
Improvements in an Interactive Traffic
and Driving Simulator for Organised

Truck Convoys

Monografia submetida à Universidade Federal de Santa Catarina

como requisito para a aprovação da disciplina:

DAS 5511: Projeto de Fim de Curso

Rodolfo Gondim L óssio

Florianópolis, abril de 2007

Improvements in an Interactive Traffic and Driving
Simulator for Organised Truck Convoys

Rodolfo Gondim L óssio

Esta monografia foi julgada no contexto da disciplina

DAS 5511: Projeto de Fim de Curso

e aprovada na sua forma final pelo

Curso de Engenharia de Controle e Automaç ão Industrial

Banca Examinadora:

Dr.-Ing. Tom Tiltmann

Orientador Empresa

Prof. Dr. Werner Kraus Junior

Orientador do Curso

Prof. Dr. Augusto Humberto Bruciapaglia

Responsável pela disciplina

Prof. xxxxxxx, Avaliador

aluno1, Debatedor

aluno2, Debatedor

Appreciativeness

I would like to thank the international organization of students AIESEC for ac-

cepting me as a member. The AIESECers (people who work in AIESEC) from Flo-

rianópolis Office have provided me with all the support to search for internships and

the ones from the German Office have helped me in my first weeks in a foreign country

and with bureaucratic papers.

My parents were another source of sustainment, who since the first moment

have supported me to have this international experience. One year far away from them

was just possible due to our weekly callings.

In the institute where I worked, I would like to give special thanks to my team

leaders that I have had during my one year of internship: Andreas Friedrichs, Phillip

Meisen and Uschi Rick. Another important person was Martin Henne, my adviser and

consulter for technical questions, who explained the system in a brilliant way with his

natural teaching skills, besides being a great cooker!

I can not forget to thank the person who gave me the opportunity to do this

internship, my supervisor Mr. Tom Tiltmann, who coordinated my work, supported

this report and allowed me taking German class during some hours from my work

schedule. Moreover he lent me a bicycle that saved me a lot of time and invited me for

a ride around the city.

And for last, to my co-workers Sebastian, Alem and Gregor, the modelers of the

project and the closest co-workers. To Martin Selbach, Verena Jänen, Leony Petry

and Walter Spanjersberg. I still have to thank the responsible professor of the institute,

Prof. Klaus Henning.

I would like to thank also Prof. Werner, who was my supervisor from UFSC in

this internship and Prof. Augusto, who always helped me with matters of internships

during my studies. Some colleagues from my university course, with whom I have

exchanged information about life and work: Vitor Bazzo, Rodolfo Flesch, Marcelo De

Lellis and Adriano Bess.

i

Abstract

In the future an intelligent vehicle convoy is a possible form of organization for

goods traffic in motorways, which only the leading vehicle is manually driven while all

following vehicles are automatically controlled. Those vehicles will be equipped with

special electronic devices that allow the communication between them and sensors

that define their situation in motorways.

Besides the technical construction of the experimental vehicles, a driving sim-

ulator is required to examine the driver’s work load and acceptance. This simulator

allows also predicting the impact of this convoy system in motorways, since the direct

implementation of this system in the real world could create terrible results.

This report presents a description about an interactive driving simulator that in-

tegrates this concept of convoys for truck vehicles, including a real cockpit of a truck

with the same electronic devices that the real one will be equipped. In addition, this

system combines a driving simulation and a traffic simulation, which considers the ef-

fects of driving towards the surrounding traffic and vice versa in real-time. The reaction

of following traffic is visible and also included into the simulation due to integrated rear

view mirrors.

In addition to provide a virtual simulation for the convoy systems, the same in-

teractive driving simulator can be applied for the following fields - testing of new vehicle

technologies, analysis of critical traffic conditions, reconstruction of accidents and valid

classification of responsibilities, optimisation of human-machine systems, schooling

and training for driving safety.

ii

Resumo Estendido

O presente relatório refere-se ao projeto do acadêmico Rodolfo Gondim Lóssio

para a conclusão do curso de Engenharia de Controle e Automação Industrial pela

Universidade Federal de Santa Catarina. A tradução livre do tı́tulo desse relatório,

Melhoramentos em um Simulator de Direção Interativo para Comboios de Caminhões

Organizados, baseia-se nas atividades realizadas pelo acadêmico durante Abril de

2006 e Março de 2007 no Centro de Aprendizado e Gerenciamento de Conhecimento

(ZLW-IMA, Zentrum für Lern- und Wissensmanagement) pela Universidade Técnica de

Aachen (RWTH Aachen). Porém, o cronograma de trabalho desse relatório se baseia

nos últimos 6 meses de atividades. O acadêmico foi supervisionado pela equipe de

Engenharia de Produto (Produkt-Engineering).

Devido ao aumento do tráfego de veı́culos nas auto-estradas, e falta de recursos

para sua manutenção e expansão (quando possı́vel), novas idéais surgiram para har-

monizar o fluxo de veı́culos. Uma delas é a implementação de comboios inteligentes

nas auto-estradas, no qual somente o primeiro veı́culo é controlado manualmente, en-

quanto os demais veı́culos o são automaticamente. Para tanto, os veı́culos integrantes

desses comboios devem ser equipados com dispositivos eletrônicos que permitem a

comunicação entre eles e sensores para determinar sua posição nas auto-estradas,

incluindo câmeras e sistema de GPS.

Além da parte técnica para construção desses veı́culos experimentais, um sim-

ulador de direção é necessário para investigar o comportamento do motorista. Esse

simulador permitiria também prever os impactos de sistema de comboio nas auto-

estradas, uma vez que a implementação direta no mundo real poderia acarretar vários

problemas.

O presente relatório objetiva a descrição de um simulador de direção interativo

que integra esse conceito de comboio inteligentes para caminhões. Tal simulador é

dotado por uma cabine original de um caminhão, além dos mesmos dispositivos extras

especificados para efetuar o comboio. No geral, o sistema combina simulação de

tráfego e direção, o que garante em tempo real a interação entre um motorista humano

e o tráfego de carros simulados, que são visualizados por animação computacional,

através de projetores para a visão frontal e monitores LCD para os retrovisores.

Para garantir essa realidade virtual, um programa computacional é necessário,

iii

a fim de simular o ambiente real e permitir que o motorista interaja com o sistema.

Tal ambiente é dotado por objetos tridimensionais, que devem ser previamente proje-

tados por especı́ficos software de modelamento 3D e 2D. Outra parte importante é a

simulação do tráfego de veı́culos e a leitura das ações realizadas pelo motorista, que

irão influenciar na fı́sica do movimento.

Considerando somente o simulador de direção, o mesmo pode ser aplicado

em outras áreas, como por exemplo, no teste de novas tecnologias no setor automo-

bilı́stico, análise de condições crı́ticas de tráfego, reconstrução de acidentes e seu

impacto, otimização de sistemas homem-máquina e treinamento de direção.

iv

Index

List of Figures viii

List of Tables x

Table of Symbols xi

1 Introduction 1

1.1 Objectives . 2

1.2 Course context and correlations . 2

1.3 Methodology . 3

1.4 Schedule . 5

1.5 Report organization . 6

2 Institute and System Description 7

2.1 Electronically Coupled Truck Convoy Project 7

2.2 The driving simulator . 9

2.2.1 Driver Information System (FIS) 10

2.2.2 Visualization Software - NIOBE 12

2.2.3 Scenario Editor - Roadcraft . 14

2.2.4 Traffic Simulation - PELOPS . 15

3 Computer-simulated Environment and Tools 18

3.1 Framework for developing 3D Applications - Crystal Space Engine . . . 18

3.1.1 Components of a World . 19

3.1.2 Source code structure . 20

3.2 3D Software - Blender . 21

v

3.2.1 Modeling . 21

3.2.2 Rendering . 22

3.2.3 Texturing . 22

3.2.4 Crystal Space Plugin . 22

3.3 FLKT - Fast Light Toolkit . 24

4 InDriveS Project - Workpackages 25

4.1 The Communication among the modules 25

4.2 The human elements . 26

4.3 Niobe implementations . 27

4.3.1 Map module . 27

4.3.2 Trembling problem . 29

4.3.3 Loading problem . 32

4.3.4 Mouse events . 33

4.3.5 Log register . 35

4.3.6 New street type . 35

4.4 Roadcraft implementations . 36

4.4.1 Section division . 36

4.4.2 Polygon representation . 37

4.5 VirtualFIS . 38

4.6 Forces to Pelops . 39

4.7 Ampex Mark IV . 40

5 Demonstrator Project 43

5.1 The modules . 43

5.1.1 Driver Station . 44

5.1.2 Data Converter . 45

vi

5.1.3 Analysis of possibilities . 46

5.2 Technical details . 46

5.2.1 Microcontroller . 46

5.2.2 Development kit . 47

6 Tests and Results 49

6.1 Framerate testing . 49

6.1.1 Tools for testing . 49

6.1.2 Different configurations . 49

6.2 Visualization Results . 50

6.3 Solution using a selector thread . 51

6.4 Section Management . 51

6.5 New street . 52

6.6 New Outline . 53

6.7 New package tools for simulation . 53

7 Conclusions and Perspectives 55

References 58

Annex A: List of Commands from NIOBE 60

Annex B: Structures of the Network Messages 62

Annex C: Framerate analysis 63

Annex D: Results of the Section Management for the Street 65

Annex E: Comparison between the new street and the current st reet 66

vii

List of Figures

1.1 Activities during the end-course project 5

2.1 Macroview of the KONVOI system . 9

2.2 Control Diagram of the KONVOI system 9

2.3 Composition of the IndriveS . 11

2.4 FIS module in detail running with the whole system 11

2.5 NIOBE application and dependencies 12

2.6 NIOBE Application (Console and Graphic Window) 14

2.7 Roadcraft Editor with objects in closed 15

3.1 Model of a tunnel and a truck in Blender 21

3.2 Mapping a Peugeot using UV technique 22

4.1 Integrants of the driving simulator project 27

4.2 Steps to load a map in NIOBE . 29

4.3 Diagram of blocks to control the base timer 31

4.4 Screenshot of NIOBE to analyze a mouse event 34

4.5 Factory from the street in Blender . 36

4.6 Section cells are represented in Roadcraft 37

4.7 Screenshot of VirtualFIS with the map module opened 39

4.8 Interface of Force to PELOPS program 40

4.9 Ampex Mark IV setting as a player . 40

4.10 Ampex Mark IV running as a recorder 41

4.11 Ampex Mark IV running the animation mode 41

4.12 Flowchart for the test simulation . 42

5.1 Module diagram of the Demonstrator Project 44

5.2 Example of the driver station . 45

viii

6.1 New motorway using a common factory 52

6.2 The new outline and the old one . 53

6.3 Real object modeled in Blender . 53

C.1 Normal configuration of the KONVOI scenario 63

C.2 Configuration without objects in the world 63

C.3 Configuration without street . 64

C.4 Configuration using a small part of the street 64

D.1 Configuration without street on the section management 65

D.2 Configuration with street on the section management 65

E.1 Scenario with street using one texture without safety fences 66

E.2 Scenario with normal street without safety fences 66

ix

List of Tables

4.1 Table with the network messages and their description 26

4.2 List of mouse events in NIOBE . 34

5.1 Grade of analysis for the Demonstrator 46

6.1 Table with different configurations . 50

6.2 Table with memory used of NIOBE . 51

x

Table of Symbols

2D Two dimensional

3D Three dimensional

API Application Programming Interface

CAD Computer Aided Design

CAN Controller Area Network

CPU Central Processing Unit

CS Crystal Space

CVS Concurrent Versions System

EPROM Erasable Programmable Read-Only Memory

FIS Fahrersysteminformation - Driver Information System

FLTK Fast Light Toolkit

FPS Frames per second

GPCL General Polygon Clipping Library

GPS Global Positioning System

GSM Global System for Mobile Communications

GUI Graphical User Interface

InDriveS Interactive Driving Simulator

LGPL GNU Lesser General Public License

NIC NIOBE Command

OS Operation System

PNG Portable Network Graphics

SDK Software Development Kit

RAM Random Access Memory

RWTH Aachen Rheinisch-Westfälische Technische

Hochschule Aachen - Aachen University of Technology

TCP/IP Transmission Control Protocol / Internet Protocol address

WLAN Wireless local area network

ZLW-IMA Zentrum für Lern- und Wissensmanagement - The Center

of Learning and Knowledge Management

xi

Chapter 1: Introduction

The road infrastructure in several countries has almost reached its highest ca-

pacity, due to the constant increase of traffic of vehicles and the lack of investment to

improve and expand it, when that is possible. In consequence, there is a continuous

traffic jam along motorways that can cause delays and car accidents. Solutions for this

problem are an absolute necessity to relieve the current traffic system without changing

the existing road infrastructure.

Former studies in this research area recommend the introduction of an intelli-

gent and organized convoy systems in order to optimize traffic by harmonizing its flow.

Therefore, a project called KONVOI was created, that aims at the development and

evaluation of truck convoys on motorways, to be implemented in commercial use by

freight forwarding companies[1].

This project integrates recent research coming from different projects. One of

them is concerned with an electronic technique for driving safely and comfortably,

which is responsible for the development of the required technology of truck convoys

(sensors, actuators and driving assistance system). Such technology is essential for

establishing truck convoys, since they provide an operational and a safe way to drive

without considering the direct human interference.

Due to the complexity of the whole system and its implementation in real mo-

torways, one segment of the KONVOI project is the creation of a simulator that pro-

vides the same conditions found in real motorways. Besides that, the same technology

embedded on the trucks will be integrated in a static real prototype. That includes the

communication with other virtual trucks using a driving system assistant module, which

will integrate the convoy.

Nowadays, simulation is used in many contexts, including training, testing, edu-

cation and safety engineering. Normally, the simulators are based on computer, and it

has become a useful part of modeling many real systems, for example: cities, driving

and flight simulators, or traffic of vehicles and industrial processing.

The computer-simulated environment provides for the user a virtual reality that is

essentially a visual, acoustic and tactile information feedback. The visual module can

use computer graphics to perform the virtual world, which includes some requisites for

1

the visualization. The first one is called modeling, that describes the shape of a real

object into a virtual world. In complement, the animation (motion) and the rendering

(image) of this object are also necessary.

For a driving simulator, which is an object of work in this report, the tactile in-

formation is composed by the main elements of a vehicle, as the wheels, pedals, etc.

Besides that, a traffic simulation is required as well, therefore, the driver can interact

with a scenario that contains virtual vehicle drivers.

1.1: Objectives

The building of this driving simulator aims to provide a testable environment for

the project KONVOI. The reason to build this simulation is to identify failures in the

system, errors of protocols, lack of information oriented to the trucks and check the ro-

bustness of the convoy. The validation of the results is essential for the implementation

in real motorways. Therefore, the simulated environment must present the same char-

acteristics found in real life, as physics events (gravity, inertia), meteorological factors

(fog, night, sunlight) and acoustic.

The frame of this end-course project corresponds to develop, improve and sup-

port a driving simulator for the project KONVOI. These activities are related specially

with the visual module and its tools to guarantee a realistic environment for the driver.

Moreover, some tools must be developed to monitor and assist the simulation.

It is also intended to build a demonstrator that contains the main functionalities

of the project KONVOI, but with a simple, flexible and portable hardware, that can be

assembled and disassembled easily and quickly.

1.2: Course context and correlations

Simulators based on computer environments use software that works with

graphic libraries and specific hardware as interface for users. In this project context, a

driving simulator that includes a real vehicle requires a special network communication

with a computer. In terms of software, programming for the user interface and modeling

of the virtual world are required as well.

The disciplines from the Control and Automation Engineering course related to

2

this project are:

• Analytic Geometry: transform of system of coordinates, build of geometry;

• Industrial Computing I: use of computer language;

• Industrial Computing II: real time application and multi-threads application;

• Software Engineering: use object-oriented programming;

• Feedback Control Systems: application of controlling theory to solve dynamic

and communication problems;

• Microprocessors: support the choice of a microcontroller for the project;

• CAD Systems in Engineering: modeling of 3D objects;

• Computer Networks for Industrial Automation: use of network libraries and CAN

bus protocol used in real vehicles.

1.3: Methodology

In virtual simulation, the activities can be separated in two groups: modeling of

objects and computer programming. The first group consists in building 3D models of

real objects included in the virtual environment for simulation. The second group aims

at performing the dynamic of these objects and the communication with the user or

operator of the simulator.

All tools used by the academic for activities concerned with the real driving simu-

lator are open software1. For the demonstrator project, proprietary tools are used. The

3D objects are modeled with a program called Blender, that supports animation and

rendering of 3D models. The objects are built based on real models and they have to

be similar with their real dimensions and textures.

The computer program responsible for loading the 3D objects in the simula-

tion and managing the animation and the communication between the system and the

user/operator is called NIOBE. This software is developed with C++ computer language

1software with source code available to the general public with either relaxed or non-existent intellectual

property restrictions.

3

and uses a Software Development Kit (SDK) for 2D or 3D games called Crystal Space.

This SDK is based on OpenGL2 and supports physical of movement and acoustic.

Another tool used for developing 2D graphic application is called Fast Light

Toolkit. In this case, its usage is related to assistant programs for the simulator, since

the building of programs based on window with this tool is fast. The main tool created

with this kit is called Roadcraft, which is an editor of the virtual world.The operation

system used to develop those tools is GNU/Linux, though it is possible to compile them

in Microsoft Windows as well, since the utilized tools are multi-platform.

Another important software in the project is called PELOPS, a private package

developed by another institute. This software is responsible to simulate the traffic of

vehicles and interpret the information of the real driver, therefore it is necessary to

study how to use this tool and configure it.

The studying of the usage of each tool and the concepts of computer simula-

tion are essential for performing the activities, as the building of assisting programs to

send and receive information to/from the simulation, the optimization of algorithms and

elaboration of new functionalities.

The tasks delegated to the academic are in agreement with the follow hypothe-

sis:

• Identification of errors, bugs and limitation in the system;

• Necessity of the modelers to create the virtual world, for example, the lack of

functionality in tools like Roadcraft;

• The conclusions by battery of testing;

• Elaboration of new tools for the simulator;

The project of a demonstrator for KONVOI is defined as a parallel task of the

current activities on the main simulator. The activities are concerning with:

1. Represent possible solutions for the project;

2. Analyze each possibility;

3. Make a decision;

4. Start the implementation.
2library for developing of graphic applications in 2D and 3D

4

1.4: Schedule

The activities were executed between September/2006 and Feb/2007. During

this project, the following tasks were scheduled:

1. Studying of specific software, tools for developing and API libraries:

(a) CVS, make files, VIM (text editor);

(b) Crystal Space, Fast Light Toolkit;

(c) Blender, GIMP (image editor);

(d) PELOPS, NIOBE, Roadcraft;

2. Implementation of new functionalities in;

(a) Assistant tools;

(b) NIOBE;

(c) Roadcraft;

3. Optimisation and testing of NIOBE/Roadcraft;

4. Demonstrator Project;

5. Project documentation;

(a) End-course’s report;

(b) Software documentation;

The timetable in the figure 1.1 shows when the activities were done.

Figure 1.1: Activities during the end-course project

5

1.5: Report organization

Following this chapter, there is information about the institute where the end-

course project was managed, as well as the relevant contents about the project KON-

VOI and the driving simulator. In the same chapter, the main programs used in the

simulator are described in high level, including the steps of modeling and simulation.

The third chapter is concerned with the theory and tools necessary to develop

the activities. That includes computer libraries, as Crystal Space and Fast Light Toolkit,

and software for editing and modeling 3D objects, as Blender.

In the fourth chapter the driving simulator project is explained. Besides that,

some specific implementation in the modules are described and the creation of new

tools to assist the simulation.

The fifth chapter is concerned with the demonstrator project, which describes

its objective and how it is specified. There is technical information about the hardware

used in the project as well.

The sixth chapter contains information about the tests and results of the imple-

mentation commented in the fourth chapter. Some graphics of the results are shown

in the annex.

Finally, the last chapter contains the conclusions and perspectives for this project

and further ones.

6

Chapter 2: Institute and System Description

The Centre of Learning and Knowledge Management of the Department of Com-

puter Science in Mechanical Engineering (ZLW-IMA) from the RWTH-Aachen Univer-

sity is located in Aachen, Germany. One characteristic of the institute is the interdis-

ciplinary composition of all project teams. The current project - in which the academic

has taken part - has engineers, a sociologist, a psychologist, technical and computer

scientists.

The business units from the institute reach the following areas - Communication

and Organisational Development, Software Engineering, Product Engineering, Knowl-

edge Management and Personal & Controlling. The department of Product Engineer-

ing is managed by Dr.-Ing. Tom Tiltmann, who is responsible to orient the activities to

the academic.

This department is responsible to provide a service that aims at the optimization

of technical production and development processes for enterprises. In particular, this

unit provides simulation environments that are specially designed for the automotive

technology and networked software. The following sections are discuss the projects

from this department in which the academic has participated.

2.1: Electronically Coupled Truck Convoy Project

The Electronically Coupled Truck Convoy Project (KONVOI) was started in May

1st, 2005 and it is planned to finish in July 31st, 2008. The project aims at developing

and investigating the behavior of a truck convoy on motorways and an automatic control

system for driving. It is planned to have virtual and practical driving tests by using

experimental vehicles and a truck driver simulator[1]. The virtual driving environment

is demanded to analyze the impact of the system on traffic, before implementation in

real life, and drivers behavior as well.

The initial tests are planned to use 4 trucks for the convoys. The real trucks will

be equipped with actuators (steering and break), vehicle-vehicle devices for commu-

nication (GPS, GSM and WLAN), sensors (object registration in close and far range,

recognition of lane), a control unit and a operational assistant unit[1]. The combination

7

of this work packages allows the driver to contact other drivers from the convoy and set

the vehicle as automatic-pilot for special situation.

Another important component of the project is the evaluation of the truck con-

voy on motorways. In a regular convoy, the trucks can maneuver in several ways, for

example coupling into a convoy, change the lane in the motorway or decoupling from

the convoy. Therefore, several conditions are defined to guarantee the evaluation of

the convoy and the stability. The vehicle behavior is managed by the control unit. For

the maneuvers, it is created an electronic coupling of trucks into a convoy by the op-

erational assistant unit on board of the vehicles, called FIS (see section 2.2.1). This

application is based on a touch screen monitor running a user friendly software for

drivers, which they can easily operate while driving.

The module responsible to acquire information from the testbed truck or from

the real truck is loaded in the control unit. This module uses the original CAN Bus

system of a truck and can recognize the most important actions from the driver - pedals

movement (acceleration, break), wheel movement and indicators buttons.

An initial idea of the whole system is drawn in figure 2.1, that shows how the

system will work in a real motorway. In this situation, there is a convoy with three

trucks. There is WLAN communication between the vehicles and with GPS satellite.

The vehicles are also equipped with an automatic guidance device. In detail, on the top

left, it is shown the scrap of the driver information system, which is installed on-board

of each vehicle.

Considering now a microview of the system, the block diagram is built and shown

in figure 2.2. This diagram is a micro representation of the main elements of the KON-

VOI project, focused on the driver. Those elements are the base to build the modules

for the driving simulation.

The expected results from the KONVOI project are listed below (some of them

will not be described in this document, since they are based on parameters out of

context from this report):

• Up to 14% increase of traffic flow rate,

• Up to 10% decrease of fuel consumption,

• Reduction of work load of the drivers,

• High acceptance of other traffic participants,

8

Figure 2.1: Macroview of the KONVOI system

Figure 2.2: Control Diagram of the KONVOI system

• Lowered risk of accidents.

2.2: The driving simulator

There is a large quantity of research concerned with how to describe the real

traffic simulation. In the last decades several mathematical or physical models were

developed that achieved a great accuracy in simulating the traffic. However, the re-

sults provided to the users are mostly given in form of diagrams and tables or only an

9

insufficient graphical version.

In order to combine the advantages of traffic and driving simulation, two insti-

tutes from the RWTH-Aachen University, ZLW-IMA and FKA developed the Interactive

Driving Simulator (InDriveS). This simulator provides the effects of driving towards the

surrounding traffic and vice versa in real-time. The reaction of following traffic is visible

and also included into the simulation view.

The traffic simulation, including the convoy system, is generated by a computer

where runs an application called PELOPS (see section 2.2.4). This machine is con-

nected to the truck cabin using CAN bus network. This kind of network is the same

utilized in the real truck. The results of the simulation are sent using Ethernet with a

broadcast address1. The application is responsible to interpret the signals coming from

the driver, as the wheel movement, the indicators lights and the pedals.

The other computers have a NIOBE application running. This is responsible for

the visualization, therefore, it is connected with the graphic hardware. Those are two

video projectors that project the frontal scenario from the driver’s point of view, and two

LCD monitors, that represent the outside mirrors. For each view there is a dedicated

computer to run NIOBE application. For the front view, the computer machine has two

video boards, one for each video projector. The information about traffic and the convoy

system that NIOBE receives is delivered by Ethernet network. The whole system can

be visualized in the figure 2.3.

In the truck cabin exists another system, called Fahrersysteminformation (FIS),

in English that means Driver Information System. This system is an interface commu-

nication with the driver, and it is also connected to the PELOPS machine using CAN

bus network. The next section describes FIS in detail.

2.2.1: Driver Information System (FIS)

The Driver Information System provides for the driver in the cockpit an inter-

face to interact with the convoy system. The FIS is based on a touch screen device

connected to the truck cockpit and provides a simple communication with a friendly

interface for doing maneuvers, for example, coupling and decoupling the convoy.

Besides that, it was implemented a virtual FIS, which makes it possible to apply

1a broadcast address is an IP address that allows information to be sent to all machines on a given subnet

rather than a specific machine

10

Figure 2.3: Composition of the IndriveS

the same operations using a local application instead of the real device seen in the

figure 2.4.

Figure 2.4: FIS module in detail running with the whole system

With both applications the operator/driver can apply different convoy maneuvers

and visualize some important parameters of the system, for example, the distance

between the front car and the current one.

11

2.2.2: Visualization Software - NIOBE

NIOBE is part of the driver simulator responsible for the 3D visualization and

the audio environment. This application is written in C++ computer language and the

source code can be compiled for both operation systems - Windows and GNU/Linux -

since the libraries used in it are provided for both OS. The main library used is a 3D-

Game-Engine called Crystal Space. This library is explained in another chapter of this

document.

The 3D objects viewed in NIOBE are stored in a database that contains geom-

etry and texture information of each object. The position and rotation of the objects

are stored in a file generated by Roadcraft program (see section 2.2.3). That includes

the motorway, buildings, trees, signs and the others static elements. The dynamic ele-

ments, as all vehicles, are defined in a config file. This file contains the initial position,

type (truck, car or motorcycle) and an identity number for each vehicle. The figure 2.5

shows the NIOBE’s dependencies.

NIOBE

Static

Elements

Vehicle

Information

ID
Position

type

Database

cars,motorway

building, trees

Geometry and
texture

Figure 2.5: NIOBE application and dependencies

Console

Besides the view, NIOBE provides a console where the user can run a list of

commands, which characterizes its own language called NIC (NIOBE Command). This

language is really useful to debug and change some parameters in offline and espe-

cially in runtime mode. Every time that NIOBE is executed, a autoexec file is loaded

which contains several commands defined by the programmer. Runtime mode is un-

derstood when NIOBE is receiving information about the vehicle positions from an

external source. In this situation, it is possible to visualize some action on screen. The

list of commands is located in the Annex A.

The console shows in the prompt this label ”[niobe2] >” for a receipt of a com-

mand. There is a thread that reads every line written by the user and interprets in

12

agreement with NIC. Moreover, the console is used for showing messages from the

system, like error and warning messages. It is possible to request some information

of the application by console command, for example the position of a specific object or

the number of objects loaded in the memory.

Mouse and Keyboard events

NIOBE supports also events from the mouse and keyboard, what means that

specific buttons from the keyboard can be pressed to change some parameters during

running. Some of these shortcuts are already defined in source code, however it is

possible to create new ones in runtime. The mouse can also be used to get some

information from the screen and change some conditions of view as well.

A useful example using those events is when the user has to move through

the virtual world. It is possible using the arrows and other buttons from the keyboard to

move the camera position and use the mouse to change the direction of the movement.

Source code structure

The source code is structured in agreement with the Crystal Space engine. The

main thread is responsible for loading the graphics modules, processing the frames and

checking the events from the mouse and keyboard. The graphics loading is executed

in the beginning and it includes the plugins from the 3D engine and the virtual objects

(cars, street, buildings...). After that, the process enters a loop that process every

frame. Besides that, it is checked if the user had pressed any button from the keyboard

or mouse.

Another thread running in this process is responsible for interpreting the NIC

written in the console and show messages as well. There is also another thread re-

sponsible for receiving messages from the network. This thread changes the current

information of every vehicle in the real world (the dynamic objects) in agreement with

those network messages. There is a protected region in the memory where this thread

can change the values and the main thread that processes the frames can read this

information and update the position of each vehicle in the virtual world.

The console and the view window are showed in the figure 2.6.

13

Figure 2.6: NIOBE Application (Console and Graphic Window)

2.2.3: Scenario Editor - Roadcraft

Roadcraft is an editor specially built to create scenarios for NIOBE application,

moreover the scenarios are compatible with Crystal Space Engine. With this appli-

cation, it is possible to easily create a long track representing a motorway and place

objects aside the street, such as traffic signs, trees and buildings in a 2D view.

The objects loaded by Roadcraft are from the same database that NIOBE uses.

These objects are modelled by a tool called Blender, which is commented in another

chapter of this document. Each object can be visualized with a real representation of

its top view contour, since Roadcraft depicts a plane view of the objects fixed in the

world.

The streets can be built from GPS2 recorded data track. This is really important,

since the scenarios that will be run in NIOBE must be very realistic. The GPS data

is obtained by a vehicle driving in the motorway with a GPS device on board that

registers the position of the car periodically. In this way, Roadcraft can build a precise

representation of the street. However, the objects have to be allocated for each part of

2Global Position System

14

Figure 2.7: Roadcraft Editor with objects in closed

the street. Therefore, the application allows the users to add, move, rotate, delete and

copy the objects. The figure 2.2.3 shows detailed objects with their outline and a part

of the street.

Roadcraft is able to generate the necessary information for NIOBE to load the

scenarios. Basically, it demands two files, one of them containing the data from the

whole street, and the other one from the objects. This software must also provide

information about the street for the PELOPS application, however the result files differ

from one another. NIOBE requires a file based on Crystal Space Engine, on the other

hand PELOPS requires the representation of the street as three files that contain the

height and angle of the street, position of street segments and number of lanes with

their width, respectively.

2.2.4: Traffic Simulation - PELOPS

Program for the Development of Longitudinal Traffic Process in System Relevant

Environment (PELOPS) consists in analyzing and simulating the interchanges between

vehicle, driver and an environment. This simulation program was developed by another

institute called FKA from Aachen. The core of the program is formed by three essential

15

elements: traffic systems stretch/environment, driver and vehicle [3].

PELOPS is used for the evaluation of the traffic for the driving simulator. The

characterization of the traffic element ”driver” is divided into a decision- and a handling

model. In the decision model the parameter of the local driving strategy such as speed

and lane selection are determined. The handling model converts the characteristics of

the local driving strategy into specific vehicle controls, for example, acceleration pedal

position, gear lever etc[3].

In synthesis, PELOPS is responsible for the artificial intelligence of each car

involved in the traffic simulation and for the collection of data from the driver. Ev-

ery information concerning the position of the vehicles must be sent to the system by

Ethernet, so that the other applications, as NIOBE and FIS, can access and use this

information. The periodicity of transmission must be as fast as possible, therefore was

it defined a constant period equal to 10 ms. This period has to be less than the period

between two consecutive frames processed by NIOBE, because the movement viewed

in NIOBE will be smoother and more realistic.

PELOPS allows to set several parameters for the traffic simulation. Following,

the possibilities of configuration for the vehicles, street and the traffic are listed.

• Vehicle configuration:

– Vehicle geometry - width, height and length;

– Kind of vehicle - motorcycle, truck, car;

– Maximum velocity and acceleration;

• External parameters for the vehicle and driver:

– Aggressiveness of the driver;

– Initial velocity, acceleration and position;

• Traffic environment:

– Number of vehicles;

– Size of the bubble of vehicles around the driver;

• Driving environment:

– Road curvature and position;

16

– Road inclination;

– Number of lanes;

– Weather conditions;

– Road sign;

– Obstacles;

This chapter described how the driving simulator is related to the engineering project

called KONVOI. The main modules of this simulator are objects of work for the aca-

demic. On the next chapter, the tools used for building this simulation in software layer

are commented.

17

Chapter 3: Computer-simulated Environment and Tools

A computer-simulated environment provide for the user an environment that tries

to describe as high as possible a detailed simulation of a world through the use of vi-

sual, acoustic and tactile effects with support of computer technologies. The simulated

environment can be similar to the real world and may be used, for example, in simu-

lations for driver training (propose for the project of driving simulator). However, there

are several technical limitations to create a good quality virtual reality environment,

such as image resolution, objects processing, processing power and communication

bandwidth.

One segment of a computer-simulated environment is the 3D computer graphics,

whose works of graphic art is created with specialized 3D software. These programs

are used to create 3D objects, generally, with certain similarities to real objects.

Due to the popularity of 3D graphics, specialized APIs (Application Programming

Interfaces) and SDKs (Software Development Kits) have been created to facilitate the

processes in all stages of computer graphics generation. These tools have a really

low level communication with the computer graphics hardware manufactures, since

they provide access to the hardware in high-level layer for programmers. One of those

SDKs is describe on the next section, which was used in this project.

3.1: Framework for developing 3D Applications - Crystal Spa ce En-
gine

Crystal Space (CS) is a portable modular 3D Software Development Kit, includ-

ing components for building various applications and games. It is free and falls under

the GNU copyleft for libraries LGPL. In short, the LGPL allows you to use Crystal Space

as a library in commercial products, but modifications to the library or derivative works

incorporating parts of the library must be made freely available to everyone, under the

LGPL’s terms[4].

CS is programmed in object oriented C++ and is written to run under a wide

variety of hardware and software platforms, as Windows, Unix and Apple. The main

features of CS are listed below, which some of them are organized in libraries[4]:

18

• Geometry utility library with handy classes such as 2D and 3D vectors, matrices,

transforms, quaternions and oriented bounding box routines.

• General utility library with template arrays, smart pointers, hash maps, object

registry, plugin manager, strings and command-line parsing.

• Higher level tool library containing things like procedural textures, collider support

and texture generational tools.

• Virtual file system and transparent support for ZIP files.

• Flexible and extensible event system.

• Various types of mesh objects: polygonal lightmapped objects, triangle meshes.

• Animated 3D models.

• Supports various common image formats.

• Lighting static, pseudo-dynamic, dynamic and shadows.

• Powerful sequence manager to control movement, animation and other features

in a world.

3.1.1: Components of a World

This section describes the objects used to build a world. Every virtual world

based on Crystal Space has the following components[4]:

• Sectors: An area in the virtual world that contains several geometrical objects.

• Mesh Factories: This component is used to create mesh objects that inherit

characteristics from their mesh factory. Basically a mesh objects factory is like

a blue-print for creating a mesh object. Usually, the factory defines the actual

geometry of an object. It is possible to create multiple mesh objects from those

factories.

• Mesh Objects: these objects represent the geometry in the sectors. Everything

visualized in the virtual world is represented by some kind of mesh object. This

is a very important concept in the Crystal Space engine.

19

• Textures: Basically a texture represents an actual image that can be used in ma-

terials. Textures are used to give the mesh objects a real appearance. Textures

are never used alone but always in a material.

• Materials: Basically a material represents a surface appearance for a polygon or

triangle. A material is most typically made out of a single texture.

• Render loops: This component is an engine structure that tells the engine how

to render the objects in a given sector. Basically it tells the engine the steps

required to do the rending of the mesh objects and also the steps required to do

the lighting.

• Lights: A light is needed to illuminate the world. There are three different ways

how lighting is applied to objects. Static, pseudo-dynamic and dynamic lights.

3.1.2: Source code structure

An application based on Crystal Space must inherit some basic classes of the

3D library. The most important classes of CS to build an application are csApplica-

tionFramework and csBaseEventHandler. The first one is responsible for providing an

object-oriented wrapper around the CS initialization and start-up functions. The sec-

ond class is used to manage the event mechanism, like a mouse click or a keyboard

press.

A default application usually has the following features, as NIOBE has:

• Basic setup of Crystal Space application using csApplicationFramework class;

• Setting up the application event handler using csBaseEventHandler ;

• Using events to draw 3D frame;

• Loading of the basic plugins needed to get the engine;

• Creating of the 3D window;

• Loading of a texture and material of the world;

• Creation of a simple section and add few lights so it is possible to view everything;

• Creation of a view and a camera;

• Basic movement using the keyboard, mouse or an external source.

20

3.2: 3D Software - Blender

Blender is an open source software for 3D modeling, animation, rendering, post-

production, interactive creation and playback. Available for all major operating systems

under the GNU General Public License[6].

The basic features and stages that is found in this software are described on the

following sections.

3.2.1: Modeling

This stage describes how the shape of the 3D objects is built. There are several

techniques of modeling, for example:

• Constructive solid geometry: with this technique the modeler creates a complex

surface or object using Boolean operators to combine them. The most sim-

ple shapes that is possible to create are cuboids, cylinders, prisms, pyramids,

spheres and cones.

• Polygonal modeling: in this case the modeler use polygons for representing the

surface of objects.

• Subdivision surfaces: with this technique is known as to smooth a surface.

Modeling processes may also include editing object surface or material proper-

ties, adding textures and other features. In the figure 3.1, it is presented two 3D objects

modeled.

Figure 3.1: Model of a tunnel and a truck in Blender

21

3.2.2: Rendering

Rendering is the final process of creating the actual 2D image or animation from

the prepared scene. This can be compared to taking a photo or filming the scene

after the setup is finished in real life. It would contain geometry, viewpoint, texture and

lighting information.

3.2.3: Texturing

Polygon surfaces can contain data corresponding to not only a color but, in other

cases (as in this project), can be a virtual canvas for a picture, or other scanned image.

A part of the 3D modeling process that is used in almost every object created for

the driving simulator is called UV mapping. This technique allows making a 2D map for

representing a 3D model. This map is associated with an image known as a texture.

In contrast to X, Y and Z, which are the coordinates for the original 3D object in the

modeling space, U and V are the coordinates of this transformed map of the surface.

Then the image is wrapped onto the surface of the 3D objects.

Figure 3.2: Mapping a Peugeot using UV technique

3.2.4: Crystal Space Plugin

Blender has a plugin that allows generating a compatible content for the Crystal

Space Engine. In Crystal Space as in Blender there is a clear distinction between an

22

object and the mesh data it references (the factory). Thus, several objects can share a

factory and save space and processing time[8].

Basically a factory is a model for creating objects instances of a specific type.

The objects or meshes generated from a factory will inherit some of the characteristics

from this factory, as the geometry and textures.

Object types

Crystal Space supports several kinds of Mesh Object types. The most used are

listed here:

• Genmesh Object: The genmesh object is one of the most useful mesh objects. It

can be used for static data (walls, building, floor ...) or for dynamic data (moving

objects). It supports multiple materials, vertex lighting, and even animation.

• Thing Mesh Object: The thing object is often used for static geometry (walls and

buildings), usually for complex objects.

• Terrain Mesh Object: The terrain object is very useful if it is wanted landscapes.

• SpriteCald3D Mesh Object: This object is one of the options for animating skeletal

models. It is not used in this project.

Basically, in the driving simulator it is used just the Genmesh and Thingmesh

objects.

Export Section

This plugin in Blender supports several tools. It is possible to export the element

built in Blender as a library or a world file. When a library is exported, that means the

file created will be loaded in CS like a factory. If a world file is exported, CS will load it

directly in the engine memory and it will be possible to visualize the elements.

Another tool is a wrapper to a demo provided by the CS library, which makes it

possible to run the world created in Blender in a CS environment that supports key-

boards events and console commands. This tool is used to check if the world or object

modeled in Blender would run normally in the CS engine.

23

3.3: FLKT - Fast Light Toolkit

The Fast Light Tool Kit is a cross-platform C++ GUI that provides modern GUI

functionality without complexity. The interface is based on windows and it can be

built using a provided user interface builder called FLUID. This program provides the

usual widgets to develop common applications and new widgets can be created easily

through C++ subclassing.

In addition to building the graphic interface, the program FLUID also generates

the source code to be linked to a normal C++ application. All FLTK applications (and

most GUI applications in general) are based on a simple event processing model.

User actions such as mouse movement, button clicks, and keyboard activity generate

events that are sent to the application, which may then ignore the events or respond to

the user[10].

In conclusion, the software tools used in the simulation are computer libraries or pro-

grams for modeling (3D objects or GUI). On the next chapter it will be described how

these tools are used to build the modules commented in the previous chapter, besides

explaining some technical details about the simulator.

24

Chapter 4: InDriveS Project - Workpackages

The project InDriveS combines the several modules described in the chapter

2. The complexity of each module and their interdependency create a system that

requires a package of auxiliary tools for testing, analyzing and generating relevant

information. Besides that, some implementations for the modules are demanded as a

requirement to optimize the system or create new functionalities.

The previous state of the whole driving simulator presented a lot of problems and

missing tools. The lack of tools for testing the modules is the main problem, since to

test the system before, every module should be used. To contour that, it was proposed

to create a package of tools that can be used to replace some of the modules.

Another problem found in the previous state of the simulator was the existence

of bugs in the source code and incompatibility of information treated. For example,

wrong or insufficient information registered in files, problems of real time tasking and

lack of management of memory. In this chapter, the solutions to these issues that were

implemented by the author are discussed.

4.1: The Communication among the modules

The main modules used during a simulation of the system are PELOPS, NIOBE,

FIS and the auxiliary tools. Roadcraft is an offline tool that is not demanded during the

simulation. Except for the communication between PELOPS and FIS, the other tools

are connected through an Ethernet network. Therefore, it was defined a protocol of

communication based on exchange of network messages. This protocol is defined in a

header file that contains several structures for each relevant information. On the table

4.1, it is listed the type of messages exchanged between the modules, indicating the

source and destination. Some of them are not defined, however it is predicted to be

used in the future.

The messages are sent using a package written in C language, which contains

declarations of routines and structures to send and receive TCP/IP messages (point

to point or broadcast). The driving simulator system just uses messages in broadcast

mode. Therefore, some requisites for communication concerned with IPs and ports

25

Type Message Description Source Destination
Road element information about the street not defined not defined
Lane information about a lane not defined not defined
Sign information about a traffic sight PELOPS NIOBE
VehicleData information about a vehicle not defined not defined
VehiclePosition indicates position of the vehicle PELOPS NIOBE
EndOfSimulation indicates the end of the simulation not defined not defined
GraphicEngineReady indicates NIOBE is ready NIOBE not defined
Ready message of acknowledge not defined not defined
Success message of acknowledge not defined not defined
Error indicates an error in the system not defined not defined
TraffLightState indicates the state of a traffic light not defined n. d.
InternalNiobeEvent indicates an event to be run NIOBE NIOBE
Accident indicates an accident PELOPS not defined
PelopsTextMessage a command using NIC language PELOPS NIOBE
PlaySingleBeep command the sound not defined NIOBE
Fis2Pelops FIS commands to PELOPS FIS PELOPS
Pelops2Fis PELOPS information for FIS PELOPS FIS
Forces2Pelops specific commands for PELOPS Force2Pelops PELOPS

Table 4.1: Table with the network messages and their description

were defined.

Basically, there are two broadcast addresses, both using the port number 10006.

Every message sent to PELOPS must use the IP address 226.0.0.2 and the other

messages (to NIOBE, FIS or other tools) must be addressed to IP address 226.0.0.1.

In the annex B the variables of the structures used in the implementations of this

chapter are shown.

4.2: The human elements

The intern members of the institute define a list of human elements that inte-

grates this project. The members that compose the team are listed below:

• Driver: this is the elemental component of the driving simulator, usually this per-

son is a real truck driver that can give a feedback about how realist is the simula-

tion;

• Support: the support team is a group of people that assists the driver during the

simulation. It is composed of sociologist and psychologist. They prepare the

driver before the simulation and analyse his behavior;

26

• Operator: this is the person responsible to run and supervise the simulation. This

person has technical knowledge about the system.

• Developers and Modelers: these people are responsible to create the scenario

and develop the programs for simulation.

In figure 4.1 it is shown how they take place in the driving simulator environment.

The simulation hall is the place where the equipments of the driving simulator are

located.

Figure 4.1: Integrants of the driving simulator project

4.3: Niobe implementations

The previous state of NIOBE was functional and the main functionalities were

already implemented. During the internship several packages of task were required

to improve NIOBE’s performance, add new tools and fix several bugs. On the next

sections is described the tasks developed.

4.3.1: Map module

This module aims to show in the screen a 2D map of the world loaded in NIOBE

and to show specific objects as pixels on that. This tools is just used for testing pur-

poses, since the map is shown in transparent mode on the screen where occurs the

27

simulation. The basic idea for showing this map is to know where exactly the objects

and vehicles are.

As NIOBE supports its own language, a group of commands was create to work

with this module. Every command from this group has to start with the word map. The

first command that should be invoked concerns loading the picture that represents the

map, after that it is possible to define which objects in the world must appear like pixels

in the map. The module still supports defining the position and the size of the map. On

next, the whole commands are listed:

• map load <filename> <world size XY> <origin XY> : this command requires

the local of the map picture and it must be a PNG, the size of the real map

(defined by two scalar values) and which position the corner up left represents in

the real world;

• map setpos <position XY> : it is possible to change the position of the map on

the screen using this command;

• map setdir <true,false> : this command rotates the map, sometimes be-

comes necessary because the picture from the world was rotated;

• map (un)track <object ID> <color> : with this command it is possible to show

or hide objects in the world on the map by means of a pixel with specific color;

• map on,off,toggle : commands to show and hide the whole map.

In the figure 4.2 it is shown how the map appears in NIOBE. The steps for each

operation are written down:

1. map load map.png 1095.0 1447.8 686.0 1371.5

2. map dir PI/2

3. map setpos 300 0 360 360

4. map track vehicle

5. map on

28

Figure 4.2: Steps to load a map in NIOBE

4.3.2: Trembling problem

Previous state

In the driving simulator system, the PELOPS program has to send periodically

messages with vehicle information through the network and, on the other side, the

NIOBE program has to read those messages and update the vehicle states on screen.

This way, in order to guarantee a smooth movement of the vehicles, these messages

should be sent between a short interval of time and the vehicles position should be

updated in NIOBE exactly in the time that it is defined (this time is set in one of the

attributes of the structure sent by PELOPS).

However, the previous state of this communication was done in such way directly,

every message received by the NIOBE program was read and the vehicle position

updated without any mathematical treatment. The result of this implementation is a

visible trembling of the vehicles in the simulation. The source of this trembling could be

in several causes:

• The timing system is not the same between NIOBE and PELOPS machines;

• Delays and loss of information from network communication;

29

• The operation system scheduling and processing limitation;

Another concern is the Crystal Space Library, who is responsible to calculate and

process each frame shown on screen. The library provides some functions that return

the interval time between two frames, but as NIOBE receives the vehicle state from

the network during the frame processing and the time of a frame processing depends

of how many objects are in that frame, it is not possible to define exactly the position

of each vehicle that must be set, since prior to processing a frame, it is necessary to

foresee where the vehicles will be.

Solution

To contour this inconvenient, it was figured out a way to set this interval of time

between two frames as constant, therefore it would be possible to know where exactly

the vehicle must be located. As it was written, NIOBE program use Crystal Space to

process the frames. For applying a constant period frame, the first thing that should

be done is to know how much time is necessary to process each frame. That can be

measured using time functions from the proper Crystal Space. So, before finishing the

processing of a frame, the system must wait for some time, and this time is defined in

agreement with a constant period frame previously defined. This time is calculated in

this way:

tt = cpf − pfm

Where tt means the time to wait, cpf is the constant period frame defined and

pfm the period frame measured.

Algorithm

The main idea of this algorithm is to create a base timer for the NIOBE program

that is incremented for each frame processed. A priori, this increment must be equal

to cpf. From the network the structure called VehiclePosition_t (see annex B) is

received. One of the attributes of this structure is the the time stamp (ms) that defines

exactly when the vehicle should be for that position. This time stamp must be compared

with the base timer managed by NIOBE, and usually, there is a difference between

both timers, so it is necessary to make a mathematical treatment to predict where

the vehicles must be located. The difference between the timers is named delay for

implementation reasons. There are four possibilities to treat the position of the vehicles:

30

• Delay equals ZERO: In this case NIOBE and PELOPS are synchronized, so it

is not necessary to apply any calculation, the positions are updated as they are

received;

• Delay more than ZERO: In this case the vehicle position received is defined in

the future, so it is necessary to compensate the difference multiplying for a factor,

that is calculated like this:

FACTOR(f) =
cpf

DELAY − cpf

This formula is obtained to define exactly the position of the vehicle for a different

time (in agreement with the base timer). The biggest is the DELAY, the smallest

is the FACTOR. Since it was received an information from the future, the distance

would be bigger, so this factor is smaller.

• Delay less than ZERO: In this case, the distance is also multiplied by a factor,

but because it was not received the position required for the estimation, the last

positions are stored in a vector, and based on them it is calculated an estimation

of the vehicle’s position.

• Delay is very BIG: In this case something is going wrong (for example, bad

PELOPS or NIOBE performance), therefore it is just updated the current infor-

mation received from the network.

Besides this algorithm it is also implemented a controlling system. When the

delay is more than zero, the base timer is incremented. When the delay is less than

zero, the base timer is decremented. In the perfect situation, the base timer is added

to cpf. The controller adopted to manage this system is a proportional, since the

presence of delay in permanent regiment is totally acceptable, because the real system

of a vehicle has also such characteristic, for example, when the driver breaks, the

vehicle will not react instantly.

Figure 4.3: Diagram of blocks to control the base timer

31

In the figure 4.3 is shown a block diagram of the system. The difference between

the base timer (bt) and the time stamp (ts) defines the delay.

4.3.3: Loading problem

The normal scenario to load in NIOBE for the KONVOI simulation is a long street

with about 100 km. Moreover, buildings, trees and other objects are located around this

street to make the environment look more realistic for the driver. Considering every

element of this scenario, the virtual world is really huge and requires a large space in

the memory. Another problem is to manage the big number of objects in the memory

that requires CPU processing and decreases the framerate of the application. For

these reasons, it was proposed some solution to improve the performance and save

memory of NIOBE.

Solution using thread for selecting

One of the components of the world in Crystal Space is called sector, which

contains the geometric objects. In the previous state of NIOBE, every object from the

world was stored in just one sector. The idea of this solution is just to store in the current

sector the objects near the camera, therefore just a small group of objects will be in

that sector. However this does not mean that the application will consume less memory,

since the function used to calculate the objects near the camera is implemented in the

CS library, therefore, every object from the world must be loaded in the CS engine, but

not in the sector.

This way, the solution considers just an improvement in the CPU processing,

therefore the activation of this algorithm will be just used in small worlds without so

many objects and a long street. The basic idea of this implementation is to add a

thread in the process that calculates the objects close to the camera and add them

to an alternative sector. After a specific interval of time (enough to calculate the ob-

jects around the camera), the CS engine switches the current sector to this alternative

sector.

The explanation for a better performance of CPU is based on the render loop for

a small sector, since the CS engine will just manage few objects stored in the memory.

Solution using sections

Another solution proposed considers using a new concept called section. This

word was defined by the developers of this project and is not related with Crystal Space.

32

A section is a group of objects that are organized normally in agreement with their po-

sition in the world. The implementation of this solution involves Roadcraft and NIOBE.

On the NIOBE side, some functions were implemented to load a file generated

by Roadcraft that contains information about the sections and the objects. The basic

idea of this solution is to add in the current sector of the CS engine only the objects

that belong to a section where the camera is located and its neighbours.

However, to perform each object in the engine appropriately, it is necessary

to manage how the objects will be added in the CS engine. Every time the camera

changes of section it is necessary to add new objects to the engine. If this action

would be done at once, NIOBE would get a serious problem of performance on that

moment, therefore it is created an intermediate buffer that allows just one (or a couple

of) object to be added to the engine per frame. In this way, the objects from the current

section and its neighbor will take some time to be added. For example, if the framerate

of the application is constant and equal to 30 frames per second, in one second 30

objects will be added to the engine (considering 1 object added per frame). This rate

is enough to have a dynamic driving world when the sections have an area of 500x500

meters and the velocity of the camera (or the vehicle) is less than 150 km/h, since the

number of objects for each section is in average 100 objects for this project.

4.3.4: Mouse events

During the driving simulation the mouse events are not required, however these

events are indispensable for the team responsible to build and edit the virtual world.

Roadcraft tool was developed to build a priori the scenario, however, when it is loaded

in NIOBE, sometimes it is necessary to change little parameters, such as the angle of

rotation, the height or just to check the scenario in a 3D environment.

In the previous version of NIOBE, only the movement of the mouse was sup-

ported to assist the camera dislocation. The next step concerning mouse events is to

provide mouse button events and tools combined with that to edit, move and identify

objects in the world. The list of events added to NIOBE goes in table 4.2.

The first event in the table is really useful to identify the objects in the world,

therefore it is possible to change some parameters of the object, such as the rotation

and position. When it is known the ID of the object, it is possible to change it also

in Roadcraft. The implementation of this functionality is based on the location of the

33

Mouse Event Result
LEFT BTN Show in the console the ID of the object clicked
LEFT BTN+KEY SHIFT Select the object clicked to move
LEFT BTN+KEY SHIFT+KEY ALT Select the object clicked to move using rubberband
RIGHT BTN Deselect the object

Table 4.2: List of mouse events in NIOBE

objects in the world. After rendered a frame, it is possible to view the objects in a picture

or in 2D plane. When the user clicks on the screen, it is possible to obtain the position

in the coordinate X and Y, however not in the coordinate Z. In this case, it is common to

have more then one object in the same XY plane, but with different distance from the

camera. For example, in the figure 4.4, the user clicks on the screen where the target

is, in this case, for that coordinate XY, where it is located the truck, the barrier and the

trees on background. To differ which object was clicked, it is calculated which object is

closer from the camera, so the truck is the object clicked.

Figure 4.4: Screenshot of NIOBE to analyze a mouse event

The second event from the table is a great tool to edit the position and rotation of

the objects. Sometimes, only the visualization from Roadcraft is not enough to position

the object. To proceed correctly, the user must click on the left button from the mouse

34

in one object and keep the key SHIFT from the keyboard pressed. After that, the object

can be moved and rotated using the keyboard. The third event has the same idea, the

unique difference between them is that the camera stays static (for the second event)

and just the object selected is moved. For the third event the camera follows the object

like a rubberband.

The last event is just to return to the normal behavior of the system, which pro-

vides the movement for the camera using the keyboard.

4.3.5: Log register

This tool is important to get some information about NIOBE’s performance. It is

responsible to register in a file the framerate and the position of the camera for each

frame. Created this file, it is possible to apply a mathematical treatment and generate

graphics for analysis. Besides that, the position of the camera indicates the relation

between the framerate and a specific part of the virtual world, since the framerate

depends on the number of objects for that frame and how complex they are.

To activate/deactivate this tool some functions are created using the NIC lan-

guage. The base function is called registerfps, and it requires a word action:

• registerfps on: to start the register;

• registerfps off: to stop the register;

• registerfps clear: to clear the information registered.

A script using OCTAVE program is implemented to work with the data stored.

This script can plot graphics with information about the framerate and calculate some

statistic values, like the average, minimum and maximum framerate.

4.3.6: New street type

Due to problems of performance, a new way to build the motorway was proposed

to increase the framerate of the NIOBE application. The current algorithm uses several

textures to build the street. The new idea is to create a unique texture and apply

the UV mapping technique to define the final street. Another difference between the

implementation is that the current one builds polygon per polygon the street, in a way

35

that the algorithm creates a huge file that contains all information about every polygon

of the street and its relate texture. The new idea is to create a default model of 20

meters of the street using Blender, and based on this model (factory), change some

characteristics to connect the peaces and shape the motorway.

Figure 4.5: Factory from the street in Blender

This new factory is showed in the figure 4.5. Note that there is just an texture

that contains every part of the street. It is known that Crystal Space manages better a

object that contains just one texture. Those kind of objects are called GenMesh. The

CS engine works faster when they work with this kind of objects instead of objects with

multiple textures, called ThingMesh.

4.4: Roadcraft implementations

4.4.1: Section division

Roadcraft is responsible to define which objects will belong to each section. The

sections are built considering a grade of rectangular cells with specific number of rows

and columns. Each cell represents a section, and the objects that are inside it belong to

the respective section. In figure 4.6 it is presented Roadcraft calculating the sections,

which are represented by the green squares. In this situation it is possible to visualize

the name of the sections and the objects.

Once the objects are ordered and the sections are calculated, Roadcraft must

generate a file that contains all information, so that NIOBE can load it.

36

Figure 4.6: Section cells are represented in Roadcraft

4.4.2: Polygon representation

Every 3D object modeled in Blender has an outline. This word means a polygon

representation of a 3D object seen by the top, but considering only its border. In the

previous state of the system, the modeler should create its outline for every 3D model

(factory). However, some of them were not compatible with the 3D model or they did

not represent exactly how they are. That implies a wrong representation in Roadcraft

of the objects in the world, since the program used these outlines to show how they

are located.

Therefore, it was proposed to create a real outline for every object based on

the real geometric modeled in Blender. In this way, the objects loaded in Roadcraft

are represented with a great precision. The idea of this representation is to clip all

polygons of a factory and get just the outline. To proceed with that, it is used a library

called General Polygon Clipping Library (GPCL). This library is written in C language,

thus the first task of programming is to wrap this library in a C++ class, since Roadcraft

is written in C++ language.

When Roadcraft is executed, the program checks in a specific database the

37

factory objects and calculates their outline. However, this calculation requires time

when the object has a large number of polygons. This problem is contoured when it

is stored the outline of the object in that database, so that Roadcraft checks if there is

already an outline created for that object. In positive case, the program will load it and

will not perform any heavy calculation.

4.5: VirtualFIS

This program has to send and receive messages to interact with the driving

simulation. The messages sent are responsible to reproduce the same effect that the

real FIS makes in the convoy. The received messages aim to give the user some basic

information about the trucks that belong to the convoy and about other vehicles.

The user of VirtualFIS can send the following messages to the PELOPS, which

is responsible to change the state of the convoy:

• Coupling: when the driver wants to couple in the convoy;

• Decoupling front: when the first driver wants to decouple;

• Decoupling rear: when the driver wants to decouple with gap behind the vehicle;

• Confirm coupling: when a driver from the convoy allows a truck to couple in the

convoy;

• Reject coupling: when a driver from the convoy rejects a request from a truck to

couple to the convoy;

• Lane change: when a driver wants to change the lane in the motorway;

• Right/Left indicator: when a driver triggers the right or left indicator;

To provide important information for the driver or the operator, FIS and VirtualFIS

show on the screen the distance of the truck in relation to other trucks of the convoy

and how the current situation of the convoy is. Since VirtualFIS is supposed to run

in a normal computer or a laptop, instead of a device on board of the cockpit, some

functions are added only to VirtualFIS to assist the operator. One of these tools is

a module map, similar to the one described on section 4.3.1. However, this map is

dynamic, that means it is possible to zoom and move the map visualization.

38

Besides that, on the map it is possible to define which vehicles are shown on the

screen. For the first four trucks, there are special buttons to show them, for the other

cars, there is a list of checking box to select which vehicles are shown on screen. In

figure 4.7 it is viewed the map module and its functionalities. The checking box called

Follow indicates whether the map updater must follow the vehicle that belongs to this

VirtualFIS or not.

Figure 4.7: Screenshot of VirtualFIS with the map module opened

4.6: Forces to Pelops

This tool is created to influence the behavior of any vehicle during a simulation.

These possibilities provided for the user concern with the velocity, position and the

lane on which the vehicle stands. Basically, the user has to configure the parameters

available and push a button to send the information to PELOPS. The same effect can

be sent for more then one vehicle, therefore a checking box with a list of the vehicle

IDs is created, so that the user can choose which vehicles will be forced. In figure 4.8

the interface components of this program are described.

Another useful tool for the simulation is an automatic jump of the vehicles. One

of the testing defined by the psychologist team is to force the driver to drive the same

part of the street several times. So it is possible to configure the position where the

vehicles must jump and to where they have to go.

There is also an easy way to force a car to change the lane and break. This

functionality is used when the psychologist team wants to observe the behavior of the

39

Figure 4.8: Interface of Force to PELOPS program

real truck driver in the situation when a vehicle breaks in his front.

4.7: Ampex Mark IV

Ampex Mark IV is a tool that works like a player and a recorder of information

sent or received from the modules in the driving simulator. The player mode is used

to emulate the PELOPS communication. The idea is to load a file that contains in-

formation of the simulation and send to the NIOBE program or/and to other tools. A

screenshot is presented in figure 4.9. The interface is very similar to a normal CD-

player, for example, the eject button is to open a data file, the slider provides an easy

way to run forth and back the time and the three common buttons that every player

demands - RUN, PAUSE and STOP. It is possible also to configure the IP and the port

to be used.

Figure 4.9: Ampex Mark IV setting as a player

The recorder mode is used to record the information broadcasted by the

PELOPS application or even by the Ampex Mark IV player. The data is stored in a

40

temporary file during the recording. At the end of the simulation, the user can create a

file that contains the whole data listened from the network. In figure 4.10 the recorder

options are shown.

Figure 4.10: Ampex Mark IV running as a recorder

In addition to the recorder and the player, this software provides an animation

for observing the velocity and position of the vehicles. This tool does not influence in

recording nor playing. In figure 4.11 it is presented a screenshot.

Figure 4.11: Ampex Mark IV running the animation mode

For the player module, an important functionality is implemented for testing.

When the application is started, it is possible to provide as argument a file that con-

tains data information to be sent, a desired time for simulating and an integer to decide

how many times the simulation must be repeated. The flowchart from the figure 4.12

represents the idea of this new tool:

This chapter described the contribution by the academic for the project. Some pro-

grams were entirely built, as Ampex IV and Forces to PELOPS. Other implementa-

tions were improvements and creation of new functionalities in programs like Roadcraft,

NIOBE and VirtualFIS. The next chapter discusses about another project involving the

driving simulator are commented.

41

Figure 4.12: Flowchart for the test simulation

42

Chapter 5: Demonstrator Project

The current hardware of the driving simulator for the KONVOI Project requires

a real cabin of a truck and demands two beamers and two LCD monitors to represent

the rear views. This combination of hardware is not portable to show the functionality

of the project for special events, as conferences and public demonstrations, due to the

dimension, complex structure and lack of assembly strategies, since the transportation

and assembly of the simulator is demanded.

This chapter describes the work done by the author to create a demonstrator of

the KONVOI system that allows the demonstration of the basic functionalities provided

by the current version of the simulator. The idea is to use a simple, flexible and portable

hardware setup that can be assembled and disassembled quickly.

The first activity is to define possibilities of hardware and software for this

demonstrator. After that, the options of configuration are analysed. Each option is

judged by a list of parameters that considers costing, dimension, timing, available hard-

ware/software and human resource. Once defined the configuration, the activities of

developing are planned, which are identified as a group of problems to be solved,

for example, an electronic, algorithm and communication problem. The demonstrator

uses the final modules already implemented in the current simulator, like NIOBE and

PELOPS applications. However, some possible modification of compatibility with the

new hardware must be done.

The final demonstrator provides a perfect platform to show the KONVOI system

for any event outside from the institute for people interested on, specially in conferences

and open public events outside from the institute.

5.1: The modules

The modules of the demonstrator can be divided into four sections in agreement

with the hardware used and the software already developed. They and their elements

and tasks are listed as follows:

• PELOPS

43

– Traffic simulation;

– Process driving data;

• Modules on Network

– Visualization (NIOBE)

– Driver Interface (FIS)

– Operator

• Driver Station

– Steering Wheel;

– Pedals (brake and gas);

• Data Converter

Figure 5.1 shows how they are connected. The elements of the Network module

are already implemented, so it is possible to reuse them. The PELOPS module can be

also reused, however the other two modules - the driver station and the data converter

- must be implemented as well as the communication between them.

Figure 5.1: Module diagram of the Demonstrator Project

5.1.1: Driver Station

This module is responsible to make the communication between the driver and

the system. It is constituted by a steering wheel with force-feedback and pedals, that

44

Figure 5.2: Example of the driver station

includes gas and brake. In the driver station it is possible to find some buttons as well,

where the driver can use as indicators left and right. Figure 5.2 shows an example of a

driver station that includes a steering wheel and pedals. This kit of driving is provided

for computers or video-games.

5.1.2: Data Converter

This module is responsible to interpret the signals from the driver station and

convert them to a treatable data for PELOPS. Basically, this module can be a micro-

controller or a computer program to process and convert the signal to CAN bus, which

is the protocol used by PELOPS. Three possibilities to implement it are presented, as

follows:

• The first one considers to have a microcontroller that supports USB (typical con-

nection of the driver station) and CAN Bus (for PELOPS);

• The second possibility is to have a microcontroller that supports CAN Bus as well,

nonetheless the connection between it and the driver station would be done by

the developers. This means that electronic circuit inside the driver station will be

redone;

• The third possibility is to create a library to be linked to PELOPS that interprets

the signal from the driver station directly connected by USB to the computer which

PELOPS runs.

45

5.1.3: Analysis of possibilities

Three possibilities are established according to the possible kind of data con-

verters defined in the previous section. Table 5.1 presents the analysis considering the

timing, costing, complexity and external difficulties. The items vary from 0 (the lowest)

to 5 (the highest).

External
Alternatives Costing Timing Complexity Difficulties Total

First 5 3 3 0 11
Second 5 4 4 2 15
Third 2 2 3 3 10

Table 5.1: Grade of analysis for the Demonstrator

The timing considers time of studying and developing. Another item, the costing,

considers how much will be spent to buy the new hardware. The complexity involves

the human resources available and their knowledge. And the last item considers a

dependency of working from other people that do not belong to the institute.

Table 5.1 says that the third possibility presents the best criterions, however

these do not have the same weight of analysis. For example, the third option requires

an important modification in PELOPS that depends on the developer team from another

institute. Other negative point of this solution is that the team leaders from the ZLW-

IMA institute want to have know-how of microcontrollers used in the automobile area.

As the most common microcontrollers in the automobile area do not support USB, the

option chosen by the team is the number two.

5.2: Technical details

Considering the solution mentioned in the previous section that includes a mi-

crocontroller to process the signal from the driver station to the PELOPS machine, on

the next section, technical information about this device is described.

5.2.1: Microcontroller

The chosen microcontroller to be used in the data converter is the C167CR by

Infineon. This company is a leading innovator in the international semiconductor indus-

try. They design, develop, manufacture and market a broad range of semiconductors

46

and complete system solutions targeted at selected industries. Some of their products

serve applications in the automotive area.

The C167CR are high-end members of the Infineon full featured single-chip 16-

bit microcontrollers. High CPU performance is combined with peripheral functional-

ity and enhanced I/O-capabilities. A wide variety of on-chip features such as large

on-chip ROM, multi-functional standard peripherals, and application-specific peripher-

als (e.g. optional CAN) is available. The C167CR features an on-chip CAN module

which has been designed to fulfill the requirements of automotive and industrial control

applications[18].

5.2.2: Development kit

For facilitating the development using the microcrontoller mentioned in the previ-

ous section a development kit was ordered. This kit contains a single board computer

module (that includes the microcontroller) mounted on a applicable carrier board that

features all hardware needed for immediate start-up of the module[17].

This development kit is supplied by PHYTEC company. The main features from

the single board computer are listed below:

• Credit card-sized (85x55 mm) SBC;

• Infineon C167CR controller on-chip Full CAN 2.0B;

• 256 KB (to 2 MB) external SRAM;

• 256 KB (to 2 MB) external Flash;

• Flash supports on-board programming via RS-232 interface;

• Up to 1 MB optional EPROM;

• All controller ports & signals extend to standard-width (2.54 mm) pins aligning

three edges of the board;

• 16-channel A/D-converter with 10-bit resolution;

• RS-232 transceiver supports two serial interfaces;

• Full 2.0B CAN interface.

47

And the carrier board that receives this single board computer has as main fea-

tures:

• Simple jumper configuration allows use of the Carrier Board with all 5V PHYTEC

micro- and miniMODUL Single Board Computers;

• Pin header receptacles accommodating both micro- and miniMODULs;

• Wire wrap field (60 mm x 65 mm) supports development of user-designed cir-

cuitry;

• DB9-socket for RS-232 interface;

• Second DB9-plug which can be configured as a CAN or RS-485 interface accord-

ing to user needs and the underlying controller;

• Reset switch;

• Boot switch;

• VG96-connector;

• Single power source via a low-voltage socket.

48

Chapter 6: Tests and Results

In this chapter the results and analysis of several tests are commented. The

sections are divided in agreement with NIOBE performance (framerate) and memory

management. Some results for Roadcraft are commented as well.

6.1: Framerate testing

This testing is concerned with the performance of NIOBE, which is an important

parameter to add new effects to the virtual world, like shadows, lights and animation.

The realism of the environment depends on the performance, that is related to the fram-

erate. Therefore, this parameter is the object of analysis as well as the investigation of

the components that influence it.

6.1.1: Tools for testing

The suite of tools used in these testings consists in simulating the system several

times with different configurations for the scenario loaded in NIOBE. However, the first

task for the testings is to record the action of a real driver during an interval of time

defined in 10 minutes. This recording is the base for analysing, and the scenarios will

be always tested with it. The tools used for testing simulation are:

• The player to substitute PELOPS and to have always the same information sent;

• The log register in NIOBE to store the data for analysing;

• Octave scripts to analyse the data;

• Different configurations of the KONVOI scenario.

6.1.2: Different configurations

In each scenario it is possible to change several conditions before starting the

simulation. As the objective of this testing is to identify the components that influence

the framerate, a specific configuration is changed or removed to notice its influence.

The different tested configurations are the street, the objects and the traffic.

49

Each testing is done more than once for verifying the robustness of the results.

The algorithm that limits the frames per second is set as a high value, so the framerate

can oscillate freely. In addition to the graphics, some statistical results are computed

in the table 6.1.

Maximum Minimum
Configuration framerate framerate Average
Normal 83.33 6.37 47.62

83.33 13.70 47.62
83.33 9.01 45.45

No street loaded 111.11 34.48 71.43
100.00 22.22 76.92

Small street loaded 100.00 10.20 52.63
100.00 12.35 55.56

No objects loaded 100.00 15.87 58.82
100.00 18.87 58.82

No sky loaded 83.33 4.25 45.45
83.33 10.87 45.45

No lights on the car 90.91 5.21 47.62

Table 6.1: Table with different configurations

Comparing the results to the normal configuration, the street and the objects are

the main components that influence the framerate.

6.2: Visualization Results

It is known that humans can not distinguish framerates over 30 frames per

second[15]. Based on this affirmation, the framerate in NIOBE is limited to 30 fps.

That means any significant variation of framerate in the application would be perceived

by the driver. Therefore, the graphics shown in the annex C must have the minimum

value set to more than 30 frames per second, so that the movement during the simula-

tion of the dynamic objects would be smooth.

Another issue concerns the trembling algorithm explained in the section 4.3.2.

The results achieved with its implementation can be noticed in the simulation. As the

feeling of this performance is more like a matter of visualization, it was not created a

tool to calculate the degree of improvement of this algorithm.

50

6.3: Solution using a selector thread

The implementation described in section 4.3.3 to solve the loading problem in

NIOBE presented a significant improvement in the simulation. However, as the sce-

nario was being incremented with new objects, the memory became a problem and

even the performance. In this way, this solution could be only used for small scenarios

with a short street with few objects. However, another problem was found that dis-

carded the use of this implementation. The thread that calculates the objects near the

camera is not safe, that means the application can crash if the main thread and the

selector thread access at the same time the same space in the memory.

6.4: Section Management

The implementation of this algorithm saves a huge space in the memory, since

every object in the world does not have to be loaded. The performance of NIOBE

improved as well. Just considering the objects, it was possible to save more then 39%

of RAM memory used by NIOBE when it is started.

Analyzing the KONVOI scenario, the following parameters are determined in

table 6.2.

With Section Without Section
No objects Management Management

Memory used by
NIOBE (MBytes) 65 110 180

Table 6.2: Table with memory used of NIOBE

There are no graphic results that show the gain of performance between a ver-

sion without and with section management for the objects. However, after the objects

are subscribed in the section management, the street, which was before loaded at

once in the memory, follows the same strategy. In this case, some testings were done

to show the difference concerning the framerate for the street on the section manage-

ment. In the annex D, it is shown this difference. For these testings, the framerate was

registered for each processed frame, while the tests from the annex C were done by

each 10 frames. The performance is also better due to the compilation of CS, because

before it was compiled in debug mode, that dicreased the framerate of NIOBE. In the

new testings it is used CS in optimize mode, therefore causing a big difference among

51

Figure 6.1: New motorway using a common factory

the values obtained. Another modification is concerned with the graphic generated by

the script that shows only a point instead of connecting lines.

6.5: New street

To compare the current street and the new street, which uses an unique texture

instead of many, a simple motorway that does not contain the safety fence was built.

As the safety fences are presented during the whole motorway, they influence a lot in

the framerate, therefore the results are very different from the normal scenario.

It is important to point out that the new streets used in this test are not the final

ones. They are built always with the same factory, in a way that the streets are not

connected. In figure 6.1 there is picture of the street. The idea for this test is to analyse

how much the performance can be improved using an unique texture.

The results are shown in annex E. The new solution caused an enhancement of

16% in the framerate average. However, the minimum framerate from this new street

is smaller than that of the current street and even in the graphic, the distribution of the

framerate is more uniform.

52

6.6: New Outline

The new representation of the outline in Roadcraft brings a new dimension to

build the world with a great precision, since the modelers can fix the objects faster and

exactly in the world. However, this new implementation requires more CPU processing

power, and the performance of Roadcraft is not good when there is a big concentration

of objects in a small area. This density is not high for the traditional scenarios that are

developed for the current simulation, so Roadcraft runs well. Anyway, this problem can

be contoured by deactivating the outline representation, so that the objects in Roadcraft

would be shown like a simple polygon. In figure 6.2 the new and old outline are showed.

Figure 6.2: The new outline and the old one

The real object modeled in Blender is shown in figure 6.3. Every border of the

this object’ construction can be visualized in the new outline.

Figure 6.3: Real object modeled in Blender

6.7: New package tools for simulation

During the simulation, it is normal to have problems when performing the ma-

neuvers between the trucks. For example, the desired truck for coupling is faster than

the real driver or there is a car between two trucks that disables a coupling.

53

The combination of some new tools created can be applied to solve these kind

of problems during the simulation. For example, the tool Force to Pelops (section

4.6) is used to influence the vehicles. For such, it is necessary to know the ID of the

vehicle that would be influenced. To obtain its ID, the operator can run NIOBE in a

local machine (the same where Force to Pelops runs), and use the mouse button click

to identify which vehicle is on the screen. Another way to obtain the ID of the vehicles

is by running VirtualFIS with the map module opened.

With these new tool packages, the testers can quickly reach the desirable sce-

nario for the driver of the simulator. Before, they would have to restart the system, or

wait a long time of simulation to contour those problems.

54

Chapter 7: Conclusions and Perspectives

The intelligent convoy system of trucks in motorways is a complex structure with

several technical and non-technical variables. The integration of various segments of

research in several areas is just made possible through a multidisciplinary environment,

that integrates engineers, sociologists, technicians and psychologists.

The construction of a simulator of the whole system is a crucial task to guar-

antee the robustness of the project. The results of straight testings in real motorways

could be catastrophic without analysing and interpreting the behavior of the driver and

the electronic system embedded in the truck. Until the end of the conclusion of this

end-course project, the team of testers is still using the driving simulator to study the

consequences of this system in the real traffic, as well as how the truck driver would

interact with the system.

To ensure the realism of the driving simulator, several tests and investigation

were done to improve the performance of the NIOBE application, since it is the main

visualization component for the driver. Therefore, a creation of a framework for testing

was necessary to be implemented, making it possible to identify clearly the elements

that influence in the simulation and to measure the gain of performance.

This gain of performance is related to the memory and CPU processing. One of

the significant improvements of performance concerning with memory was to develop a

dynamically loading process of the objects in the world. By means of implementing the

idea to create sections in the virtual world, which involves a group of objects organized

by their location, it was possible to reduce 39% of the memory used in NIOBE applica-

tion for the current scenario of testing. That same idea of sections was implemented

for the street, which reached a better average of framerate, an improvement of 12%.

Besides that, the minimum framerate increased as well, which is another important

factor.

Another solution to solve the problem of performance, the one by using threads

instead of sections, was rejected, since the application can crash due to the non-

thread-safe implementation. Despite getting a significant visual improvement during

the simulation, this solution would not work well for the final scenario for testing, that

uses a large space of memory. Therefore, trying to become the application thread-safe

was discarded as well.

55

An attempt to improve the performance of NIOBE was to substitute the current

street - that uses several textures - by a new street that contains just one texture.

Analysing the results, one should notice a significant improvement in the framerate

average. Nevertheless, an important factor is the minimum framerate as well, and the

new street proved to be worse than the current street when considering the distribution

of minimum framerates during the simulation. Hence, this solution was rejected and

the current street was kept.

One of the main problems during the initial stage of the driving simulation was the

way that NIOBE updates the dynamic objects (vehicles). The responsible element for

the physical events of the simulation is the application PELOPS, which sends to NIOBE

messages through the network that contains information of where the vehicles must be

located. So far, NIOBE just updated the vehicles position using the raw values stored

in these messages. The result was a terrible trembling in the vehicle movements. After

a mathematical treatment that considers the time clock of NIOBE machine and the

time stamp of each position received, the vehicles’ movements are now smooth and

realistic.

Prior to simulation, there is an important phase that aims to build the scenarios.

A scenario is constituted by a street and objects surrounding it. To build the street and

include the objects in the virtual world, the modelers, who are responsible to create

the scenarios, must use the application Roadcraft. This stage of the project demands

a long time to be concluded, since the scenarios for testing contains motorways with

more than 50 kilometers. For this reason, several functionalities were implemented to

accelerate and facilitate their work.

One of those functionalities that speeded up the construction of the scenarios

is the implementation of the real outline for the objects viewed in Roadcraft. As the

old outlines usually were a rectangle that involves the object, consequently, it was hard

to locate correctly the objects in the world. Besides that, the modelers should use

NIOBE as editor, and move the objects in a 3D environment. With the real outline

of the objects, the modelers rarely need NIOBE to adjust them, only when the object

requires to be rotated on the angle that is not possible using Roadcraft, since it allows

just one rotation direction.

Considering now the simulation running, several tools are used for monitoring,

controlling, recording and playing. The VirtualFIS showed an important tool to evaluate

the state of the convoy, as well as a monitoring tool due to the new map module imple-

56

mented on it. Another important controlling tool is Force2Pelops that allows influencing

the behavior of the virtual drivers. This new package used during the simulation pro-

vides a powerful mechanism to analyse how the real driver reacts for different situations

during the driving.

The whole package of implementation done by the academic contributed to im-

prove the interactive driving simulator, which is an important segment of the project

KONVOI, which provides a testing platform. Parallel to that, a new project was started,

which aims to develop a small and flexible driving simulator called demonstrator. The

main goal of this project is to provide a system to demonstrate in conferences the main

modules of the project. Another motive is to learn how to use a typical microcontroller

common in the automobile area.

Basically, the main technical task implemented in the demonstrator was to inter-

pret the signals coming from the driver station and convert it to the CAN bus protocol.

As the microcontroller already supports CAN bus communication, the complexity was

reduced drastically and the other modules responsible for simulation are the same of

the real simulator.

As perspective for the future, the performance of NIOBE is still an object of study

and investigation. The improvement and optimization of this application are essential,

therefore new functionalities in the visualization could be possible to implement and

the realism of the simulation would be increased. To complement this investigation,

an upgrade of the tools for testing must be requested, providing more variables for

analysing and generating conclusions.

57

References

[1] Tiltmann, T.; Friedrichs, A. Automated truck-trains on motorways - vision or real-

ity?, Aachen, 2005. Article from ZLW/IMA, RWTH Aachen University.

[2] Preuschoff, E.; Friedrichs, A. Kombinierte Fahr- und Verkehrsfluss-Simulation,

Aachen, 2004. Article from ZLW/IMA, RWTH Aachen University.

[3] Forschungsgesellschaft Kraftfahrwesen Aachen. PELOPS Project ,at

http://www.pelops.de. Access in November, 2006.

[4] Manual On-line. Crystal Space Project, at http://www.crystalspace3d.org. Ac-

cess in September, 2006.

[5] Henne, M. Indrives Handbuch, Aachen, 2006. ZLW/IMA, RWTH Aachen Univer-

sity.

[6] Blender Documentation, at http://www.blender.org. Access in September,

2006.

[7] Gimp Documentation, at http://www.gimp.org. Access in September, 2006.

[8] Blender to Crystal Space Plugin, at http://b2cs.delcorp.org. Access in

September, 2006.

[9] Octave Documentation, at www.octave.org/. Access in October, 2006.

[10] FLTK Documentation, at htpp://www.fltk.org. Access in August, 2006.

[11] OpenGL Project, at htpp://www.opengl.org. Access in December, 2006.

[12] CVS Documentation, at http://www.nongnu.org/cvs/. Access in August, 2006.

[13] A General Polygon Clipping Library, at

http://www.cs.man.ac.uk/~toby/alan/software/gpc.html, Access in August,

2006.

[14] POSIX Threads Programming, at

http://www.llnl.gov/computing/tutorials/pthreads/. Access in August,

2006.

58

[15] The Facts about Games and their Frames Per Second, 2006. Article from Tech-

Connect Magazine.

[16] CAN Protocol, at http://www.kvaser.com/can/protocol/. Access in February,

2007.

[17] PHYTEC Technology Holding Company. miniMODUL-167, Hardware Manual, edi-

tion August 2002.

[18] Infineon Technologies. User’s Manual, V3-2, C167CR Deviratives, edition May

2003.

59

Annex A: List of Commands from NIOBE

actionsperframe <int, default: 2> // set number of actions to be taken per frame
actiontest [<action>] [<args>] // test action (developers only)
addsection <name> <x> <y> <z> // create section
ambientlight <red> <green> <blue> // set ambient light
bind <key> <command> // bind key to command
camid <id> // id of the car, the camera is tied to
camposrel <x> <y> <z> // move campos relative
camposrel+ <x> <y> <z> // add xyz to relative campos
campos <x> <y> <z> // set absolute campos
camrotrel <x> <y> <z> // rotate camera relative
camrotrel+ <x> <y> <z> // add to camera rotation angle
camrot <x> <y> <z> // set absolute camera rotation
cat <filename> // like bashcommand ’cat’
cinthread // start console input thread
clearmessage // clear textmessage on screen
countobjectssof <sectionid> // count objects in section
createmesh <factoryname> <meshid> [pos="0 0 0"] [sector="room"]

// create mesh object
culling d|dyvanis|f|frutsvis // set the culling as dyvanis or frustvis
day // activate day settings
delete <object-id> // remove object from engine
drawmessages on|off // switch for messages
enginefreqbase <float> // default: 0.7 (frequency factor=base+rpm/divider)
enginefreqdivider <float> // default: 18000 (frequency factor=base+rpm/divider)
enginesound on|off|toggle // switch engine sound on and off
enginevolumedown // tune engine sound volume
enginevolumeup // tune engine sound volume
enginevolume <value> # 0.0 - 1.0 // tune engine sound volume
eoc // end of input console
error <text> // error message
etime // get elapsed time in ticks
exec <commandfile> // exec file with niobe commands
execif <id> <cmd> // execute cmd if message receiver id is ’id’
factorycount // count factories in sector
factorylist // list factories in sector
farplane <value> // set farplane for renderer
fog color <red> <green> <blue> // adjust fog
fog density <value> // adjust fog
fog on|off|toggle // fog on or off
fovrelative <value> // field of view in degrees, relative
fov <value> // field of view in degrees, absolute
freelook on|off|toggle // set camera freelook mode
getcampos // where is the camera?
getniobeid, setniobeid <id> // what ID am I running at
getsections // get amount of existing sections
globalsection [on|off] // activate/deactivate objects in global section
headlight on|off|toggle // headlights (deprecated, may crash)
help [command] // help on particular command
invertMouse // invert mouse y-axis
invisible <id> // set object to be invisible
keeppelopsthreadrunning|kpr 1|0 // pelops listener on and off
keymoved <id> // set object to get moved by keyboard
keys // show key bindings
leadercam [on|off] // if on, camera id follows leading convoi truck
lightradius <id> <radius> [setup] // radius of headlights
lightmeshnames <id> <head> <break> <left> <right> // set id’s of extra light meshes
limitfps <maxfps or 0> // limit frames per second or not (0)
listobjectsof <sectionid> // show a list of this sections objects
listsections // list existing sections and its contents
loadlib <filename> // load xml cs library file
loadpackedlib <filename> // load packed library file
loadrmfobjects <filename.rmf> // load objects from rmf file
loadrmfsections <filename.rmf> // load sections from rmf file
loadworld <filename> [dir] // load xml cs world file
logo on|off|toggle // toggle zlw/ima logo on/off
look north|south|east|west|up|down // make camera look to direction (if in freelook mode)
looknorth // use ’look north’
map load <filename> <sizeX> <sizeY> <OriginX> <OriginY> <Dir>
map on|off|toggle // overlay map
map track <id> <color> // activate object as a spot on overlay map
map untrack <id> // deactivate object on overlay map
meshcount // count meshes in sector
messageid <id> // get/set message receiver id
mirror on/off // mirror view (actually ’off’ does not work correctly)
mirrorrotangle <roll angle> // rotate mirror
mousecapture on|off|toggle // capture mouse
move <id> <x> <y> <z> // move object to absolute position
movekeys on|off|toggle //
movespeed <value> // set speed for keyboard movement
msgact <sec> <text> // test action queue with a message action
night // activate night settings
niobeid <id> <command> // execute command on niobe with id ’id’
showpointscs <file> <factory=genpoint> // show points from ascii file in cs coords
showpointsrc <file> <factory=genpoint> // show points from ascii file in roadcraft coords
send2niobe <id> <command> // send command to niobe with message receiver id
ob2sec <obj-id> <sec-name> UNFINISHED // tie object to section
ob2sec all // assign all objects to sections that have been assigned by roadcraft

60

parentofchild <parent> <child> // set parent <-> child relationship
play <soundfile> | HORN_SOUND // play soundfile, must be loaded
precache // precache all objects, handle with care
prepare // handle with care
quit // leave the simulation
readrmf <filename> // read roadcraft meta file
registerfps on|off|clean // register fps in a file fps.log
relight world|sector // relight sector or world, handle with care
rereadcampos // re-read denso camera positions (outdated)
roadcraftlib <object name> <directory> // load library in roadcraft directory structure
rotate <id> <x> <y> <z> // rotate object
r | repeat | again // repeat last niobe command
rubberband elasticity|stiffer|softer // adjust rubberband camera
rubberband set <x> <y> <z> | show // adjust rubberband camera
rubberband up|down|left|right|forward|back
sectionlist // list existing sections
sectionstatus // debugging info about the section management
send GraphicEngineReady | Success | Ready // send net message (netmsg.cc)
send2niobe <id> <cmd> // send niobe command to be executed by niobe with message receiver id
sequence <sequence name> // run cs xml sequence (must be loaded)
setasvehicle <id> //
setmessage <seconds> <text> // set a message to be shown on screen
setperiod <period> // set minimum period between two frames (to limit fps)
setrpm <float> // engine rounds per minute - affects engine sound
showactivesections // show a list of currently active sections
showmousecmd //
showneighborsof <sectionid> // show a list of this sections neighbors
showneighbors // show a list of all sections neighbors
sleep <seconds> // wait some seconds before executing next command
slow <value> // set impact of CTRL key to movement
speedboost <value> // set impact of SHIFT key to movement
startthreads // start concurrent threads
system <command> // execute bash command
trafficlight <id> off|red|redyellow|green|yellow|nextstate
tremblecode on|off|toggle // (De)activate the tremble compensation algorithm
van <id> create // create a van (with lights)
van <id> lefton|leftoff|lighton|lightoff|righton|rightoff|breakon|breakoff
vehicle <id> create <factory> // must be a thing mesh
vehicle <id> |lefton|leftoff|righton|rightoff|breakon|breakoff|headon|headoff
viewcenterleftrelative <value> // move perspective view center (0=left ... 1=right)
viewcenterleft <value> // move perspective view center
viewcentertoprelative <value> // move perspective view center
viewcentertop <value> // move perspective view center
visible <id> // set object to become visible (if invisible)
warning <text> // show warning message
whereis <object-id> // show object position
writermf // write currently loaded rmf file

61

Annex B: Structures of the Network Messages

62

Annex C: Framerate analysis

Figure C.1: Normal configuration of the KONVOI scenario

Figure C.2: Configuration without objects in the world

63

Figure C.3: Configuration without street

Figure C.4: Configuration using a small part of the street

64

Annex D: Results of the Section Management for the

Street

Figure D.1: Configuration without street on the section management

Figure D.2: Configuration with street on the section management

65

Annex E: Comparison between the new street and the

current street

Figure E.1: Scenario with street using one texture without safety fences

Figure E.2: Scenario with normal street without safety fences

66

