PostgreSQL Tutorial

The PostgreSQL Development Team

Edited by
Thomas Lockhart

PostgreSQL Tutorial
by The PostgreSQL Development Team

Edited by Thomas Lockhart

PostgreSQL
is Copyright © 1996-2000 by the PostgreSQL Inc.

Table of Contents

Table of Contents. (PR
LiSt Of FIQUIES . . . o oo Qi ...
List Of EXamples o iv....
SUMMIANY . . oo e [
Chapter 1. Introduction. 1
What IS POStOreS?. . . .o 1
A Short History of Postgres. 1
The Berkeley Postgres Project 2..
POStgres S . . o 2....
POStgreSOLo 3...
About ThisRelease. 4. ..
RESOUICES 4....
Terminology. . . .o 5....
NOtatioN 6....
Problem Reporting Guidelines. 6 ..
Identifying BUgS.o 6...
What to reporto e 7 ...
Wheretoreportbugs 9...
Y2K Statement 9...
Copyrights and Trademarks. 10. .
Chapter 2. SQL. 11. ..
The Relational DataModel i 12..
Relational Data Model Formalities. 12.
Domains vs. Data TYPES . . . o oottt 13.
Operations in the Relational Data Model. 13
Relational Algebra. 14. .
Relational Calculus. 16. .
Tuple Relational Calculus. 16 .
Relational Algebra vs. Relational Calculus 17
The SQL Language.« oo 17..
SeleCt . . 18. ..
Data Definition. 25..
Data Manipulation. 29..
System Catalogs.o 30..
Embedded SQL. e 30..
Chapter 3. Architecture 32..
Postgres Architectural Concepts. 32.
Chapter 4. Getting Started. 33..
Setting Up Your Environment 33.
Starting the Interactive Monitor (psgl)o 34.
ManagingaDatabase. e 35..
Creatinga Database. e 35..
AccessingaDatabase 35..
Destroyinga Database. 37..
Chapter 5. The Query Languageottt it e e e s 38 .
Interactive MONIOL. 38..
CONCEPIS . . 38...
Creating a New Class.ottt e e 39..
Populatinga Classwith Instances 39.
Querying a Class.ttt 40 ..
Redirecting SELECT QUErieS. e 41 .

Joins Between ClassSesottt 41. .

Updates. . . .o 42. ..
Deletions. 42. ..
Using Aggregate FUNCLiONSottt A2
Chapter 6. Advanced Postgres SQL Features. 45,
INhEMtANCE 45. ..
Non-Atomic Values. 46 . .
ATTAYS . . 46. ..
More Advanced Features. 48. .
Bibliography. 49. ..
SQL Reference BOOKS oot e 49. .
PostgreSQL-Specific Documentation. 49.
Proceedings and Articles. e 50. .

List of Figures

3-1. How a connection is establiSNEd............oooviiiiiiiii e 32....

List of Examples

2-1. The Suppliers and Parts Datahase............ccccciiiiiiiiiiiicicc e 12.....
2-3. A Query Using Relational Algebral..........ccouuiiiiiiiiiiiii e 14....
2-4. Simple Query with QUAIIfICALIONccceiiiiiiiiiie e 16.....
T Ve o (=T 0 =1 =PRI 20........
I X 0] £=T0 F= 11 P TOPPPTPPTIN 21........
R G o F= Y/ o T [T PR P PP PP UPP PO 22.........
S T 1 1S - o R 23........
2-9. UNion, INtErsECt, EXCEPL....ccici ittt s e e e e e e e e e eaaaaeeas 24......
2-10. Table CreatiQm......coi ittt bbbt e e e e e e e e e e e e e e e e e e e s 26.......
e I I O == 1 (= 3 1 o -SSR 21........

Summary

Postgres, developed originally in the UC Berkeley Computer Science Department, pioneered
many of the object-relational concepts now becoming available in some commercial databases.
It provides SQL92/SQL3 language support, transaction integrity, and type extensibility.
PostgreSQL is an open-source descendant of this original Berkeley code.

Chapter 1. Introduction

This document is the user manual for the PostgreSQL (http://postgresql.org/) database
management system, originally developed at the University of California at Berkeley.
PostgreSQL is based on Postgres release 4.2
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html). The Postgres project, led by
Professor Michael Stonebraker, was sponsored by the Defense Advanced Research Projects
Agency (DARPA), the Army Research Office (ARO), the National Science Foundation (NSF),
and ESL, Inc.

What is Postgres?

Traditional relational database management systems (DBMSs) support a data model consisting
of a collection of named relations, containing attributes of a specific type. In current

commercial systems, possible types include floating point numbers, integers, character strings,
money, and dates. It is commonly recognized that this model is inadequate for future data
processing applications. The relational model successfully replaced previous models in part
because of its "Spartan simplicity". However, as mentioned, this simplicity often makes the
implementation of certain applications very difficult. Postgres offers substantial additional

power by incorporating the following four additional basic concepts in such a way that users

can easily extend the system:

classes
inheritance

types
functions

Other features provide additional power and flexibility:

constraints

triggers

rules

transaction integrity

These features put Postgres into the category of databases referreljeotasiational. Note

that this is distinct from those referred toohgect-oriented, which in general are not as well
suited to supporting the traditional relational database languages. So, although Postgres has
some object-oriented features, it is firmly in the relational database world. In fact, some
commercial databases have recently incorporated features pioneered by Postgres.

A Short History of Postgres

The Object-Relational Database Management System now known as PostgreSQL (and briefly
called Postgres95) is derived from the Postgres package written at Berkeley. With over a

Chapter 1. Introduction

decade of development behind it, PostgreSQL is the most advanced open-source database
available anywhere, offering multi-version concurrency control, supporting almost all SQL
constructs (including subselects, transactions, and user-defined types and functions), and
having a wide range of language bindings available (including C, C++, Java, perl, tcl, and
python).

The Berkeley Postgres Project

Implementation of the Postgres DBMS began in 1986. The initial concepts for the system were
presented iThe Design of Postgres and the definition of the initial data model appearethm
Postgres Data Moddl. The design of the rule system at that time was describEtkiDesign

of the Postgres Rules System. The rationale and architecture of the storage manager were
detailed inThe Postgres Storage System.

Postgres has undergone several major releases since then. The first "demoware" system
became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. We
released Version 1, describedTime Implementation of Postgres, to a few external users in

June 1989. In response to a critique of the first rule sysdgborfimentary on the Postgres

Rules System), the rule system was redesigném Rules, Procedures, Caching and Viewsin

Database Systems) and Version 2 was released in June 1990 with the new rule system. Version
3 appeared in 1991 and added support for multiple storage managers, an improved query
executor, and a rewritten rewrite rule system. For the most part, releases until Postgres95 (see
below) focused on portability and reliability.

Postgres has been used to implement many different research and production applications.
These include: a financial data analysis system, a jet engine performance monitoring package,
an asteroid tracking database, a medical information database, and several geographic
information systems. Postgres has also been used as an educational tool at several universities.
Finally, lllustra Information Technologies (http://www.illustra.com/) (since merged into
Informix (http://www.informix.com/)) picked up the code and commercialized it. Postgres
became the primary data manager for the Sequoia 2000
(http://www.sdsc.edu/0/Parts_Collabs/S2K/s2k_home.html) scientific computing project in late
1992.

The size of the external user community nearly doubled during 1993. It became increasingly
obvious that maintenance of the prototype code and support was taking up large amounts of
time that should have been devoted to database research. In an effort to reduce this support
burden, the project officially ended with Version 4.2.

Postgres95

In 1994, Andrew Yu (mailto:ayu@informix.com) and Jolly Chen
(http://http.cs.berkeley.edu/~jolly/) added a SQL language interpreter to Postgres. Postgres95
was subsequently released to the Web to find its own way in the world as an open-source
descendant of the original Postgres Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgres95 v1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to Postgres v4.2. Apart from bug fixes, these were the major
enhancements:

Chapter 1. Introduction

The query language Postquel was replaced with SQL (implemented in the server).
Subqueries were not supported until PostgreSQL (see below), but they could be imitated in
Postgres95 with user-defined SQL functions. Aggregates were re-implemented. Support for
the GROUP BY query clause was also added.|I Thgq interface remained available for C
programs.

In addition to the monitor program, a new program (psql) was provided for interactive SQL
gueries using GNUWeadl i ne.

A new front-end libraryl, i bpgt cl , supported Tcl-based clients. A sample shell, pgtclsh,
provided new Tcl commands to interface tcl programs with the Postgres95 backend.

The large object interface was overhauled. The Inversion large objects were the only
mechanism for storing large objects. (The Inversion file system was removed.)

The instance-level rule system was removed. Rules were still available as rewrite rules.

A short tutorial introducing regular SQL features as well as those of Postgres95 was
distributed with the source code.

GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be
compiled with an unpatched gcc (data alignment of doubles was fixed).

PostgreSQL

By 1996, it became clear that the name Postgres95 would not stand the test of time. We chose
a new name, PostgreSQL, to reflect the relationship between the original Postgres and the more
recent versions with SQL capability. At the same time, we set the version numbering to start at
6.0, putting the numbers back into the sequence originally begun by the Postgres Project.

The emphasis during development of Postgres95 was on identifying and understanding
existing problems in the backend code. With PostgreSQL, the emphasis has shifted to
augmenting features and capabilities, although work continues in all areas.

Major enhancements in PostgreSQL include:

Table-level locking has been replaced with multi-version concurrency control, which allows
readers to continue reading consistent data during writer activity and enables hot backups
from pg_dump while the database stays available for queries.

Important backend features, including subselects, defaults, constraints, and triggers, have
been implemented.

Additional SQL92-compliant language features have been added, including primary keys,
guoted identifiers, literal string type coercion, type casting, and binary and hexadecimal
integer input.

Built-in types have been improved, including new wide-range date/time types and additional
geometric type support.

Overall backend code speed has been increased by approximately 20-40%, and backend
startup time has decreased 80% since v6.0 was released.

Chapter 1. Introduction

About This Release

PostgreSQL is available without cost. This manual describes version 7.0 of PostgreSQL.
We will use Postgres to mean the version distributed as PostgreSQL.

Check the Administrator's Guide for a list of currently supported machines. In general,
Postgres is portable to any Unix/Posix-compatible system with full libc library support.

Resources

This manual set is organized into several parts:

Tutorial

An introduction for new users. Does not cover advanced features.

User’'s Guide

General information for users, including available commands and data types.

Programmer’s Guide
Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’'s Guide

Installation and management information. List of supported machines.

Developer’'s Guide

Information for Postgres developers. This is intended for those who are contributing to the
Postgres project; application development information should appearfnadrammer’s
Guide. Currently included in thBrogrammer’s Guide.

Reference Manual

Detailed reference information on command syntax. Currently included isén'es
Guide.

In addition to this manual set, there are other resources to help you with Postgres installation
and use:

man pages

The man pages have general information on command syntax.

FAQs

The Frequently Asked Questions (FAQ) documents address both general issues and some
platform-specific issues.

Chapter 1. Introduction

READMEs

README files are available for some contributed packages.

Web Site

The Postgres (postgresgl.org) web site might have some information not appearing in the
distribution. There is a mhonarc catalog of mailing list traffic which is a rich resource for
many topics.

Mailing Lists

The pgsql-general (mailto:pgsql-general@postgresqgl.org) (archive
(http://www.PostgreSQL.ORG/mhonarc/pgsql-general/)) mailing list is a good place to
have user questions answered. Other mailing lists are available; consult the Info Central
section of the PostgreSQL web site for details.

Yourself!

Postgres is an open source product. As such, it depends on the user community for
ongoing support. As you begin to use Postgres, you will rely on others for help, either
through the documentation or through the mailing lists. Consider contributing your
knowledge back. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute it.

Even those without a lot of experience can provide corrections and minor changes in the
documentation, and that is a good way to start. The pgsql-docs
(mailto:pgsql-docs@postgresgl.org) (archive
(http://www.PostgreSQL.ORG/mhonarc/pgsql-docs/)) mailing list is the place to get

going.

Terminology

In the following documentatiomsite may be interpreted as the host machine on which Postgres
is installed. Since it is possible to install more than one set of Postgres databases on a single
host, this term more precisely denotes any particular set of installed Postgres binaries and
databases.

The Postgresuperuser is the user nameabst gr es who owns the Postgres binaries and

database files. As the database superuser, all protection mechanisms may be bypassed and any
data accessed arbitrarily. In addition, the Postgres superuser is allowed to execute some support
programs which are generally not available to all users. Note that the Postgres supeotiser is

the same as the Unix superuser (which will be referreditoof)s The superuser should have a
non-zero user identifiekd] D) for security reasons.

Thedatabase administrator or DBA, is the person who is responsible for installing Postgres
with mechanisms to enforce a security policy for a site. The DBA can add new users by the
method described below and maintain a set of template databases for use by createdb.

The postmaster is the process that acts as a clearing-house for requests to the Postgres system.
Frontend applications connect to the postmaster, which keeps tracks of any system errors and
communication between the backend processes. The postmaster can take several command-line

Chapter 1. Introduction

arguments to tune its behavior. However, supplying arguments is necessary only if you intend
to run multiple sites or a non-default site.

The Postgres backend (the actual executable program postgres) may be executed directly from
the user shell by the Postgres super-user (with the database name as an argument). However,
doing this bypasses the shared buffer pool and lock table associated with a postmaster/site,
therefore this is not recommended in a multiuser site.

Notation

.. orf usr/ | ocal / pgsql / atthe front of a file name is used to represent the path to the
Postgres superuser’s home directory.

In a command synopsis, brackets ([and]) indicate an optional phrase or keyword. Anything in
braces ({ and }) and containing vertical bars (|) indicates that you must choose one.

In examples, parentheses ((and)) are used to group boolean expressions. | is the boolean
operator OR.

Examples will show commands executed from various accounts and programs. Commands
executed from the root account will be preceeded with >. Commands executed from the
Postgres superuser account will be preceeded with % , while commands executed from an
unprivileged user’s account will be preceeded with $. SQL commands will be preceeded with
=> or will have no leading prompt, depending on the context.

Note: At the time of writing (Postgres v7.0) the notation for flagging commands is not
universally consistant throughout the documentation set. Please report problems to the
Documentation Mailing List (mailto:docs@postgresql.org).

Problem Reporting Guidelines

When you encounter a problem in PostgreSQL we want to hear about it. Your bug reports are
an important part in making PostgreSQL more reliable because even the utmost care cannot
guarantee that every part of PostgreSQL will work on every platform under every
circumstance.

The following suggestions are intended to assist you in forming bug reports that can be
handled in an effective fashion. No one is required to follow them but it tends to be to
everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot
of users, chances are good that someone will look into it. It could also happen that we tell you
to update to a newer version to see if the bug happens there. Or we might decide that the bug
cannot be fixed before some major rewrite we might be planning is done. Or perhaps it's
simply too hard and there are more important things on the agenda. If you need help
immediately, consider obtaining a commercial support contract.

Identifying Bugs

Before you ask Is this a bug?, please read and re-read the documentation to verify that you can
really do whatever it is you are trying. If it is not clear from the documentation whether you can

Chapter 1. Introduction

do something or not, please report that too; it's a bug in the documentation. If it turns out that
the program does something different from what the documentation says, that's a bug. That
might include, but is not limited to, the following circumstances:

A program terminates with a fatal signal or an operating system error message that would

point to a problem in the program (a counterexample might be a disk full message, since that
must be fixed outside of Postgres).

A program produces the wrong output for any given input.
A program refuses to accept valid input.
A program accepts invalid input without a notice or error message.

PostgreSQL fails to compile, build, or install according to the instructions on supported
platforms.

Here program refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on
one of the mailing lists for help in tuning your applications. Failing to comply to SQL is not a
bug unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already
known. If you can’t decode the information on the TODO list, report your problem. The least
we can do is make the TODO list clearer.

What to report

The most important thing to remember about bug reporting is to state all the facts and only
facts. Do not speculate what you think went wrong, what it seemed to do , or which part of the
program has a fault. If you are not familiar with the implementation you would probably guess
wrong and not help us a bit. And even if you are, educated explanations are a great supplement
to but no substitute for facts. If we are going to fix the bug we still have to see it happen for
ourselves first. Reporting the bare facts is relatively straightforward (you can probably copy
and paste them from the screen) but all too often important details are left out because someone
thought it doesn’t matter or the report would ring a bell anyway.

The following items should be contained in every bug report:

The exact sequence of stépam program startup necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare select statement without the
preceeding create table and insert statements, if the output should depend on the data in the
tables. We do not have the time to decode your database schema, and if we are supposed to
make up our own data we would probably miss the problem. The best format for a test case
for query-language related problems is a file that can be run through the psql frontend that
shows the problem. (Be sure to not have anything in youpsql r ¢ startup file.) You are
encouraged to minimize the size of your example, but this is not absolutely necessary. If the
bug is reproduceable, we'll find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate
the offending queries. We probably won't set up a web server to reproduce your problem. In
any case remember to provide the exact input files, do not guess that the problem happens
for large files or mid-size databases, etc.

Chapter 1. Introduction

The output you got. Please do not say that it didn't work or failed . If there is an error
message, show it, even if you don’t understand it. If the program terminates with an
operating system error, say which. If nothing at all happens, say so. Even if the result of your
test case is a program crash or otherwise obvious it might not happen on our platform. The
easiest thing is to copy the output from the terminal, if possible.

Note: In case of fatal errors, the error message provided by the client might not contain
all the information available. In that case, also look at the output of the database server.
If you do not keep your server output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write This command gives me
that output. or This is not what | expected. , we might run it ourselves, scan the output, and
think it looks okay and is exactly what we expected. We shouldn’t have to spend the time to
decode the exact semantics behind your commands. Especially refrain from merely saying
that This is not what SQL says/Oracle does. Digging out the correct behavior from SQL is
not a fun undertaking, nor do we all know how all the other relational databases out there
behave. (If your problem is a program crash you can obviously omit this item.)

Any command line options and other startup options, including concerned environment
variables or configuration files that you changed from the default. Again, be exact. If you are
using a pre-packaged distribution that starts the database server at boot time, you should try
to find out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the comn&s@CT ver si on(); to find out. If

this function does not exist, say so, then we know that your version is old enough. If you
can't start up the server or a client, look into the README file in the source directory or at
the name of your distribution file or package name. If your version is older than 6.5 we will
almost certainly tell you to upgrade. There are tons of bugs in old versions, that's why we
write new ones.

If you run a pre-packaged version, such as RPMs, say so, including any subversion the
package may have. If you are talking about a CVS snapshot, mention that, including its date
and time.

Platform information. This includes the kernel name and version, C library, processor,
memory information. In most cases it is sufficient to report the vendor and version, but do
not assume everyone knows what exactly Debian contains or that everyone runs on
Pentiums. If you have installation problems information about compilers, make, etc. is also
necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It's better to
report everything the first time than us having to squeeze the facts out of you. On the other
hand, if your input files are huge, it is fair to ask first whether somebody is interested in looking
into it.

Do not spend all your time to figure out which changes in the input make the problem go
away. This will probably not help solving it. If it turns out that the bug can’t be fixed right

away, you will still have time to find and share your work around. Also, once again, do not
waste your time guessing why the bug exists. We'll find that out soon enough.

Chapter 1. Introduction

When writing a bug report, please choose non-confusing terminology. The software package as
such is called PostgreSQL , sometimes Postgres for short. (Sometimes the abbreviation Pgsql is
used but don't do that.) When you are specifically talking about the backend server, mention
that, don't just say Postgres crashes . The interactive frontend is called psql and is for all intends
and purposes completely separate from the backend.

Where to report bugs

In general, send bug reports to <pgsql-bugs@postgresql.org>. You are invited to find a
descriptive subject for your email message, perhaps parts of the error message.

Do not send bug reports to any of the user mailing lists, such as pgsql-sql or pgsql-general.
These mailing lists are for answering user questions, their subscribers normally do not wish to
receive bug reports. More importantly, they are unlikely to fix them.

Also, please daot send reports to <pgsql-hackers@postgresqgl.org>. This list is for discussing
the development of PostgreSQL, it would be nice if we could keep the bug reports separate. We
might choose take up a discussion about your bug report on it, if the bug needs more review.

If you have a problem with the documentation, send email to <pgsql-docs@postgresql.org>.
Refer to the document, chapter, and sections.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email
addresses are closed mailing lists. That is, you need to be subscribed to them in order to
be allowed to post. If you simply want to send mail but do not want to receive list traffic,
you can subscribe to the special pgsql-loophole list, which allows you to post to all
PostgreSQL mailing lists without receiving any messages. Send email to
<pgsql-loophole-request@postgresql.org> to subscribe.

Y2K Statement

Author: Written by Thomas Lockhart (mailto:lockhart@alumni.caltech.edu) on 1998-10-22.
Updated 2000-03-31.

The PostgreSQL Global Development Team provides the Postgres software code tree as a
public service, without warranty and without liability for it's behavior or performance.
However, at the time of writing:

The author of this statement, a volunteer on the Postgres support team since November,
1996, is not aware of any problems in the Postgres code base related to time transitions
around Jan 1, 2000 (Y2K).

The author of this statement is not aware of any reports of Y2K problems uncovered in
regression testing or in other field use of recent or current versions of Postgres. We might
have expected to hear about problems if they existed, given the installed base and the active
participation of users on the support mailing lists.

Chapter 1. Introduction

To the best of the author’s knowledge, the assumptions Postgres makes about dates
specified with a two-digit year are documented in the current User’s Guide
(http://mvww.postgresgl.org/docs/user/datatype.htm) in the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g. 70-01-01 is interpreted
as 1970-01-01, whereas 69-01-01 is interpreted as 2069-01-01 .

Any Y2K problems in the underlying OS related to obtaining "the current time" may
propagate into apparent Y2K problems in Postgres.

Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl Institute
(http://language.perl.com/news/y2k.html) for further discussion of Y2K issues, particularly as it
relates to open source, no fee software.

Copyrights and Trademarks

PostgreSQL is Copyright © 1996-2000 by PostgreSQL Inc. and is distributed under the terms
of the Berkeley license.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California. Permission
to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

In no event shall the University of California be liable to any party for direct, indirect, special,
incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if the University of California has been advised of the
possibility of such damage.

The University of California specifically disclaims any warranties, including, but not limited

to, the implied warranties of merchantability and fitness for a particular purpose. The software
provided hereunder is on an "as-is" basis, and the University of California has no obligations to
provide maintainance, support, updates, enhancements, or modifications.

All trademarks are the property of their respective owners.

10

Chapter 2. SQL

This chapter introduces the mathematical concepts behind relational databases. It is not
required reading, so if you bog down or want to get straight to some simple examples feel free
to jump ahead to the next chapter and come back when you have more time and patience. This
stuff is supposed to be fun!

This material originally appeared as a part of Stefan Simkovics’ Master’'s THess\jcs,
1998).

SQL has become the most popular relational query language. The name SQL is an
abbreviation foiStructured Query Language. In 1974 Donald Chamberlin and others defined

the language SEQUEIStuctured English Query Language) at IBM Research. This language

was first implemented in an IBM prototype called SEQUEL-XRM in 1974-75. In 1976-77 a
revised version of SEQUEL called SEQUEL/2 was defined and the name was changed to SQL
subsequently.

A new prototype called System R was developed by IBM in 1977. System R implemented a
large subset of SEQUEL/2 (now SQL) and a number of changes were made to SQL during the
project. System R was installed in a number of user sites, both internal IBM sites and also some
selected customer sites. Thanks to the success and acceptance of System R at those user sites
IBM started to develop commercial products that implemented the SQL language based on the
System R technology.

Over the next years IBM and also a nhumber of other vendors announced SQL products such as
SQL/DS (IBM), DB2 (IBM), ORACLE (Oracle Corp.), DG/SQL (Data General Corp.), and
SYBASE (Sybase Inc.).

SQL is also an official standard now. In 1982 the American National Standards Institute
(ANSI) chartered its Database Committee X3H2 to develop a proposal for a standard relational
language. This proposal was ratified in 1986 and consisted essentially of the IBM dialect of
SQL. In 1987 this ANSI standard was also accepted as an international standard by the
International Organization for Standardization (1ISO). This original standard version of SQL is
often referred to, informally, as "SQL/86". In 1989 the original standard was extended and this
new standard is often, again informally, referred to as "SQL/89". Also in 1989, a related
standard calle®atabase Language Embedded SQL (ESQL) was developed.

The ISO and ANSI committees have been working for many years on the definition of a

greatly expanded version of the original standard, referred to informaiyleisor SQL/92.

This version became a ratified standard - "International Standard ISO/IEC 9075:1992, Database
Language SQL" - in late 1992. SQL/92 is the version normally meant when people refer to "the
SQL standard". A detailed description of SQL/92 is giveDate and Darwen, 1997. At the

time of writing this document a new standard informally referred 848 is under

development. It is planned to make SQL a Turing-complete language, i.e. all computable
gueries (e.g. recursive queries) will be possible. This is a very complex task and therefore the
completion of the new standard can not be expected before 1999.

11

Chapter 2. SQL

The Relational Data Model

As mentioned before, SQL is a relational language. That means it is basedebatithreal
data model first published by E.F. Codd in 1970. We will give a formal description of the
relational model later (iRelational Data Model Formalities) but first we want to have a look
at it from a more intuitive point of view.

A relational database is a database that is perceived by its usersaldegtion of tables (and
nothing else but tables). A table consists of rows and columns where each row represents a
record and each column represents an attribute of the records contained in thi@dable.
Suppliers and Parts Database shows an example of a database consisting of three tables:

SUPPLIER is a table storing the number (SNO), the name (SNAME) and the city (CITY) of
a supplier.

PART is a table storing the number (PNO) the name (PNAME) and the price (PRICE) of a
part.

SELLS stores information about which part (PNO) is sold by which supplier (SNO). It
serves in a sense to connect the other two tables together.

Example 2-1. The Suppliers and Parts Database

SUPPLIER SNO| SNAME | CQTY SELLS SNO | PNO
----- B L e I
1 | Smith | London 1] 1
2 | Jones | Paris 1 | 2
3 | Adams | Vienna 2 | 4
4 | Blake | Rone 3 |1 1
3 |1 3
4 | 2
PART PNO| PNAME | PRICE 4 | 3
----- et CE 4 | 4
1 | Screw | 10
2 | Nut | 8
3 | Bolt | 15
4 | Cam | 25

The tables PART and SUPPLIER may be regardeitéges and SELLS may be regarded as
arelationship between a particular part and a particular supplier.

As we will see later, SQL operates on tables like the ones just defined but before that we will
study the theory of the relational model.

Relational Data Model Formalities

The mathematical concept underlying the relational model is the set-thediatmn which is
a subset of the Cartesian product of a list of domains. This set-theoretic relation gives the

12

Chapter 2. SQL

model its name (do not confuse it with the relationship fronktitiey-Rel ationship model).
Formally a domain is simply a set of values. For example the set of integers is a domain. Also
the set of character strings of length 20 and the real numbers are examples of domains.

TheCartesian product of domainsD, p, | p. writtenDy x D ... xDx is the set of all
k-tuplesvi, vz, ...vk, such thav: 00 Di, vi O Dy, ...vk O Dx.

For example, when we hake2, Di={ 0, 1} andD:={a, b, ¢} thenD: x D; is
{(0,a),(0,b),(0,c),(1,a),(1,b),(1,¢c)}.

A Relation is any subset of the Cartesian product of one or more doRair3: x D, x ... x
Dx.

For examplg€ (0, a), (0, b), (1, a)} is arelation; it is in fact a subset®@f x D mentioned
above.

The members of a relation are called tuples. Each relation of some Cartesian prodDci
.. xDx is said to have aritly and is therefore a set ftuples.

A relation can be viewed as a table (as we already did, remdimb8uppliers and Parts

Database where every tuple is represented by a row and every column corresponds to one
component of a tuple. Giving nhames (called attributes) to the columns leads to the definition of
arelation scheme.

A relation scheme Ris a finite set of attributes, Az, ... Ax. There is a domaib , for each
attributeA , 1 <=i <=k, where the values of the attributes are taken from. We often write a
relation scheme & A1, A, ... AJ.

Note: A relation scheme is just a kind of template whereas a relation is an instance of a
relation scheme. The relation consists of tuples (and can therefore be viewed as a table);
not so the relation scheme.

Domains vs. Data Types

We often talked abowlomains in the last section. Recall that a domain is, formally, just a set

of values (e.qg., the set of integers or the real numbers). In terms of database systems we often
talk of data types instead of domains. When we define a table we have to make a decision
about which attributes to include. Additionally we have to decide which kind of data is going to
be stored as attribute values. For example the valuaeadE from the tableSUPPLI ER will

be character strings, wherezadO will store integers. We define this by assigning a data type to
each attribute. The type SNAME will be VARCHAR(20) (this is the SQL type for character
strings of length <= 20), the type 8O will be INTEGER. With the assignment of a data type

we also have selected a domain for an attribute. The domaNABE is the set of all character
strings of length <= 20, the domain®MOis the set of all integer numbers.

Operations in the Relational Data Model

In the previous sectioR@ational Data Model Formalities) we defined the mathematical
notion of the relational model. Now we know how the data can be stored using a relational data
model but we do not know what to do with all these tables to retrieve something from the

13

Chapter 2. SQL

database yet. For example somebody could ask for the names of all suppliers that sell the part
'Screw’. Therefore two rather different kinds of notations for expressing operations on relations
have been defined:

TheRelational Algebra which is an algebraic notation, where queries are expressed by
applying specialized operators to the relations.

TheRelational Calculus which is a logical notation, where queries are expressed by
formulating some logical restrictions that the tuples in the answer must satisfy.

Relational Algebra

TheRelational Algebra was introduced by E. F. Codd in 1972. It consists of a set of operations
on relations:

SELECT 0): extractduples from a relation that satisfy a given restriction. Rdie a table
that contains an attribue Oa-a(R) = {t 0 R ? t(A) = a} whera denotes a tuple & andt(A)
denotes the value of attributeof tuplet.

PROJECT (0): extracts specifiatiributes (columns) from a relation. L& be a relation
that contains an attribute &(R) = {t(X) ? t O R}, wheret(X) denotes the value of attribute
X of tuplet.

PRODUCT ¢): builds the Cartesian product of two relations.Rée a table with arityt:
and letS be a table with arity2. R x Sis the set of ak: + kz-tuples whose first:
components form a tuple Rand whose last. components form a tuple #

UNION (0): builds the set-theoretic union of two tables. Given the t&béexlS (both
must have the same arity), the unidil S is the set of tuples that areRror S or both.

INTERSECT (): builds the set-theoretic intersection of two tables. Given the Rlzpd
S, RO Sis the set of tuples that areRrand inS. We again require th&andsS have the
same arity.

DIFFERENCE £ or ?): builds the set difference of two tables. RandsS again be two
tables with the same aritR.- S is the set of tuples iR but not inS.

JOIN (): connects two tables by their common attributes Rl a table with the
attributesA,B andC and letS be a table with the attribut€sD andE. There is one attribute
common to both relations, the attrib@eR [1 S =6rarBRCSDSEORC=sdR % S)). What are

we doing here? We first calculate the Cartesian praelucs. Then we select those tuples
whose values for the common attribGtare equaldrc-=s9. Now we have a table that
contains the attribute two times and we correct this by projecting out the duplicate column.

Example 2-2. An Inner Join

Let’s have a look at the tables that are produced by evaluating the steps necessary for a join.
Let the following two tables be given:
R A[B|C S C|DJE
S Fommtoee
11213 3lalb
4156 6|c|d
71819

14

Chapter 2. SQL

First we calculate the Cartesian prodRet S and get:

RxS A| B
1] 2] 3
1] 2] 3
41 5| 6
41 5| 6
7181 9
7181 9

oo+
| 3 | alb
| 6 | c| d
| 3 | alb
| 6 | c| d
| 3 | alb
| 6 | c| d
RC| SSC| D| E
S ——_ S
| 3 | alb
| 6 | c| d

To remove the duplicate colunsiC we project it out by the following operation:
drARBRCSDSEOrRCc=sdR % S)) and get:

A

1

| Bl C| D| E
S S

| 21 3] al b

| 51 6] c| d

4

DIVIDE (%): Let R be a table with the attributes A, B, C, and D an& le¢ a table with the
attributes C and D. Then we define the division as: R + S £ts71 SOt 0 R such that
t(A,B)=t[t(C,D)=t} where t(x,y) denotes a tuple of tabiethat consists only of the
components andy. Note that the tuple only consists of the componertsndB of

relationR.

Given the following tables

R A| B|] C| D S C| D
B ST S B
al b]c]|] d c| d
al|l b| e] f e | f
b| c| e]| f
e| d] c]| d
e| d]| e| f
al b|] d]| e

15

Chapter 2. SQL

R + S is derived as

For a more detailed description and definition of the relational algebra retdirtef, 1988]
or [Date, 1994].

Example 2-3. A Query Using Relational Algebra

Recall that we formulated all those relational operators to be able to retrieve data from the
database. Let's return to our example from the previous seGjmnationsin the Relational
Data Model) where someone wanted to know the names of all suppliers that sell the part

Scr ew. This question can be answered using relational algebra by the following operation:
BsuppLier.snavd OparT Pave=scew(SUPPLIER[] SELLS[] PART))

We call such an operation a query. If we evaluate the above query against the our example
tables The Suppliers and Parts Database) we will obtain the following result:
SNAME

Relational Calculus

The relational calculus is based on filnet order logic. There are two variants of the relational
calculus:

TheDomain Relational Calculus (DRC), where variables stand for components (attributes)
of the tuples.

TheTuple Relational Calculus (TRC), where variables stand for tuples.

We want to discuss the tuple relational calculus only because it is the one underlying the most
relational languages. For a detailed discussion on DRC (and also TRQ3teek994 or
Ullman, 1988.

Tuple Relational Calculus

The queries used in TRC are of the following form: x(A) ? F(x) wkése tuple variabla is
a set of attributes arwdis a formula. The resulting relation consists of all tuglesthat satisfy
F(t).

16

Chapter 2. SQL

If we want to answer the question from exam®l@uery Using Relational Algebra using TRC
we formulate the following query:

{X(SNAME) ? xO SUPPLIERO\nonumber
Oy 0 SELLSOz O PART (Y(SNO)=x(SNOYI\nonumber
z(PNO)=y(PN@)\nonumber
z(PNAME)="Screw’)} \nonumber

Evaluating the query against the tables fiima Suppliers and Parts Database again leads to
the same result as MQuery Using Relational Algebra.

Relational Algebravs. Relational Calculus

The relational algebra and the relational calculus have thees@nessive power; i.e. all

gueries that can be formulated using relational algebra can also be formulated using the
relational calculus and vice versa. This was first proved by E. F. Codd in 1972. This proof is
based on an algorithm (Codd’s reduction algorithm) by which an arbitrary expression of the
relational calculus can be reduced to a semantically equivalent expression of relational algebra.
For a more detailed discussion on that refddte, 1994 andUIIman, 1988.

It is sometimes said that languages based on the relational calculus are "higher level" or "more
declarative" than languages based on relational algebra because the algebra (partially) specifies
the order of operations while the calculus leaves it to a compiler or interpreter to determine the
most efficient order of evaluation.

The SQL Language

As is the case with most modern relational languages, SQL is based on the tuple relational
calculus. As a result every query that can be formulated using the tuple relational calculus (or
equivalently, relational algebra) can also be formulated using SQL. There are, however,
capabilities beyond the scope of relational algebra or calculus. Here is a list of some additional
features provided by SQL that are not part of relational algebra or calculus:

Commands for insertion, deletion or modification of data.

Arithmetic capability: In SQL it is possible to involve arithmetic operations as well as
comparisons, e.g. A < B + 3. Note that + or other arithmetic operators appear neither in
relational algebra nor in relational calculus.

Assignment and Print Commands: It is possible to print a relation constructed by a query
and to assign a computed relation to a relation name.

Aggregate Functions: Operations suclaasage, sum, max, etc. can be applied to columns
of a relation to obtain a single quantity.

17

Chapter 2. SQL

Select

The most often used command in SQL is the SELECT statement, used to retrieve data. The
syntax is:

SELECT [ALL|DISTINCT]
{*|expr_1[ASc alias 1] [, ...
[expr_k [AS c_alias K]]J}
FROMtable name 1[t_alias 1]
[, ... [table_name n[t_alias n[]]
[WHERE condition]
[GROUP BYname_of_attr_i
[,... [name_of_attr_j]] [HAVING condition]]
[{UNION [ALL] | INTERSECT | EXCEPT} SELECT ...]
[ORDER BYname of_attr_i [ASC|DESC]
[, ... [name_of_attr_j [ASC|DESCII]];

Now we will illustrate the complex syntax of the SELECT statement with various examples.
The tables used for the examples are defindthé@Buppliers and Parts Database.

Simple Selects

Here are some simple examples using a SELECT statement:

Example 2-4. Simple Query with Qualification

To retrieve all tuples from table PART where the attribute PRICE is greater than 10 we
formulate the following query:
SELECT * FROM PART
WHERE PRICE > 10;

and get the table:
PNO | PNAME | PRICE
_____ R S
3| Bolt | 15
4| Cam | 25

Using "*" in the SELECT statement will deliver all attributes from the table. If we want to
retrieve only the attributes PNAME and PRICE from table PART we use the statement:
SELECT PNAME, PRICE
FROM PART
WHERE PRICE > 10;

18

Chapter 2. SQL

In this case the result is:
PNAME | PRICE
________ 1 S
Bolt | 15
Cam | 25

Note that the SQL SELECT corresponds to the "projection” in relational algebra not to the
"selection” (se&elational Algebra for more details).

The qualifications in the WHERE clause can also be logically connected using the keywords
OR, AND, and NOT:
SELECT PNAME, PRICE
FROM PART
WHERE PNAME ="Bolt’ AND
(PRICE = 0 OR PRICE < 15);

will lead to the result:
PNAME | PRICE
________ B

Bolt | 15

Arithmetic operations may be used in the target list and in the WHERE clause. For example if
we want to know how much it would cost if we take two pieces of a part we could use the
following query:

SELECT PNAME, PRICE * 2 AS DOUBLE

FROM PART

WHERE PRICE * 2 < 50;

and we get:
PNAME | DOUBLE
________ S R

Screw | 20
Nut | 16
Bolt | 30

Note that the word DOUBLE after the keyword AS is the new title of the second column. This
technique can be used for every element of the target list to assign a new title to the resulting
column. This new title is often referred to as alias. The alias cannot be used throughout the rest
of the query.

19

Chapter 2. SQL

Joins

The following example shows hgwins are realized in SQL.

To join the three tables SUPPLIER, PART and SELLS over their common attributes we
formulate the following statement:

SELECT S.SNAME, P.PNAME
FROM SUPPLIER S, PART P, SELLS SE
WHERE S.SNO = SE.SNO AND

P.PNO = SE.PNO;

and get the following table as a result:

SNAME | PNAME
_______ Fommeee

Smith | Screw
Smith | Nut
Jones | Cam
Adams | Screw
Adams | Bolt
Blake | Nut
Blake | Bolt
Blake | Cam

In the FROM clause we introduced an alias name for every relation because there are common
named attributes (SNO and PNO) among the relations. Now we can distinguish between the
common named attributes by simply prefixing the attribute name with the alias name followed
by a dot. The join is calculated in the same way as shown inner Join. First the Cartesian
product SUPPLIER PART x SELLS is derived. Now only those tuples satisfying the
conditions given in the WHERE clause are selected (i.e. the common named attributes have to
be equal). Finally we project out all columns but S.SNAME and P.PNAME.

Aggregate Operators

SQL provides aggregate operators (e.g. AVG, COUNT, SUM, MIN, MAX) that take the name
of an attribute as an argument. The value of the aggregate operator is calculated over all values
of the specified attribute (column) of the whole table. If groups are specified in the query the
calculation is done only over the values of a group (see next section).

Example 2-5. Aggregates

If we want to know the average cost of all parts in table PART we use the following query:
SELECT AVG PRI CE) AS AVG PRI CE
FROM PART;

20

Chapter 2. SQL

The result is:
AVG PRI CE

If we want to know how many parts are stored in table PART we use the statement:
SELECT COUNT(PNO)
FROM PART;

and get:

Aggregation by Groups

SQL allows one to partition the tuples of a table into groups. Then the aggregate operators
described above can be applied to the groups (i.e. the value of the aggregate operator is no
longer calculated over all the values of the specified column but over all values of a group.
Thus the aggregate operator is evaluated individually for every group.)

The partitioning of the tuples into groups is done by using the keyWR@UP BY followed

by a list of attributes that define the groups. If we FAROUP BY A;, ?, Ak we partition the
relation into groups, such that two tuples are in the same group if and only if they agree on all
the attributes A ?, A

Example 2-6. Aggregates

If we want to know how many parts are sold by every supplier we formulate the query:
SELECT S. SNO, S. SNAME, COUNT(SE. PNO)
FROM SUPPLI ER S, SELLS SE
WHERE S. SNO = SE. SNO
GROUP BY S. SNO, S. SNAVE

and get:
SNO | SNAME | COUNT
_____ .
1 | Smith | 2
2 | Jones | 1
3 | Adans | 2
4 | Blake | 3

21

Chapter 2. SQL

Now let’s have a look of what is happening here. First the join of the tables SUPPLIER and
SELLS is derived:
S.SNO | S.SNAME | SE. PNO

A A DOWODNEREPR
A OWODNWEFE BMANPRE

Next we partition the tuples into groups by putting all tuples together that agree on both
attributes S.SNO and S.SNAME:
S.SNO | S.SNAME | SE. PNO

_______ Fem e e e e e e e e a -
1 | Smith | 1
| 2
2 | Jones | 4
3 | Adams | 1
| 3
4 | Blake | 2
| 3
| 4

In our example we got four groups and now we can apply the aggregate operator COUNT to
every group leading to the total result of the query given above.

Note that for the result of a query using GROUP BY and aggregate operators to make sense
the attributes grouped by must also appear in the target list. All further attributes not appearing
in the GROUP BY clause can only be selected by using an aggregate function. On the other
hand you can not use aggregate functions on attributes appearing in the GROUP BY clause.

Having

The HAVING clause works much like the WHERE clause and is used to consider only those
groups satisfying the qualification given in the HAVING clause. The expressions allowed in
the HAVING clause must involve aggregate functions. Every expression using only plain
attributes belongs to the WHERE clause. On the other hand every expression involving an
aggregate function must be put to the HAVING clause.

22

Chapter 2. SQL

Example 2-7. Having

If we want only those suppliers selling more than one part we use the query:
SELECT S. SNO, S. SNAVE, COUNT(SE. PNO)
FROM SUPPLI ER S, SELLS SE
VWHERE S. SNO = SE. SNO
CGROUP BY S. SNO, S. SNAME
HAVI NG COUNT(SE. PNO) > 1;

and get:
SNO | SNAME | COUNT
_____ e
1 | Smith| 2
3 | Adans | 2
4 | Blake | 3
Subqueries

In the WHERE and HAVING clauses the use of subqueries (subselects) is allowed in every
place where a value is expected. In this case the value must be derived by evaluating the
subquery first. The usage of subqueries extends the expressive power of SQL.

Example 2-8. Subselect
If we want to know all parts having a greater price than the part named 'Screw’ we use the

query:
SELECT *
FROM PART
WHERE PRI CE > (SELECT PRI CE FROM PART
VWHERE PNAME='" Screw);

The result is:
PNO| PNAME | PRICE
_____ o
3 | Bolt | 15
4 | Cam | 25

When we look at the above query we can see the keyword SELECT two times. The first one at
the beginning of the query - we will refer to it as outer SELECT - and the one in the WHERE
clause which begins a nested query - we will refer to it as inner SELECT. For every tuple of the
outer SELECT the inner SELECT has to be evaluated. After every evaluation we know the
price of the tuple named 'Screw’ and we can check if the price of the actual tuple is greater.

23

Chapter 2. SQL

If we want to know all suppliers that do not sell any part (e.g. to be able to remove these
suppliers from the database) we use:
SELECT *
FROM SUPPLI ER S
VWHERE NOT EXI STS
(SELECT * FROM SELLS SE
WHERE SE. SNO = S. SNO);

In our example the result will be empty because every supplier sells at least one part. Note that
we use S.SNO from the outer SELECT within the WHERE clause of the inner SELECT. As
described above the subquery is evaluated for every tuple from the outer query i.e. the value for
S.SNO is always taken from the actual tuple of the outer SELECT.

Union, Intersect, Except

These operations calculate the union, intersect and set theoretic difference of the tuples derived
by two subqueries.

Example 2-9. Union, I nter sect, Except

The following query is an example for UNION:
SELECT S.SNO, S. SNAME, S. CTY
FROM SUPPLI ER S
WHERE S. SNAME = ' Jones’
UNI ON
SELECT S. SNO, S. SNAME, S. CITY
FROM SUPPLI ER S
WHERE S. SNAME =

gives the result:

2 | Jones | Paris
3 | Adams | Vienna

Here an example for INTERSECT:
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLI ER S
WHERE S. SNO > 1
| NTERSECT
SELECT S. SNO, S. SNAME, S. A TY
FROM SUPPLI ER S
VWHERE S. SNO > 2;

24

Chapter 2. SQL

gives the result:
SNO| SNAME | CTY

2 | Jones | Paris
The only tuple returned by both parts of the query is the one having
$SNO=2%.

Finally an example for EXCEPT:
SELECT S. SNO, S. SNAME, S. CITY
FROM SUPPLI ER S
WHERE S. SNO > 1
EXCEPT
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLI ER S
WHERE S. SNO > 3;

gives the result:
SNO | SNAME | CITY

2 | Jones | Paris
3 | Adams | Vienna

Data Definition

There is a set of commands used for data definition included in the SQL language.

Create Table

The most fundamental command for data definition is the one that creates a new relation (a

new table). The syntax of the CREATE TABLE command is:

CREATE TABLE t abl e_nane
(name_of _attr_1 type_of _attr_1
[, nane_of _attr_2 type_of _attr_2

[- 11)s

25

Chapter 2. SQL

Example 2-10. Table Creation

To create the tables definedTihe Suppliers and Parts Database the following SQL
statements are used:
CREATE TABLE SUPPLI ER
(SNO | NTEGER,
SNAME VARCHAR(20) ,
CITY VARCHAR(20));

CREATE TABLE PART
(PNO | NTEGER
PNAVE VARCHAR(20) ,
PRI CE DECI MAL(4 , 2));

CREATE TABLE SELLS
(SNO | NTEGER,
PNO | NTEGER) ;

Data Types in SQL

The following is a list of some data types that are supported by SQL:
INTEGER: signed fullword binary integer (31 bits precision).
SMALLINT: signed halfword binary integer (15 bits precision).

DECIMAL (p[,q]): signed packed decimal numberpftligits precision with assumegof
them right to the decimal point. (2 = qq= 0). If g is omitted it is assumed to be 0.

FLOAT: signed doubleword floating point number.
CHAR(n): fixed length character string of length
VARCHAR(n): varying length character string of maximum length

Create Index

Indices are used to speed up access to a relation. If a rétdtaman index on attributethen
we can retrieve all tuplds havingt (A) = a in time roughly proportional to the number of such
tuplest rather than in time proportional to the sizeRof

To create an index in SQL the CREATE INDEX command is used. The syntax is:

CREATE | NDEX i ndex_namne
ON tabl e_name (name_of _attribute);

26

Chapter 2. SQL

Example 2-11. Create I ndex

To create an index named | on attribute SNAME of relation SUPPLIER we use the following
statement:

CREATE | NDEX |

ON SUPPLI ER (SNAME) ;

The created index is maintained automatically, i.e. whenever a new tuple is inserted into the
relation SUPPLIER the index | is adapted. Note that the only changes a user can percept when
an index is present are an increased speed.

Create View

A view may be regarded aviatual table, i.e. a table that does ngtysically exist in the
database but looks to the user as if it does. By contrast, when we tdiaseftable there is
really a physically stored counterpart of each row of the table somewhere in the physical
storage.

Views do not have their own, physically separate, distinguishable stored data. Instead, the
system stores the definition of the view (i.e. the rules about how to access physically stored
base tables in order to materialize the view) somewhere in the system catal@yst¢see
Catalogs). For a discussion on different techniques to implement views resas.

In SQL theCREATE VIEW command is used to define a view. The syntax is:

CREATE VI EW vi ew_nane
AS sel ect _stnt

wheresel ect _st mt is a valid select statement as define&diect. Note that
sel ect _st nt is not executed when the view is created. It is just stored sydteen
catalogs and is executed whenever a query against the view is made.

Let the following view definition be given (we use the tables fitXSuppliers and Parts
Database again):

CREATE VI EW London_Suppliers
AS SELECT S. SNAME, P. PNAVE
FROM SUPPLI ER S, PART P, SELLS SE
WHERE S. SNO = SE. SNO AND
P. PNO = SE. PNO AND
S.CITY = 'London’;

27

Chapter 2. SQL

Now we can use thigrtual relation London_Suppl i er s as if it were another base table:
SELECT *
FROM London_Suppliers
VWHERE P. PNAME = ' Screw ;

which will return the following table:

SNAMVE | PNAME
_______ R,

Smith | Screw

To calculate this result the database system has thiddem access to the base tables
SUPPLIER, SELLS and PART first. It does so by executing the query given in the view
definition against those base tables. After that the additional qualifications (given in the query
against the view) can be applied to obtain the resulting table.

Drop Table, Drop Index, Drop View

To destroy a table (including all tuples stored in that table) the DROP TABLE command is
used:

DROP TABLE t abl e_nane;

To destroy the SUPPLIER table use the following statement:

DROP TABLE SUPPLI ER;

The DROP INDEX command is used to destroy an index:

DROP | NDEX i ndex_nane;

Finally to destroy a given view use the command DROP VIEW:

DROP VI EW vi ew_nane;

28

Chapter 2. SQL

Data Manipulation

Insert Into

Once a table is created (S&e=ate Table), it can be filled with tuples using the command
INSERT INTO. The syntax is:

I NSERT | NTO tabl e_nanme (nanme_of _attr_1
[, name_of _attr_2 [,...]1])
VALUES (val _attr_1
[, val _attr_2 [, ...11);

To insert the first tuple into the relation SUPPLIER (ffohe Suppliers and Parts Database)
we use the following statement:

I NSERT | NTO SUPPLI ER (SNO, SNAME, CITY)
VALUES (1, 'Smith’, ’London’);

To insert the first tuple into the relation SELLS we use:

I NSERT | NTO SELLS (SNO, PNO)
VALUES (1, 1);

Update

To change one or more attribute values of tuples in a relation the UPDATE command is used.
The syntax is:

UPDATE t abl e_nane
SET name_of _attr_1 = value_1

[, ... [, name_of _attr_k = value_k]]
VWHERE condi ti on;

To change the value of attribute PRICE of the part 'Screw’ in the relation PART we use:
UPDATE PART

SET PRICE = 15
WHERE PNAME = ’ Screw ;

29

Chapter 2. SQL

The new value of attribute PRICE of the tuple whose name is 'Screw’ is now 15.

Delete

To delete a tuple from a particular table use the command DELETE FROM. The syntax is:

DELETE FROM t abl e_nane
VWHERE condi tion;

To delete the supplier called 'Smith’ of the table SUPPLIER the following statement is used:

DELETE FROM SUPPLI ER
WHERE SNAME = ' Smith’;

System Catalogs

In every SQL database systeystem catalogs are used to keep track of which tables, views
indexes etc. are defined in the database. These system catalogs can be queried as if they were
normal relations. For example there is one catalog used for the definition of views. This catalog
stores the query from the view definition. Whenever a query against a view is made, the system
first gets theview definition query out of the catalog and materializes the view before
proceeding with the user query (rkovics, 1998 for a more detailed description). For more
information about system catalogs refebDite, 1994.

Embedded SQL

In this section we will sketch how SQL can be embedded into a host langua@. (Ehgre
are two main reasons why we want to use SQL from a host language:

There are queries that cannot be formulated using pure SQL (i.e. recursive queries). To be
able to perform such queries we need a host language with a greater expressive power than
SQL.

We simply want to access a database from some application that is written in the host
language (e.g. a ticket reservation system with a graphical user interface is written in C and
the information about which tickets are still left is stored in a database that can be accessed
using embedded SQL).

A program using embedded SQL in a host language consists of statements of the host language
and ofembedded SQL (ESQL) statements. Every ESQL statement begins with the keywords
EXEC SQL. The ESQL statements are transformed to statements of the host language by a
precompiler (which usually inserts calls to library routines that perform the various SQL
commands).

30

Chapter 2. SQL

When we look at the examples throughB8aiect we realize that the result of the queries is

very often a set of tuples. Most host languages are not designed to operate on sets so we need a
mechanism to access every single tuple of the set of tuples returned by a SELECT statement.
This mechanism can be provided by declarigraor. After that we can use the FETCH

command to retrieve a tuple and set the cursor to the next tuple.

For a detailed discussion on embedded SQL refeateand Darwen, 1997, Date, 1994, or
Ullman, 1988.

31

Chapter 3. Architecture

Postgres Architectural Concepts

Before we begin, you should understand the basic Postgres system architecture. Understanding
how the parts of Postgres interact will make the next chapter somewhat clearer. In database
jargon, Postgres uses a simple "process per-user" client/server model. A Postgres session
consists of the following cooperating Unix processes (programs):

A supervisory daemon process (postmaster),
the user’s frontend application (e.g., the psqgl program), and
the one or more backend database servers (the postgres process itself).

A single postmaster manages a given collection of databases on a single host. Such a collection
of databases is called an installation or site. Frontend applications that wish to access a given
database within an installation make calls to the library. The library sends user requests over

the network to the postmastétaw a connection is established), which in turn starts a new

backend server process

Figure 3-1. How a connection is established

POSTMASTER

SERVER

client host server host

and connects the frontend process to the new server. From that point on, the frontend process
and the backend server communicate without intervention by the postmaster. Hence, the
postmaster is always running, waiting for requests, whereas frontend and backend processes
come and go.

Thel i bpq library allows a single frontend to make multiple connections to backend

processes. However, the frontend application is still a single-threaded process. Multithreaded
frontend/backend connections are not currently supporteichipng. One implication of this
architecture is that the postmaster and the backend always run on the same machine (the
database server), while the frontend application may run anywhere. You should keep this in
mind, because the files that can be accessed on a client machine may not be accessible (or may
only be accessed using a different filename) on the database server machine.

You should also be aware that the postmaster and postgres servers run with the user-id of the
Postgres "superuser.” Note that the Postgres superuser does not have to be a special user (e.g., a
user named "postgres"). Furthermore, the Postgres superuser should definitely not be the Unix
superuser ("root")! In any case, all files relating to a database should belong to this Postgres
superuser.

32

Chapter 4. Getting Started

How to begin work with Postgres for a new user.

Some of the steps required to use Postgres can be performed by any Postgres user, and some
must be done by the site database administrator. This site administrator is the person who
installed the software, created the database directories and started the postmaster process. This
person does not have to be the Unix superuser (root) or the computer system administrator; a
person can install and use Postgres without any special accounts or privileges.

If you are installing Postgres yourself, then refer to the Administrator’'s Guide for instructions
on installation, and return to this guide when the installation is complete.

Throughout this manual, any examples that begin with the character % are commands that
should be typed at the Unix shell prompt. Examples that begin with the character * are
commands in the Postgres query language, Postgres SQL.

Setting Up Your Environment

This section discusses how to set up your own environment so that you can use frontend
applications. We assume Postgres has already been successfully installed and started; refer to
the Administrator's Guide and the installation notes for how to install Postgres.

Postgres is a client/server application. As a user, you only need access to the client portions of
the installation (an example of a client application is the interactive monitor psql). For

simplicity, we will assume that Postgres has been installed in the directory

/usr/1ocal / pgsql . Therefore, wherever you see the directaryr /| ocal / pgsgl you

should substitute the name of the directory where Postgres is actually installed. All Postgres
commands are installed in the directonsr /| ocal / pgsql / bi n. Therefore, you should add

this directory to your shell command path. If you use a variant of the Berkeley C shell, such as
csh or tcsh, you would add

% set path = (/usr/local/pgsqgl/bin path)

in the. | ogi n file in your home directory. If you use a variant of the Bourne shell, such as sh,
ksh, or bash, then you would add

% PATH=/ usr /| ocal / pgsql / bi n: $PATH
% export PATH

to the .profile file in your home directory. From now on, we will assume that you have added
the Postgres bin directory to your path. In addition, we will make frequent reference to setting a
shell variable or setting an environment variable throughout this document. If you did not fully
understand the last paragraph on modifying your search path, you should consult the Unix
manual pages that describe your shell before going any further.

33

Chapter 4. Getting Started

If your site administrator has not set things up in the default way, you may have some more
work to do. For example, if the database server machine is a remote machine, you will need to
set the PGHOST environment variable to the name of the database server machine. The
environment variable PGPORT may also have to be set. The bottom line is this: if you try to
start an application program and it complains that it cannot connect to the postmaster, you
should immediately consult your site administrator to make sure that your environment is
properly set up.

Starting the Interactive Monitor (psql)

Assuming that your site administrator has properly started the postmaster process and
authorized you to use the database, you (as a user) may begin to start up applications. As
previously mentioned, you should adasr / | ocal / pgsql / bi n to your shell search path. In
most cases, this is all you should have to do in terms of preparation.

Two different styles of connections are supported. The site administrator will have chosen to
allow TCP/IP network connections or will have restricted database access to local
(same-machine) socket connections only. These choices become significant if you encounter
problems in connecting to a database, since you will want to confirm that you are choosing an
allowed connection option.

If you get the following error message from a Postgres command (such as psqgl or createdb):
% psql tenplatel
Connection to database 'postgres’ failed.

connectDB() failed: |Is the postnaster running and accepting connections
at ' UNI X Socket’ on port '5432'7?

or
% psql -h | ocal host tenplatel
Connection to database ’postgres’ failed.

connectDB() failed: Is the postmaster running and accepting TCP/IP
(with -i) connections at 'local host’ on port '5432'?

it is usually because
the postmaster is not running, or
you are attempting to connect to the wrong server host.

If you get the following error message:

FATAL 1:Feb 17 23:19:55: process userid (2360) != database owner (268)

it means that the site administrator started the postmaster as the wrong user. Tell him to restart
it as the Postgres superuser.

34

Chapter 4. Getting Started

Managing a Database

Now that Postgres is up and running we can create some databases to experiment with. Here,
we describe the basic commands for managing a database.

Most Postgres applications assume that the database name, if not specified, is the same as the
name on your computer account.

If your database administrator has set up your account without database creation privileges,
then she should have told you what the name of your database is. If this is the case, then you
can skip the sections on creating and destroying databases.

Creating a Database

Let's say you want to create a database named mydb. You can do this with the following
command:

% creat edb nmydb

If you do not have the privileges required to create a database, you will see the following:

% cr eat edb mydb
WARN: user "your usernane" is not allowed to create/destroy databases
creat edb: database creation failed on nydb.

Postgres allows you to create any number of databases at a given site and you automatically
become the database administrator of the database you just created. Database names must have
an alphabetic first character and are limited to 32 characters in length. Not every user has
authorization to become a database administrator. If Postgres refuses to create databases for
you, then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs.

Accessing a Database

Once you have constructed a database, you can access it by:

Running the Postgres terminal monitor programs (e.g. psql) which allows you to
interactively enter, edit, and execute SQL commands.

Using an existing native frontend tool like pgaccess or ApplixWare (via ODBC) to create
and manipulate a database.

Using a language like perl or tcl which has a supported interface for Postgres. Some of these
languages also have convenient and powerful GUI toolkits which can help you construct
custom applications. pgaccess, mentioned above, is one such application written in tk/tcl and
can be used as an example.

35

Chapter 4. Getting Started

Writing a C program using the LIBPQ subroutine library. This allows you to submit SQL
commands from C and get answers and status messages back to your program. This interface
is discussed further ifhe PostgreSQL Programmer’s Guide.

You might want to start up psql, to try out the examples in this manual. It can be activated for
the mydb database by typing the command:

% psql mnydb

You will be greeted with the following message:

Wel cone to the POSTGRESQL interactive sql nonitor:
Pl ease read the file COPYRI GHT for copyright terns of POSTGRESQ

type \? for help on slash comands

type \q to quit

type \g or terminate with semicolon to execute query
You are currently connected to the database: tenplatel

nmydb=>

This prompt indicates that the terminal monitor is listening to you and that you can type SQL
gueries into a workspace maintained by the terminal monitor. The psql program responds to
escape codes that begin with the backslash character, \ For example, you can get help on the
syntax of various Postgres SQL commands by typing:

mydb=> \h

Once you have finished entering your queries into the workspace, you can pass the contents of
the workspace to the Postgres server by typing:

nydb=> \g
This tells the server to process the query. If you terminate your query with a semicolon, the \g

is not necessary. psql will automatically process semicolon terminated queries. To read queries
from a file, say myFile, instead of entering them interactively, type:

nydb=> \i fil eNanme

To get out of psql and return to Unix, type

nydb=> \q

36

Chapter 4. Getting Started

and psql will quit and return you to your command shell. (For more escape codéls,aype

the monitor prompt.) White space (i.e., spaces, tabs and newlines) may be used freely in SQL
gueries. Single-line comments are denoted by -- . Everything after the dashes up to the end of
the line is ignored. Multiple-line comments, and comments within a line, are denoted by /* ... */

Destroying a Database

If you are the database administrator for the database mydb, you can destroy it using the
following Unix command:

% dr opdb mydb

This action physically removes all of the Unix files associated with the database and cannot be
undone, so this should only be done with a great deal of forethought.

37

Chapter 5. The Query Language

The Postgres query language is a variant of the SQL3 draft next-generation standard. It has
many extensions to SQL92 such as an extensible type system, inheritance, functions and
production rules. These are features carried over from the original Postgres query language,
PostQuel. This section provides an overview of how to use Postgres SQL to perform simple
operations. This manual is only intended to give you an idea of our flavor of SQL and is in no
way a complete tutorial on SQL. Numerous books have been written on SQL92, including
Melton and Smon, 1993 andDate and Darwen, 1997. You should be aware that some language
features are extensions to the ANSI standard.

Interactive Monitor

In the examples that follow, we assume that you have created the mydb database as described
in the previous subsection and have started psql. Examples in this manual can also be found in
/usr/local/pgsql/src/tutorial/.Referto the(README file in that directory for how to
use them. To start the tutorial, do the following:

% cd /usr/local/pgsql/src/tutori al
% psql -s nydb
Wl come to the POSTGRESQL interactive sql nonitor:
Pl ease read the file COPYRI GHT for copyright ternms of POSTGRESQL

type \? for help on slash comands

type \g to quit

type \g or terminate with sem colon to execute query
You are currently connected to the database: postgres

nydb=> \i basics. sql

The\i command read in queries from the specified files.-Theption puts you in single step
mode which pauses before sending a query to the backend. Queries in this section are in the file
basi cs. sql .

psql has a variety afd commands for showing system information. Consult these commands
for more details; for a listing, type? at the psql prompt.

Concepts

The fundamental notion in Postgres is that of a class, which is a named collection of object
instances. Each instance has the same collection of named attributes, and each attribute is of a
specific type. Furthermore, each instance has a permaljedtidentifier (OID) that is unique
throughout the installation. Because SQL syntax refers to tables, we will use thtattems
andclass interchangeably. Likewise, an S@aw is aninstance and SQLcolumns are

38

Chapter 5. The Query Language

attributes. As previously discussed, classes are grouped into databases, and a collection of
databases managed by a single postmaster process constitutes an installation or site.

Creating a New Class

You can create a new class by specifying the class name, along with all attribute names and

their types:

CREATE TABLE weat her (
city var char (80),
temp_lo int, -- low tenperature
t enp_hi int, -- high tenperature
prcp real, -- precipitation
date date

Note that both keywords and identifiers are case-insensitive; identifiers can preserve case by
surrounding them with double-quotes as allowed by SQL92. Postgres SQL supports the usual
SQL types int, float, real, smallint, char(N), varchar(N), date, time, and timestamp, as well as
other types of general utility and a rich set of geometric types. As we will see later, Postgres
can be customized with an arbitrary number of user-defined data types. Consequently, type
names are not syntactical keywords, except where required to support special cases in the
SQL92 standard. So far, the PostgB&&EATE command looks exactly like the command
used to create a table in a traditional relational system. However, we will presently see that
classes have properties that are extensions of the relational model.

Populating a Class with Instances

ThelNSERT statement is used to populate a class with instances:

| NSERT | NTO weat her
VALUES (' San Francisco’, 46, 50, 0.25, '11/27/1994");

You can also use theéOPY command to perform load large amounts of data from flat
(ASCII) files. This is usually faster because the data is read (or written) as a single atomic
transaction directly to or from the target table. An example would be:

COPY weat her FROM '/ hone/ user/ weat her . t xt’
USI NG DELIM TERS " | ';

where the path name for the source file must be available to the backend server machine, not
the client, since the backend server reads the file directly.

39

Chapter 5. The Query Language

Querying a Class

The weather class can be queried with normal relational selection and projection queries. A
SQL SELECT statement is used to do this. The statement is divided into a target list (the part
that lists the attributes to be returned) and a qualification (the part that specifies any
restrictions). For example, to retrieve all the rows of weather, type:

SELECT * FROM weat her;

and the output should be:

R [S [S oo - e e e e oo +
|city | tenp_lo | tenp_hi | prcp | date |
P [[oo T +
| San Francisco | 46 | 50 | 0.25 | 11-27-1994 |
- Fommm e e o Fommm e e o LTI . +
| San Francisco | 43 | 57 | O | 11-29-1994 |
[LSS [[Fom - RS +
| Haywar d | 37 | 54 | | 11-29-1994 |
[SRS [[Hom - - [SRS +

You may specify any arbitrary expressions in the target list. For example, you can do:

SELECT city, (tenp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;

Arbitrary Boolean operator&A(ND, OR andNOT) are allowed in the qualification of any
query. For example,

SELECT * FROM weat her
WHERE city = 'San Franci sco’
AND prcp > 0.0;

results in:

. T T S - +
|city | tenp_lo | tenp_hi | prcp | date |
R T o o oo - o +
| San Francisco | 46 | 50 | 0.25 | 11-27-1994 |
[LSS [[Fom - RS +

40

Chapter 5. The Query Language

As a final note, you can specify that the results of a select can be returrsedted arder or
with duplicate instances removed.

SELECT DI STINCT city
FROM weat her
ORDER BY city;

Redirecting SELECT Queries

Any SELECT query can be redirected to a new class

SELECT * I NTO TABLE tenp FROM weat her;

This forms an impliciCREATE command, creating a new class temp with the attribute
names and types specified in the target list oSlBeECT INTO command. We can then, of
course, perform any operations on the resulting class that we can perform on other classes.

Joins Between Classes

Thus far, our queries have only accessed one class at a time. Queries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class are
being processed at the same time. A query that accesses multiple instances of the same or
different classes at one time is called a join query. As an example, say we wish to find all the
records that are in the temperature range of other records. In effect, we need to compare the
temp_lo and temp_hi attributes of each EMP instance to the temp_lo and temp_hi attributes of
all other EMP instances.

Note: This is only a conceptual model. The actual join may be performed in a more
efficient manner, but this is invisible to the user.

We can do this with the following query:

SELECT WL.city, W..tenp_lo AS low, WL.tenp_hi AS high,
W2.city, W2.tenp_lo AS low, W2.tenp_hi AS high
FROM weat her W, weat her W2
WHERE WL..tenp_lo < W2.tenp_l o
AND WL. tenp_hi > W2.tenp_hi;

- omm S - S S +
|city | Tow| high | city | lTow | high |
. e - oo T T oom-- oo +
| San Francisco | 43 | 57 | San Francisco | 46 | 50 |
TS [g Fom - S e Fomm o +
| San Francisco | 37 | 54 | San Francisco | 46 | 50 |
SR [Hom - S Hom - - - Fomm o +

41

Chapter 5. The Query Language

Note: The semantics of such a join are that the qualification is a truth expression defined
for the Cartesian product of the classes indicated in the query. For those instances in the
Cartesian product for which the qualification is true, Postgres computes and returns the
values specified in the target list. Postgres SQL does not assign any meaning to duplicate
values in such expressions. This means that Postgres sometimes recomputes the same
target list several times; this frequently happens when Boolean expressions are connected
with an "or". To remove such duplicates, you must use the SELECT DISTINCT statement.

In this case, bottM andw are surrogates for an instance of the class weather, and both range
over all instances of the class. (In the terminology of most database systeamd\\2 are

known agange variables.) A query can contain an arbitrary number of class names and
surrogates.

Updates

You can update existing instances usingdP®ATE command. Suppose you discover the
temperature readings are all off by 2 degrees as of Nov 28, you may update the data as follow:

UPDATE weat her

SET tenp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
VWHERE date > ’11/28/1994’;

Deletions

Deletions are performed using th&EL ETE command:

DELETE FROM weat her WHERE city = ' Hayward’ ;

All weather recording belongs to Hayward is removed. One should be wary of queries of the
form

DELETE FROM cl assnane;

Without a qualificationDEL ETE will simply remove all instances of the given class, leaving
it empty. The system will not request confirmation before doing this.

Using Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An
aggregate function computes a single result from multiple input rows. For example, there are

42

Chapter 5. The Query Language

aggregates to compute theunt , sum avg (average)max (maximum) andvi n (minimum)
over a set of instances.

It is important to understand the interaction between aggregates andV@QERE and

HAVING clauses. The fundamental difference betwadhERE andHAVING is this:

WHERE selects input rows before groups and aggregates are computed (thus, it controls which
rows go into the aggregate computation), wheke&¥ ING selects group rows after groups

and aggregates are computed. Thus\WHERE clause may not contain aggregate functions;

it makes no sense to try to use an aggregate to determine which rows will be inputs to the
aggregates. On the other haH#VING clauses always contain aggregate functions. (Strictly
speaking, you are allowed to writdH®VING clause that doesn’t use aggregates, but it's
wasteful; the same condition could be used more efficiently AVIHERE stage.)

As an example, we can find the highest low-temperature reading anywhere with

SELECT max(tenp_| 0) FROM weat her;

If we want to know which city (or cities) that reading occurred in, we might try

SELECT city FROM weat her WHERE tenp_l o = nmax(tenp_| 0);

but this will not work since the aggregatex can’t be used ilWHERE. However, as is often
the case the query can be restated to accomplish the intended result; here byulrsaieca

SELECT city FROM weat her
WHERE tenp_l o = (SELECT max(tenp_l o) FROM weat her);

This is OK because the sub-select is an independent computation that computes its own
aggregate separately from what's happening in the outer select.

Aggregates are also very useful in combination @ROUP BY clauses. For example, we
can get the maximum low temperature observed in each city with

SELECT city, nmax(tenp_| o)
FROM weat her
GROUP BY city;

which gives us one output row per city. We can filter these grouped rowsHAMDNG:
SELECT city, max(tenp_l o)
FROM weat her

GROUP BY city
HAVI NG min(tenp_l o) < O;

which gives us the same results for only the cities that have some below-zero readings. Finally,
if we only care about cities whose names begin vAthwe might do

SELECT city, max(tenp_| o)
FROM weat her

43

Chapter 5. The Query Language

VWHERE city |ike ' P%
GROUP BY city
HAVI NG min(tenp_l o) < O;

Note that we can apply the city-name restrictioiHERE, since it needs no aggregate. This
is more efficient than adding the restrictiorHAVING, because we avoid doing the grouping
and aggregate calculations for all rows that failMid ERE check.

44

Chapter 6. Advanced Postgres SQL Features

Having covered the basics of using Postgres SQL to access your data, we will now discuss
those features of Postgres that distinguish it from conventional data managers. These features
include inheritance, time travel and non-atomic data values (array- and set-valued attributes).
Examples in this section can also be founddnance. sql in the tutorial directory. (Refer to
Chapter Sor how to use it.)

Inheritance

Let's create two classes. The capitals class contains state capitals which are also cities.
Naturally, the capitals class should inherit from cities.

CREATE TABLE cities (

nanme t ext,
popul ati on fl oat,
al titude i nt -- (in ft)

)

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, an instance of capitalserits all attributes (name, population, and altitude) from

its parent, cities. The type of the attribute name is text, a native Postgres type for variable
length ASCII strings. The type of the attribute population is float, a native Postgres type for
double precision floating point numbers. State capitals have an extra attribute, state, that shows
their state. In Postgres, a class can inherit from zero or more other classes, and a query can
reference either all instances of a class or all instances of a class plus all of its descendants.

Note: The inheritance hierarchy is a directed acyclic graph.

For example, the following query finds all the cities that are situated at an attitude of 500ft or
higher:

SELECT name, altitude
FROM cities
VWHERE al titude > 500;

[S, [R +
| nane | altitude |
[S, [R, +
| Las Vegas | 2174 |
[SR [S +
| Mari posa | 1953 |
- Fommmea e +

45

Chapter 6. Advanced Postgres SQL Features

On the other hand, to find the names of all cities, including state capitals, that are located at an
altitude over 500ft, the query is:

SELECT c.nane, c.altitude

FROM cities* ¢
VWHERE c. al ti tude > 500;

which returns:

[S, [R +
| nane | altitude |
[S, [R, +
| Las Vegas | 2174 |
S T +
| Mari posa | 1953 |
. o +
| Madi son | 845 |
[S [S +

Here the * after cities indicates that the query should be run over cities and all classes below
cities in the inheritance hierarchy. Many of the commands that we have already discussed
(SELECT, UPDATE andDEL ETE) support this * notation, as do others, IkeTER.

Non-Atomic Values

One of the tenets of the relational model is that the attributes of a relation are atomic. Postgres
does not have this restriction; attributes can themselves contain sub-values that can be accessed
from the query language. For example, you can create attributes that are arrays of base types.

Arrays

Postgres allows attributes of an instance to be defined as fixed-length or variable-length
multi-dimensional arrays. Arrays of any base type or user-defined type can be created. To
illustrate their use, we first create a class with arrays of base types.

CREATE TABLE SAL_EMP (

name text,
pay_by_quarter int4[],
schedul e text[][]

)

The above query will create a class named SAL_EMP wikt string (name), a
one-dimensional array @fit4 (pay_by_quarter), which represents the employee’s salary by
guarter and a two-dimensional arrayte@dt (schedule), which represents the employee’s

46

Chapter 6. Advanced Postgres SQL Features

weekly schedule. Now we do soidSERTSs; note that when appending to an array, we
enclose the values within braces and separate them by commas. If yoQ kitnisnvis not
unlike the syntax for initializing structures.

I NSERT | NTO SAL_EMP

VALUES ('Bill",
' {10000, 10000, 10000, 10000},
"{{"neeting", "lunch"}, {}});

| NSERT | NTO SAL_EMP
VALUES (’ Carol’,
' {20000, 25000, 25000, 25000},
{{"tal k", "consult"}, {"meeting"}}’);

By default, Postgres uses the "one-based" numbering convention for arrays -- that is, an array
of n elements starts with array[1] and ends with array[n]. Now, we can run some queries on
SAL_EMP. First, we show how to access a single element of an array at a time. This query
retrieves the names of the employees whose pay changed in the second quarter:

SELECT nane
FROM SAL_EMP
VWHERE SAL_EMP. pay_by_quarter[1] <>
SAL_EMP. pay_by_quarter[2];

oo +
| nane

Fomm o +
| Carol |
Fomm o +

This query retrieves the third quarter pay of all employees:

SELECT SAL_EMP. pay_by_quarter[3] FROM SAL_EMP

S +
| pay_by_quarter |
S +
| 10000 |
S +
| 25000 |
S +

a7

Chapter 6. Advanced Postgres SQL Features

We can also access arbitrary slices of an array, or subarrays. This query retrieves the first item
on Bill's schedule for the first two days of the week.

SELECT SAL_EMP. schedul e[1: 2] [1: 1]
FROM SAL_EMP
VWHERE SAL_EMP. name = "Bill’;

. +
| schedul e |
S +
| {{"neeting"},{""}} |
S +

More Advanced Features

Postgres has many features not touched upon in this tutorial introduction, which has been
oriented toward newer users of SQL. These are discussed in more detail in both the User’s and
Programmer’s Guides.

48

Bibliography

Selected references and readings for SQL and Postgres.

Some white papers and technical reports from the original Postgres development team are
available at http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/)

SQL Reference Books

The Practical SQL Handbook , Using Sructured Query Language, 3, Judith Bowman, Sandra
Emerson, and Marcy Darnovsky, 0-201-44787-8, 1996, Addison-Wesley, 1996.

A Guide to the SQL Sandard , A user’s guide to the standard database language SQL , 4, C. J.
Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley, 1997.

An Introduction to Database Systems, 6, C. J. Date, 1, 1994, Addison-Wesley, 1994.

Understanding the New SQL , A complete guide, Jim Melton and Alan R. Simon,
1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract
Accessible reference for SQL features.

Principles of Database and Knowledge : Base Systems, Jeffrey D. Ullman, 1, Computer
Science Press , 1988 .

PostgreSQL-Specific Documentation

The PostgreSQL Administrator’s Guide, Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL Developer’s Guide, Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL Programmer’s Guide, Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL Tutorial Introduction , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

The PostgreSQL User’s Guide, Edited by Thomas Lockhart, 2000-05-01, The PostgreSQL
Global Development Group.

Enhancement of the ANS SQL Implementation of PostgreSQL , Stefan Simkovics,
O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information
Systems, Vienna University of Technology .

Discusses SQL history and syntax, and describes the addition of INTERSECT and
EXCEPT constructs into Postgres. Prepared as a Master’s Thesis with the support of
O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University of
Technology.

49

Bibliography

The Postgres95 User Manual , Yu and Chen, 1995, A. Yu and J. Chen, The POSTGRES
Group , Sept. 5, 1995, University of California, Berkeley CA.

Proceedings and Articles

Partial indexing in POSTGRES: research project , Nels Olson, 1993, UCB Engin T7.49.1993
0676, University of California, Berkeley CA.

A Unified Framework for Version Modeling Using Production Rules in a Database System, L.
Ong and J. Goh, April, 1990, ERL Technical Memorandum M90/33, University of
California, Berkeley CA.

The Postgres Data Moddl , L. Rowe and M. Stonebraker, Sept. 1987, VLDB Conference,
Brighton, England, 1987.

Generalized partial indexes
(http://simon.cs.cor nell.edu/home/praveen/paper s/partindex.de95.ps.Z) , P. Seshadri and
A. Swami, March 1995, Eleventh International Conference on Data Engineering, 1995,
Cat. N0.95CH35724, IEEE Computer Society Press.

The Design of Postgres, M. Stonebraker and L. Rowe, May 1986, Conference on Management
of Data, Washington DC, ACM-SIGMOD, 1986.

The Design of the Postgres Rules System, M. Stonebraker, E. Hanson, and C. H. Hong, Feb.
1987, Conference on Data Engineering, Los Angeles, CA, IEEE, 1987.

The Postgres Sorage System, M. Stonebraker, Sept. 1987, VLDB Conference, Brighton,
England, 1987.

A Commentary on the Postgres Rules System, M. Stonebraker, M. Hearst, and S. Potamianos,
Sept. 1989, Record 18(3), SIGMOD, 1989.

The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkel ey. EDU: 8000/ postgr es/paper YERL-M89-17.pdf) , M.
Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

The Implementation of Postgres, M. Stonebraker, L. A. Rowe, and M. Hirohama, March 1990,
Transactions on Knowledge and Data Engineering 2(1), IEEE.

On Rules, Procedures, Caching and Views in Database Systems, M. Stonebraker and et al,
June 1990, Conference on Management of Data, ACM-SIGMOD.

50

