LENESAS

NC30 V.5.20

C Compiler for R8C/Tiny, M16C/60,30,20,10 Series

User’'s Manual

Rev. 1.00
Sep 1, 2003 RenesasTechnology

REJ10J0225-0100Z WWW.renesas.com

® Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.

® Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries, and are used under license.

® Linux is a trademark of Linus Torvalds.

® Turbolinux and its logo are trademarks of Turbolinux, Inc.

® IBM and AT are registered trademarks of International Business Machines Corporation.

® Intel and Pentium are registered trademarks of Intel Corporation.

® Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.

® All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
® Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

® These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to
the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.

® Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
contained in these materials.

® All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas
Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical
inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).

® \When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.

® Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

® The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce
in whole or in part these materials.

® |f these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

® Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.
¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

NC30 User's Manual

)

Contents

w

NC30 MANUAL-III

Contents

Chapter 1 Introduction to NC30 1
1.1 NC30 COMPONENTS ...ttt a e e e e e e e e e e et et e e e eeaeresrbbbb b e e e as 1
1.2 NC30 ProCeSSIiNG FIOWcoiiiiiiiiiiiiiiiie ettt 1

O R 4 o3 O TP PO P O TP PRPPPPOPRPPP 2
I o] o o 1C | O PO PPPRPTPTPPN 2
1.2.3 CCOMBO ..ot e s e e 2
L1.2.4 AOPTS0 ..ottt e et e e et e e e e e e 2
1.2.5 SKVIEWET & STK .. uiiiiiiiii ittt et e e 2
L.2.8 ULIBO ettt 2
L.2.7 MAPVIBWET ...ttt ettt ettt e oo ettt e e 2o e a sttt e e e e e abb et e e e e e nnb et e e e e e annbe e e e e e e annbbeeaaeanns 2
IR I N0 (PP PP P PP PPPPPPPPPPN 3
1.3.1 Notes about Version-up of COMPIIET ... 3
1.3.2 Notes about the M16C's Type Dependent Part ..o 3
1.4 Example Program DeVelOPMENTocueiiiiiiiiiiiee it 5
1.5 NC30 OULPUL FIIBS ...ttt ettt e e e e e e et ereeaeaeae e as 7
1.5.1 Introduction t0 OULPUL FIlESeiiiiiiiiiii e 7
1.5.2 Preprocessed C SOUICE FIlES ...ccuiiiiiiiiiiii et 8
1.5.3 Assembly Language SOUICE FilESccoiiiiiiiiiiiiiiie e 10

Chapter 2 Basic Method for Using the Compiler

2.1 Starting Up the COMPILET ...eiiiie e 12
2.1.1 NC30 COMMANG FOIMAL ...ttiiiiiiiie ittt 12
2.1.2 COMMANG FIl ..o 13

a. Command file INPUL FOIMAL ... 13
b. Rules on command file deSCriptioNc.cooiiiiiiiiiiii e 14
c. Precautions to be observed when using a command filecccccciviiiniiice, 14
2.1.3 Notes on NC30 Command Line OPLIONSueiiiiiiiiiiieeaiiiiiiee et 14
a. Notes on Coding nc30 Command Line OPtiONSccoiiueiieiiiiiiiiiiiee e 14
b. Priority of Options for Controlling Compile driVercccceiiiiiiiiiei e 14
2.1.4 nc30 Command LiNE OPLIONScciiuiiiiiiiiiiiie et 15
a. Options for Controlling ComMPile DIIVETccoiiiiiiiieiiiiiiee e 15
b. Options Specifying OULPUL FIlEScoiiiiiiiiiie e 15
c. Version and command line Information Display Optionccccocvviiiiieiiiienniicciien 15
d. Options fOr DEDUGGINGvveiiiiiiieiiie e 16
(= ®] o] 114 TV4=\i[o] W] o] 1 o] 1 1P PPPRUOTPPRT 16
f. Generated Code Modification OPLIONSeeiiiiiiiiiiie e 17
0. Library Specifying OPLONc..oiiiiiieiiiie et 18
N, WAINING OPLIONS oottt ettt e e 19
i. Assemble and LINK OPLIONSeuiiiiiiiiiiiee et 19

2.2 Preparing the Startup Program ...t 20
2.2.1 Sample of Startup PrOgramcooueiiiiiiiiiii e 20
2.2.2 Customizing the Startup PrOgramoooooiiiiiieae et 32

a. Overview of Startup Program ProCEeSSINGcccuuuieiiiiiiiiiiieeiiiiiiee e e e 32
b. Modifying the Startup Programccoueeeiiie e 33

NC30 MANUAL-IV

3.2

3.3

c. Examples of startup modifications that require cautioncccccoeviiiveeiiiiiienee s
(1) Settings When Not Using Standard 1/0 FUNCLIONScccceeiiiiiiiiiiciiieeeeie e
(2) Settings When Not Using Memory Management Functions

(3) Notes on Writing Initialization Programs ...
Setting the Stack SECHION SIZEcciiiiiiiiiii e
HEAP SECHION SIZE ...t
Setting the interrupt vector table ...
Setting the Processor Mode REQISTEToouiiiiiiiiiiiiiee e
Customizing for NC30 Memory MapPingceeecurioiirieiiiieeaieeesieee st e s e e e siree e
Structure of SECtionSccocoveeriiie i
Outline of memory mapping Setup filecueiiiiiiii e
MOdifying the SECTS0LINCeiiiiiiiiiii e e e
Mapping and Order Sections and Specifying Starting Addressccccovvveriiveeninnennn
(1) Rules for Mapping Sections t0 MEMOIYcciiuiiiiiiiiiiiii et
(2) Example Section Mapping in Single-Chip MOdecceoiieiiiiiiiiiiiiee e
e. Setting Interrupt VECtOr TabBIEeiiiiiii e
f. Setting SPECIAL Page Vector Table

N
N
e oo We oo

3.1.1 Notes about Version-up of COMPILETooiiiiiiiiiia e 48
3.1.2 Notes about the M16C's Type Dependent Partccccceeiiiiiiiiieiiiiiiiee e 49
3.1.3 About Optimization

a. Regular optimization

(1) Meaningless variable @CCESSuiiiiiiiiiiiiiee e
(2) MeaningleSS COMPATISONuuiiiiiiiiiiiee et e et e e et e e e e e e e e e e abbe e e e e nneees
(3) Programs NOt EXECULEAcoiuiiiiiiieiiiie ettt
(4) Operation DEIWEEN CONSTANTSciveiiiiiiie it
(5) Selection of optiMUM INSIFUCTIONSeiiiiiiiiiiie e
b. About the volatile qualifier............cccccovieiniins
3.1.4 Precautions on Using register Variables
3.1.5 About Startup HaNAIINGoeoiiiiiiiiie e
a. register qualification and "-fenable_register” Optionc.ccooooueiiiiiiiiiiiee e 52
b. About register qualification and optimization OPtioONSccueveeeiiiiiiiiieiiiiieee e, 52
For Greater Code EffiCIENCYoiiiiiiiiiiiiiii e 53
3.2.1 Programming Techniques for Greater Code EffiCiencycccccviiiiiiiiiiiiiiccinie. 53
a. Regarding Integers and Variables ... 53
D, FAF TYPE AITAY i s 53
C. ATTAY SUDSCIIPLS .oeiiiiiiiiiit ettt e e 54
d. Using Prototype declaration EffiCiently ... 54
e. Using SB Register EffiCientlyooioii e 54
f. Compressing ROM Size Using Option -fISRWcoccoiiiiiiiiiiceec e 55
0. Other METOUSeiiiiiii e
3.2.2 Speeding Up Startup Processing
Linking Assembly Language Programs with C Programsccccccueeeeriiiieeeenninenen
3.3.1 Calling Assembler Functions from C Programsccccceuiuieiiiieeniieeniee e
a. Calling Assembler FUNCHIONSo.uiiiiiiiiei e e

b. When assigning arguments to assembler functions

c. Limits on Parameters in #pragma PARAMETER Declaration
3.3.2 Writing ASSembBIer FUNCLHIONSooiiiiiiiiieiiie e

a. Method for writing the called assembler functionsccccooiiiii e

b. Returning Return Values from Assembler FUNCLIONSccueiiiiiiiiiiiieieiiieece e

NC30 MANUAL-V

C. Referencing C Variablesc.oiiiiiiiiii s
d. Notes on Coding Interrupt Handling in Assembler FUNCLIONcccccveeiiiiiiieneeeinns
e. Notes on Calling C Functions from Assembler FUNCLIONSccooviiieiiiiiiiiiieeens
3.3.3 Notes on Coding Assembler FUNCLIONSuuiiiiiiiiiiiieee e
a. Notes on Handling B and U flagscoovuiiiiiiieiiiiciii e
b. Notes on Handling FB REQISIETcccuuiiiiiiiiiiiie e
c. Notes on Handling General-purpose and Address Registers
d. Passing Parameters to an Assembler FUNCHIONooiiiiiiiiiiiiieeec e
G 2 S O | 1 1= SRS
3.4.1 Precautions on Transporting between NC-Series Compilerscccccoiviieieeiiiiiineeenn.
a. Difference in default near/far
Appendix A Command Option Reference 1
A.1 NC30 COMMANT FOIMAL ...oiitiiiiiiiiiiiie ettt e et e e e s st e e e e s snbaeeeeeanes 1
A.2 nc30 Command LiNE OPLIONS ...ccuuuiiiiiiiiiiiee ettt e e e e e e e e e e e aeeneees 2
A.2.1 Options for Controlling ComMPIle DIVETciiiiiiiiiiee e 2
L8O TE=To L] T T =T e = T o PP 6
S BN e 6
SOSOUICE (2SS) oottt ettt 7
~ASOUICE_IN_LIST (2OSL) it 7
A.2.2 Options Specifying OULPUL FIlESoii i 8
-0 filenameccccoviiiiiii
-dir directory Name
A.2.3 Version Information Display OPLiONcoiviiiiiiiiiiiiie e 10
O PP OUU PR PPPPIRTI 10
Y PP P PP PP PP UPPOPRPIN 11
A.2.4 Options fOr DEDUGGING . veiiiiiiiiiii i 12

A.2.5

SOCONSE (OC) ittt
L@ Yo T o 11 S (T 11\ = T TSP
-Ono_break_source_debug (-ONBSD)
-Ono_float_const_fold (“ONFCF) ..ot
SONO_SEAIID (FONS) it
SOSP_AUJUSE (mOSA) oot ————————————————————aaaaaan
-Oloop_unroll =[loop count] (-OLU)
-Ostack_frame_align (FOSFA) .o
-Ono_logical_or_combing (-ONLOC) ..cccuiiiiiiiiiiiieiiiee et
SONO0_ASMOPE (FONA) oo ———————————————————aaaan
-Ostatic_to_iNHNE (FOSTI) ciiiiiiiiic e e ereaeaes

NC30 MANUAL-VI

A.2.6 Generated Code Modification OPLIONSccuviiiiriiiiiie et 25

-fnot_reserve_asm (-FNRA) oo 27

=10] TSP RPTPOPPPPTR 27
-fnot_reserve _far_and_near (-fNRFAN) e 28
-fnot_reserve_inline (-fNRI) ..o 28
SfEXtENd_tO_INt (SFETT) tooiiiiiie et 29
-fchar_enumerator (-FCE) oo 29

Sffar _RAM (STFRAM) Lo 30
SFNO_BVEN (STNE) oottt 30
-fnear_ROM (-FNROM) .ot 31
-fconst_ N0t ROM (-fCNR) oottt eeeeeaea s 31
FSMaAll_Array (-TSA) e ————————————————————— 32
-fnot_address_volatile (-FNAV) . 32
-fenable_register (-TER) e 33
FNO_AlIgN (TN A) oo aaaaaaaaaaaa e 33
FISRWV Lttt bbbttt 34

SDIE (1B) ittt 34
SFNO_CAITY (FFNC) i 35

FAULO 128 (-f AL) ciiiiiii et raaaaaaaaaaaaaaan 35

FUSE DIV (-TUD) ciiiiiiii ettt r e e e e e e e e aaaaaaaaa s 36

110} (TP RP R POPPPPTR 36
-fswitch_other_section (-fSOS) ... 37
-fchange_bank_always ((-TCBA) i a e e e e e 37

A.2.7 Library Specifying OPtiONcii ittt a e 38
DAy filENAME ... 39

A.2.8 WarNING OPLIONS ...eiiiiie ittt ettt e et e e 40
SWNOoN_Prototype (-WINP) oo 40
SWUNKNOWN_Pragma (-WUP) ..ot a e e e e e e 41

SWNO _STOP (FWINS) oo e e e e e e e e e e e e e e e et ereaeaes 41
AT (o Lo U | PRSP PPU T UPPPPRT 42
Werror_file <file Name> (\WEF) .ooooiiiiiii e 42
Wstop_at warNing (“WSAW) oot a e e e e e e e e e e e e 43
Whnesting_ commeENt (-WNC) wouuiiiiiiiiieieieeee e e e e e e 43
Wccom_max_warnings =Warning Count (-WCMW)c.ccoooiiiiiiiiiiiieeniiee e 44

AT | PSP RP R POPPRPT 44
SWmake tagfile (-“WMT) oo e e e reaeaes 45
-Wuninitialize_variable (-WUV) ... 45
“Wlarge_to_Small (-WLTS) oottt 46
-Wno_warning_stdlib (-“WINWS) ..o 46
-Wno_used_argument (-WNUA) .o a e e e e e e 47

A.2.9 Assemble and LINK OPLIONScccoiiiiiiieiiiiiiie ettt e e e e snaee e e e anees 48
S8S 30 OPEION " ettt 49

TN B0 OPTION" et 51

A.3 Notes on Command LiNe OPLIONSuuuiiiiiiiiiaiiiiiiititie it e e e 53
A.3.1 Coding Command LiNE OPLIONScccuuiiiiiiieiiiie ettt 53
A.3.2 Priority of Options for CONrOIliNGoocuviiiiiiie e 53
B.1 Near and far MOGIfIEISooiiiiiiiiiiiii et 2
B.1.1 Overview of near and far MOGIfIErSccooiiiiiiiiiieiie e 2
B.1.2 Format of Variable DeClarationccocueieiiiiiiiiiiie e 3
B.1.3 Format of Pointer type Variable ... 4

NC30 MANUAL-VII

B.2

B.3

B.1.4 Format of FUNCLION DECIAIAtIONiiiiiiiiiieeee e e 6

B.1.5 near / far Control by nc30 Command Line OPtioNScccveiiiriiiiieeiiiieesiie e 6
B.1.6 Function of Type conversion from near to farccccoiiiiiieiiii e 6
B.1.7 Checking Function for Assigning far Pointer to near Pointerccccccceeiiiiiiiieeninnns 6
B.1.8 DeClaring fUNCHIONSoiiiiiiiiiii ettt e e 7
B.1.9 Function for Specifying near and far in Multiple Declarationscccccovveiiiicenineenns

B.1.10 Notes on near and far Attributescccccooviiiiiii e

a. Notes on near and far Attributes of Functions

b. Notes on near and far MOdIfier SYNtAXcccviiiiiiiiiiiiii e 9
=] I U o £ SRR
B.2.1 Overview of aSm FUNCLIONcoiiiiiiiiiiiiec e
B.2.2 Specifying FB Offset Value of auto Variable
B.2.3 Specifying Register Name of register Variableccccoviiiiiiic 14
B.2.4 Specifying Symbol Name of extern and static Variablecccccciiiiiiis 15
B.2.5 Specification Not Dependent on Storage ClassSccouiuiiiiiaiiiiiiiieee e
B.2.6 Selectively suppressing OptimiZationcooueiiiiiiiiiiiieiiee e
B.2.7 Notes on the aSm FUNCLIONciiiiiiiiiiiiiie et

a. Extended Features Concerning asm fUNCLIONSooooiiiiiiiiiiiiiie e

D, ADOUL REGISTET ...ttt e e et e e e e e

C. NOES ON LADEIS ...
Description of Japanese Charactersoooiiiiieiiiiiiie et
B.3.1 Overview of Japanese CharaCtersccueeiieiiiiiiiie e e e
B.3.2 Settings Required for Using Japanese Characters...........ccccevvviiiieeeiiieeeniiie e
B.3.3 Japanese Characters in Character SIHNGScooiiviiiiiieiiiie e
B.3.4 Using Japanese Characters as Character Constants

B.4 Default Argument Declaration of FUNCHIONcooiiiiiiiiiiiiiiie e

B.5

B.6

B.7

B.8

B.4.1 Overview of Default Argument Declaration of FUNCLION..........ccccooviiiiiiiiniicecce,
B.4.2 Format of Default Argument Declaration of FUNCHONccocovviiiiiiiiiicie e
B.4.3 Restrictions on Default Argument Declaration of Function
] Ta =3 =¥] o o3 io] o i B 1=Tox F= U= 11 o] o NS
B.5.1 Overview of inline Storage ClaSScuuiiiiiiiiiiiiiiie et
B.5.2 Declaration Format of inline Storage Class
B.5.3 Restrictions on inline Storage Class
EXteNSION Of COMMENTSuiiiiiiiiiee e e e e e e e e e e e e e e e e s
B.6.1 Overview of "//" COMMENTScciiiiiiiiiieiii et 32
B.6.2 Comment"//" Format
B.6.3 Priority of "/[" and "/*"
#pragma Extended FUNCLIONS ...t
B.7.1 Index of #pragma Extended FUNCHONSccoiiiiiiiiiiiiiiiie e
a. Using Memory Mapping Extended Functions
b. Using Extended Functions for Target Devices
c. Using MR30 Extended FUNCHIONScoiiuiiiiiaiiiiiiee e
0. The Other EXIENSIONSviiiiiiieiiiee et
B.7.2 Using Memory Mapping Extended FUNCLIONScoovviiiiiiiiiiiieec e
B.7.3 Using Extended Functions for Target Devices
B.7.4 Using MR30 Extended FUNCLIONScooiiiiiiiiiiaiiiei e
B.7.5 The Other EXIENSIONSc.oviiiiiiiiiiie ittt
assembler Macro FUNCHIONiiiiiiiiiie ettt
B.8.1 Outline of Assembler Macro FUNCHONcooiiiiiiiieiiiiciiee e 58
B.8.2 Description Example of Assembler Macro FUNCHIONooeiiiiiiiiiiiiiiiecieeeeeee 58
B.8.3 Commands that Can be Written by Assembler Macro Functionccccceevveiennnenn. 59

NC30 MANUAL-VIII

Appendix C Overview of C Language Specifications 1

C.1 Performance SPeCIfiCatiIONScuuiiiiiiiiiiiie et 1
C.1.1 Overview of Standard SPecCifiCatioNSccuueiiiiiiiiiiiie e 1
C.1.2 Introduction to NC30 PerfOrManCeccuviiiiieiiiiieiieee e 2

A, TESEENVIFONMENT ©.eiiiiiiiiiii ettt ettt e e es
b. C Source File Coding Specifications
C. NC30 SPECITICALIONS ..eeieiiiiieie ettt e e e e e e e e e e e e e e e anneeeas

C.2 Standard Language SpecCifiCatioNSooiiiiiiiiiiiiie et

C.2.1 SYNEBX ceiiiiitiit ettt et e e e e et e e
a. Key Words
D TENTTIEIS .t
€. CONSTANTS ...ttt e ettt e e e e e e e e e et e e e et e e 5
0. CharaCter LIEIalSocuviiieiiieiiee ettt 6
(I O 01T = 1 (] TP POPPPPPPPPPPPN 7
Fo PUNCIUALOTS ...ttt e et e s 7
g.

Cc.22
a.
b.
C.

c.23

C.2.4
a.
b.

C.2.5 STATEIMENT ...ttt e e e e e e e et e e e e e
a. Labelled STatemMENToouiiiiiii s
b. Compound Statement
c. Expression / Null Statement
0. SeleCtioN STAEMENTciiiiiiiiii e
€. Ieration SAEMENT.......ciiiiiiiiii et 14
fo JUMP STALEMENT ..ttt e et e e e e e e e e nbaneeaaaaans 15
g. Assembly Language StatemMeENtoooiiiiiiiiiiiiiii e 15

C.3 Preprocess COMMANTSoiiiiiiiiiieeiiiiiie ettt et e e st e e s snbb e e e e eneees 16
C.3.1 List of Preprocess Commands AVAIlable ... 16
C.3.2 Preprocess Commands REfEIreNCEecooiuiiiiiiiiiiiiiie e 16
C.3.3 PredefiNned MACTOSviiiiiiieieiie ettt 26
C.3.4 Usage of predefined MACIOScuuiiiiiiiiiiiiciie e 26

Appendix D C Language Specification Rules 1

D.1

D.2
D.3

Internal Representation Of DAta ...t 1
D.1.1 INEEGIAI TYPE oiiiiiiieiiee ettt ettt ettt et e e e 1
D.1.2 FIOALNG TYPE oiiitiiiiiiie ittt ettt ettt ekttt e st et e et e e e nbe e 2
D.1.3 Enumerator Type

D.1.4 Pointer Typeccccee.....

D I ST A g - 1A Y o1 PRSP OP R RPRTR
D.1.6 STIIUCTUIE TYPES ..oeiieiiiiiiii ittt ettt e et e e e et e e e et e et e e et neeeeennes 3
[200 A U T o o 1 OO PR TPUPR PRSPPI 4
[20 R T =1 =] (o I =2 TP TUOPPPRTN 5
SigN EXIENSION RUIES ..ottt e 6
FUNCEION CAll RUIES ...ttt 6
D.3.1 RUIES Of REIUIN VAIUE ...t 6

NC30 MANUAL-IX

D.3.2 Rules on Argument TraNSTEEuiiiiiiiiiii et 7

D.3.3 Rules for Converting Functions into Assembly Language Symbolsccccocveiiinennns 8
D.3.4 Interface between FUNCHONS ..o s 11

D.4 Securing auto Variable Ar€a........ccccuiiiiiiiiiiiiee e 14
E.1 Standard Header FIlES ...ttt 1
E.1.1 Contents of Standard Header Filescccooiiiiiiiiiiic e 1
E.1.2 Standard Header Files REfEIENCEcoooviiiiiiiiiiiii e 1

E.2 Standard FUNCLION REFEIENCEcooiiiiiiiiiiiiii e 10
E.2.1 Overview of Standard LiDIrary ..o 10
E.2.2 List of Standard Library Functions by FUNCHIONoooiiiiiiiiiiiiiieeeeeieee e 11

a. String Handling FUNCHIONSiiiiiiiiiiie e 11

b. Character Handling FUNCHIONScooiiiiiiiiiiiiic e 12

C. INPUL/OULPUL FUNCLIONS ...ttt e et e e e e e e e e eaaes 13

d. Memory Management FUNCHIONScoiiiiiiiieiiiieiee e e e 13

e. Memory Handling FUNCHIONScoiiiiiiiiiiie et 14

f. Execution COoNtrol FUNCHIONSoiiiiiiiiii et 14

g. Mathematical FUNCHIONSooiiiiiiiie et 15

h. Integer Arithmetic FUNCLIONSoiiiiiiiiiee e 15

i. Character String Value Convert FUNCLIONScoccviiiiiieiiiie e 16

j. Multi-byte Character and Multi-byte Character String Manipulate Functions 16

K. Localization FUNCLIONSciiiiiiiiiiiie e 16

E.2.3 Standard FUNCLION REFEIENCEoiiiiiiiiiii s 17
E.2.4 Using the Standard LIDrary ... e 84

a. Notes on Regarding Standard Header File ..o 84

b. Notes on Regarding Optimization of Standard Librarycccoeoeiiiiiiiiiiieenniienn. 84

(DInline padding Of FUNCLIONSeiiieiieie e 84

(2)Selection of high-speed library (NC30 ONlY)vvveiiiiiiiiieiiiieeiece e 84

E.3 Modifying Standard LIDIary ... 85
E.3.1 Structure of I/O FUNCLIONSoiiiiiiiiiiiie et 85
E.3.2 Sequence of Modifying I/O FUNCHONSccoiiiiiiiiiieiieie et 86

a. Modifying Level 3 1/O FUNCHONcoiiiiiiiiiciee e 86

D, SrEAM SOIHNGS .. eeiieie ettt e e e e e e e e e e e e e anneee 88

c. Incorporating the Modified SOUrce Programcccoccueiiioiiiiiiiiee i 94

F.1 Message FOrMat........occviiiiiiiiiii e 1
F.2 NC30 EITOr MESSAGES ...t e e e e e e e e e e e e e e e e e e eeenrereabbnnnnanaas 2
F.3 CPP30 EITOr MESSAUES ...eveeeeiiieeiieiiiiiit ettt ettt e e e e e e e e e e e e e e e e 4
F.4 CPP30 WarNiNGg MESSAGES ..ceeiiieeiiiiiititiet ittt e e e e ettt e e e e e e e e et e e e eeaaaeeeaaaanannees 8
F.5 CCOM30 EITOr MESSAUTES ..oeeiiiieiiiiiiiiiiiiite ettt e e e e et ettt e e e e e e s e e e e e e e e e e ae e 9
F.6 ccom30 Warning MESSAQ0ESccoiiiiuiiiitiiiiiiieaae e e ettt e e e e e e e s sbbb b eeeaa e e e e e s e anaes 23

Appendix G The SBDATA declaration & SPECIAL page Function declaration Utility (utl30)

L A Vo o o [W Tod 1o 1) U1 O 1
G.1.1 Introduction Of UtI30 PrOCESSES ...cceiiiiiiiiieiiieie ettt e et e e e e enneeeee e 1
LT ST = U 1 0T T 11 1O PP PTPPRR 2
G.2.1 utl30 CommaNd LiN€ FOIMALuviiiiiiiiiiieeiie e 2
G.2.2 Selecting Output INFOrMALIONScoiiiiiiiiiii e 3

NC30 MANUAL-X

G.3
G.4

G.5

G.6

K] 0 10 TP O PP PVPRPPPT 5

LS 1SRt 5

Lo PO PP PP 6

= | TP U PP PRSP PPPPN 7

A] (o Lo 11 | PP P P OVRR P PPRN 8

Y e U] 01 1= PSP 8
SFSECTION i 9
FOVEI_WIITE (-FOW) 1 9

N[0 T PP 10
Conditions to establish SBDATA declaration & SPECIAL Page Function declaration 10
G.4.1 Conditions to establish SBDATA declarationccccceveiiiiiiiiiieiiieiec e 10
G.4.2 Conditions to establish SPECIAL Page Function declaration..........c.ccccceveeiniiiinee.n. 10
EXamPpPle OF ULIB0 USEeeeiiiiiiiiiieie et e e 11
G.5.1 Generating a SBDATA declaration file ... 11
a. Generating a SBDATA declaration file ... 11

b. Adjustment in an instance in which SB declaration is made in asesembler 12
G.5.2 Generating a SPECIAL Page Function declaration filec.cccccoiieiiiiiiiiiii, 13
a. Generating a SPECIAL Page Function declaration filecccccceeiiiiiieiiiiiiiene e 13
ULIB0 ErTOr IMESSAGES ...ttt ettt e e e e e ettt e e e e e e e e e e s e bbb b aeeeeeeas 14
G.B.1 EFTON IMESSAUESeeiiieiiiitiit ettt ettt ettt ettt e e ettt e e e e a e e e een 14
G.6.2 WAINING MESSAGES ...uuviiiiueiieiiiie etttk e ettt et e et ea e et e et e nanes 15

NC30 MANUAL-XI

D

o
=
@
o
o
O
q

NC30 is the C compiler for the Renesas M16C/60,30,20,10 Series . NC30
converts programs written in C into assembly language source files for the
M16C/60,30,20,10 Series. You can also specify compiler options for assem-
bling and linking to generate hexadecimal files that can be written to the
microcomputer.

Please be sure to read the precautions written in this manual before using
NC30.

Terminology

The following terms are used in the NC30 User Manuals.

Term Meaning
NC30 Compiler package included in M3T-NC30WA
nc30 Compile driver and its executable file
AS30 Assembler package included in M3T-NC30WA
as30 Relocatable macro assembler and its executable file
™ Integrated development environment be attached to M3T-
NC30WA
Professional version Professional use compiler for full-scale programming
Entry version Simplified compiler included in the starter kit, etc.

Description of Symbols

The following symbols are used in the NC30 manuals:

Symbol Description

Root user prompt
% UNIX prompt
A> MS-Windows(TM) prompt
<RET> Return key
< > Mandatory item
[] Optional item
A Space or tab code (mandatory)
A Space or tab code (optional)

: Indicates that part of file listing has been omitted
(omitted)

Additional descriptions are provided where other symbols are used.

NC30 MANUAL-XII

NC30

User's Manual

NC30 MANUAL-XIII

Chapter 1 Introduction to NC30

(Chapter 1)

Introduction to NC30 j

This chapter introduces the processing of compiling performed by NC30, and provides
an example of program development using NC30.

1.1 NC30 Components

NC30 consists of the following eight executable files:

I (o 1O PP P U TP Compile driver
2.CPP30 ittt e e Preprocessor
I ool 0] 1 41210 PP PP PPPT PPN Compiler
- To] o] |0 TP PPPPPPTPPRRR Assembler Optimizer
5.StkViewer & StK........coiiiiiiiiiiiiiiceee, STK viewer & stack size calculation Utility

(StkViewer is a GUI (Graphical User Interface) Utility.)
6.Utl30uveiiieeieennn, SBDATA declaration & SPECIAL page Function declaration Utility
7.MapViewerccccoeeeevnnnen. Map viewer (included for only the Windows(TM) version)

(MapViewer is a GUI (Graphical User Interface) Utility.)
(Items 4 to 7 are not included in the entry version.)

1.2 NC30 Processing Flow

Figure 1.1 illustrates the NC30 processing flow.

C language
source file

ul nc30 J-compite ariver
I
| Cppso I Preprosesser
T
| ccom30 | compiler
T
| a0 pt30 I Assembler Optimizer
Assembly
language
source file i
?;;acclﬁastlizi utility SBDATA definition &
SPECIAL Page
feserer tk Function definition
> Lttty J MAP Viewer
as30 | / A
| utl30 | MapV|ewerI
v STK Viewer
Relocatable -
e StkViewer I
linker L
| In30 | SBDATA SPECIAL Page
definition file deii‘#i“t‘i:ctylr?%e

Absolute
module
file

Imc30 Motorola (S:)rformat file
Intel HEX format file
package
— : File processed

Figurel.1 NC30 Processing Flow

1. MapViewer is included for only the Windows(TM) version. To verify the map information while using the
UNIX version, generate a map file with the linker and check that file for map information.

NC30 MANUAL-1

Chapter 1 Introduction to NC30

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

nc30

nc30 is the executable file of the compile driver. By specifying options, nc30 can perform
the series of operations from compiling to linking. You can also specify for the as30 relocatable
macro assembler and four for the In30 linkage editor by including the -as30 and -In30
command line options when you start nc30.

cpp30

cpp30 is the executable file for the preprocessor. cpp30 processes macros starting with #
(#define, #include, etc.) and performs conditional compiling (#if-#else-#endif, etc.).

ccom30

ccom30 is the executable file of the compiler itself. C source programs processed by
cpp30 are converted to assembly language source programs that can be processed by as30.

aopt30

aopt30 is the assembler optimizer. It optimizes the assembler codes output by ccom30.
(In the entry version, this option cannot be specified.)

StkViewer & stk

StkViewer is the execution file for the utility that graphically shows the stack size and the
relationship of function calls needed for program operation. Also, stk is the execution file for
the utility that analyzes the information required for StkViewer.

StkViewer calls stk to process the Inspector™ information added to the absolute module file
(-x30), find the stack size and the relationship of function calls needed for program operation,
and displays the result.

Also, by specifying information, if any, that could not be fully analyzed with only the
Inspector information, StkViewer recalculates the stack size and the relationship of function
calls and displays the result.

To use StkViewer & stk, specify the compile driver startup option -finfo when compiling, so
that the Inspector information will be added to the absolute module file (.x30).

(In the entry version, this option cannot be specified.)

utl30

utl30 is the execution file for the SBDATA declaration utility and SPECIAL page Func-
tion declaration Utility. By processing the absolute module file (.x30), utl30 generates a
file that contains SBDATA declarations (located in the SB area beginning with the most
frequently used one) and a file that contains SPECIAL page function declarations (lo-
cated in the SPECIAL page area beginning with the most frequently used one).

To use utl30, specify the compile driver startup option -finfo when compiling, so that
the absolute module file (.x30) will be generated.

MapViewer

MapViewer is the execution file for the map viewer. By processing the absolute module
file (.x30), MapViewer graphically shows a post-link memory mapping.

To use MapViewer, specify the compile driver startup option -finfo when compiling, so
that the absolute module file (.x30) will be generated.

Note that MapViewer is included for only the PC version. To verify the map information
while using the UNIX version, generate a map file with the linker and check that file for
map information.(In the entry version, this option cannot be specified.)

*1. The inspector information refers to one that is generated by NC30 when the compile option "-finfo" is
specified.

NC30 MANUAL-2

Chapter 1 Introduction to NC308

1.3

1.3.1

1.3.2

Notes

Renesas Technology Corp. are not designed or manufactured
for use in a device or system that is used under circumstances
in which human life is potentially at stake. Please contact Renesas
Technology Corp.,

Renesas Solutions Corp., or an authorized Renesas Semicon-
ductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus
orsystems for transportation, vehicular, medical, aerospace,
nuclear, or undersea repeater use.

Notes about Version-up of compiler

The machine-language instructions (assembly language) generated by
NC308 vary in contents depending on the startup options specified when
compiling, contents of version-up, etc. Therefore, when you have changed
the startup options or upgraded the compiler version, be sure to reevaluate
the operation of your application program.

Furthermore, when the same RAM data is referenced (and its contents
changed) between interrupt handling and non-interrupt handling routines or
between tasks under realtime OS, always be sure to use exclusive control
such as volatile specification. Also, use exclusive control for bit field struc-
tures which have different member names but are mapped into the same
RAM.

Notes about the M16C's Type Dependent Part

When writing to or reading a register in the SFR area, it may sometimes
be necessary to use a specific instruction. Because this specific instruction
varies with each type of MCU, consult the user's manual of your MCU for
details. In this case, write the instruction directly in the program using the
ASM function.

In this compiler, the instructions which cannot be used may be generated
for writing and read-out to the register of SFR area.

When accessing registers in the SFR area in C language, make sure that
the same correct instructions are generated as done by using asm func-
tions, regardless of the compiler's version and of whether optimizing op-
tions are used or not.

When you describe like the following examples as C language descrip-
tion to a SFR area, in this compiler may generate the assembler code
which carries out operation which is not assumed since the interrupt re-
guest bit is not normal.

NC308 MANUAL-3

Chapter 1 Introduction to NC30

[Example: C language description to SFR area]

#pragma ADDRESS TAOIC 0055h /* M16C/60 MCU's Timer AO interrupt
control register */

struct {
char ILVL: 3;
char IR :1; [* An interrupt request bit */
char dmy : 4;

} TAOIC;

void wait_until_IR_is_ ON(void)

{
while (TAOIC.IR ==0) /* Waits for TAOIC.IR to become 1 */
{
}
TAOIC.IR = 0; /* Returns 0 to TAOIC.IR
when it becomes 1 */
}

NC30 MANUAL-4

Chapter 1 Introduction to NC30

1.4 Example Program Development

Figure 1.2 shows the flow for the example program development using NC30. The
program is described below. (Items [1] to [4] correspond to the same numbers in Figure
1.2)

[1]The C source program AA.c is compiled using nc30, then assembled using as30 to
create the relocatable object file AA.r30.

[2]The startup program ncrt0.a30 and the include file sect30.inc, which contains informa-
tion on the sections, are matched to the system by altering the section mapping,
section size, and interrupt vector table settings.

[3]The modified startup program is assembled to create the relocatable object file
ncrt0.a30.

[4]The two relocatable object files AA.r30 and ncrt0.a30 are linked by the linkage editor
In30, which is run from nc30, to create the absolute module file AA.x30.

[1]

@ 2]
nc30 m

sect30.inc

AA.a30

as30 as30

AA.r30

[3]

[4]
INn30

:

Figure 1.2 Program Development Flow

NC30 MANUAL-5

Chapter 1 Introduction to NC30

Figure 1.3 is an example make file containing the series of operations shown in Figure
1.2.

AA. x30 : ncrt0.a30 AA. r30
nc30 -0AA ncrt0.r30 AA.r30

ncrt0.r30 : ncrtO.a30
as30 ncrt0. a30

AA.r30 : AA c
nc30 -¢c AA. C

Figure 1.3 Example make File

Figure 1.4 shows the command line required for nc30 to perform the same operations
as in the makefile shown in Figure 1.3.

% nc30 -0AA ncrt0.a30 AA. c<RET>

% . Indicates the prompt
<RET> : Indicates the Return key

*Specify ncrt0.a30 first ,when linking.

Figure 1.4 Example nc30 Command Line

NC30 MANUAL-6

Chapter 1 Introduction to NC30

1.5

1.5.1

NC30 Output Files

This chapter introduces the preprocess result C source program output when the sample
program smp.c is compiled using NC30 and the assembly language source program.

Introduction to Output Files

With the specified command line options, the nc30 compile driver outputs the files shown
in Figure 1.5. Below, we show the contents of the files output when the C source file smp.c
shown in Figure 1.6 is compiled, assembled, and linked.

See the AS30 User Manual for the relocatable object files (extension .r30), print files
(extension .Ist),and map files (extension .map) output by as30 and In30.

C language
source file

Preprosesser
cpp30
nc30 command
option .
C source file from
Compiler
ccom30
nc30 command
option Assembly
language source
file
Assembler
as30
nc30 command
option
Relocatable
file
Linker

In30

Absolute
module file

O : output file of Nnc30

Figure 1.5 Relationship of nc30 Command Line Options and Output Files

NC30 MANUAL-7

Chapter 1 Introduction to NC30

152

#i ncl ude <stdio. h>
#define CLR 0
#defi ne PRN 1

voi d main()

{
int flag;
flag = CLR

#i f def PRN

printf("flag = %@\ n",flag);
#endi f
}

Figure 1.6 Example C Source File (smp.c)

Preprocessed C Source Files

The cpp30 processes preprocess commands starting with #. Such operations include
header file contents, macro expansion, and judgements on conditional compiling.

The C source files output by the preprocessor include the results of cpp30 processing of
the C source files. Therefore, do not contain preprocess lines other than #pragma and #line.
You can refer to these files to check the contents of programs processed by the compiler.
The file extension is .i.

Figures 1.7 and 1.8 are examples of file output.

(1]

typedef struct _iobuf {

char _buff;
int _cnt;
int _flag;
int _nod;

int (* _func_in)();
int (* _func_out)();
} FILE;
(omtted)
typedef |ong fpos_t;

typedef unsigned int size_t;

extern FILE _iob[];

Figure 1.7 Example Preprocessed C Source File (1) (smp.i)

NC30 MANUAL-8

Chapter 1 Introduction to NC30

int getc(FILE *st); [1]
int getchar(void);

int putc(int ¢, FILE *st);

int putchar(int c);

int feof (FILE *st);

int ferror(FILE *st);

int fgetc(FILE *st);

char * fgets(char *s, int n, FILE *st);

int fputc(int ¢, FILE *st);

int fputs(const char *s, FILE *st);

size_t fread(void *ptr, size_t size, size_t nelem FILE *st);

(om tted)

int ungetc(int c, FILE *st);

int printf(const char *format, ...);
int fprintf(FILE *st, const char *format, ...);
int sprintf(char *s, const char *format, ...);

(om tted)
extern int init_dev(FILE *, int);
extern int speed(int, int, int, int);
extern int init_prn(void);
extern int _sget (void);
extern int _sput(int);
extern int _pput(int);
extern char * print(int(*)(), char *, int ** int *);
voi d mai n() [2]
{

int flag;

flag=0: [][3]

printf("flag = %\ n", flag); 0[4]

Figure 1.8 Example Preprocessed C Source File (2) (smp.i)

Let's look at the contents of the preprocessed C source file.
Items [1] to [4] correspond to [1] to [4] in Figures 1.7 and 1.8.

[1]Shows the expansion of header file stdio.h specified in #include

[2]Shows the C source program resulting from expanding the macro

[3]Shows that CLR specified in #define is expanded as 0

[4]Shows that, because PRN specified in #define is 1, the compile condition is satis-
fied and the printf function is output

NC30 MANUAL-9

Chapter 1

Introduction to NC30

1.5.3 Assembly Language Source Files

The assembly language source file is a file that can be processed by AS30 as a result of
the compiler ccom30 converting the preprocess result C source file. The output files are
assembly language source files with the extension .a30

Figures 1.9 and 1.10 are examples of the output files. When the nc30 command line
option -dsource (-dS) is specified, the assembly language source files contain the contents
of the C source file as comments.

._LANG 'C,' X XX XX
; ## ML6C/ 60 C Conpi l er QUTPUT
, ## cconBO Version X XX XX
; ##t COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNOLOGY CORPORATI ON
;## ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED
;## Conpile Start Time Thu April 10 18:40: 11 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
; ## COVMAND_LINE: cconB0 snp.i -0 ./snp.a30 -dS
c## Normal Optimize OFF (1]
; ## ROM size Optinize OFF
; ## Speed Optim ze OFF
Default ROMis far
c## Default RAM i s near
.G.B _SB
. SB _SB
. FB 0
CHE # FUNCTI ON mai n
VHH # FRAME AUTO (fl ag) si ze 2, of fset -2
.section program
._file 'smp.c'
._line 6
(## # CSRC: |
.glb _nain
_nain:
enter #02H
._line 8
y## # C_SRC : flag = CLR
Figure 1.9 Example Assembly Language Source File "smp.a30" (1/2)

NC30 MANUAL-10

Chapter 1 Introduction to NC30

mov.w #0000H, - 2[FB] ;o flag
._line 11
(## # C_SRC : printf("flag = %\n",flag); [O[2]
push.w -2[FB] ; flag
push.w #__ T0>>16
push.w #(___ TO&FFFFH)
jsr _printf
add.b #06H, SP
._line 13
C_SRC : }
exitd
(omitted)
.glb _sscanf
.glb _scanf
.glb _fscanf
.glb _sprintf
.glb _fprintf
.glb _printf
(om tted)
. SECTI ON rom FO, ROVDATA
___To:
.byte 66H "
.byte 6¢cH N
.byte 61H ;tal
.byte 67H g
.byte 20H
.byte 3dH =
.byte 20H ;
.byte 25H %
(omitted)
. END
;## Conpile End Tine Thu May 5 18:40:11 2000

Figure 1.10 Example Assembly Language Source File "smp.a30" (2/2)

Let's look at the contents of the assembly language source files. Items [1] to [2] corre-
spond to [1] to [2] in Figure 1.9 and Figure 1.10.

[1]Shows status of optimization option, and information on the initial settings of the
near and far attribute for ROM and RAM.

[2]When the nc30 command line option -dsource (-dS) is specified, shows the contents
of the C source file(s) as comments

NC30 MANUAL-11

Chapter 2 Basic Method for Using the Compiler

(Chapter 2)

Basic Method for Using the Compiler j

This chapter describes how to start the compile driver nc30 and the command line op-
tions.

2.1 Starting Up the Compiler

2.1.1 nc30 Command Format

The nc30 compile driver starts the compiler commands (cpp30 and ccom30) ,the as-
semble command as30 and the link command In30 to create a absolute module file. The
following information (input parameters) is needed in order to start nc30:

1. C source file(s)

2. Assembly language source file(s)
3. Relocatable object file(s)

4. Command line options (optional)

These items are specified on the command line.

Figure 2.1 shows the command line format. Figure 2.2 is an example. In the example, the
following is performed:

1. Startup program ncrt0.a30 is assembled;
2. C source program sample.c is compiled and assembled;

3. Relocatable object files ncrt0.a30 and sample.r30 are linked.

The absolute module file sample.x30 is also created. The following command line options

are used:
*Specifies machine language data file sample.x30ceeeecvvvrnnenn. -0
*Specifies output of list file (extension .Ist) at assembling -as30 "-I"
*Specifies output of map file (extension .map) at linking -In30 "-ms"

NC30 MANUAL-12

Chapter 2 Basic Method for Using the Compiler

% nc30A[command-line-option]Alassembly-language-source-file-name]l
[relocatable-object-file-name]A<C-source-file-name>

% : Prompt

< > :Mandatory item
[1] : Optional item
A : Space

Figure 2.1 nc30 Command Line Format

% nc30 -osample -as30 "-I" -In30 "-ms" ncrt0.a30 sample.c<RET>

<RET> : Return key

* Always specify the startup program first when linking.

Figure 2.2 Example nc30 Command Line

2.1.2 Command File
The compile driver can compile a file which has multiple command options written in it

(i.e., a command file) after loading it into the machine.
Use of a command file helps to overcome the limitations on the number of command line

characters imposed by Windows (TM), etc.

a. Command file input format

% nc30A[command-line-option]|A<@file-name>[command-line-option]A

% : Prompt

< > :Mandatory item
[1] : Optional item
A : Space

Figure 2.3 Command File Command Line Format

% nc30 -c @test.cmd -g<RET>

<RET> : Return key

* Always specify the startup program first when linking.

Figure 2.4 Example Command File Command Line

Command files are written in the manner described below.

ncrt0.a30<CR>
samplel.c sample2.r30<CR>

Command File description —} -g -as30 -I<CR>

-0<CR>
sample<CR>

<CR>: Denotes carriage return.

Figure 2.5 Example Command File description

NC30 MANUAL-13

Chapter 2 Basic Method for Using the Compiler

2.1.3

b. Rules on command file description

The following rules apply for command file description.

* Only one command file can be specified at a time. You cannot specify multiple
command files simultaneously.

* No command file can be specified in another command file.

Multiple command lines can be written in a command file.

New-line characters in a command file are replaced with space characters.

e The maximum number of characters that can be written in one line of a command
file is 2,048. An error results when this limit is exceeded.

L]

c. Precautions to be observed when using a command file

A directory path can be specified for command file names. An error results if the file does
not exist in the specified directory path.

Command files for In30 whose file name extension is ".cm$" are automatically generated
in order for specifying files when linking. Therefore, existing files with the file name exten-
sion ".cm$," if any, will be overwritten. Do not use files which bear the file name extension
".cm$" along with this compiler. You cannot specify two or more command files simulta-
neously. If multiple files are specified, the compiler displays an error message "Too many
command files."

Notes on NC30 Command Line Options

a. Notes on Coding nc30 Command Line Options
The nc30 command line options differ according to whether they are written in uppercase
or lowercase letters. Some options will not work if they are specified in the wrong case.

b. Priority of Options for Controlling Compile driver
There are the following priorities in the option about control of a compile driver.

- P -S
<-- High Priority low -->

Therefore, if the following two options are specified at the same time, for example,
"-c": Finish processing after creating a relocatable file (extension .r30)
"-S": Finish processing after creating an assembly language source file (extension .a30)
the -S option has priority. That is to say, the compile driver does not perform any further
processing after assembling.

In this case, it only generates an assembly language source file. If you want to create a
relocatable file simultaneously with an assembly language source file, use the option "-
dsource" (shortcut -dS).

NC30 MANUAL-14

Chapter 2 Basic Method for Using the Compiler

2.1.4 nc30 Command Line Options

a. Options for Controlling Compile Driver
Table 2.1 shows the command line options for controlling the compile driver.

Table 2.1 Options for Controlling Compile Driver
Option Function
-C Creates a relocatable file (extension .r30) and ends processing ™
-Didentifier Defines an identifier. Same function as #define.
-ldirectory Specifies the directory containing the file(s) specified in #include.
You can specify up to 8 directories.
-E Invokes only preprocess commands and outputs result to standard output.™
-P Invokes only preprocess commands and creates a file (extension .i). ™
-S Creates an assembly language source file (extension .a30) and

ends processing."!

-U predefined macro | Undefines the specified predefined macro.

-silent Suppresses the copyright message display at startup.

-dsource Generates an assembly language source file (extension ".a30")
(Short form -dS) |with a C language source list output as a comment. (Not deleted
even after assembling.)

-dsource_in_list In addition to the "-dsource" function, generates an assembly lan-
(Short form -dSL) |guage list file (.Ist).

b. Options Specifying Output Files
Table 2.2 shows the command line option that specifies the name of the output machine
language data file.

Table 2.2 Options for Specifying Output Files

Option Function
-ofilename Specifies the name(s) of the file(s) (absolute module file, map file, etc.)
generated by In30. This option can also be used to specify the destina-
tion directory. Do not specify the filename extension.
-dir Specifies the destination directory of the file(s) (absolute module file,
map file, etc.) generated by In30.

c. Version and command line Information Display Option
Table 2.3 shows the command line options that display the cross-tool version data and
the command line informations.

Table 2.3 Options for Displaying Version Data and Command line informations
Option Function
-V Displays the name of the command program and the command line
during execution
-V Displays the startup messages of the compiler programs, then fin-
ishes processing (without compiling)

1. If you do not specify command line options -c, -E, -P, or -S, nc30 finishes at In30 and output
files up to the absolute load module file (extension .x30) are created.

NC30 MANUAL-15

Chapter 2 Basic Method for Using the Compiler

d. Options for Debugging

Table 2.4 shows the command line options for outputting the symbol file for the C source file.
Table 2.4 Options for Debugging

Option

Function

-9

Outputs debugging information to an assembler source file (extension
.a30).Therefore you can perform C language- level debugging.

-genter

Always outputs an enter instruction when calling a function.Be sure to
specify this option when using the debugger's stack trace function.

In the entry version, this option is always enabled (i.e., assumed to be
specified). Therefore, it cannot be enabled or disabled by specifica-
tion.

-gno_reg

Suppresses the output of debugging information for register variables.
In the entry version, this option cannot be specified.

-gold

outputs debugging information for old version debuggers and third-
party debuggers
In the entry version, this option cannot be specified.

e. Optimization Options
Table 2.5 shows the command line options for optimizing program execution speed and

ROM capacity.

Table 2.5 Optimization Options

Option Short form Function

-O[1-5] None. Maximum optimization of speed and ROM size

-OR None. Maximum optimization of ROM size followed by
speed

-0S None. Maximum optimization of speed followed by ROM size

-Oconst -0C Performs optimization by replacing references to
the const-qualified external variables with constants

-Ono_bit -ONB Suppresses optimization based on grouping of bit

manipulations

-Ono_break_source_debug |-ONBSD |Suppresses optimization that affects source line data

-Ono_float_const_fold [-ONFCF |Suppresses the constant folding processing of float-

ing point numbers

-Ono_stdlib -ONS Inhibits inline padding of standard library functions
and modification of library functions.

-Osp_adjust -OSA Optimizes removal of stack correction code. This
allows the necessary ROM capacity to be reduced.
However, this may result in an increased amount of
stack being used.

-Ostack frame_align |[-OSFA Aligns the stack frame on an every boundary.

-Oloop_unroll[=loop count] |-OLU Unrolls code as many times as the loop count with-

out revolving the loop statement. The "loop count”
can be omitted. When omitted, this option is applied
to a loop count of up to 5.

-Ono_logical _or_combine |[-ONLOC |Suppresses the optimization that puts consecutive

ORs together.

-Ono_asmpot

-ONA Inhibits starting the assembler optimizer "aopt30."

-Ostatic_to_inline

-OSTI A static function is treated as an inline function.

NC30 MANUAL-16

Chapter 2 Basic Method for Using the Compiler

f. Generated Code Modification Options
Table 2.6 shows the command line options for controlling nc30-generated assembly code.

Table 2.6 (1/2) Generated Code Modification Options

Option

Short form

Description

-fansi

None.

Makes -fnot_reserve_far_and_near,
-fnot_reserve_asm, and -fextend_to_int valid.

In the entry version, this option is always en-
abled (i.e., assumed to be specified). Therefore,
it cannot be enabled or disabled by specification.

-fnot_reserve_asm

-fNRA

Exclude asm from reserved words. (Only _asm is
valid.)

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fnot_reserve_far_and_near

-fNRFAN

Exclude far and near from reserved words. (Only
_far and _near are valid.)

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fnot_reserve_inline

-fNRI

Exclude far and near from reserved words. (Only
_inline is made a reserved word.)

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fextend_to_int

-fETI

Performs operation after extending char-type
data to the int type. (Extended according to ANSI
standards.)™

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fchar_enumerator

-fCE

Handles the enumerator type as an unsigned
char type, not as an int type.

-fno_even

-fNE

Allocate all data to the odd section , with no sepa-
rating odd data from even data when outputting .

-ffar_RAM

-fFRAM

Changes the default attribute of RAM data to far.

-fnear_ROM

-fNROM

Changes the default attribute of ROM data to
near.
In the entry version, this option cannot be speci-
fied.

-fconst_not_ ROM

-fCNR

Does not handle the types specified by const as
ROM data.

*1. char-type data or signed char-type data evaluated under ANSI rules is always extended to int-
type data. This is because operations on char types (c1=c2*2/c3; for example) would other-
wise result in an overflow and failure to obtain the intended result.

NC30 MANUAL-17

Chapter 2 Basic Method for Using the Compiler

Table 2.6 (2/2)

Generated Code Modification Options

Option

Short form

Description

-fnot_address_volatile -fNAV

Does not regard the variables specified by
#pragma ADDRESS (#pragma EQU) as those
specified by volatile.

-fsmall_array -fSA When referencing a far-type array, this option cal-
culates subscripts in 16 bits if the total size of the
array is within 64K bytes.

In the entry version, this option cannot be speci-
fied.

-fenable_register -fER Make register storage class available

-fno_align -fNA Does not align the start address of the function.
In the entry version, this option cannot be speci-
fied.

-fISRW None. Changes the default instruction for calling func-
tions to JSR.W.

-fbit -fB Outputs a 1-bit manipulate instruction to all vari-
ables arranged in the near area.

-fno_carry -fNC Suppresses carry flag addition when data is indi-
rectly accessed using far-type pointers.

-fauto_128 -fA1 Limits the usable stack frame to 128 byte.

-fuse_DIV -fuD This option changes generated code for divide
operation.

In the entry version, this option cannot be speci-
fied.

-finfo None Outputs the information required for the Inspec-

tor, STK Viewer, Map Viewer, and utl30 to the ab-
solute module file (.x30).

In the entry version, this option cannot be speci-
fied.

-fswitch_other_section |[-fSOS

This option outputs a ROM table for a 'switch’
statement to some other section than a program
section.

-fchange_bank_always |-fCBA

This option allows you to write multiple variables
to an extended area.

g. Library Specifying Option
Table 2.7 lists the startup options you can use to specify a library file.

Table 2.7 Library Specifying Option

Option

Function

-llibraryfilename

Specifies a library file that is used by In30 when linking files.

NC30 MANUAL-18

Chapter 2 Basic Method for Using the Compiler

h. Warning Options

Table 2.8 shows the command line options for outputting warning messages for contra-
ventions of nc30 language specifications.

Table 2.8 Warning Options
Option Short form Function
-Wnon_prototype -WNP | Outputs warning messages for functions without proto-

type declarations.

-Wunknown_pragma |[-WUP | Outputs warning messages for non-supported
#pragma.

-Wno_stop -WNS | Prevents the compiler stopping when an error occurs.

-Wstdout None. Outputs error messages to the host machine's standard
output (stdout).

-Werror_file<file name> |[-WEF Outputs error messages to the specified file.

-Wstop_at_warning -WSAW | Stops the compiling process when a warning occurs.

-Whnesting_comment -WNC | Outputs a warning for a comment including */ .

-Wccom_max_warnings [-WCMW | This option allows you to specify an upper limit for the

= Warning Count number of warnings output by ccom30.

-Wall None. Displays message for all detectable warnings(however,
not including alarms output by -Wlarge_to_small and -
Wno_used_argument).

-Wmake _tagfile -WMT | Outputs error messages to the tag file of source-file by
source-file.

-Wuninitialize_variable [-WUV | Outputs a warning about auto variables that have not
been initialized.

-Wlarge_to_small -WLTS | Outputs a warning about the tacit transfer of variables in
descending sequence of size.

-Wno_warning_stdlib -WNWS | Specifying this option while -Wnon_prototype or -Wall is
specified inhibits "Alarm for standard libraries which do
not have prototype declaration.

-Wno_used_argument [-WNUA | Outputs a warning for unused argument of functions.

i. Assemble and Link Options
Table 2.9 shows the command line options for specifying as30 and In30 options.

Table 2.9

Assemble and Link Options

Option

Function

-as30A<option>

Specifies options for the as30 link command. If you specify
two or more options, enclose them in double quotes.
In the entry version, this option cannot be specified.

-In30A<option>

Specifies options for the In30 assemble command.
specify two or more options, enclose them in double quotes.
In the entry version, this option cannot be specified.

If you

NC30 MANUAL-19

Chapter 2 Basic Method for Using the Compiler

2.2 Preparing the Startup Program

For C-language programs to be "burned" into ROM, NC30 comes with a sample startup
program written in the assembly language to initial set the hardware (M16C/60), locate
sections, and set up interrupt vector address tables, etc. This startup program needs to be
modified to suit the system in which it will be installed.

The following explains about the startup program and describes how to customize it.

2.2.1 Sample of Startup Program

The NC30 startup program consists of the following two files:
1. ncrt0.a30

Write a program which is executed immediately after reset.T

2. sect30.inc
Included from ncrt0.a30, this file defines section locations (memory mapping).

Figures 2.6 to 2.9 show the ncrt0.a30 source program list. Figures 2.10 to 2.13 show the
sect30.inc source program list.

IEEEEEEEEEEEREEEEEEEEEEEEREESESE]
’

; C COWPI LER for ML6C/ 60, 20

;% COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNOLOGY CORPORATI ON

;* ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED
ncrt0.a30 : NC30 startup program
This programis applicable when using the basic I/Olibrary

’ $1d: ncrt0.a30,v 1.16 2003/03/27 10:57: 43 XXXXXXXX Exp $

’
IEEEREEEEEEEEEEEEEEEEEEEEEEEESESE]
’

; .glb __BankSel ect
; __BankSel ect .equ OBH

VECTOR_ADR _equ OffdOOh 0 [4]

[1]defines the heap size.

[2]defines the user stack size.

[3]defines the interrupt stack size.

[4]defines the start address of interrupt vector table.
Figure 2.6 Startup Program List (1)(ncrt0.a30 1/4)

NC30 MANUAL-20

Chapter 2 Basic Method for Using the Compiler

speci al page definition

macro define for special page

; Format :
SPECI AL nunmber
SPECI AL . macro NUM

.org OFFFFEH- (NUM 2)
.glb __SPECI AL_@\UM
.word __SPECI AL_@\UM & OFFFFH

.list OFF

.list ON

.glb SB

N_BZERO . macro TOP_ , SECT_
mov. b #00H, ROL
nov. w#(TOP_ & OFFFFH), Al
mov. w #si zeof SECT_ , R3
sstr.b

.endm

N_BCOPY . macro FROM , TO_ , SECT_
mov. w #(FROM_ & OFFFFH), A0
nov. b #(FROM_ >>16), R1H
mv. w#TO_ , Al
mov. w #si zeof SECT_ , R3

snovf.b
.endm
BZERO . macro TOP_, SECT_
push. w #si zeof SECT_ >> 16
push. w #si zeof SECT_ & Offffh

pusha TOP_ >>16
pusha TOP_ & Offffh

.stk 8
.glb _bzero
.call _bzero, G
jsr.a _bzero
.endm
BCOPY . macro FROM_, TO_ , SECT_
push. w #si zeof SECT_ >> 16
push. w #si zeof SECT_ & Offffh

pusha TO_ >>16

pusha TO_ & Offffh
pusha FROM_ >>16
pusha FROM_ & Offffh
.stk 12

.glb _bcopy

.call _bcopy, G
jsr.a _bcopy

.endm

[5]Includes sect30.inc

Figure 2.7 Startup Program List (2) (ncrt0.a30 2/4)

NC30 MANUAL-21

Chapter 2 Basic Method for Using the Compiler

; Interrupt section start
.insf start,S, 0
.glb start
.section interrupt

; after reset,this programw |l start

I dc #istack_top, isp ;set istack pointer
mov. b #02h, Oah
; bset 1, 0ah
mov. b #00h, 04h ;set processer mode [][7]
; bclr 1, 0ah
mov. b #00h, Oah
I dc #0080h, flg 0 [8]
I dc #stack_top, sp ;set stack pointer
Il dc #data_SE_ top, sb ;set sb register
I dinth #VECTOR_ADR

NEAR area initialize.

N_BZERO bss_SE_top, bss_SE 01[9]
N_BZERO bss_SO t op, bss_SO
N_BZERO bss_NE_top, bss_NE
N_BZERO bss_NO_t op, bss_NO

N_BCOPY data_SEl top, data_SE_t op, data_SE 0 [10]
N_BCOPY data_SO _top, data_SO_t op, dat a_SO
N_BCOPY dat a_NEIl _top, data_NE_t op, data_NE
N_BCOPY data_NO _t op, dat a_NO_t op, dat a_NO

FAR area initialize.

BZERO bss_FE_t op, bss_FE 0 [11]
BZERO bss_FO _t op, bss_FO

BCOPY dat a_FEl _top, dat a_FE_t op, dat a_FE 0[12]
BCOPY dat a_FO _t op, data_FO_t op, dat a_FO

I dc #stack_top, sp
.stk -40

[6]After a reset, execution starts from this label (start)

[7]Sets processor operating mode

[8]Sets IPL and each flags.

[9]Clears the near and SBDATA bss section (to zeros)

[10]Moves the initial values of the near and SBDATA data section to RAM
[11]Clears the far bss section (to zeros) *

[12]Moves the initial values of the far data section to RAM ™

Figure 2.8 Startup Program List (3) (ncrt0.a30 3/4)

*1. Comment out this line if no far area is used.

NC30 MANUAL-22

Chapter 2 Basic Method for Using the Compiler

; heap area initialize

glb mbase 0[13]
glb __mext

.glb __nsize

mov. w #(heap_t op&FFFFH), __mbase

nov. w #(heap_t op>>16), __nbase+2

mov. w #(heap_t op&FFFFH), __mmext

nov. w #(heap_t op>>16), __mmext +2

mov. w #(HEAPSI ZE&OFFFFH), __msi ze

nmov. w #(HEAPSI ZE>>16), __ nsi ze+2

; Initialize standard 1/0

.glb _init 0 [14]
.call _init,G
jsr.a_init

; Call main() function

I dc #0Oh,fb ; for debuger
.glb _main U [15]

jsr.a_main

; exit() function

.glb _exit 0 [16]
.glb S$exit
_exit: ; End program
$exi t:
jmp _exit
. ei nsf

; dumry interrupt function

; C COWPI LER for MLEC/ 60, 20
;¥ COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNOLOGY CORPORATI ON
;* ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

R L R

[13]Initializes the heap area. Comment out this line if no memory management
function is used.

[14]Calls the init function, which initializes standard 1/0. Comment out this line if no
I/O function is used.

[15]Calls the 'main’ function. ™

[16]exit function

[17]Dummy interrupt processing function

Figure 2.9 Startup Program List (4) (ncrt0.a30 4/4)

*1. Interrupt is not enable, when calls 'main’ function. Therefore, permits interrupt by FSET
command, when uses interrupt function.

NC30 MANUAL-23

Chapter 2 Basic Method for Using the Compiler

B R R

; C Conpiler for ML6C/ 60, 20
7 COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNOLOGY CORPORATI ON
; ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

;o Witten by X XXXXXXXX

; sect30.inc : section definition
; This programis applicable when using the basic I/Olibrary

; $1d: sect30.inc,v 1.14 2003/03/27 10:57: 43 XXXXXXXX Exp $

IEE SRS

; Near RAM data area

. SBDATA area
.section dat a_SE, DATA
.org 400H

dat a_SE_t op:

.section bss_SE, DATA, ALI GN
bss_SE top:

.section dat a_SO, DATA
data_SO_t op:

.section bss_SO, DATA
bss_SO t op:

; near RAM area
.section dat a_NE, DATA, ALI GN
dat a_NE_t op:

.section bss_NE, DATA, ALI GN
bss_NE_t op:

.section dat a_NO, DATA
dat a_NO_t op:

.section bss_NO, DATA
bss_NO_t op:

.section st ack, DATA
. bl kb STACKSI ZE
stack_t op:

. bl kb | STACKSI ZE
i stack_top:

.section heap, DATA
heap_t op:
. bl kb HEAPSI ZE

Figure 2.10 Startup Program List (5) (sect30.inc 1/8)

NC30 MANUAL-24

Chapter 2 Basic Method for Using the Compiler

;. Near ROM data area

" _section rom NE, ROVDATA, ALl GN
rom NE_t op:

.section r om_NO, ROVDATA
rom_NO_t op:

.section dat a_FE, DATA
.org 10000H
data_FE_t op:

.section bss_FE, DATA, ALI GN
bss_FE_t op:

.section dat a_FO, DATA
data_FO_t op:

.section bss_FO, DATA
bss_FO_top:

.section rom_FE, ROVDATA
.org OFO000H
rom FE_t op:

.section rom_FO, ROVDATA
rom FO_top:

; Initial data of 'data' section

" _section data_SEI, ROVDATA
dat a_SEl _t op:

.section dat a_SO , ROVDATA
data_SO _t op:

.section dat a_NEI , ROVDATA
dat a_NEIl _t op:

.section dat a_NO , ROVDATA
data_NO _t op:

.section dat a_FEI , ROVDATA
dat a_FEI _top:

.section dat a_FO , ROVDATA
data_FO _top:

.section swi t ch_t abl e, ROVDATA
switch_table_top:
.section program

.section interrupt
;.org ;must be set internal ROM area

Figure 2.11 Startup Program List (6) (sect30.inc 2/8)

NC30 MANUAL-25

Chapter 2 Basic Method for Using the Compiler

.section program S

. variable vector section

.section vect or ; variable vector table
.org VECTOR_ADR

i f MB2TYPE==1

. lword dumy _i nt ; BRK (vector 0)
.Iword dunmy_i nt ; (vector 1)
.lword dumy_i nt ; (vector 2)
.Iword dunmy_i nt ; (vector 3)
.lword dumy _i nt ; int3(for user)(vector 4)
.lword dumy _i nt ; timerB5(for user)(vector 5)
.lword dumy _i nt ; tinmerB4(for user)(vector 6)
.lword dumy _i nt ; timerB3(for user)(vector 7)
.lword dumy _i nt ; si/fo4 /int5(for user)(vector 8)
.lword dumy _i nt ; si/o3 /int4(for user)(vector 9)
.lword dumy _i nt ; Bus collision detection(for user)(v10)
.lword dumy _i nt ; DMAO(for user)(vector 11)
.lword dumy _i nt ; DMAL(for user)(vector 12)
.lword dumy _i nt ; Key input interrupt(for user)(vect 13)
.lword dumy _i nt ; A-D(for user)(vector 14)
.lword dumy _i nt ; uart2 transmt(for user)(vector 15)
.lword dumy _i nt ; uart2 receive(for user)(vector 16)
.lword dumy _i nt ; uartO transmt(for user)(vector 17)
.lword dumy _i nt ; uartO receive(for user)(vector 18)
.lword dumy _i nt ; uartl transmit(for user)(vector 19)
.lword dumy _i nt ; uartl receive(for user)(vector 20)
.lword dumy _i nt ; timer AO(for user)(vector 21)
.lword dumy _i nt ; timer Al(for user)(vector 22)
.lword dumy _i nt ; timer A2(for user)(vector 23)
.lword dumy _i nt ; timer A3(for user)(vector 24)
.lword dumy _i nt ; timer A4(for user)(vector 25)
.lword dumy _i nt ; timer BO(for user)(vector 26)
.lword dumy _i nt ; timer B1l(for user)(vector 27)
.lword dumy _i nt ; timer B2(for user)(vector 28)
.lword dumy _i nt ; int0 (for user)(vector 29)
.lword dumy _i nt ; intl (for user)(vector 30)
.lword dumy _i nt ; int2 (for user)(vector 31)

.el se
.Iword dunmy_i nt ; vector 0 (BRK)
.lword dumy _i nt ; vector 1
.lword dumy _i nt ; vector 2
.lword dumy _i nt ; vector 3
.lword dumy _i nt ; vector 4
.lword dumy _i nt ; vector 5
.Iword dunmy_i nt ; vector 6
.lword dumy _i nt ; vector 7
.Iword dunmy_i nt ; vector 8
.lword dumy _i nt ; vector 9
.Iword dunmy_i nt ; vector 10
. lword dumy _i nt ; DMAO (for user) (vector 11)
. lword dumy _i nt ; DMAL 2 (for user) (vector 12)
. lword dumy _i nt ; input key (for user) (vector 13)
. lword dumy _i nt ; AD Convert (for user) (vector 14)
.lword dumy _i nt ; vector 15
.Iword dunmy_i nt ; vector 16
. lword dumy _i nt ; uartO trance (for user) (vector 17)
. lword dumy _i nt ; uartO receive (for user) (vector 18)
. lword dumy _i nt ; uartl trance (for user) (vector 19)
. lword dumy _i nt ; uartl receive (for user) (vector 20)
. lword dumy _i nt ; TIMER AO (for user) (vector 21)
.Iword dunmy_i nt ; TIMER Al (for user) (vector 22)
. lword dumy _i nt ; TIMER A2 (for user) (vector 23)
. lword dumy _i nt ; TIMER A3 (for user) (vector 24)
.lword dumy_int ; TIMER A4 (for user) (vector 25)
. lword dumy _i nt ; TIMER BO (for user) (vector 26)
.lword dumy _i nt ; TIMER Bl (for user) (vector 27)
. lword dumy _i nt ; TIMER B2 (for user) (vector 28)
. lword dumy _i nt ; INTO (for user) (vector 29)
. lword dumy _i nt ; INT1 (for user) (vector 30)
. lword dumy _i nt ; INT2 (for user) (vector 31)

Figure 2.12 Startup Program List (7) (sect30.inc 3/8)

NC30 MANUAL-26

Chapter 2 Basic Method for Using the Compiler

.endif

. lword dumy _i nt ; vector 32 (for user or MR30)
.Iword dunmy_i nt ; vector 33 (for user or MR30)
. lword dumy _i nt ; vector 34 (for user or MR30)
.Iword dunmy_i nt ; vector 35 (for user or MR30)
. lword dumy _i nt ; vector 36 (for user or MR30)
.Iword dunmy_i nt ; vector 37 (for user or MR30)
. lword dumy _i nt ; vector 38 (for user or MR30)
.Iword dunmy_i nt ; vector 39 (for user or MR30)
. lword dumy _i nt ; vector 40 (for user or MR30)
.Iword dunmy_i nt ; vector 41 (for user or MR30)
. lword dumy _i nt ; vector 42 (for user or MR30)
.Iword dunmy_i nt ; vector 43 (for user or MR30)
.lword dummy_int ; vector 44 (for user or MR30)
.Iword dunmy_i nt ; vector 45 (for user or MR30)
. lword dumy _i nt ; vector 46 (for user or MR30)
.Iword dunmy_i nt ; vector 47 (for user or MR30)
.lword dumy _i nt ; vector 48

.Iword dunmy_i nt ; vector 49

.lword dumy _i nt ; vector 50

.lword dumy _i nt ; vector 51

.lword dumy _i nt ; vector 52

.Iword dunmy_i nt ; vector 53

.lword dumy _i nt ; vector 54

.Iword dunmy_i nt ; vector 55

.lword dumy _i nt ; vector 56

.lword dumy _i nt ; vector 57

.lword dumy _i nt ; vector 58

.Iword dunmy_i nt ; vector 59

.lword dumy _i nt ; vector 60

.lword dumy _i nt ; vector 61

.lword dumy _i nt ; vector 62

.Iword dunmy_i nt ; vector 63

; fixed vector section
.section fvector ; fixed vector table

speci al page defination
macro is defined in ncrt0.a30
Format : SPECI AL numnber

; SPECI AL 255
; SPECI AL 254
; SPECI AL 253
; SPECI AL 252
; SPECI AL 251
; SPECI AL 250
; SPECI AL 249
; SPECI AL 248
; SPECI AL 247
; SPECI AL 246
; SPECI AL 245
; SPECI AL 244
; SPECI AL 243
; SPECI AL 242
; SPECI AL 241
; SPECI AL 240
; SPECI AL 239
; SPECI AL 238
; SPECI AL 237
; SPECI AL 236
; SPECI AL 235
; SPECI AL 234
; SPECI AL 233
; SPECI AL 232
; SPECI AL 231
; SPECI AL 230
; SPECI AL 229
; SPECI AL 228
; SPECI AL 227
; SPECI AL 226

Figure 2.13 Startup Program List (8) (sect30.inc 4/8)

NC30 MANUAL-27

Chapter 2 Basic Method for Using the Compiler

; SPECI AL 225
; SPECI AL 224
; SPECI AL 223
; SPECI AL 222
; SPECI AL 221
; SPECI AL 220
; SPECI AL 219
; SPECI AL 218
; SPECI AL 217
; SPECI AL 216
; SPECI AL 215
; SPECI AL 214
; SPECI AL 213
; SPECI AL 212
; SPECI AL 211
; SPECI AL 210
; SPECI AL 209
; SPECI AL 208
; SPECI AL 207
; SPECI AL 206
; SPECI AL 205
; SPECI AL 204
; SPECI AL 203
; SPECI AL 202
; SPECI AL 201
; SPECI AL 200
; SPECI AL 199
; SPECI AL 198
; SPECI AL 197
; SPECI AL 196
; SPECI AL 195
; SPECI AL 194
; SPECI AL 193
; SPECI AL 192
; SPECI AL 191
; SPECI AL 190
; SPECI AL 189
; SPECI AL 188
; SPECI AL 187
; SPECI AL 186
; SPECI AL 185
; SPECI AL 184
; SPECI AL 183
; SPECI AL 182
; SPECI AL 181
; SPECI AL 180
; SPECI AL 179
; SPECI AL 178
; SPECI AL 177
; SPECI AL 176
; SPECI AL 175
; SPECI AL 174
; SPECI AL 173
; SPECI AL 172
; SPECI AL 171
; SPECI AL 170
; SPECI AL 169
; SPECI AL 168
; SPECI AL 167
; SPECI AL 166
; SPECI AL 165
; SPECI AL 164
; SPECI AL 163
; SPECI AL 162
; SPECI AL 161
; SPECI AL 160
; SPECI AL 159
; SPECI AL 158
; SPECI AL 157
; SPECI AL 156
; SPECI AL 155
; SPECI AL 154
; SPECI AL 153
; SPECI AL 152
; SPECI AL 151

Figure 2.14 Startup Program List (9) (sect30.inc 5/8)

NC30 MANUAL-28

Chapter 2 Basic Method for Using the Compiler

SPECI AL 150
SPECI AL 149
SPECI AL 148
SPECI AL 147
SPECI AL 146
SPECI AL 145
SPECI AL 144
SPECI AL 143
SPECI AL 142
SPECI AL 141
SPECI AL 140
SPECI AL 139
SPECI AL 138
SPECI AL 137
SPECI AL 136
SPECI AL 135
SPECI AL 134
SPECI AL 133
SPECI AL 132
SPECI AL 131
SPECI AL 130
SPECI AL 129
SPECI AL 128
SPECI AL 127
SPECI AL 126
SPECI AL 125
SPECI AL 124
SPECI AL 123
SPECI AL 122
SPECI AL 121
SPECI AL 120
SPECI AL 119
SPECI AL 118
SPECI AL 117
SPECI AL 116
SPECI AL 115
SPECI AL 114
SPECI AL 113
SPECI AL 112
SPECI AL 111
SPECI AL 110
SPECI AL 109
SPECI AL 108
SPECI AL 107
SPECI AL 106
SPECI AL 105
SPECI AL 104
SPECI AL 103
SPECI AL 102
SPECI AL 101
SPECI AL 100
SPECI AL 99
SPECI AL 98
SPECI AL 97
SPECI AL 96
SPECI AL 95
SPECI AL 94
SPECI AL 93
SPECI AL 92
SPECI AL 91
SPECI AL 90
SPECI AL 89
SPECI AL 88
SPECI AL 87
SPECI AL 86
SPECI AL 85
SPECI AL 84
SPECI AL 83
SPECI AL 82
SPECI AL 81
SPECI AL 80
SPECI AL 79
SPECI AL 78
SPECI AL 77
SPECI AL 76

Figure 2.15 Startup Program List (10) (sect30.inc 6/8)

NC30 MANUAL-29

Chapter 2 Basic Method for Using the Compiler

SPECI AL 75
SPECI AL 74
SPECI AL 73
SPECI AL 72
SPECI AL 71
SPECI AL 70
SPECI AL 69
SPECI AL 68
SPECI AL 67
SPECI AL 66
SPECI AL 65
SPECI AL 64
SPECI AL 63
SPECI AL 62
SPECI AL 61
SPECI AL 60
SPECI AL 59
SPECI AL 58
SPECI AL 57
SPECI AL 56
SPECI AL 55
SPECI AL 54
SPECI AL 53
SPECI AL 52
SPECI AL 51
SPECI AL 50
SPECI AL 49
SPECI AL 48
SPECI AL 47
SPECI AL 46
SPECI AL 45
SPECI AL 44
SPECI AL 43
SPECI AL 42
SPECI AL 41
SPECI AL 40
SPECI AL 39
SPECI AL 38
SPECI AL 37
SPECI AL 36
SPECI AL 35
SPECI AL 34
SPECI AL 33
SPECI AL 32
SPECI AL 31
SPECI AL 30
SPECI AL 29
SPECI AL 28
SPECI AL 27
SPECI AL 26
SPECI AL 25
SPECI AL 24
SPECI AL 23
SPECI AL 22
SPECI AL 21
SPECI AL 20
SPECI AL 19
SPECI AL 18

Figure 2.16 Startup Program List (11) (sect30.inc 7/8)

NC30 MANUAL-30

Chapter 2 Basic Method for Using the Compiler

; fixed vector section

.org Offfdch

uDlI :

.lword dummy_i nt
OVER_FLOW

.lword dummy_i nt
BRKI :

.lword dummy_i nt
ADDRESS_MATCH:

.lword dummy_i nt
S| NGLE_STEP:

.lword dummy_i nt
WDT:

.lword dummy_i nt
DBC:

.lword dummy_i nt
NM :

.lword dummy_i nt
RESET:

.lword start

B R I

; C Conpiler for ML6C/ 60, 20
7 COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNOLOGY CORPORATI ON
; ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

rkkkkkkkkkkkh ok ok ok ok ko hhhhhhk ok ok ok ok hkhk ok k ok kkkhkkkkkkhkhkhkhkhkhkhkhkhkhkhkhhkkkkkkkkokkokokkkkkk k& k%% %%

Figure 2.17 Startup Program List (12) (sect30.inc 8/8)

NC30 MANUAL-31

Chapter 2 Basic Method for Using the Compiler

2.2.2 Customizing the Startup Program
a. Overview of Startup Program Processing

About

ncrt0.a30

This program is run at the start of the program or immediately after a reset. It performs the
following process mainly:

Sets the top address (__SB__) of the SBDATA area (it is accessing area to used

the SB relative addressing mode).

Sets the processor's operating mode.

Initializes the stack pointer (ISP Register and USP Register).

Initializes SB register.

Initializes INTB register.

Initializes the data near area.
bss NE bss_NO bss_SE and bss_SO sections are cleared (to 0). Also, the
initial values in the ROM area (data_NEI, data_NOI, data_SEl, data_SOl) are
transferred to RAM (data_NE ,data_NO, data_SE and data_SO).

Initializes the data far area.
bss_FE and bss_FO sections are cleared (to 0). Also, the initial values in the
ROM area (data_FEI, data_FOIl) storing them are transferred to RAM
(data_FE and data_FO).

Initializes the heap area.

Initializes the standard 1/O function library.

Initializes FB register .

Calls the 'main’ function.

NC30 MANUAL-32

Chapter 2 Basic Method for Using the Compiler

b. Modifying the Startup Program

Figure 2.18 summarizes the steps required to modify the startup programs to match the
target system.

d . Set the size of stack sections. =
O
=

' -

e Set the size of heap sections. QC;

w
' o

f. Set the interrupt base register.

g . Set the processor operating mode.

- v
(9]

O

' —

w

o

2.2.3 Customizing Memory Allocations g

Figure 2.14 Example Sequence for Modifying Startup Programs

c. Examples of startup modifications that require caution

(1) Settings When Not Using Standard I/O Functions

The init function™ initializes the M16C/60 Series I/O. It is called before main in ncrt0.a30.
Figure 2.19 shows the part where the init function is called.

If your application program does not use standard 1/0, comment out the init function call
from ncrt0.a30.

Initialize standard 1/0

; Call nmain() function

Figure 2.19 Part of ncrt0.a30 Where init Function is Called

If you are using only sprintf and sscanf, the init function does not need to be called.

*1. The init function also initializes the microcomputer (hardware) for standard in-put/output
functions. By default, the M16C/62 is assumed to be the microcomputer that it initializes.
When using standard input/output functions, the init function, etc. may need to be modified
depending on the system in which the microcomputer is to be used.

NC30 MANUAL-33

Chapter 2 Basic Method for Using the Compiler

(2) Settings When Not Using Memory Management Functions

To use the memory management functions calloc and malloc, etc., not only is an area
allocated in the heap section but the following settings are also made in ncrt0.a30.

(DInitialization of external variable char *_mbase
(2)Initialization of external variable char *_mnext

Initializes the heap_top label, which is the starting address of the heap section
(3)Initialization of external variable unsigned_msize

Initializes the "HEAPSIZE" expression, which sets at "2.2.2 e heap section size".

Figure 2.16 shows the initialization performed in ncrt0.a30.

; heap area initialize

.glb _ nbase

.glb __mext

.glb __msize

mov. w #(heap_t op&FFFFH), _ nbase
nmov. w #(heap_t op>>16), _ nbase+2
nov. w #(heap_t op&FFFFH), _ mmext
mov. w #(heap_t op>>16), __mmext +2
mov. w #(HEAPSI ZE&OFFFFH), __ nsi ze

mov. w #(HEAPSI ZE>>16), __nsi ze+2

Figure 2.16 Initialization When Using Memory Management Functions (ncrt0.a30)

If you are not using the memory management functions, comment out the whole
initialization section. This saves the ROM size by stopping unwanted library items from
being linked.

(3) Notes on Writing Initialization Programs

Note the following when writing your own initialization programs to be added to the startup
program.

(1) If your initialization program changes the U, or B flags, return these flags to the origi-
nal state where you exit the initialization program. Do not change the contents of the
SB register.

(2) If your initialization program calls a subroutine written in C, note the following two
points:
[1]Call the C subroutine only after clearing them, B and D flags.
[2]Call the C subroutine only after setting the U flag.

NC30 MANUAL-34

Chapter 2 Basic Method for Using the Compiler

d. Setting the Stack Section Size

A stack section has the domain used for user stacks, and the domain used for interrup-
tion stacks.Since stack is surely used, please surely secure a domain.stack size should set
up the greatest size to be used.”

Stack size is calculated to use the stack size calculation utility STK Viewer & stk.

e. Heap Section Size

Set the heap to the maximum amount of memory allocated using the memory manage-
ment functions calloc and malloc in the program. Set the heap to 0 if you do not use these
memory management functions. Make sure that the heap section does not exceed the
physical RAM area.

HEAPSI ZE . equ 300h

Figure 2.21 Example of Setting Heap Section Size (ncrt0.a30)

f. Setting the interrupt vector table

Set the top address of the interrupt vector table to the part of Figure 2.22 in ncrt0.a30.
The INTB Register is initialized by the top address of the interrupt vector table.

VECTER_ADR .equ Of f dOOh

Figure 2.22 Example of Setting Top Address of Interrupt Vector Table (ncrt0.a30)

The sample startup program has had values set for the tables listed below.
OFFDOOH < OFFDFFH: Interrupt vector table
OFFEOOH = OFFFFFH: Special page vector table and fixed vector table
Normally, these set values do not need to be modified.

*1. The stack is used within the startup program as well. Although the initial values are reloaded
before calling the main() function, consideration is required if the stack size used by the
main() function, etc. is insufficient.

NC30 MANUAL-35

Chapter 2 Basic Method for Using the Compiler

g. Setting the Processor Mode Register

Set the processor operating mode to match the target system at address 04H (Processor
mode register) in the part of ncrt0.a30 shown in Figure 2.23.

(omtted)
nmov. b #00h, 04h ; set processer node

(om tted)

Figure 2.23 Example Setting of Processor Mode Register (ncrt0.a30)

See the User’'s Manual of microcomputer you are using for details of the Processor Mode
Register.

NC30 MANUAL-36

Chapter 2 Basic Method for Using the Compiler

2.2.3 Customizing for NC30 Memory Mapping

a. Structure of Sections

In the case of a native environment compiler, the executable files generated by the com-
piler are mapped to memory by the operating system, such as UNIX. However, with cross-
environment compilers such as NC30, the user must determine the memory mapping.

With NC30, storage class variables, variables with initial values, variables without initial
values, character string data, interrupt processing programs, and interrupt vector address
tables, etc., are mapped to Micoro Processor series memory as independent sections ac-
cording to their function. The names of sections consist of a base name and attribute as
shown below :

Table 2.12 Section Names
|Section Base Name| _[Attribute]

Table 2.13 shows Section Base Name and Table 2.14 shows Attributes.

Table 2.13 Section Base Names

Section base name Content
data Stores data with initial values
bss Stores data without initial values
rom Stores character strings, and data specified in #pragma ROM
or with the const modifier

Table 2.14 Section Naming Rules

Attribute Meaning Target section base name
| Section containing initial values of data data
N/F/S |N...near attribute " data, bss, rom
F...far attribute ™
S...SBDATA attribute data, bss
E/O E...Even data size data, bss, rom
0...0dd data size

*1.near and far are NC30 modifiers, used to clarify the addressing mode.
near......... accessible from 000000H to OOFFFFH
far............ accessible from 000000H to OFFFFFFH

NC30 MANUAL-37

Chapter 2 Basic Method for Using the Compiler

Table 2.15 shows the contents of sections other than those based on the naming rules
described above.

Table 2.15 Section Names

Section name Contents

stack This area is used as a stack. Allocate this area at addresses between
0400H to OFFFFH.

heap This memory area is dynamically allocated during program execution by

memory management functions (e.g., malloc). This section can be allo-
cated at any desired location of the Micro Processor RAM area.

vector This section stores the contents of the Micro Processor's interrupt vec-
tor table. The interrupt vector table can be allocated at any desired
location of the Micro Processor's entire memory space by intb register
relative addressing. For more information, refer to the Micro Processor
User's Manual.

fvector This section stores the contents of the Micro Processor's fixed vector.
program Stores programs

program_S Stores programs for which #pragma SPECIAL has been specified.
switch_table |The section to which the branch table for switch statements is allocated.
This section is generated only with the -fSOS option.

These sections are mapped to memory according to the settings in the startup pro-
gram include file sect30.inc. You can modify the include file to change the mapping.

NC30 MANUAL-38

Chapter 2 Basic Method for Using the Compiler

Figure 2.24 shows the how the sections are mapped according to the sample startup
program's include file sect30.inc.

000000H 1 OF0000H
(-{1) rom_FE section
Py
o
SB 2 rom_FO section
- . alm
000400H data_SE section o
bss_SE section EJU data_SEI section
data_SO section o .
- o data_SOl section
bss_SO section J
data_NE section data_NEI section
bss_NE section
data_NO section =] ,
= : 3 data_NOI section =
hss_NO section E_} 5
§ data_FEI section s_f’_:
stack section < g
)
? data_FOI section <
Q))
)
o
heap section
rom_NE section program section
rom_NO section Q
o
010000H B
data_FE section %
3 program_S section
bss_FE section <
S| INTB -
)
data_FO section vector section
~ OFFEOOH
bss_FO section fvector section
OEFFFFH OFFFFFH
Figure 2.24 Example Section Mapping

NC30 MANUAL-39

Chapter 2 Basic Method for Using the Compiler

b. Outline of memory mapping setup file

About sect30.inc

This program is included from ncrt0.a30. It performs the following process mainly:

Maps each section (in sequence)

Sets the starting addresses of the sections
Defines the size of the stack and heap sections
Sets the interrupt vector table

Sets the fixed vector table

c. Modifying the sect30.inc

Figure 2.21 summarizes the steps required to modify the startup programs to match the
target system.

- —

e

—

o

2.2.2 Customizing the Startup Program 90-2)

o

4 N @

d . Map (order)each section and set starting addresses. g

c'_:)

' o

e. Set the interrupt vector table. ;;
f_ \ Set the special page vector table. /

Figure 2.21 Example Sequence for Modifying Startup Programs

NC30 MANUAL-40

Chapter 2 Basic Method for Using the Compiler

d. Mapping and Order Sections and Specifying Starting Address

Map and order the sections to memory and specify their starting addresses (mapping
programs and data to ROM and RAM) in the sect30.inc include file of the startup program.

The sections are mapped to memory in the order they are defined in sect30.inc. Use the
as30 pseudo instruction .ORG to specify their starting addresses. Figure 2.22 is an ex-
ample of these settings.

.section program
. ORG OFFEOOOH 0 Specifies the starting address of the program section

Figure 2.22 Example Setting of Section Starting Address (sect30. inc)

If no starting address is specified for a section, that section is mapped immediately after
the previously defined section.

(1) Rules for Mapping Sections to Memory

Because of the effect on the memory attributes (RAM and ROM) of Micro Processor
memory, some sections can only be mapped to specific areas. Apply the following rules
when mapping sections to memory.

(a)Sections mapped to RAM

e data_SE section e bss_ SE section
e data SO section e bss SO section
e data_NE section e bss NE section
e data_NO section e bss NO section
e data_FE section e bss FE section
e data FO section e bss FO section
e stack section
e heap section
(b)Sections mapped to ROM
e rom_NE section e data_SEl section
e rom_NO section e data_SOlI section
e rom_FE section e data_NEI section
e rom_FO section e data_NOI section
e data_FEI section
e program section e data_FOI section
e interrupt section e switch_table section

e fvector section

NC30 MANUAL-41

Chapter 2 Basic Method for Using the Compiler

Note also that some sections can only be mapped to specific memory areas in the Micro

Processor memory space.

(a)Sections mapped only to OH - OFFFFH(near area)

data_SE section
bss_SE section

data_NE section
bss_NE section

rom_NE section
stack section

data_SO section
bss_SO section
data_NO section
bss_NO section
rom_NO section

(b)Sections mapped only to OFO0O00H - OFFFFFH

program_S

fvector

(c)Sections mapped to any area for the M16C/60 series

data_FE section
rom_FE section
data_SEI section
data_NEI section
data_FEI section
bss_FE section
program

data_FO section
rom_FO section
data_SOI section
data_NOI section
data_FOlI section
bss_FO section
vector

If any of the following data sections have a size of 0, they need not be defined.

data_SE, data_SEI section
data_SO, data_SOI section
data_NE, data_NEI section
data_NO, data_NOI section
data_FE, data_FEI section

data_FO, data_FOI section

bss_SE section
bss_SO section

bss_NE section
bss_NO section
bss_FE section

bss_FO section

rom_NE section
rom_NO section
rom_FE section
rom_FO section

NC30 MANUAL-42

Chapter 2 Basic Method for Using the Compiler

(2) Example Section Mapping in Single-Chip Mode
Figures 2.27, 2.28 and 2.29 are examples of the sect30.inc include file which is used for
mapping sections to memory in single-chip mode.

B R R R X

C Conpiler for ML6C/ 60, 20
COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNOLOGY CORPORATI ON
ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

Witten by X XXXXXXXX

sect 30.inc : section definition
This programis applicable when using the basic I/O library

$1d: sect30.inc,v 1.14 2003/ 03/27 10:57: 43 XXXXXXXX Exp $

B

Arrangenent of section

Near RAM data area
SBDATA ar ea
.section dat a_SE, DATA
.org 400H
data_SE_t op:

.section bss_SE, DATA, ALI GN
bss_SE_t op:

.section dat a_SO, DATA
data_SO t op:

.section bss_SO, DATA
bss_SO top:

; near RAM area
.section dat a_NE, DATA, ALI GN
dat a_NE_t op:

.section bss_NE, DATA, ALI GN
bss_NE_t op:

.section dat a_NO, DATA
dat a_NO_t op:

.section bss_NO, DATA
bss_NO_t op:

.section st ack, DATA
. bl kb STACKSI ZE
stack_t op:

. bl kb I STACKSI ZE
i stack_top:

.section heap, DATA
heap_t op:
. bl kb HEAPSI ZE

Figure 2.27 Listing of sect30.inc in Single-Chip Mode (1/3)

NC30 MANUAL-43

Chapter 2 Basic Method for Using the Compiler

Near ROM data area
" .section rom NE, ROVDATA, ALI GN
rom NE_t op:
.section rom_NO, ROVDATA
rom NO_t op:
Far RAM data area
’ .section dat a_FE, DATA
.org 10000H OYou can remove
data_FE_t op: this part, because it

.section bss_FE, DATA, ALI GN is unnecessary.

bss_FE_t op: In this case,you
need to remove the
initialize program in
the far area of

.section bss_FO, DATA ncrt0.a30.
bss_FO_t op:

.section dat a_FO, DATA
data_FO_t op:

.section rom_FE, ROVDATA
.org OFO000H
rom FE_t op:

.section rom _FO, ROVDATA
rom FO_top:

; Initial data of 'data' section

.section dat a_SEIl , ROVDATA
dat a_SEl _t op:

.section dat a_SO , ROVDATA
data_SO _t op:

.section dat a_NEI , ROVDATA
dat a_NEIl _t op:

.section dat a_NO , ROVDATA
data_NO _t op:

.section dat a_FEI , ROVDATA
dat a_FEI _top:

.section dat a_FO , ROVDATA
data_FO _t op:

.section swi t ch_t abl e, ROVDATA
switch_table_top:

.section program

.section interrupt
;.org ;must be set internal ROM area
.section program S

Figure 2.28 Listing of sect30.inc in Single-Chip Mode (2/3)

NC30 MANUAL-44

Chapter 2 Basic Method for Using the Compiler

.section vect or
.org VECTOR_ADR

i f MB2TYPE==1

.lword dumy _i
.lword dumy _i
.lword dumy _
.Iword dunmy _i
.lword dumy _i
(omi tted)

.Imbrd dumy _i
.Iword dunmy _i

nt
nt
nt
nt
nt

nt
nt

. variable vector section

vari abl e vector table

BRK (vector 0)
(vector 1)
(vector 2)
(vector 3)
int3(for user)(vector 4)

vector 62
vector 63

; fixed vector section

.section fvector

; fixed vector table

speci al page defination

macro is defined in ncrt0.a30

SPECI AL 255
SPECI AL 254

(omi tted)

SPECI AL 19
SPECI AL 18

" Format: SPECIAL number

.org Offfdch

UDl :

.Iword dummy _i
OVER_FLOW

.Iword dummy _i
BRKI

.Iword dummy _i
ADDRESS_MATCH

.Iword dummy _i
S| NGLE_STEP

.Iword dummy _i
VDT

.Iword dummy _i
DBC:

.Iword dummy _i
NM :

.Iword dummy _i
RESET:

.Iword start

fixed vector section

IR I

C Conpiler for ML6C/ 60, 20

ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

R I I R R O O

7 COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNOLOGY CORPORATI ON

Figure 2.29 Listing of sect30.inc in Single-Chip Mode (3/3)

NC30 MANUAL-45

Chapter 2 Basic Method for Using the Compiler

e. Setting Interrupt Vector Table

If your program uses interrupt processing, change the interrupt vector table table in the
vector section of sect30.inc. Figure 2.30 is an example of an interrupt vector address table.

.section vector ; variable vector table
. or g VECTOR_ADR

.lword dumy _i nt ; vector 0 (BRK) OBRK instruction
.org(VECTOR_ADR +44)

.lword dummy_i nt
.lword dummy _i nt

INT1 (for user)(vector 30) O Ext er nal
INT2 (for user)(vector 31) 0 Ext er nal

nterrupt | NT1
nterrupt | NT2

.lword dummy_i nt ; DMAO (for user) O DMAO i nterrupt
.lword dummy _i nt ; DMAL (for user) ODMAL i nterrupt
.lword dummy_i nt ; input key (for user) Okey input interrupt
.lword dummy_i nt ; AD Convert (for user) OADC i nterrupt
.org (VECTOR_ADR+68)
.lword dummy _i nt ; uart0 trance (for user) OUARTO send interrupt
.lword dummy_i nt ; uartO receive (for user) O UARTO receive interrupt
.lword dummy _i nt ; uartl trance (for user) OUART1 send interrupt
.lword dummy_i nt ; uartl receive (for user) JUARTL receive interrupt
.lword dummy _i nt ; TIMER A0 (for user) OTimer AO interrupt
.lword dummy_i nt ; TIMER Al (for user) OTimer Al interrupt
.lword dummy _i nt ; TIMER A2 (for user) OTimer A2 interrupt
.lword dummy_i nt ; TIMER A3 (for user) OTimer A3 interrupt
.lword dummy _i nt ; TIMER A4 (for user)(vector 25) OTimer A4 interrupt
.lword dummy_i nt ; TIMER BO (for user)(vector 26) OTimer BO interrupt
.lword dummy _i nt ; TIMER Bl (for user)(vector 27) OTimer Bl interrupt
.lword dummy_i nt ; TIMER B2 (for user)(vector 28) OTimer B2 interrupt
.lword dummy _i nt ; INTO (for user)(vector 29) OExternal interrupt |NTO
; i
; i

* dummy_int is a dummy interrupt processing function.
Y. y ptp g

Figure 2.30 Interrupt Vector Address Table (sect30.inc)

The contents of the interrupt vectors varies according to the machine in the M16C/60
series. See the User Manual for your machine for details.
Change the interrupt vector address table as follows:

[1] Externally declare the interrupt processing function in the .GLB as30 pseudo in-
struction. The labels of functions created by NC30 are preceded by the underscore
(). Therefore, the names of interrupt processing functions declared here should
also be preceded by the underscore.

[2] Replace the names of the interrupt processing functions with the names of inter-
rupt processing functions that use the dummy interrupt function name dummy _int
corresponding to the appropriate interrupt table in the vector address table.

NC30 MANUAL-46

Chapter 2 Basic Method for Using the Compiler

Figure 2.31 is an example of registering the UART1 send interrupt processing function
uarttrn.

.Iword dummy_i nt ; uartO trance (for user)

.Iword dumy_i nt ; uartO receive (for user)

.glb _uarttrn O Process [1] above
. Iword _uarttrn ; uartl trance (for user) O Process [2] above
(omitted)

Figure 2.31 Example Setting of Interrupt Vector Addresses (sect30.inc)

f. Setting SPECIAL Page Vector Table

When using #pragma SPECIAL, use sect30.inc to set the special page vector table.
Figure 2.32 is an example of setting the special page vector table.

; special page definition
macro is defined in ncrt0.a30
For mat : SPECI AL nunber

SPECI AL 42
SPECI AL 41
SPECI AL 40

SPECI AL 31
SPECI AL 30

SPECI AL 22
SPECI AL 21
SPECI AL 20
SPECI AL 19
SPECI AL 18

Figure 2.32 Example Setting of Special Page Vector Table

By default, the special page vector table is a comment. "SPECIAL" is a macro, whose
behavior is associated with the function name defined by "#pragma SPECIAL".

To define a special page nhumber you want to use, remove the comment for the desired
page number.

Special page numbers do not need to be consecutive, but must always be set in de-
scending order.

NC30 MANUAL-47

Chapter 3 Programming Technique

(Chapter 3)

Programming Technique j

This chapter describes precautions to be observed when programming with the C
compiler, NC30.

3.1 Notes

3.1.1

Renesas Technology Corp. are not designed or manufactured
for use in a device or system that is used under circumstances in
which human life is potentially at stake. Please contact Renesas
Technology Corp.,

Renesas Solutions Corp., or an authorized Renesas Semicon-
ductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus
orsystems for transportation, vehicular, medical, aerospace,
nuclear, or undersea repeater use.

Notes about Version-up of compiler

The machine-language instructions (assembly language) generated by
NC30 vary in contents depending on the startup options specified when
compiling, contents of version-up, etc. Therefore, when you have changed
the startup options or upgraded the compiler version, be sure to reevaluate
the operation of your application program.

Furthermore, when the same RAM data is referenced (and its contents
changed) between interrupt handling and non-interrupt handling routines or
between tasks under realtime OS, always be sure to use exclusive control
such as volatile specification. Also, use exclusive control for bit field struc-
tures which have different member names but are mapped into the same
RAM.

NC30 MANUAL-48

Chapter 3 Programming Technique

3.1.2 Notes about the M16C's Type Dependent Part
When writing to or reading a register in the SFR area, it may sometimes be
necessary to use a specific instruction. Because this specific instruction var-
les with each type of MCU, consult the user's manual of your MCU for de-
tails. In this case, write the instruction directly in the program using the ASM
function.

In this compiler, the instructions which cannot be used may be generated
for writing and read-out to the register of SFR area.

When accessing registers in the SFR area in C language, make sure that
the same correct instructions are generated as done by using asm functions,
regardless of the compiler's version and of whether optimizing options are
used or not.

When you describe like the following examples as C language description
to a SFR area, in this compiler may generate the assembler code which
carries out operation which is not assumed since the interrupt request bit is
not normal.

[Example: C language description to SFR area]

#pragma ADDRESS TAOIC 0055h /* M16C/60 MCU's Timer AO interrupt
control register */

struct {
char ILVL: 3;
char IR :1; [* An interrupt request bit */
char dmy : 4;

} TAOIC;

void wait_until_IR_is_ON(void)

{
while (TAOIC.IR == 0) /* Waits for TAOIC.IR to become 1 */

{

}

TAOIC.IR = 0; /* Returns 0 to TAOIC.IR
when it becomes 1 */

NC30 MANUAL-49

Chapter 3 Programming Technique

3.1.3 About Optimization
a. Regular optimization

The following are always optimized regardless of whether optimization options are
specified or not.

(1) Meaningless variable access
For example, the variable port shown below does not use the readout results, so that

readout operations are deleted.

extern int port;

func()
{

port;
}

Figure 3.1 Example of a Meaningless Variable Access (Optimized)

Although the intended operation in this example is only to read out port, the readout
code actually is not optimized before being output. To suppress optimization, add the
volatile qualifier as shown in Figure 3.2.

extern int volatile port;

func()
{

port;
}

Figure 3.2 Example of a Meaningless Variable Access (Optimization Suppressed)

(2) Meaningless comparison

i nt func(char c)
t
int i;
if(c = -1)
i = 1;
el se
i = 0;
return i;
}

Figure 3.3 Meaningless Comparison

In the case of this example, because the variable c is written as char, the compiler treats
it as the unsigned char type. Since the range of values representable by the unsigned
char type is 0 to 255, the variable ¢ will never take on the value -1.

Accordingly, if there is any statement which logically has no effect like this example,
the compiler does not generate assembler code.

NC30 MANUAL-50

Chapter 3 Programming Technique

(3) Programs not executed
No assembler codes are generated for programs which logically are not executed.

void func(int i)

func2(i);
return;
i = 10; <------- Fragnment not executed

}

Figure 3.4 Program Not Executed

(4) Operation between constants
Operation between constants is performed when compiling.

void func(int i)

{

int i =1 + 2; <-- Operation on this part is perfornmed when conpiling

return i;

Figure 3.5 Program Not Executed

(5) Selection of optimum instructions
Selection of optimum instructions as when using the STZ instruction or outputting shift

instructions for division/multiplications, is always performed regardless of whether
optimization options are specified or not.

b. About the volatile qualifier
Use of the volatile qualifier helps to prevent the referencing of variables, the order in
which they are referenced, the number of times they are referenced, etc. from being

affected by optimization.
However, avoid writing statements like those shown below which will be interpreted

ambiguously.

int a;
int volatile b, c;

b?
(b +1)?

cor a
b or a

c; /| whether a
++b; /] whether a

a
a

I
(op
1

Figure 3.6 Example of Ambiguously Interpreted volatile Qualifier Statements

For successive bit manipulations, if optimized, the compiler generates codes to perform
bit manipulations collectively, even when the volatile qualifier is specified. (Bit manipula-
tions are performed simultaneously by overriding the order of references.)

To inhibit collective bit manipulations, use the "-Ono_bit (shortcut -ONB)" option.

NC30 MANUAL-51

Chapter 3 Programming Technique

3.1.4 Precautions on Using register Variables

3.15

a. register qualification and "-fenable_register" option

f the option -fenable_register (-fER) is specified, the variables that are register-qualified
so as to satisfy specific conditions can be forcibly assigned to registers.

This facility is provided for improving generated codes without relying on optimization.
Because improper use of this facility produces negative effects, always be sure to examine
generated codes before deciding to use it.

b. About register qualification and optimization options

When optimization options are specified, variables are assigned to registers as one opti-
mization feature. This assignment feature is not affected by whether the variables are reg-
ister-qualified.

About Startup Handling

Startup may need to be modified depending on the type of microcomputer you are using
or depending on your application system.

For modifications pertinent to the type of microcomputer, consult the data book, etc. for
your microcomputer and correct the startup file included with the compiler package before
use.

NC30 MANUAL-52

Chapter 3 Programming Technique

3.2

3.2.1

For Greater Code Efficiency

Programming Techniques for Greater Code Efficiency

a. Regarding Integers and Variables
[1]Unless required, use unsigned integers. If there is no sign specifier for int, short, or
long types, they are processed as signed integers. Unless required, add the 'un-
signed' sign specifier for operations on integers with these data types.™
[2]If possible, do not use >= or O for comparing signed variables. Use != and == for
conditional judgements.

b. fartype array
The far type array is referenced differently at machine language level depending on its
size.

[1]When the array size is within 64 Kbytes
Subscripts are calculated in 16-bit width. This ensures efficient access for arrays of
64 Kbytes or less in size.

[2]When the array size is greater than 64 Kbytes or unknown
Subscripts are calculated in 32-bit width.

Therefore, when it is known that the array size does not exceed 64 Kbytes, explicitly state
the size in extern declaration of far type array as shown in Figure 3.7 or add the -
fsmall_array (-fSA)*2 option before compiling. This helps to increase the code efficiency of
the program.

extern int far array[]; 00 Size is unknown, so subscripts are calculated as 32-bit values.

extern int far array[10]; [Size is within 64KB, so access is more efficient .

Figure 3.7 Example extern-Declaration of far Array

*1. If there is no sign specifier for char-type or bitfield structure members, they are processed as
unsigned.

*2. When the -fsmall_array (-fSA) option is specified, the compiler assumes an array of an un-
known size to be within 64 Kbytes as it generates code.In the entry version, this option cannot
be specified.

NC30 MANUAL-53

Chapter 3 Programming Technique

c. Array Subscripts

Array subscripts are type-extended during operations according to the size of each ele-
ment in the array.

[1]2 bytes or more (other than char or signed char types)
Subscripts are always extended to int types for operations.
[2]far arrays of 64KB or more
Subscripts are always extended to long types for operations.

Therefore, if you declare variables that will be array subscripts as char types, they will be
extended to int types each time they are referenced and therefore the code will not be
efficient. In such cases, declare variables that will be array subscripts as int types.

d. Using Prototype declaration Efficiently

NC30 allows you to accomplish an efficient function call by declaring the prototype of a
function.

This means that unless a function is declared of its prototype in NC30, arguments of that
function are placed on the stack following the rules listed in Table 3.1 when calling the
function.

Table 3.1 Rules for Using Stack for Parameters

Data type(s) Rules for pushing onto stack
char Expanded into the int type when stacked.
signed char
float Expanded into the double type when stacked.
otherwise. Not expanded when stacked.

For this reason, NC30 may require redundant type expansion unless you declare the
prototype of a function.

Prototype declaration of functions helps to suppress such redundant type expansion and
also makes it possible to assign arguments to registers. All this allows you to accomplish
an efficient function call.

e. Using SB Register Efficiently

Using the SB register-based addressing mode, you can reduce the size of your applica-
tion program (ROM size). NC30 allows you to declare variables that use the SB register-
based addressing mode by writing the description shown in Figure 3.8.

* This Compiler assumes as a precondition that the SB register is initialized after a reset, and
that it thereafter is used as a fixed register.

NC30 MANUAL-54

Chapter 3 Programming Technique

#pragma SBDATA val

int val ;

Figure 3.8 Example of variable declaration using SB-based addressing mode

f. Compressing ROM Size Using Option -fJISRW

When calling a function defined outside the file in NC30, the function is called with the
JSR.A instruction.
However, if the program is not too large, most functions can be called with the "JSR.W"
instruction.
In this case, ROM size will be reduced by doing as follows :
First, Compile with the -fJISRW option and check functions which are indicated as
errors at link-time. Then change declarations for the error functions only into decla-
rations using "#pragma JSRA function-name".

g. Other methods

In addition to the above,the ROM capacity can be compressed by changing program
description s as shown below.

(1) Chabge a relatively small function that is called only once to an inline function.
(2) Replace an if-else statement with a switch statement. (This is effective unless the
variable concerned is a simple variable such as an array,pointer,or structure.)

(3) For bit comparison, use '&' or '[' in place of '&&' or '||".

(4) For a function which returns a value in only the range of char type, declare its
return value type with char.

(5) For variables used overlapping a function call, do not use a register variable.

NC30 MANUAL-55

Chapter 3 Programming Technique

3.2.2 Speeding Up Startup Processing

The ncrt0.a30 startup program includes routines for clearing the bss area. This routine
ensures that variables that are not initialized have an initial value of 0, as per the C lan-
guage specifications.

For example, the code shown in Figure 3.9 does not initialize the variable, which must
therefore be initialized to O (by clearing the bss™ area) during the startup routine.

static int i;

Figure 3.9 Example Declaration of Variable Without Initial Value

In some instances, it is not necessary for a variable with no initial value to be cleared to 0.
In such cases, you can comment out the routine for clearing the bss area in the startup
program to increase the speed of startup processing.

NEAR area initialize.

N_BZERO bss_SE t op, bss_SE
N_BZERO bss_SO t op, bss_SO
N_BZERO bss_NE _t op, bss_NE
N_BZERO bss_NO t op, bss_NO

(omitted)

FAR area initialize.

BZERO bss_FE top, bss_FE
BZERO bss_FO top, bss_FO

Figure 3.10 Commenting Out Routine to Clear bss Area

*1. The external variables in RAM which do not have initial values are referred to as "bss."

NC30 MANUAL-56

Chapter 3 Programming Technique

3.3 Linking Assembly Language Programs with C Programs

3.3.1 Calling Assembler Functions from C Programs

a. Calling Assembler Functions

Assembler functions are called from C programs using the name of the assembler func-
tion in the same way that functions written in C would be.

The first label in an assembler function must be preceded by an underscore (). However,
when calling the assembly function from the C program, the underscore is omitted.

The calling C program must include a prototype declaration for the assembler function.

Figure 3.11 is an example of calling assembler function asm_func.

extern void near asm func(void); O Assembler function
prototype declaration
voi d main()

{

(omitted)

asm func(); 0 Calls assembler function

Figure 3.11 Example of Calling Assembler Function Without Parameters(smpl.c)

glb _main
_main
. (omtted)
jsr ._asm_f unc [Calls assembler function(preceded by ' ")
rts

Figure 3.12 Compiled result of smpl.c(smpl.a30)

NC30 MANUAL-57

Chapter 3 Programming Technique

b. When assigning arguments to assembler functions

When passing arguments to assembler functions, use the extended function "#pragma
PARAMETER." This #pragma PARAMETER passes arguments to assembler functions via
32-bit general-purpose registers (R2R0, R3R1,A1A0), 16-bit general-purpose registers
(RO, R1, R2, R3), or 8-bit general-purpose registers (ROL, ROH, R1L, R1H) and address
registers (A0, Al).

The following shows the sequence of operations for calling an assembler function using
#pragma PARAMETER:

[1]Write a prototype declaration for the assembler function before the #pragma PA-
RAMETER declaration. You must also declare the parameter type(s).

[2]Declare the name of the register used by #pragma PARAMETER in the assembler
function's parameter list.

Figure 3.13 is an example of using #pragma PARAMETER when calling the assembler
function asm_func.

extern unsigned int asm func(unsi gned int, unsigned int);
#pragnma PARAMVETER asm func(RO, Rl) O Parameters are passed via the
RO and R1 registers to the
voi d main() assembler function.
{
int i = 0x02;
int j = 0x05;
asmfunc(i, j); 0 Calling assembler function
}

Figure 3.13 Example of Calling Assembler Function With Parameters (smp2.c)

enter #04H

mov.w #0002H, - 4] FB] ;o
mov.w #0005H, - 2[FB] N

mv.w -2[FB],RL ;1 0O Parameters are passed via the RO and R1
mov.w -4[FB], RO N . .

registers to the assembler function.
jsr _asm func 0 Calls assembler function(preceded by ' ")

exitd

Figure 3.14 Compiled result of smp2.c(smp2.a30)

NC30 MANUAL-58

Chapter 3 Programming Technique

c. Limits on Parameters in #pragma PARAMETER Declaration
The following parameter types cannot be declared in a #pragma PARAMETER declara-
tion.
e structure types and union type parameters
e 64bit integer type (flong longparameters
e Floating point type (float and double) parameters

3.3.2 Writing Assembler Functions

a. Method for writing the called assembler functions
The following shows a procedure for writing the entry processing of assembler functions.

[1]Specify section names using the assembler pseudo-command .SECTION. Sections
can be assigned any desired name.

[2]Global specify function name labels using the assembler pseudo-command .GLB.

[3]Add the underscore () to the function name to write it as label.

[4]When modifying the B and U flags within the function, save the flag register to the
stack beforehand.™

The following shows a procedure for writing the exit processing of assembler functions.

[5]If you modified the B and U flags within the function, restore the flag register from
the stack.™
[6]Write the RTS instruction.

Do not change the contents of the SB and FB registers in the assembler function. If the
contents of the SB and FB registers are changed, save them to the stack at the entry to the
function, then restore their values from the stack at the exit of the function.

Figure 3.15 is an example of how to code an assembler function. In this example, the
section name is program, which is the same as the section name output by NC30.

. SECTI ON program O1[1]
. GLB _asmfunc O[2]
_asm func: 03]
PUSHC FLG 0[4]
PUSHM R3, RL as]
MOV. w SYML, R3
MOV, w SYML+2, R1
(omtted)
POPM R3, R1 o [6]
POPC FLG o (7]
RTS o (8]
. END
* [1] to [8] correspond to the steps described above.

Figure 3.15 Example Coding of Assembler Function

*1.Do not change the contents of B and U flags in the assembler function.

NC30 MANUAL-59

Chapter 3 Programming Technique

b. Returning Return Values from Assembler Functions

When returning values from an assembler function to a C language program, registers
can be used through which to return the values for the integer, pointer, and floating- point
types. Table 3.2 lists the rules on calls regarding return values. Figure 3.16 shows an
example of how to write an assembler function to return a value.

Table 3.2 Calling Rules for Return Values

Return value type Rules

_Bool type ROL register

char type

int type RO register

near pointer type

float type The 16 low-order bits are stored in the RO register and the 16 high-
long type order bits are stored in the R2 register as the value is returned.

far pointer type

double type The value is stored in 16 bits each beginning with the MSB in order of

long double type

registers R3, R2, R1, and RO as it is returned.

long long type

The value is stored in 16 bits each beginning with the MSB in order of
registers R3, R1, R2, and RO as it is returned.

Compound type

Immediately before calling the function, the far address indicating the
area for storing the return value is pushed to the stack. Before the
return to the calling program, the called function writes the return value
to the area indicated by the far address pushed to the stack.

. SECTI ON program
.G.B _asm func
_asm func:
(om tted)
MOV. W #01000H, R2 ;32-bit data
MOV. W #0A00H, RO
FCLER D B
FSET u
RTS
. END
Figure 3.16 Example of Coding Assembler Function to Return long-type Return Value

c. Referencing C Variables

Because assembler functions are written in different files from the C program, only the C
global variables can be referenced.

When including the names of C variables in an assembler function, precede them with an
underscore (_). Also, in assembler language programs, external variables must be declared
using the assembler pseudo instruction .GLB.

Figure 3.17 is an example of referencing the C program's global variable counter from
the assembler function asm_func.

NC30 MANUAL-60

Chapter 3 Programming Technique

[C program]
unsi gned i nt counter; 0 C program global variable

mai n()

{

(omtted)

[Assembler function]

.GLB _counter O External declaration of C program's
_asm func: global variable
(omtted)
MOV. W _counter, RO O Reference

Figure 3.17 Referencing a C Global Variable
d. Notes on Coding Interrupt Handling in Assembler Function

If you are writing a program (function) for interrupt processing, the following processing
must be performed at the entry and exit.

1. Save the registers (RO, R1, R2, R3, AO, Al and FB) at the entry point.
2. Restore the registers (RO, R1, R2, R3, A0, Al and FB) at the exit point.

3. Use the REIT instruction to return from the function.

Figure 3.18 is an example of coding an assembler function for interrupt processing.

.section program
.glb _func
_int_func:
pushm RO, Rl, R2, R3, A0, Al, FB 0 Push registers.

MOV. B #01H, ROL
(omitted)
popm RO, R1, R2, R3, A0, A1, FB O Pull registers.

reit 0 Return to C program
. END

Figure 3.18 Example Coding of Interrupt Processing Assembler Function

NC30 MANUAL-61

Chapter 3 Programming Technique

e. Notes on Calling C Functions from Assembler Functions

Note the following when calling a function written in C from an assembly language pro-
gram.

(1) Call the C function using a label preceded by the underscore (_) or the dollar ($).

(2) Make sure the registers used in the assembler functions are saved before calling any
C language function, and that they are restored after returning from the C language
function.

NC30 MANUAL-62

Chapter 3 Programming Technique

3.3.3 Notes on Coding Assembler Functions

Note the following when writing assembly language functions (subroutines) that are
called from a C program.

a. Notes on Handling B and U flags

When returning from an assembler function to a C language program, always make sure
that the B and U flags are in the same condition as they were when the function was
called.

b. Notes on Handling FB Register

If you modified the FB (frame base) register in an assembler function, you may not be
able to return normally to the C language program from which the function was called.
Therefore, do not modify the FB value in assembler functions. If it is yet necessary to
modify the FB register for reason of system design, save it to the stack at the beginning of
a function and restore it when returning to the function from which it was called.

c. Notes on Handling General-purpose and Address Registers
The general-purpose registers (RO, R1, R2, R3) and address registers (A0, Al) can
have their contents modified in assembler functions without a problem.

d. Passing Parameters to an Assembler Function

Use the #pragma PARAMETER function if you need to pass parameters to a function
written in assembly language. The parameters are passed via registers. Figure 14.5 shows
the format (asm_func in the figure is the name of an assembler function).

unsigned int asm_func(unsigned int, unsigned int);
1 Prototype declaration of assembler function

#pragma PARAMETER asm_func(RO,R1)

Figure 3.16 Example Coding of Assembler Function

#pragma PARAMETER passes arguments to assembler functions via 16-bit general-pur-
pose registers (RO, R1, R2, R3), 8-bit general-purpose registers (ROL, ROH, R1L, R1H),
and address registers (A0, Al). In addition, the 16-bit general-purpose registers are com-
bined to form 32-bit registers (R3R1 and R2R0) for the parameters to be passed to the
Note that an assembler function's prototype must always be declared before the #pragma
PARAMETER declaration.

However, you cannot declare the following parameter types in a #pragma PARAMETER
declaration:
e struct or union types
e 64bit integer type (flong longparameters
e floating point type(double) argument
You also cannot declare the functions returning structure or union types as the function's
return values.

NC30 MANUAL-63

Chapter 3 Programming Technique

3.4 Other

3.4.1 Precautions on Transporting between NC-Series Compilers

NC30 basically is compatible with Mitsubishi C compilers "NCxxx" at the language speci-
fication level (including extended functions). However, there are some differences between
the compiler (this manual) and other NC-series compilers as described below.

a. Difference in default near/far
The default near/far in the NC series are shown in Table 3.3. Therefore, when transport-

ing the compiler (this manual) to other NC-series compilers, the near/far specification
needs to be adjusted.

Table 3.3 Default near/far in the NC Series

Compiler RAM data ROM data Program
NC308 near far far Fixed
(However, pointer type is far)
NC30 near far far Fixed
NC79 near near far
NC77 near near far

NC30 MANUAL-64

Appendix "A" Command Option Reference

(Appendix A)

Command Option Reference J

This appendix describes how to start the compile driver nc30 and the command line op-
tions. The description of the command line options includes those for the as30 assembler
and In30 linkage editor, which can be started from nc30.

A.1 nc30 Command Format

% nc30A[command-line-option]Alassembly-language-source-file-name]l

[relocatable-object-file-name]A<C-source-file-name>

% : Prompt

< > :Mandatory item
[] : Optional item
A : Space

Figure A.1 nc30 Command Line Format

% nc30 -osample -as30 "-I" -In30 "-ms" ncrt0.a30 sample.c<RET>

<RET> : Return key

* Always specify the startup program first when linking.

Figure A.2 Example nc30 Command Line

Appendix A-1

Appendix "A" Command Option Reference

A.2
A2.1

nc30 Command Line Options

Options for Controlling Compile Driver

Table A.1 shows the command line options for controlling the compile driver.

Table A.1 Options for Controlling Compile Driver

Option Function
-C Creates a relocatable file (extension .r30) and ends processing ™
-Didentifier Defines an identifier. Same function as #define.
-ldirectory Specifies the directory containing the file(s) specified in #include.

You can specify up to 8 directories.

-E Invokes only preprocess commands and outputs result to standard output.™
-P Invokes only preprocess commands and creates a file (extension .i). ™
-S Creates an assembly language source file (extension .a30) and

ends processing.™!

-U predefined macro

Undefines the specified predefined macro.

-silent

Suppresses the copyright message display at startup.

-dsource
(Short form -dS)

Generates an assembly language source file (extension ".a30")
with a C language source list output as a comment. (Not deleted
even after assembling.)

-dsource_in_list
(Short form -dSL)

In addition to the "-dsource" function, generates an assembly lan-
guage list file (.Ist).

1. If you do not specify command line options -c, -E, -P, or -S, nc30 finishes at and output files
up to the absolute load module file (extension .x30) are created.

Appendix A-2

Appendix "A" Command Option Reference

Compile driver control

1
‘ A

Function : Creates a relocatable object file (extension .r30) and finishes processing

Execution
le - %c30 -c sanple.c

EXampl€ - | \i6c 60 NC30 COVPI LER V. X. XX Rel ease X
COPYRI GHT(Q) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED
sanpl e.c
%I|s sanple.*
-rwr--r-- 1 tool usr 2835 Aug 17 11:28 sanple.c
STW----- 1 tool usr 450 Aug 17 11: 28 sanple.r30
%

Notes : |f this option is specified, no absolute module file (extension .x30) or other file

output by In30 is created.

-Didentifier

Compile driver control

Function : The function is the same as the preprocess command #define. Delimit multiple
identifiers with spaces.

Syntax : nc30A-Didentifier[=constant]A<C source file>
[= constant] is optional.

Execution
e - 9%nc30 -c - DWDEBUG=1 - DMSDOS=1 - DUNI X sanpl e. ¢

€Xample - | \pec 60 NC30 COVPILER V. X. XX Rel ease X
COPYRI GHT(Q) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED
sanpl e. c
%

Notes : The number of identifiers that can be defined may be limited by the maximum

number of characters that can be specified on the command line of the operat-
ing system of the host machine.

Appendix A-3

Appendix "A" Command Option Reference

-Idirectory

Function : Specifies the directory name in which to search for files to be referenced by the
preprocess command #include.
Max specified 8 directory.

Syntax : nc30A-I directoryA<C source file>
Execution

le - % nc30 -c -1./test/include -1./test/inc sanple.c
example - | \1sc 60 NC30 COVPILER V. X. XX Rel ease X

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS OCRPORATI ON ALL RI GHTS RESERVED

sanpl e. c

%

* In this example, two directories, ./test/include and ./test/inc are specified.

Notes @ The number of directories that can be defined may be limited by the maximum
number of characters that can be specified on the command line of the operat-
ing system of the host machine.

Compile driver control

Function : Invokes only preprocess commands and outputs results to standard output

Execution
le % nc30 -E sanple.c
example - | \1ec 60 NC30 COVPILER V. X. XX Rel ease X
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPCRATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED
#line 1 "sanple.c"
(omtted)
#line 1 "/usr3/tool/toolusr/work30/inc30/stdio.h"
(omtted)
Notes : When this option is specified, no assembly source file (extensions .a30), re-

locatable object files (extension .r30), absolute module files (extension .x30),
or other files output by ccom30, as30, or In30 are generated.

Appendix A-4

Appendix "A" Command Option Reference

Compile driver control

Function : Invokes only preprocess commands, creates a file (extension .i) and stops
processing.

Execution
% nc30 -P sanple.c

example : | \ig 60 NC30 COVPI LER V. X. XX Rel ease X
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SCLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

sanpl e. c
%s sanple.*
-rwr--r-- 1 tool usr 2835 Aug 17 11:28 sanmple.c
STWr----- 1 tool usr 2322 Aug 17 11:30 sanple.i
%
Notes @ 1.When this option is specified, no assembly source file (extensions .a30),

relocatable object files (extension .r30), absolute module files (extension
.x30) or other files output by ccom30, as30, or In30 are generated.

2.The file (extension .i) generated by this option does not include the #line com-
mand generated by the preprocessor. To get a result that includes #line, try
again with the -E option.

Compile driver control

Function : Creates assembly language source files (extension .a30 and .ext) and stops
processing

Execution
% nc30 -S sanple.c

example : | \ig 60 NC30 COVPI LER V. X. XX Rel ease X
COPYRI GHT(C) X000 XXXX) RENESAS TECHNOLOGY CORPCRATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS OORPORATI ON ALL RI GHTS RESERVED

sanpl e. c

% |s sample.*

STW----- 1 tool usr 2059 Aug 17 11:30 sanple. a30

-rwr--r-- 1 tool usr 2835 Aug 17 11:28 sanmple.c

%

Notes : When this option is specified, no relocatable object files (extension.r30), abso-

lute module files (extension .x30) or other files output by as30 or In30 are gener-
ated.

Appendix A-5

Appendix "A" Command Option Reference

-Upredefined macro

Function : Undefines predefined macro constants

Syntax : nc30A-U predefined macroA<C source file>
Execution
example : % nc30 -c -UNC30 -UML6C sanple.c

ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNCLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

sanpl e. c

%

*In this example, macro definitions NC30 and M16C are undefined.

Notes : The maximum number of macros that can be undefined may be limited by the
maximum number of characters that can be specified on the command line of
the operating system of the host machine.

STDC, LINE_, FILE_, DATE_, and _TIME_ cannot be undefined.

-silent

Compile driver control

Function : Suppresses the display of copyright notices at startup

Execution

% nc30 -c -silent sanple.c
example :

sanpl e. c

%

Appendix A-6

Appendix "A" Command Option Reference

-dsource -dS

Comment option

Function : Generates an assembly language source file (extension ".a30") with a C lan-
guage source list output as a comment. (Not deleted even after assembling.)

Supplement : When the -S option is used, the -dsouce option is automatically enabled.
The generated files ".a30" and ".r30" are not deleted.
Use this option when you want to output C-language source lists to the assem-
bly list file.

-dsource_in_list -dSL

List File option

Function : In addition to the "-dsource” function, generates an assembly language list file
(.Ist).

Appendix A-7

Appendix "A" Command Option Reference

A.2.2 Options Specifying Output Files
Table A.2 shows the command line option that specifies the name of the output machine
language data file.

Table A.2 Options for Specifying Output Files
Option Function

-ofilename Specifies the name(s) of the file(s) (absolute module file, map file, etc.)
generated by In30. This option can also be used to specify the destina-
tion directory. This option can also be used to specify the file name
includes the path. Do not specify the filename extension.

-dir Specifies the destination directory of the file(s) (absolute module file,
map file, etc.) generated by In30.

-0 filename

Function : Specifies the name(s) of the file(s) (absolute module file, map file, etc.) gener-
ated by In30. This option can also be used to specify the file name includes the
path. You must NOT specify the filename extension.

Syntax : nc30A-o filenameA<C source file>

Execution
% nc30 -o./test/sanmple ncrt0.a30 sanple.c

example © | \i6c60 NC30 COVPILER V. X. XX Rel ease X
COPYRI GHT(C) XXOXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL Rl GHTS RESERVED
AND RENESAS SOLUTI ONS OORPORATI ON ALL RI GHTS RESERVED

ncrt0.a30

sanpl e. c

% cd test

%Is

total 65

drwxr-x--- 2 tool usr 512 Aug 17 16:13 ./
drwxrwxrwx 11 tool usr 3584 Aug 17 16:14 ../
STWr----- 1 tool usr 44040 Aug 17 16: 14 sanpl e. x30

%

* In this example, the option is used to specify that sample.x30, are output to directory ./test.

Appendix A-8

Appendix "A" Command Option Reference

-dir directory Name

Function : This option allows you to specify an output destination directory for the output

file.
Syntax : nc30A-dir directory name
Execution
% nc30 -dir./test/sanmple -0 ncrt0.a30 sanple.c
example :
ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNCLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED
ncrt 0. a30
sanpl e. c
% cd test/sanple
%ls
total 65
drwxr-x--- 2 tool usr 512 Aug 17 16:13 ./
drwxrwxrwx 11 tool usr 3584 Aug 17 16:14 ../
STWr----- 1 tool usr 44040 Aug 17 16:14 ncrt0.a30
%
* In this example, the option is used to specify that ncrt0.a30, are output to directory ./test/
sample.
Note . The source file information used for debugging is generated starting from the

directory from which the compiler was invoked (the current
directory).Therefore, if output files were generated in different directories, the
debugger, etc. must be notified of the directory from which the compiler was
invoked.

Appendix A-9

Appendix "A" Command Option Reference

A.2.3

Version Information Display Option
Table 2.3 shows the command line options that display the cross-tool version data.

Table 2.3 Options for Displaying Version Data

Option Function
-V Displays the name of the command program and the command line
during execution
-V Displays the startup messages of the compiler programs, then fin-
ishes processing (without compiling)

-V
Display command program name

Function : Compiles the files while displaying the name of the command program that is
being executed

Execution

% nc30 -c -v sanple.c
example :

ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNCLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

sanpl e. c

cpp30 sanple.c -o sanple.i -DML6C - DNC30
cconBO sanple.i -o ./sanple.a30

as30 -. -N sanple.a30

%

Notes : Use lowercase v for this option.

Appendix A-10

Appendix "A" Command Option Reference

Display version data

Function : Displays version data for the command programs executed by the compiler,
then finishes processing

Execution {5\ yrooy ne3owasnc3o - v

example : | ML6C/ 60 NC30 COVPILER V. X. XX Rel ease X

OOPYRI GHT(Q) XXXX(XXXX) RENESAS TECHNOLOGY CORPCRATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

ML6C/ 60 C Conpil e Driver Versi on X. XX. XX
NC Pr eprocessor Versi on X. XX. XX
ML6C/ 60 C Conpi |l er Ver si on X. XX. XX

Assenbl er Optim zer (aopt30) for ML6C Family Version X XX XX
ML6C/ 60 Series Assenbl er system Version X XX Rel easeX
Assenbl er Driver (as30) for ML6C/ 60 Series Version X XX XX
Macro Processor (mac30) for ML6C/ 60 Version X XX XX
Structured Processor (pre30) for ML6C Fami |y Version X XX XX
Assenbl er Processor (asp30) for ML6C Fami |y Version X XX XX
Li nkage Editor (I n30) for ML6C Family Version X XX XX
Librarian (1b30) for ML6C Fanmily Version X XX XX
Load Modul e Converter (Inc30) for ML6C/ 60 Series Version X XX XX
Cross Referencer (xrf30) for ML6C Fanmily Version X XX XX
Absol ute Lister (abs30) for ML6C Fam ly Version X XX XX

D: \ MTOOL\ nc30wa>

Supplement : Use this option to check that the compiler has been installed correctly. The
Release Notes list the correct version numbers of the commands executed
internally by the compiler.

If the version numbers in the Release Notes do not match those displayed us-
ing this option, the package may not have been installed correctly. See the
"M3T-NC30WA Guide" for details of how to install the NC30 package.

Notes : 1. Use uppercase V for this option.
2. If you specify this option, all other options are ignored.

Appendix A-11

Appendix "A"

Command Option Reference

A.2.4 Options for Debugging

Table A.4 shows the command line options for outputting the symbol file for the C source

file.
Table A.4 Options for Debugging
Option Function

-g Outputs debugging information to an assembler source file (extension
.a30).Therefore you can perform C language-level debugging.

-genter Always outputs an enter instruction when calling a function.Be sure to
specify this option when using the debugger's stack trace function.
In the entry version, this option is always enabled (i.e., assumed to be
specified). Therefore, it cannot be enabled or disabled by specifica-
tion.

-gno_reg Suppresses the output of debugging information for register variables.
In the entry version, this option cannot be specified.

-gold outputs debugging information for old version debuggers and third-

party debuggers .
In the entry version, this option cannot be specified.

-0

Outputting debugging information

Function :

Execution
example :

Note © When debugging your program at the C language level, always specify this
option. Specification of this option does not affect the code generated by the

Outputs debugging information to an assembler source file (extension .a30).

% nc30 -g -v sanple.c

ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL Rl GHTS RESERVED

AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

sanpl e. c

cpp30 sanple.c -o sanple.
-0 ./sanple.a30 -g

cconB0 sanpl e.

as30 -. -N --N sanpl e. a30

-DML6C - DNC30

I n30 sanple.r30 -. -G -Ms -0 sanple

(omitted)

% |s sanple.*

-rWwr--r-- 1 toolusr
1 tool usr
1 tool usr

2894 Aug 17 14:51 sanple.c
7048 Aug 17 15:53 sanpl e. map
53570 Aug 17 15:53 sanpl e. x30

compiler.

Appendix A-12

Appendix "A" Command Option Reference

-genter

Function : Always output an enter instruction when calling a function.
In the entry version, this option is always enabled (i.e., assumed to be speci-
fied). Therefore, it cannot be enabled or disabled by specification.

Note: When using the debugger's stack trace function, always specify this option.
Without this option, you cannot obtain the correct result.
When this option is specified, the compiler generates code to reconstruct the
stack frame using the enter command at entry of the function regardless of
whether or not it is necessary. Consequently, the ROM size and the amount of
stack used may increase.

-gno_reg
Suppresses debugging information about register variables

Function : Suppresses the output of debugging information for register variables.
In the entry version, this option cannot be specified.

Supplement : Use this option to suppress the output of debugging information about register
variables when you do not require that information. Suppressing the output of
debugging information about the register variables will speed up downloading
to the debugger.

Appendix A-13

Appendix "A" Command Option Reference

-gold

Outputs debugging information in previous format

Function :

Supplement :

This option outputs debugging information in Rev.E format.

When this option specifies, the “-gno_reg” option and the “-fauto_128" option
are automatically specified.

In the entry version, this option cannot be specified.

With the increase in the maximum number of auto variables,starting with NC30
V.2.00,the format of debugging information has changed(from xxx.r30 and
xxx.x30 format). The new format is known as the Rev.F format. the executable
objects in the new format(xxx.x30) are compatible with the following
debuggers:

PDB30 V.2.00 and later

XDB30 V.2.00 and later

PDB30SIM V.2.00 and later

Use the -gold option when compiling if you are using a debugger that cannot
load executable objects in the new format (xxx.x30).

Appendix A-14

Appendix "A" Command Option Reference

A.2.5 Optimization Options

Table A.5 shows the command line options for optimizing program execution speed and

ROM capacity.

In the entry version, all optimization options cannot be specified.

Table A.5 Optimization Options

Option Short form Function

-0[1-5] None. Effects the best possible optimization both in execu-
tion speed and in ROM capacity level by level

-OR None. Maximum optimization of ROM size followed by
speed

-0Ss None. Maximum optimization of speed followed by ROM
size

-Oconst -0C Performs optimization by replacing references to
the const-qualified external variables with constants

-Ono_bit -ONB Suppresses optimization based on grouping of bit
manipulations

-Ono_break_source_debug |[-ONBSD |Suppresses optimization that affects source line
data

-Ono_float_const_fold |[-ONFCF |Suppresses the constant folding processing of float-
ing point numbers

-Ono_stdlib -ONS Inhibits inline padding of standard library functions
and modification of library functions.

-Osp_adjust -OSA Optimizes code generation by combining stack cor-
rection codes after function calls. This helps to re-
duce the ROM capacity, as well as speed up pro-
cessing. However, the amount of stack used may
increase.

-Ostack_frame_align |-OSFA Aligns the stack frame on an even boundary.

-Oloop_unroll[=loop count] |-OLU Unrolls code as many times as the loop count with-
out revolving the loop statement. The "loop count”
can be omitted. When omitted, this option is applied
to a loop count of up to 5.

-Ono_logical _or_combine [-ONLOC |Suppresses the optimization that puts consecutive
ORs together.

-Ono_asmpot -ONA Inhibits starting the assembler optimizer "aopt30."

-Ostatic_to_inline -OSTI A static function is treated as an inline function.

[Effect of each Optimization Options]

Option -0 -OR -0S -OSA -OSFA
SPEED faster lower faster faster faster
ROM size decrease. |decrease | increase decrease. | same
usage of stack decrease |same same increase | increase

Appendix A-15

Appendix "A" Command Option Reference

“O[1-5]

Optimization

Function :

Optimizes speed and ROM size to the maximum. This option can be specified
with -g options.-O3 is assumed if you specify no numeric(no level)
In the entry version, this option cannot be specified.

-O1:Makes -03,-Ono_bhit,-Ono_break source_debug,-Ono_float_const_fold,
and -Ono_stdlib valid

-0O2: Makes no diffrence with -O1

-0O3:0Optimizes speed and ROM size to the maximum.

-O4:Makes -0O3 and -Oconst valid

-O5:Effect the best possible optimization in common subexpressions (if the
option -OR is concurrentlyspecofied); effects the best possible
optimization in transfer and comparison of character strings (if the option
-OS is concurrently specified).

However, a normal code may be unable to be outputted when fulfilling the
following conditions.

® With a different variable points out the same memory position
simultaneously within a single function and they point to an-
identical address.

Exsanpl e)

int a=3;
int *p=&a;

test1()(
int b;
*p = 91
a = 10;
b = *p; /1By applying optimzation, "p" will be transposed to "9."
printf("b=%l(expect b=10)\n",b);
}

result)
b=9(expect = 10)

The next page is followed.

Appendix A-16

Appendix "A" Command Option Reference

~O[1-5]

Notes

Optimization
When the -O5 optimizing options is used, the compiler generates in some
cases BTSTC or BTSTS bit manipulation instructions. In M16C, the BTSTC
and BTSTS bit manipulation instructions are prohibited from rewriting the con-
tents of the interrupt control registers. However, the compiler does not recog-
nize the type of any register, so, should BTSTC or BTSTS instructions be
generated for interrupt control registers, the assembled program will be differ-
ent from the one you intend to develop.

When the -O5 optimizing options is used in the program shown below, a
BTSTC instruction is generated at compilation, which prevents an interrupt
request bit from being processed correctly, resulting in the assembled pro-
gram performing improper operations.

[For examplr: C sauce which must not use an optimization option at the time
of compile]

#pragma ADDRESS TAOIC 0055h /* ML6C/ 60 MCU s Timer AO interrupt
control register */

struct {
char ILVL : 3;
char IR : 1, /* An interrupt request bit */
char dy 4
} TAOIC
void wait_until _IRis_ON(void)
{
while (TAOIC. IR == 0) /* Waits for TAOIC.IR to become 1 */
{
}
TAOIC. IR = 0; /* Returns 0 to TAOIC. IR

when it becones 1 */

Please compile after taking the following measures, if the manipulation in-
structions is generated to bit operation of SFR area.

Make sure that no BTSTC and BTSTS instructions are generated after these
side-steppings.

@® Optimization options other than " -O5 " are used.
@® An instruction is directly described in a program using an ASM function.

Appendix A-17

Appendix "A" Command Option Reference

-OR

Optimization

Function : Optimizes ROM size in preference to speed. This option can be specified with
-g and -O options.
In the entry version, this option cannot be specified.

Supplement : When this option is used, the source line information may partly be modified in
the course of optimization. Therefore, if this options is specified, when your
program is running on the debugger, your program is a possibility of different
actions. If you do not want the source line information to be modified, use the -
One_break_source_debug (-ONBSD) option to suppress optimization.

-OS

Optimization

Function : Although the ROM size may somewhat increase, optimization is performed to
obtain the fastest speed possible. This option can be specified along with the -
g option.
In the entry version, this option cannot be specified.

Appendix A-18

Appendix "A" Command Option Reference

-Oconst -OC

Optimization

Function :

Supplement :

Code
example :

Performs optimization by replacing references to the const-qualified external
variables with constants.This option is effective also at the time of the specifi-
cation more than "-O4" option.

In the entry version, this option cannot be specified.

Optimization is performed when the following conditions are satisfied simulta-
neously :

1. Extern variables excluding structures, unions, and arrays;

2. Extern variables declared using the const qualifier;

3. Extern variables initialized in the same C source file.

The following example shows code that can be optimized.

int const i = 10;

func()

{
int k =1i; /* i is replaced with 10. */

-Ono_bit -ONB

Function :

Supplement :

Notes

Suppression of optimization

Suppresses optimization based on grouping of bit manipulations.
In the entry version, this option cannot be specified.

When you specify -O (or -OR or -OS), optimization is based on grouping ma-
nipulations that assign constants to a bit field mapped to the same memory
area into one routine.

Because it is not suitable to perform this operation when there is an order to
the consecutive bit operations, as in 1/O bit fields, use this option to suppress
optimization.

® This optimization is performed, The variables is specified regardless
volatile-qualified.
@® This option is only valid if you specify option -O[3 to 5] (or -OR or -OS).

Appendix A-19

Appendix "A" Command Option Reference

-Ono_break_source _debug -ONBSD

Function : Suppresses optimization that affects source line data.
In the entry version, this option cannot be specified.

Supplement : Specifying the -OR or -O option performs the following optimization, which
may affect source line data. This option (-ONBSD) is used to suppress such
optimization.

Notes : This option is valid only when the -OR or -O option is specified.

-Ono_float_const_fold -ONFCF

Suppression of optimization

Function : Suppresses the constant folding processing of floating point numbers.
In the entry version, this option cannot be specified.

Supplement : By default, NC308 folds constants. Following is an example.

[before optimization]

(val / 1000€250) *50. 0

[after optimization]

val / 20e250

In this case, if the application uses the full dynamic range of floating points, the
results of calculation differ as the order of calculation is changed. This option
suppresses the constant folding in floating-point numbers so that the calcula-
tion sequence in the C source file is preserved.

Appendix A-20

Appendix "A" Command Option Reference

-Ono_stdlib -ONS

Suppression of optimization

Function : Suppresses inline padding of standard library functions, modification of library
functions, and similar other optimization processing.
In the entry version, this option cannot be specified.

Supplement: This option suppresses the following optimization.
@® Optimization for replacing the standard library functions such as strcpy()
and memcpy() with the SMOVF instructions, etc.
@® Optimization for changing to the library functions that conform to the
arguments near and far.

Notes : Specify this option, when make a function which name is same as standard
library function.

-Osp_adjust -OSA

Function : Optimizes code generation by combining stack correction codes after function
calls.
In the entry version, this option cannot be specified.

Supplement: Because the area for arguments to a function normally is deallocated for each
function call made, processing is performed to correct the stack pointer. If this
option is specified, processing to correct the stack pointer is performed collec-
tively, rather than for each function call made.

Example: In the example shown below, the stack pointer is corrected eac
time funcl() and then func2() is called, so that the stack pointer is correcte
twice. If this option is specified, the stack pointer is corrected only once.

int funcl8 int, int);
int func2(int);

void main(void) {

int i =1;
int j - 2
int k;
k = funcl(i, j);
n = func2(k); }47
}
Notes : Use of the option -Osp_adjust helps to reduce the ROM capacity and at the

same time, to speed up the processing. However, the amount of stack used
may increase.

Appendix A-21

Appendix "A" Command Option Reference

-Ostack_frame_align -OSFA

Aligns stack frame

Function : Aligns the stack frame on an even boudary.
In the entry version, this option cannot be specified.

Supplement: When even-sized auto variables are mapped to odd addresses,memory ac-
cess requires one more cycle than when they are mapped to even addresses.
This option maps even-sized auto variables to even addresses,thereby speed-
ing up memory access.

Notes : 1.The following functions apecified in #pragma are not aligned.
#pragma INTHANDLER
#pragma HANDLER
#pragma ALMHANDLER
#pragma CYCHANDLER
#pragma INTERRUPT

2.Be sure that the stack point is initialized to an even address in the startup
program.Also,be sure to compile all programs using this option.

3.All files should be compiled using this option.

-Oloop_unroll =[loop count] -OLU

Function : Unrolls code as many times as the loop count without revolving the loop state-
ment. The "loop count" can be omitted. When omitted, this option is applied to
a loop count of up to 5.
In the entry version, this option cannot be specified.

Supplement: Unrolled code is output for only the "for" statements where the number of times
they are executed is known. Specify the upper-limit count for which times for is
revolved in the target for statement to be unrolled. By default, this option is
applied to the for statements where for is revolved up to five times.

Notes - The ROM size increases for reasons that the for statement is revolved.

1. In order that there may be no guarantee the number of whose values of the stack pointer in the
timing which interruption generated is even, alignment is not performed to an interruption
function.For this reason, processing speed may become slow when "-Ostack_frame_align" op-
tion is specified to the function called from an interruption function.

Appendix A-22

Appendix "A" Command Option Reference

-Ono_logical _or_combine -ONLOC

Function : Suppresses the optinization that puts consective ORs together.
In the entry version, this option cannot be specified.

Supplement: If one of three options? -O3 or greater, -OR, or -OS?is specified when compil-
ing as in the example shown below, the compiler optimizes code generation by
combining logical ORs.

Example:

if (a& 0x01||a& 0x0 || a & 0x04)
!
I (Optimized)

!
if (a& 0x07)

In this case, the variable a is referenced up to three times, but after optimiza-
tion it is referenced only once.

However, if the variable a has any effect on I/O references, etc., the program
may become unable to operate correctly due to optimization. In such a case,
specify this option to suppress the optimization to combine logical ORs. Note,
however, that if the variable is declared with volatile, logical ORs are not com-
bined for optimiza

-Ono_asmopt -ONA

Inhibits starting the assembler optimizer

Function : Inhibits starting the assembler optimizer "aopt30".
In the entry version, this option cannot be specified.

Appendix A-23

Appendix "A" Command Option Reference

-Ostatic_to_inline -OSTI

Optimization

Function : A static function is treated as an inline function and the assembling code which
carried out inline deployment is generated.
In the entry version, this option cannot be specified.

Supplement : When the following conditions are fulfilled, a static function is treated as an
inline function and the assembling code which carried out inline deployment is
generated.

1. Substance is described before the function call. It is aimed at a satic
function.

2. When address acquisition is omitted in the program to the static func-
tion.

3. When the recursive call of the static function has not been carried out.
4. When construction of a frame (reservation of an auto variable etc.) is not
performed in the assembling code output of a compiler.(The situation of the
existence of frame construction changes with combined use with the con-
tents of description of the target function, and another optimization option.)

Below, inline deployment is carried out. The example of description of a static
function is shown.

Function func() is a function.

extern int I inline deployment is carried

____________ 1 :
o . p
r out in each place currently
| static int func(void) | Lo .
withi in().

(called within main()
! return i++; |
I ’ I
L -

voi d mai n(voi d)

{
int s;
s = func(); :
s = func();
}
Notle : ® The assembler code to description of substance of the static function

which became inline function treatment is always generated.
® About a function, it is compulsorily. In treating as an inline function,
it is in a function. Please make an inline declaration.

Appendix A-24

Appendix "A" Command Option Reference

A.2.6

Generated Code Modification Options
Table 2.6 shows the command line options for controlling nc30-generated assembly code.

Table A.6(1/2) Generated Code Modification Options

Option Short form Description

-fansi None. Makes -fnot_reserve_far_and_near,
-fnot_reserve_asm, and -fextend_to_int valid.

In the entry version, this option is always en-
abled (i.e., assumed to be specified). Therefore,
it cannot be enabled or disabled by specification.

-fnot_reserve_asm -fNRA Exclude asm from reserved words. (Only _asm is
valid.)

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fnot_reserve_far_and_near |-fNRFAN Exclude far and near from reserved words. (Only
_far and _near are valid.)

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fnot_reserve_inline -fNRI Exclude far and near from reserved words. (Only
_inline is made a reserved word.)

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fextend_to_int -fETI Performs operation after extending char-type
data to the int type. (Extended according to ANSI
standards.)™

In the entry version, this option is always enabled
(i.e., assumed to be specified). Therefore, it can-
not be enabled or disabled by specification.

-fchar_enumerator -fCE Handles the enumerator type as an unsigned
char type, not as an int type.

-fno_even -fNE Allocate all data to the odd section , with no sepa-
rating odd data from even data when outputting .

-ffar_RAM -fFRAM Changes the default attribute of RAM data to far.

-fnear_ROM -fNROM Changes the default attribute of ROM data to
near.
In the entry version, this option cannot be speci-
fied.

-fconst_not_ ROM -fCNR Does not handle the types specified by const as
ROM data.

*1. char-type data or signed char-type data evaluated under ANSI rules is always extended to int-
type data. This is because operations on char types (c1=c2*2/c3; for example) would otherwise
result in an overflow and failure to obtain the intended result.

Appendix A-25

Appendix "A"

Command Option Reference

Table A.6(2/2) Generated Code Modification Options

Option Short form Description

-fnot_address_volatile -fNAV Does not regard the variables specified by
#pragma ADDRESS (#pragma EQU) as those
specified by volatile.

-fsmall_array -fSA When referencing a far-type array, this option cal-
culates subscripts in 16 bits if the total size of the
array is within 64K bytes.

In the entry version, this option cannot be speci-
fied.

-fenable_register -fER Make register storage class available

-fno_align -fNA Does not align the start address of the function.
In the entry version, this option cannot be speci-
fied.

-fISRW None. Changes the default instruction for calling func-
tions to JSSR.W.

-fhit -fB Outputs a 1-bit manipulate instruction to all exter-
nal variables arranged in the near area.

-fno_carry -fNC Suppresses carry flag addition when data is indi-
rectly accessed using far-type pointers.

-fauto_128 -fAl Limits the usable stack frame to 128 byte.

-fuse_DIV -fuD This option changes generated code for divide
operation.

In the entry version, this option cannot be speci-
fied.

-finfo None. Outputs the information required for the Inspec-
tor, STK Viewer, Map Viewer, and utl30.

In the entry version, this option cannot be speci-
fied.

-fswitch_other_section -fSOS This option outputs a ROM table for a 'switch'
statement to some other section than a program
section.

-fchange_bank_always |-fCBA This option allows you to write multiple variables
to an extended area.

Appendix A-26

Appendix "A" Command Option Reference

-fansi

Modify generated code

Function : Validates the following command line options:

-fnot_reserve_asm Removes asm from reserved words
-fnot_reserve_far_and_near ... Removes far and near from reserved words
-fnot_reserve_inline................ Removes inline from reserved words
-fextend_to_int...........cccooeiniins Extends char-type data to int-type data to per-

form operations
In the entry version, this option is always enabled (i.e., assumed to be speci-
fied). Therefore, it cannot be enabled or disabled by specification.

Supplement : When this option is specified, the compiler generates code in conformity with
ANSI standards.

-fnot_reserve_asm -fNRA

Function : Removes asm from the list of reserved words. However, _asm, which has the
same function, remains as a reserved word.
In the entry version, this option is always enabled (i.e., assumed to be speci-
fied). Therefore, it cannot be enabled or disabled by specification.

Appendix A-27

Appendix "A" Command Option Reference

-fnot_reserve _far_and _near -TNRFAN

Modify generated code

Function : Removes far and near from list of reserved words. However, far and _neatr,
which have the same functions, remain reserved words.
In the entry version, this option is always enabled (i.e., assumed to be speci-
fied). Therefore, it cannot be enabled or disabled by specification.

-fnot_reserve_inline -fNRI

Modify generated code

Function : Does not handle inline as a reserved word. However, _inline that has the same
function is handled as a reserved word.
In the entry version, this option is always enabled (i.e., assumed to be speci-
fied). Therefore, it cannot be enabled or disabled by specification.

Appendix A-28

Appendix "A" Command Option Reference

-fextend_to_int -fETI

Function : Extends char-type or signed char-type data to int-type data to perform opera-
tion (extension as per ANSI rules)
In the entry version, this option is always enabled (i.e., assumed to be speci-
fied). Therefore, it cannot be enabled or disabled by specification.

Supplement : In ANSI standards, the char-type or singed char-type data is always extended
into the int type when evaluated. This extension is provided to prevent a prob-
lem in char-type arithmetic operations, e.g., c1 = ¢2 * 2 / c3; that thechar type
overflows in the middle of operation, and that the result takes on an unexpected
value. An example is shown below.

main()

{
char cl;
char c¢2 =200;
char ¢c3=2;

char=c2*2/c3;
}
In this case, thechar type overflows when calculating [c2 * 2], so that the cor-
rect result may not be obtained.
Specification of this option helps to obtain the correct result. The reason why
extension into the int type is disabled by default is because it is conducive to
increasing the ROM efficiency any further.

-fchar_enumerator -fCE

Modify generated code

Function : Processes enumerator types not as int types but as unsigned char types.

Notes : The type debug information does not include information on type sizes. There-
fore, if this option is specified, the enum type may not be referenced correctly in
some debugger.

Appendix A-29

Appendix "A" Command Option Reference

-fno_even -fNE

Function : When outputting data, does not separate odd and even data. That is, all data is
mapped to the odd sections (data_NO, data_FO, data_INO, data_IFO,
bss NO, bss_FO, rom_NO, rom_FO)

Supplement : By default, the odd-size and the even-size data are output to separate sections.

Take a look at the example below.

char c;

int i
In this case, variable "c" and variable "i" are output to separate sections. This is
because the even-size variable "i" is located at an even address. This allows
for fast access when accessing in 16-bit bus width.
Use this option only when you are using the compiler ?? in 8-bit bus width and
when you want to reduce the number of sections.

Notes - When #pragma SECTION is used to change the name of a section, data is
mapped to the newly named section.

-ffar RAM -fFRAM

Function : Change the default attribute of RAM data to far.

Supplement : The RAM data (variables) are located in the near area by default. Use this op-
tion when you want the RAM data to be located in other areas than the near
area (64-Kbyte area).

Appendix A-30

Appendix "A" Command Option Reference

-fnear ROM -fNROM

Modify generated code

Function : Change the default attribute of RAM data to far.
In the entry version, this option cannot be specified.

Supplement : The ROM data (const-specified variables, etc.) are located in the far area by

default. By specifying this option you can locate the ROM data in the near
area.

You do not normally need to use this option, however.

-fconst_not_ ROM -fCNR

Function : Does not handle the types specified by const as ROM data.

Supplement : The const-specified data by default is located in the ROM area. Take a look at
the example below.
int const array[10]1={1,2,3,4,5,6,7,8,9,10 };
In this case, the array "array" is located as ROM area. By specifying this op-
tion, you can locate the "array" in the RAM area.
You do not normally need to use this option, however

Appendix A-31

Appendix "A" Command Option Reference

-fnot_address_volatile -fNAV

Modify generated code

Function : Does not handle the global variables specified by #pragma ADDRESS or
#pragma EQU or the static variables declared outside a function as those that
are specified by volatile.

Supplement : If I/O variables are optimized in the same way as for variables in RAM, the

compiler may not operate as expected. This can be avoided by specifying
volatile for the 1/O variables.
Normally #pragma ADDRESS or #pragma EQU operates on I/O variables, so
that even though volatile may not actually be specified, the compiler processes
them assuming volatile is specified. This option suppresses such processing.
You do not normally need to use this option, however.

-fsmall_array -fSA

Function : When referencing a far-type array whose total size is unknown when compil-
ing, this option calculates subscripts in 16 bits assuming that the array's total
size is within 64 Kbytes.

Supplement : If when referencing array elements in a far-type array such as array data in
ROM, the total size of the far-type array is uncertain, the compiler calculates
subscripts in 32 bits in order that arrays of 64 Kbytes or more in size can be
handled.

Take a look at the example below.

extern int arrayl[];

int i =array[j];
In this case, because the total size of the array array is not known to the com-
piler, the subscript "j" is calculated in 32 bits.
When this option is specified, the compiler assumes the total size of the array
array is 64 Kbytes or less and calculates the subscript "j" in 16 bits. As a result,
the processing speed can be increased and code size can be reduced.
Renesas recommends using this option whenever the size of one array does
not exceed 64 Kbytes.

Appendix A-32

Appendix "A" Command Option Reference

-fenable_register -fER

Function : Allocates variables with a specified register storage class to registers

supplement : When optimizing register assignments of auto variables, it may not always be
possible to obtain the optimum solution. This option is provided as a means of
increasing the efficiency of optimization ?? by instructing register assignments
in the program under the above situation.
When this option is specified, the following register-specified variables are forc-
ibly assigned to registers:
1. Integral type variable
2. Pointer variable

Note . Because register specification in some cases has an adverse effect that the
efficiency decreases, be sure to verify the generated assembly language be-
fore using this specification.

-fno_align -TNA

Function : Does not align the start address of the function.
In the entry version, this option cannot be specified.

Appendix A-33

Appendix "A" Command Option Reference

-fISRW

Function : Changes the default instruction for calling functions to JSR.W

supplement : When calling a function that has been defined external to the source file, the
JSR.A command is used by default. This option allows it to be changed to the
JSR.W command. Change to the JSR.W command helps to compress the gen-
erated code size. Conversely, if a function is called that is located 32 Kbytes or
more forward or backward from the calling position, the JSR.W command
causes an error when linking. This error can be avoided by a combined use
with #pragma JSRA.
This option is useful when the program is relatively small not exceeding 32
Kbytes in size or ROM compression is desired.

-fbit -1B

Function : Outputs a 1-bit manipulate instruction to used an absolute addressing to all
external variables arranged in the near area.

Supplement : If a external variable to perform bit manipulation resides in a 0000, to 1FFF
area of the M16C's memory space, the code efficiency generated by the com-
piler can be increased by specifying this option.

In application programming for the single chip, this option is effective if the
RAM area is defined within the area as described above.
An error occurs at link-time when you use the argument other than above.

Appendix A-34

Appendix "A" Command Option Reference

-fno_carry -fNC

Function : Suppresses carry flag addition when data is indirectly accessed using far-type
pointers

supplement : When accessing structures or 32-bit data indirectly using far-type pointers, this
option generates code that does not perform carry addition to the high 16 bits of
far-type pointers (32-bit pointer), assuming that the data is not mapped across
the 64-Kbyte boundary. As a result, the code will be more efficient.

Note : When far-type pointers are used to indirectly access memory dynamically allo-
cated using the malloc function, etc., or ROM data mapped to the far area, be
sure that the data is not accessed spanning a 64-Kbyte boundary.

-fauto_128 -fAl

Function : Limits the usable stack frame to 128 bytes

Appendix A-35

Appendix "A" Command Option Reference

-fuse DIV -fuD

Function : This option changes generated code for divide operation.
In the entry version, this option cannot be specified.

supplement : For divide operations where the dividend is a 4-byte value, the divisor is a 2-
byte value, and the result is a 2-byte value or when the dividend is a 2-byte
value, the divisor is a 1-byte value, and the result is a 1-byte value, the compiler
generates div.w (divu.w) and div.b (divu.b) microcomputer instructions.

Note . If the divide operation results in an overflow when this option is specified, the
compiler may operate differently than stipulated in ANSI.
The div instruction of the M16C has such a characteristic that when the opera-
tion resulted in an overflow, the result becomes indeterminate. Therefore,
when the program is compiled in default settings by NC30, it calls a runtime
library to correct the result for this problem even in cases where the dividend is
4-byte, the divisor is 2-byte, and the result is 2-byte.

-finfo
Changes generated code

Function : Outputs the information required for the TM, Inspector, STK Viewer, Map
Viewer, and utl30.
In the entry version, this option cannot be specified.

Supplement : When using STK Viewer, Map Viewer, or utl30, the absolute module file ".x30"
output by this option is needed.

Note . No check is made for the use of global variables in the asm function. For this
reason, use of the asm function even in utl30 is ignored.

Appendix A-36

Appendix "A" Command Option Reference

-fswitch_other_section -fSOS

Function : This option outputs a ROM table for a 'switch' statement to some other section
than a program section.

Supplement : section name is ‘switch_table’
This option does not normally need to be used.

-fchange _bank_always -fCBA

Function : This option allows you to write multiple variables to an extended area.(with
#pragma EXTAMPTR)

Supplement : Specify this option when you declare multiple pointer variables to a 4M space
while at the same time using the #pragma EXT4MPTR feature.

Appendix A-37

Appendix "A" Command Option Reference

A.2.7 Library Specifying Option

Table A.7 lists the startup options you can use to specify a library file.

Table A.7 Library Specifying Option

Option Function

-llibraryfilename |Specifies a library file that is used by In30 when linking files.

Appendix A-38

Appendix "A" Command Option Reference

-llibraryfilename

Specifying a library file

Function :

Syntax

Execution

example :

Notes

Specifies a library file that is used by In30 when linking files. The file extension
can be omitted.

nc30A-IfilenameA<C source file name>

% nc30 -v -lusrlib ncrt0.a30 sanple.c

ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SCOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

ncrt 0. a30
as30 -. -Nncrt0.a30
sanpl e.c

cpp30 sanple.c -o sanple.i -DML6C - DNC30
cconBO sanple.i -o ./sanple.a30

nmai n
as30 -. -N sanple.a30
In30 ncrt0.r30 sanple.r30 -. -1 usrlib -0 ncrtO

%

* In this example, the option is used to specify a library named "usrlib.lib."

1. In file specification, the extension can be omitted. If the extension of a file

is omitted, it is processed assuming an extension ".lib".

2. If you specify a file extension, be sure to specify ".lib".
3. NC30 links by default a library "nc30lib.lib" in the directory that is specified

in environment variable LIB30. (If you specify multiple libraries, nc30lib.lib
is given the lowest priority as it is referenced.)

Appendix A-39

Appendix "A" Command Option Reference

A.2.8 Warning Options

Table A.8 shows the command line options for outputting warning messages for contra-
ventions of nc30 language specifications.

Table A.8 Warning Options

Option Short form Function
-Wnon_prototype -WNP Outputs warning messages for functions without proto-
type declarations.
-Wunknown_pragma -WUP Outputs warning messages for non-supported
#pragma.
-Wno_stop -WNS Prevents the compiler stopping when an error occurs.
-Wstdout None. Outputs error messages to the host machine's standard

output (stdout).
-Werror_file<file name> |-WEF Outputs error messages to the specified file.

-Wstop_at_warning -WSAW | Stops the compiling process when a warning occurs.
-Wnesting_comment -WNC | Outputs a warning for a comment including */ .
-Wccom_max_warnings |-WCMW | This option allows you to specify an upper limit for the
= Warning Count number of warnings output by ccom30.

-Wall None. Displays message for all detectable warnings(however,

not including alarms output by -Wlarge_to_small and -
Wno_used_argument).

-Wmake_tagfile -WMT | Outputs error messages to the tag file of source-file by
source-file.

-Wuninitialize_variable |-WUV | Outputs a warning about auto variables that have not
been initialized.

-Wlarge_to_small -WLTS | Outputs a warning about the tacit transfer of variables in
descending sequence of size.

-Wno_warning_stdlib -WNWS | Specifying this option while -Wnon_prototype or -Wall is
specified inhibits "Alarm for standard libraries which do
not have prototype declaration.

-Wno_used_argument |-WNUA |Outputs a warning for unused argument of functions.

-Wnon_prototype -WNP

Function : Outputs warning messages for functions without prototype declarations or if
the prototype declaration is not performed for any function

supplement : Function arguments can be passed via a register by writing a prototype decla-
ration.
Increased speed and reduced code size can be expected by passing argu-
ments via a register. Also, the prototype declaration causes the compiler to
check function arguments. Increased program reliability can be expected from
this.
Therefore, Renesas recommends using this option whenever possible.

Appendix A-40

Appendix "A" Command Option Reference

-Wunknown_pragma -WUP

Warning option

Function : Outputs warning messages for non-supported #pragma

supplement : By default, no alarm is generated even when an unsupported, unknown
"#pragma" is used.
When you are using only the NC-series compilers, use of this option helps to
find misspellings in "#pragma.”
When you are using only the NC-series compilers, Renesas recommends that
this option be always used when compiling.

-Wno_stop -WNS

Warning option

Function : Prevents the compiler stopping when an error occurs

supplement : The compiler compiles the program one function at a time. If an error occurs
when compiling, the compiler by default does not compile the next function.
Also, another error may be induced by an error, giving rise to multiple errors. In
such a case, the compiler stops compiling.
When this option is specified, the compiler continues compiling as far as pos-
sible.

Note © A system error may occur due to erroneous description in the program. In such
a case, the compiler stops compiling even when this option is specified.

Appendix A-41

Appendix "A" Command Option Reference

-Wstdout

Function : Outputs error messages to the host machine's standard output (stdout)

Execution

A> nc30 -c -Wtdout sanple.c > err.doc
example :

A> type err.doc

ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVEQD
AND RENESAS SCLUTI ONS CORPCRATI ON ALL RI GHTS RESERVED

sanpl e.c
[Error(ccom:sanple.c,line 39] unknown val uabl e port 00
==0 port 00 = 0x00;

Sorry, conpilation term nated because of these errors in main().

A>

Supplement : Use this option to save error output, etc. to a file by using Redirect in the MS-
Windows95 version (personal computer version).

Note . In this Compiler for MS-Windows version(personal computer version), errors
from as30 and In30 invoked by the compile-driver are output to the standard
output regardless of this option.

-Werror_file <file name> -WEF

Warning option

Function : Outputs error messages to the specified file

Syntax : nc30A-Werror_fileA<output error message file name>

Supplement : The format in which error messages are output to a file differs from one in which
error messages are displayed on the screen. When error messages are output
to a file, they are output in the format suitable for the "tag jump function" that
some editors have.

Output example:

test.c12 Error(ccom):unknown variable i

Appendix A-42

Appendix "A" Command Option Reference

-Wstop_at_warning -WSAW

Function : When a warning occurs, the compiler's end code is set to "10" as it is returned.

Supplement : If a warning occurs when compiling, the compilation by default is terminated
with the end code "1" (terminated normally).
Use this option when you are using the make utility, etc. and want to stop com-
pile processing when a warning occurs.

-Wnesting_comment -WNC

Warning option

Function : Generates a warning when comments include "/*"

Supplement : By using this option, it is possible to detect nesting of comments.

Appendix A-43

Appendix "A" Command Option Reference

-Wccom_max_warnings =Warning Count -WCMW

Warning option

Function : This option allows you to specify an upper limit for the number of warnings
output by ccom30.

Supplement : By default, there is no upper limit to warning outputs.
Use this option to adjust the screen as it scrolls for many warnings that are
output.

Note : For the upper-limit count of warning outputs, specify a number equal to or
greater than 0. Specification of this count cannot be omitted. When you specify
0, warning outputs are completely suppressed inhibited.

-Wall

Function : Displays message for all detectable warnings(however, not including alarms
output by -Wlarge_to_small(-WLTS) and -Wno_used_argument(-WNUA),whi-
ch are displayed with the -Wnon_prototype(-WNP) and -Wunknown_pragma
(-WUP) options and in the following cases (1) and (2). Note that these warn-
ings are not all coding errors
because they are the compiler's inference.

Case (1)
When the assignment operator = is used in the if statement, the for statement
or a comparison statement with the && or || operator.

Example: if(i=0)
func();
Case (2)
When "==" is written to which '=' should be specified.
Example: i ==0;
Case(3)

When function is defined in old format.
Example: func(i)
int i;

{

(omitted)

}

Note : These alarms are detected within the scope that the compiler assumes on its
judgment that description is erroneous. Therefore, not all errors can be
alarmed.

Appendix A-44

Appendix "A" Command Option Reference

-Wmake _tagdfile -WMT

Function : Outputs error messages to the tag file of source-file by source-file, when an
error or warning occurs.

Supplement @ This option with -Werror_file<file name>i(-WEF) option canit specify.

-Wuninitialize variable -WUV

Function : Outputs a warning for uninitialized auto variables. This option is effective even
when -Wall is specified.

Supplement : If an auto variable is initialized in conditional jump by, for example, a if or a for
statement in the user application, the compiler assumes it is not initialized.
Therefore, when this option is used, the compiler outputs a warning for it.

Exanpl e)

mai n()
{
int i;
int val;
for (i =0;i<2;1++) {
f0);
val =1 ;// Initalize by Iogical
}
ff(val);

Appendix A-45

Appendix "A" Command Option Reference

-Wlarge to_small -WLTS

Function : Outputs a warning about the substitution of variables in descending sequence
of size.

@® A warning may be output for negative boundary values of any type even
when they fit in the type. This is because negative values are considered
under language conventions to be an integer combined with the unary
operator (-).

For example, the value ?32768 fits in the signed int type, but when broken
into "?" and "32768," the value 32768 does not fit in the signed int type and,
consequently, becomes the signed long type. Therefore, the immediate
value ?32768 is the signed long type. For this reason, any statement like
"inti = ?32768;" gives rise to a warning.

@ Because this option outputs a large amount of warnings, warning output is
suppressed for the type conversions listed below.
* Assignment from char type variables to char type variables
* Assignment of immediate values to char type variables
* Assignment of immediate values to float type variables

-Wno_warning_stdlib -WNWS

Warning option

Function : Specifying this option while -Wnon_prototype or -Wall is specified inhibits
"Alarm for standard libraries which do not have prototype declarationst.

Appendix A-46

Appendix "A" Command Option Reference

-Wno_used_argument -WNUA

Function : Outputs a warning for unused arguments function.

Appendix A-47

Appendix "A" Command Option Reference

A.2.9 Assemble and Link Options

Table A.9 shows the command line options for specifying as30 and In30 options.

Table A.9 Assemble and Link Options
Option Function

-as30A<option> Specifies options for the as30 link command. If you specify
two or more options, enclose them in double quotes.
In the entry version, this option cannot be specified.
-In30A<option> Specifies options for the In30 assemble command. If you
specify two or more options, enclose them in double quotes.
In the entry version, this option cannot be specified.

Appendix A-48

Appendix "A" Command Option Reference

-as30"option”

Function :

Syntax

Execution
example :

Note

Assemble/link option
Specifies as30 assemble command options
If you specify two or more options, enclose them in double quotes.
In the entry version, this option cannot be specified.

nc30A-as30A"option1Aoption2"A<C source file>

In the example below, the assembiler list file is generated when compiling.

% nc30 -v -as30 " -1 -s " sanple.c

ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNCOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

sanpl e. c
cpp30 sanple.c -o sanple.i -DML6C - DNC30
cconBO sanple.i -o ./sanple.a30

as30 -. -N -1 -s sanple.a30

% |s sanple.*

-rwr--r-- 1 tool usr 2850 Aug 17 14:51 sanple.c
STWr----- 1 tool usr 10508 Aug 17 15:43 sanple.lst *
STWr----- 1 tool usr 587 Aug 17 15:43 sanple.r30

Do not specify the as30 options -., -C, -M, -0, -P, -T, -V or -X.

Appendix A-49

Appendix "A" Command Option Reference

For reference, the following table lists the AS30 V.4.00 options.

Option Description

Evaluates mnemonic operand.

-D Sets a constant to a symbol.
-F Fixes the file name of ..FILE development to a source file name.
-H Header information is not output to an assembler list file.

-1 The include file specified by ".INCLUDE" that is written in the source file is
searched from a specified directory.
-L Generates an assembler list file (extension .lIst).

Does not output information on macro instruction lines.

Outputs local symbol information.

*You can specify the assembler's option to use option -as30, using nc30. In this
case, do not specify the as30 options -., -C, -M, -0, -P, -T, -V or -X.

Appendix A-50

Appendix "A" Command Option Reference

-In30"option”

Function : Specifies options for the In30 link command. You can specify a maximum of
four options.
If you specify two or more options, enclose them in double quotes.
In the entry version, this option cannot be specified.

Syntax : nc30A-In30A"optionlAoption2"A<C source file name>

Execution In the example below, the map file is generated when compiling.

example :
% nc30 -g -v -osanple -1n30 -ns ncrt0.a30 sanple.c
ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SCLUTI ONS CORPCRATI ON ALL RI GHTS RESERVED
ncrt 0. a30
as30 -. -N--Nncrt0.a30
sanpl e. c
cpp30 sanple.c -o sanple.i -DML6C - DNC30
cconBO sanple.i -o ./sanple.a30 -g
as30 -. -N --N sanpl e. a30
In30 ncrt0.r30 sanple.r30 -. -G -M5 -ns -0 sanple
(omitted)
% |s sanple.*
-rwr--r-- 1 tool usr 2850 Aug 17 14:51 sanple.c
STWr----- 1 tool usr 44040 Aug 17 15:47 sanpl e. x30
STWr----- 1 tool usr 8310 Aug 17 15:47 sanpl e. map oo
%
Notes : Do not specify the In30 options -., -G, -O, -ORDER, -L, -T, -V or @file.

Appendix A-51

Appendix "A" Command Option Reference

For reference, the following table lists the options for In30, which is part of the
AS30 V.4.10 package.

Option Description

Specifies the start address of an absolute object module.

-LD Specifies the directory of the library to be referenced.

-LOC This command option outputs the data of a specified section to an absolute
file beginning with a specified address. However, symbol values (ad-
dresses), etc. within the section do not change.

-M Generates a map file.
-MS Generates a map file including symbol information.
-MSL The fullname of symbol more than 16 characters are output to

mapfile(xx.map).
-NOSTOP | Outputs all encountered errors to the screen.

*You can specify the assembler's option to use option -In30, using nc30. In this
case, do not specify the In30 options -., -G, -0, -ORDER, -L, -T ,-V or @file.

Appendix A-52

Appendix "A" Command Option Reference

A.3 Notes on Command Line Options
A.3.1 Coding Command Line Options

The NC30 command line options differ according to whether they are written in upper-
case or lowercase letters. Some options will not work if they are specified in the wrong case.

A.3.2 Priority of Options for Controlling

If you specify both the following options in the NC30 command line, the -S option takes
precedence and only the assembly language source files will be generated.

@ -c : Stop after creating relocatable files.
@ -S : Stop after creating assembly language source files.

Appendix A-53

Appendix "B" Extended Functions Reference

[

Appendix B)

Extended Functions Reference J

To facilitate its use in systems using the M16C/60 series, NC30 has a number of addi-
tional (extended) functions.

This appendix B describes how to use these extended functions, excluding those related
to language specifications, which are only described in outline.
Table B.1 Extended Functions (1/2)

Extended feature

Description

near/far qualifi-
ers

1. Specifies the addressing mode to access data.

near ... Access to an area within 64K bytes (OH to OFFFFH).
far ... Access to an area beyond 64K bytes (all memory areas).
All functions take on far attributes.

asm function

. Assembly language can be directly included in C programs.

It can also be included outside functions.

Example :asn(" MOV. W #0, RO");

. You can specify variable names (within functions only).
Example 1 :asn(" MOV. W RO, $$[FB]",f);
Example 2 :asm(" MOV. W RO, $$",s);

Example 3 :asm(" MOV. W RO, $@.f);

. You can include dummy asm functions as a means of partially

suppressing optimization (within functions only).
Example :asm);

Japanese
characters

. Permits you to use Japanese characters in character strings.

sgE e o

Example :L"; 25

. Permits you to use Japanese characters for character constants.

Example L' J52°

. Permits you to write Japanese characters in comments.

Example : /* JE=¢ */
Shift-JIS and EUC code are supported ,but can't use the half size
character of Japanese-KATA-KANA.

Default argu-
ment declaration
for function

. Default value can be defined for the argument of a function.

Example 1 :extern int func(int=1, char=0);

Example 2 :extern int func(int=a, char=0);
When writing a variable as a default value, be sure to declare the
variable used as a default value before declaring the function.
Write default values sequentially beginning immediately after the
argument.

Inline storage
class

. Functions can be inline developed by using the inline storage class

specifier.

Example :inline func(inti);
Always be sure to define the body of an inline function before
using the inline function.

Appendix B-1

Appendix "B" Extended Functions Reference

Table B.2 Extended Functions (2/2)

Extended feature Description
Extension of 1. You can include C++-like comments ("/").
Comments Example : // This is a coment.
#pragma Extended |You can use extended functions for which the hardware of M16C/
functions 60 series in C language.
macro assebler You can describe some assembler command as the function of C
function language.
Exampe . char dadd_b(char vall, char val2);
Example : int dadd_w(int vall, int val2);

B.1 Near and far Modifiers

For the M16C/60,20 series microcomputers, the addressing modes used for referencing
and locating data vary around the boundary address OFFFFH. NC30 allows you to control
addressing mode switching by near and far qualifiers.

B.1.1 Overview of near and far Modifiers
The near and far qualifiers select an addressing mode used for variables or functions.
e near modifier Area of 000000H to O0FFFFH
e far modifier Area of 000000H to OFFFFFH

The near and far modifiers are added to a type specifier when declaring a variable or
function. If you do not specify the near or far modifiers when declaring variables and func-

tions, NC30 interprets their attributes as follows:

*Variables ..o near attribute
* const-qualified constants far attribute
*FUNCLIONS .o far attribute

Furthermore, NC30 allows you to modify these default attributes by using the startup
options of compile driver nc30.

Appendix B-2

Appendix "B" Extended Functions Reference

B.1.2 Format of Variable Declaration

The near and far modifiers are included in declarations using the same syntactical format
as the const and volatile type modifiers. Figure B.1 is a format of variable declaration.

type specifierAnear or farAvariable;

Figure B.1 Format of Variable added near / far modifier

Figure B.2 is an example of variable declaration. Figure B.3 is a memory map for that
variable

int near in_data;
int far if_data;

func()

{

(remainder omitted)

Figure B.2 Example of Variable Declaration

_in_dat 2bytes

!

near area
1
far area

_if_data :| 2bytes

Y

Figure B.3 Memory Location of Variable

Appendix B-3

Appendix "B" Extended Functions Reference

B.1.3 Format of Pointer type Variable

Pointer-type variables by default are the near-type (2-byte) variable. A declaration ex-
ample of pointer-type variables is shown in Figure B.4.

e Example
int * ptr;

Figure B.4 Example of Declaring a Pointer Type Variable(1/2)

Because the variables are located near and take on the variable type far, the description
in Figure B.4 is interpreted as in Figure B.5.

e Example
int near * near ptr;

Figure B.5 Example of Declaring a Pointer Type Variable(2/2)

The variable ptr is a 2-byte variable that indicates the int-type variable located in the near
area. The ptr itself is located in the near area.
Memory mapping for the above example is shown in Figure B.6.

Figure B.6 shows memory maps for above examples.

int *ptr |
_ptr %
2bytes
near area
*ptr J 2bytes

Figure B.6 Memory Location of Pointer type Variable

Appendix B-4

Appendix "B" Extended Functions Reference

When near/far is explicitly specified, determine the size of the address at which to store
the variable/function that is written on the right side. A declaration of pointer-type variables
that handle addresses is shown in Figure B.7.

e Example 1
int far *ptrl;

e Example 2
int * far ptr2;

Figure B.7 Example of Declaring a Pointer Type Variable(1/2)

As explained earlier, unless near/far is specified, the compiler handles the variable loca-
tion as "near" and the variable type as "near." Therefore, Examples 1 and 2 respectively
are interpreted as shown in Figure B.8.

e N\

e Example 1
int far * near ptrl;

e Example 2
int near * far ptr2;

Figure B.8 Example of Declaring a Pointer Type Variable(2/2)

In Example 1, the variable ptrl is a 4-byte variable that indicates the int-type variable
located in the far area. The variable itself is located in the near area. In Example 2, the
variable ptr2 is a 2-byte variable that indicates the int-type variable located in the near
area. The variable itself is located in the far area.

Memory mappings for Examples 1 and 2 are shown in Figure B.9.

int far *ptrl int * far ptr2
_ptrl ¢
4bytes 2bytes
| y *ptr2 :| |y
!
far area
‘ far|area
_ptr2
*ptrl 2bytes Ziytes

Figure B.9 Memory Location of Pointer type Variable

Appendix B-5

Appendix "B" Extended Functions Reference

B.1.4 Format of Function Declaration

A function's near and far allocation attributes are always far. If you specify the near
attribute in function declaration, the system outputs a warning message (function must be
far) with your near declaration ignored.

B.1.5 near / far Control by nc30 Command Line Options

NC30 handles functions as belonging to the far attribute and variables (data) as belong-
ing to the near attribute if you do not specify the near and far attributes. NC30's command
line options allow you to modify the default attributes of functions and variables (data).
These are listed in the table below.

Table B.1 nc30 Command Line Options

Command Line Options Function
-fnear_ROM(-fFNROM) Assumes near as the default attribute of ROM data.
-ffar_RAM(-fFRAM) Assumes far as the default attribute of RAM data.

B.1.6 Function of Type conversion from near to far

The program in Figure B.10 performs a type conversion from near to far.

int func(int far *);
int far *f_ptr;
int near *n_ptr;

main()
{
f_ptr = n_ptr; /* assigns the near pointer to the far pointer */

(ébbreviated)

func (n_ptr); /* prototype declaration for function with far pointer to parameter */
[* specifies near pointer parameter at the function call */

Figure B.10 Type conversion from near to far

When converting type into far, 0 (zero) is expanded as high-order address.

B.1.7 Checking Function for Assigning far Pointer to near Pointer

When compiling, the warning message "assign far pointer to near pointer, bank value
ignored” is output for the code shown in Figure B.11 to show that the high part of the
address (the bank value) has been lost.

Appendix B-6

Appendix "B" Extended Functions Reference

int func(int near *);
int far *f_ptr;
int near *n_ptr;

main()
{
n_ptr = f_ptr; [* Assigns a far pointer to a near pointer */

(abbreviated)

func (f_pyr); /* prototype declaration of function with near pointer in parameter */
[* far pointer implicitly cast as near type */

n_ptr = (near *)f_ptr; /* far pointer explicitly cast as near type */

}

\.

Figure B.11 Type conversion from far to near

The warning message "far pointer (implicitly) casted by near pointer" is also output when

a far pointer is explicitly cast as a near pointer, then assigned to a near pointer.

B.1.8 Declaring functions

In NC30, functions are always located in the far area. Therefore, do not write a near

declaration for functions.

If a function is declared to take on a near attribute, NC30 outputss a warning and contin-
ues processing by assuming the attribute of that function is far. Figure B.12 shows a dis-

play example where a function is declared to be near.

%%c30 -S snp.c

ML6C/ 60 NC30 COWPI LER V. X. XX Rel ease X

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

snp. c

[Warni ng(ccom :snp.c,line 3] function nust be far
==[] {

func

Figure B.12 Example Declaration of Function

Appendix B-7

Appendix "B" Extended Functions Reference

B.1.9 Function for Specifying near and far in Multiple Declarations

As shown in Figure B.13, if there are multiple declarations of the same variable, the type
information for the variable is interpreted as indicating a combined type.

extern int far idata;
int idata;
int idata = 10;

func()

{

(remainder omitted)

This declaration is interpreted as the following:
extern int far idata = 10;
func()

{

(remainder omitted)

Figure B.13 Integrated Function of Function Declaration

As shown in this example, if there are many declarations, the type can be declared by
specifying near or far in one of those declarations. However, an error occurs if there is any
contention between near and far specifications in two or more of those declarations.

You can ensure consistency among source files by declaring near or far using a common

header file.
common header file
common.h
extern int far data;
C source file C source file
a.c b.c
#include "common.h" #include "common.h"
main()
{ int data = 10;
data = 1;
}

Figure B.14 Example of Common header file Declaration

Appendix B-8

Appendix "B" Extended Functions Reference

B.1.10 Notes on near and far Attributes

a. Notes on near and far Attributes of Functions
Functions always assume the far attribute. Do not declare functions with near. NC30 will
output a warning when you declare the near attribute for a function.

b. Notes on near and far Modifier Syntax

Syntactically, the near and far modifiers are identical to the const modifier.The following
code therefore results in an error.

int i, far i O This is not permitted.
v

int i;

int far i

Figure B.15 Example of Variable Declaration

Appendix B-9

Appendix "B" Extended Functions Reference

B.2 asm Function

NC30 allows you to include assembly language routines (asm functions)™ in your C
source programs. The asm function also has extended functions for manipulating the m
and x flags and referencing variables written in C.

B.2.1 Overview of asm Function

The asm function is used for including assembly language code in a C source program.
As shown in Figure B.16, the format of the asm function is asm(" ");, where an assembly
language instruction that conforms to the AS30 language specifications is included be-
tween the double quote marks.

#pragma ADDRESS ta0_int 55H
char ta0_int;
void func
{
(abbreviated)
ta0_int = Ox07; O Permits timer AO interrupt
asm(" FSETI"); 0 Sets interrupt enable flag
}

Figure B.16 Example of Description of asm Function (1/2)

Compiler optimization based on the positional relationship of the statements can be
partially suppressed using the code shown in Figure B.17.

asm();

Figure B.17 Example of Coding asm Function(2/2)

The asm function used in NC30 not only allows you to include assembly language code
but also has the following extended functions:
e Specifying the FB offset of storage class auto variables in the C program using
the names of the variables in C
e Specifying the register name of storage class register variables in the C program
using the names of the variables in C
e Specifying the symbol name of storage class extern and static variables in the C
program using the names of the variables in C

The following shows precautions to be observed when using the asm function.
e Do not destroy register contents in the asm function.The compiler does not check
the inside of the asm function. If registers are going to be destroyed, write push
and pop instructions using the asm function to save and restore the registers.

*1 For the purpose of expression in this user's manual, the subroutines written in the assembly
language are referred to as assembler functions. Those written with asm() in a C language program
are referred to as asm functions or inline assemble description.

Appendix B-10

Appendix "B" Extended Functions Reference

B.2.2 Specifying FB Offset Value of auto Variable

The storage class auto and register variables (including arguments) written in the C
language are referenced and located

as being offset from the Frame Base Register (FB). (They may be mapped to registers
as a result of optimization.)

The auto variables which are mapped to the stack can be used in the asm function by
writing the program as shown in Figure B.18 below.

asm(" op-code R1, $$[FB]", variable name);

Figure B.18 Description Format for Specifying FB Offset

Only two variable name can be specified by using this description format. The following
types are supported for variable names:

e Variable name
e Array name [integer]
e Struct name, member name (not including bit-field members)

(void func()

{
int idata;
int a[3];
struct TAG{
int i;
int k;
}s;
asm(" MOV.W RO, $$[FB]", idata);
asm(" MOV.W RO, $$[FB]", a[2]);
asm(" MOV.W RO, $$[FB]", s.i);

(Remainder omitted)

asm(" MOV.W 3[FB], $$[FB]", s.i, a[2]);

}

Figure B.19 Description example for specifying FB offset

Figure B.20 shows an example for referencing an auto variable and its compile result.

Appendix B-11

Appendix "B" Extended Functions Reference

e C source file

void func()

{
int idata = 1; O auto variable(FB offset value =-2)
asm(" MOV.W $$[FB], RO", idata);
asm(" CMP.W #00001H RO";

(remainder omitted)

e Assembly language source file(compile result)
FUNCTION func
#i# FRAME AUTO (idata) size 2, offset -2

(abbreviated)

C_SRC: asm(" MOV.W $$[FB], R0O", idata);

#H#E ASM START
MOV.W -2[FB], RO O Transfer FB offset value-2 to RO register
._line 5

C_SRC : asm(" CMP.W #00001H,RQ0");

CMP.W #00001H,RO
####E ASM END

(remainder omitted)

Figure B.20 Example for Referencing an auto Variables

You can also use the format shown in Figure B.21 so that auto variables in an asm
function use a 1-bit bit field.(Can not operate bit-fields og greater than 2-bits.)

asm(" op-code $b[FB]", bit field name);

Figure B.21 Format for Specifying FB Offset Bit Position

You can only specify one variable name using this format. Figure B.22 is an example.

void
func(void)
{
struct TAG{
char bit0:1;
char bitl:1;
char bit2:1;
char bit3:1;
}s;
asm("bset $b[FB]",s.bit1);

}

Figure B.22 Example for Specifying FB Offset Bit Position

Appendix B-12

Appendix "B" Extended Functions Reference

Figure B.23 shows examples of referencing auto area bit fields and the results of compil-
ing.

e C source file

void
func(void)
{
struct TAG{
char bit0:1;
char bitl:1;
char bit2:1;
char bit3:1;
}s;
asm("bset $b[FB]",s.bit1);
}

e Assembly language source file(compile result)

FUNCTION func
FRAME AUTO (S) size 1, offset -1
ARG Size(0) Auto Size(l) Context Size(5)

.section program

._file 'bit.c’

._line 3

.glb _func
_func:

enter #01H

._line 11
HHHH ASM START

bset 1,-1[FB] ; s
HH#HH ASM END

._line 12

exitd

Figure B.23 Example of Referencing auto Area Bit Field

When referencing a bit field in the auto area, you must confirm that it is located within
the range that can be referenced using bit operation instructions (within 32 bytes of the
FB register value).

Appendix B-13

Appendix "B" Extended Functions Reference

B.2.3 Specifying Register Name of register Variable

The storage class auto and register variables (including arguments) may be mapped to
registers by the compiler.

The variables mapped to registers can be used in the asm function by writing the
program as shown in Figure B.24 below.™

asm(" op-code $$", Variable name);

Figure B.24 Description Format for Register Variables

You can only specify two variable name using this format.Figure B.25 shows examples
of referencing register variables and the results of compiling.

e C source file
void
func(void)

{
register int i=1; O Variable” i” is a register variable

asm(" mov.w $$,A1"i);

}
e Assembly language source file (compile result)
FUNCTION func

ARG Size(0) Auto Size(0) Context Size(3)

.section program
._file 'reg.c’
._line 3
###C_SRC: {
.glb _func
_func:
._line 4
C_SRC: register int i=1;
mov.w #0001H,RO s
._line 6
C_SRC: asm(" mov.w 3,A1"i);
HH#HH ASM START
mov.w RO,Al ;i 0 RO register is transferred to Al register

###E ASM END

Figure B.25 An Example for Referencing a Register Variable and its Compile Result

In NC30, register variables used within functions are managed dynamically. At anyone
position, the register used for a register variable is not necessarily always the same one.
Therefore, if a register is specified directly in an asm function, it may after compiling
operate differently. We therefore strongly suggest using this function to check the register
variables.

*1 If the variables need to be forcibly mapped to registers using the register qualifier, specify the
option -fenable_register (-fER) when compiling.

Appendix B-14

Appendix "B" Extended Functions Reference

B.2.4 Specifying Symbol Name of extern and static Variable

extern and static storage class variables written in C are referenced as symbols.
You can use the format shown in Figure B.26 to use extern and static variables in asm
functions.

asm(" op-code R1, $$", variable name);

Figure B.26 Description Format for Specifying Symbol Name

Only two variable name can be specified by using this description format. The following
types are supported for variable names:

e Variable name
e Array name [integer]
e Struct name, member name (not including bit-field members)

int idata;

int a[3];

struct TAG{
int i;
int k;

}s;

void func()

{
asm(-" MOV.W RO, $$", idata);
asm(:" MOV.W RO, $$", a[2]);
asm(:" MOV.W RO, $$", s.i);

(Remainder omitted)

}

\. J

Figure B.27 Description example for specifying FB offset

See Figure B.28 for examples of referencing extern and static variables.

Appendix B-15

Appendix "B" Extended Functions Reference

e C source file

extern int ext val; O extern variable
func()
{ . .

static int s_val; [0 static variable

asm(" mov.w #01H,$$" ext val);
asm(" mov.w #01H,$$",s_val);

e Assembly language source file(compile result)

.glb _func
_func:
._line 8
C_SRC : asm(* mov.w #01H,$$" ext_val);
i ASM START
mov.w #01H, ext_val 0 Move to _ext_val
._line 9
C_SRC : asm(* mov.w #01H,$$",s_val);
mov.w #01H,__ SO_s_val OMoveto SO s val

#H##H## ASM END
._line 12

###C_SRC: }
rts

.SECTION bss_NE,DATA
___S0_s_val: ### C's name is s_val
.blkb 2
.glb _ext_val
_ext_val:
.blkb 2
.END

Figure B.28 Example of Referencing extern and static Variables

You can use the format shown in Figure B.29 to use 1-bit bit fields of extern and static
variables in asm functions.(Can not operate bit-fields og greater than 2-bits.)

asm(" op-code $b", bit field name);

Figure B.29 Format for Specifying Symbol Names

You can specify one variable name using this format. See Figure B.30 for an example.

Appendix B-16

Appendix "B" Extended Functions Reference

struct TAG{
char bit0:1;
char bitl:1;
char bit2:1;
char bit3:1;

}s

void
func(void)

{
asm(" bset $b",s.bitl);

}
Figure B.30 Example of Specifying Symbol Bit Position

Figure B.31 shows the results of compiling the C source file shown in Figure B.30.

FUNCTION func
ARG Size(0) Auto Size(0) Context Size(3)

.section program
._file 'kk.c'
._line 10
C_SRC: {
.glb _func
_func:
._line 11
##t# C_SRC : asm(" bset $b",s.bitl);
;#H##E ASM START
bset 1, s

HH##E ASM END
._line 12

#H#C_SRC: }
rts

.SECTION bss_NO,DATA
gb _s

.blkb 1

Figure B.31 Example of Referencing Bit Field of Symbol

When referencing the bit fields of extern or static variables, you must confirm that they
are located within the range that can be referenced directly using bit operation instructions
(within 0000H and 1FFFH).

Appendix B-17

Appendix "B" Extended Functions Reference

B.2.5 Specification Not Dependent on Storage Class

The variables written in C language can be used in the asm function without relying on the
storage class of that variable (auto, register, extern, or static variable).

Consequently, any variable written in C language can be used in the asm function by
writing it in the format shown in Figure B.32. *

[asm(" op-code RO, $@", variable name);]

Figure B.32 Description Format Not Dependent on Variable's Storage Class

You can only specify one variable name using this format.Figure B.33 shows examples
of referencing register variables and the results of compiling.

e C source file
externint e val; ~ extern variable

void func(void)

{
int f_val; ~ auto variable
register int r_val; ~ register variable™
staticint s_val; — static variable
asm(" mov.w #1, $@", e_val); — Reference to external variable
asm(" mov.w #2, $@", f_val); — Reference to auto variable
asm(" mov.w #3, $@", r_val); — Reference to register variable
asm(" mov.w #4, $@", s_val); — Reference to static variable
asm(" mov.w $@, $@", f_val,r_val),
}
e Assembly language source file(compile result)
.glb _func
_func:
enter #02H
._line 10
#t# C_SRC: asm(" mov.w #1, $@", e_val);
H#HE ASM START
mov.w #1, e val - —-—— Reference to external variable
._line 11
#t# C_SRC: asm(" mov.w #2, $@", f_val);
mov.w #2, -2[FB] ; f_val - --— Reference to auto variable
._line 12
C_SRC : asm(" mov.w #3, $@", r_val);
mov.w #3, RO ; r_val - - Reference to register variable
._line 13
C_SRC : asm(" mov.w #4, $@", s_val);
mov.w #4, SO _s val - Reference to static variable
#t# C_SRC : asm(" mov.w $@, $@", f_val,r_val);

mov.w -[FB], RO ; f_val, r_val

| ###H ASM END
Figure B.33 Example for Referencing Variables of Each Storage Class

*1 Whether it is arranged at which storage class should actually compile, and please check it.
*2 It does not restrict being assigned to a register, even if it specifies a register qualified.

Appendix B-18

Appendix "B" Extended Functions Reference

B.2.6 Selectively suppressing optimization

In Figure B.34, the dummy asm function is used to selectively suppress a part of optimi-
zation.

#pragma ADDRESS port O2H

struct port{

char bit0:1;
char bitl:1;
char bit2:1;
char bit3:1;
char bit4:1;
char bitbh:1;
char bit6:1;
char bit7:1;
}port;
func() Optimization results in any steps to
{ set the two port bits separately being
port.bit0 = OXxO1; combined as one step.
port.bitl = 0x01; Optimization [] or.b #03H, _port
}
port.bit0 = 0x01; Optimization is suppressed.
. Lo bset OOH, _port
asn() ; /* dumry */ Optimization [] beot O1H :Eort

port.bitl = 0x01;

Figure B.34 Example of Suppressing Optimization by Dummy asm

Appendix B-19

Appendix "B" Extended Functions Reference

B.2.7 Notes on the asm Function

a. Extended Features Concerning asm functions

When using the asm function for the following processing, be sure to use the format
shown in the coding examples.

(1)Do not specify auto variables or parameters, or 1-bit bit fields using the offset from
the frame base register (FB). Use the format shown in Figure B.35 to specify auto
variables and parameters.

asm("MOV.W #01H,$$[FB]",i); O Format for referencing auto variables
asm("BSET $$[FB]", s.bit0); O Format for checking auto bit fields

Figure B.35 Example Coding of asm Function (1/2)

(2)You can specify the register storage class in NC30. When register class variables are
compiled with option -fenable_register (-fER), use the format shown in Figure B.36
for register variables in asm functions.

asm("MOV.W #0H,3", i); O Format for checking register variables

Figure B.36 Example Coding of asm Function (2/2)

Note that, when you specify option -O[1-5], -OR, or -OS, parameters passed via the reg-
isters may, to improve code efficiency, be processed as register variables rather than being
moved to the auto area. In this case, when parameters are specified in an asm function, the
assembly language is output using the register names instead of the variable's FB offset.

(3)When referencing arguments in the asm function

The compiler analyzes program flow in the interval in which variables (including
arguments and auto variables) are effective, as it processes the program. For this
reason, if arguments or auto variables are referenced directly in the asm function,
management of such effective interval is destroyed and the compiler cannot output
codes correctly.

Therefore, to reference arguments or auto variables in the asm function you are
writing, always be sure to use the "$$, $b, $@" features of the asm function.

Ex.:
void func (int 1, intj)
{
asm (“mov.w 2[FB),4[FB]");// J=i;
}

Appendix B-20

Appendix "B" Extended Functions Reference

In the above case, because the compiler determines that "i" and "j" are not used within
the function func, it does not output codes necessary to construct the frame in which to
reference the arguments. For this reason, the arguments cannot be referenced correctly.

(4)About branching within the asm function

The compiler analyzes program flow in the intervals in which registers and variables
respectively are effective, as it processes the program. Do not write statements for
branching (including conditional branching) in the asm function that may affect the
program flow.

b. About Register
(1)Do not destroy registers within the asm function. If registers are going to be de-
stroyed, use push and pop instructions to save and restore the registers.

(2)NC30 is premised on condition that the SB register is used in fixed mode after being
initialized by the startup program. If you modified the SB register, write a statement to
restore it at the end of consecutive asm functions as shown in Figure B.37.

asm(" .SB 0");
asm(" LDC #OH, SB");

asm(" MOV.W RO,_port[SB]");

00 SB changed

(abbreviated)

asm(" .SB __SB_"); 0 SB returned to original state
asm(" LDC # SB_,SB");

\. J

Figure B.37 Restoring Modified Static Base (SB) register

Furthermore, pay careful attention to the functions that will be called while the SB register
is modified and the interrupts that may occur during that time.

(3)Do not modified the FB register by the asm functions, because which use for the
stack flame pointer.

c. Notes on Labels

The assembler source files generated by NC30 include internal labels in the format
shown in Figure B.38. Therefore, you should avoid using labels in an asm function that
might result in duplicate names.

® Labels consisting of one uppercase letter and one or more numerals
Examples: Al:

C9830:
® Labels consisting of two or more characters preceded by the underscore ()
Examples: _ LABEL:

___START:

Figure B.38 Label Format Prohibited in asm Function

Appendix B-21

Appendix "B" Extended Functions Reference

B.3

B.3.1

Description of Japanese Characters

NC30 allows you to include Japanese characters in your C source programs. This
chapter describes how to do so.

Overview of Japanese Characters

In contrast to the letters in the alphabet and other characters represented using one
byte, Japanese characters require two bytes. NC30 allows such 2-byte characters to be
used in character strings, character constants, and comments. The following character
types can be included:

e kanji

e hiragana

e full-size katakana
e half-size katakana

Only the following kanji code systems can be used for Japanese characters in NC30.

e EUC (excluding user-defined characters made up of 3-byte code)
e Shift JIS (SJIS)

B.3.2 Settings Required for Using Japanese Characters

The following environment variables must be set in order to use kanji codes.
default specifies:

UNIX version EUC (NCKIN, NCKOUT)

MS-Windows version SJIS (NCKIN, NCKOUT)

e Environment variable specifying input code system NCKIN
e Environment variable specifying output code system................. NCKOUT

Figure B.39 is an example of setting the environment variables.

[UNIX]

This example sets the input to EUC codes and the output to Shift JIS codes.
% setenv NCKIN EUC

% setenv NCKOUT SJIS

[MS-Windows]

Include the following in your autoexec.bat file:
set NCKIN=SJIS

set NCKOUT=SJIS

Figure B.39 Example Setting of Environment Variables NCKIN and NCKOUT

In NC30, the input kanji codes are processed by the cpp30 preprocessor. cpp30
changes the codes to EUC codes. In the last stage of token analysis in the ccom30
compiler, the EUC codes are then converted for output as specified in the environment
variable.

Appendix B-22

Appendix "B" Extended Functions Reference

B.3.3 Japanese Characters in Character Strings

Figure B.40 shows the format for including Japanese characters in character strings.

R]

Figure B.40 Format of Kanji code Description in Character Strings

If you write Japanese using the format " JEZ X 25| " as with normal character strings, it
is processed as a pointer type to a char type when manipulating the character string. You
therefore cannot manipulate them as 2-byte characters.

To process the Japanese as 2-byte characters, precede the character string with L and
process it as a pointer type to a wchar_t type. wchar_t types are defined (typedef) as
unsigned short types in the standard header file stdlib.h.

Figure B.41 shows an example of a Japanese character string.

[#include <stdlib.h>

void func()

wchar_t JC[4] = L" X5 ~[1]

(remainder omitted)

\.

Figure B.41 Example of Japanese Character Strings Description

Figure B.42 is a memory map of the character string initialized in (1) in Figure B.41.

| F— X —
2 B =
o | F— @ Fo—
% — 8bytes
© JC[2] — 3l —
CBI F—— NuLL ——
L higher

Figure B.42 Memory Location of wchar_t Type Character Strings

Appendix B-23

Appendix "B" Extended Functions Reference

B.3.4 Using Japanese Characters as Character Constants

Figure B.43 shows the format for using Japanese characters as character constants.

LB

Figure B.43 Format of Kanji code Description in Character Strings

As with character strings, precede the character constant with L and process it as a
wchar_t type. If, as in '3 ', you use two or more characters as the character constant,
only the first character " 3 " becomes the character constant.

Figure B.44 shows examples of how to write Japanese character constants.

#include <stdlib.h>

void near func()

{
wchar_t JC[5];
JC[0]=L' X "
] =L
JC[2]=L'%E '
JC[3]=L"#& "

(remainder omitted)

\. J

Figure B.44 Format of Kanji Character Constant Description

Figure B.45 is a memory map of the array to which the character constant in Figure B.44
has been assigned.

o)l X —

| — ¥ —
U) —
] e
% p| F— & —— 10bytes
3 |

wpl| — B —

JCM4]l F—— NuULL —

higher

Figure B.45 Memory Location of wchar_t Type Character Constant Assigned Array

Appendix B-24

Appendix "B" Extended Functions Reference

B.4 Default Argument Declaration of Function

NC30 allows you to define default values for the arguments of functions in the same way
as with the C++ facility. This chapter describes NC30's facility to declare the default
arguments of functions.

B.4.1 Overview of Default Argument Declaration of Function

NC30 allows you to use implicit arguments by assigning parameter default values when
declaring a function's prototype. By using this facility you can save the time and labor that
would otherwise be required for writing frequently used values when calling a function.

B.4.2 Format of Default Argument Declaration of Function

Figure B.46 shows the format used to declare the default arguments of a function.

Storage class specifierAType declaratorADeclarator([Dummy argument[=Default value
or variable],...]);

Figure B.46 Format for declaring the default arguments of a function

Figure B.47 shows an example of declaration of a function, and Figure B.48 shows a
result of compiling of sample program which shows at Figure B.47.

extern int func(int i=1, int j=2);

(abbreviated)

Figure B.47 Example for declaring the default arguments of a function

Appendix B-25

Appendix "B" Extended Functions Reference
_main:
_line 5
#H##C_SRC: func();
mov.w #0002H,R2 0 second argument : 2
mov.w #0001H,R1 O first argument 01
jsr $func
_line 6
C_SRC : func(3);
mov.w #0002H,R2 0 second argument : 2
mov.w #0003H,R1 O first argument 13
jsr $func
._line 7
C_SRC : func(3,5);
mov.w #0005H,R2 O second argument :5
mov.w #0003H,R1 O first argument 03
jsr $func
add.b #02H,SP
_line 8

###C_SRC: }
rts

(omi&ed)

Note) In NC30, arguments are stacked in revere order beginning with the argument
that is declared last in the function. In this example, arguments are passed via regis
ters as they are processed.

Figure B.48 Compiling Result of smpl.c(smpl.a30)

A variable can be written for the argument of a function.
Figure B.49 shows an example where default arguments are specified with variables.
Figure B.50 shows a compile result of the sample program shown in Figure B.49.

int near sym;
int func(int i=sym); 0 Default argument is specified with a variable.
void main(void)

{

func(); O Function is called using variable (sym) as argument.

}

(omitted)

\.

Figure B.49 Example for specifying default argument with a variable (smp2.c)

e N\

_main:
._line 6
mov.w _sym,R1
jsr $func
._line 7
rts

O Function is called using variable (sym) as argument.

\. J

Figure B.50 Compile Result of smp2.c (smp2.a30)

Appendix B-26

Appendix "B" Extended Functions Reference

B.4.3 Restrictions on Default Argument Declaration of Function

The default argument declaration of a function is subject to some restrictions as listed
below. These restrictions must be observed.

e When specifying a default value for multiple arguments
When specifying a default value in a function that has multiple arguments, always
be sure to write values beginning with the last argument. Figure B.51 shows
examples of incorrect description.

void funcl(inti, int j=1, int k=2); [* correct */

void func2(int i, int j, int k=2); [* correct */

void func3(inti=0, int j, int k); /* incorrect */

void func4(int i =0, int j, int k=1); /* incorrect */
Figure B.51 Examples of Prototype Declaration

e When specifying a variable for a default value
When specifying a variable for a default value, write the prototype declaration of a
function after declaring the variable you specify. If a variable is specified for the
default value of an argument that is not declared before the prototype declaration of
a function, it is processes as an error.

Appendix B-27

Appendix "B" Extended Functions Reference

B.5

B.5.1

B.5.2

inline Function Declaration

NC30 allows you to specify the inline storage class in the similar manner as in C++. By
specifying the inline storage class for a function, you can expand the function inline.
This chapter describes specifications of the inline storage class.

Overview of inline Storage Class

The inline storage class specifier declares that the specified function is a function to be
expanded inline. The inline storage-class specifier indicates to a function that the function
declared with it is to be expanded in-line. The functions specified as inline storage class
have codes embedded directly in them at the assembly level.

Declaration Format of inline Storage Class

The inline storage class specifier must be written in a syntactically similar format to that
of the static and extern-type storage class specifiers when declaring the inline storage
class. Figure B.52 shows the format used to declare the inline storage class.

inlineAtype specifierAfunction;

Figure B.52 Declaration Format of inline Storage Class

Figure B.53 shows an example of declaration of a function.

int s;
inline int func(int i); O Prototype declaration of function
{
return ++i;

} - :
void main() O Definition of body of function
{

s=func(s);
}

Figure B.53 Example for Declaring inline Storage Class

Appendix B-28

Appendix "B" Extended Functions Reference

._LANG 'C' XXX XX','REV.X'

; ## ML6C/ 60 C Conpil er QUTPUT

c## cconBO Version X XX XX

; ## COPYRI GHT(C) XXXX(XXXX- XXXX) RENESAS TECHNCOLOGY CORPORATI ON

ALL RI GHTS RESERVED AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RE-
SERVED

;## Conpile Start Time Thu April 10 18:40:11 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003

; ## COMMAND_LI NE: cconmBO smp.i -0 ./snp.a30 -dS

;## Normal Optimize OFF
;## ROM size Optimize OFF
;## Speed Optimize OFF
Default ROM is far
Default RAM is near
.GLB __SB__
SB __SB__
FB 0
H# FUNCTION func
i H# FUNCTION main
i H FRAME AUTO (i)size 2, offset -4
A # FRAME AUTO (s) size 2, offset -2
B # ARG Size(0) Auto Size(4) Context Size(5)

.SECTION program,CODE,align
._file ‘'smp.c'
.align
._line 7
###C_SRC: |
.glb _main
_main:
enter #04H
._line 9
C_SRC : s = func(s);
mov.w -2[FB],RO ;'S
_line 2
###C_SRC: |
mov.w RO,-4[FB] D
._line 3
#Hit# C _SRC: return i++;
mov.w RO,R1
add.w #0001H,R0O
._line 9
C_SRC: s = func(s);
mov.w R1,-2[FB] ;'S
._line 10
#H#C_SRC: 1}
exitd
El:
.END

<---Inline storage class have codes
embedded directly

;## Compile End Time Wed Nov 14 12:16:23 20xx

Figure B.54 Compile Result of sample program (smp.a30)

Appendix B-29

Appendix "B" Extended Functions Reference

B.5.3 Restrictions on inline Storage Class

When specifying the inline storage class, pay attention to the following :

(1) Regarding the recursive call of inline functions
The recursive call of an in line function cannot be carried out.It becomes a compile error

when a recursive call is described.

(2) Regarding the definition of an inline function

When specifying inline storage class for a function, be sure to define the body of the
function in addition to declaring it. Make sure that this body definition is written in the same
file as the function is written . The description in Figure B.55 is processed as an error in
NC30.

7

inline void func(int i);

void main(void)
{

func(1);
}

[Error Message]
[Error(ccom:smp.c,line 5] inline function's body is not declared previously

== func(1);
Sorry, conpilation term nated because of these errors in main().

\.

Figure B.56 Example of inappropriate code of inline function (1)

Furthermore, after using some function as an ordinary function if you define that function
as an inline function later, your inline specification is ignored and all functions are handled
as static functions. In this case, NC30 generates a warning. (See Figure B.57.)

int func(int i);

void main(void)

{
func(1);
}
inline int func(int i)
{
return i;
}

[Warning Message]

[Warning(ccon):snmp.c,line 9] inline function is called as normal function before
,change to static function.
==[] {

Figure B.57 Example of inappropriate code of inline function (2)

Appendix B-30

Appendix "B" Extended Functions Reference

(3) Regarding the address of an inline function
The inline function itself does not have an address. Therefore, if the & operator is used
for an inline function, the software assumes an error. (See Figure B.58.)

e N\

int func(int i)

{
return i;

}

mai n()

{
int (*f)(int);
f = &func;

}

[Error Message]

[Error(ccom:snp.c,line 10] can't get inline function's address by '& operator
== f = &f unc;
Sorry, conpilation term nated because of these errors in main().

\. J

Figure B.58 Example of inappropriate code of inline function (3)

(4) Declaration of static data

If static data is declared in an inline function, the body of the declared static data is
allocated in units of files. For this reason, if an inline function consists of two or more files,
this results in accessing different areas. Therefore, if there is static data you want to be
used in an inline function, declare it outside the function. If a static declaration is found in
an inline function, NC30 generates a warning. Renesas does not recommend entering
static declarations in an inline function. (See Figure B.59.)

e N\

inline int func(int j)

{
static int i = 0;
i ++;
return i + j;

}

[Warning Message]

[Warni ng(ccom) :snp.c,line 3] static valuable in inline function
==0 static int i = 0;

\. J

Figure B.59 Example of inappropriate code of inline function (4)

(5) Regarding debug information
NC30 does not output C language-level debug information for inline functions. There-
fore, you need to debug inline functions at the assembly language level.

Appendix B-31

Appendix "B" Extended Functions Reference

B.6 Extension of Comments

NC30 allows comments enclosed between "/*" and "*/" as well as C++-like comments
starting with "//".

B.6.1 Overview of "//" Comments

In C, comments must be written between "/*" and "*/". In C++, anything following "//"

B.6.2 Comment "//" Format

When you include "//" on a line, anything after the "//" is treated as a comment.
Figure B.60 shows comment format.

/I comments

Figure B.60 Comment Format

Figure B.61 shows example comments.

void

func(void)

{
int i [* This is commentes */
int j; /[This is commentes

}

Figure B.61 Example Comments

B.6.3 Priority of "//" and "/*"

The priority of "//" and "/*" is such that the one that appears first has priority.
Therefore, a "/*" written between a "//" to the new-line code does not have an effect as
signifying the beginning of a comment. Also, a "//" written between "/*" and "*/" does
not have an effect as signifying the beginning of a comment.

Appendix B-32

Appendix "B" Extended Functions Reference

B.7 #pragma Extended Functions

B.7.1 Index of #pragma Extended Functions

Following index tables show contents and formation for #pragma extended functions.

a. Using Memory Mapping Extended Functions

Table B.3 Memory Mapping Extended Functions

Extented function Description

#pragma BIT Declares that the external variable resides in an area where a 1-
bit manipulate instruction can be used in 16-bit absolute ad-
dressing mode (i.e., a variable residing in addresses from
0000O0H to 01FFFH).

Syntax : #pragma Bl T variable name

Example : #pragma BI T bit_data

#pragma ROM Maps the specified variable to rom
Syntax : #pragma ROM wvariable_name
Example : #pragma ROM val

OThis facility is provided to maintain compatibility with NC77
and NC79.
The variable normally must be located in the rom section
using the const qualifier.

#pragma SBDATA Declares that the data uses SB relative addressing.
Syntax : #pragnma SBDATA wvariable name
Example : #pr agma SBDATA val

#pragma SECTION Changes the section name generated by NC30
Syntax :#pragma SECTI ON section_name new_section_name
Example : #pr agma SECTI ON bss nonval _dat a

#pragma STRUCT 1. Inhibits the packing of structures with the specified tag
Syntax :#pragma STRUCT structure_tag unpack
Example : #pragma STRUCT TAGLl unpack

2. Arranges members of structures with the specified tag and
maps even sized members first
Syntax : #pragma STRUCT structure_tag arrange
Example : #pragma STRUCT TAGL arrange

*1 In the previous versions, words following #pragma (For example, ADDRESS, INTERRUPT,
ASM ,etc.)specifying a directive function (abbreviate as subcommand) needed to be described
in uppercase. Inthis version, subcommand are case-independence, in which uppercase and
lowercase are considered to be equivalent.

Appendix B-33

Appendix "B" Extended Functions Reference

b. Using Extended Functions for Target Devices

Table B.4 Extended Functions for Use with Target Devices

Extended function Description
#pragma ADDRESS Specifies the absolute address of a variable. For near variables,
(#pragma EQU) this specifies the address within the bank.

Syntax : #pragma ADDRESSAvariable-nameAabsolute-address
Example : #pr agma ADDRESS port 0 2H
O #pragma EQU can also be used for maintaining compatibility with C77.
#pragma INTCALL Declares a function written in assembler called in a software in-
terrupt (int instruction).

Syntax : #pragma | NTCALL AINT-No.Afunction-name(register-name)
Example : #pragma | NTCALL 25 func(RO, R1)
Syntax : #pragma | NTCALL INT-No. function-name()
Example : #pragma | NTCALL 25 func()

O Always be sure to declare the prototype of the function before entering this declaration.
#pragma INTERRUPT |Declares an interrupt handling function written in C language.
(#pragma INTF) This declaration causes code to perform a procedure for the in-
terrupt handling function to be generated at the entry or exit to
and from the function. Furthermore, by specifying switch /B it is
possible to switch the register to a back register instead of sav-
ing it to a stack when calling the function.

Syntax

#pragma | NTERRUPTA[/ B| / E] Ainterrupt-handling-function-name

Example : #pragma | NTERRUPT i nt _func

Example : #pragma | NTERRUPT /B int _func

Example : #pragma | NTERRUPT /E int_func
0 #pragma INTF can also be used for maintaining compatibility with C77.
#pragma PARAMETER |Declares that, when calling an assembler function, the param-
eters are passed via specified registers.

Syntax : #pragma PARAMETERAfunction_name (register_name)
Example : #pragma PARAMETER asm func(RO, R1)
0 Always be sure to declare the prototype of the function before entering this declaration.
#pragma SPECIAL Declares special page subroutine call functions.

Syntax : #pragma SPECI ALAnumber function-name()
Example : #pragma SPECI AL 30 func()

Appendix B-34

Appendix "B" Extended Functions Reference

c. Using MR30 Extended Functions

Table B.5 Extended Functions for MR30

Extended function Description
#pragma ALMHANDLER |Declares the name of the MR30 alarm handler function
Syntax :#pragma ALMHANDLER function-name
Example : #pragma ALMHANDLER al m f unc
#pragma CYCHANDLER |Declares the name of the MR30 cycle start handler function
Syntax : #pragma CYCHANDLER function-name
Example : #pragma CYCHANDLER cyc_func
#pragma INTHANDLER Declares the name of the MR30 interrupt handler function
#pragma HANDLER Syntaxl : #pragma | NTHANDLER function-name
Syntax2 :#pragma HANDLER function-name
Example : #pragma | NTHANDLER i nt _func
#pragma TASK Declares the name of the MR30 task start function
Syntax :#pragma TASK task-start-function-name
Example : #pragm TASK taskl

Supplement: The above extended function normally is generated by the configurator, so
that the user need not be concerned with it.

d. The Other Extensions

Table B.6 Using Inline Assembler Description Function

Extended feature Description
#pragma ASM Specifies an area in which statements are written in assembly
#pragma ENDASM | language.
Syntax : #pragma ASM
#pragma ENDASM
Example : #pragnma ASM
mov.w RO, R1
add.w R1, 02H
#pragma ENDASM
#pragma JSRA Calls functions using JSR.A as the JSR instruction.
Syntax : #pragme JSRA function-name
Example: #pragma JSRA func
#pragma JSRW | Calls functions using JSR.W as the JSR instruction.
Syntax : #pragma JSRW function-name
Example: #pragm JSRW func
#pragma PAGE |Indicates a new-page point in the assembler listing file.
Syntax : #pragma PAGE
Example : #pragma PAGE

Appendix B-35

Appendix "B" Extended Functions Reference

B.7.2 Using Memory Mapping Extended Functions

NC30 includes the following memory mapping extended functions.

#pragma BIT

1-bit Manipulate Instruction using Variable Declaration Function

Function : Declares an external variable that exists in an area where a one-bit manipulate instruc-
tion can be used in 16-bit absolute addressing mode.

Syntax : #pragma BITAvariable_name

Description : The M16C/60 series allows you to use a one-bit manipulate instruction for external vari-
ables located in an area of addresses 00000H to 01FFFH in a ROM efficient, 16-bit
absolute addressing mode.

The variable declared by #pragma BIT is assumed to be present in an area where a one-
bit manipulate instruction can be operated on it directly.

Rules : 1.If #pragma BIT is used for anything other than an external variable, it is ignored as
invalid.
2. When an external variable is declared in #pragma BIT and also has a bit width of 1 bit,
always directly output 1-bit instructions.
It is therefore the user's responsibility to ensure that, when #pragma BIT declarations
are included, the variables are mapped between 0 and 01FFFH.

Example : #pragma BI T bit_data

struct bit_data{
char bitO:
char bit1l:
char bit2:
char bit3:
char bit4:
char bith:
char bité6:
char bit7:

}bit_dat a;

PERRERRERR

func(void)

{
bit_data.bitl = 0;

(om tted)

Figure B.62 Example Declaration of #pragma BIT

Note . 1-bit instructions are generated under the following either conditions:

1. When a -fbit(-fB) option is specified and the object to be operated on is a near-type
variable

2. When the object to be operated on is a variable declared by #pragma SBDATA

3. When the object to be operated on is a variable declared by #pragma ADDRESS and
the variable is located somewhere between address 0000, to address 01FFF,,

4. When the object to be operated on is a variable declared by #pragma BIT

5. Variables mapped to areas within 32 bytes of the value of the FB register.

Appendix B-36

Appendix "B" Extended Functions Reference

#pragma ROM

Function : Maps specified data (variable) to rom section
Syntax : #pragma ROMAvariable_name

Description : This extended function is valid only for variables that satisfy one or other of the follow-
ing conditions:

[1] Non-extern variables defined outside a function (Variables for which an area is se-

cured)
[2] Variables declared as static within the function

Rules : 1. If you specify other than a variable, it will be ignored.
2. No error occurs if you specify #pragma ROM more than once.
3. The data is mapped to a rom section with initial value 0 if you do not include an
initialization expression.

Example :
[C language source program]
#pragma ROM i
unsi gned i nt i O Variable i, which satisfies condition[1]
voi d func()
{
static int i = 20; O Variable i, which satisfies condition[2]
(remai nder omitted)
[Assembly language source program]
.section rom NE, ROVDATA ### C s nane is i [Variable i, which satisfies
__SO_i: condition[2]
.word 0014H
.glb _
i O Variable i, which satisfies condition[1]
. byte 00H
. byte 00H
Figure B.63 Example Use of #pragma ROM Declaration
Note: This facility is provided to maintain compatibility with NC77 and NC79. The variable

normally must be located in the rom section using the const modifier.

Appendix B-37

Appendix "B" Extended Functions Reference

#pragma SBDATA

Function : Declares that the data uses SB relative addressing.
Syntax : #pragma SBDATAAvaluable-name

Description : The M16C/60 series allows you to choose instructions that can be executed efficiently
by using SB relative addressing. #pragma SBDATA declares that SB relative address-
ing can be used for the variable when referencing data. This facility helps to generate
ROM-efficient code.

Rules : 1. The variable declared to be #pragma SBDATA is declared by the assembler's

pseudo-instruction .SBSYM.

2. If #pragma SBDATA is specified for anything other than a variable, it is ignored as
invalid.

3. If the specified variable is a static variable declared in a function, the #pragma
SBDATA declaration is ignored as invalid.

4. The variable declared to be #pragma SBDATA is placed in a SBDATA attribute sec-
tion when allocating memory for it.

5. If #pragma SBDATA is declared for ROM data, the data is not placed in a SBDATA
attribute section.™

Example . #pragma SBDATA sym data

struct sym dat af
char bitO0:
char bit1l:
char bit2:
char bit3:
char bit4:
char bit5:
char bité6:
char bit7:

}sym dat a;

PERERRRRERR

func(void)

{
symdata.bitl = O;

(omitted)

Figure B.64 Example Use of #pragma SBDATA Declaration

*1 Do not write a #pragma SBDATA declaration for ROM data.

Appendix B-38

Appendix "B" Extended Functions Reference

#pragma SECTION

Change section nhame

Function : Changes the names of sections generated by NC30
Syntax : #pragma SECTIONAsection namelAnew section name

Description : Specifying the program section, data section and rom section in a #pragma SEC-
TION declaration changes the section names of all subsequent functions.
Specifying a bss section in a #pragma SECTION declaration changes the names of
all data sections defined in that file.
If you need to add or change section names after using this function to change
section names, change initialization, etc., in the startup program for the respective
sections.

Example :
[C source program]

#pragnma SECTI ON program prol [J Changes name of program section to prol
void func(void);

(remai nder omtted)

[Assembly language source program]
| HitH FUNCTI ON func

.section prol 0 Maps to prol section
._file 'snp. c'
._line 9
.glb _func
_func:

Figure B.65 Example Use of #pragma SECTION Declaration

Supplement: When modifying the name of a section, note that the section's location attribute (e.g.,
_NE or _NEI) is added after the section name.

Note : In NC30WA V4.00 or earlier, the data and rom sections, as with the bss section, could
only have their names altered in file units. For this reason, the programs created with
NC30WA V4.00 or earlier require paying attention to the position where #PRAGMA
SECTION is written.
String data is output with the rom section name that is last declared.

Appendix B-39

Appendix "B" Extended Functions Reference

#pragma STRUCT

Control structure mapping

Function : [1] Inhibits packing of structures
[2] Arranges structure members
Syntax [1] #pragma STRUCTAstructure_tagAunpack
[2] #pragma STRUCTAstructure_tagharrange
Description In NC30, structures are packed. For example, the members of the structure in Figure
and B.66 are arranged in the order declared without any padding.
Examples :
struct s {t _ Member name | Type Size |Mapped location (offset)
In [" " .
char c: i int 16 bits 0
i nt i; c char 8 bits 2
b j int | 16 bits 3
Figure B.66 Example Mapping of Structure Members (1)

[1]Inhibiting packing

This NC30 extended function allows you to control the mapping of structure members.
Figure B.67 is an example of mapping the members of the structure in Figure B.66 using

#pragma STRUCT to inhibit packing.

struct Si f“ . Member name| Type | Size |Mapped location (offset)
char c: i int 16 bits 0
int i c char 8 bits 2
b i int | 16 bits 3
Padding (char) | 8 bits -
Figure B.67 Example Mapping of Structure Members (2)

As shown Figure B.67, if the total size of the structure members is an odd number of
bytes, #pragma STRUCT adds 1 byte as packing after the last member. Therefore, if
you use #pragma STRUCT to inhibit padding, all structures have an even byte size.

Appendix B-40

Appendix "B" Extended Functions Reference

Description :

Examples

[2]Arranging members

This NC30 extended function allows you to map the all odd-sized structure members
first, followed by even-sized members. Figure B.68 shows the offsets when the structure
shown in Figure B.66 is arranged using #pragma STRUCT.

struet Si En . Member name | Type Size |Mapped location (offset)
char C; i int 16 bits 0
it I j int | 16 bits 2

b c char | 8 bits 4

Figure B.68 Example Mapping of Structure Members (3)

You must declare #pragma STRUCT for inhibiting packing and arranging the structure
members before defining the structure members.

#pragma STRUCT TAG unpack
struct TAG {

int i

char c;
} sl

Figure B.69 Example of #pragma STRUCT Declaration

Appendix B-41

Appendix "B" Extended Functions Reference

#pragma EXTAMPTR

Function : A functional extension which shows a variable is a pointer accessing 4-Mbyte ex-
panded space ROM.

Syntax : #pragma EXT4MPTRA pointer_name

Description : his feature is provided for extension mode 2 (4M byte extension mode) which is
available with some products in the M16C/62 group.
Declare a pointer variable for accessing a 4M-byte space. When so declared, the
compiler generates code for switching banks as necessary to access a 4M-byte
space.
This bank-switching code is generated one for each function in the place where the
pointer is used first. In successive operations, therefore, the banks are set only once.
When using multiple pointer variables, use the "-fchange_bank_always (-fCBA)" op-
tion which sets the banks each time the program accesses the 4M-byte space.

Example :

[C source program]

struct tag{
int bitmap;
char code;

}*poi nter;

#pragma EXTAMPTR poi nt er

mai n()

{ :
register int data; 0 Maps to prol section
dat a=poi nt er - >bi t map;

}

[Assembly language source program]
mov.w _pointer,A0
mov.w _pointer+2,A1
belr 3.A1 00 Change the bank
bset 2,Al1
Ide.w [A1A0],-2[FB]

Figure B.70 Example Use of #pragma EXT4MPTR Declaration
Note . Before using this feature, check to see if the microcomputer and the system (hardware)

support 4M-byte extension space mode.

Appendix B-42

Appendix "B" Extended Functions Reference

B.7.3 Using Extended Functions for Target Devices

NC30 includes the following extended functions for target devices.

#pragma ADDRESS (#pragma EQU)

Function : Specifies the absolute address of a variable. For near variables, the specified address is
within the bank.

Syntax : #pragma ADDRESSAvariable-name;absolute-address

Description : The absolute address specified in this declaration is expanded as a character string in an
assembiler file and defined in pseudo instruction .EQU. The format for writing the numeri-
cal values therefore depends on the assembler, as follows:

e Append 'B' or 'b' to binary numbers

e Append 'O’ or '0' to octal numbers

e \Write decimal integers only.

e Append 'H' or 'h' to hexadecimal numbers. If the number starts with letters A to
F,precede it with 0.

Rules : 1. All storage classes such as extern and static for variables specified in #pr agma AD-

DRESS are invalid.

2. Variables specified in #pr agma ADDRESS are valid only for variables defined outside
the function.

3. #pr agma ADDRESS is valid for previously declared variables.

4. #pragma ADDRESS is invalid if you specify other than a variable.

5. No error occurs if a #pr agma ADDRESS declaration is duplicated, but the last de-
clared address is valid.

6. An error occurs if you include an initialization expression.

7. Normally #pragma ADDRESS or #pragma EQU operates on |I/O variables, so that
even though volatile may not actually be specified, the compiler processes them as-
suming volatile is specified.

Example :
#pragma ADDRESS i o 24H

int io;

func()

{
}

Figure B.71 #pragma ADDRESS Declaration

Note © For compatibility with C77 versions prior to V.2.10 before can accept files that include
#pragma EQU. The absolute address using this format is written using the C conven-
tions.

Appendix B-43

Appendix "B" Extended Functions Reference

#pragma INTCALL

Function : Declares a function called by a software interrupt (by the int instruction)

Syntax : (1)#pragma INTCALLA[/CIAINT-No.Aassembler-function-name (register-
name, register-name, ...)
(2)#pragma INTCALLA[/CJAINT-No.AC-function-name ()

Description : This extended function declares the assembler function called by a software interrupt
with the INT number.
When calling an assembler function, its parameters are passed via registers.
[/C] (NC308 ONLY)
By specifying switch [/c] it is possible to generate code to need the register to saving it to
a stack at entry when calling the function.

Rules : (1) Declaring assembler functions
1. Before a #pr agma | NTCALL declaration, be sure to include an assembler function
prototype declaration. If there is no prototype declaration, a warning is output and the
#pragma | NTCALL declaration is ignored.
2. Observe the following in the prototype declaration:
a. Make sure that the number of parameters in the prototype declaration matches
those in the #pragma | NTCALL declaration.
b. You cannot declare the following types in the parameters in the assembler function:
e Structure types and union types
e double types, long long types
c. You cannot declare the following functions as the return values of assembler functions:
e Functions that return structures or unions
3. You can use the following registers for parameters when calling:
o float types, long types (32-bit registers) : R2R0, R3R1 and A1A0

e far pointer types (24-bit registers) :R2R0, R3R1 and A1A0
e near pointer types (16-bit registers) : A0,A1,RO,R1,R2, and R3
e char types (8-bit registers) : ROL, ROH, R1L, and R1H

* There is no differentiation between uppercase and lowercase letters in register names.
4. You can only use decimals for the INT Numbers.

(2) Declaring functions of which the body is written in C
1. Before a #pr agnma | NTCALL declaration, be sure to include a prototype declaration.
If there is no prototype declaration, a warning is output and the #pragma INTCALL
declaration is ignored.
2. You cannot specify register names in the parameters of functions that include the
#pragma | NTCALL declaration.
3. Observe the following in the prototype declaration:
a. Inthe prototype declaration, you can only declare functions in which all parameters
are passed via registers, as in the function calling rules.
b. You cannot declare the following functions as the return values of functions:
e Functions that return structures or unions
4. You can only use decimals for the INT Numbers.

Appendix B-44

Appendix "B"

Extended Functions Reference

Examples :

int asmfunc(unsigned |ong, unsigned int);
#pragnma | NTCALL 25 asm func(R2R0O, R1)

voi d main()

0 Prototype declaration for
the assembler function

{
int i;
| ong l;
i = OX7FFD;
I = 0x007F;
asmfunc(I, i); 0 Calling the assembler function
}
Figure B.72 Example of #pragma INTCALL Declaration(asm function) (1)

int c_func(unsigned int, unsigned int);
#pragma | NTCALL 25 c_func()

voi d main()

O Prototype declaration for the C function
0 You may NOT specify registers.

{
int i
i = OX7FFD,
j = Ox007F;
c func(i, j); 0 Calling the C function
}
Figure B.73 Example of #pragma INTCALL Declaration(C language functuion) (2)

Appendix B-45

Appendix "B" Extended Functions Reference

#pragma INTERRUPT (#pragma INTF)

Declare interrupt function

Function : Declares an interrupt handler
Syntax : #pragma INTERRUPTA[/B|/E|/F]Ainterrupt-handler-name

Description : By using the above format to declare interrupt processing functions written in C, NC30
generates the code for performing the following interrupt processing at the entry and exit
points of the function.

e In entry processing, all registers of the Micro Procesor are saved to the stack.
e In exit processing, the saved registers are restored and control is returned to the call-
ing function by the REIT instruction.

You may specify either /B or /E of /F in this declaration:

/B : Instead of saving the registers to the stack when calling the function, you can
switch to the alternate registers. This allows for faster interrupt processing.

/E : Multiple interrupts are enabled immediately after entering the interrupt. This im-
proves interrupt response.

/F (NC308 ONLY)
:Return to th calling function by the FREIT instruction in exit processing.

Rules : 1. A warning is output when compiling if you declare interrupt processing functions that

take parameters

2. A warning is output when compiling if you declare interrupt processing functions that
return a value. Be sure to declare that any return value of the function has the void
type.

3. Only functions for which the function is defined after a #pr agma | NTERRUPT decla-
ration are valid.

4. No processing occurs if you specify other than a function name.

5. No error occurs if you duplicate #pr agna | NTERRUPT declarations.

6. You cannot specify both switch /E and switch /B at the same time.

Example :

#pragma | NTERRUPT i _func

void i_func()

{

int_counter += 1;
}
Figure B.74 Example of #pragma INTERRUPT Declaration

Note . For compatibility with C77 versions prior to V.2.10 before can accept files that include

#pragma | NTF.

Appendix B-46

Appendix "B" Extended Functions Reference

#pragma PARAMETER

Function : Declares an assembler function that passes parameters via registers

Syntax
name,...)
Description :

#pragma PARAMETERA[/ClAassembler-function-name (register-name, register-

This extended function declares that, when calling an assembler function, its parameters

are passed via registers.

o float types, long types (32-bit registers)
e far pointer types (24-bit registers)
e near pointer types (16-bit registers)

: R2R0O ,R3R1 and A1A0
: R2R0O, R3R1 and A1A0
: A0,A1,RO,R1,R2, and R3

e char types (8-bit registers) : ROL, ROH, R1L, and R1H

* Register names are NOT case-sensitive.

[/C] (NC308 ONLY)
By specifying switch [/c] it is possible to generate code to need the register to saving it to
a stack at entry when calling the function.

Rules . 1. Always put the prototype declaration for the assembler function before the #pr agnma
PARAMETER declaration. If you fail to make the prototype declaration, a warning is
output and #pr agma PARAMETER is ignored.

2. Follow the following rules in the prototype declaration:
a. Note also that the number of parameters specified in the prototype declaration
must match that in the #pr agna PARAMETER declaration.
b. The following types cannot be declared as parameters for an assembler function in
a #pragm PARAMETER declaration:
e structure-type and union-type
e double-type long- long-types
c. The assembler functions shown below cannot be declared:
e Functions returning structure or union type
3. An error occurs, when you write the function entity specified in #pr agma PARAMETER
in C language.

Example :

int asmfunc(unsigned int, unsigned int); [Prototype declaration for
#pragma PARAMETER asm func(RO, R1) the assembler function

voi d main()

{

int i, J;

i = OX7FFD;
j = Ox007F;
asmfunc(i, j); 0 Calling the assembler function
}
Figure B.75 Example of #pragma PARAMETER Declaration

Appendix B-47

Appendix "B" Extended Functions Reference

#pragma SPECIAL

Function : Declares a special page subroutine call (JSRS instruction) function
Syntax : #pragma SPECIALA[ClAnumberAfunction-name()

Description : Functions declared using #pr agma SPECI AL are mapped to addresses created by
adding OFO000H to the address set in the special page vector tables, and are therefore
subject to special page subroutine calls.

[/C] (NC308 ONLY)
By specifying switch [/c] it is possible to generate code to need the register to saving it to
a stack at entry when calling the function.

Rules : 1. Functions declared using #pragma SPECIAL are mapped to the program_S section.
Be sure to map the program_S section between OFO0O00H and OFFFFFH.
2. Calls are numbered between 18 and 255 in decimal only.
3. As a label, "_SPECI AL _calling-number: " is output to the starting address of functions
declared using #pr agma SPECI AL. Set this label in the special page subroutine
table in the startup file. ™

Example :

#pragma SPECI AL 20 func()
voi d func(unsigned int, unsigned int);

voi d main()

{
int i, J;
i = OX7FFD,
j = Ox007F;

func(i, |); 0 special page subroutine call

Figure B.76 Example of #pragma SPECIAL Declaration

*1 If you are using the supplied startup file, modify the contents of the fvector section. For
details of how to modify the startup file, see Chapter 2.2 "Modifying the Startup Program" in
the Operation part of the NC30 User's Manual.

Appendix B-48

Appendix "B" Extended Functions Reference

B.7.4 Using MR30 Extended Functions

NC30 has the following extended functions which support the real-time operating system
MR30.

#pragma ALMHANDLER

Function : Declares an MR30 alarm handler
Syntax : #pragma ALMHANDLERAalarm-handler-name

Description : By using the above format to declare an alarm handler (a function) written in C, NC30
generates the code for the alarm handler to be used at the entry and exit points of the
function.

e The alarm handler is called from the system clock interrupt by the JSR instruction
and returns by the RTS or EXITD instruction.

Rules . You canNOT write alarm handlers that take parameters.

. The return value from the alarm handler must be type void in the declaration.

. Only the function definition put after #pr agna ALMHANDLER are valid.

. No processing occurs if you specify other than a function name.

. No error occurs if you duplicate #pr agma ALMHANDLER declarations.

. A compile error occurs if you use any function specified in one of the following decla-

rations in #pr agna ALMHANDLER:
e #pragma INTERRUPT
e #pragma INTHANDLER
e #pragma HANDLER
e #pragma CYCHANDLER
e #pragma TASK

o OB~ WDN P

Example :
P #i ncl ude <nr 30. h>

#i ncl ude "id.h"
#pragma ALMHANDLER al m

void al m(voi d) 0 Be sure to declare as type voi d.
{

(omitted)

Figure B.77 Example of #pragma ALMHANDLER Declaration

Appendix B-49

Appendix "B" Extended Functions Reference

#pragma CYCHANDLER

Function :

Syntax

Description :

Rules

Example :

Cyclic handler declaration

Declares an MR30 cyclic handler

#pragma CYCHANDLERAcyclic-handler-name

By using the above format to declare a cyclic handler (a function) written in C, NC30
generates the code for the cyclic handler to be used at the entry and exit points of the
function.

o O WODN P

e The cyclic handler is called from the system clock interrupt by the JSR instruction
and returns by the RTS or EXITD instruction.

. You canNOT write cyclic handlers that take parameters.

. The return value from the cyclic handler must be type void in the declaration.

. Only the function definition put after #pr agna CYCHANDLER are valid.

. No processing occurs if you specify other than a function name.

. No error occurs if you duplicate #pr agma CYCHANDLER declarations.

. A compile error occurs if you use any function specified in one of the following decla-

rations in #pr agnma CYCHANDLER:
#pragma INTERRUPT
#pragma INTHANDLER
#pragma HANDLER
#pragma ALMHANDLER
#pragma TASK

#i ncl ude <nr 30. h>

#i ncl ude "id.h"
#pragma CYCHANDLER cyc
voi d cyc(void) (0 Be sure to declare as type voi d.
{
(oniéted)

Figure B.78 Example of #pragma CYCHANDLER Declaration

Appendix B-50

Appendix "B" Extended Functions Reference

#pragma INTHANDLER (#pragma HANDLER)

Interrupt handler declaration

Function :

Syntax

Description :

Rules

Example :

Declares an MR30 OS-dependent interrupt handler

[1]
[2]

#pragma INTHANDLERAinterrupt-handler-name
#pragma HANDLERAinterrupt-handler-name

By using the above format to declare an interrupt handler (a function) written in C,
NC30 generates the code for the handling shown below to be used at the entry and
exit points of the function :

1.
2.

At the entry point : Push (i.e., save) the registers onto the current stack.

At the exit point

. Returns from the interrupt with the ret_int system call. Also re-

turns from the interrupt by the ret_int system call when returning
at a return statement partway through the function.

To declare an MR30 OS-independent interrupt handler, use #pr agma | NTERRUPT.

N o oA wN P

e #pragma INTERRUPT

e #pragma HANDLER

e #pragma ALMHANDLER
e #pragma CYCHANDLER
e #pragma TASK

. You canNOT write interrupt handlers that take parameters.

. The return value from the interrupt handler must be type void in the declaration.

Do NOT use the ret_int system calls from C.

. Only the function definition put after #pr agna | NTHANDLER are valid.

. No processing occurs if you specify other than a function name.

. No error occurs if you duplicate #pr agma | NTHANDLER declarations.

. A compile error occurs if you use any function specified in one of the following decla-
rations in #pr agnma | NTHANDLER:

#i ncl ude <nr 30. h>
#i ncl ude "id.h"

#pragma | NTHANDLER hand

voi d hand(voi d)
{

(omtted)

[* ret_int(); */

Figure B.79

Example of #pragma INTHANDLER Declaration

Appendix B-51

Appendix "B" Extended Functions Reference

#pragma TASK

Task start function declaration

Function : Declares an MR30 task start function
Syntax : #pragma TASKAtask-start-function-name

Description : By using the above format to declare a task start function written in C, NC30 generates
the code for processing for the task shown below to be used at the exit points of the

function.

e Atthe exit point : Ends by the ext_tsk system call. Also returns using the ext_tsk
system call even when returning at a return statement part way
through function.

Rules 1. You need not put the ext_tsk system call to return from the task.

2. The return value from the task must be type void in the declaration.

3. Only the function definition put after #pr agma TASK are valid.

4. No processing occurs if you specify other than a function name.

5. No error occurs if you duplicate #pr agma TASK declarations.

6. A compile error occurs if you use any function specified in one of the following decla-

rations in #pr agma TASK:
e #pragma INTERRUPT
e #pragma INTHANDLER
e #pragma HANDLER
e #pragma ALMHANDLER
e #pragma CYCHANDLER
Example : _
#i ncl ude <nr 30. h>
#i ncl ude "id.h"
#pragma TASK mai n
#pragma TASK tskl
voi d mai n(voi d) 0 Be sure to declare as type void.
{
(omitted)

sta_tsk(ID.idle);

sta_tsk(lD_tskl)

/* ext_tsk(); */ 0 You need not use ext_tsk.
}

void tskl()

(remai nder omitted)

Figure B.80 Example of #pragma TASK Declaration

Appendix B-52

Appendix "B" Extended Functions Reference

B.7.5 The Other Extensions

NC30 includes the following extended function for embedding assembler description
inline.

#pragma ASM, #pragma ENDASM

Function : Specifies assembly code in C.

Syntax : #pragma ASM
assembly statements
#pragma ENDASM

Description : The line(s) between #pr agna ASMand #pr agma ENDASMare output without modify-
ing anything to the generated assembly source file

Rules : Writing #pr agma ASM be sure to use it in combination with #pr agma ENDASM NC30
suspends processing if no #pr agma ENDASMis found the corresponding #pr agnma
ASM

1. In assembly language description, do not write statements which will cause the regis-
ter contents to be destroyed. When writing such statements, be sure to use the push
and pop instructions to save and restore the register contents.

2. Within the "#pragma ASM" to "#pragma ENDASM" section, do not reference argu-
ments and auto variables.

3. Within the "#pragma ASM" to "#pragma ENDASM" section, do not write a branch
statement (including conditional branch) which may affect the program flow.

Example : voi d func()

{

int i

for(i=0; i < 10;i++){

func2();

}
#pragma ASM

FCLR ' This area is output directly to an
LOOP1: .

assembly language file.
MOV. W #0FFH, RO
(om tted)
FSET |

#pragma ENDASM

}
Figure B.81 Example of #pragma ASM(ENDASM)

Suppliment: |t js this assembly language program written between #pr agma ASMand #pr agna
ENDASMthat is processed by the C preprocessor.

Appendix B-53

Appendix "B" Extended Functions Reference

#pragma JSRA

Function : Calls a function using the JSR.A instruction.

Syntax : #pragma JSRAAfunction-name

Description : Calls all functions declared using #pr agma JSRA using the JSR.A instruction.
#pragma JSRA can be specified to avoid errors in the case of functions that include

code generated using the -fJSRW option and that cause errors during linking.

Rules : This preprocessing directive has no effect when the -fJISRW option not specified.

Example :
extern void func(int i);

#pragma JSRA func()
voi d
mai n(voi d)

{

func(1);

Figure B.82 Example of #pragma JSRA

Appendix B-54

Appendix "B" Extended Functions Reference

#pragma JSRW

Function : Calls a function using the JSR.W instruction.
Syntax : #pragma JSRWAfunction-name

Description : By default, the JSR.A instruction is used when calling a function that, in the same file,
has no body definition. However, the #pr agma JSRWdeclared function are always
called using JSR.W. This directive helps reduce ROM size.

Rules . 1. You may NOT specify #pr agna JSRWfor static functions.
2. When function call with the JSR.W instruction does not reach #pr agma JSRWde-
clared function, an error occurs at link-time. In this case, you may not use #pr agma

JSRW
Example :

extern void func(int i);

#pragma JSRW func()

voi d

mai n(voi d)

{

func(1);
}
Figure B.83 Example of #pragma JSRW

Note . The #pragnma JSRWis valid only when directly calling a function. It has no effect when

calling indirectly.

Appendix B-55

Appendix "B" Extended Functions Reference

#pragma PAGE

Output .PAGE

Function : Declares new-page position in the assembler-generated list file.

Syntax : #pragma PAGE

Description : Putting the line #pr agma PAGE in C source code, the .PAGE pseudo-instruction is
output at the corresponding line in the compiler-generated assembly source. This
instruction causes page ejection asesmbler-output assembly list file.

Rules : 1. You cannot specify the character string specified in the header of the assembler
pseudo-instruction .PAGE.
2. You cannot write a #pragma PAGE in an auto variable declaration.

Example :
voi d func()

{
int i, j;
for(i=0; i < 10;i++){
func2();
}
#pragma PAGE

i ++;

Figure B.84 Example of #pragma PAGE

Appendix B-56

Appendix "B" Extended Functions Reference

#pragma _ ASMMACRO

Assembler macro function

Function : Declares defined a function by assembler macro.

Syntax : #pragma __ASMMACRO A function-name(register name, ...)

Rules . (1)Always put the prototype declaration before the #pragma __ ASMMACRO
declaration.Assembler macro function be sure to declare “static”.
(2)Can't declare the function of no parameter. Parameter is passed via register.Please
specify the register matching the parameter type.
(3)Please append the underscore (*_") to the head of the definition assembler macro
name.

(4)The following is a return value-related calling rules. You can’t declare structure and
union type as the return value. char and _Bool types: ROL float types : R2R0 int and
short types: RO double types : R3R2R1R0 long types: R2R0 long-long type
R3R1R2RO.

(5) f you change the register’s data, save the register to the stack in entry processing of
assembler macro function and the saved register restore in exit processing.

Example :
static long mul (int, int); /* Be sure to declare “static” */
#pragma __ ASMVACRO nul (RO, R2)
#pragma ASM
_mul .nmacro
mul . wR2, R0 ; The return-value is set to R2RO register
.endm
#pragma ENDASM
long I;
void test func(void)
{
I = nmul (2,3);
}

Figure B.85 Example of #pragma __ AMMACRO

Appendix B-57

Appendix "B" Extended Functions Reference

B.8

B.8.1

B.8.2

assembler Macro Function

Outline of Assembler Macro Function

NC30 allows part of assembler commands to be written as C-language functions. Be-
cause specific assembler commands can be written directly in a C-language program, you
can easily tune up the program.

Description Example of Assembler Macro Function

Assembler macro functions can be written in a C-language program in the same format
as C-language functions, as shown below.

#include <asmmacro.h> /* Includes the assembler macro function definition file */
long |
char a[20];
char Db[20];
func()
{
I =rmpa_b(1,19,a,b); /* asm Macro Function(rmpa command) */
}

Figure B.85 Description Example of Assembler Macro Function

Appendix B-58

Appendix "B" Extended Functions Reference

B.8.3 Commands that Can be Written by Assembler Macro Function

The following shows the assembler commands that can be written using assembler
macro functions and their functionality and format as assembler macro functions.

DADD

Function : Returns the result of decimal addition on vall plus val2.

Syntax : #include <asmmacro.h>
unsigned char dadd_b(unsigned char vall, unsigned char val2);
/* When calculated in 8 bits */
unsigned int dadd_w(unsigned int vall,unsigned int val2);
/* When calculated in 16 bits */

DADC

Function : Returns the result of decimal addition with carry on vall plus val2.

Syntax : #include <asmmacro.h>
unsigned char dadc_b(unsigned char vall, unsigned char val2);
/* When calculated in 8 bits */
unsigned int dadc_w(unsigned int vall,unsigned int val2);
/* When calculated in 16 bits */

DSUB

Function : Returns the result of decimal subtraction on vall minus val2.

Syntax : #include <asmmacro.h>
unsigned char dsub_b(unsigned char vall, unsigned char val2);
/* When calculated in 8 bits*/
unsigned int dsub_w(unsigned int vall,unsigned int val2);
/* When calculated in 16 bits */

Appendix B-59

Appendix "B" Extended Functions Reference

DSBB

Function : Returns the result of decimal subtraction with borrow on vall minus val2.

Syntax : #include <asmmacro.h>
unsigned char dsbb_b(unsigned char vall, unsigned char val2);
/* When calculated in 8 bits */
unsigned int dsbb_w(unsigned int vall,unsigned int val2);
/* When calculated in 16 bits */

RMPA

Function :Initial value: init; Number of times: count. The result is returned after performing a
sum-of-products operation assuming pl and P2 as the start addresses where multipli-
ers are stored.

Syntax :#include <asmmacro.h>
signed long rmpa_Db(signed long init,signed int count, signed char *p1,signed char*p2);
/* When calculated in 8 bits */
signed long rmpa_w(signed long init,signed int count,signed int *p1, signed int *p2);
/* When calculated in 16 bits*/

DIV

Function: devide vall by val2

Syntax : #include <asmmacro.h>

signed char div_b(signed int vall, signed char val2);
[* calculated in 8 bits with signed*/
signed int div_w(signed int vall,signed int val2);

[* calculated in 16 bits with signed*/
unsigned char divu_b(unsigned int vall,unsigned char val2);
[*calculated in 8 bits with unsigned */

unsigned int divu_w(unsigned long vall,unsigned int val2);
[*calculated in 16 bits with unsigned */
signed char divx_b(signed int vall,signed char val2);
/* calculated in 8 bits with signed*/
signed int divx_w(signed long vall,signed int val2);

/* calculated in 16 bits with signed*/

Appendix B-60

Appendix "B" Extended Functions Reference

MOD
|

Function : devide vall by val2 and get mod.

Syntax : #include <asmmacro.h>

signed char mod_b(signed int vall,signed char val2);
/* When calculated in 8 bits */
signed int mod_b(signed long vall, signed int val2);

/* calculated in 16 bits */
unsigned char modu_b(unsigned int vall,unsigned char val2);

[*calculated in 8 bits */
unsigned int modu_w(unsigned long vall,unsigned int val2);

[*calculated in 16 bits */

SMOVB
|

Function : Strings are transferred from the source address indicated by pl to the destination
address indicated by p2 as many times as indicated by count in the address-
decrementing direction. There is no return value.

Syntax : void smovb_b(unsigned char *p1, unsigned char *p2, unsigned int count);
[*calculated in 8 bits */
void smovb_w(unsigned int *p1,unsigned int *p2, unsigned int count);

/* When calculated in 16 bits*/

SMOVF
|

Function : Strings are transferred from the source address indicated by pl to the destination
address indicated by p2 as many times as indicated by count in the address-
incrementing direction. There is no return value.

Syntax : void smovf_b(unsigned char *p1, unsigned char *p2, unsigned int count);
[*calculated in 8 bits */
void smovf_w(unsigned int *pl,unsigned int *p2, unsigned int count);

[*calculated in 16 bits*/

Appendix B-61

Appendix "B" Extended Functions Reference

SSTR

Function : Strings are stored using val as the data to store, p as the address to from val address
which to transfer, and count as the number of times to transfer data. There is no
return value.

Syntax : void sstr_b(unsigned char val,unsigned char *p, unsigned int count);
[*calculated in 8 bits */
void sstr_w(unsigned int val,unsigned int *p, unsigned int count);

[*calculated in 16 bits*/

MOVdir

Function : transfer to val2 from vall by nibble

Syntax : #include <asmmacro.h>

unsigned char movll(unsigned char vall,unsigned char val2);

/* to low of val2 from high of vall */
unsigned char movlh(unsigned char vall,unsigned char val2);

/* to high of val2 from low of val1*/
unsigned char movhl(unsigned char vall, unsigned char val2);

/* to low of val2 from high of vall */
unsigned char movhh(unsigned char vall,unsigned char val2);

/* to high of val2 from high of vall */

ROLC

Function : The value of val is returned after rotating it left by 1 bit including the C flag.

Syntax : #include <asmmacro.h>
unsigned char rolc_b(unsigned char vall); /* When calculated in 8 bits */
unsigned int rolc_w(unsigned int vall); /* When calculated in 16 bits*/

RORC

Function : The value of val is returned after rotating it right by 1 bit including the C flag.

Syntax : #include <asmmacro.h>
unsigned char rorc_b(unsigned char val); /* When calculated in 8 bits */
unsigned int rorc_w(unsigned int val); /* When calculated in 16 bits */

Appendix B-62

Appendix "B" Extended Functions Reference

ROT
|

Function : The value of val is returned after rotating it as many times as indicated by count.

Syntax : #include <asmmcaro.h>
unsigned char rot_b(signed char count, unsigned char val);
/* When calculated in 8 bits */
unsigned int rot_w(signed char count, unsigned int val);
/* When calculated in 16 bits */

SHA
|

Function : The value of val is returned after arithmetically shifting it as many times as indicated
by count.

Syntax : #include <asmmacro.h>
unsigned char sha_b(signed char count, unsigned char val);
/* When calculated in 8 bits */
unsigned int sha_w(signed char count, unsigned int val);
/* When calculated in 16 bits */
unsigned long sha_l(signed char count, unsigned long val);
/* When calculated in 24 bits */

SHL
|

Function : The value of val is returned after logically shifting it as many times as indicated by
count.

Syntax : #include <asmmacro.h>
unsigned char shl_b(signed char count, unsigned char val);
/* When calculated in 8 bits */
unsigned int shl_w(signed char count, unsigned int val);
/* When calculated in 16 bits */
unsigned long shi_I(signed char count, unsigned long val);
/* When calculated in 24 bits */

ABS
|

Function : absolute

Syntax : #include <asmmacro.h>
signed char abs_b(signed char val); /* When calculated in 8 bits */
signed int abs_w(signed int val); /* When calculated in 16 bits */

Appendix B-63

Appendix "B" Extended Functions Reference

NEG

Function :

Syntax

negate

#include <asmmacro.h>
signed char neg_b(signed char val); /* When calculated in 8 bits */
signed int neg_w(signed int val); /* When calculated in 16 bits */

NOT

Function :

Syntax

not

#include <asmmacro.h>
signed char not_b(signed char val); /* When calculated in 8 bits */
signed int not_w(signed int val); /* When calculated in 16 bits */

Appendix B-64

Appendix "C" Overview of C Language Specifications

(Appendix C)

Overview of C Language Specifications J

In addition to the standard versions of C available on the market, C language specifica-
tions include extended functions for embedded system.

C.1 Performance Specifications

C.1.1 Overview of Standard Specifications

NC30 is a cross C compiler targeting the M16C/60,20 series. In terms of language
specifications, it is virtually identical to the standard full-set C language, but also has
specifications to the hardware in the M16C/60,20 series and extended functions for
embedded system.

e Extended functions for embedded system(near/far modifiers, and asm function, etc.)
e Floating point library and host machine-dependent functions are contained in the stan-
dard library.

Appendix C-1

Appendix "C"

Overview of C Language Specifications

Introduction to NC30 Performance
This section provides an overview of NC30 performance.

a. Test Environment

Table C.1 shows the standard EWS environment assumed when testing performance.
TableC.2 shows the standard PC environment.

TableC.1 Standard EWS Environment

Item

Type of EWS

UNIX Version

EWS environment

SPARCstation

SunOS V.4.1.3 JLE1.1.3

Nihongo Solaris 2.5

HP 9000/700 Series HP-UX V.10.20
Available swap area 100MB min.
TableC.2 Standard PC Environment
Item Type of PC OS Version
PC environment IBM PC/AT or compatible Windows ME

Windows 2000

Type of CPU

Intel Pentium Il

Memory

128MB min.

TableC.3 Standard Linux Environment

Item

Type of PC

OS Version

PC environment

IBM PC/AT or compatible

Turbo Linux 7.0

Type of CPU

Intel Pentium |1

Memory

128MB min.

b. C Source File Coding Specifications

Table C.4 shows the specifications for coding NC30 C source files. Note that estimates
are provided for items for which actual measurements could not be achieved.

TableC.4 Specifications for Coding C Source Files

Item

Specification

Number of characters per line of source

file

code

512 bytes (characters) including the new line

Number of lines in source file

65535 max.

Appendix C-2

Appendix "C"

Overview of C Language Specifications

c. NC30 Specifications

Table C.5 to C.5 lists the NC30 specifications. Note that
items for which actual measurements could not be achieved.

Table C.5 NC30 Specifications

estimates are provided for

Item

Specification

Maximum number of files that can be specified in NC30

Depends on amount of available memory

Maximum length of filename

Depends on operating system

Maximum number of macros that can be specified in nc30 command line option -D

Depends on amount of available memory

Maximum number of directories that can be specified in nc30 command line option -|

8max

Maximum number of parameters that can be specified in nc30 command line option -as30

Depends on amount of availahle memory

Maximum number of parameters that can be specified in nc30 command line option -In30

Depends on amount of available memory

Maximum nesting levels of compound statements,iteration control structures, and selection
control structures

Depends on amount of availahle memory

Maximum nesting levels in conditional compiling

Depends on amount of availahle memory

Number of pointers modifying declared basic types, arrays, and function declarators

Depends on amount of available memory

Number of function definitions

Depends on amount of available memory

Number of identifiers with block scope in one block

Depends on amount of available memory

Maximum number of macro identifiers that can be simultaneously defined in one source file

Depends on amount of available memory

Maximum number of macro name replacements

Depends on amount of available memory

Number of logical source lines in input program

Depends on amount of available memory

Maximum number of levels of nesting #include files

40max

Maximum number of case names in one switch statement (with no nesting of switch state-
ment)

Depends on amount of available memory

Total number of operators and operands that can be defined in #if and #elif

Depends on amount of availahle memory

Size of stack frame that can be secured per function(in bytes)

255 max

Number of variables that can be defined in #pragma ADDRESS

Depends on amount of availahle memory

Maximum number of levels of nesting parentheses

Depends on amount of available memory

Number of initial values that can be defined when defining variables with initialization expres-
sions

Depends on amount of available memory

Maximum number of levels of nesting modifier declarators

Depends on stack size of YACC

Maximum number of levels of nesting declarator parentheses

Depends on stack size of YACC

Maximum number of levels of nesting operator parentheses

Depends on stack size of YACC

Maximum number of valid characters per internal identifier or macro name

Depends on amount of available memory

Maximum number of valid characters per external identifier

Depends on amount of availahle memory

Maximum number of external identifiers per source file

Depends on amount of available memory

Maximum number of identifiers with block scope per block

Depends on amount of available memory

Maximum number of macros per source file

Depends on amount of available memory

Maximum number of parameters per function call and per function

Depends on amount of availahle memory

Maximum number of parameters or macro call parameters per macro

31max

Maximum number of characters in character string literals after concatenation

Depends on amount of availahle memory

Maximum size (in bytes) of object

Depends on amount of available memory

Maximum number of members per structurefunion

Depends on amount of available memory

Maximum number of enumerator constants per enumerator

Depends on amount of available memory

Maximum number of levels of nesting of structures or unions per struct declaration list

Depends on amount of available memory

Maximum number of characters per character string

Depends on operating system

Maximum number of lines per file

Depends on amount of available memory

Appendix C-3

Appendix "C" Overview of C Language Specifications

C.2 Standard Language Specifications

The chapter discusses the NC30 language specifications with the standard language
specifications.

C.2.1 Syntax

This section describes the syntactical token elements. In NC30, the following are pro-
cessed as tokens:

e Key words

e |dentifiers

e Constants

e Character literals

e Operators

e Punctuators

e Comment

a. Key Words
NC30 interprets the followings as key words.

Table C.6 Key Words List

_asm default int switch
_far do long typedef
_near double near union
asm else register unsigned
auto enum restrict void
_Bool extern return volatile
break far short while
case float signed inline
char for sizeof

const goto static

continue if struct

In the entry version, the keywords listed below are not handled as keywords:
near far inline asm
When using these keywords, add the underscore
keyword used.
_near _far _inline _asm

before the first character of each

b. Identifiers
Identifiers consist of the following elements:

e The 1st character is a letter or the underscore (Ato Z,atoz, or _)
e The 2nd and subsequent characters are alphanumerics or the underscore
(AtoZ,atoz,0to9,0r_)

Identifiers can consist of up to 31 characters. However, you cannot specify Japanese
characters in identifiers.

Appendix C-4

Appendix "C" Overview of C Language Specifications

c. Constants
Constants consists of the followings.

e Integer constants
e Floating point constants
e Character constants

(1)Integer constants
In addition to decimals, you can also specify octal and hexadecimal integer constants.

Table C.7 shows the format of each base (decimal, octal, and hexadecimal).

Table C.7 Specifying Integer Constants

Base Notation Structure Example
Decimal None 0123456789 15
Octal Start with 0 (zero) |01234567 017
Hexadeci- | Start with OX or Ox [0123456789ABCDEF OXF or Oxf
mal 0123456789abcdef

Determine the type of the integer constant in the following order according to the value.

oOctal and hexadecimal: signed int 0 unsigned int [0 signed long O unsigned long
Osigned long long O unsigned long long

eDecimal . signed int O signed long O unsigned long
Osigned long long O unsigned long long

Adding the suffix U or u, or L or I, or LL or ll, results in the integer constant being
processed as follows:

[1]Unsigned constants
Specify unsigned constants by appending the letter U or u after the value. The type
is determined from the value in the following order:
eunsigned int 0 unsigned long O unsigned long long

[2]long-type constants
Specify long-type constants by appending the letter L or |. The type is determined
from the value in the following order:
eOctal and hexadecimal: signed long 0O unsigned long O signed long long
O unsigned long long
eDecimal . signed long long O unsigned long long

[3]long-type constants
Specify long long-type constants by appending the letter LL or Il. The type is deter-
mined from the value in the following order:
eOctal and hexadecimal: signed long long Ounsigned long long
eDecimal . signed long long

Appendix C-5

Appendix "C"

Overview of C Language Specifications

(2)Floating point constants

If nothing is appended to the value, floating point constants are handled as double
types. To have them processed as float types, append the letter F or f after the value. If

you append L or |, they are treated as long double types.

(3)Character constants

Character constants are normally written in single quote marks, as in ‘character'. You
can also include the following extended notation (escape sequences and trigraph se-
quences). Hexadecimal values are indicated by preceding the value with \x. Octal values
are indicated by preceding the value with \.

Table C.8 Extended Notation List

Notation Escape sequence Notation Trigraph sequence
\ single quote \constant |octal

\" quotation mark \xconstant| hexadecimal

\\ backslash X express "[" character
\? guestion mark 7 express "\" character
\a bell) express "]" character
\b backspace ” express """ character
\f form feed < express "{" character
\n line feed 7 express "[" character
\r return 7> express "}' character
\t horizontal tab ?7- express "~" character
\v vertical tab 7= express "#" character

d. Character Literals

Character literals are written in double quote marks, as in "character string". The ex-
tended notation shown in Table C.8 for character constants can also be used for character

literals.

Appendix C-6

Appendix "C" Overview of C Language Specifications

e. Operators
NC30 can interpret the operators shown in Table C.9.

Table C.9 Operators List

monadic operator ++ logical operator & &
- l
- !
binary operator + conditional operator 2
- comma operator ,
O address operator &
/ pointer operator d
% bitwise operator <<
assignment operators |= >>
+= &
—= |
@ N
1= 0
%= &=
relational operators > E
< N=
>= <<=
<= >>=
== sizeof operator sizeof
=

f. Punctuators
NC30 interprets the followings as punctuators.

o { L
o} o,

g. Comment
Comments are enclosed between /0 and [. They cannot be nested
Comments are enclosed between “//” and the end of line.

Appendix C-7

Appendix "C" Overview of C Language Specifications

C.2.2 Type

a. Data Type
NC30 supports the following data type.
e character type
e integral type
e structure
e union
e enumerator type
e void
e floating type

b. Qualified Type
NC30 interprets the following as qualified type.
e const
e volatile
e ewstrict
e near
e far

c. Data Type and Size
Table C.10 shows the size corresponding to data type.

Table C.10 Data Type and Bit Size

Type Existence of sign Bit size Range of values
_Bool No 8 0,1
char No 8 0 -255
unsigned char
signed char Yes 8 -128 5127
int Yes 16 -32768 -32767
short
signed int
signed short
unsigned int No 16 0 -65535
unsigned short
long Yes 32 -2147483648 2147483647
signed long
unsigned long |No 32 04294967295
long long Yes 64 -9223372036854775808
signed long long 9223372036854775807
unsigned long long | No 64 18446744073709551615
float Yes 32 1.17549435e-38F -3.40282347e+38F
double Yes 64 2.2250738585072014e-308 «
long double 1.7976931348623157e+308
near pointer No 16 0 ~OxFFFF
far pointer No 32 0 OXFFFFFFFF

Appendix C-8

Appendix "C" Overview of C Language Specifications

e The Bool type can not specify to sign.

e If a char type is specified with no sign, it is processed as an unsigned char type.

e If an int or short type is specified with no sign, it is processed as a signed int or
signed short type.

e If a long type is specified with no sign, it is processed as a sign long type.

e If a long long type is specified with no sign, it is processed as a sign long long type.

e |f the bit field members of a structure are specified with no sign,they are processed
as unsigned.

e Can not specifies bit-fields of long long type.

C.2.3 Expressions

Tables C.11 and Table C.12 show the relationship between types of expressions and
their elements.

Table C.11 Types of Expressions and Their Elements (1/2)

Type of expression Elements of expression
Primary expression identifier
constant
character literal
(expression)
primary expression
Postpositional expression |Postpositional expression [expression]
Postpositional expression (list of parameters, ...)
Postpositional expression. identifier
Postpositional expression —>identifier
Postpositional expression ++
Postpositional expression ——
Postpositional expression
Monadic expression ++ monadic expression
—— monadic expression
monadic operator cast expression
sizeof monadic expression
sizeof (type name)
Monadic expression

Cast expression (type name) cast expression
cast expression
Expression expression [expression

expression/ expression
expression %expression
Additional and subtraction | expression + expression
expressions expression — expression
Bitwise shift expression expression << expression
expression >> expression

Appendix C-9

Appendix "C" Overview of C Language Specifications

Table C.12 Types of Expressions and Their Elements (2/2)

Type of expression Elements of expression

Relational expressions expression

expression < expression

expression > expression

expression <= expression

expression >= expression

Equivalence expression expression == expression

expression != expression

Bitwise AND expression & expression

Bitwise XOR expression * expression

Bitwise OR expression | expression

Logical AND expression && expression

Logical OR expression|| expression

Conditional expression expression ? expression: expression
Assign expression monadic expression += expression

monadic expression —= expression

monadic expression [F expression

monadic expression /= expression

monadic expression %=expression

monadic expression <<= expression

monadic expression >>= expression

monadic expression &= expression

monadic expression |= expression

monadic expression A= expression

assignment expression

Comma operator expression, monadic expression

Appendix C-10

Appendix "C" Overview of C Language Specifications

C.2.4 Declaration

There are two types of declaration:

eVariable Declaration
eFunction Declaration

a. Variable Declaration
Use the format shown in Figure C.1 to declare variables.

[storage class specifierAtype declaratorAdeclaration specifierAinitialization_expression;]

Figure C.1 Declaration Format of Variable

(1)Storage-class Specifiers
NC30 supports the following storage-class specifiers.

eextern eauto etypedef
estatic eregister

(2)Type Declarator
NC30 supports the type declarators.

e Bool echar eint eshort elong
elong long efloat edouble eunsigned esigned
estruct eunion ecnumM

(3)Declaration Specifier
Use the format of declaration specifier shown in Figure C.2 in NC30.

Declarator : Pointer, declarator2
Declarator2 : identifier(declarator)
declarator2[constant expression]

declarator2(list of dummy arguments_)

* Only the first array can be omitted from constant expressions showing the number of arrays.

* opt indicates optional items.

Figure C.2 Format of Declaration Specifier

Appendix C-11

Appendix "C" Overview of C Language Specifications

(4)Initialization expressions
NC30 allows the initial values shown in Figure C.3 in initialization expressions.

integral types : constant

integral types array constant, constant

character types : constant

character types array : character literal, constant
pointer types : character literal

pointer array : character literal, character literal

Figure C.3 Initial Values Specifiable in Initialization Expressions

b. Function Declaration
Use the format shown in Figure C.4 to declare functions.

e function declaration (definition)
storage-class specifierAtype declaratorAdeclaration specifierAmain program

e function declaration (prototype declaration)

storage-class specifierAtype declaratorAdeclaration specifier;

Figure C.4 Declaration Format of Function

(1)Storage-class Specifier
NC30 supports the following storage-class specifier.

e extern
e static

(2)Type Declarators
NC30 supports the following type declarators.

e Bool echar eint eshort elong
elong long efloat edouble eunsigned esigned
estruct eunion ecnumM

(3)Declaration Specifier
Use the format of declaration specifier shown in Figure C.5 in NC30.

Appendix C-12

Appendix "C" Overview of C Language Specifications

Declarator : Pointeropt declarator?2

Declarator2 : identifier(list of dummy argumentopt)
(declarator)
declarator[constant expression_]

declarator(list of dummy argumentopt)

* Only the first array can be omitted from constant expressions showing the number of arrays.
* opt indicates optional items.
* The list of dummy arguments is replaced by a list of type declarators in a prototype declaration.

\.

Figure C.5 Format of Declaration Specifier

(4)Body of the Program
Use the format of body of the program shown in Figure C.6

List of Variable Declaratoropt Compound Statement

*There is no body of the program in a prototype declaration, which ends with a semicolon.
*opt indicates optional items.

Figure C.6 Format of Body of the Program

C.2.5 Statement

NC30 supports the following.

e Labelled Statement

e Compound Statement

e Expression / Null Statement

e Selection Statement

e [teration Statement

e Jump Statement

e Assembly Language Statement

a. Labelled Statement
Use the format of labelled statement shown in Figure C.7

Identifier : statement
case constant statement
default : statement

\.

Figure C.7 Format of Labelled Statement

Appendix C-13

Appendix "C" Overview of C Language Specifications

b. Compound Statement
Use the format of compound statement shown in Figure C.8.

{ list of declarations_ list of statements__ }
pt opt

* opt indicates optional items.

Figure C.8 Format of Compound Statement

c. Expression / Null Statement
Use the format of expression and null statement shown in Figure C.9.

expression:
expression;
null statement:

Figure C.9 Format of Expression and Null Statement

d. Selection Statement
Use the format of selection statement shown in Figure C.10.

if(expression)statement
if(expression)statement else statement
switch(expression)statement

Figure C.10 Format of Selection Statement

e. lIteration Statement
Use the format of iteration statement shown in Figure C.11.

while(expression)statement
do statement while (expression);

for(expression_;expression_ ;expression_)statement;

opt’ opt’

* opt indicates optional items.

Figure C.11 Format of Iteration Statement

Appendix C-14

Appendix "C" Overview of C Language Specifications

f. Jump statement
Use the format of jump statement shown in Figure C.12.

goto identifier;
continue;
break;

return expressmnopt;

*opt indicates optional items.

Figure C.12 Format of Jump Statement

g. Assembly Language Statement
Use the format of assembly language shown in Figure C.13.

asm("Literals");

literals assembly language statement

Figure C.13 Format of Assembly Language Statement

Appendix C-15

Appendix "C" Overview of C Language Specifications

C.3 Preprocess Commands

Preprocess commands start with the pound sign (#) and are processed by the cpp30
preprocessor. This chapter provides the specifications of the preprocess commands.

C.3.1 List of Preprocess Commands Available

Table C.13 lists the preprocess commands available in NC30.

Table C.13 List of Preprocess Commands

Command Function
#define Defines macros.
#undef Undefines macros.
#include Takes in the specified file.
#error Outputs messages to the standard output device and terminates pro-
cessing.
#line Specifies file's line numbers.
#assert Outputs a warning when a constant expression is false.
#pragma Instructs processing for NC30's extended function.
#if Performs conditional compilation.
#ifdef Performs conditional compilation.
#ifndef Performs conditional compilation.
#elif Performs conditional compilation.
#else Performs conditional compilation.
#endif Performs conditional compilation.

C.3.2 Preprocess Commands Reference

The NC30 preprocess commands are described in more detail below. They are listed in
the order shown in Table C.13.

Appendix C-16

Appendix "C" Overview of C Language Specifications

#define
.

[Function] Defines macros.

[Format] [1]#defineAindentifierAlexical string opt
[2]#defineAidentifier (identifier list opt)Alexical string opt

[Description] [1]Defines an identifier as macro.
[2]Defines an identifier as macro. In this format, do not insert any space or tab

between the first identifier and the left parenthesis '('.

e The identifier in the following code is replaced by blanks.

#define SYMBOL

e When a macro is used to define a function, you can insert a backslash so that the
code can span two or more lines.
e The following four identifiers are reserved words for the compiler.

_ _FILE e, Name of source file
__LINE__ s Current source file line No.
_ _DATE__ i, Date compiled (mm dd yyyy)
_ _TIME__ i, Time compiled (hh:mm:ss)

The following are predefined macros in NC30.

M16C
NC30

e You can use the token string operator '#' and token concatenated operator '##'
with tokens, as shown below.

#define debug(s,t) printf("x"#s" = %d X"#t" = %d",x ## s,X ## t)

When parameters are specified for this macro debug (s, t) as debug (1, 2), they
are interpreted as follows:

#define debug(s,t) printf("x1 = %d x2 = %d", x1,x2)

Appendix C-17

Appendix "C" Overview of C Language Specifications

#define
|

e Macro definitions can be nested (to a maximum of 20 levels) as shown below.

#define XYZ1 100
#define XYZ2 XYZ1

(abbreviated)

#define XYZ20 XYZ19

#undef
e

[Function] Nullifies an identifier that is defined as macro.
[Format] #undefAidentifier
[Description] e Nullifies an identifier that is defined as macro.

e The following four identifiers are compiler reserved words. Because these identifi-
ers must be permanently valid, do not undefine them with #undef.

_ _FILE e, Name of source file
__LINE__ i, Current source file line No.
_ _DATE__ s Date compiled (mm dd yyyy)
_ _TIME__ i, Time compiled (hh:mm:ss)

Appendix C-18

Appendix "C" Overview of C Language Specifications

#include
.

[Function]

[Format]

[Description]

Takes in the specified file.

[1]#includeA<file name>
[2]#includeA"file name"
[3]#includeAidentifier

[1]Takes in <file name> from the directory specified by nc30's command line option -I.
Searches <file name> from the directory specified by environment variable "INC30"
if it's not found.

[2]Takes in "file name" from the current directory.Searches "file name" from the
following directory in sequence if it's not found.

1.The directory specified by nc30's startup option -I.
2.The directory specified by environment variable "INC30"

[3]If the macro-expanded identifier is <file name> or "file name" this command takes
in that file from the directory according to rules of search [1]or [2].

e The maximum number of levels of nesting is 40.
e An include error results if the specified file does not exist.

#error

[Function]

[Format]

[Description]

Suspends compilation and outputs the message to the standard output device.
#errorAcharacter string
e Suspends compilation.

e |exical string is found, this command outputs that character string to the standard
output device.

Appendix C-19

Appendix "C" Overview of C Language Specifications

#line
.

[Function] Changes the line number in the file.

[Format] #lineAintegerA“file name™"

[Description] e Specify the line number in the file and the filename.
e You can change the name of the source file and the line No.

#assert
.

[Function] Issues a warning if a constant expression results in zero (0).
[Format] #assertAconstant expression

[Description] e Issues a warning if a constant expression results in zero (0). Compile is contin-
ued, however.

[Warning(cpp30.82):x.c, line xx]Jassertion warning

Appendix C-20

Appendix "C" Overview of C Language Specifications

#pragma
e
[Function] Instructs the system to process NC30's extended functions.
[Format] 1. #pragma ROMAvariable name

2. #pragma SBDATAAvariable name

3. #pragma SECTIONApredetermined section nameAaltered section name

4. #pragma STRUCTAtag name of structureAunpack

4. #pragma STRUCTAtag name of structureAarrange

5. #pragma EXT4AMPTRAname of pointer

6. #pragma ADDRESSAvariable nameAabsolute address

6. #pragma EQUAvariable name = absolute address

7. #pragma INTCALLAiInt No.Aassembler function name(register name, register

[Description] 1.

name, ..)

#pragma INTCALLAInt No.AC language function name()
#pragma INTERRUPTA[/B | /E]Ainterrupt handling function name
#pragma INTFAinterrupt handling function name

. #pragma PARAMETERAassembler function name(register name, register name, ..)
10.
11.
12.
13.
13.
14.
15.
15.
16.
17.
18.

#pragma SPECIALAspecial No.Afunction name
#pragma ALMHANDLERAalarm handler function name
#pragma CYCHANDLERAcyclic handler function name
#pragma INTHANDLERAinterrupt handler function name
#pragma HANDLERAinterrupt handler function name
#pragma TASKAtask start function name

#pragma ASM

#pragma ENDASM

#pragma JSRAAfunction name

#pragma JARWAfunction name

#pragma PAGE

Facility to arrange in the rom section

Facility to describe variables using SB relative addressing

Facility to alter the section base name

Facility to control the array of structures

Facility to declare pointer for access 4M-byte ROM area

Facility to specify absolute addresses for input/output variables

Facility to declare functions using software interrupts

Facility to write interrupt functions

Facility to declare assembler functions passed via register
Facility to declare special page subroutine call functions

. Facility to describe alarm handler functions

. Facility to describe cyclic handler functions

. Facility to describe interrupt handler functions

. Facility to describe taskstart functions

. Facility to describe inline assembler

. Facility to declare functions calling with JSR.A instruction

. Facility to declare functions calling with JSR.W instruction
. Facility to output .PAGE

Appendix C-21

Appendix "C" Overview of C Language Specifications

e You can only specify the above 17 processing functions with #pragma. If you specify a
character string or identifier other than the above after #pragma, it will be ignored.

e Always use uppercase to specify the process (SECTION, INTERRUPT, etc.).

e By default, no warning is output if you specify an unsupported #pragma
function.Warnings are only output if you specify the nc30 command line option -
Wunknown_pragma (-WUP).

Appendix C-22

Appendix "C" Overview of C Language Specifications

#if - #elif - #else - #endif
.

[Function]

[Format]

[Description]

Performs conditional compilation.(Examines the expression true or false.)
#ifAconstant expression

#elifA.constant expression

#else

#endi%

e If the value of the constant is true (not 0), the commands #if and #elif process the
program that follows.

o #elif is used in a pair with #if, #ifdef, or #ifndef.

e felse is used in a pair with #if.Do not specify any tokens between #else and the
line feed.You can, however, insert a comment.

e #endif indicates the end of the range controlled by #if. Always be sure to enter
#endif when using command #if.

e Combinations of #if-#elif-#else-#endif can be nested.There is no set limit to the
number of levels of nesting (but it depends on the amount of available memory).

e You cannot use the sizeof operator, cast operator, or variables in a constant
expression.

Appendix C-23

Appendix "C" Overview of C Language Specifications

#ifdef -

#telif - #else - #endif

[Function]

[Format]

[Description]

Performs conditional compilation.(Examines the macro defined or not.)
#ifdefAidentifier

#eIifA.constant expression

#else

#end#

e If an identifier is defined, #ifdef processes the program that follows.You can also
describe the following.

#if/\ defined/\ identifier
#ifA definedA (identifier)

e #else is used in a pair with #ifdef.Do not specify any tokens between #else and
the line feed.You can, however, insert a comment.

e #elif is used in a pair with #if, #ifdef, or #ifndef.

e #endif indicates the end of the range controlled by #ifdef. Always be sure to enter
#endif when using command #ifdef.

e Combinations of #ifdef-#else-#endif can be nested.There is no set limit to the
number of levels of nesting (but it depends on the amount of available memory).

e You cannot use the sizeof operator, cast operator, or variables in a constant
expression.

Appendix C-24

Appendix "C" Overview of C Language Specifications

#ifndef - #elif - #else - #endif
.

[Function]

[Format]

[Description]

Performs conditional compilation.(Examines the macro defined or not.)
#ifndefAidentifier

#elifA.constant expression

#else

#endi%

e If an identifier isn’'t defined, #ifndef processes the program that follows.You can
also describe the followings.

#if/\ \defined/\ identifier
#if/A |defined/ (identifier)

e #else is used in a pair with #ifndef.Do not specify any tokens between #else and
the line feed.You can, however, insert a comment.

e #elif is used in a pair with #if, #ifdef, or #ifndef.

e #endif indicates the end of the range controlled by #ifndef. Always be sure to enter
#endif when using command #ifndef.

e Combinations of #ifndef-#else-#endif can be nested.There is no set limit to the
number of levels of nesting (but it depends on the amount of available memory).

e You cannot use the sizeof operator, cast operator, or variables in a constant
expression.

Appendix C-25

Appendix "C" Overview of C Language Specifications

C.3.3 Predefined Macros

The following macros are predefined in NC30:

e M16C
e NC30

C.3.4 Usage of predefined Macros

The predefined macros are used to, for example, use preprocess commands to switch
machine-dependent code in non-NC30 C programs.

#ifdef NC30
#pragma ADDRESS port0O 2H
#pragma ADDRESS portl 3H

telse
#pragma AD portA = Ox5F
#pragma AD portB = 0x60
#endif

Figure C.14 Usage Example of Predefined Macros

Appendix C-26

Appendix "D" C Language Specification Rules

(Appendix D)

C Language Specification Rules J

This appendix describes the internal structure and mapping of data processed by NC30,
the extended rules for signs in operations, etc., and the rules for calling functions and the
values returned by functions.

D.1 Internal Representation of Data

Table D.1 shows the number of bytes used by integral type data.

D.1.1 Integral Type

Table D.1 Data Size of Integral Type

Type Existence of sign Bit size Range of values
_Bool No 8 0,1
char No 8 0~ 255
unsigned char
signed char Yes 8 -128 - 127
int Yes 16 -32768 -~ 32767
short
signed int
signed short
unsigned int No 16 0~ 65535
unsigned short
long Yes 32 -2147483648 ~ 2147483647
signed long
unsigned long |No 32 04294967295
long long Yes 64 -9223372036854775808
signed long long 9223372036854775807
unsigned long long | No 64 18446744073709551615
float Yes 32 1.17549435e-38F ~ 3.40282347e+38F
double Yes 64 2.2250738585072014e-308
long double 1.7976931348623157e+308
near pointer No 16 0 - OXFFFF
far pointer No 32 0 - OXFFFFFFFF

e The _Bool type can not specify to sign.

e If a char type is specified with no sign, it is processed as an unsigned char type.

e If an int or short type is specified with no sign, it is processed as a signed int or
signed short type.

e If a long type is specified with no sign, it is processed as a sign long type.

e If a long long type is specified with no sign, it is processed as a sign long long type.

e If the bit field members of a structure are specified with no sign,they are processed
as unsigned.

e Can not specifies bit-fields of long long type.

Appendix D-1

Appendix "D"

C Language Specification Rules

D.1.2 Floating Type

Table D.2 shows the number of bytes used by floating type data.

Table D.2 Data Size of Floating Type

Type Existence of sign | Bit Size Range of values
float Yes 32 1.17549435e-38F - 3.40282347e+38F
double Yes 64 2.2250738585072014e-308
long double 1.7976931348623157e+308

NC30's floating-point format conforms to the format of IEEE (Institute of Electrical and
Electronics Engineers) standards. The following shows the single precision and double
precision floating-point formats.

(1)Single-precision floating point data format
Figure D.1 shows the format for binary floating point (float) data.

31 23 16 8 0

Fixed-point location

s:fixed-point part sign(1bit)
e:characteristic part(8bits)
m:fixed-point part(23bits)

Figure D.1 Single-precision floating point data format

(2)Double-precision floating point data format
Figure D.2 shows the format for binary floating point (double and long double) data.

63 52 48I 40 32 24 16 8 0

Fixed-point location

s:fixed-point part sign(1bit)
e:characteristic part(11bits)
m:fixed-point part(52bits)

Figure D.2 Double-precision floating point data format

Appendix D-2

Appendix "D" C Language Specification Rules

D.1.3 Enumerator Type
Enumerator types have the same internal representation as unsigned int types. Unless
otherwise specified, integers 0, 1, 2, ... are applied in the order in which the members
appear.
Note that you can also use the nc30 command line option -fchar_enumerator (-fCE) to
force enumerator types to have the same internal representation as unsigned char types.

D.1.4 Pointer Type
Table D.3 shows the number of bytes used by pointer type data.

Table D.3 Data Size of Pointer Types

Type Existence of Sign Bit Size Range
near pointers None 16 0-OxFFFF
far pointers None 32 0-OXFFFFFFFF

Note that only the least significant 24 bits of the 32 bits of far pointers are valid.

D.1.5 Array Types
Array types are mapped contiguously to an area equal to the product of the size of the
elements (in bytes) and the number of elements. They are mapped to memory in the order
in which the elements appear. Figure D.3 is an example of mapping.

[Example]
char ¢[5]={0, 1, 2, 3, 4};
cl0] O
c[1]
ADDRESS c[2] Sbyte

c[3]

¢ cl4] .

higher

Figure D.3 Example of Placement of Array

D.1.6 Structure types

Structure types are mapped contiguously in the order of their member data. Figure D.4
is an example of mapping.

(Example)
struct TAG {

char ¢

int i; S.C

}s; ¢ S 3byte
addres

S

higher

Figure D.4 Example of Placement of Structure(1/2)

Appendix D-3

Appendix "D"

C Language Specification Rules

Normally, there is no word alignment with structures. The members of structures are
mapped contiguously. To use word alignment, use the #pragma STRUCT extended func-
tion. #pragma STRUCT adds a byte of padding if the total size of the members is odd.

Figure D.5 is an example of mapping.

y

(Example)
#pragma STRUCT TAG
unpack
struct TAG {
char c¢;
int i;

}s;

¢

address
higher

S.C

-

S.i

4 bytes

padding

Figure D.5 Example of Placement of Structure(2/2)

D.1.7 Unions

Unions occupy an area equal to the maximum data size of their members. Figure D.6 is

an example of mapping.

(Example)
union TAG {
char c¢;
int i;
long lo;
}s; *
address
higher

-

4 bytes (size of lo)

IEigure D.6 Example of Placement of Union

Appendix D-4

Appendix "D" C Language Specification Rules

D.1.8 Bitfield Types
Bitfield types are mapped from the least significant bit. Figure D.7 is an example of
mapping.

(Example) bit7 bit0

struct BTAG { 5.b7[s.b6[s.b5[s.b4[s.b3[s.b2[s.b1[sb0] 1byte
char b0: —

char bl:

char b2:

char b3:

char b4:

char b5:

char b6 :

char b7:

}s;

PR RERR

IEigure D.7 Example of Placement of Bitfield(1/2)

If a bitfield member is of a different data type, it is mapped to the next address. Thus,
members of the same data type are mapped contiguously from the lowest address to
which that data type is mapped.

(Example) |

struct BTAG { bit7 bit0
char b0:1; —_
char bl:1; s.b7[s.b4[s.b3[s.b2 [s.b1|s.b0 1 byte
char b2:1;
char b3:1; 556 2 byte
char b4 :1;
int b56: 2;
char b7:1;
}si

address
higher

Figure D.8 Example of Placement of Bitfield(2/2)

Note :
e If no sign is specified, the default bitfield member type is unsigned.
e Can not specifies bit-fields of long long type.

Appendix D-5

Appendix "D" C Language Specification Rules

D.2 Sign Extension Rules
Under the ANSI and other standard C language specifications, char type data is sign
extended to int type data for calculations, etc. This specification prevents the maximum
value for char types being exceeded with unexpected results when performing the char-
type calculation shown in Figure D.9.

(func()
{

char cl,c2,c3;
cl=c2 * 2/ c3;
}

Figure D.9 Example of C Program

To generate code that maximizes code efficiency and maximizes speed, NC30 does not,
by default, extend char types to int types. The default can, however, be overridden using
the nc30 compile driver command line option -fansi or -fextend_to_int (-fETI) to achieve
the same sign extension as in standard C.

If you do not use the -fansi or -fextend_to_int (-fETI) option and your program assigns
the result of a calculation to a char type, as in Figure D.9, make sure that the maximum or
minimum™ value for a char type does not result in an overflow in the calculation.

*1. The ranges of values that can be expressed as char types in NC30 are as follows:
* unsigned char typec.ccooceeeiineen. 0o
* signed char typeocccveeeeiiiinnn. -128 -~ 127

D.3 Function Call Rules
D.3.1 Rules of Return Value

When returning a return value from a function, the system uses a register to return that
value for the integer, pointer, and floating-point types. Table D.4 shows rules on calls
regarding return values.

Table D.4 Return Value-related Calling Rules

Type of Return Value Rules

_Boll ROL Register

char

int RO Register

near pointer

float Least significant 16 bits returned by storing in RO register. Most

long significant 16 bits returned by storing in R2 register.

far pointer

double Values are stored in 16 bits beginning with the high-order bits

long double sequentially in order of registers R3, R2, R1, and RO as they
are returned.

long long Values are stored in 16 bits beginning with the high-order bits

sequentially in order of registers R3, R1, R2, and RO as they
are returned.

Structure Type
Union Type

Immediately before the function call, save the far address for
the area for storing the return value to the stack. Before execu-
tion returns from the called function, that function writes the
return value to the area indicated by the far address saved to
the stack.

Appendix D-6

Appendix "D" C Language Specification Rules

D.3.2 Rules on Argument Transfer

NC30 uses registers or stack to pass arguments to a function.

(1)Passing arguments via register

When the conditions below are met, the system uses the corresponding "Registers
Used" listed in Table D.5 and D.6 to pass arguments.

e Function is prototype declared ™ and the type of argument is known when calling the function.

e Variable argument "..."

is not used in prototype declaration.

e For the type of the argument of a function, the Argument and Type of Argument in Table D.5 and

D.6 are matched.

Table D.5 Rules on Argument Transfer via Register(NC30)

Argument

First Argument

Registers Used

First argument

char type, Bool type

R1L register

int type R1 register
near pointer type

Second argument int type R2 register
near pointer type

Table D.6 Rules on Argument Transfer via Register(NC308)

Argument

First Argument

Registers Used

First argument

char type, Bool type

R1L register

int type

R1 register

near pointer type

(2)Passing arguments via stack
All arguments that do not satisfy the register transfer requirements are passed via stack.
The table D.7 and D.8 summarize the methods used to pass arguments.

Table D.7 Rules on Passing Arguments to Function(NC30)

Type of Argument | First Argument | Second Argument | Third and Following Arguments
char type R1L register Stack Stack

_Bool type

int type R1 register R2 register Stack

near pointer type

Other types Stack Stack Stack

Table D.8 Rules on Passing Arguments to Function(NC308)
Type of Argument | First Argument | Second Argument

Third and Following Arguments

char type ROL register Stack Stack
_Bool type

int type RO register Stack Stack
near pointer type

Other types Stack Stack Stack

*1. NC30 uses a via-register transfer only when entering prototype declaration (i.e., when writing a new format).
Consequently, all arguments are passed via stack when description of K&R format is entered (description of old
format).

Note also that if a description format where prototype declaration is entered for the function (new format) and a
description of the K&R format (old format) coexist in given statement, the system may fail to pass arguments
to the function correctly, for reasons of language specifications of the C language.

Therefore, we recommends using a prototype- declaring description format as the standard format to write the
C language source files for NC30.

Appendix D-7

Appendix "D" C Language Specification Rules

D.3.3 Rules for Converting Functions into Assembly Language Symbols
The function names in which functions are defined in a C language source file are used
as the start labels of functions in an assembler source file.
The start label of a function in an assembler source file consists of the function name in
the C language source file prefixed by _ (underbar) or $ (dollar).
The table below lists the character strings that are added to a function name and the
conditions under which they are added.

Table D.9 Conditions Under Which Character Strings Are Added to Function

Added character string Condition
$ (dollar) Functions where any one of arguments is passed via register
_ (underbar) Functions that do not belong to the above™

Shown in Figure D.10 is a sample program where a function has register arguments and
where a function has its arguments passed via only a stack.

e N\

int func_proto(int , int , int); ~[1]
r—-—-——-—">"=>—"-—"™>—"™—""—"7™—"—™"—"7— 112
int func_proto(int i, int j, int k)| [2]
{
| returni +j + k; :
L_} _____________ -
r--—-- - T A
| int func_no_proto(i, j, k) | (3]
int i;
| int j; |
| int k; |
| £ I
| return i +j + k; |
L_} _____________ -
r—--—— - - - - -—"—-—""—7——-——-——-—7— A
| mai n(voi d) |
{
| int sum |
| sum = func_proto(1,2,3); | 5]
| sum = func_no_proto(1, 2, 3); | —[6]
L_} _____________ -

[1]This is the prototype declaration of function func_proto.

[2]This is the body of function func_proto. (Prototype declaration is entered, so this is a new
format.)

[3]This is the body of function func_no_proto. (This is a description in K&R format, that is, an old
format.)

[4]1This is the body of function main.

[5]This calls function func_proto.

[6]This calls function func_no_proto.

Figure D.10 Sample Program for Calling a Function (sample.c)

The compile result of the above sample program is shown in the next page. Figure D.11
shows the compile result of program part[2]that defines function func_proto.Figure D.12
shows the compile result of program part[3]that defines function func_no_proto.Figure
D.13 shows the compile result of program part[4]that calls function func_proto and function
func_no_proto.

*1. However, function names are not output for the functions that are specified by #pragma
INTCALL.

Appendix D-8

Appendix "D" C Language Specification Rules

CHH H#H FUNCTI ON func_proto
HE # FRAME AUTO (j) size 2, offset -4
CHH H# FRAME AUTO (i) size 2, of fset -2
“## # FRAME ARG (k) size 2, offset 5 ~[7]
 HH OH# REGI STER ARG (i) size 2, REG STER R1 8]
REGISTER ARG (j) size 2, REGSTER R2 [9]
HE H# ARG Si ze(2) Auto Size(4) Cont ext Si ze(5)
.section pr ogram
._file ‘'proto.c'
._line 4
;## # C_SRC : {
.glb $func_proto ~[10]
$f unc_proto:
enter #04H
mv. w R1, - 2[FB] ; i i
nmv. w R2, - 4] FB] N
._line 5
; ## # C_SRC : return i + j + k;
nov. w -2[FB], RO ; i
add.w -4[FB], RO T
add.w 5[FB], RO ok
exitd
[7]This passes the third argument k via stack.
[8]This passes the first argument i via register.
[9]This passes the second argument j via register.
[10]This is the start address of function func_proto.

Figure D.11 Compile Result of Sample Program (sample.c) (1/3)

In the compile result (1) of the sample program (sample.c) listed in Figure D.10, the first
and second arguments are passed via a register since function func_proto is prototype
declared. The third argument is passed via a stack since it is not subject to via-register

transfer.

Furthermore, since the arguments of the function are passed via register, the symbol
name of the function's start address is derived from "func_proto" described in the C

language source file by prefixing it with $ (dollar), hence, "$func_proto."

U4 ¥ FRAVE ARG (i) size 2 offset 5 !
| ## # FRAVE ARG (i) size 2 offset 7 |
i### FRAVEARG _ _ (k) _ size_ 2, _ _offset 9 _
(H#H # ARG Size(6) Auto Size(0) Context Size(5)
._line 11
(## # CSRC: {
.glb _func_no_prote[12]

_func_no_proto:
enter #00H

. line 12

yH# # C_SRC : returni + j + k;
nmov.w 5[FB], RO o
add.w 7[FB], RO]
add.w 9[FB], RO ok
exitd

[11]This passes all arguments via a stack.
[12]This is the start address of function func_no_proto.

Figure D.12 Compile Result of Sample Program (sample.c) (2/3)

Appendix D-9

Appendix "D" C Language Specification Rules

In the compile result (2) of the sample program (sample.c) listed in Figure D.10, all
arguments are passed via a stack since function func_no_proto is written in K&R format.

Furthermore, since the arguments of the function are not passed via register, the symbol
name of the function's start address is derived from "func_no_proto" described in the C
language source file by prefixing it with _ (underbar), hence, " func_no_proto."

e N\

B # FUNCTI ON mai n

CHE # FRAME AUTO (sum si ze 2, of fset -2
y## # ARG Size(0) Auto Size(2) Cont ext Si ze(5)
._line 16
(## # CSRC: |
.glb _main
_mai n:
enter #02H
_line 18
C_SRC sum = func_proto(1,2,3); [11]

push.w #0003H
mov.w #0002H, R2 |
mov.w #0001H, Rl |
jsr $func_proto |
add.b #02H, SP |
mv. w RO, - 2[FB] ;o sum
- T . Time" 19— — — — — — —————
> sum = func_no_proto(1,2,3); [12]
" push.'w "HOOO3H™— — — T~ T T T T T T — 1
push.w #0002H |
push.w #0001H |
I
I

r——— "% Fr————--
3
I+
e}
3

jsr _func_no_proto
add.b #06H, SP
___fov.w RO -2[FB] _ _: sum _ _ _ __ 4
line 20
C_SRC : }
exitd
. END

Figure D.13 Compile Result of Sample Program (sample.c) (3/3)

In Figure D.13, part[11]calls func_proto and part[12]calls func_no_proto.

Appendix D-10

Appendix "D" C Language Specification Rules

D.3.4 Interface between Functions

Figures D.16 to D.18 show the stack frame structuring and release processing for the
program shown in Figure D.14. Figure D.15 shows the assembly language program that is
produced when the program shown in Figure D.14 is compiled.

e N\

i nt func(int, int ,int)

voi d nai n(voi d)

{
i nt i = 0x1234; ~Argument to func
i nt j = 0x5678; ~Argument to func
i nt k = Ox9abc; ~Argument to func
k = func(i, j ,k);

}

int func(int x,int vy,int z)

{

int sum

sum= X +y + z ;
return sum ~ Return value to main

}

Figure D.14 Example of C Language Sample Program

e N\

VHHE H# FUNCTI ON nai n

CHHE # FRAME AUTO (k) si ze 2, of fset -6
B # FRAME AUTO (i) si ze 2, offset -4
CHE H# FRAMVE AUTO (i) si ze 2, offset -2
y## # ARC Size(0) Auto Size(6) Context Size(5);

.section program

._file 'proto2.c'

. line 5

.glb _main
_mai n: <[1]

enter #06H <[2]

. _line 6
y## # C_SRC : int i = 0x1234;

mov.w #1234H, - 2[FB] Do

. line 7
C SRC : int | = 0x5678;

mov. w #5678H, - 4] FB] D

._line 8
; ## # C_SRC : int k = 0x9abc;

mov.w #9abcH, - 6] FB] ok

. line 9
C SRC : k = func(i,j,k);

push.w -6[FB] ; Kk <[3]

mv.w -4[FB],R2 ;] <[4]

mov.w -2[FB],RL ;o <[5]

jsr $f unc ~[6]

add. b #02H, SP <[10]

mv. w RO, - 2[FB] ok <[11]

._line 10

exit

i:igure D.15 Assembly language sample program (1/2)

Appendix D-11

Appendix "D" C Language Specification Rules

CHE # FUNCTI ON f unc
CHE H#H FRANVE AUTO (X) si ze 2, offset -2
CHHE # FRAME AUTO (sum si ze 2, offset -2
B # FRAME ARG (y) si ze 2, offset 5
CHH # FRAME ARG (z) si ze 2, of fset 8
B # REG STER ARG (X) si ze 2, REG STER RO
yH## # ARG Size(4) Auto Size(2) Cont ext Si ze(8)

._line 13
(## # C SRC : {

.glb $f unc
$f unc:

ent er #02H <7

mv. w RO, - 2[FB] DX X

._line 16
yH## # C_SRC : sum= x + vy + z;

mov.w -2[FB], RO ;X

add.w 8[FB],RO Y

add. w 10[FB], RO 4

mv. w RO, - 2[FB] 7 sum

_line 17
C_SRC : return sum

mov.w -2[FB], R0

sum -[8]
<[9]

IEigure D.16 Assembly language sample program (2/2)

Figures D.16 to D.18 below show stack and register transitions in each processing in
Figure D.15. Processing in[1]0 [2](entry processing of function main) is shown in Figure
D.16. Processing[3]0 [4]0 [5]0 [6]0 [7](processing to call function func and construct

stack frames used in function func) is shown in Figure D.17.

Processing[8]0 [9]0 [10]0 [11](processing to return from function func to function main)

is shown in Figure D.18.

\.

<-SP

Stack usage state for

start of [1]-mai

n

L Variable i—]

—Variable j—|

L _Variable k—]

—OLD FB—

<-SP

<-FB

Stack usage state of [2]

Figure D.17 Entry processing of function main

Appendix D-12

Appendix "D"

C Language Specification Rules

Argument z(k)
=Argument z(k)=§ <SP =Argument z(k)=~"
r L Variable i—] L Variable i—]
| Variable]| | Variable]|
L —\/ariable k= —\/ariable k=
| oigre—|FB oid T8

Stack useage state of [3]

Stack useage state of [4][5]

Argument x(i)

Argument y(j)

| Return address |

=Argument z(k)=

| Variable i—]

| Variable j—]

f—\/ariable ke

- Old FB—]

Stack useage state of [6]

—Variable sum —

<SP

—Argument x(i)—

-Argument y(j)—

FB of Function
main |

| Return address |

=Argument z(k)=§

L __Variable i—

| Variable j—]

f—\/ariable ke

- Old FB—]

Stack useage state of [6]

(When PUSH instruction (When JSR instruction (When ENTER instruction
completed) completed) completed)
Figure D.18 Calling Function func and Entry Processing
RO
| Variable sum _1=-SP Return value of
func
—Argument x(i)—
- Argument y(j)—]
FB of Function
— main —
| Return addresS |
—Argument z(k)— - Argument z(k)—<-SP
—Variable i— | Variable i— | variable i <SP
| Variable j— Variable j Variable j
——Variable k— L___Variable ke L___Variable ke
Old FBe]<-FB old Fe—|~FB [oldFe— <P

Stack useage state of [8]

Stack useage state of [9]
(When EXITD instruction

completed)

Stack useage state of [10][11]

Figure D.19 Exit Processing of Function func

Appendix D-13

Appendix "D" C Language Specification Rules

D.4 Securing auto Variable Area

Variables of storage class auto are placed in the stack of the micro processor. Fora C
language source file like the one shown in Figure D.20, if the areas where variables of
storage class auto are valid do not overlap each other, the system allocates only one area
which is then shared between multiple variables.

func()

{
int i, k;

for (i=0; i<=0; i++){
process scope of i
}

(abbreviated)

for(.j:OxFF; <=0 ; j--){
process scope of |
}

(abbreviated)

for (k=0 k<=0 ; k++){
) process scope of k

}

IEigure D.20 Example of C Program

In this example, the effective ranges of three auto variables i, j, and k do not overlap, so
that a two-byte area (offset 1 from FB) is shared . Figure D.21 shows an assembly
language source file generated by compiling the program in Figure D.20.

7

FUNCTION func

A FRAME AUTO (k) size 2, offset-2 —[1]
HHH FRAME AUTO (j) size 2, offset-2 ~[2]
HHH FRAME AUTO (i) size 2, offset-2 ~[3]
.section program
._file 'testl.c'
._line 3
.glb _func
_func:
enter #02H

(remainder omitted)

* As shown by [1],[2], and [3],the three auto variables share the FB offset -2 area.

\.

Figure D.21 Example of Assembly Language Source Program

Appendix D-14

Appendix "E" Standard Library

(Appendix E)

Standard Library J

E.1 Standard Header Files

When using the NC30 standard library, you must include the header file that defines that
function.
This appendix details the functions and specifications of the standard NC30 header files.

E.1.1 Contents of Standard Header Files
NC30 includes the 15 standard header files shown in Table E.1.

Table E.1 List of Standard Header Files

Header File Name Contents

assert.h Outputs the program's diagnostic information.

ctype.h Declares character determination function as macro.

errno.h Defines an error number.

float.h Defines various limit values concerning the internal representation
of floating points.

limits.h Defines various limit values concerning the internal processing of
compiler.

locale.h Defines/declares macros and functions that manipulate program localization.

math.h Declares arithmetic/logic functions for internal processing.

setjmp.h Defines the structures used in branch functions.

signal.h Defines/declares necessary for processing asynchronous interrupts.

stdarg.h Defines/declares the functions which have a variable number of real arguments.

stddef.h Defines the macro names which are shared among standard include files.

stdio.h Defines the FILE structure.
Defines a stream name.
Declares the prototype of input/output functions.

stdlib.h Declares the prototypes of memory management and terminate
functions.

string.h Declares the prototypes of character string and memory handling
functions.

time.h Declares the functions necessary to indicate the current calendar time and de-
fines the type.

E.1.2 Standard Header Files Reference

Following are detailed descriptions of the standard header files supplied with NC30. The
header files are presented in alphabetical order.

The NC30 standard functions declared in the header files and the macros defining the
limits of numerical expression of data types are described with the respective header files.

Appendix E-1

Appendix "E" Standard Library

assert.h

[Function] Defines assert function.

ctype.h

[Function] Defines/declares string handling function.The following lists string handling functions.

Function Contents
isalnum Checks whether the character is an alphabet or numeral.
isalpha Checks whether the character is an alphabet.
iscntrl Checks whether the character is a control character.
isdigit Checks whether the character is a numeral.
isgraph Checks whether the character is printable (except a blank).
islower Checks whether the character is a lower-case letter.
isprint Checks whether the character is printable (including a blank).
ispunct Checks whether the character is a punctuation character.
isspace Checks whether the character is a blank, tab, or new line.
isupper Checks whether the character is an upper-case letter.
isxdigit Checks whether the character is a hexadecimal character.
tolower Converts the character from an upper-case to a lower-case.
toupper Converts the character from a lower-case to an upper-case.

errno.h

[Function] Defines error number.

Appendix E-2

Appendix "E" Standard Library

float.h
.

[Function] Defines the limits of internal representation of floating point values. The following lists

the macros that define the limits of floating point values.
In NC30, long double types are processed as double types. Therefore, the limits apply-
ing to double types also apply to long double types.

Macro name Contents Defined value
DBL_DIG Maximum number of digits of double-type decimal preci- | 15
sion
DBL_EPSILON Minimum positive value where 1.0+DBL_EPSILON is|2.2204460492503131e-16

found notto be 1.0

DBL_MANT_DIG

Maximum number of digits in the mantissa part when a
double-type floating-point value is matched to the radix in
its representation

53

DBL_MAX Maximum value that a double-type variable can take on as | 1.7976931348623157e+308
value

DBL_MAX_10_EXP | Maximum value of the power of 10 that can be represented | 308
as a double-type floating-point numeric value

DBL_MAX_EXP Maximum value of the power of the radix that can be repre- | 1024

sented as a double-type floating-point numeric value

DBL_MIN Minimum value that a double-type variable can take on as | 2.2250738585072014e-308
value

DBL_MIN_10_EXP |Minimum value of the power of 10 that can be represented | -307
as a double-type floating-point numeric value

DBL_MIN_EXP Minimum value of the power of the radix that can be repre- | -1021
sented as a double-type floating-point numeric value

FLT_DIG Maximum number of digits of float-type decimal precision |6

FLT_EPSILON Minimum positive value where 1.0+FLT_EPSILON is|1.19209290e-07F

found not to be 1.0

FLT_MANT_DIG

Maximum number of digits in the mantissa part when a
float-type floating-point value is matched to the radix in its
representation

24

FLT_MAX

Maximum value that a float-type variable can take on as
value

3.40282347e+38F

FLT_MAX_10_EXP | Maximum value of the power of 10 that can be represented | 38
as a float-type floating-point numeric value
FLT_MAX_EXP Maximum value of the power of the radix that can be repre- | 128
sented as a float-type floating-point numeric value
FLT_MIN Minimum value that a float-type variable can take on as |1.17549435e-38F
value
FLT_MIN_10_EXP |Minimum value of the power of 10 that can be represented | -37
as a float-type floating-point numeric value
FLT_MIN_EXP Maximum value of the power of the radix that can be repre- [-125
sented as a float-type floating-point numeric value
FLT_RADIX Radix of exponent in floating-point representation 2
FLT_ROUNDS Method of rounding off a floating-point number 1(Rounded to the nearest whole number)

Appendix E-3

Appendix "E"

Standard Library

limits.h

[Function] Defines the limitations applying to the internal processing of the compiler. The following
lists the macros that define these limits.

Macro name Contents Defined value
MB_LEN_MAX |Maximum value of the number of multibyte charac- | 1
ter-type bytes
CHAR_BIT Number of char-type bits 8
CHAR_MAX Maximum value that a char-type variable can take | 255
on as value
CHAR_MIN Minimum value that a char-type variable can take |0
on as value
SCHAR_MAX Maximum value that a signed char-type variable 127
can take on as value
SCHAR_MIN Minimum value that a signed char-type variable [-128
can take on as value
INT_MAX Maximum value that a int-type variable can take on |32767
as valueMaximum value that a int-type variable
can take on as value
INT_MIN Minimum value that a int-type variable can take on [-32768
as value
SHRT_MAX Maximum value that a short int-type variable can |32767
take on as value
SHRT_MIN Minimum value that a short int-type variable can [-32768
take on as value
LONG_MAX Maximum value that a long-type variable can take {2147483647
on as value
LONG_MIN Minimum value that a long-type variable [-2147483648
can take on as value
LLONG_MAX Maximum value that a signed long long-type vari- |9223372036854775807
able can take on as value
LLONG_MIN Minimum value that a signed long long- [-9223372036854775808
type variable can take on as value
UCHAR_MAX Maximum value that an unsigned char-type vari- 255
able can take on as value
UINT_MAX Maximum value that an unsigned int-type variable | 65535
can take on as value
USHRT_MAX Maximum value that an unsigned short int-type |65535
variable can take on as value
ULONG_MAX Maximum value that an unsigned long int-type [4294967295
variable can take on as value
ULLONG_MAX |Maximum value that an unsigned long long int- | 18446744073709551615

type variable can take on as value

Appendix E-4

Appendix "E" Standard Library

locale.h
.

[Function] Defines/declares macros and functions that manipulate program localization.The follow-
ing lists locale functions.

Function Contents
localeconv Initializes struct Iconv.
setlocale Sets and searches the locale information of a program.

math.h
.

[Function] Declares prototype of mathematical function.The following lists mathematical functions.

Function Contents

acos Calculates arc cosine.

asin Calculates arc sine.

atan Calculates arc tangent.

atan2 Calculates arc tangent.

ceil Calculates an integer carry value.

cos Calculates cosine.

cosh Calculates hyperbolic cosine.

exp Calculates exponential function.

fabs Calculates the absolute value of a double-precision floating-point
number.

floor Calculates an integer borrow value.

fmod Calculates the remainder.

frexp Divides floating-point number into mantissa and exponent parts.

labs Calculates the absolute value of a long-type integer.

Idexp Calculates the power of a floating-point number.

log Calculates natural logarithm.

log10 Calculates common logarithm.

modf Calculates the division of a real number into the mantissa and
exponent parts.

pow Calculates the power of a number.

sin Calculates sine.

sinh Calculates hyperbolic sine.

sgrt Calculates the square root of a numeric value.

tan Calculates tangent.

tanh Calculates hyperbolic tangent.

Appendix E-5

Appendix "E" Standard Library

setjmp.h

[Function] Defines the structures used in branch functions.

Function Contents
longjmp Performs a global jump.
setjmp Sets a stack environment for a global jump.
signal.h

[Function] Defines/declares necessary for processing asynchronous interrupts.

stdarg.h

[Function] Defines/declares the functions which have a variable number of real arguments.

stddef.h

[Function] Defines the macro names which are shared among standard include files.

Appendix E-6

Appendix "E" Standard Library

stdio.h

[Function] Defines the FILE structure,stream name, and declares 1/O function prototypes. Proto-
type declarations are made for the following functions.

Type Function Contents
Initialize |init Initializes M16C/60 family input/outputs.
clearerr Initializes (clears) error status specifiers.
Input fgetc Inputs one character from the stream.
getc Inputs one character from the stream.
getchar Inputs one character from stdin.
fgets Inputs one line from the stream.
gets Inputs one line from stdin.
fread Inputs the specified items of data from the stream.
scanf Inputs characters with format from stdin.
fscanf Inputs characters with format from the stream.
sscanf Inputs data with format from a character string.
Output |fputc Outputs one character to the stream.
putc Outputs one character to the stream.
putchar Outputs one character to stdout.
fputs Outputs one line to the stream.
puts Outputs one line to stdout.
fwrite Outputs the specified items of data to the stream.
perror Outputs an error message to stdout.
printf Outputs characters with format to stdout.
fflush Flushes the stream of an output buffer.
fprintf Outputs characters with format to the stream.
sprintf Writes text with format to a character string.
vfprintf Output to a stream with format.
vprintf Output to stdout with format.
vsprintf Output to a buffer with format.
Return |ungetc Sends one character back to the input stream.
Deter-|ferror Checks input/output errors.
mina-
tion feof Checks EOF (End of File).

Appendix E-7

Appendix "E" Standard Library

stdlib.h
-

[Function] Declares the prototypes of memory management and terminate functions.

Function Contents
abort Terminates the execution of the program.
abs Calculates the absolute value of an integer.
atof Converts a character string into a double-type floating- point num-
ber.
atoi Converts a character string into an int-type integer.
atol Converts a character string into a long-type integer.
bsearch Performs binary search in an array.
calloc Allocates a memory area and initializes it to zero (0).
div Divides an int-type integer and calculates the remainder.
free Frees the allocated memory area.
labs Calculates the absolute value of a long-type integer.
Idiv Divides a long-type integer and calculates the remainder.
malloc Allocates a memory area.
mblen Calculates the length of a multibyte character string.
mbstowcs Converts a multibyte character string into a wide character string.
mbtowc Converts a multibyte character into a wide character.
gsort Sorts elements in an array.
realloc Changes the size of an allocated memory area.
strtod Converts a character string into a double-type integer.
strtol Converts a character string into a long-type integer.
strtoul Converts a character string into an unsigned long-type integer.
wcstombs Converts a wide character string into a multibyte character string.
wctomb Converts a wide character into a multibyte character.

Appendix E-8

Appendix "E" Standard Library

string.h
|

[Function] Declares the prototypes of string handling functions and memory handling functions.

Type Function Contents
Copy strcpy Copies a character string.
strncpy Copies a character string ('n' characters).
Concatenate |strcat Concatenates character strings.
strncat Concatenates character strings ('n' characters).
Compare |strcmp Compares character strings .
strcoll Compares character strings (using locale information).
stricmp Compares character strings. (All alphabets are handled as
upper-case letters.)
strncmp Compares character strings ('n' characters).
strnicmp Compares character strings (‘'n' characters). (All alphabets
are handled as upper-case letters.)
Search strchr Searches the specified character beginning with the top of
the character string.
strcspn Calculates the length (number) of unspecified characters
that are not found in the other character string.
strpbrk Searches the specified character in a character string from
the other character string.
strrchr Searches the specified character from the end of a character
string.
strspn Calculates the length (number) of specified characters that
are found in the other character string.
strstr Searches the specified character from a character string.
strtok Divides some character string from a character string into
tokens.
Length strlen Calculates the number of characters in a character string.
Convert strerror Converts an error number into a character string.
strxfrm Converts a character string (using locale information).
Initialize bzero Initializes a memory area (by clearing it to zero).
Copy bcopy Copies characters from a memory area to another.
memcpy Copies characters ('n' bytes) from a memory area to another.
memset Set a memory area by filling with characters.
Compare | memcmp Compares memory areas ('n' bytes).
memicmp Compares memory areas (with alphabets handled as upper-
case letters).
Search memchr Searches a character from a memory area.

time.h
e,

[Function] Declares the functions necessary to indicate the current calendar time and defines the
type.

Appendix E-9

Appendix "E" Standard Library

E.2

E21

Standard Function Reference

Overview of Standard Library

NC30 has 119 Standard Library items. Each function can be classified into one of the
following 11 categories according to its function.

1.String Handling Functions
Functions to copy and compare character strings, etc.

2.Character Handling Functions
Functions to judge letters and decimal characters, etc., and to covert uppercase to
lowercase and vice-versa.

3.1/0 Functions
Functions to input and output characters and character strings. These include functions
for formatted I/O and character string manipulation.

4.Memory Management Functions
Functions for dynamically securing and releasing memory areas.

5.Memory Manipulation Functions
Functions to copy, set, and compare memory areas.

6.Execution Control Functions
Functions to execute and terminate programs, and for jumping from the currently execut-
ing function to another function.

7.Mathematical Functions
Functions for calculating sines (sin) and cosines (cos), etc.
* These functions require time.
Therefore, pay attention to the use of the watchdog timer.

8.Integer Arithmetic Functions
Functions for performing calculations on integer values.

9.Character String Value Convert Functions
Functions for converting character strings to numerical values.

10. Multi-byte Character and Multi-byte Character String Manipulate Functions
Functions for processing multi-byte characters and multi-byte character strings.

11. Locale Functions
Locale-related functions.

Appendix E-10

Appendix "E" Standard Library

E.2.2 List of Standard Library Functions by Function

a. String Handling Functions
The following lists String Handling Functions.

Table E.2 String Handling Functions

Type Function Contents Reentrant
Copy strcpy Copies a character string. O
strncpy Copies a character string ('n' characters). O
Concatenate | strcat Concatenates character strings. g
strncat Concatenates character strings ('n' characters). O
Compare |strcmp Compares character strings . g
strcoll Compares character strings (using locale information). O
stricmp Compares character strings. (All alphabets are O
handled as upper-case letters.)
strncmp |Compares character strings ('n' characters). O
strnicmp |Compares character strings ('n' characters). (All al- O
phabets are handled as upper-case letters.)
Search |[strchr Searches the specified character beginning with the O
top of the character string.
strcspn Calculates the length (number) of unspecified charac- O
ters that are not found in the other character string.
strpbrk Searches the specified character in a character string O
from the other character string.
strrchr Searches the specified character from the end of a O
character string.
strspn Calculates the length (number) of specified characters O
that are found in the other character string.
strstr Searches the specified character from a character O
string.
strtok Divides some character string from a character string O
into tokens.
Length strlen Calculates the number of characters in a character O
string.
Convert |[strerror Converts an error number into a character string. O
strxfrm Converts a character string (using locale information). O

* Several standard functions use global variables that are specific to that function. If, while that
function is called and is being executed, an interrupt occurs and that same function is called by
the interrupt processing program, the global variables used by the function when first called may
be overwritten.

This does not occur to global variables of functions with reentrancy (indicated by a O in the
table). However, if the function does not have reentrancy (indicated by a O in the table), care

must be taken if the function is also used by an interrupt processing program.

Appendix E-11

Appendix "E" Standard Library

b. Character Handling Functions
The following lists character handling functions.

Table E.3 Character Handling Functions

Function Contents Reentrant

isalnum Checks whether the character is an alphabet or nu- O
meral.

isalpha Checks whether the character is an alphabet. O

iscntrl Checks whether the character is a control character. O

isdigit Checks whether the character is a numeral. O

isgraph Checks whether the character is printable (except a O
blank).

islower Checks whether the character is a lower-case letter. O

isprint Checks whether the character is printable (including a O
blank).

ispunct Checks whether the character is a punctuation charac- O
ter.

isspace Checks whether the character is a blank, tab, or new O
line.

isupper Checks whether the character is an upper-case letter. O

isxdigit Checks whether the character is a hexadecimal char- O
acter.

tolower Converts the character from an upper-case to a lower- O
case.

toupper Converts the character from a lower-case to an upper- O

case.

Appendix E-12

Appendix "E" Standard Library

c. Input/Output Functions
The following lists Input/Output functions.

Table E.4 Input/Output Functions

Type Function Contents Reentrant
Initialize |init Initializes M16C series's input/outputs. O
clearerror Initializes (clears) error status specifiers. O
Input fgetc Inputs one character from the stream. O
getc Inputs one character from the stream. O
getchar Inputs one character from stdin. O
fgets Inputs one line from the stream. O
gets Inputs one line from stdin. O
fread Inputs the specified items of data from the stream. O
scanf Inputs characters with format from stdin. O
fscanf Inputs characters with format from the stream. O
sscanf Inputs data with format from a character string. O
Output fputc Outputs one character to the stream. O
putc Outputs one character to the stream. O
putchar Outputs one character to stdout. O
fputs Outputs one line to the stream. O
puts Outputs one line to stdout. O
fwrite Outputs the specified items of data to the stream. O
perror Outputs an error message to stdout. O
printf Outputs characters with format to stdout. O
fflush Flushes the stream of an output buffer. O
fprintf Outputs characters with format to the stream. O
sprintf Writes text with format to a character string. O
viprintf Output to a stream with format. O
vprintf Output to stdout with format. O
vsprintf Output to a buffer with format. O
Return ungetc Sends one character back to the input stream. O
Determi-|ferror Checks input/output errors. O
nation feof Checks EOF (End of File). O

d. Memory Management Functions
The following lists memory management functions.

Table E.5 Memory Management Functions

Function Contents Reentrant
calloc Allocates a memory area and initializes it to zero (0). O
free Frees the allocated memory area. O
malloc Allocates a memory area. O
realloc Changes the size of an allocated memory area. O

Appendix E-13

Appendix "E" Standard Library

e. Memory Handling Functions
The following lists memory handling functions.

Table E.6 Memory Handling Functions

Type Function Contents Reentrant
Initialize |bzero Initializes a memory area (by clearing it to zero). O
Copy bcopy Copies characters from a memory area to another. O

memcpy Copies characters ('n' bytes) from a memory area O
to another.
memset Set a memory area by filling with characters. O
Compare |memcmp Compares memory areas ('n' bytes). O
memicmp Compares memory areas (with alphabets handled O
as upper-case letters).
Move memmove Moves the area of a character string. O
Search |memchr Searches a character from a memory area. O
f. Execution Control Functions
The following lists execution control functions.
Table E.7 Execution Control Functions
Function Contents Reentrant
abort Terminates the execution of the program. O
longjmp Performs a global jump. O
setjmp Sets a stack environment for a global jump. O

Appendix E-14

Appendix "E"

Standard Library

g. Mathematical Functions
The following lists mathematical functions.

Table E.8 Mathematical Functions

Function Contents Reentrant
acos Calculates arc cosine. O
asin Calculates arc sine. O
atan Calculates arc tangent. O
atan2 Calculates arc tangent. O
ceil Calculates an integer carry value. O
cos Calculates cosine. O
cosh Calculates hyperbolic cosine. O
exp Calculates exponential function. O
fabs Calculates the absolute value of a double-precision float- O

ing-point number.
floor Calculates an integer borrow value. O
fmod Calculates the remainder. O
frexp Divides floating-point number into mantissa and exponent O
parts.
labs Calculates the absolute value of a long-type integer. O
Idexp Calculates the power of a floating-point number. O
log Calculates natural logarithm. O
log10 Calculates common logarithm. O
modf Calculates the division of a real number into the mantissa O
and exponent parts.
pow Calculates the power of a number. O
sin Calculates sine. O
sinh Calculates hyperbolic sine. O
sgrt Calculates the square root of a numeric value. O
tan Calculates tangent. O
tanh Calculates hyperbolic tangent. O
h. Integer Arithmetic Functions
The following lists integer arithmetic functions.
Table E.9 Integer Arithmetic Functions

Function Contents Reentrant
abs Calculates the absolute value of an integer. O
bsearch Performs binary search in an array. O
div Divides an int-type integer and calculates the remainder. O
labs Calculates the absolute value of a long-type integer. O
Idiv Divides a long-type integer and calculates the remainder. O
gsort Sorts elements in an array. O
rand Generates a pseudo-random number. O
srand Imparts seed to a pseudo-random number generating rou- O

tine.

Appendix E-15

Appendix "E"

Standard Library

I. Character String Value Convert Functions
The following lists character string value convert functions.

Table E.10 Character String Value Convert Functions

Function Contents Reentrant
atof Converts a character string into a double-type floating- O
point number.
atoi Converts a character string into an int-type integer. O
atol Converts a character string into a long-type integer. O
strtod Converts a character string into a double-type integer. O
strtol Converts a character string into a long-type integer. O
strtoul Converts a character string into an unsigned long-type O

integer.

j. Multi-byte Character and Multi-byte Character String Manipulate Functions
The following lists Multibyte Character and Multibyte Character string Manipulate Func-

tions.

Table E.11 Multibyte Character and Multibyte Character String Manipulate Functions

Function Contents Reentrant
mblen Calculates the length of a multibyte character string. O
mbstowcs Converts a multibyte character string into a wide char- O

acter string.
mbtowc Converts a multibyte character into a wide character. O
wcstombs Converts a wide character string into a multibyte char- O
acter string.
wctomb Converts a wide character into a multibyte character. O
k. Localization Functions
The following lists localization functions.
Table E.12 Localization Functions

Function Contents Reentrant
localeconv Initializes struct lconv. O
setlocale Sets and searches the locale information of a program. O

Appendix E-16

Appendix "E" Standard Library

E.2.3 Standard Function Reference

The following describes the detailed specifications of the standard functions provided in
NC30. The functions are listed in alphabetical order.

Note that the standard header file (extension .h) shown under "Format" must be in-
cluded when that function is used.

abort
Execution Control Functions|

[Function] Terminates the execution of the program abnormally.
[Format] #include <stdlib.h>
void abort(void);
[Method] function
[Variable] No argument used.
[ReturnValue] e No value is returned.
[Description] e Terminates the execution of the program abnormally.

[Note] e Actually,the program loops in the abort function.

abs
Integer Arithmetic Functions|

[Function] Calculates the absolute value of an integer.

[Format] #include <stdlib.h>
int abs(n);

[Method] function

[Variable] iNtN; s Integer

[ReturnValue] e Returns the absolute value of integer n (distance from 0).

Appendix E-17

Appendix "E" Standard Library

aCosS
Mathematical Functions|

[Function] Calculates arc cosine.
[Format] #include <math.h>
double acos(x);
[Method] function
[Variable] double x; arbitrary real number
[ReturnValue] ® Assumes an error and returns 0 if the value of given real number x is outside the

range of -1.0 to 1.0.
e Otherwise, returns a value in the range from 0 to p radian.

asin
Mathematical Functions
[Function] Calculates arc sine.
[Format] #include <math.h>
double asin(x);
[Method] function
[Variable] double x; arbitrary real number
[ReturnValue] e Assumes an error and returns O if the value of given real number x is outside the

range of -1.0 to 1.0.
e Otherwise, returns a value in the range from -p/2 to p/2 radian.

Appendix E-18

Appendix "E" Standard Library

atan

Mathematical Functions|

[Function]

[Format]

[Method]

[Variable]

Calculates arc tangent.

#include <math.h>

double atan(x);

function

double x; arbitrary real number

[ReturnValue] e Returns a value in the range from -102 to 1/2 radian.

atan2

Mathematical Functions|

[Function]

[Format]

[Method]

[Variable]

Calculates arc tangent.

#include <math.h>

double atan2(x,vy);

function
double x; arbitrary real number
doubley; arbitrary real number

[ReturnValue] e Returns a value in the range from -1t to mradian.

Appendix E-19

Appendix "E" Standard Library

atof
Character String Value Convert Functions|

[Function] Converts a character string into a double-type floating- point number.
[Format] #include <stdlib.h>
double atof(s);
[Method] function
[Variable] const char _far *s; Pointer to the converted character string

[ReturnValue] e Returns the value derived by converting a character string into a double-precision
floating-point number.

atol
Character String Convert Functions|

[Function] Converts a character string into an int-type integer.

[Format] #include <stdlib.h>
int atoi(s);
[Method] function
[Variable] const char _far *s; Pointer to the converted character string

[ReturnValue] e Returns the value derived by converting a character string into an int-type integer.

Appendix E-20

Appendix "E" Standard Library

atol

Character String Convert Functions|

[Function]

[Format]

[Method]

[Variable]

Converts a character string into a long-type integer.

#include <stdlib.h>

long atol(s);

function

const char _far *s; Pointer to the converted character string

[ReturnValue] eReturns the value derived by converting a character string into an long-type integer.

bcopy

Memory Handling Functions

[Function]

[Format]

[Method)]

[Variable]

Copies characters from a memory area to another.

#include <string.h>

void bcopy(src, dtop, size);

function
char _far *src;........... Start address of the memory area to be copied from
char _far *dtop;......... Start address of the memory area to be copied to

unsigned long size; ... Number of bytes to be copied

eNo value is returned.

[ReturnValue] eCopies the number of bytes specified in size from the beginning of the area speci-

[Description]

fied in src to the area specified in dtop.

Appendix E-21

Appendix "E" Standard Library

bsearch
. _____________Integer Arithmetic Functions|

[Function] Performs binary search in an array.
[Format] #include <stdlib.h>

void _far *bsearch(key, base, nelem, size, cmp);

[Method] function

[Variable] const void _far *s;..... Search key
const void _far *s;..... Start address of array
size_t nelem; Element number
Size _tsize; ...cccceeeennnn. Element size
int cmpO;.cooveeeeeenenn. Compare function

[ReturnValue] e Returns a pointer to an array element that equals the search key.
e Returns a NULL pointer if no elements matched.

[Note] e The specified item is searched from the array after it has been sorted in ascend-
ing order.
bzero
Memory Handling Functions
[Function] Initializes a memory area (by clearing it to zero).
[Format] #include <string.h>

void bzero(top, size);

[Method] function

[Argument] char _far *top;........... Start address of the memory area to be cleared to zero
unsigned long size; ... Number of bytes to be cleared to zero

[ReturnValue] e No value is returned.

[Description] e Initializes (to 0) the number of bytes specified in size from the starting address of
the area specified in top.

Appendix E-22

Appendix "E" Standard Library

calloc
Memory Management Functions

[Function] Allocates a memory area and initializes it to zero (0).
[Format] #include <stdlib.h>

void _far * calloc(n, size);

[Method] function
[Argument] size_tn; Number of elements
size_t size; Value indicating the element size in bytes

[ReturnValue] ® Returns NULL if a memory area of the specified size could not be allocated.

[Description] e After allocating the specified memory, it is cleared to zero.
e The size of the memory area is the product of the two parameters.

[Rule] e The rules for securing memory are the same as for malloc.

ceil
Mathematical Functions
[Function] Calculates an integer carry value.
[Format] #include <math.h>
double ceil(x);
[Method] function

[Argument] double x; arbitrary real number

[ReturnValue] e Returns the minimum integer value from among integers larger than given real
number X.

Appendix E-23

Appendix "E" Standard Library

clearerr

Input/Output Functions
[Function] Initializes (clears) error status specifiers.
[Format] #include <stdio.h>

void clearerr(stream);
[Method] function

[Argument] FILE _far *stream; ... Pointer of stream

[ReturnValue] e No value is returned.

[Description] e Resets the error designator and end of file designator to their normal values.

COS
Mathematical Functions|

[Function] Calculates cosine.
[Format] #include <math.h>
double cos(x);
[Method] function
[Argument] double x; arbitrary real number

[ReturnValue] e Returns the cosine of given real number x handled in units of radian.

Appendix E-24

Appendix "E" Standard Library

cosh

Mathematical Functions|

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates hyperbolic cosine.

#include <math.h>

double cosh(x);

function

double x; arbitrary real number

e Returns the hyperbolic cosine of given real number x.

div

Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Divides an int-type integer and calculates the remainder.

#include <stdlib.h>

div_t div(number, denom);

function
int number; Dividend
int denom; Divisor

e Returns the quotient derived by dividing "number" by "denom" and the remainder
of the division.

e Returns the quotient derived by dividing "number” by "denom" and the remainder
of the division in structure div_t.
e div_t is defined in stdlib.h. This structure consists of members int quot and int rem.

Appendix E-25

Appendix "E" Standard Library

exp

Mathematical Functions|

[Function]

[Format]

[Method]

[Argument]

Calculates exponential function.

#include <math.h>

double exp(x);

function

double x; arbitrary real number

[ReturnValue] e Returns the calculation result of an exponential function of given real number x.

fabs

Mathematical Functions|

[Function]

[Format]

[Method]

[Argument]

Calculates the absolute value of a double-precision floating-point number.

#include <math.h>

double fabs(x);

function

double x; arbitrary real number

[ReturnValue] e Returns the absolute value of a double-precision floating-point number.

Appendix E-26

Appendix "E" Standard Library

feof
Input/Output Functions|

[Function] Checks EOF (End of File).
[Format] #include <stdio.h>
int feof(stream);
[Method] macro
[Argument] FILE _far *stream, Pointer of stream

[ReturnValue] ® Returns "true" (other than 0) if the stream is EOF.
Otherwise, returns NULL (0).

[Description] e Determines if the stream has been read to the EOF.
Interprets code Ox1A as the end code and ignores any subsequent data.

ferror
Input/Output Functions

[Function] Checks input/output errors.
[Format] #include <stdio.h>
int ferror(stream);
[Method)] macro
[Argument] FILE _far *stream; Pointer of stream

[ReturnValue] e Returns "true" (other than 0) if the stream is in error.
Otherwise, returns NULL (0).

[Description] e Determines errors in the stream.
Interprets code Ox1A as the end code and ignores any subsequent data.

Appendix E-27

Appendix "E" Standard Library

fflush

[Function] Flushes the stream of an output buffer.
[Format] #include <stdio.h>

int fflush(stream);
[Method] function

[Argument] FILE _far *stream; Pointer of stream

[ReturnValue] e Always returns O.

fgetc
... InputOuiputFunctions

[Function] Reads one character from the stream.
[Format] #include <stdio.h>
int fgetc(stream);
[Method] function
[Argument] FILE _far *stream; Pointer of stream

[ReturnValue] e Returns the one input character.
Returns EOF if an error or the end of the stream is encountered.

Reads one character from the stream.
Interprets code Ox1A as the end code and ignores any subsequent data.

[Description]

Appendix E-28

Appendix "E" Standard Library

fgets

[Function] Reads one line from the stream.
[Format] #include <stdio.h>

char _far * fgets(buffer, n, stream);

[Method] function
[Argument] char _far *buffer; Pointer of the location to be stored in
iNtN; e, Maximum number of characters

FILE far *stream; Pointer of stream

[ReturnValue] e Returns the pointer of the location to be stored (the same pointer as given by the
argument) if normally input.

Returns the NULL pointer if an error or the end of the stream is encountered.

[Description] e Reads character string from the specified stream and stores it in the buffer
e Input ends at the input of any of the following:
......................... new line character (\n")
......................... n-1 characters
......................... end of stream
e A null character (\0") is appended to the end of the input character string.
e The new line character ("\n') is stored as-is.
e Interprets code 0x1A as the end code and ignores any subsequent data.

Appendix E-29

Appendix "E" Standard Library

floor

Mathematical Functions|

[Function]

[Format]

[Method]

[Argument]

Calculates an integer borrow value.

#include <math.h>

double floor(x);

function

double Xx; arbitrary real number

[ReturnValue] e The real value is truncated to form an integer,which is returned as a double type.

fmod

Mathematical Functions|

[Function]

[Format]

[Method]

[Argument]

Calculates the remainder.

#include <math.h>

double fmod(x ,y);

function
double x; dividend
double y; divisor

[ReturnValue] e Returns a remainder that derives when dividend x is divided by divisor y.

Appendix E-30

Appendix "E" Standard Library

fprintf
Input/Output Functions
[Function] Outputs characters with format to the stream.
[Format] #include <stdio.h>
int fprintf(stream, format, argument...);

[Method] function

[Argument] FILE _far *stream; Pointer of stream
const char _far *format;. Pointer of the format specifying character string

[ReturnValue] e Returns the number of characters output.
Returns EOF if a hardware error occurs.

[Description] e Argument is converted to a character string according to format and output to the
stream.

Interprets code Ox1A as the end code and ignores any subsequent data.

Format is specified in the same way as in printf.

fputc
... Input/OutputFunctions

[Function] Outputs one character to the stream.
[Format] #include <stdio.h>

int fputc(¢, stream);

[Method] function
[Argument] intc; ..ceeeenne Character to be output
FILE _far *stream; Pointer of the stream

[ReturnValue] e Returns the output character if output normally.
e Returns EOF if an error occurs.

[Description] e Outputs one character to the stream.

Appendix E-31

Appendix "E" Standard Library

fputs
.. Input/OutputFunctions

[Function] Outputs one line to the stream.
[Format] #include <stdio.h>

int fputs (str, stream);
[Method] function

[Argument] const char _far *str; Pointer of the character string to be output
FILE _far *stream; Pointer of the stream

[ReturnValue] e Returns 0 if output normally.
e Returns any value other than 0 (EOF) if an error occurs.

[Description] e Outputs one line to the stream.

fread
Input/Output Functions

[Function] Reads fixed-length data from the stream
[Format] #include <stdio.h>

size_t fread(buffer, size, count, stream);

[Method] function

[Argument] void _far *buffer; Pointer of the location to be stored in
size_t size;....... Number of bytes in one data item
size_t count; Maximum number of data items

FILE far *stream; Pointer of stream

[ReturnValue] e Returns the number of data items input.

[Description] e Reads data of the size specified in size from the stream and stores it in the buffer.
This is repeated by the number of times specified in count.

e If the end of the stream is encountered before the data specified in count has
been input, this function returns the number of data items read up to the end of the
stream.

e Interprets code 0x1A as the end code and ignores any subsequent data.

Appendix E-32

Appendix "E" Standard Library

free
Memory Management Function

[Function] Frees the allocated memory area.
[Format] #include <stdlib.h>

void free(cp);
[Method] function

[Argument] void _far *cp;... Pointer to the memory area to be freed

[ReturnValue] e No value is returned.

[Description] e Frees memory areas previously allocated with malloc or calloc.
e No processing is performed if you specify NULL in the parameter.

frexp
Mathematical Functions

[Function] Divides floating-point number into mantissa and exponent parts.
[Format] #include <math.h>
double frexp(x,prexp);
[Method] function
[Argument] double x; float-point number

int _far *prexp;. Pointer to an area for storing a 2-based exponent

[ReturnValue] e Returns the floating-point number x mantissa part.

Appendix E-33

Appendix "E" Standard Library

fscanf
Input/Output Function

[Function] Reads characters with format from the stream.
[Format] #include <stdio.h>

int fscanf(stream, format, argument...);

[Method] function
[Argument] FILE far *stream; Pointer of stream
const char _far *format; Pointer of the input character string

[ReturnValue] e Returns the number of data entries stored in each argument.
e Returns EOF if EOF is input from the stream as data.

[Description] e Converts the characters input from the stream as specified in format and stores
them in the variables shown in the arguments.
e Argument must be a pointer to the respective variable.
e Interprets code Ox1A as the end code and ignores any subsequent data.
e Format is specified in the same way as in scanf.

fwrite
Input/Output Functions

[Function] Outputs the specified items of data to the stream.
[Format] #include <stdio.h>

size_t fwrite(buffer, size, count, stream);

[Method] function
[Argument] const void _far *buffer; Pointer of the output data
size_t size;....... Number of bytes in one data item

size_t count; Maximum number of data items
FILE far *stream; Pointer of the stream

[ReturnValue] e Returns the number of data items output.
[Description] e Outputs data with the size specified in size to the stream. Data is output by the
number of times specified in count.
e Interprets code 0x1A as the end code and ignores any subsequent data.
e |f an error occurs before the amount of data specified in count has been input,
this function returns the number of data items output to that point.

Appendix E-34

Appendix "E" Standard Library

getc
Input/Output Functions|

[Function] Reads one character from the stream.
[Format] #include <stdio.h>
int getc(stream);
[Method] macro
[Argument] FILE _far *stream; Pointer of stream

[ReturnValue] e Returns the one input character.
Returns EOF if an error or the end of the stream is encountered.

[Description] e Reads one character from the stream.
Interprets code Ox1A as the end code and ignores any subsequent data.

getchar

[Function] Reads one character from stdin.
[Format] #include <stdio.h>
int getchar(void);
[Method] macro
[Argument] No argument used.

[ReturnValue] e Returns the one input character.
Returns EOF if an error or the end of the file is encountered.

[Description]

Reads one character from stream(stdin).
Interprets code Ox1A as the end code and ignores any subsequent data.

Appendix E-35

Appendix "E" Standard Library

gets
Input/Output Functions

[Function] Reads one line from stdin.
[Format] #include <stdio.h>

char _far * gets(buffer);

[Method] function
[Argument] char _far *buffer; Pointer of the location to be stored in
[ReturnValue] e Returns the pointer of the location to be stored (the same pointer as given by the

argument) if normally input.
Returns the NULL pointer if an error or the end of the file is encountered.

[Description] e Reads character string from stdin and stores it in the buffer.

The new line character ('\n') at the end of the line is replaced with the null
character (\0").

Interprets code Ox1A as the end code and ignores any subsequent data.

Init
Input/Output Functions
[Function] Initializes the stream.
[Format] #include <stdio.h>
void init(void);
[Method] function

[Argument] No argument used.
[ReturnValue] e No value is returned.
[Description] e Initializes the stream. Also calls speed and init_prn in the function to make the

initial settings of the UART and Centronics output device.
e init is normally used by calling it from the startup program.

Appendix E-36

Appendix "E" Standard Library

isalnum
Character Handling Functions

[Function] Checks whether the character is an alphabet or numeral(A - Z,a - 2,0 - 9).
[Format] #include <ctype.h>
int isalnum(c);
[Method] macro
[Argument] intc;cc........ Character to be checked

[ReturnValue] e Returns any value other than 0 if an alphabet or numeral.
e Returns 0 if not an alphabet nor numeral.

[Description] e Determines the type of character in the parameter.

isalpha
Character Handling Functions

[Function] Checks whether the character is an alphabet(A - Z,a - z).
[Format] #include <ctype.h>
int isalpha(c);
[Method] macro
[Argument] intc; ..o Character to be checked

[ReturnValue] e Returns any value other than 0 if an alphabet.
e Returns 0 if not an alphabet.

[Description] e Determines the type of character in the parameter.

Appendix E-37

Appendix "E" Standard Library

iscntrl
Character Handling Functions

[Function] Checks whether the character is a control character(0x00 - 0x1f,0x7f).
[Format] #include <ctype.h>
int iscntrl(¢);
[Method] macro
[Argument] intC; ..occveeeennns Character to be checked

[ReturnValue] e Returns any value other than 0O if a numeral.
e Returns 0 if not a control character.

[Description] e Determines the type of character in the parameter.

isdigit
Character Handling Functions

[Function] Checks whether the character is a numeral(O - 9).

[Format] #include <ctype.h>
int isdigit(c);
[Method] macro
[Argument] intc; Character to be checked

[ReturnValue] o Returns any value other than 0 if a numeral.
e Returns 0 if not a numeral.

[Description] e Determines the type of character in the parameter.

Appendix E-38

Appendix "E" Standard Library

isgraph
Character Handling Functions
[Function] Checks whether the character is printable (except a blank)(0x21 - Ox7e).
[Format] #include <ctype.h>
int isgraph(¢);
[Method] macro

[Argument] INtC; .oviiiinnine Character to be checked

[ReturnValue] ® Returns any value other than 0 if printable.
e Returns 0 if not printable.

[Description] e Determines the type of character in the parameter.

islower
Character Handling Functions

[Function] Checks whether the character is a lower-case letter(a - z).
[Format] #include <ctype.h>
int islower(¢);
[Method] macro
[Argument] iNtC; .ooviiiinnne Character to be checked

[ReturnValue] ® Returns any value other than O if a lower-case letter.
e Returns 0 if not a lower-case letter.

[Description] e Determines the type of character in the parameter.

Appendix E-39

Appendix "E" Standard Library

ISPTI nt
Character Handling Functions
[Function] Checks whether the character is printable (including a blank)(0x20 - 0x7e).
[Format] #include <ctype.h>
int isprint(¢);
[Method] macro

[Argument] intc: ...oocvveuenen. Character to be checked

[ReturnValue] e Returns any value other than 0 if printable.
e Returns 0 if not printable.

[Description] e Determines the type of character in the parameter.

iIspunct
Character Handling Functions

[Function] Checks whether the character is a punctuation character.
[Format] #include <ctype.h>
int ispunct(c);
[Method] macro
[Argument] intc; ..o Character to be checked

[ReturnValue] e Returns any value other than 0 if a punctuation character.
e Returns 0 if not a punctuation character.

[Description] e Determines the type of character in the parameter.

Appendix E-40

Appendix "E" Standard Library

ISspace
Character Handling Functions

[Function] Checks whether the character is a blank, tab, or new line.
[Format] #include <ctype.h>
int isspace(c);
[Method] macro
[Argument] intc;cc........ Character to be checked

[ReturnValue] e Returns any value other than 0 if a blank, tab, or new line.
e Returns 0 if not a blank, tab, or new line.

[Description] e Determines the type of character in the parameter.

isupper
Character Handling Functions

[Function] Checks whether the character is an upper-case letter(A - Z).
[Format] #include <ctype.h>
int isupper(¢);
[Method] macro
[Argument] intc; Character to be checked

[ReturnValue] ¢ Returns any value other than 0 if an upper-case letter.
e Returns 0 if not an upper-case letter.

[Description] e Determines the type of character in the parameter.

Appendix E-41

Appendix "E" Standard Library

iIsxdigit
Character Handling Functions
[Function] Checks whether the character is a hexadecimal character(0 - 9,A - F,a - f).
[Format] #include <ctype.h>
int isxdigit(¢);
[Method] macro

[Argument] intc: ...oocvveuenen. Character to be checked

[ReturnValue] e Returns any value other than 0 if a hexadecimal character.
e Returns 0 if not a hexadecimal character.

[Description] e Determines the type of character in the parameter.

labs
Integer Arithmetic Functions

[Function] Calculates the absolute value of a long-type integer.
[Format] #include <stdlib.h>
long labs(n);
[Method] function
[Argument] long n; Long integer

[ReturnValue] e Returns the absolute value of a long-type integer (distance from 0).

Appendix E-42

Appendix "E" Standard Library

ldexp

[Function] Calculates the power of a floating-point number.
[Format] #include <math.h>

double Idexp(x,exp);

[Method] function
[Argument] double x; Float-point number
int exp; ...cccoeen. Power of number

[ReturnValue] e Returns x *(exp power of 2).

Idiv
Integer Arithmetic Functions

[Function] Divides a long-type integer and calculates the remainder.
[Format] #include <stdlib.h>

Idiv_t Idiv(number, denom);
[Method] function

[Argument] long numbers;.... Dividend
long denom,; Divisor

[ReturnValue] e Returns the quotient derived by dividing "number” by "denom" and the remainder
of the division.

[Description] e Returns the quotient derived by dividing "number" by "denom" and the remainder
of the division in the structure Idiv_t.
e Idiv_t is defined in stdlib.h. This structure consists of members long quot and long
rem.

Appendix E-43

Appendix "E" Standard Library

localeconv

Localization Functions
[Function] Initializes struct Iconv.
[Format] #include <locale.h>

struct Iconv _far *localeconv(void);
struct Iconv *localeconv(void); [NC308 only]

[Method] function

[Argument] No argument used.

[ReturnValue] e Returns a pointer to the initialized struct lconv.

log
Mathematical Functions|

[Function] Calculates natural logarithm.
[Format] #include <math.h>
double log(x);
[Method] function
[Argument] double x; arbitrary real number
[ReturnValue] e Returns the natural logarithm of given real number x.

[Description] e This is the reverse function of exp.

Appendix E-44

Appendix "E" Standard Library

log10

Mathematical Functions|

[Function] Calculates common logarithm.
[Format] #include <math.h>
double log10(x);
[Method] function
[Argument] double x; arbitrary real number
[ReturnValue] e Returns the common logarithm of given real number x.
longjmp

Execution Control Functions|

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Restores the environment when making a function call

#include <setjmp.h>

void longjmp(env, val);

function
jmp_buf env; Pointer to the area where environment is restored
intval;.....ccccco.... Value returned as a result of setjimp

e No value is returned.

e Restores the environment from the area indicated in "env".

e Program control is passed to the statement following that from which setjimp was
called.

e The value specified in "value" is returned as the result of setjmp. However, if "val"
is "0", it is converted to "1".

Appendix E-45

Appendix "E" Standard Library

malloc
Memory Management Functions|

[Function]

[Format]

[Method]

[Argument]

Allocates a memory area.

#include <stdlib.h>

void _far * malloc(nbytes);

function

size_t nbytes;... Size of memory area (in bytes) to be allocated

[ReturnValue] e Returns NULL if a memory area of the specified size could not be allocated.

[Description] e Dynamically allocates memory areas

[Rule]

e malloc performs the following two checks to secure memory in the appropriate
location.

(1)If memory areas have been freed with free

(1-1)If the amount of memory to be secured is smaller than that freed, the
area is secured from the high address of the contiguously empty area
created by free toward the low address.

Heap area

Low
free 3 malloc
Freed area
B A
Y A Y
Unused area Unused area Unused area
y \/) J
High
(1-2)If the amount of memory to be secured is larger than that freed, the area
is secured from the lowest address of the unused memory toward the
high address.
(Heap area)
Low
free] Freed area malloc] Freed area
Yy y
Y A
Unused area Unused area
y \ /
High

Appendix E-46

Appendix "E" Standard Library

malloc

(2)If no memory area has been freed with free

(2-1)If there is any unused area that can be secured, the area is secured from
the lowest address of the unused memory toward the high address.

Heap area

malloc A malloc
Unused area

Unused area

Unused area

High
(2-2)If there is no unused area that can be secured, malloc returns NULL
without any memory being secured.
[Note] No garbage collection is performed. Therefore, even if there are lots of small unused

portions of memory, no memory is secured and malloc returns NULL unless there is an
unused portion of memory that is larger than the specified size.

mblen

Multi-byte Character Multi-byte Character String Manipulate Functions
[Function] Calculates the length of a multibyte character string.

[Format] #include <stdlib.h>

int mblen (s,n);

[Method] function
[Argument] const char far *s; Pointer to a multibyte character string
size_tn; Number of searched byte

[ReturnValue] e Returns the number of bytes in the character string if 's' configures a correct
multibyte character string.
e Returns -1 if 's' does not configure a correct multibyte character string.
e Returns 0 if 's' indicates a NULL character.

Appendix E-47

Appendix "E" Standard Library

mbstowcs

Multi-byte Character Multi-byte Character String Manipulate Functions

[Function] Converts a multibyte character string into a wide character string.
[Format] #include <stdlib.h>
size_t mbstowcs(wcs,s,n);
[Method] function
[Argument] wchar_t far *wcs; Pointer to an area for storing conversion wide character string

const char _far *s; Pointer to a multibyte character string
size_tn; Number of wide characters stored

[ReturnValue] e Returns the number of characters in the converted multibyte character string.
e Returns -1 if 's' does not configure a correct multibyte character string.

mbtowc

Multi-byte Character Multi-byte Character String Manipulate Functions
[Function] Converts a multibyte character into a wide character.

[Format] #include <stdlib.h>

int mbtowc(wcs,s,n);

[Method] function

[Argument] wchar_t _far *wcs; Pointer to an area for storing conversion wide character string
const char _far *s; Pointer to a multibyte character string
size tn; Number of wide characters stored

[ReturnValue] e Returns the number of wide characters converted if 's' configure a correct
multibyte character string.
e Returns -1 if 's' does not configure a correct multibyte character string.
e Returns 0 if 's' indicates a NULL character.

Appendix E-48

Appendix "E" Standard Library

memchr
Memory Handling Functions

[Function] Searches a character from a memory area.
[Format] #include <string.h>

void _far * memchr(s, ¢, n);

[Method]
function
[Argument]
const void _far *s; Pointer to the memory area to be searched from
[0 S o Character to be searched
size_tn; Size of the memory area to be searched

[ReturnValue] e Returns the position (pointer) of the specified character "c" where it is found.
e Returns NULL if the character "c" could not be found in the memory area.

[Description] e Searches for the characters shown in "c" in the amount of memory specified in "n"
starting at the address specified in "s".
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

memcmp

Memory Handling Functions
[Function] Compares memory areas ('n' bytes).
[Format] #include <string.h>

int memcmp(sl, s2,n);
[Method] function

[Argument] const void _far *s1; Pointer to the first memory area to be compared

const void *si; Pointer to the first memory area to be compared [NC308 only]

const void _far *s2; Pointer to the second memory area to be compared

const void *s2; Pointer to the second memory area to be compared [NC308
only]

size_tn; Number of bytes to be compared

[ReturnValue] e Return Value==0 The two memory areas are equal.

e Return Value>0 The first memory area (s1) is greater than the other.
e Return Value<O The second memory area (s2) is greater than the other.
[Description] e Compares each of n bytes of two memory areas

e When you specify options -O, -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

Appendix E-49

Appendix "E" Standard Library

memcpy
Memory Handling Functions

[Function] Copies n bytes of memory
[Format] #include <string.h>

void _far * memcpy(s1, s2, n);
void * memcpy(s1, s2, n); [NC308 only]

[Method] function

[Argument] void _far *s1;... Pointer to the memory area to be copied to
const void _far *2; Pointer to the memory area to be copied from
size_tn; Number of bytes to be copied

[ReturnValue] ® Returns the pointer to the memory area to which the characters have been
copied.
[Description] @ Copies "n" bytes from memory "S2" to memory "S1".
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

memicmp
Memory Handling Functions

[Function] Compares memory areas (with alphabets handled as upper-case letters).
[Format] #include <string.h>
int memicmp(s1, s2, n);
[Method] function
[Argument] char _far *s1; .. Pointer to the first memory area to be compared

char _far *s2; .. Pointer to the second memory area to be compared
size_tn; Number of bytes to be compared

[ReturnValue] ® Return Value==0 The two memory areas are equal.
Return Value>0 The first memory area (sl) is greater than the other.
Return Value<O The second memory area (s2) is greater than the other.

[Description] ® Compares memory areas (with alphabets handled as upper-case letters).
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-50

Appendix "E" Standard Library

memmove

[Function] Moves the area of a character string.
[Format] #include <string.h>

void _far * memmove(s1, s2, n);

[Method] function

[Argument] void far*s1; Pointer to be moved to
const void _far*s2; Pointer to be moved from
size_tn; Number of bytes to be moved

[ReturnValue] e Returns a pointer to the destination of movement.
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

memset
Memory Handling Functions

[Function] Set a memory area.
[Format] #include <string.h>

char _far* memset(s, c, n);

[Method] function

[Argument] void _far *s; Pointer to the memory area to be set at
1] S o Data to be set
size_tn; Number of bytes to be set

[ReturnValue] e Returns the pointer to the memory area which has been set.

[Description] e Sets "n" bytes of data "c" in memory "s".
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-51

Appendix "E" Standard Library

modf
Mathematical Functions
[Function] Calculates the division of a real number into the mantissa and exponent parts.
[Format] #include <math.h>
double modf (val,pd);
[Method] function
[Argument] double val; arbitrary real number

double _far*pd;.. Pointer to an area for storing an integer

[ReturnValue] e Returns the decimal part of a real number.

perror
Input/Output Functions

[Function] Outputs an error message to stderr.
[Format] #include <stdio.h>

void perror(s);
[Method] function

[Argument] const char _far*s; Pointer to a character string attached before a message.

[ReturnValue] e No value is returned.

Appendix E-52

Appendix "E" Standard Library

pow
Mathematical Functions|

[Function] Calculates the power of a number.
[Format] #include <math.h>

double pow(x,y);

[Method] function
[Argument] double x; multiplicand
double y; multiplier

[ReturnValue] e Returns the multiplicand x raised to the power of y.

printf
. Input/OutputFunctions

[Function] Outputs characters with format to stdout.
[Format] #include <stdio.h>
int printf(format, argument...);

[Method] function
[Argument] const char _far *format; Pointer of the format specifying character string

The part after the percent (%) sign in the character string given in format has the
following meaning. The part between [and] is optional. Details of the format are
shown below.

Format: %fJflag][minimum field width][precision][modifier (I, L, or h)] conversion

specification character

Example format: %-05.8Id

[ReturnValue] e Returns the number of characters output.
e Returns EOF if a hardware error occurs.

[Description] e Converts argument to a character string as specified in format and outputs the
character string to stdout.
e When giving a pointer to argument, it is necessary to be a far type pointer.

Appendix E-53

Appendix "E" Standard Library

Specifying format in printf-format

1.Conversion specification symbol

od, i

Converts the integer in the parameter to a signed decimal.
oy

Converts the integer in the parameter to an unsigned decimal.
® 0

Converts the integer in the parameter to an unsigned octal.
® X

Converts the integer in the parameter to an unsigned hexadecimal. Lowercase
"abcdef" are equivalent to OAH to OFH.
o X

Converts the integer in the parameter to an unsigned hexadecimal. Uppercase
"ABCDEF" are equivalent to OAH to OFH.
e C

Outputs the parameter as an ASCII character.
e s

Converts the parameter after the string far pointer (char *) (and up to a null character
'/0" or the precision) to a character string. Note that wchar_t type character strings
cannot be processed.”
*p

Outputs the parameter pointer (all types) in the format 24 bits address.
en

Stores the number of characters output in the integer pointer of the parameter. The
parameter is not converted.
e e

Converts a double-type parameter to the exponent format. The format is [-
]d.dddddde+dd.
e E

Same as e, except that E is used in place of e for the exponent.
o f

Converts double parameters to [-]d.dddddd format.
*g

Converts double parameters to the format specified in e or f. Normally, f conversion,
but conversion to e type when the exponent is -4 or less or the precision is less than the
value of the exponent.
e G

Same as g except that E is used in place of e for the exponent.

*1. In the standard library included with your product, the character string pointer is a far
pointer. (All printf functions handle %s with a far pointer.) Note that scanf functions
use a near pointer by default.

Appendix E-54

Appendix "E" Standard Library

Specifying format in printf-form

2.Flags

o —

Left-aligns the result of conversion in the minimum field width. The default is right
alignment.
e +

Adds + or - to the result of signed conversion. By default, only the - is added to
negative numbers.
e Blank' '

By default, a blank is added before the value if the result of signed conversion has no
sign.
° i

Adds 0 to the beginning of o conversion.

Adds 0Ox or 0X to the beginning when other than 0 in x or X conversion.

Always adds the decimal point in e, E, and f conversion.

Always adds the decimal point in g and G conversion and also outputs any 0Os in the
decimal place.

3.Minimum field width

e Specifies the minimum field width of positive decimal integers.

e When the result of conversion has fewer characters than the specified field width,
the left of the field is padded.

e The default padding character is the blank. However, '0' is the padding character if
you specified the field with using an integer preceded by '0'.

e If you specified the - flag, the result of conversion is left aligned and padding
characters (always blanks) inserted to the right.

e If you specified the asterisk () for the minimum field width, the integer in the
parameter specifies the field width. If the value of the parameter is negative, the value
after the —flag is the positive field width.

4.Precision

Specify a positive integer after '.". If you specify only ".' with no value, it is interpreted as
zero. The function and default value differs according to the conversion type.

Floating point type data is output with a precision of 6 by default. However, no decimal
places are output if you specify a precision of 0.

e d, i, 0, u, X, and X conversion

a. If the number of columns in the result of conversion is less than the specified
number, the beginning is padded with zeros.

b. If the specified nhumber of columns exceeds the minimum field width, the specified
number of columns takes precedence.

c. If the number of columns in the specified precision is less than the minimum field
width , the field width is processed after the minimum number of columns have
been processed.

d. The default is 1.

e. Nothing is output if zero with converted by zero minimum columns.

Appendix E-55

Appendix "E" Standard Library

Specifying format in printf-form

e s conversion
a. Represents the maximum number of characters.
b. If the result of conversion exceeds the specified number of characters, the remain-
der is discarded.
c. There is no limit to the number of characters in the default.
d. If you specify an asterisk (*) for the precision, the integer of the parameter
specifies the precision.
e. If the parameter is a negative value, specification of the precision is invalid.
e ¢, E, and f conversion
n (where n is the precision) numerals are output after the decimal point.
e g and G conversion
Valid characters in excess of n (where n is the precision) are not output.

5.1, Lorh

e l: d, i, 0, u, X, X, and n conversion is performed on long int and unsigned long int
parameters.

e h: d, i, 0, u, X, and X conversion is performed on short int and unsigned short int
parameters.

e If | or h are specified in other than d, i, o, u, x, X, or n conversion, they are ignored.

e L: e, E,f, g, and G conversion is performed on double parameters. ™

*1.

In the standard C specifications,variables e,E,f, and g conversions are performed in the case
of L on long double parameters .In NC30 ,long double types are processed as double
types.Threfore, if you specify L, the parameters are processed as double types.

Appendix E-56

Appendix "E" Standard Library

putc
Input/Output Functions|

[Function] Outputs one character to the stream.
[Format] #include <stdio.h>

int putc(¢, stream);

[Method] macro
[Argument] intC; ..oocveeennns Character to be output
FILE _far *stream; Pointer of the stream

[ReturnValue] e Returns the output character if output normally.
e Returns EOF if an error occurs.

[Description] e Outputs one character to the stream.

putchar
... InputOutputFunctions

[Function] Outputs one character to stdout.
[Format] #include <stdio.h>
int putchar(¢);
[Method] macro
[Argument] intC; ...ocoieeennns Character to be output

[ReturnValue] e Returns the output character if output normally.
e Returns EOF if an error occurs.

[Description] e Outputs one character to stdout.

Appendix E-57

Appendix "E" Standard Library

puts
Input/Output Functions|

[Function] Outputs one line to stdout.
[Format] #include <stdio.h>
int puts(str);
[Method] macro
[Argument] char _far*str;...... Pointer of the character string to be output
[ReturnValue] e Returns 0 if output normally.
e Returns -1 (EOF) if an error occurs.
[Description] e Outputs one line to stdout.

e The null character ('\O') at the end of the character string is replaced with the new
line character('/n").

gsort
Integer Arithmetic Functions

[Function] Sorts elements in an array.
[Format] #include <stdlib.h>
void _far gsort(base,nelen,size,cmp(el,e2));
[Method] function
[Argument] void _far*base; .. Start address of array
size_t nelen; Element number

size_t size;....... Element size
int *cmp(); Compare function

[ReturnValue] e No value is returned.

[Description] e Sorts elements in an array.

Appendix E-58

Appendix "E" Standard Library

rand
Integer Arithmetic Functions

[Function] Generates a pseudo-random number.
[Format] #include <stdlib.h>
int rand(void);
[Method] function
[Argument] No argument used.

[Returnvalue] e Returns the seed random number series specified in srand.
e The generated random number is a value between 0 and RAND_MAX.

realloc
Memory Management Functions

[Function] Changes the size of an allocated memory area.
[Format] #include <stdlib.h>

void _far * realloc(cp, nbytes);

[Method] function

[Argument] void _far *cp; Pointer to the memory area before change
size_t nbytes;... Size of memory area (in bytes) to be changed

[ReturnValue] e Returns the pointer of the memory area which has had its size changed.
e Returns NULL if a memory area of the specified size could not be secured.

[Description] e Changes the size of an area already secured using malloc or calloc.
e Specify a previously secured pointer in parameter "cp" and specify the nhumber of
bytes to change in "nbytes".

Appendix E-59

Appendix "E" Standard Library

scanf
Input/Output Functions|

[Function] Reads characters with format from stdin.

[Format] #include <stdio.h>
#include <ctype.h>

int scanf(format, argument...);
[Method] function

[Argument] char _far*format; Pointer of format specifying character string

The part after the percent (%) sign in the character string given in format has the
following meaning. The part between [and] is optional. Details of the format are
shown below.

Format: %[*][maximum field width] [modifier (I, L, or h)]Jconversion specification

character

Example format: %*5Id

[ReturnValue] e Returns the number of data entries stored in each argument.
e Returns EOF if EOF is input from stdin as data.

[Description] e Converts the characters read from stdin as specified in format and stores them in
the variables shown in the arguments.
e Argument must be a far pointer to the respective variable.
e The first space character is ignored except in ¢ and [] conversion.
e Interprets code Ox1A as the end code and ignores any subsequent data.

Appendix E-60

Appendix "E" Standard Library

Specifying format in scanf-form

1. Conversion specification symbol

o d

Converts a signed decimal. The target parameter must be a pointer to an integer.
o

Converts signed decimal, octal, and hexadecimal input. Octals start with 0.
Hexadecimals start with Ox or 0X. The target parameter must be a pointer to an integer.
oy

Converts an unsigned decimal. The target parameter must be a pointer to an un-
signed integer.
® 0

Converts a signed octal. The target parameter must be a pointer to an integer.

o X, X

Converts a sighed hexadecimal. Uppercase or lowercase can be used for OAH to
OFH. The leading Ox is not included. The target parameter must be a pointer to an
integer.

e s

Stores character strings ending with the null character \Q'. The target parameter must
be a pointer to a character array of sufficient size to store the character string including
the null character \0'.

If input stops when the maximum field width is reached, the character string stored
consists of the characters to that point plus the ending null character.

e C

Stores a character. Space characters are not skipped. If you specify 2 or more for the
maximum field width, multiple characters are stored. However, the null character "\0' is
not included. The target parameter must be a pointer to a character array of sufficient
size to store the character string.
®p

Converts input in the format data bank register plus offset (Example: 00:1205). The
target parameter is a pointer to all types.

o[]

Stores the input characters while the one or more characters between [and] are
input. Storing stops when a character other than those between [and] is input. If you
specify the circumflex (*) after [, only character other than those between the circumflex
and] are legal input characters. Storing stops when one of the specified characters is
input.

The target parameter must be a pointer to a character array of sufficient size to store
the character string including the null character \O', which is automatically added.
en

Stores the number of characters already read in format conversion. The target param-
eter must be a pointer to an integer.
ee E, f,g,and G

Convert to floating point format. If you specify modifier I, the target parameter must
be a pointer to a double type. The default is a pointer to a float type.

Appendix E-61

Appendix "E" Standard Library

Specifying format in scanf-form

2. *(prevents data storage)
Specifying the asterisk (*) prevents the storage of converted data in the parameter.

3. Maximum field width
e Specify the maximum number of input characters as a positive decimal integer. In
any one format conversion, the number of characters read will not exceed this
number.
e |f, before the specified number of characters has been read, a space character (a
character that is true in function isspace()) or a character other than in the
specified format is input, reading stops at that character.

4.1,Lorh
e |: The results of d, i, 0, u, and x conversion are stored as long int and unsigned
long int. The results of e, E, f, g, and G conversion are stored as double.
e h: The results of d, i, 0, u, and x conversion are stored as short int and unsigned
short int.
e If | or h are specified in other than d, i, o, u, or x conversion, they are ignored.
e L: The results of e, E, f, g, and G conversion are stored as float.

Appendix E-62

Appendix "E" Standard Library

setjmp
Execution Control Functions|
[Function] Saves the environment before a function call
[Format] #include <setjmp.h>
int setimp(env);
[Method)] function

[Argument] jmp_buf env; Pointer to the area where environment is saved

[ReturnValue] e Returns the numeric value given by the argument of longjmp.

[Description] e Saves the environment to the area specified in "env".

setlocale

[Function] Sets and searches the locale information of a program.
[Format] #include <locale.h>

char _far *setlocale(category,locale);

[Method] function
[Argument] int category; Locale information, search section information

const char _far*locale;Pointer to a locale information character string

[ReturnValue] e Returns a pointer to a locale information character string.
e Returns NULL if information cannot be set or searched.

Appendix E-63

Appendix "E" Standard Library

Sin
Mathematical Functions
[Function] Calculates sine.
[Format] #include <math.h>
double sin(x);
[Method] function

[Argument] double x; arbitrary real number

[ReturnValue] e Returns the sine of given real number x handled in units of radian.

sinh
Mathematical Functions
[Function] Calculates hyperbolic sine.
[Format] #include <math.h>
double sinh(x);
[Method] function

[Argument] double x; arbitrary real number

[ReturnValue] e Returns the hyperbolic sine of given real number x.

Appendix E-64

Appendix "E" Standard Library

sprintf
.. Input/OutputFunctions

[Function] Writes text with format to a character string.

[Format] int sprintf(pointer, format, argument...):
[Method] function
[Argument] char far *pointer; Pointer of the location to be stored

const char _far *format; Pointer of the format specifying character string

[ReturnValue] eReturns the number of characters output.

[Description] e Converts argument to a character string as specified in format and stores them
from the pointer.
e Format is specified in the same way as in printf.

sqrt
Mathematical Functions
[Function] Calculates the square root of a numeric value.
[Format] #include <math.h>
double sqrt(x);
[Method)] function

[Argument] double x; arbitrary real number

[ReturnValue] e Returns the square root of given real number x.

Appendix E-65

Appendix "E" Standard Library

srand
Integer Arithmetic Functions
[Function] Imparts seed to a pseudo-random number generating routine.
[Format] #include <stdlib.h>
void srand(seed);
[Method] function
[Argument] unsigned int seed:; Series value of random number

[ReturnValue] ¢ No value is returned.

[Description] e Initializes (seeds) the pseudo random number series produced by rand using
seed.

sscanf
Input/Output Functions|

[Function] Reads data with format from a character string.
[Format] #include <stdio.h>

int sscanf(string, format, argument...);

[Method] function
[Argument] const char _far *string; Pointer of the input character string
const char _far *format; Pointer of the format specifying character string

[ReturnValue] e Returns the number of data entries stored in each argument.
Returns EOF if null character ('/0) is input as data.

[Description] e Converts the characters input as specified in format and stores them in the
variables shown in the arguments.

Argument must be a far pointer to the respective variable.

Format is specified in the same way as in scanf.

Appendix E-66

Appendix "E" Standard Library

strcat
String Handling Functions

[Function] Concatenates character strings.
[Format] #include <string.h>

char _far * strcat(s1, s2);

[Method] function

[Argument] char _far *sl;.... Pointer to the character string to be concatenated to
const char _far*s2; Pointer to the character string to be concatenated from

[ReturnValue] e Returns a pointer to the concatenated character string area(sl).

[Description] e Concatenates character strings "s1" and "s2" in the sequence s1+s2™.
e The concatenated string ends with NULL.
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strchr
String Handling Functions|
[Function] Searches the specified character beginning with the top of the character string.

[Format] #include <string.h>

char _far * strchr(s, c);

[Method] function
[Argument] const char _far *s; Pointer to the character string to be searched in
[10] o1 Character to be searched for

[ReturnValue] e Returns the position of character "c" that is first encountered in character string
"s.
e Returns NULL when character string "s" does not contain character "c".

[Description] e Searches for character "c" starting from the beginning of area "s".
e You can also search for \0'".
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.
*1. There must be adequate space to accommodate sl plus s2.

Appendix E-67

Appendix "E" Standard Library

strcmp
String Handling Functions

[Function] Compares character strings .
[Format] #include <string.h>

int strcemp(s1, s2);
[Method] function

[Argument] const char _far *s1; Pointer to the first character string to be compared
const char _far *s2; Pointer to the second character string to be compared

[ReturnValue] e ReturnValue==0 The two character strings are equal.
ReturnValue>0 The first character string (s1) is greater than the other.
ReturnValue<0 The second character string (s2) is greater than the other.

[Description] e Compares each byte of two character strings ending with NULL
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strcoll
String Handling Functions

[Function] Compares character strings (using locale information).
[Format] #include <string.h>

int strcoll(s1, s2);
[Method] function

[Argument] const char _far *s1; Pointer to the first character string to be compared
const char _far *s2; Pointer to the second character string to be compared

[ReturnValue] ® ReturnValue==0 The two character strings are equal
e ReturnValue>0 The first character string (s1) is greater than the other
e ReturnValue<0 The second character string (s2) is greater than the other

[Description] e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-68

Appendix "E" Standard Library

strcpy

[Function] Copies a character string.
[Format] #include <string.h>

char _far * strcpy(sl, s2);

[Method)] function

[Argument] char _far *s1; ... Pointer to the character string to be copied to
const char _far *s2; Pointer to the character string to be copied from

[ReturnValue] e Returns a pointer to the character string at the destination of copy.

[Description] e Copies character string "s2" (ending with NULL) to area "s1"

After copying, the character string ends with NULL.

When you specify options -O, -OR, or -OS, the system may selects functions with
good code efficiency by optimization.

strcspn

[Function] Calculates the length (number) of unspecified characters that are not found in the
other character string

[Format] #include <string.h>
size_t strcspn(sl, s2);
[Method] function

[Argument] const char far*sl; Pointer to the character string to be searched in
const char _far *s2; Pointer to the character string to be searched for

[ReturnValue] e Returns the length (number) of unspecified characters.

[Description] e Calculates the size of the first character string consisting of characters other than
those in 's2' from area 's1', and searches the characters from the beginning of 's1'".
e You cannot search for \0'".

Appendix E-69

Appendix "E" Standard Library

stricmp
String Handling Functions

[Function] Compares character strings. (All alphabets are handled as upper-case letters.)
[Format] #include <string.h>

int stricmp(s1, s2);
[Method] function

[Argument] char _far *s1;.... Pointer to the first character string to be compared
char _far *s2;.... Pointer to the second character string to be compared

[ReturnValue] e ReturnValue==0 The two character strings are equal.
e ReturnValue>0 The first character string (s1) is greater than the other.
e ReturnValue<0 The second character string (s2) is greater than the other.

[Description] e Compares each byte of two character strings ending with NULL. However, all
letters are treated as uppercase letters.

strerror

String Handling Functions|
[Function] Converts an error number into a character string.
[Format] #include <string.h>

char _far *strerror(errcode);

[Method] function
[Argument] int errcode;....... error code
[ReturnValue] e Returns a pointer to a message character string for the error code.

[Note] e stderr returns the pointer for a static array.

Appendix E-70

Appendix "E" Standard Library

strlen
String Handling Functions

[Function] Calculates the number of characters in a character string.
[Format] #include <string.h>

size_t strlen(s);
[Method] function

[Argument] const char _far *s; Pointer to the character string to be operated on to calculate
length

[ReturnValue] e Returns the length of the character string.

[Description] e Determines the length of character string "s" (to NULL).

strncat
String Handling Functions
[Function] Concatenates character strings ('n' characters).

[Format] #include <string.h>

char _far * strncat(s1, s2, n);

[Method] function

[Argument] char _far *s1;.... Pointer to the character string to be concatenated to
const char _far *s2; Pointer to the character string to be concatenated from
size_tn; Number of characters to be concatenated

[ReturnValue] eReturns a pointer to the concatenated character string area.

[Description] e Concatenates character strings "s1" and "n" characters from character string "s2".
e The concatenated string ends with NULL.
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-71

Appendix "E" Standard Library

strncmp

[Function] Compares character strings ('n' characters).
[Format] #include <string.h>

int strncmp(s1, s2, n);
[Method)] function

[Argument] const char far *sl; Pointer to the first character string to be compared
const char _far *s2; Pointer to the second character string to be compared
size_tn; Number of characters to be compared

[ReturnValue] e ReturnValue==0.......... The two character strings are equal.

e ReturnValue>0............ The first character string (s1) is greater than the other.

e ReturnValue<O............ The second character string (s2) is greater than the other.
[Description] e Compares each byte of n characters of two character strings ending with NULL.
e When you specify options -O, -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

strncpy

[Function] Copies a character string ('n' characters).
[Format] #include <string.h>

char _far * strncpy(si, s2,n);
[Method] function

[Argument] char _far *s1;.... Pointer to the character string to be copied to
const char _far *s2; Pointer to the character string to be copied from
size_tn; Number of characters to be copied

[ReturnValue] e Returns a pointer to the character string at the destination of copy.

[Description] e Copies "n" characters from character string "s2" to area "s1". If character string
"s2" contains more characters than specified in "n", they are not copied and '\O' is
not appended. Conversely, if "s2" contains fewer characters than specified in "n",
\O's are appended to the end of the copied character string to make up the
number specified in "n".

e When you specify options -O, -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

Appendix E-72

Appendix "E" Standard Library

strnicmp

[Function] Compares character strings ('n' characters). (All alphabets are handled as upper-
case letters.)

[Format] #include <string.h>
int strnicmp(s1, s2, n);

[Method)] function

[Argument] char _far *sl;.... Pointer to the first character string to be compared
char _far *s2;.... Pointer to the second character string to be compared
size_tn; Number of characters to be compared

[ReturnValue] e ReturnValue==0 The two character strings are equal.

ReturnValue>0 The first character string (s1) is greater than the other.
ReturnValue<0 The second character string (s2) is greater than the other.
Compares each byte of n characters of two character strings ending with

NULL.However, all letters are treated as uppercase letters.

e When you specify options -O, -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

[Description]

strpbrk

[Function] Searches the specified character in a character string from the other character
string.

[Format] #include <string.h>
char _far * strpbrk(s1, s2);

[Method] function

[Argument] const char _far *s1; Pointer to the character string to be searched in
const char _far *s2;Pointer to the character string of the character to be searched for

[ReturnValue] e Returns the position (pointer) where the specified character is found first.
e Returns NULL if the specified character cannot be found.
[Description] e Searches the specified character "s2" from the other character string in "s1"
area.
e You cannot search for \0'".
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-73

Appendix "E" Standard Library

strrchr

[Function] Searches the specified character from the end of a character string.
[Format] #include <string.h>

char _far * strrchr('s, ¢c);

[Method] function
[Argument] const char _far *s; Pointer to the character string to be searched in
iNtC; oo Character to be searched for

[ReturnValue] e Returns the position of character "c" that is last encountered in character string
"s.

e Returns NULL when character string "s" does not contain character "c".

[Description] e Searches for the character specified in "c" from the end of area "s".
e You can search for \0'.
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strspn
String Handling Functions|

[Function] Calculates the length (number) of specified characters that are found in the other
character string.

[Format] #include <string.h>
size_t strspn(si, s2);

[Method] function
[Argument] const char _far*sl; Pointer to the character string to be searched in
const char _far *s2; Pointer to the character string of the character to be searched

for

[ReturnValue] eReturns the length (number) of specified characters.

[Description] e Calculates the size of the first character string consisting of characters in 's2' from
area 'sl’, and searches the characters from the beginning of 's1'.
e You cannot search for "\0'".
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-74

Appendix "E" Standard Library

strstr
String Handling Functions

[Function] Searches the specified character from a character string.

[Format] #include <string.h>
char _far *strstr(s1, s2);

[Method)] function
[Argument] const char _far *s1; Pointer to the character string to be searched in
const char _far *s2; Pointer to the character string of the character to be searched
for

[ReturnValue] e Returns the position (pointer) where the specified character is found.
e Returns NULL when the specified character cannot be found.
[Description] e Returns the location (pointer) of the first character string "s2" from the beginning
of area "s1".
e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strtod
Character String Value Convert Functions

[Function] Converts a character string into a double-type integer.
[Format] #include <string.h>

double strtod(s,endptr);

[Method)] function
[Argument] const char_far *s; Pointer to the converted character string
char _far *endptr; Pointer to the remaining character strings that have not been

converted

[ReturnValue] e ReturnValue == OL Does not constitute a number.
e ReturnValue !'= 0L Returns the configured number in double type.

[Description] e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-75

Appendix "E" Standard Library

strtok

[Function] Divides some character string from a character string into tokens.
[Format] #include <string.h>

char _far * strtok(s1, s2);

[Method)] function

[Argument] char _far *sl;.... Pointer to the character string to be divided up
const char _far *s2; Pointer to the punctuation character to be divided with

[ReturnValue] e Returns the pointer to the divided token when character is found.
e Returns NULL when character cannot be found.

[Description] e Returns the location (pointer) of the first character string "s2" from the beginning

of area "s1".

e In the first call, returns a pointer to the first character of the first token. A NULL
character is written after the returned character. In subsequent calls (when "s1" is
NULL), this instruction returns each token as it is encountered. NULL is returned
when there are no more tokens in "s1".

e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-76

Appendix "E" Standard Library

strtol

Character String Value Convert Function

[Function] Converts a character string into a long-type integer.

[Format] #include <string.h>
long strtol(s,endptr,base);

[Method] function
[Argument] const char _far*s; Pointer to the converted character string
char _far*_far*endptr; Pointer to the remaining character strings that have not been
converted.
int base; Base of values to be read in (0 to 36)
Reads the format of integral constant if the base of value is
zero

[ReturnValue] e ReturnValue == OL Does not constitute a number.
e ReturnValue !'= OL Returns the configured number in long type.

[Description] e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strtoul
Character String Value Convert Function

[Function] Converts a character string into an unsigned long-type integer.

[Format] #include <string.h>
unsigned long strtoul(s,endptr,base);

[Method] function
[Argument] const char _far *s Pointer to the converted character string
char _far*_far*endptr; Pointer to the remaining character strings that have not been
converted.
int base; Base of values to be read in (0 to 36)
Reads the format of integral constant if the base of value is
zero

[ReturnValue] e ReturnValue == OL Does not constitute a number.
e ReturnValue !'= OL Returns the configured number in long type.

[Description] e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

Appendix E-77

Appendix "E" Standard Library

strxfrm
Character String Value Convert Functions

[Function] Converts a character string (using locale information).
[Format] #include <string.h>

size_t strxfrm(sl,s2,n);

[Method] function
[Argument] char _far *s1;.... Pointer to an area for storing a conversion result character
string.
const char _far*s2; Pointer to the character string to be converted.
size_tn; Number of bytes converted

[ReturnValue] e Returns the number of characters converted.

[Description] e When you specify options -O, -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

tan
Mathematical Functions|

[Function] Calculates tangent.
[Format] #include <math.h>
double _far tan(x);
[Method)] function
[Argument] double x; arbitrary real number

[ReturnValue] e Returns the tangent of given real number x handled in units of radian.

Appendix E-78

Appendix "E" Standard Library

tanh
Mathematical Functions|

[Function] Calculates hyperbolic tangent.
[Format] #include <math.h>
double tanh(x);
[Method] function
[Argument] double x; arbitrary real number

[ReturnValue] e Returns the hyperbolic tangent of given real number x.

tolower
Character Handling Functions

[Function] Converts the character from an upper-case to a lower-case.
[Format] #include <ctype.h>
int tolower(c);
[Method] macro
[Argument] intc;c......... Character to be converted

[ReturnValue] o Returns the lower-case letter if the argument is an upper-case letter.
e Otherwise, returns the passed argument as is.

[Description] e Converts the character from an upper-case to a lower-case.

Appendix E-79

Appendix "E" Standard Library

toupper
Character Handling Functions

[Function] Converts the character from a lower-case to an upper-case.
[Format] #include <ctype.h>
int toupper(c);
[Method] macro
[Argument] intc;c......... Character to be converted

[ReturnValue] o Returns the upper-case letter if the argument is a lower-case letter.
e Otherwise, returns the passed argument as is.

[Description] e Converts the character from a lower-case to an upper-case.

ungetc
Input/Output Functions

[Function] Returns one character to the stream
[Format] #include <stdio.h>

int ungetc(c, stream);

[Method] macro
[Argument] intc: ..o Character to be returned
FILE _far*stream; Pointer of stream

[ReturnValue] ¢ Returns the returned one character if done normally.
e Returns EOF if the stream is in write mode, an error or EOF is encountered, or
the character to be sent back is EOF.

[Description] e Returns one character to the stream.
e Interprets code Ox1A as the end code and ignores any subsequent data.

Appendix E-80

Appendix "E" Standard Library

viprintf

[Function] Output to a stream with format.

[Format] #include <stdarg.h>
#include <stdio.h>

int vfprintf(stream,format,ap);

[Method] function

[Argument] FILE _far *stream; Pointer of stream
const char _far *format;Pointer of the format specifying character string
va_list ap; Pointer of argument list

[ReturnValue] e Returns the number of characters output.

[Description] e Output to a stream with format.
e When writing pointers in variable-length variables, make sure they are a far-type
pointer.

vprintf

[Function] Output to stdout with format.

[Format] #include <stdarg.h>
#include <stdio.h>

int vprintf(format,ap);

[Method] function

[Argument] const char _far *format; Pointer of the format specifying character string
va_list ap; Pointer of argument list

[ReturnValue] e Returns the number of characters output.

[Description] e Output to stdout with format.

e When writing pointers in variable-length variables, make sure they are a far-type
pointer.

Appendix E-81

Appendix "E" Standard Library

vsprintf

[Function] Output to a buffer with format.

[Format] #include <stdarg.h>
#include <stdio.h>

int vfprintf(s,format,ap);

[Method] function

[Argument] char far*s;...... Pointer of the location to be store
const char _far *format;Pointer of the format specifying character string
va_list ap; Pointer of argument list

[ReturnValue] e Returns the number of characters output.

[Description] e When writing pointers in variable-length variables, make sure they are a far-type
pointer.

wcstombs

Multi-byte Character Multi-byte Character String Manipulate Functions
[Function] Converts a wide character string into a multibyte character string.

[Format] #include <stdlib.h>

size_t _far westombs(s,wcs,n);

size_t wcstombs(s,wcs,n); [NC308 only]
[Method] function
[Argument] char _far*s;...... Pointer to an area for storing conversion multibyte char-
acter string
const wchar_t _far *wcs; Pointer to a wide character string
size tn; Number of wide characters stored

[ReturnValue] e Returns the number of stored multibyte characters if the character string was
converted correctly.
e Returns -1 if the character string was not converted correctly.

Appendix E-82

Appendix "E" Standard Library

wctomb

Multi-byte Character Multi-byte Character String Manipulate Functions|
[Function] Converts a wide character into a multibyte character.

[Format] #include <stdlib.h>

int wctomb(s,wchar);

[Method] function
[Argument] char _far*s; Pointer to an area for storing conversion multibyte character
string
wchar_t wchar; wide character

[ReturnValue] e Returns the number of bytes contained in the multibyte characters.
e Returns -1 if there is no corresponding multibyte character.
e Returns 0 if the wide character is 0.

Appendix E-83

Appendix "E" Standard Library

E.2.4 Using the Standard Library

a. Notes on Regarding Standard Header File

When using functions in the standard library, always be sure to include the specified
standard header file. If this header file is not included, the integrity of arguments and
return values will be lost, making the program unable to operate normally.

b. Notes on Regarding Optimization of Standard Library

If you specify any of optimization options -O[3-5], -OS, or -OR, the system performs
optimization for the standard functions. This optimization can be suppressed by specifying
-Ono_stdlib. Such suppression of optimization is necessary when you use a user function
that bear the same name as one of the standard library functions.

(D)Inline padding of functions

Regarding functions strcpy and memcpy, the system performs inline padding of func-
tions if the conditions in Table E.13 are met.

Table E.13 Optimization Conditions for Standard Library Functions

Function Name Optimization Condition Description Example

strcpy First argument:far pointer strepy(str, "sample");
Second argument:string constant

memcpy First argument:far pointer memcpy(str ,"sample", 6);
Second argument: far pointer memcpy(str ,fp, 6);
Third argument:constant

(2)Selection of high-speed library (NC30 only)

Some standard library functions have a pointer in argument. NC30 normally handles
such pointers as the far pointer. For this reason, NC30 does not generate efficient code if
the argument is a near pointer. Therefore, if the argument is a near pointer, the system
performs optimization to choose a library function provided for use as near. The table
below lists the functions that are subject to such optimization.

Table E.14 Library Functions Subject to Optimization

Function Name | Function Name | Function Name | Function Name

bcopy strcat strnicmp strstr

bzero strchr strlen strspn

memchr stremp strncat strtod

memcmp strcoll strncmp strtok

memcpy strcpy strncpy strtol

memicmp strespn strnicmp strtoul
memmove strerror strpbrk strxfrm

memset stricmp strrchr

Appendix E-84

Appendix "E" Standard Library

E.3

E.3.1

Modifying Standard Library

The NC30 package includes a sophisticated function library which includes functions
such as the scanf and printf I/O functions. These functions are normally called high-level I/
O functions. These high-level 1/0O functions are combinations of hardware-dependent low-
level I/O functions.

In M16C/60 series application programs, the I/O functions may need to be modified ac-
cording to the target system's hardware. This is accomplished by modifying the source file
for the standard library.

This chapter describes how to modify the NC30 standard library to match the target
system.

The entry vedrsion does not come with source files for the standard function library.
Therefore, the standard function library cannot be customized for the entry version.

Structure of I/O Functions

As shown in Figure E.1, the I/O functions work by calling lower-level functions (level 2
O level 3) from the level 1 function. For example, fgets calls level 2 fgetc, and fgetc calls a
level 3 function.

Only the lowest level 3 functions are hardware-dependent (I/O port dependent) in the
Micro Processor. If your application program uses an 1/O function, you may need to modify
the source files for the level 3 functions to match the system.

Input function

Level 1 Level 2 Level 3

[oets }—
[Fread }

Output function

Level 1 Level 2 Level 3

o -
[e}

_pput

Figure E.1 Calling Relationship of I/0O Functions

Appendix E-85

Appendix "E" Standard Library

E.3.2 Sequence of Modifying I/O Functions

Figure E.2 outlines how to modify the I/O functions to match the target system.

a. Modify the level 3 I/O function(s)
b. Set the stream
C. Compile the modified source program(s)

Figure E.2 Example Sequence of Modifying I/O Functions

a. Modifying Level 3 1/0 Function

The level 3 1/0O functions perform 1-byte I/O via the M16C/60 series I/O ports. The level 3
1/0O functions include _sget and _sput, which perform 1/O via the serial communications
circuits (UART), and _pput, which performs 1/O via the Centronics communications circuit.

[Circuit settings]
e Processor mode: Microprocessor mode
e Clock frequency: 20MHz
e External bus size: 16 bits

[Initial serial communications settings]
e Use UART1
e Baud rate: 9600bps
e Data size: 8 bits
e Parity: None
e Stop bits: 2 bits

* The initial serial communications settings are made in the init function (init.c).

Appendix E-86

Appendix "E" Standard Library

The level 3 I/O functions are written in the C library source file device.c. Table E.13 lists

the specifications of these functions.

Table E.13 Specifications of Level 3 Functions

Input functions Parameters Return value (int type)
_sget If no error occurs, returns the input character
_sput None. Returns EOF if an error occurs

_pput

Output functions | Parameters (int type) Return value (int type)
_Sput Character to If no error occurs, returns 1

_pput output Returns EOF if an error occurs

Serial communication is set to UART1 in the M16C/60 series's two UARTS. device.c is
written so that the UARTO can be selected using the conditional compile commands, as

follows:

@ TOUSE UARTO .ouieiiiiiieeeeeee e #define UARTO 1

Specify these commands at the beginning of device.c, or specify following option, when

compiling.

0 ToO USE UARTO ...ovviiiiiiiiiiiiiiieeiis -DUARTO

To use both UARTSs, modify the file as follows:

[1]Delete the conditional compiling commands from the beginning of the device.c file.
[2]Change the UARTO special register name defined in #pragma EQU to a variable

other than UART1.
[3]Reproduce the level 3 functions _sget and _sput for UARTO and change them to

different variable names such as _sget0O and _sputO.
[4]Also reproduce the speed function for UARTO and change the function nhame to

something like speed0.

This completes modification of device.c.

Next, modify the init function (init.c), which makes the initial 1/0O function settings, then

change the stream settings (see below).

Appendix E-87

Appendix "E" Standard Library

b. Stream Settings

The NC30 standard library has five items of stream data (stdin, stdout, stderr, stdaux, and
stdprn) as external structures. These external structures are defined in the standard header
file stdio.h and control the mode information of each stream (flag indicating whether input or
output stream) and status information (flag indicating error or EOF).

Table E.15 Stream Information

Stream information

Name

stdin Standard input

stdout Standard output

stderr Standard error output (error is output to stdout)
stdaux Standard auxiliary 1/0

stdprn Standard printer output

The stream corresponding to the NC30 standard library functions shown shaded in Figure
E.3 are fixed to standard input (stdin) and standard output (stdout). The stream cannot be
changed for these functions. The output direction of stderr is defined as stdout in #define.

The stream can only be changed for functions that specify pointers to the stream as
parameters such as fgetc and fputc.

Appendix E-88

Appendix "E" Standard Library

scanf

getchar

stdin

gets

putchar

A

stdout

puts

|
|
|
| printf
|
|
|

puts

fscanf

sscanf

stdin

fgetc

stdaux

getc

fgets

stdprn

fread

fprintf

stdout

fputc

o]

stdaux

putc

fputs

stdprn

puts

fwrite

|
|
|
|
|
|
|
| sprintf
|
|
|
|
|
|

viprintf

vtk L P e

Figure E.3 Relationship of Functions and Streams

Figure E.4 shows the stream definition in stdio.h.

Appendix E-89

Appendix "E" Standard Library

/***

*

* standard 1/ O header file
(omtted)

typedef struct _iobuf {

char _buff; /* Store buffer for ungetc */ o[1]
int _cnt; /* Strings number in _buff(1 or 0) */ Or2]
int _flag; /* Flag */ O3]
int _nod; /* Mode */ 04]
int (* _func_in)(void); /* Pointer to one byte input function */ O[5]
int (* _func_out)(int); /* Pointer to one byte output function */ 0[6]

} FILE;
#define _| OBUF_DEF

(omtted)

extern FILE _iob[];

#define stdin (& iob[0]) /* Fundanental input */

#define stdout (&.iob[1]) /* Fundanental output */

#define stdaux (&.iob[2]) /* Fundanental auxialiary input output */
#define stdprn (&.iob[3]) /* Fundanental printer output */

#define stderr stdout

1B AR R R R RS R R R R R R R R

***/

#define _|OREAD 1 /* Read only flag */
#define _IONRT 2 /* Wite only flag */
#define _|OECF 4 /* End of file flag */
#define _IOERR 8 /* Error flag */

#define _IORW 16 /* Read and wite flag */
#define _NFILE 4 /* Stream nunber */
#define _TEXT 1 /* Text node flag */
#define _BIN 2 /* Binary nmode flag */

(renmi nder onitted)

Figure E.4 Stream Definition in stdio.h

Let's look at the elements of the file structures shown in Figure E.4. Iltems [1] to [6]
correspond to [1] to [6] in Figure E.4.

Appendix E-90

Appendix "E" Standard Library

[1]char _buff

Functions scanf and fscanf read one character ahead during input. If the character is no
use, function ungetc is called and the character is stored in this variable.

If data exists in this variable, the input function uses this data as the input data.

[2]int _cnt
Stores the _buff data count (0 or 1)

[3lint _flag
Stores the read-only flag (_IOREAD), the write-only flag (_IOWRT), the read-write flag
(_IORW), the end of file flag (_IOEOF) and the error flag (_ IOERR).

e IOREAD, IOWRT, IORW
These flags specify the stream operating mode. They are set during stream initial-
ization.

e |OEOF, IOERR
These flags are set according to whether an EOF is encountered or error occurs in
the I/O function.

[4]int _mod
Stores the flags indicating the text mode (_TEXT) and binary mode (_BIN).

e Text mode
Echo-back of I/O data and conversion of characters. See the source programs
(fgetc.c and fputc.c) of the fgetc and fputc functions for details of echo back and
character conversion.

e Binary mode
No conversion of I/O data. These flags are set in the initialization block of the
stream.

[5]int (*_func_in)()

When the stream is in read-only mode (_IOREAD) or read/write mode (_IORW), stores
the level 3 input function pointer. Stores a NULL pointer in other cases.

This information is used for indirect calling of level 3 input functions by level 2 input
functions.

[6]int (*_func_out)()

When the stream is in write mode (_IOWRT), stores the level 3 output function pointer. If
the stream can be input (_IOREAD or _IORW), and is in text mode, it stores the level 3
output function pointer for echo back. Stores a NULL pointer in other cases.

This information is used for indirect calling of level 3 output functions by level 2 output
functions.

Appendix E-91

Appendix "E" Standard Library

Set values for all elements other than char_buff in the stream initialization block. The
standard library file supplied in the NC30 package initializes the stream in function init,
which is called from the ncrt0.a30 startup program.

Figure E.5 shows the source program for the init function.

#i ncl ude <stdio. h>

FILE _iob[4];

void init(void);

void init(void)

{
stdin->_cnt = stdout->_cnt = stdaux->_cnt = stdprn->_cnt = O;
stdin->_flag = _| OREAD;
stdout-> flag = _| OART;
stdaux->_flag = _I ORW
stdprn->_flag = _| OART;

stdin->_nod = _TEXT;
stdout->_nod = _TEXT;
stdaux->_nod = _BIN;
stdprn->_nod = _TEXT;

stdin-> func_in = _sget;
stdout->_func_in = NULL;
stdaux->_func_in = _sget;
stdprn->_func_in = NULL;

stdin->_func_out = _sput;

stdout->_func_out = _sput;
st daux->_func_out = _sput;
stdprn->_func_out = _pput;

#i f def UARTO

speed(_96, _B8, _PN, _S2);
#el se

speed(_96, _B8, _PN, _S2);
#endi f

init_prn();

Figure E.5 Source file of init function (init.c)

Appendix E-92

Appendix "E" Standard Library

In systems using the two M16C/60 series UARTSs, modify the init function as shown be-
low. In the previous subsection, we set the UARTO functions in the device.c source file
temporarily as _sget0, _sput0, and speedO.

[1]Use the standard auxiliary I/O (stdaux) for the UARTO stream.

[2]Set the flag (_flag) and mode (_mod) for standard auxiliary 1/O to match the system.

[3]Set the level 3 function pointer for standard auxiliary 1/0.

[4]Delete the conditional compile commands for the speed function and change to
function speed0 for UARTO.

These settings allow both UARTS to be used. However, functions using the standard 1/0
stream cannot be used for standard auxiliary 1/0 used by UARTO. Therefore, only use
functions that take streams as parameters. Figure E.6 shows how to change the init func-
tion.

void init(void)

{

(om ;ted)

st daux‘— > flag = _| ORW O [2](set read/write mode)
(om ;ted)

st daux‘->_rmd = _TEXT, O [2](set text mode)
(om ;ted)

st daux.—>_func_i n = _sgeto; O [3](set UARTO level 3 input function)
(om ;ted)

st daux.— > func_out = _sputO0; O [3](set UARTO level 3 input function)
(om ;ted)

speedOl(_QG, _B8, _PN, _S2); O [4](set UARTO speed function)

speed(_96, _B8, _PN, _S2);
init_prn();

* [2] to [4] correspond to the items in the description of setting, above.

Figure E.6 Modifying the init Function

Appendix E-93

Appendix "E" Standard Library

c. Incorporating the Modified Source Program

There are two methods of incorporating the modified source program in the target sys-
tem:

[1]Specify the object files of the modified function source files when linking.
[2]Use the makefile (under MS-Windows, makefile.dos) supplied in the NC30 pack-
age to update the library file.

In method [1], the functions specified when linking become valid and functions with the
same names in the library file are excluded.
Figure E.7 shows method[1]. Figure E.8 shows method[2].

% nc30 -c -g -osanple ncrt0.a30 device.r30 init.r30 sanpl e. c<RET>

* This example shows the command line when device.c and init.c are modified.

Figure E.7 Method of Directly Linking Modified Source Programs

% nmake <RET>

Figure E.8 Method of Updating Library Using Modified Source Programs

Appendix E-94

Appendix "F" Error Messages

(Appendix F)

Error Messages J

This appendix describes the error messages and warning messages output by NC30,
and their countermeasures.

F.1 Message Format

If, during processing, NC30 detects an error, it displays an error message on the screen
and stops the compiling process.
The following shows the format of error messages and warning messages.

nc30: [error-message]

Figure F.1 Format of Error Messages from the nc30 Compile Driver

[Error(cpp30. error-No.) : filename, line-No.] error-message
[Error(ccom: filename, line-No.] error-message
[Fatal (ccom): filename, line-No.] error-message ~*1

Figure F.2 Format of Command Error Messages

[Warni ng(cpp30. warning-No.) : filename, line-No.] warning-message
[War ni ng(ccom) : filename, line-No.] warning-message

Figure F.3 Format of Command Warning Messages

The following pages list the error messages and their countermeasures. cpp30 messages
are listed according to their Nos. The messages output by other programs are listed alpha-
betically (symbols followed by letters).

*1. Fatal error message
This error message is not normally output. Please contact nearest Renesas office. with details
of the message if displayed.

Appendix F-1

Appendix "F" Error Messages

F.2 nc30 Error Messages

Tables F.1 and F.2 list the nc30 compile driver error messages and their countermea-
sures.

Table F.1 nc30 Error Messages (1/2)

Error message Description and countermeasure
Arg list too long @® The command line for starting the respective process-
ing system is longer than the character string defined by
the system.

O Specify a NC30 option to ensure that the number of
characters defined by the system is not exceeded. Use
the -v option to check the command line used for each
processing block.

Cannot analyze error @ This error message is not normally displayed. (It is an
internal error.)

O Contact Renesas Solutions Corp.

Command-file line characters |@ There are more than 2048 characters on one or more

exceed 2048. lines in the command file.

0 Reduce the number of characters per line in the com-
mand file to 2048 max.

Core dump (command-name) |@ The processing system (indicated in parentheses)
caused a core dump.

O The processing system is not running correctly. Check
the environment variables and the directory containing
the processing system. If the processing system still
does not run correctly, Please contact Renesas Solu-
tions Corp.

Exec format error @ Corrupted processing system executable file.

0 Reinstall the processing system.

Ignore option '-?' ® You specified an illegal option (-?) for NC30.

O Specify the correct option.

illegal option ® You specified options greater than 100 characters for -
as30 or -In30.

00 Reduce the options to 99 characters or less.

Invalid argument ® This error message is not normally displayed. (It is an
internal error.)

O Contact Renesas Solutions Corp.

Invalid option '-?' ® The required parameter was not specified in option "-?".

0 "-?"Specify the required parameter after "-?".

® You specified a space between the -? option and its
parameter.

O Delete the space between the -? option and its param-
eter.

Invalid option '-0' @® No output filename was specified after the -o option.

O Specify the name of the output file. Do not specify the
filename extension.

Appendix F-2

Appendix "F" Error Messages

Table F.2 nc30 Error Messages (2/2)

Error message

Description and countermeasure

Invalid suffix '.xxx'

® You specified a filename extension not recognized by
NC30 (other than .c, .i, .a30, .r30, .x30).
O Specify the filename with the correct extension.

No such file or directory

@ The processing system will not run.
O Check that the directory of the processing system is
correctly set in the environment variable.

Not enough core

[UNIX]:

@ Insufficient swap area

O Increase the swap area by, for example, adding a sec-
ondary swap area.

[MS-Windows 95,98 / NT]:

@ Insufficient swap area

O Increase the swap area.

Permission denied

@ The processing system will not run.

O Check access permission to the processing systems.
Or, if access permission is OK, check that the direc-
tory of the processing system is correctly set in the
environment variable.

can't open command file

@ Can not open the command file specified by '@".
O Specify the correct input file.

too many options

® This error message is not normally displayed. (It is an
internal error.)
O Contact Renesas Solutions Corp.

Result too large

® This error message is not normally displayed. (It is an
internal error.)
O Contact Renesas Solutions Corp.

Too many open files

® This error message is not normally displayed. (It is an
internal error.)
O Contact Renesas Solutions Corp.

Appendix F-3

Appendix "F" Error Messages

F.3 cpp30 Error Messages

Tables F.3 to F.6 list the error messages output by the cpp30 preprocessor and their
countermeasures.

Table F.3 cpp30 Error Messages (1/4)

NO. Error message Description and countermeasure

1 illegal command option @ Input filename specified twice.

O Specify the input filename once only.

® The same name was specified for both input and
output files.

O Specify different names for input and output files.

® Output filename specified twice.

O Specify the output filename once only.

® The command line ends with the -o option.

O Specify the name of the output file after the -o
option.

® The -l option specifying the include file path
exceeds the limit.

O Specify the -l option 8 times or less.

® The command line ends with the -I option.

O Specify the name of an include file after the -I
option.

® The string following the -D option is not of a
character type (letter or underscore) that can be
used in a macro name. lllegal macro name defini-
tion.

0 Specify the macro name correctly and define the
macro correctly.

® The command line ends with the -D option.

O Specify a macro filename after the -D option.

® The string following the -U option is not of a
character type (letter or underscore) that can be
used in a macro name.

0 Define the macro correctly.

@®You specified an illegal option on the cpp30 com-
mand line.

O Specify only legal options.

11 |cannot open input file @ Input file not found.

O Specify the correct input file name.

12 |cannot close input file @ Input file cannot be closed.

O Check the input file name.

14 |cannot open output file. @® Cannot open output file.

O Specify the correct output file name.

15 |cannot close output file ® Cannot close output file.

O Check the available space on disk.

Appendix F-4

Appendix "F"

Error Messages

Table F.4 cpp30 Error Messages (2/4)

No. Error message Description and countermeasure

16 |cannot write output file @ Error writing to output file.

O Check the available space on disk.

17 |input file name buffer over- |@® The input filename buffer has overflowed. Note

flow that the filename includes the path.

00 Reduce the length of the filename and path (use
the -l option to specify the standard directory).

18 |not enough memory for @ Insufficient memory for macro name and contents

macro identifier of macro

[UNIX]:

O Increase the swap area

[MS-Windows I:

O Increase the swap area

21 |include file not found @ The include file could not be opened.

O The include files are in the current directory and
that specified in the -l option and environment
variable. Check these directories.

22 |illegal file name error @ lllegal filename.

O Specify a correct filename.

23 |include file nesting over @ Nesting of include files exceeds the limit (8).

0 Reduce nesting of include files to a maximum of 8
levels.

25 |illegal identifier @ Error in #define.

O Code the source file correctly.

26 |illegal operation @ Error in preprocess commands #if - #elseif - #as-
sert operation expression.

00 Rewrite operation expression correctly.

27 |macro argument error @ Error in number of macro parameters when ex-
panding macro.

O Check macro definition and reference and correct
as necessary.

28 |input buffer over flow @ Input line buffer overflow occurred when reading
source file(s). Or, buffer overflowed when con-
verting macros.

0 Reduce each line in the source file to a maximum
of 1023 characters. If you anticipate macro con-
version, modify the code so that no line exceeds
1023 characters after conversion.

29 |EOF in comment ® End of file encountered in a comment.

O Correct the source file.

Appendix F-5

Appendix "F"

Error Messages

Table F.5 cpp30 Error Messages (3/4)

No. Error message Description and countermeasure
31 |EOF in preprocess command |@ End of file encountered in a preprocess command
O Correct the source file.
32 |unknown preprocess ® An unknown preprocess command has been
command specified.
O Only the following preprocess commands can be
used in CPP30 :
#include, #define, #undef, #if, #ifdef, #ifndef,
#else, #endif, #elseif, #line, #assert, #pragma,
#error
33 | new_line in string ® A new-line code was included in a character
constant or character string constant.
0 Correct the program.
34 |string literal out of range |@ A character string exceeded 509 characters.
509 characters 0 Reduce the character string to 509 characters
max.
35 |macro replace nesting over |@® Macro nesting exceeded the limit (20).
0 Reduce the nesting level to a maximum of 20.
41 |include file error @ Error in #include instruction.
O Correct.
43 |illegal id name ® Error in following macro name or argument in
#define command:
FILE , _LINE__,_DATE_ ,_ TIME__
0 Correct the source file.
44 | token buffer over flow @ Token character buffer of #define overflowed.
0 Reduce the number of token characters.
45 |illegal undef command usage |@ Error in #undef.
0 Correct the source file.
46 |undef id not found ® The following macro names to be undefined in
#undef were not defined:
FILE , _LINE__,_DATE_ ,_ TIME__
0 Check the macro name.
52 |illegal ifdef / ifndef command | @ Error in #ifdef.
usage O Correct the source file.
53 |elseif / else sequence error | @ #elseif or #else were used without #if - #ifdef -
#ifndef.
0 Use #elseif or #else only after #if - #ifdef -#ifndef.
54 | endif not exist ® No #endif to match #if - #ifdef - #ifndef.
O Add #endif to the source file.
55 | endif sequence error @ #endif was used without #if - #ifdef - #ifndef.

0 Use #endif only after #if - #ifdef - #ifndef.

Appendix F-6

Appendix "F" Error Messages

Table F.6 cpp30 Error Messages (4/4)

No. Error message Description and countermeasure

61 |illegal line command usage |@ Error in #line.
O Correct the source file.

Appendix F-7

Appendix "F" Error Messages

F.4 cpp30 Warning Messages

Table F.7 shows the warning messages output by cpp30 and their countermeasures.

Table F.7 cpp30 Warning Messages

No. Warning Messages Description and countermeasure
81 |reserved id used @ You attempted to define or undefine one of the
following macro names reserved by cpp30:
FILE , _LINE_,_DATE_ ,_TIME__
O Use a different macro name.
82 |assertion warning ® The result of an #assert operation expression
was 0.
O Check the operation expression.
83 |garbage argument ® Characters other than a comment exist after a

preprocess command.
O Specify characters as a comment (/ * string */)
after the preprocess command.

84 |escape sequence out of ® An escape sequence in a character constant or
range for character character string constant exceeded 255 charac-
ters.
00 Reduce the escape sequence to within 255 char-
acters.
85 |redefined @ A previously defined macro was redefined with

different contents.
O Check the contents against those in the previous
definition.

87 /* within comment @® A comment includes /*.
J Do not nest comments.

Appendix F-8

Appendix "F"

Error Messages

F.5 ccom30 Error Messages

Tables F.8 to F.20 list the ccom30 compiler error messages and their countermeasures.

Table F.8 ccom30 Error Messages (1/14)

Error message

Description and countermeasure

#pragma PRAGMA-name function-
name redefined

® The same function is defined twice in #pragma-
name.

O Make sure that #pragma-name is declared only
once.

#pragma PRAGMA-name function-
argument is long-long or double

® The arguments used for the function specified
with the "#pragma program name function name"
are the long long type or the double type.

0 The long long type and double type cannot be
used in the functions specified with the "#pragma
program name function name." Use other types.

#pragma PARAMETER & function
prototype mismatched

® The function specified by #pragma PARAMETER
does not match the contents of argument in pro-
totype declaration.

00 Make sure it is matched to the argument in proto-
type declaration.

#pragma PARAMETER's function
argument is struct or union

@ The struct or union type is specified in the proto-
type declaration for the function specified by
#pragma PARAMETER.

O Specify the int or short type, 2-byte pointer type,
or enumeration type in the prototype declaration.

#pragma PARAMETER must be
declared before use

@ A function specified in the #pragma PARAMETER
declaration is defined after call for that function.
O Declare a function before calling it.

#pragma INTCALL function's
argument on stack

® When the body of functions declared in #pragma
INTCALL are written in C, the parameters are
passed via the stack.

0 When the body of functions declared in #pragma
INTCALL are written in C, specify the parameters
are being passed via the stack.

#pragma PARAMETER function's
register not allocated

® A register which is specifed in the function
decleared by #pragma PARAMETER can not be
allocated.

O Use the correct register.

‘const' is duplicate

@® const is described more than twice.
O Write the type qualifier correctly.

'far' & 'near' conflict

@ far/near is described more than twice.
O Write near/far correctly.

'far' is duplicate

@ far is described more than twice.
O Write far correctly.

‘near' is duplicate

@® near is described more than twice.
O Write near correctly.

'static’ is illegal storage class for
argument

@ An appropriate storage class is used in argument
declaration.
00 Use the correct storage class.

Appendix F-9

Appendix "F"

Error Messages

Table F.9 ccom-mocc Error Messages (2/14)

Error message

Description and countermeasure

'volatile' is duplicate

@ volatile is described more than twice.
O Write the type qualifier correctly.

(can't read C source from filename
line number for error message)

@® The source line is in error and cannot be dis-
played.
The file indicated by filename cannot be found or
the line number does not exist in the file.

O Check whether the file actually exists.

(can't open C source filename for
error message)

® The source file in error cannot be opened.
0 Check whether the file exists.

argument type given both places

® Argument declaration in function definition over-
laps an argument list separately given.

0 Choose the argument list or argument declara-
tion for this argument declaration.

array of functions declared

® The array type in array declaration is defined as
function.
O Specify scalar type struct/union for the array

type.

array size is not constant integer

® The number of elements in array declaration is
not a constant.

00 Use a constant to describe the number of ele-
ments.

asm()'s string must have more than
3%$%$ or$@

® $$ or $@ is described more than thrice in asm
statement.
O Make sure that $$ ($@)is described only twice.

auto variable's size is zero

® An array with 0 elements or no elements was
declared in the auto area.
O Correct the coding.

bitfield width exceeded

@® The bit-field width exceeds the bit width of the
data type.

O Make sure that the data type bit width declared in
the bit-field is not exceeded.

bitfield width is not constant integer

® The bit width of the bit-field is not a constant.
00 Use a constant to write the bit width.

can't get bitfield address by '&'
operator

® The bit-field type is written with the & operator.
O Do not use the & operator to write the bit-field

type.

can't get inline function's address
by '&' operator

@® The & operator is written in an inline function.
O Do not use the & operator in an inline function.

can't get void value

® An attempt is made to get void-type data as in
cases where the right side of an assignment ex-
pression is the void type.

0 Check the data type.

can't output to file-name

® The file cannot be wrote
0 Check the rest of disk capacity or permission of
the file.

can't open file-name

® The file cannot be opened.
O Check the permission of the file.

Appendix F-10

Appendix "F"

Error Messages

Table F.10 ccom30 Error Messages (3/14)

Error message

Description and countermeasure

can't set argument

® The type of an actual argument does not match
prototype declaration. The argument cannot be
set in a register (argument).

O Correct mismatch of the type.

case value is duplicated

® The value of case is used more than one time.

O Make sure that the value of case that you used
once is not used again within one switch state-
ment.

conflict declare of variable-name

@ The variable is defined twice with different stor-
age classes each time.

O Use the same storage class to declare a variable
twice.

conflict function argument type of
variable-name

® The argument list contains the same variable
name.
O Change the variable name.

declared register parameter
function's body declared

@® The function body for the function declared with
#pragma PARAMETER is defined in C
O Do not define , in C, the body for such function .

default function argument conflict

® The default value of an argument is declared
more than once in prototype declaration.

O Make sure that the default value of an argument
is declared only once.

default: is duplicated

® The default value is used more than one time.
O Use only one default within one switch statement.

do while (struct/union) statement

@ The struct or union type is used in the expression
of the do-while statement.

O Use the scalar type for an expression in the do-
while statement.

do while (void) statement

® The void type is used in the expression of the do-
while statement.

O Use the scalar type for an expression in the do-
while statement.

duplicate frame position defind
variable-name

@ Auto variable is described more than twice.
O Write the type specifier correctly.

duplicate 'long'

@ long is described more than twice.
O Write the type specifier correctly.

Empty declare

® Only storage class and type specifiers are found.
O Write a declarator.

float and double not have sign

@ Specifiers signed/unsigned are described in float
or double.
O Write the type specifier correctly.

floating point value overflow

® The floating-point immediate value exceeds the
representable range.
O Make sure the value is within the range.

floating type's bitfield

@ A bit-field of an invalid type is declared.
O Use the integer type to declare a bit-field.

for (; struct/union;) statement

@® The struct or union type is used in the second
expression of the for statement.

O Use the scalar type to describe the second ex-
pression of the for statement.

Appendix F-11

Appendix "F"

Error Messages

Table F.11 ccom30 Error Messages (4/14)

Error message

Description and countermeasure

for (; void;) statement

® The 2nd expression of the for statement has void.
O Use the scalar type as the 2nd expression of the
for statement.

function initialized

@ An initialize expression is described for function
declaration.
O Delete the initialize expression.

function member declared

@® A member of struct or union is function type
0 Write the members correctly.

function returning a function de-
clared

® The type of the return value in function declara-
tion is function type.
O Change the type to “pointer to function”etc.

function returning an array

® The type of the return value in function declara-
tion is an array type.
O Change the type to “pointer to function’etc.

handler function called

@ The function specified by #pragma HANDLER is
called.
O Be careful not to call a handler.

identifier (variable-name) is dupli-
cated

@® The variable is defined more than one time.
O Specify variable definition correctly.

if (' struct/union) statement

@ The struct or union type is used in the expression
of the if statement.
O The expression must have scalar type.

if (void) statement

@® The void type is used in the expression of the if
statement.
O The expression must have scalar type.

illegal storage class for argument,
‘inline" ignored

@® An inline function is declared in declaration state-
ment within a function.
0 Declare it outside a function.

illegal storage class for argument,
'interrupt’ ignored

® An interrupt function is declared in declaration
statement within a function.
O Declare it outside a function.

incomplete array access

® An attempt is made to reference an array of in-
complete .
O Define size of array.

incomplete return type

@® An attempt is made to reference an return vari-
able of incomplete type.
O Check return variable.

incomplete struct get by []

® An attempt is made to reference or initialize an
array of incomplete structs or unions that do not
have defined members.

O Define complete structs or unions first.

incomplete struct member

® An attempt is made to reference an struct mem-
ber of incomplete .
O Define complete structs or unions first.

incomplete struct initialized

@ An attempt is made to initialize an array of incom-
plete structs or unions that do not have defined
members.

O Define complete structs or unions first.

Appendix F-12

Appendix "F" Error Messages

Table F.12 ccom30 Error Messages (5/14)

Error message

Description and countermeasure

incomplete struct return function
call

@ An attempt is made to call a function that has as a
return value the of incomplete struct or union that
does not have defined members.

O Define a complete struct or union first.

incomplete struct / union's mem-
ber access

® An attempt is made to reference members of an
incomplete struct or union that do not have de-
fined members.

O Define a complete struct or union first.

incomplete struct / union(tag-
name)'s member access

® An attempt is made to reference members of an
incomplete struct or union that do not have de-
fined members.

O Define a complete struct or union first.

inline function's address used

® An attempt is made to reference the address of
an inline function.
O Do not use the address of an inline function.

inline function's body is not de-
clared previously

@ The body of an inline function is not defined.
O Using an inline function, define the function body
prior to the function call.

inline function (function-name) is
recursion

@® The recursive call of an in line function cannot be
carried out.
O Using an inline function, No recursive.

interrupt function called

® The function specified by #pragma INTERRUPT
is called.

O Be careful not to call an interrupt handling func-
tion.

invalid function default argument

® The default argument to the function is incorrect.

O This error occurs when the prototype declaration
of the function with default arguments and those
in the function definition section do not match.
Make sure they match.

invalid push

@ An attempt is made to push void type in function
argument, etc.
O The type void cannot be pushed.

invalid '?:" operand

® The ?: operation contains an error.

O Check each expression. Also note that the ex-
pressions on the left and right sides of : must be
of the same type.

invalid ‘=" operands

® The != operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '&&' operands

® The && operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '&' operands

@® The & operation contains an error.
O Check the expression on the right side of the
operator.

invalid '&="' operands

@® The &= operation contains an error.
O Check the expressions on the left and right sides
of the operator.

Appendix F-13

Appendix "F"

Error Messages

Table F.13 ccom30 Error Messages (6/14)

Error message

Description and countermeasure

invalid '()' operands

® The expression on the left side of () is not a
function.

O Write a function or a pointer to the function in the
left-side expression of ().

invalid *' operands

@ If multiplication, the * operation contains an error.
If * is the pointer operator, the right-side expres-
sion is not pointer type.

O For a multiplication, check the expressions on the
left and right sides of the operator. For a pointer,
check the type of the right-side expression.

invalid *=' operands

@® The *= operation contains an error.
0 Check the expressions on the left and right sides
of the operator.

invalid '+' operands

® The + operation contains an error.
0 Check the expressions on the left and right sides
of the operator.

invalid '+=' operands

® The += operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '-' operands

@® The - operator contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '-=' operands

@® The -= operation contains an error.
0 Check the expressions on the left and right sides
of the operator.

invalid '/=" operands

® The /= operation contains an error.
0 Check the expressions on the left and right sides
of the operator.

invalid '<<' operands

® The << operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '< ' operands

@® The < operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid ‘00 ' operands

® The O operation contains an error.
0 Check the expressions on the left and right sides
of the operator.

invalid '=" operands

® The = operation contains an error.
0 Check the expressions on the left and right sides
of the operator.

invalid '==" operands

® The == operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '>=' operands

@® The >= operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '>>' operands

@® The >> operation contains an error.
0 Check the expressions on the left and right sides
of the operator.

Appendix F-14

Appendix "F" Error Messages

Table F.14 ccom30 Error Messages (7/14)

Error message

Description and countermeasure

invalid '>>="' operands

@® The >>= operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '[]' operands

@ The left-side expression of [] is not array type or
pointer type.

00 Use an array or pointer type to write the left-side
expression of [].

invalid '*=' operands

@® The "= operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid ' | =" operands

@® The | = operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid ' || ' operands

® The || operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid '%=" operands

® The %= operation contains an error.
O Check the expressions on the left and right sides
of the operator.

invalid ++ operands

@® The ++ unary operator or postfix operator con-
tains an error.

O For the unary operator, check the right-side ex-
pression. For the postfix operator, check the left-
side expression.

invalid - - operands

® The -- unary operation or postfix operation con-
tains an error.

O For the unary operator, check the right-side ex-
pression. For the postfix operator, check the left-
side expression.

invalid -> used

® The left-side expression of -> is not struct or
union.

O The left-side expression of -> must have struct or
union.

invalid (? :)'s condition

® The ternary operator is erroneously written.
O Check the ternary operator.

Invalid #pragma OS Extended
function interrupt number

® The INT No. in #pragma OS Extended function is
invalid.
O Specify correctly.

Invalid #pragma INTCALL interrupt
number

® The INT No. in #pragma INTCALL is invalid.
O Specify correctly.

Invalid #pragma SPECIAL page
number

® The No. in #pragma SPECIAL is invalid.
O Specify correctly.

invalid CAST operand

@® The cast operation contains an error. The void
type cannot be cast to any other type; it can
neither be cast from the structure or union type
nor can it be cast to the structure or union type.

O Write the expression correctly.

Appendix F-15

Appendix "F"

Error Messages

Table F.15 ccom30 Error Messages (8/14)

Error message

Description and countermeasure

invalid asm()'s argument

® The variables that can be used in asm state-
ments are only the auto variable and argument.

00 Use the auto variable or argument for the state-
ment.

invalid bitfield declare

@® The bit-field declaration contains an error.
O Write the declaration correctly.

invalid break statements

® The break statement is put where it cannot be
used.

O Make sure that it is written in switch, while, do-
while, and for.

invalid case statements

® The switch statement contains an error.
O Write the switch statement correctly.

invalid case value

@ The case value contains an error.
0 Write an integral-type or enumerated-type con-
stant.

invalid cast operator

@ Use of the cast operator is illegal.
O Write the expression correctly.

invalid continue statements

® The continue statement is put where it cannot be
used.
0 Use it in a while, do-while, and for block.

invalid default statements

@® The switch statement contains an error.
O Write the switch statement correctly.

invalid enumerator initialized

@® The initial value of the enumerator is incorrectly
specified by writing a variable name, for example.
0 Write the initial value of the enumerator correctly.

invalid function argument

® An argument which is not included in the argu-
ment list is declared in argument definition in
function definition.

O Declare arguments which are included in the ar-
gument list.

invalid function's argument declara-
tion

® The argument of the function is erroneously de-
clared.
O Write it correctly.

invalid function declare

@ The function definition contains an error.
0 Check the line in error or the immediately preced-
ing function definition.

invalid initializer

® The initialization expression contains an error.
This error includes excessive parentheses, many
initialize expressions, a static variable in the
function initialized by an auto variable, or a vari-
able initialized by another variable.

O Write the initialization expression correctly.

invalid initializer of variable-name

@® The initialization expression contains an error.
This error includes a bit-field initialize expression
described with variables, for example.

O Write the initialization expression correctly.

Appendix F-16

Appendix "F"

Error Messages

Table F.16 ccom30 Error Messages (9/14)

Error message

Description and countermeasure

invalid initializer on array

@ The initialization expression contains an error.

O Check to see if the number of initialize expres-
sions in the parentheses matches the number of
array elements and the number of structure mem-
bers.

invalid initializer on char array

@ The initialization expression contains an error.

O Check to see if the number of initialize expres-
sions in the parentheses matches the number of
array elements and the number of structure mem-
bers.

invalid initializer on scalar

@ The initialization expression contains an error.

O Check to see if the number of initialize expres-
sions in the parentheses matches the number of
array elements and the number of structure mem-
bers.

invalid initializer on struct

@ The initialization expression contains an error.

O Check to see if the number of initialization ex-
pressions in the parentheses matches the num-
ber of array elements and the number of structure
members.

invalid initializer, too many brace

® Too many braces { } are used in a scalar-type
initialization expression of the auto storage class.
O Reduce the number of braces { } used.

invalid lvalue

@ The left side of the assignment statement is not
Ivalue.

O Write a substitutable expression on the left side of
the statement.

invalid Ivalue at '=' operator

@ The left side of the assignment statement is not
Ivalue.

O Write a substitutable expression on the left side of
the statement.

invalid member

@® The member reference contains an error.
O Write correctly.

invalid member used

@® The member reference contains an error.
O Write correctly.

invalid redefined type name of
(identifier)

® The same identifier is defined more than once in
typedef.
O Write the identifier correctly.

invalid return type

® The type of return value of the function is incor-
rect.
O Write it correctly.

invalid sign specifier

@ Specifiers signed/unsigned are described twice or
more.
O Write the type specifier correctly.

invalid storage class for data

® The storage class is erroneously specified.
O Write it correctly.

invalid struct or union type

@ Structure or union members are referenced for
the enumerated type of data.
O Write it correctly.

Appendix F-17

Appendix "F"

Error Messages

Table F.17 ccom30 Error Messages (10/14)

Error message

Description and countermeasure

invalid truth expression

® The void, struct, or union type is used in the first
expression of a condition expression (?:).
00 Use scalar type to write this expression.

invalid type specifier

@® The same type specifier is described twice or
more as in "int int i;" or an incompatible type
specifier is described as in "float int i;."

O Write the type specifier correctly.

invalid type's bitfield

@ A bit-field of an invalid type is declared.
O Use the integer type for bit-fields.

invalid types specifier, long long
long

@ Specifiers “long” are described thrice or more.
0 Check the type.

invalid unary '!' operands

@ Use of the ! unary operator is illegal.
O Check the right-side expression of the operator.

invalid unary '+' operands

® Use of the + unary operator is illegal.
0 Check the right-side expression of the operator.

invalid unary '-' operands

@® Use of the - unary operator is illegal.
O Check the right-side expression of the operator.

invalid unary '~' operands

® Use of the ~ unary operator is illegal.
0 Check the right-side expression of the operator.

invalid void type

@® The void type specifier is used with long or
singed.
O Write the type specifier correctly.

invalid void type, int assumed

@® The void-type variable cannot be declared. Pro-
cessing will be continued by assuming it to be the
int type.

O Write the type specifier correctly.

invalid size of bitfield

@ Get the bitfield size.
00 Not write bitfield on this decraration.

invalid switch statement

® The switch statement is illegal.
O Write it correctly.

label label redefine

® The same label is defined twice within one func-
tion.
O Change the name for either of the two labels.

long long type’s bitfield

@ Specifies bitfield by long long type
0 Can not specifies bit-fields of long long type.

mismatch prototyped parameter
type

@® The argument type is not the type declared in
prototype declaration.
O Check the argument type.

No #pragma ENDASM

@ #pragma ASM does not have matching #pragma
ENDASM.
O Write #pragma ENDASM.

No declarator

® The declaration statement is incomplete.
0 Write a complete declaration statement.

Not enough memory

[UNIX version]

® The swap area is insufficient.

O Increase the swap area.

[MS-Windows 95,98 / NT version]

@® The memory area is insufficient.

O Increase the memory or the swap area.

Appendix F-18

Appendix "F"

Error Messages

Table F.18 ccom30 Error Messages (11/14)

Error message

Description and countermeasure

not have ‘'long char'

® Type specifiers long and char are simultaneously
used.
O Write the type specifier correctly.

not have 'long float'

@ Type specifiers long and float are simultaneously
used.
O Write the type specifier correctly.

not have 'long short'

® Type specifiers long and short are simulta-
neously used.
O Write the type specifier correctly.

not static initializer for variable-
name

® The initialize expression of static variable con-
tains an error. This is because the initialize ex-
pression is a function call, for example.

O Write the initialize expression correctly.

not struct or union type

® The left-side expression of -> is not the structure
or union type.

O Use the structure or union type to describe the
left-side expression of ->.

redeclare of variable-name

@® An variable-name has been declared twice.
0O Change the name for either of the two variable
name.

redeclare of enumerator

@® An enumerator has been declared twice.
O Change the name for either of the two enumera-
tors.

redefine function function-name

@ The function indicated by function-name is de-
fined twice.

O The function can be defined only once. Change
the name for either of the two functions.

redefinition tag of enum tag-name

@® An enumeration is defined twice.
O Make sure that enumeration is defined only once.

redefinition tag of struct tag-name

@ A structure is defined twice.
O Make sure that a structure is defined only once.

redefinition tag of union tag-name

@ A union is defined twice.
O Make sure that a union is defined only once.

reinitialized of variable-name

@ An initialize expression is specified twice for the
same variable.
O Specify the initializer only once.

restrict is duplicate

@ A restrict is defined twice.
O Make sure that a restrict is defined only once.

size of incomplete array type

® An attempt is made to find sizeof of an array of
unknown size. This is an invalid size.
O Specify the size of the array.

size of incomplete type

@® An undefined structure or union is used in the
operand of the sizeof operator.
O Define the structure or union first.

® The number of elements of an array defined as
an operand of the sizeof operator is unknown.
O Define the structure or union first.

size of void

@® An attempt is made to find the size of void. This is
an invalid size.
O The size of void cannot be found.

Appendix F-19

Appendix "F"

Error Messages

Table F.19 ccom30 Error Messages (12/14)

Error message

Description and countermeasure

Sorry, stack frame memory ex-
haust, max. 128 bytes but how nnn
bytes(NC30, NC308 only)

® A maximum of 128 bytes of parameters can be
secured on the stack frame. Currently, nnn bytes
have been used.

0 Reduce the size or number of parameters.

Sorry, stack frame memory ex-
haust, max. 64(or 255) bytes but
now nnn bytes

@ The stack frame maximum is follows.
64 bytes (NC79)
255bytes (NC30, NC77 and NC79 with -fDPO8
option used)
Currently nnn bytes have been used.
0 Reduce the auto variables, parameters, and
other variables stored in the stack frame area.

Sorry, compilation terminated
because of these errors in function-
name.

@® An error occurred in some function indicated by
function-name. Compilation is terminated.

O Correct the errors detected before this message
is output.

Sorry, compilation terminated
because of too many errors.

@ Errors in the source file exceeded the upper limit
(50 errors).

O Correct the errors detected before this message
is output.

struct or enum's tag used for union

@® The tag name for structure and enumerated type
is used as a tag name for union.
O Change the tag name.

struct or union's tag used for enum

® The tag name for structure and union is used as a
tag name for enumerated type.
O Change the tag name.

struct or union, enum does not
have long or sign

® Type specifiers long or signed are used for the
struct/union/enum type specifiers.
0 Write the type specifier correctly.

switch's condition is floating

® The float type is used for the expression of a
switch statement.
00 Use the integer type or enumerated type.

switch's condition is void

® The void type is used for the expression of a
switch statement.
O Use the integer type or enumerated type.

switch's condition must integer

@ Invalid types other than the integer and enumer-
ated types are used for the expression of a switch
statement.

O Use the integer type or enumerated type.

syntax error

@ This is a syntax error.
0 Write the description correctly.

System Error

@ It does not normally occur. (This is an internal
error.)This error may occur pursuant to one of
errors that occurred before it.

O If this error occurs even after eliminating all errors
that occurred before it, please send the content
of the error message to Renesas Solutions Corp.
as you contact.

Appendix F-20

Appendix "F" Error Messages

Table F.20 ccom30 Error Messages (14/14)

Error message

Description and countermeasure

too many storage class of typedef

@ Storage class specifiers such as extern/typedef/
static/auto/register are described more than
twice in declaration.

00 Do not describe a storage class specifier more
than twice.

type redeclaration of variable-name

® The variable is defined with different types each
time.

0 Always use the same type when declaring a vari-
able twice.

typedef initialized

® An initialize expression is described in the vari-
able declared with typedef.
O Delete the initialize expression.

uncomplete array pointer operation

® An incomplete multidimensional array has been
accessed to pointer.
O Specify the size of the multidimensional array.

undefined label "label" used

@® The jump-address label for goto is not defined in
the function.
O Define the jump-address label in the function.

union or enum's tag used for struct

® The tag name for union and enumerated types is
used as a tag name for structure.
O Change the tag name.

unknown function argument vari-
able-name

® An argument is specified that is not included in
the argument list.
O Check the argument.

unknown member "member-name"
used

® A member is referenced that is not registered as
any structure or union members.
0 Check the member name.

unknown pointer to structure
identifier "variable-name"

® The left-side expression of -> is not the structure
or union type.

O Use struct or union as the left-side expression
of ->.

unknown size of struct or union

@ A structure or union is used which has had its size
not determined.
O Declare the structure or union before declaring a

unknown structure identifier "vari-
able-name"

structure or union variable.

® The left-side expression of "." dose not have
struct or union.

O Use the struct or union as it.

unknown variable "variable-name"
used in asm()

@® An undefined variable name is used in the asm
statement.
0O Define the variable.

unknown variable variable-name

@® An undefined variable name is used.
0O Define the variable.

unknown variable variable-name
used

@® An undefined variable name is used.
0O Define the variable.

void array is invalid type, int array
assumed

® An array cannot be declared as void. Processing
will be continued, assuming it has type int.
0 Write the type specifier correctly.

Appendix F-21

Appendix "F"

Error Messages

Table F.21 ccom30 Error Messages (13/13)

Error message

Description and countermeasure

void value can't return

@® The value converted to void (by cast) is used as
the return from a function.
O Write correctly.

while (struct/union) statement

@ struct or union is used in the expression of a while
statement.
O Use scalar type.

while (void) statement

@ void is used in the expression of a while state-
ment.
O Use scalar type.

multiple #pragma EXT4AMPTR's
pointer, ignored

® A pointer variable decleared by #pragma
EXTAMPTR is duplecate.
O Declare the variable only one time.

zero size array member

@ the array which size is zero.
O Declare the array size.

® The structure members include an array whose
size is zero.

O Arrays whose size is zero cannot be members of
a structure.

‘function-name’ is resursion, then
inline is ignored

® The inline-declared ‘function name' is called re-
cursively. The inline declaration will be ignored.

O Correct the statement not to call such a function
name recursively.

Appendix F-22

Appendix "F"

Error Messages

F.6 ccom30 Warning Messages

Tables F.21 to F.30 list the ccom30 compiler warning messages and their countermeasures.

Table F.21

ccom30 Warning Messages (1/10)

Warning message

Description and countermeasure

#pragma pragma-name & HAN-
DLER both specified

® Both #pragma pragma-name and #pragma HAN-
DLER are specified in one function.

O Specify #pragma pragma-name and #pragma
HANDLER exclusive to each other.

#pragma pragma-name & INTER-
RUPT both specified

® Both #pragma pragma-name and #pragma IN-
TERRUPT are specified in one function.

O Specify #pragma pragma-name and #pragma IN-
TERRUPT exclusive to each other.

#pragma pragma-name & TASK both
specified

® Both #pragma pragma-name and #pragma TASK
are specified in one function.

O Specify #pragma pragma-name and #pragma
TASK exclusive to each other.

#pragma pragma-name format error

® The #pragma pragma-name is erroneously writ-
ten. Processing will be continued.
O Write it correctly.

#pragma pragma-name format error,
ignored

® The #pragma pragma-name is erroneously writ-
ten. This line will be ignored.
O Write it correctly.

#pragma pragma-name not function,
ignored

® A name is written in the #pragma pragma-name
that is not a function.
O Write it with a function name.

#pragma pragma-name's function
must be predeclared, ignored

® A function specified in the #pragma pragma-
name is not declared.

O For functions specified in a #pragma pragma-
name, Write prototype declaration in advance.

#pragma pragma-name's function
must be prototyped, ignored

® A function specified in the #pragma pragma-
name is not prototype declared.

O For functions specified in a #pragma pragma-
name, Write prototype declaration in advance.

#pragma pragma-name's function
return type invalid,ignored

@ The type of return value for a function specified in
the #pragma pragma-name is invalid.

O Make sure the type of return value is any type
other than stOect, union, or double.

#pragma pragma-name unknown
switch,ignored

@ The switch specified in the #pragma pragma-name
is invalid.
O Write it correctly.

Appendix F-23

Appendix "F"

Error Messages

Table F.22 ccom30 Warning Messages (2/10)

Warning message

Description and countermeasure

#pragma ADDRESS variable
initialized, ADDRESS ignored

® The variable specified in #pragma ADDRESS is
initialized. The specification of #pragma AD-
DRESS will be nullified.

O Delete either #pragma ADDRESS or the initialize
expression.

#pragma ASM line too long, then
cut

® The line in which #pragma ASM is written ex-
ceeds the allowable number of characters =
1,024 bytes.

O Write it within 1,024 bytes.

#pragma directive conflict

@ #pragma of different functions is specified for one
function.
O Write it correctly.

#pragma DP[n]DATA format
error,ignored (NC79 only)

® You have also specified option -fDPO8.

O If you specify both #pragma DP[n]DATA and -
fDPO8, #pragma DP[n]DATA is invalid. Delete
the option -fDPO8.

® You have made an error in the format of #pragma
DP[n]DATA.
0 Correct the format.

#pragma JSRA illegal location,
ignored (NC30,NC308 only)

® Do not put #pragma JSRA inside function scope.
O Write #pragma JSRA outside a function.

#pragma JSRW illegal location,
ignored (NC30,NC308 only)

® Do not put #pragma JSRW inside function scope.
O Write #pragma JSRW outside a function.

#pragma PARAMETER function's
address used

® The address of function specified #pragma PA-
RAMETER is assigned to the pointer variable.
O As don't assign, write correctly.

#pragma control for function dupli-
cate, ignored
(NC30,NC308 only)

@® Two or more of INTERRUPT, TASK, HANDLER,
CYCHANDLER, or ALMHANDLER are specified
for the same function in #pragma.

0 Be sure to specify only one of INTERRUPT,
TASK,HANDLER,CYCHANDLER,Or
ALMHANDLER.

‘auto’ is illegal storage class

® An incorrect storage class is used.
O Specify the correct storage class.

‘register’ is illegal storage class

@® An incorrect storage class is used.
O Specify the correct storage class.

argument is define by 'typedef’,
‘typedef' ignored

@ Specifier typedef is used in argument declaration.
Specifier typedef will be ignored.
O Delete typedef.

assign far pointer to near pointer,
bank value ignored

® The bank address will be nullified when substitut-
ing the far pointer for the near pointer.
O Check the data types, near or far.

assignment from const pointer to
non-const pointer

@® The const property is lost by assignment from
const pointer to non-const pointer.

O Check the statement description. If the descrip-
tion is correct, ignore this warning.

assignment from volatile pointer to
non-volatile pointer

@® The volatile property is lost by assignment from
volatile pointer to non-volatile pointer.

O Check the statement description. If the descrip-
tion is correct, ignore this warning.

Appendix F-24

Appendix "F"

Error Messages

Table F.23 ccom30 Warning Messages (3/10)

Warning message

Description and countermeasure

assignment in comparison state-
ment

@ You put an assignment expression in a compari-
son statement.
O You may confuse "==" with '=". Check on it.

block level extern variable initialize
forbid, ignored

@ An initializer is written in extern variable declara-
tion in a function.
O Delete the initializer or change the storage class.

can't get address from register
storage class variable

@® The & operator is written for a variable of the
storage class register.

O Do not use the & operator to describe a variable of
the storage class register.

can't get size of bitfield

@ The bit-field is used for the operand of the sizeof
operator.
O Write the operand correctly.

can't get size of function

@ A function name is used for the operand of the
sizeof operator.
O Write the operand correctly.

can't get size of function, unit size
1 assumed

® The pointer to the function is incremented (++) or
decremented (--). Processing will be continued
by assuming the increment or decrement value is
1.

O Do not increment (++) or decrement (--) the
pointer to a function.

char array initialized by wchar_t
string

@®The array of type char is initialized with type
wchar_t.

O Make sure that the types of initializer are
matched.

case value is out of range

@®The value of case exceeds the switch parameter
range.
O Specify correctly.

character buffer overflow

® The size of the string exceeded 512 characters.
O Do not use more than 511 characters for a string.

character constant too long

@® There are too many characters in a character
constant (characters enclosed with single
qguotes).

O Write it correctly.

constant variable assignment

@ |n this assign statement, substitution is made for
a variable specified by the const qualifier.
O Check the declaration part to be substituted for.

cyclic or alarm handler always Bank
0 (NC77,NC79 only)

@ Function specified in #pragma CYCHANDLER or
ALMHANDLER are always compiled in bank 0
(addresses below 10000H).

U None.

cyclic or alarm handler always load
DT (NC77,NC79 only)

® There is no need to #pragma LOADDT a function
specified in #pragma CYCHANDLER or
ALMHANDLER.

O Delete #pragma LOADDT.

Appendix F-25

Appendix "F"

Error Messages

Table F.24 ccom30 Warning Messages (4/10)

Warning message

Description and countermeasure

cyclic or alarm handler function has
argument

® The function specified by #pragma
CYCHANDLER or ALMHANDLER is using an ar-
gument.

O The function cannot use an argument. Delete the
argument.

enumerator value overflow size of
unsigned char

@® The enumerator value exceeded 255.

00 Do not use more than 255 for the enumerator;
otherwise, do not specify the startup function -
fchar_enumerator.

enumerator value overflow size of
unsigned int

@® The enumerator value exceeded 65535.
00 Do not use more than 65535 to describe the
enumerator.

enum's bitfield

@® An enumeration is used as a bit field member.
0 Use a different type of member.

external variable initialized, change
to public

@ An initialization expression is specified for an ex-
tern-declared variable. extern will be ignored.
O Delete extern.

far pointer (implicitly) casted by
near pointer

® The far pointer was converted into the near
pointer.
0 Check the data types, near or far.

function must be far

® The function is declared with the near type.
O Write it correctly.

handler function called

® The function specified by #pragma HANDLER is
called.
0O Be careful not to call a handler.

handler function can't return value

® The function specified by #pragma HANDLER is
using a returned value.

0 The function specified by #pragma HANDLER
cannot use a returned value. Delete the return
value.

handler function has argument

® The function specified by #pragma HANDLER is
using an argument.

O The function specified by #pragma HANDLER
cannot use an argument. Delete the argument.

hex character is out of range

® The hex character in a character constant is ex-
cessively long. Also, some character that is not a
hex representation is included after \.

O Reduce the length of the hex character.

identifier (member-name) is dupli-
cated, this declare ignored

® The member name is defined twice or more. This
declaration will be ignored.

O Make sure that member names are declared only
once.

identifier (variable-name) is duplicate

® The variable name is defined twice or more. This
declaration will be ignored.

O Make sure that variable names are declared only
once.

identifier (variable-name) is shad-
owed

@® The auto variable which is the same as the name
declared as an argument is used.
0 Use any name not in use for arguments.

Appendix F-26

Appendix "F"

Error Messages

Table F.25 ccom30 Warning Messages (5/10)

Warning message

Description and countermeasure

illegal storage class for argument,
‘extern’ ignored

® An invalid storage class is used in the argument
list of function definition.
O Specify the correct storage class.

incompatible pointer types

@ The object type pointed to by the pointer is incor-
rect.
O Check the pointer type.

incomplete return type

@® An attempt is made to reference an return vari-
able of incomplete type.
O Check return variable.

incomplete struct member

® An attempt is made to reference an struct mem-
ber of incomplete .
O Define complete structs or unions first.

init elements overflow, ignored

® The initialization expression exceeded the size of
the variable to be initialized.

O Make sure that the number of initialize expres-
sions does not exceed the size of the variables to
be initialized.

inline function is called as normal
function before, change to static
function

® The function declared in storage class inline is
called as an ordinary function.

O Always be sure to define an inline function before
using it.

integer constant is out of range

® The value of the integer constant exceeded the
value that can be expressed by unsigned long.

O Use a value that can be expressed by unsigned
long to describe the constant.

interrupt function called

® The function specified by #pragma INTERRUPT
is called.

O Be careful not to call an interrupt handling func-
tion.

interrupt function can't return value

® The interrupt handling function specified by
#pragma INTERRUPT is using a return value.

O Return values cannot be used in an interrupt
function. Delete the return value.

interrupt function has argument

® The interrupt handling function specified by
#pragma INTERRUPT is using an argument.

O Arguments cannot be used in an interrupt func-
tion. Delete the argument.

invalid #pragma EQU

® The description of #pragma EQU contains an er-
ror. This line will be ignored.
O Write the description correctly.

invalid #pragma SECTION, un-
known section base name

® The section name in #pragma SECTION contains
an error. The section names that can be speci-
fied are data, bss, program, rom, interrupt, and
bas. This line will be ignored.

O Write the description correctly.

invalid #pragma operand, ignored

® An operand of #pragma contains an error. This
line will be ignored.
O Write the description correctly.

invalid function argument

® The function argument is not correctly written.
O Write the function argument correctly.

Appendix F-27

Appendix "F"

Error Messages

Table F.26 ccom30 Warning Messages (6/10)

Warning message

Description and countermeasure

invalid asm's M flag
(NC77,NC79 only)

® Error in M flag value in asm statement.
O Specify an integer constant (0, 1, or 2).

invalid asm's MX flag, ignored
(NC77,NC79 only)

® Error in MX flag value in asm statement.
O Specify an interger constant (0, 1, or 2).

invalid asm's X flag
(NC77,NC79 only)

® Error in X flag value in asm statement.
O Specify an integer constant (0, 1, or 2).

invalid return type

® The expression of the return statement does not
match the type of the function.

O Make sure that the return value is matched to the
type of the function or that the type of the function
is matched to the return value.

invalid storage class for function,
change to extern

® An invalid storage class is used in function decla-
ration. It will be handled as extern when pro-
cessed.

0 Change the storage class to extern.

Kanji in #pragma ADDRESS

® The line of #pragma ADDRESS contains kanji
code. This line will be ignored.
O Do not use kaniji code in this declaration.

keyword (keyword) are reserved
for future

@® A reversed keyword is used.
0 Change it to a different name.

large type was implicitly cast to
small type

® The upper bytes (word) of the value may be lost
by assignment from large type to a smaller type.

0 Check the type. If the description is correct, ig-
nore this warning.

mismatch prototyped parameter
type

® The argument type is not the type declared in
prototype declaration.
0 Check the argument type.

meaningless statements deleted in
optimize phase

@® Meaningless statements were deleted during op-
timization.
O Delete meaningless statements.

meaningless statement

@ The tail of a statement is "==".
0 You may confuse "=" with '==". Check on it.

mismatch function pointer assign-
ment

® The address of a function having a register argu-
ment is substituted for a pointer to a function that
does not have a register argument (i.e., a non-
prototyped function).

O Change the declaration of a pointer variable for
function to a prototype declaration.

multi-character character constant

@ A character constant consisting of two characters
or more is used.

0 Use a wide character (L'xx') when two or more
characters are required.

near/far is conflict beyond over
typedef

® The type defined by specifying near/far is again
defined by specifying near/far when referencing
it.

O Write the type specifier correctly.

No hex digit
no hex digit

@® The hex constant contains some character that
cannot be used in hex notation.

0 Use numerals 0 to 9 and alphabets Ato F and a
to f to describe hex constants.

Appendix F-28

Appendix "F"

Error Messages

Table F.27 ccom30 Warning Messages (7/10)

Warning message

Description and countermeasure

No initialized of valiable name

@ It is probable that the register variables are used
without being initialized.

O Make sure the register variables are assigned the
appropriate value.

No storage class & data type in
declare, global storage class & int
type assumed

® The variable is declared without storage-class
and type specifiers. It will be handled as int when
processed.

O Write the storage-class and type specifiers.

non-initialized variable évariable
namef is used

@ It is probable that uninitialized variables are being
referenced.

O Check the statement description. This warning
can occur in the last line of the function. In such a
case, check the description of the auto variables,
etc. in the function. If the description is correct,
ignore this warning.

non-prototyped function used

@ A function is called that is not declared of the
prototype. This message is output only when you
specified the Wnon_prototype option.

O Write prototype declaration. Or delete the option
“- Wnon_prototype”.

non-prototyped function declared

® A prototype declaration for the defined function
cannot be found. (Displayed only when the -WNP
option is specified.)

O Write a prototype declaration.

octal constant is out of range

@® The octal constant contains some character that
cannot be used in octal notation.
0 Use numerals 0 to 7 to describe octal constants.

octal_character is out of range

@® The octal constant contains some character that
cannot be used in octal notation.
O Use numerals 0 to 7 to describe octal constants.

overflow in floating value convert-
ing to integer

@ A very large floating-point number that cannot be
stored in integer type is being assigned to the
integer type.

0 Reexamine the assignment expression.

old style function declaration

@ The function definition is written in format prior to
ANSI (ISO) C.
O Write the function definition in ANSI (ISO) format.

prototype function is defined as
non-prototype function before.

® The non-prototyped function is redefine proto-
type-declaration.
O Unite ways to declare function type.

redefined type

® Redwfine typedef.
O Check typedef.

redefined type name of (qualify)

® The same identifier is defined twice or more in
typedef.
O Write identifier correctly.

register parameter function used
before as stack parameter function

® The function for register argument is used as a
function for stack argument before.

O Write a prototype declaration before using the
function.

Appendix F-29

Appendix "F" Error Messages

Table F.28 ccom30 Warning Messages (8/10)

Warning message

Description and countermeasure

RESTRECT qualifier can set only
pointer type

® The RESTRICT qualifier is declared outside a
pointer.
O Declare it in only a pointer.

section name ‘interrupt’ no more
used

® The section name specified by "pragma SEC-
TION uses 'interrupt’.

O A section name ‘interrupt' cannot be used.
Change it to another.

sorry, get stack's address, but DT
not 0 (NC77,NC79 only)

@ This error occurs when the -bank option is speci-
fied. When the address of an auto variable is
assigned to a pointer and an object referenced
using that pointer, DT points to outside bank 0,
preventing bank O from being referenced.

O Declare the variable as a far type.

size of incomplete type

@® An undefined structure or union is used in the
operand of the sizeof operator.
0 Define the structure or union first.

® The number of elements of an array defined as
an operand of the sizeof operator is unknown.
O Define the structure or union first.

size of incomplete array type

® An attempt is made to find sizeof of an array of
unknown size. This is an invalid size.
O Specify the size of the array.

size of void

@® An attempt is made to find the size of void. This is
an invalid size.
O The size of void cannot be found.

standard libraly ifunction-name()1
need iinclude-file namet

@ This standard library function is used without its
header file included.
00 Be sure to include the header file.

static valuable in inline function

@ static data is declared within a function that is
declared in storage class inline.
00 Do not declare static data in an inline function.

string size bigger than array size

@ The size of the initialize expression is greater than
that of the variable to be initialized.

O Make sure that the size of the initialize expres-
sion is equal to or smaller than the variable.

string terminator not added

@ Since the variable to be initialized and the size of
the initialize expression are equal, \0' cannot be
affixed to the character string.

O Increase a element number of array.

struct (or union) member's ad-
dress can't has no near far informa-
tion

@ near or far is used as arrangement position infor-
mation of members (variables) of a struct (or
union).

O Do not specify near and far for members.

task function called

® The function specified by #pragma TASK is
called.
0O Be careful not to call a task function.

task function can't return value

® The function specified by #pragma TASK is using
a return value.

O The function specified by #pragma TASK cannot
use return values. Delete the return value.

Appendix F-30

Appendix "F"

Error Messages

Table F.29 ccom30 Warning Messages (9/10)

Warning message

Description and countermeasure

task function has invalid argument

® The function specified with #pragma TASK uses
arguments.

O Any function specified with #pragma TASK can-
not use arguments. Delete the arguments.

this comparison is always false

® Comparison is made that always results in false.
0 Check the conditional expression.

this comparison is always true

@® Comparison is made that always results in true.
0 Check the conditional expression.

this feature not supported now,
ignored

® This is a syntax error. Do not this syntax because
it is reserved for extended use in the future.
0 Write the description correctly.

this function used before with non-
default argument

@ A function once used is declared as a function
that has a default argument.

O Declare the default argument before using a func-
tion.

this interrupt function is called as
normal function before

@ A function once used is declared in #pragma IN-
TERRUPT.

O An interrupt function cannot be called. Check the
content of #pragma.

too big octal character

@® The character constant or the octal constant in
the character string exceeded the limit value (255
in decimal).

00 Do not use a value greater than 255 to describe
the constant.

too few parameters

® Arguments are insufficient compared to the num-
ber of arguments declared in prototype declara-
tion.

0 Check the number of arguments.

too many parameters

® Arguments are excessive compared to the num-
ber of arguments declared in prototype declara-
tion.

0 Check the number of arguments.

uncomplete struct member

® An incomplete structure is written as a member.
0 Write a complete structure.

unknown #pragma STRUCT xxx

@ #pragma STRUCTxxx cannot be processed.
This line will be ignored.
O Write correctly.

unknown debug option (-dx)

® The option -dx cannot be specified.
O Specify the option correctly.

unknown function option (-Wxxx)

@® The option -Wxxx cannot be specified.
O Specify the option correctly.

unknown function option (-fx)

® The option -fx cannot be specified.
O Specify the option correctly.

unknown function option (-gx)

@® The option -gx cannot be specified.
O Specify the option correctly.

unknown optimize option (-mx)

® The option -mx cannot be specified.
O Specify the option correctly.

unknown optimize option (-Ox)

@® The option -Ox cannot be specified.
O Specify the option correctly.

Appendix F-31

Appendix "F" Error Messages

Table F.30 ccom30 Warning Messages (10/10)

Warning message Description and countermeasure

unknown option (-x) ® The option -x cannot be specified.
O Specify the option correctly.

unknown pragma pragma-specifi- |@ Unsupported #pragma is written.

cation used O Check the content of #pragma.

*This warning is displayed only when the
-Wunknown_pragma (-WUP) option is specified.

wchar_t array initialized by char @ The initialize expression of the wchar_t type is

string initialized by a character string of the char type.

O Make sure that the types of the initialize expres-
sion are matched.

zero divide in constant folding ® The divisor in the divide operator or remainder
calculation operator is 0.
O Use any value other than 0 for the divisor.

zero divide, ignored ® The divisor in the divide operator or remainder
calculation operator is 0.
O Use any value other than 0 for the divisor.

zero width for bitfield ® The bit-field width is 0.
O Write a bit-field equal to or greater than 1.

Appendix F-32

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

(Appendix G)

[The SBDATA declaration & SPECIAL page Function declaration Utility (utl30) J

G.1
G.1.1

How to startup the SBDATA declaration & SPECIAL page function declaration utility
(utl30) and how the startup options works are described here.
(This utility is not included in the entry version.)

Introduction of utl30
Introduction of utl30 processes

The SBDATA declaration & SPECIAL page Function declaration Utility utl30 precesses
the absolute module file (hanving the extension.x30).

The utl30 generates a file that contains SBDATA declarations (located in the SB area
beginning with the most frequently used one,i#pragma SBDATAI) and a file that contains
SPECIAL page function declarations (located in the SPECIAL page area beginning with the
most frequently used one,i#pragma SPECIALY).

To use utl30, specify the compile driver startup option -finfo when compiling, so that the
absolute module file (.x30) will be generated.

Figure G.1 illustrates the NC30 processing flow.

C language
source file nc30 command
option

Complle driver

ncBO -finfo I

Preprosesser
cpp30
C source file from
preprocesser
Compiler
ccom30 |
Assembly
language
source file This file is
generated
Assembler nc30 command
Absolute opt_lon
module -finfo
file
Relocatable SBDATA definition &
object v SPECIAL Page
file Function definition
linker utilit
| utl30 y

SPECIAL Page SPECIAL Page
Function Vector
definition file definition file |

S A—
SBDATA
definition file

© : output file of nc30

FigureG.1 NC30 Processing Flow

Appendix G-1

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.2 Starting utl30

G.2.1 utl30 Command Line Format

For starting utl30, you have to specify the information and parameter that required.

% utl30A[command-line-option]A<map-file-name>

% :Prompt

< > :Mandatory item

[1 :Optionalitem

A :Space

Delimit multiple command line options with spaces.

Figure G.2 utl30 Command Line Format

Before utl30 can be used, the following startup options of the compiler must both be
specified in order to generate an absolute module file (extension .x30):

e -finfo option to output an inspector information

e -g option to output debugging information

The following utl30 options are also specified:

e -0 option to output of information(SBDATA declaration or SPECIAL page Function
declaration)

Appendix G-2

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

e Output the absolute module file

%c30 ncrt0.a30 -finfo sanple. c<RET>

ML6C/ 60 NC30 COMPI LER V. X. XX Rel ease X

OOPYRI GHT(Q) XXXX(XXXX) RENESAS TECHNOLOGY OORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS OCRPORATI ON ALL RI GHTS RESERVED

ncrt0.x30
sanpl e. c

e Output SBDATA declaration

%t 30 -sb30 ncrt0.x30 -0 sanpl e<RET>

ML6C/ 60 UTI LI TY UTL30 for ML6C/ 80 V. X XX. XX

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SCLUTI ONS CORPCRATI ON ALL RI GHTS RESERVED

%

e Output SPECIAL page Function declaration

%utl 30 -sp30 ncrt0.x30 -0 sanpl e<RET>

ML6C/ 60 UTILITY UTL30 for ML6C/ 80 V. X. XX. XX

COPYRI GHT(Q) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS OCRPORATI ON ALL RI GHTS RESERVED.

%

<RET> : Means entering the return key.

Figure G.3 Example utl30 Command Line

G.2.2 Selecting Output Informations

To select outputs between "SBDATA declaration” and "SPECIAL page function declara-
tion" in utl30, specify the options described below. If neither option is specified, an error is
assumed for utl30.

1. Output SBDATA declaration
e Option "sb30"

2. Output SPECIAL page Function declaration
e Option "sp30"

Table G.3 shows the sbutl command line options.

Appendix G-3

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.2.3 utl30 Command Line Options

The following information(input parameters) is needed in order to start utl30.

Table G.1 shows the utlI30 command line options.

Table G.1 utl30 Command Line Options

Option

Short form

Description

-sh30
sp30

- None.

-sb30 -> Outputs SBDATA declaration.

-sp30 -> Outputs SPECIAL page function dec-
laration.

To use utl30, always specify one of the two op-
tions. If neither option is specified, an error is
assumed.

-o<function name>

None.

Outpus the result of SBDATA declaration or
SPECIAL Page Function declaration to a file.
With this option not specified,outputs the result
to the host machine's(either EWS or personal
computer) standard output device. No exten-
sions can be specified.

If the specified file already exists, the result is
written to the standard output device.

-fover_write

-fOw

Forcibly writes over the output file name speci-
fied with the -o option.

-all

None.

[When used simultaneously with the -sh30 option]
Because the usage frequency is low, SBDATA
declaration is output in the form of a comment for
even the variables that are not placed in the SB
area.

[When used simultaneously with the -sp30 option]
Because the usage frequency is low, SPECIAL
declaration is output in the form of a comment for
even the functions that are not placed in the SPE-
CIAL page area.

-Wstdout

None.

Output the warning and error messages to the
honst machines standard output device.

-sp=<number>

-sp=<number>,<number>,...
(two or more numbers)

-sp=<number>-<number>

None.

Does not use the specified number(s) as SPE-
CIAL Page Function numbers.

Use this option simultaneously with the -
sb30 option.

-fsection

None.

The variables and functions specified by
#pragma SECTION are also included among
those to be processed.

Appendix G-4

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

-sb30
_________ Outputs SBDATAdeclaration |

Function : Outputs SBDATA declaration. This option can be specified simultaneously with -sp30.

Execution % ut |30 -sb30 ncrt0.x30 -0 sanpl e

example : ML6C/ 60 UTILITY UTL30 for ML6C/ 80 V. X. XX. XX

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVEQD
AND RENESAS SCLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

%

-sp30
Outputs SPECIAL page function declaration

Function : Outputs SPECIAL page function declaration. This option can be specified simultaneously
with -sh30.

Execution % ut130 -sp30 ncrt0.x30 -0 sanple

example ; | ML6C/60 UTILITY UTL30 for M6C/80 V.X. XX XX

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SCOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

%

Appendix G-5

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

-0
Outputs the declared SBDATA result display file

Function : Outpus the result of SBDATA declaration or SPECIAL Page Function declaration to a file.
With this option not specified,outputs the result to the host machine's(either EWS or per-
sonal computer) standard output device. If the specified file already exists, the result is
written to the standard output device.

Execution (¢ output SBDATA declaration
example :

% utl 30 -sb30 ncrt0.x30 -0 sanple

ML6C/ 60 UTILITY UTL30 for MLEC/ 80 V. X. XX. XX
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVEQD
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

% ype sanple.h

/*

* #pragnma SBDATA Uility

*/

/* SBDATA Size [255] */

#pragma SBDATA z /* size = (2) | ref=[2] */
(omt)

#pragma SBDATA vX /* size = (2) / ref=[1] */

%

e Output SPECIAL page Function declaration

% utl 30 -sp30 ncrt0.x30 -0 sanple

ML6C/ 60 UTILITY UTL30 for ML6C/ 80 V. X. XX. XX
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVED
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

% ype sanple.h

/*

* #pragma SPECI AL PAGE Uility

*/

#pragma SPECI AL 255 func() /* size = (200) / ref=[2] */
(omt)

#pragma SPECI AL 254 funcl() /* size = (200) / ref=[1] */

%

Appendix G-6

Appendix "G"

The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

-all

Makes all gobal variables vaild

Function :

Execution
example :

Supplement::

[When used simultaneously with the -sb30 option]
Because the usage frequency is low, SBDATA declaration is output in the

form of a comment for even the variables that are not placed in the SB area.

[When used simultaneously with the -sp30 option]
Because the usage frequency is low, SPECIAL declaration is output in the

form of a comment for even the functions that are not placed in the SPECIAL

page area.

e Output SBDATA declaration

% utl 30 -sb30 -all ncrt0.x30

ML6C/ 60 UTILITY UTL30 for ML6C/ 80 V. X. XX. XX
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVEQD
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

% ype sanple.h

/*

* #pragma SBDATA Utility

*/

/* SBDATA Size [255] */

#pragma SBDATA z /* size = (2) | ref=[2] */
(omit)

#pragma SBDATA vX /* size = (2) /[ref=[1] */

%

e Output SPECIAL page Function declaration

% utl 30 -sp30 -all ncrt0.x30

ML6C/ 60 UTILITY UTL30 for MLEC/ 80 V. X. XX. XX
COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVEQD
AND RENESAS SOLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

% ype sanple.h

/*

* #pragma SPECI AL PAGE UWility

*/

#pragma SPECI AL 255 func() /* size = (200) / ref=[2] */
(omt)

#pragma SPECI AL 254 funcl() /* size = (2000) / ref=[1] */

%

Supplement: Use of this option helps to find the functions which are not called,
even for once in program execution.

However, the functions which are called only indirectly require the user's at-
tention, because such functions are indicated to have been called 0 times.

Appendix G-7

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

-Wstdout

Function : Outputs error and warning messages to the host machine's standard
output(stdout).

Execution % utl30 -0 sanple ncrt0.x30 - Wt dout

example : ML6C/ 60 UTILITY UTL30 for ML6C/ 80 V. X. XX. XX

COPYRI GHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATI ON ALL RI GHTS RESERVEQD
AND RENESAS SCLUTI ONS CORPORATI ON ALL RI GHTS RESERVED

war ni ng: cannot open file 'ncrt0.x30

%

-sp=<number>

Specifying numbers not be used as SPECIAL Page Function number option

Function : Specifies numbers not to be used as SPECIAL Page Function numbers.

Execution

+ To specify a single number.
example : pecify g

-SP=<number>
Example) %utl30 -sp30 -sp=255 ncrt0.x30

¢ To specify two or more numbers.
-SP=<number>,<number>,...
Example) %utl30 -sp30 -sp=255,254 ncrt0.x30

¢ To specify a range of numbers.
-SP=<number> - <number>
Example) %utl30 -sp=255-250 ncrt0.x30

Appendix G-8

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

-fsection

Outputs SBDATA declaration and SPECIAL page function declaration in #pragma SECTIONS

Function : The variables and functions located in areas whose section names have been
altered by #pragma SECTION are also included among those to be pro-
cessed.

Notes: If #pragma SECTION is used for an explicit purpose of locating a particular
variable or function at a given address, do not specify this option, because the
variable or function may be located at an unintended different address by
SBDATA or SPECIAL page declaration.

-fover_write -fOW

Outputs SBDATA declaration or SPECIAL function declaration to a file

Function : Does not check whether the output file specified by -? already exists. If such
file exists, it is overwritten.
This option must be specified along with the -? option.

Appendix G-9

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.3 Notes

In using utl30, .sbsym declared in files described in assembler cannot be counted. For
this reason,you need to make adjustment, if a ".sbsym" declared in assembler is
present,so that the results effected after having executed utl30 are put in the SB area.

In using utl30, SPECIAL Page Function declared in files described in assembler cannot
be counted. For this reason,you need to make adjustment, if a SPECIAL Page Function
declared in assembler is present,so that the results effected after having executed utl30
are put in the SPECIAL Page area.

G.4 Conditions to establish SBDATA declaration & SPECIAL Page Function declaration

G.4.1 Conditions to establish SBDATA declaration

Only global variables are valid in using utl30

Types of variables are as follows.
(1variables of _Bool
(2)variables of unsigned char and signed char type
(3)variables of unsigned short and signed short type
(4)variables of unsigned int and signed int type
(5)variables of unsigned long and signed long type
(6)variables of unsigned long long and signed long long type

Variables give below are excluded from SBDATA declaration.
(1)variables positioned in sections worked on by #pragma SECTION
(2)variables defined by #pragma ADDRESS
(3)variables defined by #pragma ROM

If variables declared by use #pragma SBDATA have already been present in a program,
the declaration is given a higher priority in using utl30, and variables to be allocated are
picked out of the remainder of the SB area.

G.4.2 Conditions to establish SPECIAL Page Function declaration

The functions to be processed by utl30 are only those external functions that are listed
below.

(1)Functions which are not declared with static

(2)Functions which are called three times or more

Note, however, that even the above functions may not be processed if they belong to
one of the following:
(1)functions positioned in sections worked on by #pragma SECTION
(2)functions defined by any #pragma

If variables declared by use #pragma SPECIAL have already been present in a program,
the declaration is given a higher priority in using ult30, and variables to be allocated are
picked out of the remainder of the SB area.

Appendix G-10

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.5 Example of utl30 use

G.5.1 Generating a SBDATA declaration file

a. Generating a SBDATA declaration file

You can output a SBDATA declaration file by means of causing the SBDATA declaration
utility utl30 to process files holding information as to the state of using variables. Fig. G.4
shows an example of making entries in utl30 , and Fig.G.5 shows an example of SBDATA
declaration file.

% utl 30 ncrt0.x30 -oshdat a<RET>

% : Prompt
ncrt0.x30 : Name of map file

Figure G.4 Example utl30 Command Line

/*

* #pragma SBDATA Uility
*/

/* SBDATA Size [255] */

#pragna SBDATA dat a3 /* Size=(4) /| ref=[2] */
#pragna SBDATA dat a2 /* Size=(1) / ref=[1] */
#pragma SBDATA dat al /* Size=(2) [ref=[1] */

/*
* End of File
*/
Si ze=() is size of data
ref =() is access count of the variables

Figure G.5 SBDATA declaration File (sbdata.h)

You include the SBDATA declaration file generated above in a program as a header file
.Fig.G.6 shows an example of making setting in a SBDATA file.

#i ncl ude "sbdata.h"

func()

{

(ommi t)

Figure G.6 Example of making settings in a SBDATA

Appendix G-11

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

b. Adjustment in an instance in which SB declaration is made in asesembler

If the SB area is used as a result of the .sbsym declaration in an assembler routine ,you
need to adjust the file generated by utl30.

[assenbl er routine]

. sbsym _sym
(ommit)
.glb _sym
_sym
.bl kb 2

[generated file by utl 30]

/*

* #pragma SBDATA Utility

*/

/* SBDATA Size[255] */

#pragna SBDATA dat a3 /* size=(4) | ref=[2] */

#pragma SBDATA dat a2 [* size=(1) / ref=[1] */
(om tted)

#pragna SBDATA dat al /* size=(2) / ref=[1] */

/*

* End of File

*/

Since 2-byte data are SB-declared in an assenbler routine,you subtract 2 bytes of
SBDATA decl aration fromthe file generated by utl 30.

Exanpl e)

/| #pragnma SBDATA dat al /* size=(2) [ref=[1] */
/* Comments out */

Figure G.7 Example of adjust the file generated by utl30

Appendix G-12

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.5.2 Generating a SPECIAL Page Function declaration file

a. Generating a SPECIAL Page Function declaration file

It is possible to output SPECIAL page function declaration and SPECIAL page vector
definition files by having the absolute module file (generated by using the option -finfo
when compiling) processed by utl30, the SBDATA Declaration & SPECIAL Page Function
Declaration Utility.

Figure G.8 shows an example of input for utl30. Figure G.9 shows an example of a SPE-
CIAL page function declaration file. Figure G.10 shows an example of a SPECIAL page
vector definition file.

% utl 30 -sp30 ncrt0.x30 -0 speci al <RET>

% : Prompt
ncrt0.x30 : Name of map file

Figure G.8 Example utl30 Command Line

/*

* #pragma SPECI AL PAGE Utility
*/

/* SBDATA Size [255]

#pragma SPECI AL 255 funcl /* size = (100) / ref = 10] */
#pragma SPECI AL 254 func2 /* size = (100) / ref = 71 */
#pragma SPECI AL 253 func3 /* size = (100) / ref = 5] */

/*
* End of File
*/

Figure G.9 SPECIAL Page Function declaration File (special.h)

#pragma SPECI AL PAGE Uility
speci al page definition

SPECI AL . macro NUM

.org OFFFFEH- (NUMF 2)

.glb __SPECI AL_@\UM

.word __SPECI AL_@NUM & OFFFFH
.endm

SPECI AL 255
SPECI AL 254
SPECI AL 253

End of File

Figure G.10 SPECIAL Page vector declaration File (special.inc)

You include the SPECIAL Page Finction declaration file generated above in a program
as a header file . Fig.G.11 shows an example of making setting in a SPECIAL Page Func-
tion declaration File.

Appendix G-13

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

#include "special.h"

func()

{

(onmi t)

Figure G.11 Example of making settings in a SPECIAL Page Function File

Includes, during startup, the SPECIAL Page vector definition file as a file to be included.
Fig. G.12 shows an example of setting up a SPECIAL Page vector definition file.

(onmi t)

.section vector
.include "special.inc"

(onmi t)

Figure G.12 Example of making settings in a SPECIAL Page Function File for sect30.inc

G.6 utl30 Error Messages

G.6.1 Error Messages

Table G.2 lists the utl30 calculation utility error messages and their countermeasures.

Table G.2 sbutl Error Messages
Error message Contents of error and corrective action
ignore option '?' e You specified an option that cannot be in used
utl30.
0 Specify a proper option.
Illegal file extension'.XXX' e Extension of input file is illegal.
O Specify a proper file.
No input "x30" file specified e No map file
O specify map file.
cannot open "x30" file ‘file-name' e Map file not found
O Specify the correct input map file.
cannot close file ‘file-name' e input file cannot be closed
O Specify the correct input file-name.
cannot open output file 'file-name' | e Output file cannot be close
0 Specify the correct output file-name.
not enough memory e The extended memory is insufficient
O Increase the extended memory
since 'file-name'’ file exist, it makes |e The 'file-name' specified with -0 already exist.
a standard output O Check the output file name.
The file can be overwritten by specifying -
fover_write simultaneously with the options.

Appendix G-14

Appendix "G" The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.6.2 Warning Messages

Table G.3 lists the sbutl utility warning messages and their countermeasures.

Table G.3 sbutl Warning Messages

Warning Message Contents of warning and corrective action

confllict declare of 'variable-name' |e The variable shown here is declared in multiple
files with different storage classes, types, etc.
O Check how this variable is declared.

confllict declare of 'function-name’ |e The function shown here is declared in multiple
files with different storage classes, types, etc.
O Check how this function is declared.

Appendix G-15

MEMO

NC30 V.5.20 User's Manual

Rev. 1.00
Sep 1, 2003
REJ10J0225-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

RENESAS

RenesasTechnology Corp.
2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan

	Title
	Precautions to be taken when using this manual
	Contents
	Preface
	Terminology
	Description of Symbols
	Chapter 1 Introduction to NC30
	1.1 NC30 Components
	1.2 NC30 Processing Flow
	1.2.1 nc30
	1.2.2 cpp30
	1.2.3 ccom30
	1.2.4 aopt30
	1.2.5 StkViewer & stk
	1.2.6 utl30
	1.2.7 MapViewer

	1.3 Notes
	1.3.1 Notes about Version-up of compiler
	1.3.2 Notes about the M16C's Type Dependent Part

	1.4 Example Program Development
	1.5 NC30 Output Files
	1.5.1 Introduction to Output Files
	1.5.2 Preprocessed C Source Files
	1.5.3 Assembly Language Source Files

	Chapter 2 Basic Method for Using the Compiler
	2.1 Starting Up the Compiler
	2.1.1 nc30 Command Format
	2.1.2 Command File
	a. Command file input format
	b. Rules on command file description
	c. Precautions to be observed when using a command file

	2.1.3 Notes on NC30 Command Line Options
	a. Notes on Coding nc30 Command Line Options
	b. Priority of Options for Controlling Compile driver

	2.1.4 nc30 Command Line Options
	a. Options for Controlling Compile Driver
	b. Options Specifying Output Files
	c. Version and command line Information Display Option
	d. Options for Debugging
	e. Optimization Options
	f. Generated Code Modification Options
	g. Library Specifying Option
	h. Warning Options
	i. Assemble and Link Options

	2.2 Preparing the Startup Program
	2.2.1 Sample of Startup Program
	2.2.2 Customizing the Startup Program
	a. Overview of Startup Program Processing
	b. Modifying the Startup Program
	c. Examples of startup modifications that require caution
	(1) Settings When Not Using Standard I/O Functions
	(2) Settings When Not Using Memory Management Functions
	(3) Notes on Writing Initialization Programs

	d. Setting the Stack Section Size
	e. Heap Section Size
	f. Setting the interrupt vector table
	g. Setting the Processor Mode Register

	2.2.3 Customizing for NC30 Memory Mapping
	a. Structure of Sections
	b. Outline of memory mapping setup file
	c. Modifying the sect30.inc
	d. Mapping and Order Sections and Specifying Starting Address
	(1) Rules for Mapping Sections to Memory
	(2) Example Section Mapping in Single-Chip Mode

	e. Setting Interrupt Vector Table
	f. Setting SPECIAL Page Vector Table

	Chapter 3 Programming Technique
	3.1 Notes
	3.1.1 Notes about Version-up of compiler
	3.1.2 Notes about the M16C's Type Dependent Part
	3.1.3 About Optimization
	a. Regular optimization
	(1) Meaningless variable access
	(2) Meaningless comparison
	(3) Programs not executed
	(4) Operation between constants
	(5) Selection of optimum instructions

	b. About the volatile qualifier

	3.1.4 Precautions on Using register Variables
	3.1.5 About Startup Handling
	a. register qualification and "-fenable_register" option
	b. About register qualification and optimization options

	3.2 For Greater Code Efficiency
	3.2.1 Programming Techniques for Greater Code Efficiency
	a. Regarding Integers and Variables
	b. far type array
	c. Array Subscripts
	d. Using Prototype declaration Efficiently
	e. Using SB Register Efficiently
	f. Compressing ROM Size Using Option -fJSRW
	g. Other methods

	3.2.2 Speeding Up Startup Processing

	3.3 Linking Assembly Language Programs with C Programs
	3.3.1 Calling Assembler Functions from C Programs
	a. Calling Assembler Functions
	b. When assigning arguments to assembler functions
	c. Limits on Parameters in #pragma PARAMETER Declaration

	3.3.2 Writing Assembler Functions
	a. Method for writing the called assembler functions
	b. Returning Return Values from Assembler Functions
	c. Referencing C Variables
	d. Notes on Coding Interrupt Handling in Assembler Function
	e. Notes on Calling C Functions from Assembler Functions

	3.3.3 Notes on Coding Assembler Functions
	a. Notes on Handling B and U flags
	b. Notes on Handling FB Register
	c. Notes on Handling General-purpose and Address Registers
	d. Passing Parameters to an Assembler Function

	3.4 Other
	3.4.1 Precautions on Transporting between NC-Series Compilers
	a. Difference in default near/far

	Appendix A Command Option Reference
	A.1 nc30 Command Format
	A.2 nc30 Command Line Options
	A.2.1 Options for Controlling Compile Driver
	-c
	-Didentifier
	-Idirectory
	-E
	-P
	-S
	-Upredefined macro
	-silent
	-dsource (-dS)
	-dsource_in_list (-dSL)

	A.2.2 Options Specifying Output Files
	-o filename
	-dir directory Name

	A.2.3 Version Information Display Option
	-v
	-V

	A.2.4 Options for Debugging
	-g
	-genter
	-gno_reg
	-gold

	A.2.5 Optimization Options
	-O[1-5]
	-OR
	-OS
	-Oconst (-OC)
	-Ono_bit (-ONB)
	-Ono_break_source_debug (-ONBSD)
	-Ono_float_const_fold (-ONFCF)
	-Ono_stdlib (-ONS)
	-Osp_adjust (-OSA)
	-Oloop_unroll = [loop count] (-OLU)
	-Ostack_frame_align (-OSFA)
	-Ono_logical_or_combine (-ONLOC)
	-Ono_asmopt (-ONA)
	-Ostatic_to_inline (-OSTI)

	A.2.6 Generated Code Modification Options
	-fnot_reserve_asm (-fNRA)
	-fansi
	-fnot_reserve_far_and_near (-fNRFAN)
	-fnot_reserve_inline (-fNRI)
	-fextend_to_int (-fETI)
	-fchar_enumerator (-fCE)
	-ffar_RAM (-fFRAM)
	-fno_even (-fNE)
	-fnear_ROM (-fNROM)
	-fconst_not_ROM (-fCNR)
	-fsmall_array (-fSA)
	-fnot_address_volatile (-fNAV)
	-fenable_register (-fER)
	-fno_align (-fNA)
	-fJSRW
	-fbit (-fB)
	-fno_carry (-fNC)
	-fauto_128 (-fA1)
	-fuse_DIV (-fUD)
	-finfo
	-fswitch_other_section (-fSOS)
	-fchange_bank_always (-fCBA)

	A.2.7 Library Specifying Option
	-llibraryfilename

	A.2.8 Warning Options
	-Wnon_prototype (-WNP)
	-Wunknown_pragma (-WUP)
	-Wno_stop (-WNS)
	-Wstdout
	-Werror_file <file name> (-WEF)
	-Wstop_at_warning (-WSAW)
	-Wnesting_comment (-WNC)
	-Wccom_max_warnings =Warning Count (-WCMW)
	-Wall
	-Wmake_tagfile (-WMT)
	-Wuninitialize_variable (-WUV)
	-Wlarge_to_small (-WLTS)
	-Wno_warning_stdlib (-WNWS)
	-Wno_used_argument (-WNUA)

	A.2.9 Assemble and Link Options
	-as30"option"
	-ln30"option"

	A.3 Notes on Command Line Options
	A.3.1 Coding Command Line Options
	A.3.2 Priority of Options for Controlling

	Appendix B Extended Functions Reference
	B.1 Near and far Modifiers
	B.1.1 Overview of near and far Modifiers
	B.1.2 Format of Variable Declaration
	B.1.3 Format of Pointer type Variable
	B.1.4 Format of Function Declaration
	B.1.5 near / far Control by nc30 Command Line Options
	B.1.6 Function of Type conversion from near to far
	B.1.7 Checking Function for Assigning far Pointer to near Pointer
	B.1.8 Declaring functions
	B.1.9 Function for Specifying near and far in Multiple Declarations
	B.1.10 Notes on near and far Attributes
	a. Notes on near and far Attributes of Functions
	b. Notes on near and far Modifier Syntax

	B.2 asm Function
	B.2.1 Overview of asm Function
	B.2.2 Specifying FB Offset Value of auto Variable
	B.2.3 Specifying Register Name of register Variable
	B.2.4 Specifying Symbol Name of extern and static Variable
	B.2.5 Specification Not Dependent on Storage Class
	B.2.6 Selectively suppressing optimization
	B.2.7 Notes on the asm Function
	a. Extended Features Concerning asm functions
	b. About Register
	c. Notes on Labels

	B.3 Description of Japanese Characters
	B.3.1 Overview of Japanese Characters
	B.3.2 Settings Required for Using Japanese Characters
	B.3.3 Japanese Characters in Character Strings
	B.3.4 Using Japanese Characters as Character Constants

	B.4 Default Argument Declaration of Function
	B.4.1 Overview of Default Argument Declaration of Function
	B.4.2 Format of Default Argument Declaration of Function
	B.4.3 Restrictions on Default Argument Declaration of Function

	B.5 inline Function Declaration
	B.5.1 Overview of inline Storage Class
	B.5.2 Declaration Format of inline Storage Class
	B.5.3 Restrictions on inline Storage Class

	B.6 Extension of Comments
	B.6.1 Overview of "//" Comments
	B.6.2 Comment "//" Format
	B.6.3 Priority of "//" and "/*"

	B.7 #pragma Extended Functions
	B.7.1 Index of #pragma Extended Functions
	a. Using Memory Mapping Extended Functions
	b. Using Extended Functions for Target Devices
	c. Using MR30 Extended Functions
	d. The Other Extensions

	B.7.2 Using Memory Mapping Extended Functions
	B.7.3 Using Extended Functions for Target Devices
	B.7.4 Using MR30 Extended Functions
	B.7.5 The Other Extensions

	B.8 assembler Macro Function
	B.8.1 Outline of Assembler Macro Function
	B.8.2 Description Example of Assembler Macro Function
	B.8.3 Commands that Can be Written by Assembler Macro Function

	Appendix C Overview of C Language Specifications
	C.1 Performance Specifications
	C.1.1 Overview of Standard Specifications
	C.1.2 Introduction to NC30 Performance
	a. Test Environment
	b. C Source File Coding Specifications
	c. NC30 Specifications

	C.2 Standard Language Specifications
	C.2.1 Syntax
	a. Key Words
	b. Identifiers
	c. Constants
	d. Character Literals
	e. Operators
	f. Punctuators
	g. Comment

	C.2.2 Type
	a. Data Type
	b. Qualified Type
	c. Data Type and Size

	C.2.3 Expressions
	C.2.4 Declaration
	a. Variable Declaration
	b. Function Declaration

	C.2.5 Statement
	a. Labelled Statement
	b. Compound Statement
	c. Expression / Null Statement
	d. Selection Statement
	e. Iteration Statement
	f. Jump statement
	g. Assembly Language Statement

	C.3 Preprocess Commands
	C.3.1 List of Preprocess Commands Available
	C.3.2 Preprocess Commands Reference
	C.3.3 Predefined Macros
	C.3.4 Usage of predefined Macros

	Appendix D C Language Specification Rules
	D.1 Internal Representation of Data
	D.1.1 Integral Type
	D.1.2 Floating Type
	D.1.3 Enumerator Type
	D.1.4 Pointer Type
	D.1.5 Array Types
	D.1.6 Structure types
	D.1.7 Unions
	D.1.8 Bitfield Types

	D.2 Sign Extension Rules
	D.3 Function Call Rules
	D.3.1 Rules of Return Value
	D.3.2 Rules on Argument Transfer
	D.3.3 Rules for Converting Functions into Assembly Language Symbols
	D.3.4 Interface between Functions

	D.4 Securing auto Variable Area

	Appendix E Standard Library
	E.1 Standard Header Files
	E.1.1 Contents of Standard Header Files
	E.1.2 Standard Header Files Reference

	E.2 Standard Function Reference
	E.2.1 Overview of Standard Library
	E.2.2 List of Standard Library Functions by Function
	a. String Handling Functions
	b. Character Handling Functions
	c. Input/Output Functions
	d. Memory Management Functions
	e. Memory Handling Functions
	f. Execution Control Functions
	g. Mathematical Functions
	h. Integer Arithmetic Functions
	i. Character String Value Convert Functions
	j. Multi-byte Character and Multi-byte Character String Manipulate Functions
	k. Localization Functions

	E.2.3 Standard Function Reference
	E.2.4 Using the Standard Library
	a. Notes on Regarding Standard Header File
	b. Notes on Regarding Optimization of Standard Library
	(1)Inline padding of functions
	(2)Selection of high-speed library (NC30 only)

	E.3 Modifying Standard Library
	E.3.1 Structure of I/O Functions
	E.3.2 Sequence of Modifying I/O Functions
	a. Modifying Level 3 I/O Function
	b. Stream Settings
	c. Incorporating the Modified Source Program

	Appendix F Error Messages
	F.1 Message Format
	F.2 nc30 Error Messages
	F.3 cpp30 Error Messages
	F.4 cpp30 Warning Messages
	F.5 ccom30 Error Messages
	F.6 ccom30 Warning Messages

	Appendix G The SBDATA declaration & SPECIAL page Function declaration Utility (utl30)
	G.1 Introduction of utl30
	G.1.1 Introduction of utl30 processes

	G.2 Starting utl30
	G.2.1 utl30 Command Line Format
	G.2.2 Selecting Output Informations
	G.2.3 utl30 Command Line Options
	-sb30
	-sp30
	-o
	-all
	-Wstdout
	-sp=<number>
	-fsection
	-fover_write (-fOW)

	G.3 Notes
	G.4 Conditions to establish SBDATA declaration & SPECIAL Page Function declaration
	G.4.1 Conditions to establish SBDATA declaration
	G.4.2 Conditions to establish SPECIAL Page Function declaration

	G.5 Example of utl30 use
	G.5.1 Generating a SBDATA declaration file
	a. Generating a SBDATA declaration file
	b. Adjustment in an instance in which SB declaration is made in asesembler

	G.5.2 Generating a SPECIAL Page Function declaration file
	a. Generating a SPECIAL Page Function declaration file

	G.6 utl30 Error Messages
	G.6.1 Error Messages
	G.6.2 Warning Messages

	Publisher's imprint

