
All files in this distribution of Tripwire™, are distributed by Tripwire Security Systems,
Inc. under exclusive license arrangements. All rights reserved. Some individual files in
this distribution may be covered by other copyrights, as noted in their embedded
comments.

This release is for single CPU and single-site, end-use purposes. Duplication is only
allowed for the purpose of backup. Any other use of this software requires the prior
written consent of Tripwire Security Systems, Inc. If this software is to be used on a
Web site, the “Tripwire Protected” logo can be used on the site home page along with
appropriate copyright and trademark information. Neither the name of Purdue
University nor the names of the authors may be used to endorse or promote products
derived from this material without specific prior written permission.

THIS SOFTWARE IS PROVIDED AS IS AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR
PURPOSE.

Copyright© 1999 Tripwire™ Security Systems, Inc. Tripwire is a trademark of the
Purdue Research Foundation and is licensed exclusively to Tripwire Security Systems,
Inc. All references to other brands or trademarks are the property of their respective
owners.

Tripwire™ Security Systems, Inc.
The Berg Building
615 SW Broadway, Second Floor
Portland, OR 97205, USA
tel: 503.223.0280
fax: 503.223.0182
(www.tripwiresecurity.com)
Email: tripwire@tripwiresecurity.com

ITRIPWIRE™ 2.0 for Unix®

COPYRIGHT NOTICE

Tripwire® 2.0
for Unix®

User’s Guide

IIITRIPWIRE™ 2.0 for Unix®

We recommend that you read and follow the steps below regardless of your
previous Tripwire experience. This document will help you to quickly and
properly configure, install, and use Tripwire.

Installing Tripwire
1. Read the README and Release Notes for the latest Tripwire information.
2. Read the Installation chapter of the User’s Manual.
3. Copy the Tripwire install configuration file (install.cfg) from the

distribution CD to the hard disk of the machine on which you wish to
install the product.

4. Modify install.cfgto specify appropriate installation paths for your system.
5. Run ./install.sh [path]/install.cfg

Configuring Tripwire
6. Read the Running Tripwire chapter of the User’s Manual for an overview

of Tripwire fundamentals.
7. Read the Tripwire Policy File chapter of the User’s Manual.
8. Modify the default policy file, or create your own.
9. Read the Tripwire Configuration File chapter of the User’s Manual.
10. Modify the Tripwire configuration file.

Running Tripwire
(The next steps assume you are working from Tripwire’s /bin directory.
Change paths and filenames as appropriate)
11. Install your customized configuration file:

./twadmin --create-cfgfile --site-keyfile ../key/site.key twcfg.txt
12. Install your customized policy file:

./twadmin --create-polfile ../policy/twpol.txt
13. Initialize your Tripwire database:./tripwire --init

Congratulations! If you successfully completed these steps, then Tripwire is
set and ready to go.

II TRIPWIRE™ 2.0 for Unix®

INTRODUCTION : QUICK START

Dear Tripwire customer,

As you may know, Purdue University has elected to transfer management and
product responsibility for the Tripwire security system to its co-developer Mr.
Gene Kim and his firm Tripwire™ Security Systems, Inc. of Portland, Oregon,
where he is now Chief Technology Officer.

This decision was made to ensure the continued development and support of
Tripwire and to maintain the integrity of its design goals.

The results of the arrangement will benefit you, Purdue University, and
Tripwire Security Systems by allowing the product to evolve and receive the
necessary focus and resources needed to maintain its functionality in years to
come.

Furthermore, by placing Tripwire with a focused commercial entity, we believe
that there will be resources and motivation to enhance and port Tripwire to a
wider range of uses and platforms. This can only help the user community
concerned with security.

As a business, Tripwire Security Systems will be able to invest the time and
resources for quality technical support. They will also be in a better position to
respond to customer suggestions and integrate valuable new features into future
Tripwire releases.

Thank you for making Tripwire one the most successful security programs ever
written. I look forward to reviewing the progress of our decision to focus the
resources needed to further advance the program´s functionality and value.

Gene Spafford, Ph.D.

4. Policy reference
Overview .. 4.2

Comments .. 4.2

Rules ... 4.2

Normal rules .. 4.2

Object names ... 4.3

Property masks .. 4.6

Stop points ... 4.9

Rule attributes .. 4.10

rulename ... 4.12

severity ... 4.12

emailto .. 4.13

recurse ... 4.13

Directives ... 4.14

Conditional interpretation 4.15

Message reporting 4.16

Indicating end-of-file 4.17

Variables .. 4.17

Predefined variables 4.19

5. Command reference
Command introduction 5.2

tripwire ... 5.3

Introduction .. 5.4

Initializing the database 5.5

Checking integrity 5.6

Updating the database 5.9

Updating the policy file 5.11

twprint .. 5.16

Printing a database file 5.16

Printing a report file 5.17

twadmin ... 5.19

Running twadmin 5.20

Creating a configuration file 5.20

Printing a configuration file 5.21

VTRIPWIRE™ 2.0 for Unix®

TABLE OF CONTENTS

IV TRIPWIRE™ 2.0 for Unix®

TABLE OF CONTENTS

1. Installing Tripwire
Installation Overview 1.2

Tripwire installation files 1.2

Configuring your installation 1.3

Target directories 1.4

Tripwire cryptographic keys 1.6

Keyfile types ... 1.6

Installing Tripwire .. 1.7

Starting the install 1.7

Creating and copying files 1.8

Generating cryptographic keys and

signed files ... 1.9

After installing .. 1.10

2. Running Tripwire
Tripwire files ... 2.2

Tripwire cryptographic keys 2.3

Tripwire programs 2.3

Walkthrough ... 2.4

Writing and installing the policy file 2.4

Initializing the database 2.4

Checking integrity 2.5

Updating the database 2.5

Updating the policy file 2.6

Using email reporting 2.7

3. Configuration reference
Overview ... 3.2

Components of the configuration file 3.2

Comments ... 3.2

Variables ... 3.3

Minimum configuration file 3.6

Installing on multiple systems..................... 3.6

The following typographic conventions are used in
this manual:

Italic is used for file and command
names, and to denote terms
the first time they are used.

Bold is used for ftp and http URLs.

Fixed Width is used in examples to
show text that is entered
literally, and in regular text to
show variables, operators, and
the output from commands
or programs.

Fixed Bold is used in examples to show
actual user input on the
command line.

Fixed Italic is used in examples to show
variables which should be
replaced with a relevant value.

The %prompt is used for all command-line
examples.

The ./ is specified for all Tripwire commands. This
convention is recommended for all users, to ensure
that Tripwire commands are executed from the
appropriate directory, and to protect against Trojan
Horse attacks.

VIITRIPWIRE™ 2.0 for Unix®

CONVENTIONS

Creating a policy file 5.22

Printing a policy file 5.24

Removing encryption

from a file ... 5.24

Encrypting a file 5.26

Examining the encryption status

of a file .. 5.27

Generating keys 5.28

siggen .. 5.29

Running siggen 5.30

6. Appendices
Tripwire’s cryptographic system 6.2

Public and private keys 6.3

Site and local keys 6.3

Cryptography references 6.5

File signatures ... 6.6

Signature functions 6.7

MD5 .. 6.8

SHA/SHS .. 6.8

Haval ... 6.9

CRC-32 ... 6.9

Tripwire quick reference 6.10

VI TRIPWIRE™ 2.0 for Unix®

TABLE OF CONTENTS

VIII TRIPWIRE™ 2.0 for Unix® 1.1TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

Installation Overview 1.2

Tripwire installation files 1.2

Configuring your installation 1.3

Target directories 1.4

Tripwire cryptographic keys 1.6

Keyfile types ... 1.6

Installing Tripwire .. 1.7

Starting the install 1.7

Creating and copying files 1.8

Generating cryptographic keys and

signed files ... 1.9

After installing .. 1.10

INSTALLING TRIPWIRE

Introduction: Installing Tripwire is a simple process, whether

you have a single machine or hundreds of

networked machines. To enhance your

understanding of the installation process, we

have included both an overview, to demonstrate

what you can expect to see, and installation

instructions to take you step-by-step through the

installation process.

1
Chapter
contents:

All installation options are specified as command
line arguments to the install script install.sh, or as
settings in the configuration file.

An example of command line arguments for an
unattended install is shown below.

This table summarizes installer command line
options.

An example of settings found in the configuration
file is shown below:

1.3TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

The Tripwire installation CD contains two complete
distributions of Tripwire 2.0 for Unix, one for
Solaris SPARC™ and one for RedHat Intel Linux™.
The root directory of the CD contains the README
file and release notes. If you have not yet read the
README, it is recommended that you do so now.

In addition to the documentation, each distribution
of Tripwire will have its own directory. The
directories are named Solarisand RedHat. Change
to the directory appropriate for your operating
system. You will see the following files and
directories:

install.cfg is the installation configuration file, a
Bourne shell script used by the installer to set
configuration variables. These settings specify the
target directories where the installer will copy files
and the desired behavior when existing Tripwire
files would be overwritten.

install.shis the installation script, which you run to
begin installation. You can specify that it should read
the default configuration file, or one that you
customized for your site.

pkg is a directory containing files that the
installation script needs to install Tripwire on your
machine. These files are used exclusively by the
installer and should not be modified.

READMEand Release_Notesare text files providing
last-minute product information. These are identical
to the files of the same names in the CD root
directory.

1.2 TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

Installation overview

Tripwire installation
files

Configuring your
installation

The root of the TSS directory tree.
TWROOT="/usr/TSS"

Tripwire binaries are stored in TWBIN.
TWBIN="${TWROOT}/bin"

Argument Meaning

[configfile]

[-n]

[-s passphrase]

[-l passphrase]

[-f]

Use the specified file for installation values.

By default, the installer uses the values in ./install.cfgfor installation
options.

Suppress prompting.

By default, the installer will display all the target directories that will be
created and populated, and prompt the user for verification before
proceeding.

This mode requires the site and local passphrase arguments.

Use the specified passphrase for site key.

Use the specified passphrase for local key.

Specifies that the installer should overwrite any existing files found in
the target directories. This will override the CLOBBER setting in the
install.cfgfile.

% ./install.sh /tmp/install.cfg -s "Darth4Vader" -l "Sky8Walker" -f -n

With the default settings shown above, the installer
will create the following directory tree on your
system.

1.5TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

The table below shows each installer target
directory, as well as its default setting.

1.4 TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

Target directories

Key Default Value Description

TWROOT

TWBIN

TWPOLICY

TWMAN

TWDB

TWSITEKEYDIR

TWLOCALKEYDIR

TWREPORT

CLOBBER

/usr/TSS

${TWROOT}/bin

${TWROOT}/policy

${TWROOT}/man

${TWROOT}/db

${TWROOT}/key

${TWROOT}/key

${TWROOT}/report

false

The root directory for the Tripwire
distribution. The default installation places
all Tripwire files underneath this directory.

Program executables.
Contains all Tripwire program executables
and the Tripwire configuration file.

Policy files.
Contains the Tripwire policy files.

Manual pages.
Contains the Tripwire manual pages.

Database files.
Contains all the Tripwire database files,
created from the system policy files.

Site key.
Contains the site cryptographic key used by
Tripwire to secure configuration and policy
files.

Local key.
Contains the local cryptographic key used
by Tripwire to secure database files and
reports.

Generated reports.
Contains output of Tripwire integrity
checks. Each integrity checking run will
create a file in this directory for archival
purposes.

Specifies whether the installer will
overwrite existing files.

By default, the installer will not overwrite
existing files. When files would be
overwritten, a warning is printed and the file
copy is skipped. An exception is the
configuration and policy files. To insure a
self-consistent installation, new copies of
these files are always produced. Any
existing configuration or policy files are
saved with a .bakextension.

Replace false with true if you wish to
overwrite all files without warning.

/usr
/TSS

README
Release_Notes

/bin
siggen
tripwire
tw.cfg
twcfg.txt
twadmin
twprint

/db

/key
site.key

/key
[machinename]-local.key

/policy
tw.pol
twpol.txt
policyguide.txt

/report

/man
/man4

twconfig.4
twpolicy.4

/man5
twfiles.5

/man8
siggen.8
tripwire.8
twadmin.8
twintro.8
twprint.8

<-TWROOT

<-TWBIN

<-TWDB

<-TWSITEKEYDIR

<-TWLOCALKEYDIR

<-TWPOLICY

<-TWREPORT

<-TWMAN

After customizing the installation configuration file,
you are ready to run the install script. The installer
creates and copies Tripwire files into the target
directories. It also ensures that file and directory
permissions are set correctly and creates the
Tripwire site and local key files.

To start the installation, go to the directory
containing the Tripwire installation files. Typically,
this is either the subdirectory on the Tripwire CD
appropriate for your OS, or a directory containing a
copy of the Tripwire CD.

Run the installation script by typing:

By default, the installation script reads the
configuration file named install.cfg located in the
same directory. However, you can specify an
alternate configuration file on the command line.
This argument is required if you customize the
configuration file and are installing from read-only
media.

Security issue:The install.cfgfile is a Bourne shell
script that is executed by the install script.
Therefore, this file should be inspected before
running to prevent a Trojan Horse attack. (One
method of attacking a system is to replace the
“harmless” contents of a file, such as an install
script, with malicious instructions. Thus the user is
tricked into running a compromised file. This is
commonly known as a Trojan Horse attack.)

1.7TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

After the installation script has copied all files to
your machine, Tripwire will sign sensitive files using
public/private key cryptography. This prevents an
intruder from modifying your policy, configuration,
and database files. Tripwire uses two separate key
files for this operation.

Your site keyis used to sign Tripwire files that can
be shared among many machines. This key is used
for the configuration and policy files.

Your local key is used to sign Tripwire files that are
machine dependent. This key is used for the
database files, and optionally for the report files.

Tripwire’s site and local keys are encoded using
passphrases chosen by the user. A passphraseis
simply another name for “password,” implying that
passphrases should be longer than a typical English
word. Your passphrases should be chosen carefully
and should exhibit the following characteristics:

- Each passphrase should be at least 8
characters. (Note: no constraint checking
is done.)

- Passphrases should include upper and lower
case letters.

- For maximum security, we recommend that
the passphrases not be words that you would
find in a dictionary. Using a combination of
letters and numbers is a good strategy.

It is recommended that the site key and the local key
not use the same passphrase. With two passphrases,
an intruder who compromises the local key on one
machine does not necessarily have the ability to
compromise all other machines.

Please refer to Chapter 6 for more information on
Tripwire’s cryptographic system.

1.6 TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

Tripwire
cryptographic keys

Installing Tripwire

Starting the installKeyfile types

% ./install.sh

% ./install.sh /tmp/install.cfg

When file copying is completed, the install script
creates the site and local key files. This process may
take several minutes. If you have not specified
passphrases on the installer command line, you will
be prompted for the site and local passphrases. At
the end of this process, the installer will create
signed policy and configuration files.

A clear text copy of the Tripwire configuration file is
preserved in the $TWBIN directory as twcfg.txt. If
you wish to change configuration settings, you can
modify this file, and produce a new encoded/signed
tw.cfg file.

By default, the installer creates a sample policy file
called tw.pol. A clear text copy of this policy file is
preserved in the policy directory as twpol.txt. This
file is heavily commented and is specific to the
operating system where Tripwire is being installed.
An additional commented policy file,policyguide.txt,
is installed in the policy directory. It illustrates all
features of the policy language.

These initial policy files are intended only to confirm
basic functionality of Tripwire. Once installation is
complete, you should create an appropriate policy
file to replace the sample file.

Security Issue:For added security, it is
recommended that clear text copies of policy and
configuration files not be stored on systems where
Tripwire is deployed.

1.9TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

The install script will print an opening banner and
list all directories that will be created:

If any of the install target directories already exists,
files could potentially be overwritten. You should be
certain before proceeding that overwriting Tripwire
files in the directories listed is acceptable.

Inspect the list of directories that the installer will
use. If you are satisfied that the list is correct, type
“y” to proceed with the installation.

1.8 TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

Creating and
copying files

Installer program for:
Tripwire(tm) 2.0 for Unix

Tripwire(tm) Copyright 1992-99 by the Purdue Research Foundation of Purdue
University, and distributed by Tripwire Security Systems, Inc. under
exclusive license arrangements.

Using configuration file install.cfg

This program will copy Tripwire files to the following directories:

TWROOT: /usr/TSS
TWBIN: /usr/TSS/bin

TWPOLICY: /usr/TSS/policy
TWMAN: /usr/TSS/man

TWREPORT: /usr/TSS/report
TWDB: /usr/TSS/db

TWSITEKEYDIR: /usr/TSS/key
TWLOCALKEYDIR: /usr/TSS/key

CLOBBER is false.

Continue with installation? [y/n]

Generating
cryptographic keys

and signed files

2.1TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

Tripwire files .. 2.2

Tripwire cryptographic keys 2.3

Tripwire programs 2.3

Walkthrough ... 2.4

Writing and installing the policy file 2.4

Initializing the database 2.4

Checking integrity 2.5

Updating the database 2.5

Updating the policy file 2.6

Using email reporting 2.7

RUNNING TRIPWIRE

Introduction: This chapter is a primer on fundamental

Tripwire concepts. It provides a walkthrough of

Tripwire operations, showing examples of policy

file creation and updating, and report generation.

Examples of other useful Tripwire features are

also presented.

2
Chapter
contents:

Congratulations!

You have successfully completed the Tripwire
installation. In most cases, your next step is to
modify your policy and configuration files, and then
initialize the Tripwire database. Please proceed to
the next chapter for more information on these tasks.

1.10 TRIPWIRE™ 2.0 for Unix®

1 INSTALLING TRIPWIRE

After installing

Two separate sets of keys generated during the
installation process protect critical Tripwire data
files. One or both of these key sets is necessary for
performing almost every Tripwire task.

The site keyis used to protect files that could be
used across several systems. These files include the
policy and configuration files.

The local keyis used to protect files specific to the
local machine, such as the Tripwire database. This
key may also be used for signing integrity check
reports.

Security Issue:You may also wish to back up
Tripwire files on secondary media or to store them
in a remote location for additional safety.

See Chapter 6, Appendices, for more information on
Tripwire’s Cryptographic System.

The following programs are installed as part of the
Tripwire package:

tripwire is used for creating the database, checking
file system integrity, and updating the database or
policy file.

twadminis used for creating the site and local keys,
configuration file, policy files, and signing files.

twprint verifies and prints Tripwire database and
report files in a human-readable ASCII format.

siggengenerates and prints cryptographic signatures
for specified files. This can assist in verifying the
integrity of system files without doing an entire
Tripwire integrity check.

2.3TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

Tripwire run-time operation is affected by the
configuration, policy, and database files. Each of
these files allows you to control a separate aspect of
Tripwire behavior. Together, these files work
together to ensure the security and integrity of your
system.

The configuration filestores system-specific
information, such as the location of the Tripwire
data files. Some of this information is generated by
the Tripwire installation script, but other parameters
may need to be changed by the system administrator.
See Chapter 3, Configuration Reference, for more
details.

Thepolicy filedescribes the system objects to be
monitored, and the allowed changes. Should
unexpected changes occur, the policy file can
describe the person to be notified and the severity of
the violation. See Chapter 4, Policy Reference, for
more details.

The database fileserves as the baseline for integrity
checking. After the database is created, the Tripwire
integrity checker compares each system object in the
policy file against its actual entry in the database. If
an object has changed outside of constraints defined
in the policy file, a violation is reported.

Once the three files have been created, Tripwire can
generate reports that describe the differences
between the actual system and the data contained in
the Tripwire database. This information is archived
into report files, a collection of rule violations
discovered during an integrity checking run.

It is critical that Tripwire files be protected—an
attacker who is able to modify these files can
subvert Tripwire operation. For this reason, all of the
files above are signed using public key cryptography
to prevent unauthorized modification.

2.2 TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

Tripwire files Tripwire cryptographic
keys

Tripwire programs

After creating the baseline database, you can check
the integrity of your file system by running the
tripwire program in Integrity Checking mode.

This will print a Tripwire report to stdoutand save a
binary report file as specified by the REPORTFILE
setting in the configuration file.

If acceptable changes are reported in the Tripwire
report, you can update specific object information in
the database. The easiest way to do this is to run
tripwire in Integrity Checking mode using the
interactive option.

An editor session will open, using the program
specified by the EDITOR setting in the
configuration file. Each change in the report will be
displayed with a corresponding “ballot box.”
Deselect all the unacceptable changes in the ballot
boxes, write the file, and exit to update the database.

You can also update the database directly from any
binary report file using the following command.

Security Issue:The $EDITOR environment variable
is not used by Tripwire. This is to reduce the
exposure to Trojan Horse attacks—for example, the
$EDITOR environment variable could be changed to
run an untrusted program with malicious side
effects.

2.5TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

This section describes the steps that a new Tripwire
administrator might take after completing the
installation process. These include generating a
Tripwire database, creating Tripwire integrity
checking reports, updating the database, and
administering various configuration files.

During installation, Tripwire creates a generic policy
file tw.pol. For optimal performance, you will need
to create a policy file tailored to your system. It may
be helpful to refer to the policyguide.txtfile as you
do this.

A very simple policy file named twpol.txtmight
contain just one line:

In order for Tripwire to use this file as its policy, it
must be encoded with the site key generated at
install time. To do this, run the twadminprogram in
Create Policy mode.

This will encode and sign the specified clear text file
twpol.txtusing the site key, and install it to the
location specified by the POLFILE setting in the
configuration file.

After installing the policy file, the next step is to
create the baseline Tripwire database. To do so, run
the tripwire program in Database Initialization
mode.

2.4 TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

Walkthrough

Writing and
installing the
policy file

Initializing the
database

Checking integrity

Updating the
database

/tmp -> $(ReadOnly) ;

% ./ twadmin --create-polfile ../policy/twpol.txt

% ./ tripwire --init

% ./tripwire --check

% ./tripwire --check --interactive

% ./tripwire --update --twrfile ../report/reportfile.twr

Email reporting adds considerable flexibility to
Tripwire policies. Consider the following policy that
describes two distinct areas of responsibility,
distributed between two administrators.

These rules specify that any violation to the OS
executables rule are reported to Susan via email.
Violations in the Web files rule will cause a report to
be sent to Brian. To activate this feature, email
reporting must be specified in the policy file, and the
--email-reportoption must be used:

This will generate a Tripwire report to stdout, and
also send email to the persons specified in the policy
file using the program specified by the
MAILPROGRAM setting in the configuration file.

2.7TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

If you wish to update the Tripwire policy file, you
will need to save it as a clear text file, edit it, and
install it as the new policy file (similar to the first
step in this walkthrough).

This process will sign the specified clear text file
twpol.txt using the site key, and install it in the
directory specified in the configuration file. For
security reasons, you may want to delete the clear
text version of the policy file at this time.

You can confirm that your policy changes have taken
effect by running tripwire in Integrity Checking
mode.

Security Issue:Once the initial policy file has been
generated, any changes should be made with the
tripwire --update-policycommand, rather than by
simply overwriting the policy file with the
twadmin --create-polfilecommand. When a new
policy file is created, the Tripwire database must be
re-initialized. If an intruder has modified files since
the last integrity check, these changes will not be
detected, and will be included as part of the new
baseline database.

2.6 TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

Updating the policy
file

Using email
reporting

print out the policy file
% ./twadmin --print-polfile > ../policy/twpol.txt

edit the file
% vi ../policy/twpol.txt

install the new policy file
% ./tripwire --update-polfile ../policy/twpol.txt

/bin -> $(ReadOnly)
(rulename="OS executables", emailto=Susan) ;

/http -> $(ReadOnly)
(rulename="Web files", emailto=Brian) ;

% ./tripwire --check --email-report

2.8 TRIPWIRE™ 2.0 for Unix®

2 RUNNING TRIPWIRE

3.1TRIPWIRE™ 2.0 for Unix®

3 CONFIGURATION REFERENCE

Overview ... 3.2

Components of the configuration file......... 3.2

Comments ... 3.2

Variables ... 3.3

Minimum configuration file 3.6

Installing on multiple systems 3.6

CONFIGURATION REFERENCE

Introduction: The Tripwire configuration file contains
information describing a variety of adjustable
parameters that affect Tripwire operation.
Although some parameters are generated by the
installation script, others may need to be set by
the Tripwire administrator. This chapter
describes the format of the configuration file and
consists of the following sections:

3
Chapter
contents:

3.3TRIPWIRE™ 2.0 for Unix®

3 CONFIGURATION REFERENCE

When Tripwire is first installed on a system, the
installation script will read the installation
configuration file install.cfg, unless an alternate
configuration file is specified on the command line.
By default, the installation script will create an
encoded and signed Tripwire configuration file
tw.cfg in the /usr/TSS/bin directory, and a clear text
copy of this configuration file twcfg.txtin the same
directory.

Note that the install.cfgfile is used only once, to
designate target directories during the initial
installation of the Tripwire software. See Chapter 1,
Installing Tripwire, for more information.

The Tripwire configuration file is modified using the
twadmin --create-cfgfilecommand. With this
command, the user can designate an existing clear
text file as the current configuration file. Using the
current site key and passphrase, the new
configuration file is encoded, signed, and saved.
For example:

The Tripwire configuration file is structured as a list
of keyword-value pairs, and may also contain
comments and variable definitions. The syntax for
the configuration file is similar to, but not identical
with, with the syntax used for the policy file
(described in Chapter 4).

Any lines with # in the first column are treated as
comments. For example:

3.2 TRIPWIRE™ 2.0 for Unix®

3 CONFIGURATION REFERENCE

The general syntax for variable definition is:

For example:

Variable substitution on the right hand side is
permitted using the syntax:

For example:

Variable names are case sensitive, and may contain
all alphanumeric characters, underscores, the
characters +-@: , and period. It is an error to use a
variable before it has been defined. Certain variables
are read-only, and attempting to override such
variables is an error.

Two variables are predefined by the Tripwire
package and may not be changed:

Overview

Components of the
configuration file

Comments

This is a comment in the TW config file.

% ./ twadmin --create-cfgfile --site-keyfile ../key/site.key configfile.txt

Variables

keyword = value

EDITOR = /usr/local/bin/jove

$(varname)

DBFILE = $(ROOT)/db/$(HOSTNAME).db

Variable Name Meaning

HOSTNAME

DATE

Unqualified hostname that Tripwire is running on.
(e.g., leonardo)

String representation of date and time.
(e.g., 19980930-180833)

3.5TRIPWIRE™ 2.0 for Unix®

3 CONFIGURATION REFERENCE

3.4 TRIPWIRE™ 2.0 for Unix®

3 CONFIGURATION REFERENCE

The following variables must be set in order for
Tripwire to operate. The initial values shown below
are the values assigned during installation if the
default install.cfgfile is used. Relative pathnames
are permitted, expressed in relation to the directory
in which the Tripwire binaries reside.

The following variables are not required to run
Tripwire, but some of the program’s functionality
will be lost without them.

Variable
Name

Set by
InstallerRequired Description

POLFILE

DBFILE

REPORTFILE

SITEKEYFILE

LOCALKEYFILE

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

Default policy file.
Initial value:
$(ROOT)/policy/tw.pol

Default database file.
Initial value:
$(ROOT)/db/$(HOSTNAME).db

Specifies name of generated reports.
Initial value:
$(ROOT)/report/$(HOSTNAME)-$(DATE).twr

Specifies default site key file.
Initial value:
$(ROOT)/key/site.key

Specifies default local key file.
Initial value:
$(ROOT)/key/$(HOSTNAME)-local.key

Variable
Name

Set by
InstallerRequired Description

EDITOR no yes Specifies editor to be used in any interactive
mode. If EDITOR is not defined, and no editor is
specified on the command line, specifying
interactive mode will cause an error.

The editor specified must be able to take a
filename as a command line parameter. If the
process is killed, it must exit with a non-zero
status.

Initial value:
/bin/vi

Variable
Name

Set by
InstallerRequired Description

MAILPROGRAM

LATEPROMPTING

LOOSEDIRECTORY
CHECKING

no

no

no

yes

yes

yes

MAILPROGRAM is used to specify the program
that will be used for email reporting of rule
violations detected by Tripwire. The program
must take an RFC822 style mail header.
Recipients will be listed in the “To:” field of the
mail header

Mail headers and the body of the report are then
sent to stdinof MAILPROGRAM. The mail
program must be able to ignore lines that consist
of a single period (the -oi option to sendmail
produces this behavior).

If MAILPROGRAM is not defined in the
configuration file, requests for email notification
will cause an error.

Initial value:
/usr/lib/sendmail -oi -t

Prompt for passphrases as late as possible to
minimize the amount of time that the password is
stored in memory. If the value is true (case
sensitive), then late prompting is turned on. If it
is set to any other value, or is removed from the
configuration file, its value is interpreted as
false and late prompting is turned off.

Initial value:
false

When a file is added or removed from a
directory, Tripwire reports both the changes to
the file itself and the modification to the
directory (size, number of links, etc.) This can
creates redundant entries in Tripwire reports.
With loose directory checking, Tripwire will not
check directories for any properties that would
change when a file is added or deleted. This
includes: size, number of links, access time,
change time, modification time, number of
blocks, growing file, and all hashes.

If the value for this variable is true (case
sensitive), then loose directory checking is turned
on, and these properties will be ignored for all
directories. Turning loose directory checking on
is equivalent to appending the following property
mask to the rules for all directory inodes:
-snacmblCMSH

Initial value:
false

(table continued next page)

(table continued)

4.1TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

Overview .. 4.2

Comments.. 4.2

Rules ...4.2

Normal rules ... 4.2

Object names ...4.3

Property masks ..4.6

Stop points .. 4.9

Rule attributes .. 4.10

rulename ... 4.12

severity ... 4.12

emailto .. 4.13

recurse .. 4.13

Directives .. 4.14

Conditional interpretation 4.15

Message reporting 4.16

Indicating end-of-file 4.17

Variables ... 4.17

Predefined variables 4.19

POLICY REFERENCE

Introduction: The Tripwire policy file describes which
components of a system should be scanned by
Tripwire, and specifies the types of data to be
collected and stored in the database file. This
chapter describes the format of the policy file
and consists of the following sections:

4
Chapter
contents:

The following is an example of the minimum
requirements for a Tripwire configuration file. Note
that the values specified here are merely examples;
the important point is that each of the variables
below must have some valid assigned value.

If any of these variables is not defined, Tripwire will
report an error and will exit. There is no limit to the
number of additional variables that may be defined.

Note: Variables are case sensitive. “polfile” is not
the same as “POLFILE”

To share a single site key file across multiple
systems, place the site key file on a shared volume
and specify the location of that key file in the
configuration file. For example:

3.6 TRIPWIRE™ 2.0 for Unix®

POLFILE=/usr/local/tw/policy/tripwire.pol
DBFILE=/usr/local/tw/db/tripwire.db
REPORTFILE=/usr/local/tw/report/tripwire.twr
SITEKEYFILE=/usr/local/tw/key/site.key
LOCALKEYFILE=/usr/local/tw/key/local.key

SITEKEYFILE=/mnt/server/keydir/site.key
LOCALKEYFILE=/usr/local/tw/key/local.key

Installing on
multiple systems

Minimum
configuration file

3 CONFIGURATION REFERENCE

An objectname is the fully qualified pathname for a
directory or file, and the property mask specifies
what properties of the object to examine or ignore.
The -> token separates the objectname and the
property mask, and a semicolon must terminate the
rule. If the pathname specified is a directory, the
directory and all of its descendants will be scanned
with the indicated property mask. If the pathname
refers to an individual file, only that file will be
scanned with the specified mask. Examples of
normal rules are:

Only one rule may be associated with any given
object. If an object has more than one rule in a
policy file, tripwire will print an error message and
exit without scanning any files.

In the policy file, objects may not be expressed
using environment variables, for security reasons.

Examples:

4.3

4 POLICY REFERENCE

4.2 TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

TRIPWIRE™ 2.0 for Unix®

Comments

The policy file describes which system objects
Tripwire should monitor. In Tripwire 2.0, objects are
defined as files and directories. A property mask is
associated with each object in the policy file,
describing what types of changes Tripwire should
monitor and which ones can safely be ignored.

Comments, rules, directives, and variables are the
standard components of the policy file. Each of
these components is described in detail below.

In a policy file, any text following a #, up to the
next line break, is considered a comment.

Example:

Policy rules determine whether and to what extent
Tripwire will check the integrity of particular files
and directories.

There are two kinds of policy rules recognized by
Tripwire: 1) normal rules define which properties of
a particular file or directory tree Tripwire should
scan; 2) stop points tell Tripwire not to scan a
particular file or directory. Each of these policy rules
is described in detail below. The meaning of a set of
policy rules is unaffected by the order in which the
rules appear.

A normal rule associates a system object with a
property mask. The syntax for a normal rule is:

Overview

This is a comment
/bin -> $(ReadOnly) ; # A comment can go here, too.

Rules

Normal rules
Object names

objectname -> property-mask ;

Defines tripwire behavior for the entire /bin directory tree.
/bin -> $(ReadOnly) ;

Defines tripwire behavior for a single file. In this case,
Tripwire watches all properties of hostname.hme0.
/etc/hostname.hme0 -> $(IgnoreNone) ;

Scan the entire /etc directory tree using mask1, except
the file /etc/passwd, which should be scanned using mask2.
/etc -> $(mask1) ;
/etc/passwd -> $(mask2) ;

WARNING: this is an example of an illegal construct.
It is an error to specify more than one rule for a given object.
/usr/bin -> $(mask3) ;
/usr/bin -> $(mask4) ;

/etc # valid
/etc/passwd # valid
$HOME # not valid

4.5TRIPWIRE™ 2.0 for Unix® TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

4.4

4 POLICY REFERENCE

Therefore, all of the following rules are equivalent:

Filenames can contain escape sequences inside
quoted strings to handle unprintable characters. The
escaped sequences are interpreted in the same way
as in the C++ language. The following examples
define allowable sequences:

octal numbers \412 (1, 2, or 3 octal digits)
hex numbers \x2AFB1... (’x’ followed by one
or more hex digits)
characters: \t, \v, \b, \r, \f, \a, \\, \?, \', and \"
all other escaped characters are treated as if
not escaped.

Examples:

Tripwire recurses into directories but only within the
current filesystem. In other words, Tripwire does not
cross mount points. More specifically, Tripwire will
not recurse into any subdirectories which have a
different device number as returned from lstat(2).

The following regular expression defines the
characters that are not allowed in object names:

In other words, any character is allowed except for
an exclamation point, braces, greater-than sign,
parentheses, newline, tabs, spaces, commas,
semicolons, equal sign, dollar sign, pound, vertical
bar, backslash, and quote.

Legal example:

Illegal example:

Because object names may contain characters that
are not allowed on the left-hand side of rules,
Tripwire supports quoted object names. Object name
quoting might be needed when, for example, the
object name contains spaces, exclamation marks, or
equals signs. Object names with these characters
must be double-quoted.

Examples:

Object names are concatenated; whitespace inserted
between or within object names is ignored. Quotes
are also ignored, unless inside a quoted string and
preceded by a backslash. This allows more flexible
handling of variable substitution and quoting.

([^!\{\}>\(\)\n\r\t \,;=$#\|\\\"]+)

/usr/local

/usr/local/weird-filename-characters->;=-here

"c:/program files" -> $(ReadOnly) ;
"c:/bang!.doc" -> $(ReadOnly) ;

/usr/local -> $(ReadOnly) ;
/usr /local -> $(ReadOnly) ;
"/usr" "/local" -> $(ReadOnly) ;
/usr / local -> $(ReadOnly) ;

/test # "/test"
"/te\x73t2" # "/test2"
"/te\163t3" # "/test3"
/tes\t # ILLEGAL: escape sequences only valid in double quotes

··
··

TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

4.6 4.7TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

When property symbols appear in a selection mask
without any preceding plus or minus sign, then plus
is assumed.

The plus and minus signs are not unary operators;
they toggle an internal state, so once a plus or minus
appears in the selection mask, it applies to all
successive properties until another plus or minus
appears. All three of these selection masks are
equivalent:

In cases of duplicate or contradictory symbols, only
the last symbol is acted upon. For example:

It is an error to specify an empty selection mask.
Specifying a selection mask that consists only of
plus and minus characters is also an error. However,
it is legal to specify a mask in which no properties
are turned on. This is equivalent to specifying
$(IgnoreAll) and is useful for monitoring only
deletion or addition of files.

For example, if /usr/local is a mount point, then

would cause all of /usr to be scanned except the
directory tree rooted at /usr/local. If the goal is to
scan /usr in its entirety, including /usr/local, the
following rules should be specified:

Property masks describe object properties and
whether Tripwire should examine each such
property. The correct syntax is described by the
following regular expression:

That is, the property mask must include one or more
property symbols, each of which may be preceded
by an optional plus or minus sign. Each
one-character symbol is an abbreviation for a
particular property that Tripwire is able to examine
during integrity checking. If the character is
preceded by a plus, checking is done for that
property; if preceded by a minus, checking is not
done for that property. For example:

Properties not specified are ignored, so not
specifying a property in the mask and explicitly
turning it off with a minus sign are equivalent
operations. The minus sign becomes most useful
when variables (see below) are used to specify part
of the mask. For example:

/usr -> +pinugsmc-a ;
/usr/local -> +pinugsmc-a ;

Property masks

/usr -> +pinugsmc-a ;

([+-]*[pinugtsldbamcCMSH])+

+p # compare permissions
-p # ignore permissions

mask = +pinug ; # define a variable called 'mask'
/file -> $(mask)-g ; # use the mask defined by 'mask', but

turn off property 'g'

+p+n # compare permissions and number of links
pn # same as above

+p+n+s # compare permissions, number of links, and file size
+pns # same as above
pns # same as above

+p # compare permissions
+p-p # ignore permissions
+p-p+p # compare permissions
+p+-p # ignore permissions

/temp -> +p-p ; # This is legal but is equivalent to $(IgnoreAll).
/tmp -> ; # No property mask specified. This is not legal.

TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

4.9

Characters which may be used to construct property
masks:

To specify that certain directories or files not be
scanned, stop points are used. The syntax is:

As with normal rules, the objectname is the fully
qualified pathname for a directory or file and a
semicolon must terminate the stop point rule.

Consider the case where a policy rule has been
specified for /etc. The entire /etcdirectory tree will
be scanned recursively. Using stop points, it is
possible to have Tripwire ignore particular files in
the /etchierarchy.

As described above, only one rule may be associated
with any given object. This includes all types of
rules, not just simple rules. The following illustrates
this point.

TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

4.8

! objectname ;

Scan all of /etc recursively, but do not scan two particular
files present in the /etc hierarchy.
/etc -> $(ReadOnly) ;
!/etc/rc.d ; # ignore startup files
!/etc/mnttab ; # ignore dynamic listing of mounted filesystems

WARNING: this is an example of an illegal construct.
It is an error to specify more than one rule for a given object.
/usr/bin -> $(mask3) ;
!/usr/bin ;

Symbol Description

-

+

p

i

n

u

g

t

s

l

d

b

a

Ignore the following properties

Record and check the following properties

Permission and file mode bits

Inode number

Number of links (i.e., inode reference count)

User id of owner

Group id of owner

File type

File size

Indicates that the file is expected to grow. If the file is smaller than the
last recorded size, it is reported. Useful for log files, where Tripwire can
check to make sure that files do not shrink.

Note: If a file grows from size A to size B, where B>A, no violation is
reported and the TW database is not updated. The most recent
information in the TW database is that the file has size A.

If the file then shrinks in size from B to C, where A<C<B, again, no
violation is reported because C is still larger than A. Without explicitly
updating the database, these violations cannot be reported, despite
specifying this property.

Device number of the disk on which the inode associated with the file is
stored

Number of blocks allocated

Access timestamp

Note: The +a property is incompatible with the signature function
properties (+CMSH). In order to calculate the hash, the file must be
opened and read, which changes the access timestamp. Specifying any
of +CMSHwill always cause a violation of the +a property.

Because enumerating a directory’s contents changes that access
timestamp, specifying +a in a directory rule will always cause a
violation for the +a property during the next integrity check. To avoid
this behavior, use recurse = false in the rule attribute, set
LOOSEDIRECTORYCHECKING = true in the configuration file, or
add -a to the rule.

Symbol Description

m

c

C

M

S

H

Modification timestamp

Inode creation/modification timestamp

CRC-32, POSIX 1003.2 compliant 32-bit Cyclic Redundancy Check.

MD5, the RSA Data Security, Inc.® Message Algorithm

SHA, the NIST Secure Hash Algorithm (NIST FIPS 180)

Haval, a strong 128-bit signature algorithm

(table continued next page)

(table continued)

Stop points

Rule attributes are associated with individual normal
rules according to the following syntax

Example:

Rule attributes can also be specified for a group of
rules:

Example:

The following two sets of rules (single and scoped
respectively) are equivalent:

4.11TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

Rule attributes provide additional information or
modify Tripwire behavior and are associated with
normal rules. For example, if a policy rule is broken,
rule attributes can specify an email address to which
notification should be sent. Rule attributes use the
following format:

Rule attributes can take only one argument. To
specify more than one address with the emailto rule
attribute, the entire space-delimited list of addresses
must be quoted:

Attribute names are case insensitive. It is an error to
specify attributes for a stop point rule or to set an
attribute that is not associated with any rule.
Attributes are hard-coded in Tripwire; the following
are currently supported:

4.10 TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

object -> property-mask (attribute-list) ;

/usr/lib -> $(ReadOnly) (emailto = admin@foo.com) ;

(attribute-list)
{

rule-list
}

(emailto = admin@foo.com)
{

/usr/lib -> $(ReadOnly) ;
/usr/sbin -> $(IgnoreNone) ;

}

/usr/lib -> +pinug (emailto = admin@foo.com) ;
/usr/bin -> +pinug (emailto = admin@foo.com) ;

(emailto = admin@foo.com)
{

/usr/lib -> +pinug ;
/usr/bin -> +pinug ;

}

Rule attributes

(attribute_name = attribute_value , attribute_name = attribute_value , …)

(emailto="one@machine.com two@machine.com") # Correct
(emailto=one@machine.com two@machine.com) # Incorrect
(emailto="one@machine.com" "two@machine.com") # Incorrect

Attribute Description

rulename

severity

emailto

recurse

Name associated with rule.
Default is the object name to which the rule applies.

Numeric severity level associated with rule.
Default is 0. Range is 0 to MAXINT(operating system dependent).

Email address(es) to which notification of any violations is sent.
Default is none .

Recursively scan the contents of a directory.
Default is true .

4.13TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

4.12 TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

The emailto rule attribute allows one or more email
addresses to be associated with a rule. When the rule
is violated, notification is sent to the specified email
address(es). The emailto attribute takes only a single
argument, so to specify multiple email addresses,
include them as a quoted, space-delimited list. For
example:

Correct examples:

Incorrect example:

Note that the emailto rule uses the mail program
specified by the MAILPROGRAM variable in the
configuration file. See Chapter 3, Configuration
Reference, for more information. Also note that
email is sent only if the --email-report argument of
the tripwire command is specified.

When the recurse rule attribute is set to true and
the rule refers to a directory object,tripwire will
recursively scan the entire contents of the directory
(both files and subdirectories). When the recurse rule
attribute is set to false and the rule refers to a
directory object,tripwire will scan the inode
corresponding to the directory but none of the files
or subdirectories contained therein. When a rule
refers to a file (as opposed to a directory), specifying
the recurse attribute has no effect—the file will be
scanned no matter what value recurse is given. The
default value for recurse is true .

/bin -> $(ReadOnly) (emailto=admin@foo.com) ; # ok
/etc -> $(ReadOnly) (emailto="admin@foo.com noc@foo.com") ; # ok

/bin -> $(ReadOnly) (emailto = admin@foo.com noc@foo.com) ; # WRONG!

emailto

recurse

The rulename attribute is used to associate a
symbolic name with one or more rules. This ability
can be used to provide additional information in the
report file. For example:

The effect of these three lines is to associate the
symbolic name,rcfiles , with the three objects
named in the rules. In a report file, the results for
these three rules would be flagged as originating
from rules named rcfiles . This feature is useful
if you wish to track certain objects within a large
Tripwire database. For example, important files in
different directories can be tagged with a unique
rulename (e.g. rulename=watchme). You can
then run tripwire and interpret your data later using
the rulename watchme as a sorting key.

This attribute associates a severity level with a rule.
When tripwire is run in Integrity Checking mode, it
is possible to specify that only rules exceeding a
certain severity level be used. For example:

The default severity value is 0, and the range of legal
values is 0 to MAXINT, defined by the operating
system.

rulename

severity

/home/.login -> $(ReadOnly) (rulename=rcfiles) ;
/home/.cshrc -> $(ReadOnly) (rulename=rcfiles) ;
/home/.logout -> $(ReadOnly) (rulename=rcfiles) ;

In the policy file:
/usr/lib -> $(ReadOnly) (severity=80) ;

On the command line:
Rule will be run in this case
% ./tripwire --check --severity 60

Rule will not be run in this case
% ./tripwire --check --severity 90

4.15TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

4.14 TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

Note that the directives cannot result from variable
expansion. The following illustrates correct and
incorrect syntax:

The @@ifhost , @@else, and @@endif directives
are used to allow conditional interpretation of a
policy file. The syntax for each is:

Where host1 , host2 , … are unqualified
hostnames.

The following illustrates how one might employ
directives to use one policy file with four different
hosts:

If the unqualified hostname of the machine running
Tripwire matches any of the hosts listed in the
@@ifhost directive, all the lines between the
@@ifhost and the matching @@endif are
interpreted.

@@ifhost spock || kirk
/bin -> $(ReadOnly) ;

@@endif

@@ifhost chekov || uhura
/usr/bin -> +pinug ;

@@else
/usr/bin -> +pinugsmC ;

@@endif

machine = spock
@@ifhost $(machine) # This is correct syntax...

IFHOST=ifhost
@@ $(IFHOST) spock # ...but this will produce an error.

Conditional
interpretation

@@ifhost host1 || host2 || …
@@else
@@endif

For example, to monitor the attributes of the /tmp
directory without monitoring any of its contents, the
following would be used:

Tripwire supports a small set of preprocessor-like
directives that allow conditional interpretation of the
policy file and perform certain diagnostic and
debugging operations. The primary intent of this
mechanism is to support sharing a policy file among
multiple machines. Directives have the following
syntax:

White space may precede or follow the @@
construct, but non-whitespace characters may not
appear on the line before the @@construct, nor may
any characters intervene between the two @
characters. Directive names are case sensitive. The
following directives are supported (each of these is
described in detail below):

/tmp -> $(ReadOnly) (recurse=false) ;

@@ directive_name [arguments]

Directives Description

@@ifhost
@@else
@@endif

@@print
@@error

@@end

Allow conditional interpretation of the policy file.

Print a message to stderrand optionally exit.

Marks the logical end-of-file.

Directives

4.17TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

If there is no match, any lines between the
@@ifhost and @@endif are skipped. However, if
there is an @@elsein those skipped lines, any lines
between the @@elseand @@endif are interpreted.
There is no @@elsif directive.

Note that only the logical OR operation is supported.

The @@ifhost and @@elsedirectives can be
nested arbitrarily deeply. For example:

The @@print and @@error directives are
intended for debugging and remote diagnostics. The
syntax is:

Note: Only one string is allowed as a parameter to
these directives, so quoting may be necessary to
achieve the desired result.

Examples:

The @@print directive merely prints its arguments
to stderr, while the @@error directive prints its
arguments to stderrand then causes the calling
program to exit with a status of 1.

4.16 TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

The @@enddirective marks the logical end of the
policy file. Any text appearing after this directive
will be ignored by Tripwire applications.

For user convenience and to allow reuse of
properties, Tripwire supports variables for string
substitution.

Variables can be defined anywhere between rules.
The syntax for variable definition is:

Variable names are case sensitive, and may contain
all alphanumeric characters, underscores, the
characters +-@: , and period. The regular expression
for variable names is:

The scope of a variable begins at the point where it
is defined to the end of the file. It is an error to use a
variable before it has been defined. Examples of
variable definition are:

Indicating end-of-file

Variables

varname: [A-Za-z0-9+\-@:]+

varname = value ;

path = /usr/local/lib/bigproject ;
mask1 = +pinugC-a ;

@@ifhost chekov || uhura
@@else

@@ifhost bones
@@endif

@@endif

Message reporting

@@print STRING
@@error STRING

@@print string # okay
@@print "Two strings" # okay
@@print two strings # ERROR

Variables that are not predefined by Tripwire may be
overridden by the user. However, it is not legal to
override variables predefined by Tripwire (see
below).

The following are all examples of improper use:

4.19TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

4.18 TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

This is fine…
mask = +p ;
/fileA -> $(mask) ;
mask = -p+u ;
/fileB -> $(mask) ;

WARNING: these are examples of illegal constructs.
It is an error to replace a literal token with a variable.
arrow = -> ;
/file $(arrow) +pug ;

It is an error to replace a directive with a variable.
ifhostnameis = @@ifhost ;
$(ifhostnameis) kirk

It is an error to override a pre-defined variable.
ReadOnly = +pinugsmCMSH-ac ;

Predefined
variables

Variable substitution is legal anyplace that a string
could appear. The syntax for variable substitution is:

Variables may be used on the lefthand side of rules:

Variables may also be used on the righthand side of
rules:

Variables may be used in directives:

Note, however, that tokens cannot be included in
variable substitutions, and therefore the following
would not work (the “||” construct is a token).

$(varname)

Set the variable…
path = /usr/local/lib/bigproject ;
…and now use it.
$(path)/src -> +pug ;
$(path)/exe -> +pugntmc ;

Set the variable…
mask1 = +pinugC-a ;
…and now use it.
/home/projectA -> $(mask1) ;
/home/projectB -> $(mask1)+MSH-db ;

Define a variable listing all machines in sales.
sales_department = jupiter || mars || pluto || mercury ;

@@ifhost $(sales_department) # ERROR
etc.
@@endif

Define a machine.
server = jupiter ;

@@ifhost $(server)
etc.
@@endif

Symbol Description

ReadOnly

Dynamic

Growing

IgnoreAll

IgnoreNone

Device

File is read only:
Expands to:+pinugsmtdbCM-acSH

File changes:
Expands to:+pinugtd-sacmbCMSH

File is log file, which can grow (but not shrink):
Expands to:+pinugtdl-sacmbCMSH

Ignore all attributes:
Expands to:-pinusgslamctdbCMSH

Ignore no attributes:
Expands to:+pinusgsamctdbCMSH-l

Device file:
Expands to :+pugs-intldamcCMSH

5.1TRIPWIRE™ 2.0 for Unix®

5 COMMAND REFERENCE

4.20 TRIPWIRE™ 2.0 for Unix®

4 POLICY REFERENCE

Command introduction 5.2

tripwire ... 5.3

twprint .. 5.15

twadmin .. 5.19

siggen ... 5.29

COMMAND REFERENCE

Introduction: This chapter provides an overview of the

four programs used by Tripwire. The various

modes for each program are described in

detail, with a complete list of command line

options.

5
Chapter
contents:

TRIPWIRE™ 2.0 for Unix® 5.3

5 TRIPWIRE COMMAND REFERENCE

TRIPWIRE

Introduction 5.4

Initializing the database 5.5

Checking integrity 5.6

Updating the database 5.9

Updating the policy file 5.11

Section
contents:

All Tripwire applications (except siggen) observe the
following convention for command lines.

That is, the mode selector must always be the first
argument on the command line, and any files not
associated with the command line options must
appear last on the command line. For example:

Specifying command line arguments in any other
order will generate a syntax error.

All Tripwire applications support the following
argument for obtaining usage, version, and copyright
information. If this argument is present on the
command line, the help message will be displayed
and all other command line arguments will be
ignored.

5.2 TRIPWIRE™ 2.0 for Unix®

5 COMMAND REFERENCE

Command
introduction

% ./ command mode-selector [options] [files]

% ./ twadmin --create-cfgfile --site-keyfile keyfile configfile.txt

Argument Meaning

-?
--help

Display version and usage information and exit.

When run in Database Initialization mode,tripwire
reads the policy file, generates a database based on
its contents, and then cryptographically signs the
resulting database. The database will be created in
the location specified by the DBFILE variable in the
Tripwire configuration file, unless another location
is specified on the command line. Additional
command line options can be entered to specify
which policy, configuration, and key files are used to
create the database. If no options are specified, the
default values from the current configuration file are
used.

5.5TRIPWIRE™ 2.0 for Unix®5.4 TRIPWIRE™ 2.0 for Unix®

5 TRIPWIRE COMMAND REFERENCE

Initializing the
database

Argument Meaning

Mode of operation

-m i
--init

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration file overrides (input)

[-p polfile]
[--polfile polfile]

[-c cfgfile]
[--cfgfile cfgfile]

[-S sitekey]
[--site-keyfile sitekey]

[-L localkey]
[--local-keyfile localkey]

Configuration file overrides (output)

[-d database]
[--dbfile database]

Selects database initialization mode.
Create the baseline Tripwire database from the
specified policy file.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Use the specified policy file.

Use the specified configuration file.

Use the specified site key file to read the
configuration and policy files.

Use the specified local key file to write the database
file.
(Mutually exclusive with -e).

Write to the specified database file.

(table continued next page)

The tripwire command runs in one of four modes:
Database Initialization, Integrity Checking, Database
Update, or Policy Update.

In Database Initialization mode, Tripwire builds a
database of system objects as described in the policy
file. This database will serve as the baseline for later
integrity checks.

The Integrity Checking mode generates a report of
additions, deletions, or changes for each object
described in the policy file. By comparing the actual
files residing on the system with information stored
in the database, Tripwire maintains system security.

After running an integrity check, Database Update
mode allows the Tripwire database to be updated
with changes from an integrity check report. This
process allows new information to be added to the
database without having to regenerate the entire
database.

Policy Update mode provides a way to synchronize
the database and policy files after changes are made
to the policy file. This command enables the user to
change the way that Tripwire scans the system,
without having to do a complete re-initialization of
the database.

Valid command line arguments for each mode are
shown in the sections below. The following
conventions are used:

[-f filename] Optional arguments are in square
brackets. All other arguments are
required.

-m {I, D, P, Z} Arguments that must be chosen
from a set are in curly braces.

5 TRIPWIRE COMMAND REFERENCE

Introduction

configuration file with the EDITOR variable is
launched on a clear text copy of the Tripwire report.
In that report, next to every rule violation, will be
“ballot boxes” that look like this:

If you leave the “x” in the ballot box, the database
will be updated. That is, you approve this change to
the filesystem. If you remove the “x” from the ballot
box, then the database will not be updated with the
new value(s) for that object.

5.7TRIPWIRE™ 2.0 for Unix®5.6 TRIPWIRE™ 2.0 for Unix®

5 TRIPWIRE COMMAND REFERENCE

(table continued next page)

Modified:
[x] "/usr/local/tw"

drwxr -xr -x root(0) 512 Tue Nov 17 13:36:50 1998

After building the Tripwire database, the next step is
typically to run tripwire in integrity checking mode.
This mode scans the system for violations, as
specified in the policy file. Using the policy file
rules, Tripwire will compare the state of the current
file system against the initial baseline database. An
integrity checking report is printed to stdoutand is
saved in the location specified by the REPORTFILE
setting in the Tripwire configuration file.

The generated report describes each policy file
violation in detail, depending on whether the
specified file system object was added, deleted, or
changed. Each report item lists the properties of the
object as it currently resides on the file system, and
if appropriate, the old value stored in the database.
If there are differences between the database and the
current system, the administrator can either fix the
problem by replacing the current file with the correct
file (e.g., an intruder replaced /bin/login), or update
the database to reflect the new file (e.g., a fellow
system administrator installed a new version of
/usr/local/bin/emacs).

Running an integrity check using the
tripwire --interactiveoption is the same as running a
non-interactive integrity check immediately followed
by running tripwire in Database Update mode.
In Interactive mode, the editor specified in the

5 TRIPWIRE COMMAND REFERENCE

Argument Meaning

Unattended operation

[-P passphrase]
[--local-passphrase
passphrase]

Security settings

[-e]
[--no-encryption]

Use the specified passphrase with local key to sign
database.(Mutually exclusive with -e).

Do not sign the database. To sign the database after
initialization requires the use of twadmin.
(Mutually exclusive with -P and -L).

(table continued)

Checking integrity

Argument Meaning

Mode of operation

-m c
--check

[-I]
[--interactive]

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Selects integrity checking mode.

At the end of integrity checking, the resulting
report is opened in an editor, where database
updates can be easily specified using the ballot
boxes included in the report. Updating the
database in this fashion requires the local
passphase.

Verbose mode.
(Mutually exclusive with -s).

Silent mode.
(Mutually exclusive with -v).

The Integrity Checking mode looks for differences
between the database and the system and creates a
report of those changes. Database Update mode
displays the report to the Tripwire administrator,
who chooses which (if any) records in the database
should be updated.

Rule violations from the report specified on the
command line will be listed with a series of “ballot
boxes.” If no report is specified,tripwire will read in
the report file defined by the REPORTFILE variable
in the Tripwire configuration file. In the report,
every rule violation will have a “ballot box”:

5.9TRIPWIRE™ 2.0 for Unix®5.8 TRIPWIRE™ 2.0 for Unix®

5 TRIPWIRE COMMAND REFERENCE

(table continued)

Updating the
database

5 TRIPWIRE COMMAND REFERENCE

Argument Meaning

Configuration file overrides (input):

[-p polfile]
[--polfile polfile]

[-d database]
[--dbfile database]

[-c cfgfile]
[--cfgfile cfgfile]

[-S sitekey]
[--site-keyfile sitekey]

[-L localkey]
[--local-keyfile localkey]

[-V editor]
[--visual editor]

Unattended operation:

[-P passphrase]
[--local-passphrase passphrase]

Output:

[-n]
[--no-tty-output]

[-r report]
[--twrfile report]

[-M]
[--email-report]

[-E]
[--signed-report]

Use the specified policy file.

Use the specified database file.

Use the specified configuration file.

Use the specified site key file to read the
configuration and policy files.

Use the specified local key file to read the
database and write the report file. Also used to
write the database file when --interactiveis used.

Use the specified editor to edit the report ballot
box. Only applies in interactive mode.

Specify passphrase for local key when signing the
secure report. Also used to write the database file
in interactive mode.
(Only valid with -E or -I)

Suppress the report from being printed at the
console.

Specifies that the binary output .twr file be
written to the specified file.

Specifies that reports be emailed to the recipients
designated in the policy file. The
MAILPROGRAM variable must be set in the
Tripwire configuration file.

Email is sent to all persons specified by the
emailto attribute in the policy file. One of two
email reports is sent, according to the following
rules: If the person is not in the set of rules that
have violations, a “no violations found” email is
sent. Otherwise, the entire violation report is
sent.

Specifies that the Tripwire report will be signed.
If no passphrase is specified on the command
line, tripwire will prompt for the local passphrase.

(table continued next page)

(table continued)

Modified:
[x] "/usr/local/tw"

drwxr -xr -x root(0) 512 Tue Nov 17 13:36:50 1998

Argument Meaning

Scope of operation

[-l { level | name }]
[--severity { level | name }]

[-R rule]
[--rule-name rule]

[-i]
[--ignore list]

[file1 [file2 …]]

Check only policy rules equal to or greater than
the given severity level. The level may be
specified as a number or as a name. Severity
names are defined as follows:
Low 33
Medium 66
High 100
Note: Rules which do not explicitly have a
severity level set in the policy file, have an
implicit severity level of zero.
(Mutually exclusive with -R).

Run only the specified policy rule.
(Mutually exclusive with -l).

Do not compute or compare the properties
specified in list. Any of the letter codes
(abcdgimnpstulCHMS) specified in property
masks can be excluded. Use of this option
overrides information from the policy file.

List of files and directories that should be
integrity checked. Default is all files.
(Overrides -l and -R).

Policy update mode is used by tripwire to change or
update the policy file and to synchronize an earlier
database with new policy file information. The
filename of the new clear text version of the policy
file is specified on the command line. The new
policy file is compared to the existing version, and
the database is updated according to the new policy
rules. Any changes in the database since the last
integrity check will be detected and reported.

How these violations are interpreted depends on the
security mode specified with the -Z or --secure-mode
option. In high security mode, Tripwire will print a
list of violations and exit without making changes to
the database. In low security mode (the default), the
violations are still reported, but changes to the
database are made automatically.

5.11TRIPWIRE™ 2.0 for Unix®

The entries to be updated are specified by leaving
the “x” next to each policy violation, indicating you
approve this change to the file system. If you
remove the “x” from the ballot box, the database
will not be updated with the new value for that
object.

After the user exits the editor and provides the
correct local passphrase,tripwire will update and
save the database.

5.10 TRIPWIRE™ 2.0 for Unix®

5 TRIPWIRE COMMAND REFERENCE

Argument Meaning

Unattended operation:

[-P passphrase]
[--local-passphrase passphrase]

[-a]
[--accept-all]

Security level:

[-Z {high, low}]
[--secure-mode {high | low}]

Use the specified passphrase with local key to
sign the database file.

Specifies that all the entries in the .twr file are
updated without any prompting.
(Mutually exclusive with -V).

Specifies the security level, which affects how
certain conditions are handled when inconsistent
information is found between the .twr file and the
current database:

High: If properties of an object in the database do
not match the expected (old) values in the .twr
file, in high security mode, Tripwire reports the
differences as warnings and exits without
changing the database.

Low (default): In the case of inconsistencies, the
differences are reported as warnings, but the
changes are made to the database.

(table continued)

Updating the
policy file

5 TRIPWIRE COMMAND REFERENCE

(table continued next page)

Argument Meaning

Mode of operation

-m u
--update

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration file overrides (input):

[-p policyfile]
[--polfile policyfile]

[-c cfgfile]
[--cfgfile cfgfile]

[-d dbfile]
[--dbfile dbfile]

[-S keyfile]
[--site-keyfile keyfile]

[-L keyfile]
[--local-keyfile keyfile]

[-V editor]
[--visual editor]

[-r report]
[--twrfile report]

Selects database updating mode

Verbose mode.
(Mutually exclusive with -s).

Silent mode.
(Mutually exclusive with -v).

Use the specified policy file.

Use the specified configuration file.

Update the specified database file.

Use the specified site key file to read the
configuration and policy files.

Use the specified local key file to read and write
the database and to read the report file.

Use the specified editor to edit the update ballot
box. (Mutually exclusive with -a).

Read the specified report file.

However, Tripwire will detect that the old rule used
to cover /bin, and that there used to be a record for
/bin/login. Therefore /bin/login will be reported as a
conflict.

The same concept applies to both added and
modified files. If properties specified in the property
mask differ, a warning is printed. These conflicts
should be treated with the same seriousness as
integrity checking violations.

For this reason, it is recommended that you always
run Update Policy mode with --secure-mode high, so
that these situations can be detected, and appropriate
actions taken.

Note that this does not apply to file system objects
and properties that the new policy file expressly
excludes. Consequently, no warnings are generated
for changes to files or properties you no longer want
to monitor.

5.13TRIPWIRE™ 2.0 for Unix®5.12 TRIPWIRE™ 2.0 for Unix®

5 TRIPWIRE COMMAND REFERENCE

Argument Meaning

Mode of operation

-m p
--update-policy

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Selects policy updating mode

Verbose mode.
(Mutually exclusive with -s).

Silent mode.
(Mutually exclusive with -v).

(table continued next page)

The Tripwire database is the baseline against which
security violations are found. As a result, an
assumption exists that the information in the
database represents a file system that has not already
been compromised.

Although twadmin --create-polfilecan create a new
policy file, it requires re-initializing the database.
This is necessary for new Tripwire installations.

A potential problem exists with this procedure when
you have been monitoring a system with Tripwire
for any length of time. When you re-initialize the
database, there exists a risk that files have been
modified between your last integrity check and the
database re-initialization.

The Policy Update mode addresses this security risk.
In this mode, Tripwire checks the rules in the new
policy file against the rules in the current database.
Any substantively identical rules have their records
copied directly into the new database. Changes in
these rules will be detected in the next integrity
check, as normal.

Conversely, any information on objects specified in
the new policy file, but not in the old database, is
gathered by Tripwire. Before writing this
information to the database, Tripwire verifies that no
information conflicts with information already in the
database.

For example, suppose that after the last integrity
check, a rule existed for /bin, and resulted in
information being stored about /bin/login. Then,
unknown to the administrator, an intruder deletes
/bin/login. Meanwhile, the Tripwire administrator
decides to modify the rule for /bin. When Tripwire
is run in Update Policy mode, it gathers information
from the file system for this “new” rule.
Unfortunately, no record for /bin/login will be
created—it has been deleted by the intruder.

5 TRIPWIRE COMMAND REFERENCE

5.15TRIPWIRE™ 2.0 for Unix®5.14 TRIPWIRE™ 2.0 for Unix®

5 TWPRINT COMMAND REFERENCE

TWPRINT

Section
contents:

Running twprint 5.16

Printing a database file 5.16

Printing a report file 5.17

5 TRIPWIRE COMMAND REFERENCE

(table continued)

Argument Meaning

Configuration file overrides (input):

[-p policyfile]
[--polfile policyfile]

[-c cfgfile]
[--cfgfile cfgfile]

[-d dbfile]
[--dbfile dbfile]

[-S keyfile]
[--site-keyfile keyfile]

[-L keyfile]
[--local-keyfile keyfile]

Unattended operation:

[-P passphrase]
[--local-passphrase passphrase]

[-Q passphrase]
[--site-passphrase passphrase]

Security level:

[-Z {high, low}]
[--secure-mode {high | low}]

Input

policyfile.txt

Update the specified policy file.

Use the specified configuration file.

Update the specified database file.

Use the specified site key file to read the
configuration file and to read and write
the policy file.

Use the specified local key file to read and write
the database file.

Use the specified passphrase with the local key to
sign the database file.

Use the specified passphrase with the site key to
sign the policy file.

Specifies the security level, which affects whether
the policy and database file are saved if a
violation of the old policy exists. Violations are
always printed to stderr, but if security is set to
high, no files are changed if any errors occur.
(Default is low.)

Specifies the clear text policy file that will
become the new encoded and signed policy file.

5.17TRIPWIRE™ 2.0 for Unix®

Tripwire database files are binary encoded and
signed. Tripwire report files are encoded and may
optionally be signed. The twprint application
provides a way to view these files in clear text form.

Valid command line arguments for each mode are
shown. The following conventions are used:

[-f filename] Optional arguments are in square
brackets. All other arguments are
required.

-m {I, D, P, Z} Arguments that must be chosen
from a set are in curly braces.

The tripwire application can create and update
database files, but it cannot print them. This mode
prints the contents of a Tripwire database.

Note: If no database is specified under the --dbfile
command line option, the default database will be
used. The default database is specified by the
DBFILE variable in the configuration file (either
tw.cfgor the configuration file specified under the
--cfgfile command line option).

5.16 TRIPWIRE™ 2.0 for Unix®

5 TWPRINT COMMAND REFERENCE

The tripwire application can create report files, and
also display them as part of an integrity check or
update operation. However, only the --print-report
mode prints the contents of a Tripwire report.

Note: If no report is specified under the --twrfile
command line option, the default report will be
used. The default report is specified by the
REPORTFILE variable in the configuration file
(either tw.cfgor the configuration file specified
under the --cfgfile command line option).

The default filename format (as installed) for the
report file name is $(HOSTNAME)-$(DATE).twr,
where the $(DATE) variable includes the current
time to the nearest second. Unless
twprint --print-report is run within one second of
such a report’s creation,twprint will be unable to
find the report because the $(DATE) variable will
have changed to reflect the current time. Therefore,
when printing a report, you should always use
the --twrfile command line option to explicitly
specify the report.

Printing a report
file

Argument Meaning

Mode of operation

-m r
--print-report

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration file overrides (input):

[-c cfgfile]
[--cfgfile cfgfile]

[-r report]
[--twrfile report]

[-L localkey]
[--local-keyfile localkey]

Report printing mode.

Verbose mode.
(Mutually exclusive with -s).

Silent mode.
(Mutually exclusive with -v).

Use the specified configuration file.

Print the specified report file.

Use the specified local key file to verify
the signed report file.

5 TWPRINT COMMAND REFERENCE

Running twprint

Printing a database
file

Argument Meaning

Mode of operation

-m d
--print-dbfile

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration file overrides (input):

[-c cfgfile]
[--cfgfile cfgfile]

[-d database]
[--dbfile database]

[-L localkey]
[--local-keyfile localkey]

Database printing mode.

Verbose mode.
(Mutually exclusive with -s).

Silent mode.
(Mutually exclusive with -v).

Use the specified configuration file.

Use the specified database file.

Use the specified local key file to verify the database file.

5.19TRIPWIRE™ 2.0 for Unix®5.18 TRIPWIRE™ 2.0 for Unix®

5 TWADMIN COMMAND REFERENCE

TWADMIN

Section
contents:

Running twadmin 5.20

Creating a configuration file 5.20

Printing a configuration file 5.21

Creating a policy file 5.22

Printing a policy file 5.24

Removing encryption

from a file 5.24

Encrypting a file 5.26

Examining the encryption status

of a file .. 5.27

Generating keys 5.28

5 TWPRINT COMMAND REFERENCE

5.21TRIPWIRE™ 2.0 for Unix®

The twadminutility is used to perform certain
administrative functions related to Tripwire files and
configuration options. Specifically,twadminallows
binary-encoding/decoding and cryptographic
signing/verifying of Tripwire files, and provides a
means to generate local and site keys.

Valid command line arguments for each mode are
shown. The following conventions are used:

[-f filename] Optional arguments are in square
brackets. All other arguments are
required.

-m {I, D, P, Z} Arguments that must be chosen
from a set are in curly braces.

This command mode designates an existing clear
text file as the new configuration file for Tripwire.
The clear text configuration file must be specified on
the command line. Using the site key, the new
configuration file is encoded, signed and saved.

5.20 TRIPWIRE™ 2.0 for Unix®

After a configuration file has been created, it is
stored in a binary-encoded form. This command
provides a way of printing out the current contents
of the configuration file in a readable text format.

5 TWADMIN COMMAND REFERENCE

Printing a
configuration file

Argument Meaning

Security settings:

[-e]
[--no-encryption]

Unattended operation:

[-Q passphrase]
[--site-passphrase passphrase]

Input:

configfile.txt

Do not sign the configuration file. The configuration
file will still be stored in a binary-encoded form and
will not be human-readable. (Mutually exclusive
with -Q and -S.)

Either -e or -S must be specified.

Specifies passphrase to be used with site key for
signing the configuration file. (Valid only in
conjunction with -S.)

Specifies the clear text configuration file that will
become the new binary-encoded and signed
configuration file.

(table continued)

Argument Meaning

Mode of operation

-m f
--print-cfgfile

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration file overrides (input):

[-c cfgfile]
[--cfgfile cfgfile]

Prints the configuration file to stdout.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Print the specified configuration file.

5 TWADMIN COMMAND REFERENCE

Running twadmin

Creating a
configuration file

Argument Meaning

Mode of operation

-m F
--create-cfgfile

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration file overrides (input):

-S sitekey
--site-keyfile sitekey

Configuration file overrides (output):

[-c cfgfile]
[--cfgfile cfgfile]

Take the specified clear text file (see Input below) and
store it as a binary-encoded Tripwire
configuration file.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Use the specified site key file to sign the new
configuration file. (Mutually exclusive with -e.)

Either -e or -S must be specified.

Specify the destination configuration file.

(table continued next page)

5.23TRIPWIRE™ 2.0 for Unix®

This command mode designates an existing clear
text file as the new policy file for Tripwire. The clear
text policy file must be specified on the command
line. Using the site key, the new policy file is
encoded and saved.

Although you can modify a policy file and save the
new version using this command mode, it is strongly
recommended that you use tripwire in Update Policy
mode instead. Using twadmin --create-polfileforces
a database re-initialization, because the records in
the old database will no longer match the rules
specified in the policy file. This gives tacit (and
possibly incorrect) approval that the current state of
the filesystem is an appropriate baseline for future
integrity checks. Unless you are certain that your
system has not been compromised since your last
integrity check, you should run
tripwire --update-policyinstead. This command
mode updates the policy and the database
simultaneously, checking for possible policy
violations as it goes. See the tripwire section of the
Tripwire Command Reference for more details.

5.22 TRIPWIRE™ 2.0 for Unix®

5 TWADMIN COMMAND REFERENCE

(table continued)

Argument Meaning

Configuration file overrides (input):

[-c cfgfile]
[--cfgfile cfgfile]

[-S sitekey]
[--site-keyfile sitekey]

Configuration file overrides (output):

[-p polfile]
[--polfile polfile]

Unattended operation:

[-Q passphrase]
[--site-passphrase passphrase]

Security settings:

[-e]
[--no-encryption]

Input:

policyfile.txt

Specifies the destination binary-encoded
configuration file.

Specifies site key file to be used.
(Mutually exclusive with -e.)

Specifies policy file to be written.

Specifies passphrase to be used with the site key for
signing the policy file. (Mutually exclusive with -e.)

Does not sign the policy file. The policy file will still
be stored in a binary-encoded form and will not be
human-readable.
(Mutually exclusive with -Q and -S.)

Specifies the clear text policy file that will become the
new binary-encoded and signed policy file.

5 TWADMIN COMMAND REFERENCE

Creating a policy
file

Argument Meaning

Mode of operation

-m P
--create-polfile

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Takes the specified clear text file (see Input below)
and stores it as a binary-encoded Tripwire
policy file.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

(table continued next page)

5.25TRIPWIRE™ 2.0 for Unix®

After a policy file has been created, it is stored in a
binary-encoded form. This command provides a way
of printing out the current contents of the policy file
in a readable text format.

This command mode allows the user to remove
cryptographic signing from configuration, policy,
database, or report files. Multiple files may be
specified on the command line. The user will need
to enter the appropriate local or site keyfile, or both
if a combination of files is to be verified. With the
-K or --keyfileflag, the user can force the use of a
specific keyfile, regardless of the file types to be
verified. Even with cryptographic signing removed,
these files will be in a binary-encoded form which is
unreadable to humans.

(see table next page)

5.24 TRIPWIRE™ 2.0 for Unix®

5 TWADMIN COMMAND REFERENCE5 TWADMIN COMMAND REFERENCE

Printing a policy
file

Removing
encryption from a
file

Argument Meaning

Mode of operation

-m p
--print-polfile

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration file overrides (input):

[-c cfgfile]
[--cfgfile cfgfile]

[-p polfile]
[--polfile polfile]

[-S sitekey]
[--site-keyfile sitekey]

Selects policy file printing mode.
Output is sent to stdout.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Use the specified configuration file.

Print the specified policy file.

Use the specified site key file.

Argument Meaning

Mode of operation

-m R
--remove-encryption

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration File

[-c cfgfile]
[--cfgfile cfgfile]

Key files

[-K key]
[--keyfile key]

[-L localkey]
[--local-keyfile localkey]

[-S sitekey]
[--site-keyfile sitekey]

Unattended operation

[-P passphrase]
[--local-passphrase passphrase]

[-Q passphrase]
[--site-passphrase passphrase]

File conversion:

file1 [file2…]

Remove cryptographic signing for one or more files.
The type of each file will be examined and the
appropriate key (local key for databases and reports,
site key for configuration and policy files) will be used
to remove signing from it. The file will then be
rewritten unsigned. Files will remain in
binary-encoded format.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Use the specified configuration file.

Specify the keyfile to use to remove cryptographic
signing from the files. twadminwill attempt to use this
key for all files without regard to the file type. The
local passphrase will be used with this key.

Specify the local keyfile to use to remove
cryptographic signing for database files and reports.

Specify the site keyfile to use to remove cryptographic
signing for configuration and policy files.

Specify passphrase to use with the local keyfile when
removing cryptographic signing from database files
and reports.

Specify passphrase to use with the site keyfile when
removing cryptographic signing from the configuration
and policy files.

List of files from which cryptographic signing is to be
removed.

This command allows the user to examine the listed
files and print a report of their encryption status.
This report displays the filename, file type, whether
or not a file is signed, and what key (if any) is used
to sign it.

5.27TRIPWIRE™ 2.0 for Unix®

This command mode allows the user
cryptographically to sign configuration, policy,
database files, or reports. Multiple files may be
specified on the command line. The files will be
signed using either the site or local key as
appropriate for the file type. To automate the
process, the passphrase for the keyfiles can be
included on the command line.

5.26 TRIPWIRE™ 2.0 for Unix®

5 TWADMIN COMMAND REFERENCE

Examining the
encryption status

of a file

Argument Meaning

Mode of operation

-m e
--examine

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration File

[-c cfgfile]
[--cfgfile cfgfile]

Key files

[-K key]
[--keyfile key]

[-L localkey]
[--local-keyfile localkey]

[-S sitekey]
[--site-keyfile sitekey]

File examination:

file1 [file2…]

Examine the listed files. Report their type and
whether or not binary-encoding is used.
For each file specified a report will be given
displaying whether or not it is signed and if it is
signed with what key. Signing type for files will be
determined by a trial and error method, first using the
site key, then local key, then the keyfile provided with
the -K option.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Use the specified configuration file.

Test to see if file is signed using the specified key.

Specify the key to use as a local key when examining
database or report files.

Specify the key to use as a site key when examining
policy or configuration files.

List of files to examine.

5 TWADMIN COMMAND REFERENCE

Encrypting a file

Argument Meaning

Mode of operation

-m E
--encrypt

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Configuration File

[-c cfgfile]
[--cfgfile cfgfile]

Key files

[-L localkey]
[--local-keyfile localkey]

[-S sitekey]
[--site-keyfile sitekey]

Unattended operation

[-P passphrase]
[--local-passphrase passphrase]

[-Q passphrase]
[--site-passphrase passphrase]

File conversion:

file1 [file2…]

Sign one or more files.
Target files must be currently unsigned.
Each file will be singed using either the site or local
key as appropriate for the type of file. The keyfile
used for either site or local key may be overridden
using the -S or -L option.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Use the specified configuration file.

Specify the local keyfile to use to sign database files
and reports.

Specify the site keyfile to use to sign configuration
and policy files.

Specify passphrase to be used with the
local keyfile.

Specify passphrase to be used with the
site keyfile.

List of files to sign using the site or local key (as
appropriate, depending on the file type).

5.29TRIPWIRE™ 2.0 for Unix®

This command provides the interface to create site
or local keys for Tripwire. Although keys are
generated by the install process, this command can
be used at any time to regenerate the keys. The site
and local keys may be generated simultaneously or
one at a time with two separate invocations of
twadmin.

5.28 TRIPWIRE™ 2.0 for Unix®

5 SIGGEN COMMAND REFERENCE

SIGGEN

Section
contents:

Running siggen 5.30

5 TWADMIN COMMAND REFERENCE

Generating keys

Argument Meaning

Mode of operation

[-m G]
[--generate-keys]

Reporting

[-v]
[--verbose]

[-s]
[--silent]
[--quiet]

Output:

-L localkey
--local-keyfile localkey
-S sitekey
--site-keyfile sitekey

Unattended operation:

[-P passphrase]
[--local-passphrase passphrase]

[-Q passphrase]
[--site-passphrase passphrase]

Selects key generation mode.

Verbose mode.
(Mutually exclusive with -s.)

Silent mode.
(Mutually exclusive with -v.)

Generate keys into the specified files. At least one
of these options must be specified.

Specifies passphrase to be used when generating a
local key.

Specifies passphrase to be used when generating a
site key.

6.1TRIPWIRE™ 2.0 for Unix®

The siggenutility can be used to display
cryptographic signature values for any specified file.
See the signature function reference section of
Chapter 6, Appendices, for more information about
the signature functions supported by Tripwire.

Valid command line arguments for each mode are
shown.

The siggenapplication displays some or all of the
signature values for any specified file(s) in base64
notation.

5.30 TRIPWIRE™ 2.0 for Unix®

6 APPENDICES

Tripwire’s cryptographic system 6.2

Public and private keys 6.3

Site and local keys 6.3

Cryptography references............................ 6.5

File signatures ... 6.6

Signature functions 6.7

MD5 .. 6.8

SHA/SHS .. 6.8

Haval ... 6.9

CRC-32 ... 6.9

Tripwire quick reference 6.10

APPENDICES

Introduction: Tripwire’s internal security relies on a

private/public key system of cryptography. This

chapter specifically describes Tripwire’s

cryptographic system. It also directs the reader

to background information and references on

cryptography.

Also included are descriptions of the

cryptographic signature routines that Tripwire

utilizes.

6
Chapter
contents:

5 SIGGEN COMMAND REFERENCE

Running siggen

Argument Meaning

Reporting

[-t]
[--terse]

Output options

[-h]
[--hexadecimal]

Signature selection

[-a]
[--all]

[-C]
[--CRC]

[-M]
[--MD5]

[-S]
[--SHA]

[-H]
[--Haval]

Input

file1 [file2 …]

Terse mode. Prints requested signatures for a given file,
delimited by spaces, all on one line with no extraneous
information, one line per file.

Display results in hexadecimal rather than base64 notation.

Display all signature function values (default).

Display CRC-32, POSIX 1003.2 compliant 32-bit Cyclic
Redundancy Check.

Display MD5, the RSA Data Security, Inc.®
Message Digest Algorithm.

Display SHA, the NIST Secure Hash Algorithm
(NIST FIPS 180).

Display Haval value, a 128-bit signature code.

List of filesystem objects for which to display values.

6.3TRIPWIRE™ 2.0 for Unix®6.2 TRIPWIRE™ 2.0 for Unix®

6 APPENDICES

Tripwire files are protected with El Gamal
asymmetric cryptography that uses public and
private keys with a 1024 bit signature. Critical
Tripwire files are stored on disk in an encoded and
signed form. Reading these files requires only the
public key, while writing them requires the private
key and a secret passphrase.

Because one of the requirements for Tripwire is
unattended operation, the public key is stored on
disk along with the Tripwire executable. No one
need type in the passphrase if Tripwire is set to run
every morning at 3 AM, for instance.

When an encoded and signed file needs to be read,
Tripwire uses the public key to remove encryption
from the file. When one of these files needs to be
modified, Tripwire uses the private key and prompts
for the site or local passphrase. Only individuals
authorized to modify Tripwire files should have
access to these passphrases.

Public and private keys always work together in
pairs. To simplify key management in Tripwire, both
of these keys are stored together in a single keyfile.

Tripwire protects the policy and configuration files
with the same public/private key pair called the site
key. The database file uses a separate public/private
key pair called the local key. In the Tripwire
configuration file, the LOCALKEYFILE and
SITEKEYFILE variables specify where on disk the
local and site key files, respectively, are stored.

Note: The configuration file embeds a copy of the
public key. This is because key file locations are
stored in the configuration file, which must be
encoded and signed. Tripwire programs extract this
public key and use it for verification when accessing
configuration files.

Public and private
keys

Site and local keys

6 APPENDICES

Tripwire uses public/private key cryptography to
protect its critical data files. This chapter describes
the Tripwire cryptography architecture, and the role
of the site and local keys. It also directs the reader to
background information and references on
cryptography.

The Tripwire database, policy, and configuration
files contain information critical to generating
accurate reports. See Chapter 2, Running Tripwire,
for more information on each of these files.
Therefore, these files must be protected from
unauthorized alteration. Allowing these files to be
modified by an attacker compromises the security of
the computer system that Tripwire has been installed
to protect.

In the Tripwire ASR 1.3 (Academic Source Release)
and earlier versions, storing these critical files on
read-only media was required to ensure that they
could not be modified by unauthorized individuals.

In Tripwire 2.0, these critical files are encoded and
signed in a way that requires knowledge of a secret
passphrase to modify them. This approach makes it
computationally infeasible for an unauthorized
individual to modify the files without detection. For
this reason, it is no longer necessary to store the
database, policy, and configuration files on read-only
media.

Security Issue:If Tripwire files are stored on disk,
an attacker who can not access the files can still
delete them. It is unlikely that such an attack would
go unnoticed and it is therefore very difficult for an
attacker to silently subvert Tripwire operation. To
address this issue, some sites may continue to store
these files on read-only media, while other sites will
rely on backup mechanisms to handle these
contingencies.

Tripwire’s
Cryptographic
System

For background information and references on
cryptography, please consult the Cryptography FAQ,
available on the Internet via

anonymous FTP to:
rtfm.mit.edu

then proceed to:
/pub/usenet/news.answers/cryptography-faq/

The same information can be found on the Web at:
http://www.faqs.org/faqs/cryptography-faq/

Important:
In the aforementioned FAQ, an example is given in
which public keys allow encryption only, and private
keys allow decryption as well as encryption.

Tripwire’s keys work in the opposite fashion. Public
keys allow decryption only, while private keys allow
encryption as well as decryption.

6.5TRIPWIRE™ 2.0 for Unix®

Keyfiles are required for reading encoded Tripwire
files. If a keyfile is lost, it is impossible to read the
Tripwire files that have been encoded with that
keyfile.

Standard security procedures should be in place to
prevent discovery of passphrases by physical
observation of keyboards or monitors (directly, via
video camera, etc.) or by unauthorized electronic
monitoring of your network. Note that the
passphrases are not stored anywhere on disk.
Therefore, they cannot be discovered by examining
your system disks.

Security Issue:Although you can use the same
private key for all machines in your network, it may
not be advisable. Sharing a key amongst machines
means that if the passphrase for that key is
discovered, security of all machines in the domain
could be compromised.

Of course, using different keys requires
memorization or recording (in a secure place) of
passphrases for all of the keys. For a large number
of machines, this may be impractical.

A reasonable compromise for installations with
numerous machines would be to divide the machines
into a manageable number of groups, and assign a
different private key and passphrase for each group.
Tripwire can only use one site key and one local key
per process. This means that the configuration and
policy files for any given command must be
protected by the same site key. Likewise, database
and report files must be protected by the same local
key. For example, if host.dbwas signed using
localkey1and host.twrwas signed with localkey2,
the following command line will generate an error.

6.4 TRIPWIRE™ 2.0 for Unix®

6 APPENDICES

% ./tripwire --update --dbfile host.db --twrfile myhost.twr

Cryptography
references

6 APPENDICES

Message-digest algorithms have considerable
computational cost when compared to simpler
signature routines. In general, this higher security is
obtained at the expense of speed—it will take longer
to check your files with message digest algorithms.
Tripwire provides several state-of-the-art message
digest algorithms to allow the maximum amount of
flexibility in deciding the security and performance
balance.

Unlike message-digest algorithms, the CRC-32
algorithm uses simple polynomial division to
generate the checksums. While this technique is very
fast, the mathematics it employs are well-
understood. Furthermore, since the 32-bit signature
space is so small, a brute-force search for a CRC
collision is well within the capabilities of most
workstations. There are currently several programs
in the public domain that can, for any given input
file, provide a different output file with the same
CRC signature.

Tripwire ships with four signature routines. This
section briefly describes each signature routine. It is
by no means an authoritative reference, but it
provides some background on each of the signature
routines provided.

All observed timing measures provided for the
signature routines were performed using siggen(8)
and the same input files under Solaris on a 167 MHz
UltraSPARC 1 and under Linux on a Pentium 100
with 32 megabytes of RAM. The numbers provided
are simply an informal gauge of throughput, rather
than an authoritative metric.

Please note that the base64 encoding used by
Tripwire for signature functions is the one described
in RFC 1521.

6.7TRIPWIRE™ 2.0 for Unix®6.6 TRIPWIRE™ 2.0 for Unix®

6 APPENDICES

Signature functions

6 APPENDICES

When a Tripwire database is created, all pertinent
attributes for objects to be monitored are stored in
the database. However, to detect file changes, it is
not sufficient merely to compare file attributes. For
example, it is possible to change a file without
changing its size or modification date (with the
appropriate user privileges). This provides the
motivation also to store file signatures,small fixed-
size values that are generated from the object data
(i.e. the file contents).

The Unix sum(8) is a trivial example of such a
signature, called a checksum. However, because it
merely adds all the values of all the characters in the
file together, and truncates the sum to 16 bits,
sum(8) is not a very suitable signature for
Tripwire—it is easy to cover up a change and
preserve the existing checksum.

Tripwire can utilize the MD5, SHA, and Haval
message-digest algorithms, also known as one-way
hash functions, finger-printing routines, or
manipulation detection codes. Message-digests are
usually large (at least 128 bits), and computationally
infeasible to reverse. They employ cryptographic
techniques to ensure that any small change in the
input stream results in a large change in the output.
Therefore, any unauthorized, malicious, or
accidental change will be evident.

Because these algorithms use a 128-bit or larger
signature, using a brute-force attack to introduce a
deliberate change in the file while trying to keep the
same signature becomes a computationally
infeasible task. They provide a high degree of
assurance that an intruder cannot change a file
without being detected by Tripwire.

File signatures

Haval was written by Yuliang Zheng at the
University of Wollongong, and is described in

Zheng, Y., Pieprzyk, J., Seberry, J. (1993) “HAVAL:
a one-way hashing algorithm with variable length of
output” In Advances in Cryptology: AUSCRYPT’92,
Lecture Notes in Computer Science, Springer-
Verlag.

Haval is shipped with Tripwire configured similarly
to the other signature algorithms: 128-bit signature
using four passes.

Cyclic Redundancy Checks have long been the
de facto error detection algorithm standard. These
algorithms are fast, robust, and provide reliable
detection of errors associated with data transmission.
CRC-32 is provided as a fast but insecure alternative
to the slower message-digest algorithms.

CRC-32 generates a 32-bit signature.

6.9TRIPWIRE™ 2.0 for Unix®6.8 TRIPWIRE™ 2.0 for Unix®

6 APPENDICES

Haval

CRC-32

Hardware Throughput (Mbyte/sec)

167 MHz UltraSPARC 1

100 MHz Intel Pentium

6.8

3.6

Hardware Throughput (Mbyte/sec)

167 MHz UltraSPARC 1

100 MHz Intel Pentium

15.2

5.9

6 APPENDICES

MD5 is the RSA Data Security Inc.® Message-
Digest Algorithm, a proposed data authentication
standard. The Internet Draft submission can be found
as Internet Working Draft RFC 1321, available from
http://www.merit.edu/internet/documents/.

Alternatively, primary anonymous ftp repositories for
RFCs include nic.ddn.mil, wuarchive.wustl.edu,
and nisc.jvnc.net.

MD5 generates a 128-bit signature, and uses four
rounds to ensure pseudo-random output.

SHS is the NIST Digital Signature Standard, called
the Secure Hash Standard, and is described in NIST
FIPS 180. Tripwire refers to it as the SHA, or Secure
Hash Algorithm, because Tripwire uses a non-
certified implementation and cannot claim standards
conformance. SHS generates a 160-bit signature.

MD5

SHA/SHS

Hardware Throughput (Mbyte/sec)

167 MHz UltraSPARC 1

100 MHz Intel Pentium

8.1

3.1

Hardware Throughput (Mbyte/sec)

167 MHz UltraSPARC 1

100 MHz Intel Pentium

1.5

0.8

This section provides the Tripwire commands for the
most common Tripwire tasks. The commands are
presented in a practical, chronological order, from
post-installation, to integrity checking, to file
maintenance.

Note that the verbose GNU-style arguments are used
in each example for clarity.

6.10 TRIPWIRE™ 2.0 for Unix®

6 APPENDICES

Tripwire quick
reference

Desired action
Command

Example

Generate site and local keys
(usually done by installer).

Install your customized
configuration file.

Install your customized
policy file.

Initialize the Tripwire database.

Compare system against
baseline database, checking for
policy violations.

Update Tripwire database for
objects marked as policy
violations.

Update policy file to change
files monitored by Tripwire.

Run twadminin Key Generation mode.

./twadmin --generate-keys --local-keyfile ../key/local.key
--site-keyfile ../key/site.key

Run twadminin Create Configuration File mode.

. /twadmin --create-cfgfile twcfg.txt

Run twadminin Create Policy File mode.

./twadmin --create-polfile ../policy/twpol.txt

Run tripwire in Database Initialization mode.

./tripwire --init --verbose

Run tripwire in Integrity Check mode.

./tripwire --check --verbose

Run tripwire in Interactive Update mode or in Database
Update mode.

./tripwire --check --interactive
Or:
./tripwire --check --verbose

./tripwire --update --verbose --twrfile
/usr/TSS/report/ myhost-19981112-172634.twr

Run tripwire in Policy Update mode.

./twadmin -m p >../policy/pol.txt

vi ../policy/pol.txt

./tripwire --update-policy ../policy/pol.txt

Getting started

Running and maintaining

6.11

6 APPENDICES

Desired action
Command

Example

Inspect policy file.

Inspect configuration file.

Inspect database file to ensure
that files are being monitored.

Inspect an individual report file.

Change the local key.

Change the site key.

Get tripwire usage message.

Get twprint usage message.

Get twadminusage message.

Get siggenusage message.

Run twadminin Print Policy Mode.

./twadmin --print-polfile

Run twadminin Print Configuration mode.

./twadmin --print-cfgfile

Run twprint in Print Database mode.

./twprint --print-db --dbfile ../db/myhost.db

Run twprint in Print Report mode.

./twprint --print-report --twrfile
../report/ myhost-19981115-175828.twr

Run twadminin Remove Encryption mode, and then again in
Encrypt File mode.

Note: Make sure you make backup copies of these files before
running these commands.

./twadmin --remove-encryption ../report/* ../db/*

./twadmin --generate-keys --local-keyfile ../key/ myhost -
local.key

./twadmin --encrypt ../report/* ../db/*

Run twadminin Remove Encryption mode, and then again in
Encrypt File mode. Note: Make sure you make backup copies
of these files before running these commands.

./twadmin --remove-encryption ./tw.cfg ../policy/*

./twadmin --generate-keys --site-keyfile ../key/site.key

./twadmin --encrypt ./tw.cfg ../policy/*

Print tripwire help.

./tripwire --help

Print twprint help.

./twprint --help

Print twadminhelp.

./twadmin --help

Print siggenhelp.

./siggen --help

Configuring

Encryption and key changes

Usage

TRIPWIRE™ 2.0 for Unix®

