequency domain analysis

Function name: calcFFT_movWin.m

This function applies an FFT on acceleration data and extracts frequency domain fea-
tures for classification purposes. First, the data is divided into 50 %-overlapping moving
windows. For every window an FFT is performed. The power of the FFT is calculated
and the three highest peaks are considered. Their magnitude and frequency are saved

in a feature matrix.

Calculate features for every moving window

The transformation into the frequency domain is approached with the built-in ££t func-
tion. The first component of the result is the sum of the data and can be removed
[Math13a]. The length of time in seconds of the window is calculated. As described in
chapter 3.2.2, the power of a signal is the squared Fourier transform. The scaling fre-

quency goes up to the length of time in Hertz. With the help of the built-in function
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findpeaks, the first three peaks in power and the corresponding frequencies are de-

termined. They are saved in a feature vector in descending order of the power.

% calc FFT
f = fft (winData);
£(1) = [1;
n = length(f);

% calc time length of acquisition

T = (n+l) /rate;

% calc power of FFT analysis
power = abs (f)/(n/2);

power = power (l:floor(n/2))."2;
freq = (1:n/2)/T;

% find peaks

[pks,locs] = findpeaks (power, 'sortstr', 'descend');

% save first three peaks sorted in feature array

Npeaks = 3;
feat vect = [pks(l:Npeaks); freqg(locs(l:Npeaks))'];
feat mat = [feat matfeat vect];

Function name: calcKhan_movWin.m

This function calculates the following features from accelerometry data: SE, AR coeffi-
cients, and SMA. All calculations are done according to KHAN ET AL. [KLLK10]. There-
fore, this function is called calcKhan movWin.m and the features are referred to as
Khan Features in the software code. First, the data is divided into 50 %-overlapping
moving windows. Furthermore, the SE on all three axes is calculated by a sub-function
calc SE.m. The AR coefficients are estimated by a built-in MATLAB function using
Burg's method. For the SMA the sums of the absolute accelerations on each axis are
summed up (see chapter 3.2.3).

Calculate Khan features for every window

The SE is calculated for every axis by the sub-function calc SE.m. This function cal-
culates the SE of the acceleration signal for a certain frequency band. The calculation
is done according to KHAN ET AL. [KLLK10] as described in chapter 3.2.2. After an FFT
the PSD is calculated. SE is calculated for each window as in Equation 3-9 in chapter
3.2.2. The FFT is calculated as described before. For the estimation of the PSD the

built-in function dspdata.psd is used. This function generates the PSD values and
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the sum at all frequencies can be calculated. The division of this sum by the logarithm
of the number of frequency components in the corresponding band gives the SE.

% spectral entropy (SE)

SEX = calc_SE(winX, rate);

SEY = calc_SE(winY, rate);

SEZ = calc_SE(winZ,rate);
The AR model is estimated with Burg’s method and the coefficients are computed by
the built-in arburg function. According to KHAN ET AL. [KhLKO08] the most suitable

model is of order 3.

% autoregressive coefficient (AR)

% estimating AR model coefficient based on Burg's method

$ with order = 3

ARX = arburg(winX, 3);

ARY = arburg(winY, 3);

ARZ = arburg(winZ, 3);
The SMA is calculated according to Equation 3-11 in chapter 3.2.3. Basic arithmetic
operations are used as shown below.

% signal magnitude area (SMA)

SMA = sum(abs (winX)) + sum(abs(winY)) + sum(abs(winZz));

5.3.5. Neural network training

Function name: main_train.m

This chapter explains the main function for the training of an ANN from acceleration
data. It is adjusted for the use during the NutriHEP study, thus, combining the training
of two ANNs (static and dynamic) for two accelerometers (hip and tibia). According to
Req9, a training function for a single accelerometer is available. It is based on the
same algorithm principles and the code is adjusted to one ANN for one sensor position.
The main function is called main train single.m.

A standardized activity catalog and its number of static activities are declared as
global variables. The user chooses a folder containing the training data from hip and
tibia position. It is assumed that the second upper folder name corresponds to the sub-
ject's ID, which is ensured by using the import function (see chapter 5.2.1). The ANNs

for the tibia and for the hip are trained and saved.
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Initiation of global variables

At first, two variables, activityClass and Nstatic, are declared as global varia-
bles. Their validity for all sub-functions is essential for adding new activities to the cata-
log. The activity catalog contains the names of all activities which are to be classified. It
is saved as a list in activityClass, where the first elements are of static nature. If
Nstatic is 3, then the first three elements in the activity catalog are static activities.
The implementation of a variable activity catalog is essential for the unknown use with
a single accelerometer.

global activityClass
global Nstatic

% Set standardized activity catalog

activityClass = {'standing', 'sitting', 'lying',
'walking normal', 'walking slow',

'stairs up', 'stairs down',

'jogging', 'sprinting'};

Nstatic = 3;

Select data

The user selects a folder with training data set for hip and tibia position via a browsing
window. The subject ID is read out from the folder path. A new function
train dynNN.m is called to start the training for tibia and hip data individually. The

trained ANNs are saved in the training folder.

Function name: train_dynNN.m

This function trains an ANN with training data, which is already allocated to activities.
Acceleration data is imported and its dynamic nature is classified. For the training of
the ANN, the feature extraction uses a window size of 6 seconds. For the actual train-
ing and testing of the ANN, a sub function generated with MATLAB is used

(trainNN.m).

Classification of dynamic nature of acceleration data
After importing the raw acceleration data from a selected folder, the dynamic nature is

classified by the function dyn natureClassification.m (see chapter 5.3.2).

Training of the neural network
For the supervised learning algorithm, a training set with known output is necessary.
The allocation of activities to acceleration data is done by the user via the GUI. To start

this feature, the function selectTrainData template.m is called. The allocated
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training set is saved in the training folder, and its features can be extracted. This is
computed by the functions described in chapter 5.3.3 and 5.3.4. Additionally, the allo-
cated activity is saved in the feature vector. One feature vector contains the features
for a 6 second window and the index number of the activity in the activity catalog. All
the features from one training set are concatenated in one matrix. It is called target
matrix, because it contains the target output of the classification. These target matrices

serve as input for the function trainNN.m.

Function name: selectTrainData_template.m

This function saves acceleration data with its actual activity information for training pur-
poses. The absolute acceleration is plotted for visual representation of the signal. A
hard coded template is drawn, consisting of several activities with specific lengths of
time. This template corresponds to the activity course, which will be explained in
chapter 6.2.3. The user can adjust these templates to the acceleration signal. With one
click all these templates are saved. If necessary, additional activities can be added and

identified for the training of an ANN.

Plot graph with absolute acceleration and dynamic nature classification
After importing the acceleration data, the absolute acceleration from all three axes is
plotted as a blue graph. Within this graph, the dynamic nature is also visualized. Red
dots distinguish between static (0) and dynamic (1) activities (see Figure 5-1). The pink
and green vertical lines represent the activity template. They can be dragged by the
user to allocate the flagged activity. Flags are at the top of every second vertical line,
indicating the beginning of an activity. Pink lines are dynamic and green lines are static
activities.

When the template is saved, a new folder is created named “TrainingData”.
It contains sub-folders called “static” and “dynamic”. In each folder the associated
activities are saved. Acceleration data of one activity is saved together in one file,

which is given the activity name.
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Absolute acceleration from tibia starting on 2013-08-14 10:12
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Figure 5-1: Screen for allocating during training phase with activity template

It is not obligatory to use the template for activity allocation. The template is
supposed to improve the time efficiency concerning the application during the NutriHEP
study. Single activities can be allocated by hand. Further types of locomotion, like cy-
cling or sprinting, are not covered by the template, because these movements are pro-
hibited during the intervention study. However, new activities can be added to the acti-
vity catalog. When naming new activities, the dynamic nature needs to be specified. If
the new activity is of static nature, the number of static activities in the activity catalog
(Nstatic) is incremented. Nstatic is important for the assigning of activities to the

right sub-folder.
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Function name: trainNN.m

This function trains an ANN by solving a pattern recognition problem. This code lines
are mainly generated with the assistance of the Neural Network Pattern Recognition
Tool nprtool. Itis part of the Neural Network Toolbox in MATLAB.

Create a pattern recognition network
The settings of the ANNs basically are according to HANSON ET AL. [HGP*11]. The hid-
den layer has a size of 20 neurons. HANSON ET AL. stated that a difference of + 5 neu-

rons did not affect the results.

hiddenLayerSize = 20;
net = patternnet (hiddenlayerSize);

The training data set is divided randomly into training (70 %), validation (15 %) and
testing (15 %) set. Scaled conjugate gradient backpropagation is used as training func-

tion and the mean square error is the performance parameter, which has to converge.

% Setup Division of Data for Training, Validation, Testing
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

net.trainFcn = 'trainscg'; % Scaled conjugate gradient

5 Choose a Performance Function

net.performFcn = 'mse'; % Mean squared error

The ANN is trained and tested, until the mean squared error tends to a minimum. Algo-
rithms for these procedures are provided by the Neural Network Toolbox.
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5.4. Classification phase

5.4.1. Neural network classification

Function name: main.m
This function represents the main function for the activity classification of accelerometry
data. As the classification is the main feature of the software, this function is called
main.m. This function is customized for the analysis of two acceleration sensors (hip
and tibia) as applied during the NutriHEP study.

The user chooses a pre-trained ANN and a folder containing acceleration data.
The activity class catalog is saved within the ANN file, because new activities might
have been added. If a file containing the time shift (see chapter 5.2.2) is present, the
time shift is added to the corresponding data array. First, the classification for the tibia
is done by calling the function activityClassification.m. Subsequently, the hip
data classification is performed. All results are plotted and saved in a separated classi-
fication folder.

Function name: activityClassification.m

This function classifies accelerometry data into different activity classes. After the im-
port of data and its time shift application, the data is classified by its dynamic nature.
Following this, static data is classified with a static ANN and dynamic data with a dy-
namic ANN. Finally, all results from the classification are saved in separated matrix

files for further access and applications.

Import acceleration data and classify dynamic nature

Acceleration data is imported with the multiple RAW Conversion.m function (see
chapter 5.3.1). If a time shift file is present, it is applied to one of the sensors. The TXT-
file contains a shift in milliseconds, which was calculated during time synchronization
(see chapter 5.2.2). It is simply added to every time stamp of the acceleration data of
the regarding sensor. The dynamic nature of the signal is analyzed by calling the func-

tion dyn natureClassification.m (see chapter 5.3.2).

Classify static and dynamic activities separately
All static data is concatenated and the static features are extracted as described in
chapter 5.3.3. The resulting static feature matrix is saved as backup and then fed to the

static ANN. The same process is executed with the dynamic data.
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The classification results are saved in separate matrices. In addition, the time
stamps of the dynamic nature are saved as DynamicNatureTimes .m. This file con-
tains the points of time, where the signal was classified as static or dynamic. This file is
relevant for the compliance check in the following chapter.

5.4.2. Compliance check

Function name: complianceCheck.m

This function is used for checking the subject's compliance during the NutriHEP study.
It compares the dynamic nature of the acceleration signal measured at hip and tibia. If
a static activity is detected on the tibia, but a dynamic one on the hip, then it is consid-
ered that the subject is not wearing the tibia sensor, thus the orthosis. In all other cases

all sensors are assumed to be worn. At the end, the result is plotted in a graphic.

Import classification results

The results from the classification are loaded from the file DynamicNatureTimes.m.
It contains time stamps separated in static and dynamic activities. First, the time
stamps are concatenated into one matrix for each sensor position (hip and tibia). After
this, the matrices are sorted in time, which results in two matrices (hip and tibia) with
time stamps and dynamic nature. Static activities are encoded as 0 and dynamic acti-

vities as 1.
% load dynamic nature classifications' results
CCtibia = load(fullfile(CCfolder, 'tibia', 'DynamicNatureTimes.mat"')) ;
CChip = load(fullfile(CCfolder, 'hip', 'DynamicNatureTimes.mat"'));
% init and sort dynamic nature
tibiaTimes = [CCtibia.winTimesDyn, ...
CCtibia.winTimesStat; ...
ones (1, length(CCtibia.winTimesDyn)), ...
zeros (1, length (CCtibia.winTimesStat)) ];
hipTimes = [CChip.winTimesDyn, ...
CChip.winTimesStat;
ones (1, length(CChip.winTimesDyn)), ...
zeros (1, length (CChip.winTimesStat)) ];
tibiaTimes = sortrows (tibiaTimes',1)"';

hipTimes = sortrows (hipTimes',1)';

46



5. IMPLEMENTATION

Compliance check
The compliance check looks at every sample, but 120 samples before and after every
sample are taken into account. By this, only longer episodes of non-compliance are
recognized. If for all samples the tibia signal is classified as static and the hip signal as
dynamic, then the compliance is classified as not present, i.e. the orthosis is not worn.
Compliance is binary encoded as 0 (orthosis not worn) and 1 (orthosis worn).
w = 120;
% 1f tibia is not dynamic and hip is dynamic, then tibia sensors is not worn
for i = w+tl:N-w

if ~tibiaTimes (2,i-w:i+w) == hipTimes (2,i-w:i+w)

compliance(2,i-w:i+w) = 0;

end

end

The function plotCompl.m shows a graphical visualization of the compliance check

results. The interfaces of all plotting functions are described in the following chapter.

5.5. Graphical visualization of results

5.5.1. Classification results

Acceleration data
The end result of a classification may look like the example GUI in Figure 5-2. The ac-
celeration signal is plotted over time on the top graph. For a better perception, the re-
sulting absolute acceleration from all three axes is drawn and not every axis individual-
ly. The classification results are shown in the middle. A nominal scale lists the different
kinds of activities. Every blue dot stands for a classification. In the bottom graph, one
can see the certainty of every classification. The ANN also gives information about how
sure it is about a classification. Since an ANN can only classify activities, which were
trained beforehand, signals from unknown activities are stated as unclassifiable. This is
the case, if the classification certainty is below 80 %.

Additionally, the user can zoom in and out in each window screen. All time axes
are linked together, i.e. zooming in one window simultaneously changes the other win-

dows. An external function datetickzoom.m’ enables a proper zoom behavior.

2 http://www.mathworks.com/matlabcentral/fileexchange/15029-datetickzoom-automatically-
update-dateticks/content/datetickzoom.m
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Figure 5-2: Classification result GUI

This graphical visualization of the results is mainly intended for looking at specific sin-
gle classifications and the raw acceleration signal. It is plotted with the function

plotClassification.m.
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Pie chart
A visualization of the relative distribution of activities is given by a pie chart (see Figure
5-3). Its percentages are relative to the total time of classification. The occurrences of

activity are counted and plotted with the built-in pie function.

Activity distribution of Tibia 9%,

2% 2%
I nclassifiable
I <t=nding

=\ 2

[ing
[ Jwalking normal
[ stairs up
I stairs down
I ogging
Figure 5-3: Pie chart results GUI

[

This graphical visualization of the results is mainly intended for looking at a qualitative

activity distribution profile. It is plotted with the function plotPie.m.
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A table with numeric information is generated (see Table 5-1). At the top, it shows the
elapsed time of the classified acceleration data. Beneath, the average certainties of
dynamic and static classifications are written. This information helps to estimate the
quality of the classification. In the lower half, all activities from the activity catalog are
listed on the left. For each activity, the number of successful recognitions, its percent-
age share, and the estimated share of time is displayed. The calculation of the per-
centage share is equal to the algorithm for the pie chart. The estimated time of each

activity is computed by taking the respective percentage of the total elapsed time.

Table 5-1: Table results GUI

elapsed time

Days ' Hours @ Minutes : Seconds
00 00: 14 59.565

Aowg. certainty of Classification [%5]

dynamic activities 997922

static activities 95.7240

all activities 97 .5903

Mo. of recognitions | Activity distribution [%a] | estimated Time [dd:hhimm:ss]

unclassifiable 10 3.3003 00:00:00:29
standing 123 412541 0o:oo:0s: 11
sitting G 1.9802 00:00:00:17
lying g 2 6403 00:00:00:23
walking normal (&t 29.0429 00:00:04:21
walking slow ] 29703 00:00:00: 26
stairs up 28 9.2409 00:00:01:23
stairs down 21 £.9307 00:00:01:02
jogging ] 2.6403 00:00:00:23
sprinting 0 0 00:00:00:00
SLIM 303 100 00:00:14: 359

This graphical visualization of the results is mainly intended for looking at a quantitative

activity distribution profile. It is plotted with the function plotTable.m.
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5.5.2. Compliance results

The compliance is represented in a colored timeline. Timeframes with worn and not

worn tibia sensor are encoded in green and red respectively.

Compliance check of Tibia sensor starting on 2013-08-15 14:52

55:00 00:00 05:00
time [MM:SS]

I worn
I ot worn

Figure 5-4: Compliance results GUI

This graphical visualization of the results is mainly intended for looking at a qualitative

compliance profile. It is plotted with the function plotCompl .m.

5.6. Standalone executable

The MATLAB Compiler assists in transforming programs into standalone applications.
Created applications use the MATLAB Compiler Runtime (MCR), which allows royalty-
free deployment on computers without any valid MATLAB license. An installer for the
MCR is packaged with the application. The standalone executable does not need any
installation and can be started after copying.

The GUI of the standalone application looks like the original software program,
except for the buttons for training. Unfortunately, MATLAB Compiler is only able to
compile pre-trained network command line functions [Math13d]. l.e., training a new
ANN with a standalone application is not possible. Therefore, the training functions are

automatically disabled.
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6. Evaluation

During the program development, algorithms were already tested with data acquired by
a single person. In order to evaluate the practical suitability of the program, data of
several subjects were required. With the help of this evaluation, the applicability of the
program was rated for its practical use. The results of the evaluation may be used for
further changes to the program.

During the work on this thesis, the conducting researcher of the NutriHEP study
decided to integrate skin conductance sensors in the HEP orthosis. These sensors can
detect skin contact, and thus if the orthosis is worn or not. This technology promises a
high accuracy. Therefore, the requirement for the compliance check was downgraded
and seen as supporting feature. Consequently, the results of the compliance check are

not under consideration in this evaluation.

6.1. Trial subject recruitment

Subjects were mainly recruited from the staff of the Department of Space Physiology. A
monetary compensation was not obtained. The number of subjects was 14 and includ-
ed 7 female and 7 male subjects, so any gender variances in movement due to anato-
my were considered. The average age was 29,4 + 9,3 years (mean £ SD). For each
subject, the study lasted for approximately one hour of laboratory data acquisition. Ex-
clusion criteria were abnormalities of gait or mobility, rheumatic diseases, and preg-
nancy. The study contained activity measurements in the physiology lab and the build-
ing of the Institute of Aerospace Medicine. The subjects were not dictated to any spe-

cial diet or medication.

6.2. Test procedure and course of study

The subjects wore accelerometers and ran through a given course, where several ac-
tivities were performed. The first run had a predefined order and time plan and served
as training data for the ANNs. The second run corresponded to the first one, but its
data was intended for testing of the ANNs. The order of a third run was chosen individ-

ually by the subject, and served as test data as well.
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6.2.1. Data acquisition

Main aspect of this evaluation was the acquisition of acceleration data from laboratory
recordings. Accelerometers from GCDC were used as sensors. Subjects received two
accelerometers, one on the lower leg and one on the hip. The lower leg sensor was
placed at a similar position as it was during the HEP-study [WDM'13] (see
Figure 6-1 (a)).

(b)
Figure 6-1: Position of accelerometer on
HEPHAISTOS orthosis (a) and on shin guard (b)

It was not possible to run the evaluation with subjects wearing a HEP orthosis, because
it is a custom made orthosis. Each subject would have needed an expensive custom-
built model. These costs (over 60.000 € per orthosis) were not reasonable for this eval-
uation. Moreover, the subjects from the past HEP study were not available. Instead,
gear for mounting the accelerometer to the lower leg was used. A prototype was creat-
ed using a shin guard as it is common in soccer sports (see Figure 6-1 (b)). The sensor
was placed parallel to the tibia bone and secured with one screw to the shin guard.
Adhesive tape was added to avoid a tilting of the sensor. The placement of the sensor

with a shin guard was an adequate substitution to the HEP orthosis.
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Figure 6-2: Belt bag with accelerometer

The second accelerometer was worn in a belt bag (see Figure 6-2). Thereby, the sen-
sor was placed at the hip and closer to the center of mass of the body. It was attached
with Velcro tape, so the sensor could not roll along its longer axis. It was checked that
the sensor kept its orientation in the belt bag throughout the whole evaluation. The ori-
entation was consistent for all subjects.

On the tibia position an X6-2 accelerometer and on the hip position a X6-1B ac-
celerometer were attached. The accelerometers were set to a sample rate of 20 sam-
ples per second, a low gain and a 12-bit resolution. How to configure the accelerome-
ters and how to use the analyzing software is documented in the manuals of the accel-
erometers [GCDC10a] [GCDC10b] and the user manual of the software (see
appendix 9.2).
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For video documentation, a GoPro Hero 3 Silver Edition camera was mounted
to a chest mount harness (see Figure 6-3 (b)). The camera was only used during the
third run, where the subject chose an individual course. Its view was sufficient to man-

ually identify the types of locomotion of the subjects (see Figure 6-3 (c)).

Figure 6-3: Subjects wearing tibia and hip sensor (a), GoPro chest mount harness (b),

and GoPro camera point of view (c)
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6.2.2. Activity classes

Subjects had to perform monitored movements in the laboratory and in the building,

respectively. More precisely, a course had to be completed, which required the follow-

ing activities:

Standing

Sitting

Lying

Walking
with normal pace

Walking
with slow pace

Climbing
ascending stairs

Climbing
descending stairs

Jogging
with slow pace

Table 6-1: Activity classes

Static activities Dynamic activities

Standing Walking with normal pace
Sitting Walking with slow pace
Lying Climbing ascending stairs

Climbing descending stairs

Jogging with slow pace

Subject stands in upright position. Both legs are equally loaded,
so that the hip remains in its horizontal position. Other move-
ments are to be avoided.

Subject sits on a chair. Both feet touch the ground.
Other movements are to be avoided.

Subiject lies on its back on a couch or table.
Other movements are to be avoided.

Subject walks across a corridor. This will be done in a uniform,
everyday pace, so a 50-meter range is completed in approximate-
ly 30 seconds.

Subject walks across physiology lab. This will be done in a uni-
form, slow pace, so a 20-meter range is completed in approxi-
mately 30 seconds.

Subiject climbs staircase several floors up. The movement should
be uniform and slow-paced. No skipping steps or running al-
lowed.

Subject climbs staircase several floors down. The movement
should be uniform and slow-paced. Overloading or shock absorb-

ing steps are to be avoided.

Subject jogs in a slow pace across a corridor. The pace should be
uniform. A fast walking is to be avoided.
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6.2.3. Activity course

All the activities described above were performed and recorded during an activity
course (see Table 6-2). The course consisted of different stations, each demanding a
certain movement. Between stations, the sensors kept recording accelerations. These
movements could not be allocated precisely to an activity, but still needed to be proto-
coled as interstation activities.

For better differentiation of the activities in the visual representation, it was im-
portant to start and end dynamic activities with static ones and vice versa. According to
the durations stated in Table 6-2, one run through the course took less than 15
minutes. Every subject had to complete the course twice. Afterwards, the subject was
ordered to do a third individual run. The subject was free to go around the building,
moving with any type of locomotion. The only requirement was that every activity from
Table 6-1 was performed for at least 10 seconds throughout the entire run. Figure 6-4
shows a map of the DLR campus and where the different activity stations were located.

# Deutsches Zentrum
DLR fiir Luft- und Raumfahrt

German Aerospace Center ‘ o Basement / tunnel:

KélIn-Porz p _ 1-— Standing
// HEEEEEEEEEE 4 — walking normal
4 C
7 ! S —jogging

24 ; @ Staircase:

2 — ascending stairs
3 — descending stairs

© &
@ Ground floor:
@ 6 — walking slow
| |
Y [ —— ® @ Physiology laboratory:

7 — sitting
] L . ! 8 — lying

|
- \ gateesd 1
‘ <® distance for walking normal/ jogging
T W

Figure 6-4: Map of DLR campus with building 24 and locations of the stations

Risk-benefit analysis and precautions

Since there is no medical intervention, the only risk lies in the completion of the activity
course. Its demanding activities are elemental types of locomotion of everyday life,
thus, not containing any serious risks. Therefore, no medical advisor or paramedic is

needed during the evaluation.

57



6. EVALUATION

Table 6-2: Order of activity course

Starting o o )
No. ] Activity Description Duration
time
) Turn accelerometers on, stand in
1 0:00 Standing ] . 30s
front of stairs, and wait for 0:30
o ] ) Walk 4 floors upstairs in a uniform
2 0:30 Climbing ascending stairs ~90s
pace
) o Stand still at top level, turn around,
Interstation activity ] ~30s
and wait for 2:30
o . ) Walk 4 floors downstairs without
3 2:30 Climbing descending stairs o ) ] ~90s
skipping or jumping
) o Stop at end of stairs, go to next sta-
Interstation activity | ] ~60s
tion, and wait for 5:00
_ ) Walk in own normal pace
4 5:00 Walking with normal pace ~90s
] o Stop at end of corridor, turn around,
Interstation activity ) ~30s
and wait for 7:00
. . Walk back in own normal pace
4 7:00 Walking with normal pace ~90s
] o Stop at end of corridor, go to next
Interstation activity ) ) ~60s
station, and wait for 9:30
) o Jog in own slow pace
5 9:30 Running as jogging ~30s
] o Stop at end of corridor, turn around,
Interstation activity ) ~90s
and wait for 11:30
_ ) Walk slowly across corridor
6 11:30 | Walking with slow pace ~30s
] o Stop at end of corridor, go to next
Interstation activity i ] ~60s
station, and wait for 13:00
o Sit down on chair with both feet
7 13:00 | Sitting _ 30s
touching ground
) o Get up from chair, go to next station,
Interstation activity ) ~30s
and wait for 14:00
) Lie down on couch with face up and
8 14:00 | Lying ] . 30s
without crossing legs
] o Get up from couch turn accelerome-
Interstation activity ~30s

ters off
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6.3. Test data processing

6.3.1. Training and classification

With the acceleration data from the first run the ANNs were trained and the resulting
network data saved. How to use the training feature of the software is explained in its
user manual (see appendix 9.2). For each subject, an individual ANN was trained. The
template feature helped to save time while training 14 different ANNs. The data from
the second and third run were classified by the analyzing feature. Its results were then

sighted for evaluation.

6.3.2. Evaluation results

Randomization
The first and the second run were identical in their sequence and therefore inter-
changeable. One served as training set, the other one was for classification. However,
doing the activity course twice, might have had an effect on the locomotion. It was ob-
served that some subjects were excited during the first run, because the course was
new and unknown. It cannot be ruled out that the subject paid more attention to its
movements under the experimental conditions. Additionally, the second run seemed to
be boring, because of its redundancy. The subject might have paid less attention and
moved in a more ordinary way. To eliminate these possible effects, a randomization
was applied, whether the first or the second run served as training set. Further, the
position of the tibia sensor was randomized. Five subjects wore the shin guard on the
left leg, the rest on the right leg.

For a better differentiation, the classification of the first or second run is referred
to as activity course (AC) classification. The classification of the third run is referred to

as free run (FR) classification.

Evaluation results

The results of a classification were compared to the actual activities performed by the
subject. For the second run, the order was given in Table 6-2. For the third run, the
results had to be compared to the video recording. An example of a classification result

is shown in Figure 6-5.
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Absolute acceleration of Tibia starting on 2013-08-26 10:16
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Figure 6-5: Classification result example of a 2" run

The acceleration signal is plotted in the upper part. Below, the results of activity classi-
fication are shown. Every blue dot stands for a classification of the activity according to
the axis of ordinates. Unsuccessful classifications are defined as unclassifiable. Ac-
cording to Table 6-2, it is known which activity was performed by the subject. True ac-
tivity and classification result are comparable. Therefore, the numbers of correct and
incorrect classifications can be obtained.

To evaluate a classifying ANN system, a confusion matrix was created. How to
fill out a confusion matrix and how to quantify performance parameters was described
in chapter 3.5. The numbers of successful and unsuccessful classifications were ob-
tained by counting the blue dots in the classification results graphic (see Figure 6-5).

The creation of the confusion matrix for an AC classification was an unambigu-
ous task. When and which movements were performed was clearly specified by the
order of the activity course (see Table 6-2). In contrast, interstation activities were
ignored.

Evaluating the FR classification results was more difficult. Type and order of
movements were not specified in the third run, but instead had to be interpreted by

video sighting. This implied a subjective interpretation of types of locomotion. The diffi-
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culty was to judge unclassifiable movements performed by the subjects. Most common
was the case of transition from one movement to another, which was often classified as
unclassifiable. It seemed correct to evaluate these classifications as successful. Longer
episodes of one movement were clearly identifiable in the video. Movements, which
were not listed in the activity list in Table 6-1, were allocated as unclassifiable activities.

For every subject there were 4 confusion matrices created. Two for the AC
classification (with hip and tibia sensor) and two for the free run classification (with hip
and tibia sensor). This leads to a total number of 56 confusion matrices, 28 of AC and
28 of FR classification. To evaluate the recognition software with its ANN as classifying
system, accuracies and reliability of AC and FR classification were obtained by merg-

ing all subjects’ results.

6.4. Description of results

Table 6-4 shows a summarizing confusion matrix for the hip sensor of the AC classifi-
cations from all subjects. In addition to the absolute number of classifications, each cell
contains the percentage relative to the total number of classifications (i.e. in Table 6-4
in the first cell, 129 correct classifications of Standing represent 7,13 % of all classifica-
tions). The highest occurrences of misclassifications (off-diagonal elements) were in
the unclassifiable column. This means that the classification certainty was not high
enough, but it only affected the accuracy of the classifier. However, the most acti-
vity-activity misclassifications were between Sitting and Standing. This indicates diffi-
culties for the classifier distinguishing these two activities. Looking at the accuracies on
the right column, the lowest producer’s accuracy was measured for the activity Walking
slow. A higher reliability of 89,2 % indicates that the classifier is able to distinguish such
locomotion from others. The remaining reliabilities are over 80 %.

The same descriptions are applicable to the results of the tibia sensor during
the AC classification in Table 6-5. With both feet on the ground while sitting, the orien-
tation does not change during standing. This explains the lower accuracies for Sitting
and Standing. Again, the accuracy for the activity Walking slow is the lowest.

Activity course classification with hip and tibia sensor is accurate and reliable for
almost every of the activities stated in Table 6-1. The activities Standing and Sitting are
more often confused than others. Half of the activity Walking slow is not identified, but
nearly 90 % of Walking slow classifications is correct.

Such a confusion matrix as in Table 6-4 is not suitable for the free run classifi-

cation. Time spent per activity varies between subjects, because every run was chosen
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individually. This uneven distribution would distort the confusion matrix and is consid-

ered as inexpedient.

The evaluation with confusion matrices showed that the accuracy of the activity course
classification lied above 85 % and its results were in over 95 % of the cases reliable
(see Table 6-3). This was true for hip and tibia classification of the data set based on
the completion of the activity course. For the classification of the free run accuracy and

reliability were over 70 % and 75 %, respectively.

Table 6-3: Accuracies and reliability of classifier (mean + SD)

Overall accuracy | Average reliability
[%0] [%0]
Activity course 87,99+ 7,54 96,49 + 3,16
Free run 71,23 + 16,55 76,77 + 16,26

An approximate computation time of 6 minutes per measurement day was measured.

This is true for acceleration acquisitions with a sample rate of 20 Hz.
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7. Discussion and conclusion

7.1. Discussion

Discussion of evaluation results

In order to evaluate the developed classifier, confusion matrices of classification results
were created. These matrices give some indication of misclassifications and perfor-
mance parameters.

Most activity-activity misclassifications occurred with Sitting and Standing. This
indicates difficulties for the classifier to distinguish between these two activities. This
confusion seems reasonable, because the position of the hip may not change noticea-
bly. Since Sitting and Standing are static activities, the orientation of the accelerometer
is a decisive factor for the classification.

The lowest producer's accuracy was measured for the activity Walking slow.
Apparently, walking slowly is a type of locomotion where the acceleration patterns vary
substantially. It seems that the instructions for walking slowly mast have been vague so
the subjects were unable to repeat this locomotion in the same manner. Furthermore,
the walking behavior may differ in various surroundings. Walking slow may be per-
formed differently on a big parking lot than in a small corridor. However, a higher relia-
bility of Walking slow indicates that the classifier is able to distinguish it from other lo-
comotion. The remaining reliabilities exceed 80 %, which is a satisfying result. The
same conclusions are applicable to the results of the tibia sensor during the AC
classification.

Looking at the performance parameters of the classifier, it seems consistent
that accuracy and reliability were high for the AC classification, because environment,
pace and motivation were identical for training and test data set. Nevertheless, this fact
does not prove the proper functionality of the analyzing algorithm in the recognition
software. The free run simulates more practical conditions and can therefore be re-
garded as more representative and its evaluation results as more suitable. However,
the free run performance parameters showed a higher SD and more outliers. A free run
without any protocol allowed the subjects to do any kind of locomotion. Some subjects
wanted to put the software on trial by moving in unusual ways (e.g. climbing stairs
backwards or doing sit ups). This led to a higher number of unclassifiable activities in
relation to the total acquisition, which led to a lower accuracy and reliability.

The classifying system in this thesis has a similar structure like the classifier by
LEE ET AL. [LKK"10] and its accuracy parameters are similar as well. However, neither

LEE ET AL. nor other authors published any statement about reliability of a classifier.

65



7. DISCUSSION AND CONCLUSION

The classifier developed in this thesis is able to correctly predict new and unknown
data with a sufficient accuracy and reliability. The speed of the classification is decent.
Training for each subject is needed beforehand, but the resulting ANN is applicable for
the rest of the study. An approximate computation time of 6 minutes per measurement
day is considered adequate, because there is no mention of any minimum computation
time in literature.

The compliance check showed reasonable results, but its accuracy needs to be
proven in a further evaluation. During the work on this thesis, the conducting research-
er of the NutriHEP study decided to integrate skin conductance sensors in the HEP
orthosis. These sensors can detect skin contact, and thus if the orthosis is worn or not.
This technology promises a high accuracy. Therefore, the requirement for the compli-

ance check was downgraded and seen as supporting feature.

Discussion of usability test results

In the course of this thesis, only a short usability test was carried out with the conduct-
ing researcher of the NutriHEP study. This test involved studying the user manual, ful-
filling all possible tasks, and completing a subsequent questionnaire. This evaluation of
usability by only one person was considered acceptable, because the focus of this the-
sis was not on the development of a marketable software package.

In the usability test, the program software and its use were experienced com-
prehensible and efficient. The tester commented that at some points the program did
not explain itself so that necessarily the user manual had to be consulted. This point of
criticism may be justified on grounds of user-friendliness, but since a user interface
overloaded with information leads to confusion, the information missing from the inter-
face were deliberately placed in the user manual.

The user manual itself was considered helpful and very clearly written. Espe-
cially figures of screen shots were appreciated. Some step-by-step instructions skipped
certain steps and led to confusion, which is why the user manual was not valued as
fully understandable. Missing steps were pointed out by the conducting researcher and
were corrected appropriately.

The diagrams which present the results of classifications also received a satis-
factory validation. Neither is there any superfluous diagram nor is any unnecessary
information shown. Furthermore, the diagrams allow a simple and quick overview of the
results and are therefore very likely to be used in future research work.

In short, it can be said that the usability of the software program supports the

researcher in her studies and simplifies the work flow.
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7.2. Conclusion

In this work, a software program for human activity pattern recognition was successfully
developed. With the help of trained ANNs a classification of different activities was
possible. The ANNs were trained with supervised learning algorithms and the required
ground truth data was retrieved from activity course acquisitions. A combination of fea-
tures from the time domain and frequency domain were extracted to describe the ac-
celeration signal. Different graphical visualizations represent the classification results.

Table 7-1: Requirements and their accomplishments

Requirements accomplished through
“When did the subject do which body Overview graph of daily

Reql ” . . v
movement? physical activity
“How long did the subject do which body | Overview graph of daily

Req2 ” . . v
movement? physical activity

Req3 “Was the orthosis worn the entire time?” | Overview of compliance [V]*

Req4 “What does the data look like during uni- | Overview graph of daily ]

a dentified activities?” physical activity

Req5 “The software should be easy to use.” Usability test V1
“The software should work as a L

Req6 standalone executable.” Standalone application |

Req7 'The software Sh?,UId be provided in Eng- Multilingual implementation V1
lish and German.

Req8 The. so:jl"ware should not be time con- Usability test V]
suming.

Req9 The software shoq{d W?rk with a single Successful implementation V1
sensor on any position.
“The software should work with GCDC Use of GCDC accelerome-

Req10 . v
accelerometers. ters

* Compliance can be checked, but the results are unevaluated

In chapter 2, numerous user requirements were collected, which have been all
accomplished through one software program (see Table 7-1). Diagrams showing the
classified activity over any given time can be generated (Reql). The user can also
have a look at the raw acceleration data and review unidentified activities (Reg4). Pie
charts show the distribution of activities (Reg2). A compliance check can be executed

to see if the orthosis was worn or not (Reg3). The ease of use of the GUI was tested
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and approved in a usability test (Reqb). It offers an English and German language
package (Req7) and was valued as time efficient (Req8). Furthermore, it is possible to
work with the software program on any computer system without MATLAB license as a
standalone executable (Req6). In addition, the software program is usable beyond the
NutriHEP study and allows activity analysis with a single accelerometer from Gulf
Coast Data Concepts (Req9 and Reql0). Accuracies of 87,99 % and 71,23 % were
approached in classifying the activity protocol and the free run, respectively. Conse-
quently, the required accuracy of more than 80 % is only partly approached, but still

considered as entirely sufficient (SysReq5).

7.3. Outlook

Further experimental investigations will be needed to estimate the suitability of the se-
lected features in this work. A principal component analysis may identify the most
prominent features and allows reducing the number of features. Fewer features can
reduce the computational complexity and remove possible redundancy in features
without impairing the classification results. Additionally, other signal describing meth-
ods may be added to the pool of features to improve the performance of the classifier.

The evaluation in this thesis is based on a limited choice of activities. The activi-
ty catalog represents everyday activities which are assumed to be performed frequently
during the NutriHEP study. New activities (e.g. cycling, driving, or working) may be
added to the activity catalog during the evaluation. Furthermore, a training and evalua-
tion set of acceleration data in a more practical environment may have enhancing ef-
fects. A subject could be sent home for one or two days wearing a camera mounted to
the chest. The activities recorded by the camera are no longer performed under labora-
tory conditions. This may lead to better reliability and accuracy parameters.

A further issue to resolve for future work is the classification of static activities.
The demonstrated classifier has problems with distinguishing between sitting and
standing. This is acceptable for the use during the NutriHEP study because sitting and
standing have similar effects on the leg muscles. However, future use may require a
distinct differentiation. Further work on feature selection and accelerometer positioning
would help resolving this problem.

Concerning the accelerometer position, sensor displacement is an important
issue for future research. Since there is a chance that the sensor orientation may shift
and attachments may loosen, enhanced sensor attachments are needed or a method

for orientation independent acquisition must be developed.
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For a wider use of the software program, future work should enhance the ad-
justability of the classifier. Most algorithm variables are hardcoded and can only be
changed by a programmer. Instead, a few variables should be adjustable by the user
via the GUI. These variables may involve the number of hidden neurons, window sizes,
overlap percentage, and activity template.

This master’s thesis presents a human activity pattern recognition system,
which will be used in the NutriHEP study. The software program will monitor the activity
distribution of a subject and check that the orthosis was worn. A further possible appli-
cation is during bed rest studies, where it would be interesting to examine a subject’s
activity profile before and after bed rest. Moreover the developed software program
may be useful in the field of ambient assisted living, where activity recognition is an

important issue for the situation adaptability of home care systems.
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9.1. Usability test questionnaire
Questionnaire as part of the usability test filled out by conducting researcher of the

NutriHEP study.

1. Usability test of MovelT

1.1. Interview
Please answer the following questions as detailed as possible. Feel free to just write single

words, notes or drawings.

Program software
1. What is your first impression of the software?

Easy to understand.

Time efficient analysis of data.

Clear output.

2. What further functions or features do you miss?

Nothing, yet.

Diagrams
1. Which diagram do you prefer and why?

All diagrams serve a purpose. There are diagrams for just getting a good overview
and diagrams to get information in more detail.

2. s there any information which you see as unnecessary?

No.

3. Which information or graphics do you miss?

None.

Page 1 of 4
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User manual
1. What do you like about the user manual?

Most processes are described very clearly and are understandable in combination with using the
software

Figures help to understand the processes where necessary

No unnecessary information

2. What do you dislike about the user manual?

Some points are missing --> therefore not always super clear how to proceed

Any further comments

Missing points in the manual were discussed with the author and will be resolved
by the author.

Page 20of 4
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1.2. Questionnaire
Please answer the following questions by ticking the appropriate scaling.

Program software
1. The menu looks neat.

| totally | partially | can't | partially | totally
disagree disagree decide agree agree
® &) ©

O | o | o | o | =

2. The program explains itself.

| totally | partially | can't | partially | totally
disagree disagree decide agree agree
@ & ©

O o | o | @m | O

3. The program will save me time in my work.

Very unlikely Fairly unlikely Maybe Fairly likely Very likely
® & ©
o T o R o O R o
Diagrams

1. The diagrams give a good overview of the data.

| totally | partially | can’t | partially | totally
disagree disagree decide agree agree

O | O | o | O | @

2. The diagrams are simple.

| totally | partially | can't | partially | totally
disagree disagree decide agree agree
@ @ @

O | O | O | o | @

Page 3 of 4
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3. The diagrams explain themself.

| totally | partially | can't | partially | totally
disagree disagree decide agree agree
@ D @

' A T N o N N o R R

4. | would use a diagram in my future work.

Very unlikely ‘ Fairly unlikely ‘ Maybe ‘ Fairly likely ‘ Very likely
® e ©

O o | O | O o

5. 1 can quickly access the information | am looking for.

Very unlikely ‘ Fairly unlikely ‘ Maybe ‘ Fairly likely ‘ Very likely
® e ©

O o | o | O o

1. The user manual is helpful.

Very unlikely ‘ Fairly unlikely ‘ Maybe ‘ Fairly likely ‘ Very likely
® ) ©

O O | O | O o

2. The user manual is understandable.

Very unlikely ‘ Fairly unlikely ‘ Maybe ‘ Fairly likely ‘ Very likely
® ® ©

O | O | o | @ | O

3. Do you feel confident to work with MovelT only with manual instructions?

Very insecure ‘ Fairly insecure | can't decide ‘ Fairly confident‘ Very confident
® e ©

O | o | o | @ | O

Page 4 of 4
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9.2. User manual

The following pages contain the user manual for the developed software program.
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1. Introduction

The Movement Identification Tool (MovelT) is an easy to use software program for ana-
lyzing daily physical activity of human beings. By using MovelT, it is possible to adapt
classifying systems to an individual person to view activity profiles or raw accelerome-
try data. Its use requires the application of USB accelerometry sensors by Golf Coast
Data Concepts.

This manual shows how to install the MovelT software, how to configure the acceler-
ometry sensors, and how to start the analyzing procedures.

Minimum system requirements:

e Golf Coast Data Concepts accelerometers

Recommended system requirements:

e Golf Coast Data Concepts accelerometers
e Mathworks MATLAB® R2012b

o Neural Network Toolbox

o Signal Processing Toolbox

Formatting definitions:

Italics Brand name

Bold Folder or feature/button name
Underlined Link to chapter in this manual
Underlined blue Link to server folder or website

2. Installation

The Movement Identification Tool (MovelT) software is based on and, therefore, only
works with Mathworks MATLAB®. Before working with MovelT you need to find out, if
the computer you want to work on has a valid MATLAB® license installed. Additionally,
you need the Neural Network Toolbox and the Signal Processing Toolbox. Any version
since MATLAB® R2012b is recommended.

Ask your departmental IT administrator for further help.
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2.1. Working on a computer with MATLAB® license

If you have access to a valid MATLAB® license and the essential toolboxes, you only
need to install the MovelT software.

Installation of MovelT

The software code is saved on the DLR internal server. It is saved in several
MATLAB® compatible m-files.

1. Goonthe DLR internal server to G:\WP\IT\MovelT.

2. Copy the folder Program Code to your local hard drive.

Starting MovelT

To run the MovelT program the code needs to be executed from MATLAB®.
1. Start MATLAB®.
2. Press Open, go to the folder where the MovelT software is saved and choose
the file MovelT_main.m.

3. Onthe tab EDITOR press on the green arrow saying Run.

[ EDITOR PUBLISH VEEW
= 3 | D
% = /: NGoTo »

e R L e Breakpoints  Run |
2] #f fg  (AFind > x =
EDIT NAVIGATE BREAKPOINTS

4. If this is the first time you run the MovelT software, the following window will
pop up. Press Add to Path to continue.

MATLAB Editor S5

i) File D:\jos_de\NutriHEPAHAPR Software\HAPR_gui.m is not found in
- / the current folder or on the MATLAB path.

To run this file, you can either change the MATLAE current folder or add its
folder to the MATLAE path.

| Change Folder |’ Add to Path ” Cancel ” Help ]

5. The MovelT software will start showing the home menu.
(For more information, see Getting started with MovelT on page xiii)



file://KPFS04.intra.dlr.de/ME-KP/WP/IT/MoveIT
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2.2. Working on a computer without MATLAB® license

If you do not have a valid MATLAB® license on your computer, you need to install the
MATLAB® Compiler Runtime and the MovelT software.
Please note: Without a MATLAB® license it is only possible to work with
pre-trained neural networks. Therefore, the feature to train a neural net-
work is disabled.

Installation of MCR

MCR stands for MATLAB® Compiler Runtime and allows the execution of compiled
MATLAB® applications on computers with no MATLAB® license.
1. Goonthe DLR internal server to G:\\WP\IT\MovelT.
2. Copy the folder Standalone Software to your local hard disk drive.
3. Run the file MCRInstaller.exe.
Please note: You will need administrator rights to run this file. Ask your
departmental IT administrator for further help. The MCRInstaller.exe is
also available online on
http://www.mathworks.com/products/compiler/mcr.

Installation of MovelT

The standalone application of the MovelT software does not need further installation.
Copying the executable file is enough.

1. Goonthe DLR internal server to G:\\WP\IT\MovelT.

2. Copy the folder MovelT Software.exe to your local hard disk drive.

Starting MovelT

After successful installation of the MCR, the standalone file can be executed.
1. Run the file MovelT Software.exe.
2. The MovelT Software will start showing the home menu.
(See Getting started with MovelT on page xiii)

3. Configuration of accelerometers

Working with MovelT requires certain configurations of the accelerometers. The follow-
ing instructions refer to accelerometry sensors from Gulf Coast Data Concepts
(GCDC). Onboard software for configuration is included.

Please note: For now, MovelT only works with accelerometry sensors

from Gulf Coast Data Concepts.

Xi
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3.1. How to use the XLR8R software

The onboard configuration software XLR8R by GCDC is stored on the flash drive of
every accelerometer. If you cannot find the software on the flash drive, download the
latest version on http://www.gcdataconcepts.com/analysis.html. To run the standalone
software, JAVA 6.0 or later needs to be installed on your computer.

Ask your departmental IT administrator for further help.

Starting the XLR8R software

1. Plug in your accelerometer via USB
2. Go to the folder xIr8r and double click on XLR8R.jar.
3. The XLR8R software will start showing the home menu.
Please note: For further instructions how to use the XLR8R software re-

fer to its help documentation stored on the accelerometer’s flash drive or

online on http://www.gcdataconcepts.com/XLR8R r2 help.pdf.

3.2. Mandatory settings of accelerometers for the use with
MovelT

The following settings are mandatory for MovelT working properly.

Setting time

1. Under Utilities open the tab Set Device Time.

Press the button Write File.

Immediately close the XLR8R window and safely unplug the accelerometer.

Start the accelerometer right away.

After a few seconds you can stop the acquisition.
Why do | have to be so quick? — When the button Write File is pressed,
the current computer time is saved in a txt-file on the accelerometer. On
the next boot of the accelerometer, the time in the txt-file is loaded into
the accelerometer’s real time clock. This means that the time between
pressing Write File and a completed reboot is equivalent to the absolute
time shift of the accelerometer’s internal clock.

6. The new generated data file in the GCDC folder of the accelerometer can be

deleted.

abkowbd

Xii


http://www.gcdataconcepts.com/analysis.html
http://www.gcdataconcepts.com/XLR8R_r2_help.pdf

APPENDIX

Subject ID and sensor position

1. Open the XLR8R software (XLR8R.jar).

2. Under Utilities open the tab Configuration File Editor.

3. In the Comments section type in subject ID and sensor position in the following
manner:

Comments subject ID
sensor position

It is important, that the subject ID appears in the first row and the sensor posi-
tion in the second row.

e For the NutriHEP study: write as sensor position “Hip” or “Tibia”.
4. Press Save File.
5. Close the XLR8R window.

4. Getting started with MovelT

The MovelT software offers several features for gaining information about a person’s
activities. The following documentation will guide you through the preparing proce-
dures.

4.1. How to set the default folder path

In MovelT, files and folders often need to be chosen in a browser window. To avoid too
much clicking along the same paths, you can define a default folder, where the browser
window should start. There are two ways to change the default folder path:

A

1. Under Default Folder Path press Browse....
2. Click through to you folder of choice.
B

1. Under Default Folder Path click in the text field
2. Type in your folder path of choice.
The program checks for the existence of the chosen folder. A default folder path has to

be chosen to run any of the following functions.
Please note: At start of MovelT the default folder path is always set to
GAWP\STD\NutriHEP _ (NHP)\b_Durchfiihrung\Accelerometerdaten. A

change of the path is only saved until the home screen window of Move-

IT is closed.

Xiii
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4.2. How to import data

MovelT contains a feature for retrieving data from an USB accelerometer to your hard
drive or network drive.

1.
2.

> w

Under Preparation Phase press Import Data.
Choose the USB drive of the accelerometer with the data you want to copy and
press Ordner auswaéhlen.
Subiject ID, sensor position and date of acquisition is shown for verification
Choose whether you want to save it under the default folder path or a new path.
The data is saved with the following folder structure (if default folder path cho-
sen):

o Default folder path

e Subject ID
e Calendar week
e Sensor position

The loading process can be canceled by closing the progress window.

Xiv
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5. Working with tibia and hip sensors

The development of MovelT was conducted in consideration of the upcoming NutriHEP
study at the German Aerospace Center. This study will monitor each subject via two
accelerometers, placed at hip and tibia. This issue is faced in MovelT in particular. The
following documentation will guide you through several functions and their purposes for
the NutriHEP study.

5.1. How to synchronize two accelerometers

For a proper classification with tibia and hip sensor the two accelerometers need to be
synchronized, since the accuracy of the time setting (as in 3.2. Mandatory settings of
accelerometers for the use with MovelT on page xii) is insufficient. To synchronize two

accelerometers a shared impact on both sensors is needed.

1.

©OoNOORWDN

e ol
O~ WNRO

16.

17.
18.

19.
20.
21.

Turn both sensors ON

Slightly bump sensors against each other

Turn both sensors OFF

Connect first sensor to PC via USB

Open USB drive and go to GCDC folder

Copy last edited CSV-file

Open subject folder and create a new folder Time Synchronization
Paste CSV-file and rename it after the sensor ID (e.g. Acc0004)
Delete CSV-file on accelerometer.

. Do steps 4 — 9 with second sensor

. Open MovelT software (See 2. Installation on page ix)

. Press the button Time Synchronization

. Browse to subject folder and choose CSV-files consecutively

. If necessary, the name of the sensor can be changed

. Both accelerometry data sets from the bumping impact in step 2 will be plotted

in a new window
Click the peak on the graph of the blue line, so a little black square appears on
that point, and press Done
Mark the corresponding peak on the green line and press Done
The program will synchronize the two graphs and will show the result in a new
window.
If the result is unsatisfying, start over from step 12
If the result is satisfying, close the window
In the folder Time Synchronization a new TXT-file is generated containing in-
formation about the time synchronization
e This file needs to be copied to the designated folder before classification
(See 5.3. How to classify activities on page xvii)

XV
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5.2. How to train a neural network

At this point accelerometry data should be acquired from activities, which are later to
be classified. These data files can be saved with the Import feature as described in
4.2. How to import data on page xiv.

Please note: A MATLAB® license is needed to use the training feature.

Without a MATLAB® license it is only possible to work with pre-trained

neural networks. Therefore the feature is disabled.

To accelerate the progress the subject can complete a default training course as it is
described in Attachments on page xx. This course contains several activities in a spe-
cific order.

To train a new neural network, follow the instructions below:

1.

2.
3.
4

o

7.

Import the training data using the Import feature of MovelT
Change the folder name of the calendar week into Training
Press the button Training on the home screen of MovelT
Browse to subject folder and choose the Training folder

Chosen folder must contain folders named Hip and Tibia

The opening window is for identifying activities in tibia data
If the 7.1. Default training course on page xx was completed,

the pink-green-colored template should approximately fit to the acceler-
ometry data

static activities are coded green, and dynamic activities are surrounded
by pink lines

the vertical lines can be dragged in the right position, so the activity is
framed

the activity identification with the template can be saved with Save tem-
plate

If a custom training course was completed,

the activity template can be disabled

activities can be framed with the feature Select activity data

the square framing must include the red dots, which are indicating the
dynamic nature of the accelerometry data

blue lines of acceleration do not need to be framed

press Yes, if selection is done

selections cannot be adjusted afterwards

wrong selections have to be reframed by pressing Redo Selection
Undo of selection is not possible and requires a start over from step 3
new activities can be added with ADD NEW ACTIVITY and must be
named and assigned to static or dynamic activities

acceleration data must not be selected twice

8. When finished, press DONE

9. Do steps 6 — 8 with hip data

10. The new neural network is saved as a MAT-file in the Training folder which
was chosen in step 4.
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5.3. How to classify activities

Follow the instructions to apply the classification procedure on accelerometry data:

Graphical representations

1. Press the button Classification

2. With the Browse...

w

buttons choose

a MAT-file as neural network

(e.g. NeuralNetworks_SubjectlD_date.mat)

a folder containing Hip and Tibia folder with data for classification

Define where the asked sensor is placed

4. If the error message “No time synchronization file found!” appears, follow step
20in 5.1. How to synchronize two accelerometers on page xv and start over

5. Pop-up windows will show the classification results
Window with tibia results will appear exactly behind window with hip re-

sults

6. The window Visibility of graphical representations offers to choose which
pop-up windows are shown on the screen.

7. To end the classification progress press Close All

8. The graphical representations are saved as FIG-files in a new folder

Activity class

Absolute acceleration of Tibia starting on 2013-08-26 10:16

N

=

acceleration [g]

I\ I}
H H H I\I\‘“M H I ‘

©

sprinting
~jogging

stairs down
stairs up
walking slow
walking normal
lying

sitting
standing
unclassifiable

24:57

time [MM:SS]

27:50

Activity classification of Tibia starting on 2013-08-26 10:16

25:00

time [MM:SS]

Classification certainty of Tibia starting on 2013-08-26 10:16

100

Certainty [%]
Iy D o]
o o o

N
o

v,
L]

25:00

time [MM:SS]

XVii

On the left of the screen, the
results are represented in a
time dependent diagram. The
upper curve shows the abso-
lute acceleration of the
measurement in g-force. The
graph in the middle has a
nominal scale with dots
showing successful classifi-
cations. The lower graph
contains the corresponding
certainty levels of the classi-
fications.
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Activity distribution of Tibia

3% 3%
7%

¢

2% 39

41%

B (nclassifiable
I standing
I sitting

T lying

] walking normal
] walking slow
T stairs up
B stairs down
I jogoing

In the middle of the screen, the activity distribution is represented in a pie chart. Per-
centages refer to the total time of data acquired.

Days ' Howrs @ Minutes : Seconds

elapsed tirme 00:00:14: 59565
Boeg, certainty of Classification [%5]
dynamic activities 997922
static activities 957240
all activities 97 5903
Mo, of recognitions | Activity distribution [#28] | estimated Time [dd:hhimm:ss]
unclassifiable 10 3.3003 00:00:00:29
standing 123 412541 0o:oo:0s: 11
sitting G 1.9802 00:00:00:17
lying i 2.6403 00:00:00: 23
walking normal 58 290429 00:00:04:2
walking slow ] 248703 00:00:00:26
stairs up 28 9.2409 00:00:01:23
stairs down 21 69307 00:00:01:02
jogging ] 2.6403 00:00:00:23
sprinting 0 ] 00:00:00: 00
SUIM 303 100 00:00:14: 359

On the right of the screen, the distribution is shown again in absolute numbers orga-
nized in a table. It also contains the total time and the average certainty level of classi-
fication

Xviil
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5.4. How to check for subject’s compliance

MovelT provides the feature to check for the subject’'s compliance by verifying if hip
and tibia sensor were worn simultaneously.

1. Press the button Compliance

2. Browse to subject folder and choose folder containing Hip, Tibia, and Classifi-
cation folder
Pop-up window shows the results of the compliance check
4. Its graphical representation is saved as FIG-file in the folder chosen in step 2

w

Graphical representation

Compliance check of Tibia sensor starting on 2013-08-15 14:52

55:00 00:00 05:00
time [MM:SS]

EEEE worn
I ot worn

The compliance is represented in a colored timeline, where green and red stand for
timeframes with worn and not worn tibia sensor.

6. Working with a single sensor

MovelT is also designed for working with a single accelerometry sensor for usage out-
side of the NutriHEP study. The training und classification procedures with a single
sensor correspond to the instructions above in 5.2. How to train a neural network on
page xvi and 5.3. How to classify activities on page xvii. The training feature just needs
a naming of the sensor’s position beforehand. This naming is important since the soft-
ware looks for the data in a folder of the same name. The steps of time synchronization
and compliance check are not applicable.

XiX
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7. Attachments

7.1. Default training course

Location

No.

Starting
time

Activity

Description

Duration

Base-
ment

0:00

Standing

- face walking direction
- turn accelerometers ON
- stand still and wait for climbing stairs

30s

Staircase

0:30

Climbing ascending
stairs

- walk 4 floors upstairs
- keep uniform pace
- at 3" floor stop and stand still

~90s

Interstation activity

- stand still for 15 seconds
- turn around
- stand still and wait for 2:30

~30s

2:30

Climbing descending
stairs

- walk 4 floors downstairs

- keep uniform pace

- no skipping or jumping

- at end of stairs stop and stand still

~90s

Base-
ment

Interstation activity

- stand still for 15 seconds
- walk to end of tunnel and turn around
- stand still and wait for 5:00

~60s

5:00

Walking with normal
pace

- walk on own pace
- go around corner until black door
- stop and stand still

~90s

Interstation activity

- stand still for 15 seconds
- turn around
- stand still and wait for 7:00

~30s

7:00

Walking with normal
pace

- walk back on own pace to end of
tunnel
- stop and stand still

~90s

Interstation activity

- stand still for 15 seconds
- walk to running start
- stand still and wait for 9:30

~60s

9:30

Running as jogging

- jog to end of corridor
- go around corner until black door
- stop and stand still

~30s

Interstation activity

- stand still for 15 seconds
- walk to ground floor
- stand still and wait for 11:30

~90s

Ground
floor

11:30

Walking with slow pace

- walk slowly across corridor
- stop and stand still at physiology lab
door

~30s

Interstation activity

- stand still for 15 seconds
- walk into physiology lab
- walk to chair and stand back

~60s

Physiolo-
gy Lab

13:00

Sitting

- sit down on chair
- both feet touch ground

30s

Interstation activity

- get up from chair
- walk to couch and stand back

~30s

14:00

Lying

- lie down on couch
- lie on back
- do not cross legs

30s

Interstation activity

- get up from couch
- walk back to chair
- turn accelerometers OFF

~30s

XX
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