
Mobile Client SDK for iOS Developer's Guide
Release Number 2.5.7.12

Published: 1/8/2013 6:29 PM

Gracenote, Inc.
2000 Powell Street, Suite 1500
Emeryville, California

94608-1804

www.gracenote.com

http://www.gracenote.com/


Confidential Developer's Guide

Getting Started with the iOS Sample Application

Introduction
The Mobile Client Software Development Kit (SDK) provides a Sample Application that demonstrates
basic functionality. The SDK also provides a development project that is an example of how to incor-
porate the Mobile Client into your iPhone application.

This document describes how to integrate the Sample Application project into your development envi-
ronment.

Preparing Your iPhone Development Environment
iOS development requires a specific environment. For details on setting up this environment, refer to
the instructions on the Apple iOS Dev Center: http://developer.apple.com/devcenter/ios/

You also must register as an Apple Developer to download the software required to build and run the
Gracenote iOS Mobile Client sample application. To register, go to http:/-
/developer.apple.com/programs/register/

Requirements

The following are required to build and run the sample application:

General Requirements

l Apple Developer Provisioning Certificate

l Apple App ID

l Apple Provisioning File

For Macintosh OS X Version 10.7 (Lion):

l Xcode Version 4.x

l iOS SDK Version 4.x

For Macintosh OS X Version 10.6 (Snow Leopard):

l Xcode Version 3.x and higher

l iOS SDK Version 4.x

Installing the iOS SDK
The Xcode project for the Mobile Client Sample Application uses the iOS v4.2

© 2000 to present. Gracenote, Inc. All rights reserved. Page 2 of 66

http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/programs/register/
http://developer.apple.com/programs/register/
http://developer.apple.com/programs/register/


Confidential Developer's Guide

SDK. You must ensure that you have a compatible iOS SDK available in your development environment.
The application is compatible with iOS v3.1.3 and later.

Follow the steps below to install the appropriate iOS SDK:

1. Go to the iOS Dev Center: http://developer.apple.com/devcenter/ios/index.action

2. Download the iOS SDK compatible for your development environment OS X version (see Technical
Requirements). The download will also include the required version of Xcode.

3. Ensure Xcode and iPhone simulator are closed.

4. Run the downloaded iOS package (Xcode and iOS SDK.mpkg). This launches the iOS SDK installer.
Once the installer has completed, tthe iOS SDK will be available as an Active SDK in Xcode.

Running the Sample Application

1. Unpack the Gracenote iOS Mobile Client Package: GN_Music_SDK_iOS.zip

2. Launch Xcode.

3. Close the Welcome to Xcode launch screen.

4. Choose File > Open.

5. Navigate to the parent directory of your unzipped package: GN_Music_SDK_iOS.

6. Beneath the parent directory, locate the file GN_Music_SDK_iOS.xcodeproj. Select this project and
click Open at the bottom of the window. The Xcode project opens within Xcode.

7. Select the Overview drop down box at the top left corner of the application window.

8. In the first grouping, select Simulator.

9. Leave all other settings as is and click outside of the drop down box to exit it.

10. In the top middle of the window, click the Build and Run icon.

11. Look for Succeeded in the the bottom right of the window. If the build fails, see Mobile:Trou-
bleshooting.

12. The Simulator will open and the Gracenote iOS Sample Application will launch.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 3 of 66

http://developer.apple.com/devcenter/ios/index.action


Confidential Developer's Guide

13. Test the sample application by trying out some of the queries. When testing the application, note
that:

l The Recognize FPX and Recognize PCM queries use inputs underneath the GN_
Music_SDK_iOS parent directory.

l The Text Search and Lyric Fragment Search queries require you to manually input
search terms.

l The Recognize Mic query is unavailable with the iPhone Simulator at this time.

Troubleshooting
There are a few common reasons that the sample application build may fail:

Error Message: No architectures to compile for (ARCHS-i386 ppc, VALID_ARCHS=arm6 arm7)

Issue: Your development environment does not have the iOS SDK specified by the GN_Music_SDK_iOS
project.

Potential Fix: The Gracenote iOS Sample Application project was created using iOS 4.2 SDK. If you have a
newer version, change the Base SDK for the GN_Music_SDK_iOS target:

1. Click on the blue Info button at the top middle of the screen near Build and Run icon.

2. Select the Build tab, if it is not already selected.

3. In the Architectures section, select the Base SDK of the 4.x version that is installed on your system.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 4 of 66



Confidential Developer's Guide

Error Message: Base SDK Missing in the Overview Dropdown.

Issue: This error normally occurs after a new SDK version and Xcode are installed. A base SDK needs to
be designated.

Potential Fix: Follow the steps above to specify the Base SDK version.

Error Message: CodeSign error: code signing is required for product type 'Application' in SDK
'Device iOS x.x'

Issue: Xcode is attempting to deploy the application to an iPhone device unsuccessfully.

Potential Fix 1: If you are trying to use the simulator, change the project's Active SDK by selecting Sim-
ulator from the first grouping in the Overview drop down box in the top left hand corner.

Potential Fix 2: If you are trying to use a device, follow the steps listed in the Devices section of the iOS
Provisioning Portal to ensure your device is correctly provisioned.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 5 of 66



Confidential Developer's Guide

Mobile Client iOS Implementation Guide
2.5.7.12

Overview
This document is the Implementation Guide to the application programming interface (API) of the
Gracenote Mobile Client software library. It provides conceptual background, implementation guid-
ance, and example code to aid software developers in building application programs incorporating
Gracenote Mobile Client services. For complete reference information on the Mobile Client API, see the
included Reference Guide delivered as HTML pages.

Note

For conceptual simplicity, error checking has been omitted frommost of the programming examples in
this manual. In an actual production application, you will of course want to check the returned result
code after each library call and terminate the logic flow or take appropriate recoverymeasures in case
of failure. For more complete example code including full error checking, see the Sample Application
included with the Mobile Client distribution package.

Deployment
Mobile Client is delivered as an Xcode project that can be integrated into an iPhone development envi-
ronment that uses the Xcode integrated development environment (IDE).

Creating an iPhone Development Environment

iPhone development requires a specific environment. The details of creating such an environment can
be obtained from http://developer.apple.com/iphone.

Before proceeding, ensure that your environment is equipped with the following:

l Macintosh OS

l Xcode

l iPhone SDK installed

l Apple Developer Provisioning Certificate

l App ID

l Provisioning File

To obtain the iPhone SDK, Apple Developer Provisioning Certificate, App ID, and Provisioning File, you
must be a registered Apple Developer; see http://developer.apple.com/iphone for further details.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 6 of 66

http://developer.apple.com/iphone
http://developer.apple.com/iphone


Confidential Developer's Guide

Using the Sample Application

The Mobile Client Sample Application is provided as source within an Xcode project. To run the Sample
Application:

1. Unpack the Mobile Client distribution package.

2. Open the Xcode project within the package.

3. Add your client identifier to the Sample Application.

4. Build and run.

More detailed instructions are available in the Gracenote Mobile Client technical note Getting Started
with the iOS Sample Application (included in this SDK).

Migrating to this Release

Deprecated, Renamed, and Changed Default GNConfig Parameters

Several GNConfig parameters were renamed in Mobile Client 2.5.2 to improve consistency and
extensibility.  Gracenote recommends you migrate your code to match the new naming conventions.
However, this release supports the old parameter names to ensure backward compatibility.

The tables below summarizes the changes made, including the parameters that are currently sup-
ported but are deprecated. Deprecated parameters will be removed in a future release.

Deprecated Names

Old Name New Name Comments

country content.country

As of Version
2.5.8., the
default for this
is null. Prior to
2.5.8, it was
USA.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 7 of 66



Confidential Developer's Guide

genre and genreId properties in
GNSearchResponse

trackGenre and albumGenre

As of Version
2.5: Replace
GNSearch-
Response prop-
erties genre
with trackGenre
and genreId
with album-
Genre.

Multiple genre
levels can now
be returned, so
genres are deliv-
ered as a col-
lection of
GNDescriptor
objects that
contain a genre
descriptor and
a genre iden-
tifier. The prop-
erties genre
and genreId will
continue to
return the
descriptor and
identifier from
the lowest level
genre returned
to Mobile
Client.

isGenreCoverArtEnabled content.coverArt.genreCoverArt

lang content.lang

preferredLinkSource content.link.preferredSource

web-
services.coverArtSizePreference

content.coverArt.sizePreference

webservices.gzipEnabled N/A

© 2000 to present. Gracenote, Inc. All rights reserved. Page 8 of 66



Confidential Developer's Guide

web-
services.isInlineCoverArtEnabled

content.coverArt

As of Version
2.5. The default
for this is false
(as of version
2.5.8)

web-
serv-
ices.isSingleBestMatchPreferred

con-
tent.m-
usicId.queryPreference.singleBestMatch

Case Change Only

Cases are changed for consistency. Older case is supported. No deprecation.

Old Name New Name

Content.contributor.images content.contributor.images

Content.review content.review

Content.contributor.biography content.contributor.biography

Changed Default Values

Name New Default Value
As of

content.coverArt false Version 2.5.8

content.country null
Version 2.5.8

Prior to this, the default value was USA

Deprecated GNS

Deprecated GNSearchResponse Properties

Old Name New Name

bestresponse.artistImage bestresponse.contributorImage

Technical Requirements

Hardware iPhone, iPad

Platform iOS 3.1.3 or higher

Xcode version 3.2.3 or higher

© 2000 to present. Gracenote, Inc. All rights reserved. Page 9 of 66



Confidential Developer's Guide

Framework library size 1.1MB - 6.9MB 1

1 For details see Framework Size

Framework Size

The size of the framework reported above reflects the combined size of the universal framework for all
three iOS architectures: armv6 and armv7 for the device, and i386 for the simulator. The total executable
code for any single architecture is ~2.2MB. When linking the framework to your compiled application,
the linker will automatically strip out the unneeded architectures as well as any framework symbols not
utilized by your application. See the linker option "-dead_strip" for more information.

For example, the sample application GN_Music_SDK_iOS.app has a total executable size of 2.2MB for a
combined armv6/armv7 architecture. This includes the app code and all linked SDK code. If the app is
built for a single architecture, i.e. armv7 only, the compiled executable is 1.1MB. This is clearly much
smaller than the entire SDK and illustrates how the linker will strip unused symbols, thus reducing the
total size of the application.

See Xcode build settings for more information about setting build architectures and linker settings.

Apple Framework dependencies

Ensure that your environment is equipped with the following before proceeding:

l MediaPlayer.framework

l AudioToolbox.framework

l CoreData.framework

l CoreLocation

l AVFoundation.framework (must be weak-referenced in application)

l MapKit.framework

l CoreMedia

l libxml2.dylib

To enable file sharing, add Application supports iTunes file sharing = True in the plist file.

Xcode Build Settings

In your Xcode Build Settings, set Objective-C Automatic Reference Counting to No.

Linker Flags

The following linker flag must be used:

© 2000 to present. Gracenote, Inc. All rights reserved. Page 10 of 66



Confidential Developer's Guide

l -lsdtc++

Configuration and Authentication
Mobile Client uses a configuration object of type GNConfig to control its behavior. The behavior can be
modified by altering the configuration object.

To obtain a configuration object, use the GNConfig:init method. This method returns a GNConfig
instance that must be stored and used with Gracenote operations (see the section Operations). The
method accepts a client identifier:

GNConfig* config;
// Generate configuration object
config = [GNConfig init: @"12345678-ABCDEFGHIJKLMNOPQRSTUVWXYZ012345"];

The client identifier is used to generate authentication information, which is stored in the object and
used in turn to gain access to Gracenote's cloud-based services.

The configuration object can be customized by setting its properties via the GNConfig:setProperties
method. For example, you can configure the preferred language for metadata returned fromGrace-
note:

// Set preferred language to Japanese
[config setProperty: @"content.lang" value: @"jpn"];

See the GNConfig.h Line 21 for a complete list of customizable properties.

Operations
An operation is a request performed byMobile Client, such as creating a fingerprint or recognizing an
audio stream. The Mobile Client class GNOperations provides methods for invoking operations.

Invoking Operations

Operations run asynchronously to the application invoking them, and return their results via a mech-
anism known as a result-ready object (described below under Receiving Results). Each operation must
be provided a configuration object generated by GNConfig:init, along with a result-ready object to
receive the results:

// Create result-ready object to receive recognition result
ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];
// Invoke operation
[GNOperations recognizeMIDStreamFromMic: searchResultReady config: config];

Operations call result-ready and status-changed methods in the application's main thread. As a best
practice, any time-consuming or complex computational processes should not be run in the main
thread. Doing so will block the UI and may cause the application to behave poorly and impact per-
formance. For example, retrieving cover art should be run in a background thread.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 11 of 66



Confidential Developer's Guide

Receiving Results

Result-ready objects implement one of the following Mobile Client protocols, depending on the type of
operation:

l GNFingerprintResultReady

l GNSearchResultReady

Mobile Client calls the result-ready object's GNResultReadymethod when a result is generated. Your
application can use this method to process the result:

// Result-ready object implements GNSearchResultReady protocol
@ interface ApplicationSearchResultReady : NSObject <GNSearchResultReady>
{
}
// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Application code to process operation result
}
@ end
- (void) recognizeFromMic (GNConfig*) config
{
// Create result-ready object to receive recognition result

ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];
// Invoke recognition operation

[GNOperations recognizeMIDStreamFromMic: searchResultReady config: con-
fig];
}

Audio Recognition
Mobile Client provides three Gracenote technologies for audio recognition: MusicID-Stream, for audio
delivered from a microphone or other streaming audio source (such as a radio signal or streaming Inter-
net source), MusicID-File, for audio extracted from an audio file (such as a .wav or .mp3 file), and Albu-
mID, for identifying groups of audio files using fingerprints, text inputs, tag data, and Gracenote
Identifiers. AlbumID can also use this data to group files into albums. The results of recognition oper-
ations are returned to the application via a result-ready object implementing the GNSearchResultReady
interface.

If requested (and if the application is so entitled), Mobile Client can also provide cover art
and Link identifiers with the recognition results; see Retrieving Cover Art and Retrieving
Link Data, below, for further information.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 12 of 66



Confidential Developer's Guide

Stream-based recognition can take longer than file-based. When recognizing an audio file, use file-
based recognition to obtain the best response time.

MusicID-Stream

MusicID-Stream can be used to recognize a snippet of a song, such as a recording received from the
device microphone or from an Internet stream.

Mobile Client provides two methods for invoking a MusicID-Steam recognition, one designed for sim-
plicity, the other for flexibility.

GNOperations.recognizeMIDStreamFromMic

GNOperations.recognizeMIDStreamFromMic recognizes audio recorded from the microphone and is
the simplest way to recognize music playing in the user's environment.

When invoked, Mobile Client obtains the device microphone and records 6.5 seconds of audio. This
audio is processed and a MusicID-Stream fingerprint is generated. The fingerprint is then submitted to
Gracenote Web Services for recognition. The result is delivered via an object that implements the
GNSearchResultReady interface.

Status flow in stream-based audio recognition

The following example shows how to invoke GNOperations.recognizeMIDStreamFromMic.

// Create result-ready object to receive recognition result
ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];
// Invoke recognition operation
[GNOperations recognizeMIDStreamFromMic: searchResultReady config: config];

During audio recognition, Mobile Client sends status updates to notify the application of progress.

GNOperations.recognizeMIDStreamFromPcm

GNOperations.recognizeMIDStreamFromPcm recognizes audio provided as a buffer of PCM (pulse-
code modulation) data. This provides the application with additional flexibility: for instance, the appli-
cation can recognize audio from external streaming audio sources such as a radio signal or an Internet
stream.

When invoked, Mobile Client reads the PCM audio data. The audio is processed and a MusicID-Stream
fingerprint is generated. The fingerprint is then submitted to Gracenote Web Services for recognition.
The result is delivered via an object that implements the GNSearchResultReady interface.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 13 of 66



Confidential Developer's Guide

Status flow in PCM-based audio recognition

The following example shows how to invoke GNOperations.recognizeMIDStreamFromPcm.

// Create PCM sample buffer
GNSampleBuffer* sampleBuffer = [GNSampleBuffer gNSampleBuffer: samples
bytesPersample: 1 numChannels: 1 sampleRate: 8000];
// Create result-ready object to receive recognition result
ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];
// Invoke recognition operation
[GNOperations recognizeMIDStreamFromPcm: searchResultReady config: config
sampleBuffer: sampleBuffer];

During audio recognition, Mobile Client sends status updates to notify the application of progress.

The PCM audio sample must be at least 6.5 seconds long for Mobile Client to successfully generate a
MusicID-Stream fingerprint.

Audio Sessions and Audio Categories

Mobile Client does not create an iOS audio session, and consequently does not set an iOS audio cat-
egory when recording audio from the microphone. This leaves your application free to set the audio cat-
egory appropriately. Although Mobile Client may still be able to record from the microphone even
without setting the audio category, it is recommended that you do create an audio session and set the
audio category yourself; this will allow your application to react appropriately to system events and
state changes, such as when a phone call is received. For information on audio sessions and audio cat-
egories, see the Audio Session Programming Guide, available fromApple.

If your application needs to incorporate audio features beyond Mobile Client's microphone-rec-
ognition capability, it must create an audio session and set the audio category: for example, if the appli-
cation is required to play audio and also use Mobile Client to recognize audio from the microphone, it
must use the playing and recording audio category.

Recording audio categories should be used only while the device is actually recording. When using
Mobile Client's recognize-from-microphone feature, set the audio category to the appropriate record-
ing category before invoking the operation, then monitor the operation's status-changed events and
switch to a non-recording category when recording has completed. See Status Change Updates,
below, for more information.

For some applications, it may be inconvenient for Mobile Client to access the audio subsystem. In this
case, audio can still be recognized through Mobile Client's recognize-from-PCM functionality. Your
application can interact with the audio subsystem to obtain raw PCM audio data and provide it to
Mobile Client for recognition.

MusicID-File

MusicID-File can be used to recognize an audio file.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 14 of 66

http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/Configuration/Configuration.html%23//apple_ref/doc/uid/TP40007875-CH3-SW1
http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/Configuration/Configuration.html%23//apple_ref/doc/uid/TP40007875-CH3-SW1
http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/Configuration/Configuration.html%23//apple_ref/doc/uid/TP40007875-CH3-SW1


Confidential Developer's Guide

Mobile Client provides two methods for invoking a MusicID-File recognition, one designed for sim-
plicity, the other for flexibility.

GNOperations.recognizeMIDFileFromFile

GNOperations.recognizeMIDFileFromFile recognizes and audio file stored on the device.

When invoked Mobile Client decodes the audio file. The audio is processed and a MusicID-File fin-
gerprint is generated. The fingerprint is then submitted to Gracenote Web Services for recognition. The
result is delivered via an object that implements the GNSearchResultReady protocol.

Status flow in file-based audio recognition

Mobile Client can recognize audio files in the following formats:

l .wav

l .mp3

l .aac

l .caf

l .aaif

The following sampling rates are supported, in both monaural and stereo:

l 8000 Hz

l 11025 Hz

l 16000 Hz

l 22050 Hz

l 32000 Hz

l 48000 Hz

This functionality is available only for certain devices running iOS 4.0 or higher. As shown in the fol-
lowing table, all supported devices can recognize audio files stored in the document directory and most
can also recognize files in the iPod library:

© 2000 to present. Gracenote, Inc. All rights reserved. Page 15 of 66



Confidential Developer's Guide

Device Document directory iPod library

iPod Touch, 4th generation Yes Yes

iPhone 3G Yes No

iPhone 3Gs Yes Yes

iPhone 4 or higher Yes Yes

Files containing video components are not supported.

To recognize audio files stored in the device's document directory, you must enable iTunes file sharing
by setting Application supports iTunes file sharing = True in your application's plist file.

Also, iOS may occasionally deny access to files in the document directory based on the state and
actions of other applications running on the device. This may happen if

l there is an incoming phone call

l your application is in the background and another application starts playback

In these cases, Mobile Client will return an appropriate error. It is recommended that you test your
application to ensure that it responds appropriately to such iOS limitations.

Processing an audio file requires approximately 20 seconds of audio and that audio must come from
the start of the track.

Invoking file-based recognition on an audio file stored in the iPod library will cause it to stop being
played if it is currently being played by the iPod.

To recognize audio from a file, use the method GNOperations:recognizeMIDFileFromFile. This method
requires a URL to the desired file, as shown in the following code fragment:

// Create URL from file path
NSURL* fileURL = [NSURL fileURLWithPath: filePath];
// Use URL to recognize audio file
RecognizeFromFileOperation* op = [RecognizeFromFileOperation rec-
ognizeFromFileOperation: config];
[GNOperations recognizeMIDFileFromFile: op config: config fileUrl:
fileURL];

GNOperations.recognizeMIDFileFromPcm

GNOperations.recognizeMIDFileFromPcm recognizes audio provided as a buffer of PCM (pulse-code
modulation) data. This provides the application with additional flexibility: for instance, file formats not
directly supported byMobile Client can be decoded by the application to PCM and recognized via this
method.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 16 of 66



Confidential Developer's Guide

When invoked, Mobile Client reads the PCM audio data. The audio is processed and a MusicID-File fin-
gerprint is generated. The fingerprint is then submitted to Gracenote Web Services for recognition. The
result is delivered via an object that implements the GNSearchResultReady interface.

Status flow in PCM-based audio recognition

The following example shows how to invoke GNOperations.recognizeMIDFileFromPcm.

// Create PCM sample buffer
GNSampleBuffer* sampleBuffer = [GNSampleBuffer gNSampleBuffer: samples
bytesPersample: 1 numChannels: 1 sampleRate: 8000];
// Create result-ready object to receive recognition result
ApplicationSearchResultReady* searchResultready = [Appli-
cationSearchResultReady alloc];
// Invoke recognition operation
[GNOperations recognizeMIDFileFromPcm: searchResultready config: config sam-
pleBuffer: sampleBuffer];

During audio recognition, Mobile Client sends status updates to notify the application of progress.

Processing an audio file requires approximately 20 seconds of audio and that audio must come from
the start of the track.

AlbumID

AlbumID is a powerful and flexible recognition processing tool that can be used to provide advanced
recognition of audio files within the user's collection.  By leveraging contextual information about the
audio files, AlbumID can effectively identify, group and organize a collection, providing clean and con-
sistent metadata. It is best used for:

l Analyzing groups of media files, where the grouping of results is as important as the accuracy of
the individual results

l Receiving responses that match the contextual data of an audio file, such as metadata from ID3
tags

AlbumID can be used to recognize items in the application's document directory or in the device's iPod
library. It uses a variety of combinations of the following recognition methods and inputs:

l MusicID-File fingerprinting:  Audio files in supported formats are decoded and a MusicID-File fin-
gerprint is then generated.

l Text search and text comparison: Metadata from ID3 tags extracted from supported file formats
or additional text information provided by the application are used to search for appropriate
tracks and albums.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 17 of 66



Confidential Developer's Guide

l Gracenote Identifiers:  Audio files sometimes have an associated Gracenote Identifier, which
Mobile Client can use for consideration during the identification process.

l Audio file groupings:  Files can be analyzed in groups, which allows common albums to be deter-
mined based on the tracks in the group.

l Audio file name and file-system (folder) location:  As music collections are often grouped by direc-
tory (Artist/Album/Track), file name and location can also used during identification. Only files in
the application's Document directory can be recognized.

Fingerprints cannot be generated for files containing video components.

To recognize audio files stored in the device's document directory, you must enable iTunes file sharing
by setting Application supports iTunes file sharing = True in your application's plist file.

iOS may occasionally deny access to files in the document directory based on the state and actions of
other applications running on the device. This may happen in the following cases:

l There is an incoming phone call

l Your application is in the background and another application starts playback

In these cases, Mobile Client will return an appropriate error. It is recommended that you test your
application to ensure that it responds appropriately to such iOS limitations.

An audio file requires approximately 20 seconds of audio to successfully generate a fingerprint.

Invoking AlbumID with fingerprinting on an audio file stored in the iPod library will cause it to stop
being played if it is currently being played by the iPod. The AlbumID configuration can be altered to
omit fingerprinting

While commerce identifiers can be requested, AlbumID does not support the preference of a specific
identifier over the actual Album a song came from. These preferred results can instead be obtained by
using GNOperations.recognizeMIDFileFromFile or GNOperations.recognizeMIDFileFromPcm. See Musi-
cID-File for more information.

Mobile Client provides various ways to invoke AlbumID, allowing the developer to choose between a
simplified or more flexible implementation.

You can improve retrieval performance for AlbumID by retrieving enriched content in the background.
For more information, see Improving Retrieval Performance by Using Enriched Content URLs.

Calling AlbumID Operations Serially

An application should call AlbumID operations serially (one at a time). An application should only call
another operation after the previous operation has completed. If multiple AlbumID operations are
called concurrently with many tracks (for example, 1000 tracks per AlbumID directory operation), it
might impact performance on the device and might cause the application to run out of memory.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 18 of 66



Confidential Developer's Guide

GNOperations.albumIdFromMPMediaItemCollection:config:collection

GNOperations.albumIdFromMPMediaItemCollection:config:collection can be used to recognize items
from the devices iPod library. A collection of MPMediaItem objects can be provided for recognition.

The following code sample shows how to invoke GNOp-
erations.albumIdFromMPMediaItemCollection:config:collection

// Using MPMediaPickerController get MPMediaItemCollection for selected
files from iPodLibrary
// Create result-ready object to receive recognition result.
// ApplicationSearchResultReady must implement the GNSearchResultReady
interface
- (void)mediaPicker: (MPMediaPickerController *)mediaPicker did-
PickMediaItems:(MPMediaItemCollection *)mediaItemCollection {
ApplicationSearchResultReady* searchResultready = [Appli-
cationSearchResultReady alloc];
// Invoke AlbumID operation with the result-ready object, a GNConfig object
// instance and a MPMediaItemCollection which contains iPod library files
to identify
[GNOperations albumIdFromMPMediaItemCollection:searchResultready con-
fig:config collection:mediaItemCollection];
}

GNOperations.albumIdDirectory:config:directoryPath

GNOperations.albumIdDirectory:config:directoryPath takes a single directory path and identifies all of
the audio files in the directory tree, including sub-directories. This method can only recognize files in
the application's Document directory.

The following code example shows how to invoke GNOperations.albumIdDirectory.

// Create result-ready object to receive recognition result.
// ApplicationSearchResultReady must implement the GNSearchResultReady
interface
ApplicationSearchResultReady* searchResultready = [Appli-
cationSearchResultReady alloc];
// Invoke AlbumID operation with the result-ready object, a GNConfig object
// instance and the root of the directory tree to be processed
[GNOperations albumIdDirectory:searchResultReady config:config direc-
toryPath:documentDirectryPath];

When invoked this method performs the following operations:

1. Searches the directory tree and locates audio files that are supported by Gracenote MusicID-File
audio decoder or AlbumID tag decoder

2. Generates MusicID-File fingerprints for files in supported formats

© 2000 to present. Gracenote, Inc. All rights reserved. Page 19 of 66



Confidential Developer's Guide

3. Extracts information tags from supported formats which can include artist, album and track infor-
mation and Gracenote Identifiers

4. The recognition inputs collected by the above steps are combined with the file name and path
and delivered to the Gracenote Service for identification; this may result in multiple queries to the
Gracenote Service

5. The results of identification are delivered to the application

The behavior of GNOperations.albumIdDirectory:config:directoryPath can be controlled via the Albu-
mID configuration parameters. See AlbumID Configuration for more information.

GNOperations.albumIdFile:config:filePaths

GNOperations.albumIdFile:config:filePaths takes the filenames and paths of a collection of audio files
and applies AlbumID identification for grouping and organizing.

This method allows targeted identification of groups of audio files, or a single audio file, utilizing all of
the recognition technologies available to AlbumID. This method can only recognize files in the appli-
cation's Document directory.

The following code example shows how to invoke GNOperations.albumIdFile:config:filePaths.

// Create result-ready object to receive recognition result.
// ApplicationSearchResultReady must implement the GNSearchResultReady
interface
ApplicationSearchResultReady* searchResultready = [Appli-
cationSearchResultReady alloc];
// Assemble a collection of audio files filename and path
NSArray *filesToIdentify = [NSArray arrayWithObjects:filePath1,filePath2,
filePath3,nil];
// Invoke AlbumID operation with the result-ready object, a GNConfig object
// instance and a collection of files to identify
[GNOperations albumIdFile:searchResultReady config:config file-
Paths:filesToIdentify];

When invoked this method performs the following operations:

1. Generates MusicID-File fingerprints for files in supported formats

2. Extracts information tags from supported formats which can include artist, album and track infor-
mation and Gracenote Identifiers

3. The recognition inputs collected by the above steps are combined with the file name and path
and delivered to the Gracenote Service for identification; this may result in multiple queries to the
Gracenote Service

© 2000 to present. Gracenote, Inc. All rights reserved. Page 20 of 66



Confidential Developer's Guide

The behavior of GNOperations.albumIdFile:config:filePaths can be controlled via the AlbumID con-
figuration parameters. See AlbumID Configuration for more information.

GNOperations.albumIdList:config:list

GNOperations.albumIdList:config:list takes a collection of objects where each object contains the rec-
ognition inputs for an audio file. Recognition inputs are:

l MusicID-File Fingerprint
l Textual metadata:

l Artist Name

l Album Title

l Track Title

l Track Number

l File name and path
l Gracenote Identifiers

AlbumID does not require all of the above inputs to be effective; it can use only those provided to assist
identification. Note this also means that text can be used if no fingerprint can be created, allowing Albu-
mID to be used for audio files that cannot be accessed or decoded byMobile Client. Mobile Client does
not provide a method to export Gracenote Identifiers from a file directly to the application; however,
the query result contains these identifiers, which can be used for subsequent AlbumID List queries.

The following code example shows how to invoke GNOperations.albumIdList:config:list.

// Create result-ready object to receive recognition result.
// ApplicationSearchResultReady must implement the GNSearchResultReady
interface
ApplicationSearchResultReady* searchResultready = [Appli-
cationSearchResultReady alloc];
// Assemble a collection of GNAlbumIdAttributes objects.
// Each GNAlbumIdAttributes has the recognition inputs for a specific file.
ArrayList<GNAlbumIdAttributes> filesToIdentify = new Array-
List<GNAlbumIdAttributes>();
// Assemble the recognition inputs for individual audio files into GNAl-
bumIdAttributes instances

GNAlbumIdAttributes * fileAttrib = [GNAlbumIdAttributes gNAl-
bumIdAttributes:@""

identifier:@"List1"
albumTitle:@"Keep the Faith"
trackTitle:@""
trackNumber:@""

© 2000 to present. Gracenote, Inc. All rights reserved. Page 21 of 66



Confidential Developer's Guide

genre:nil
artist:@"Bon Jovi"
gnId:nil
fingerPrintData:fingerprintString];

NSArray *filesToIdentify = [NSArray arrayWithObjects: fileAttrib,nil];
// Invoke AlbumID operation with the result-ready object, a GNConfig object
// instance and a collection of files to identify
[GNOperations albumIdList: searchResultready config:config list: files-
ToIdentify];

When this method is invoked, the recognition inputs for each file are delivered to Gracenote Web Serv-
ices for identification, which may result in multiple queries to Gracenote Web Services.

The behavior of GNOperations.albumIdList can be controlled via the AlbumID configuration param-
eters. See AlbumID Configuration for more information.

AlbumID Configuration

The behavior of AlbumID can be controlled by appropriately configuring the GNCOnfig object provided
when an AlbumID operation is invoked.

The configuration parameters are described below.

Parameter Description Default

content.albumId.queryPreference.useTagData
When true, AlbumID will use tex-
tual metadata when identifying an
audio file.

true

content.albumId.queryPreference.useFingerprint
When true, AlbumID will use Musi-
cID-Fingerprints when identifying
an audio file.

true

content.albumId.queryPreference.useGN_ID
When true, AlbumID will use a
Gracenote Identifier when iden-
tifying an audio file.

true

AlbumID Query Load

AlbumID is capable of recognizing large music collections and in most cases will use multiple queries for
recognition of tracks and retrieval of related content.

To assist with recognition, Mobile Client will group audio files. The number of queries used for rec-
ognition is impacted by the number of groupings. Audio file groupings are based on:

l The metadata of the audio files (tag data is used to group similar tracks)

l The organization of the audio files (files can be grouped based on the directories they reside in)

© 2000 to present. Gracenote, Inc. All rights reserved. Page 22 of 66



Confidential Developer's Guide

l The limit of the recognition interface

Because file groupings are impacted by track metadata and organization, it is difficult to predict how
many recognition queries will be needed.

Once the audio files have been recognized, your application can access related content via the result
objects. Although queries are batched in multiple groups, the responses for all the grouped queries
are provided to the application at one time, at the end of the operation.

The example below provides an indication of the number of queries that are required for AlbumID. This
example can be extrapolated to larger collections requiring similar content to be delivered.

AlbumID Query Load Example

Consider an audio collection organized as shown below.

Assume:

l All tracks have accurate Artist Name, Album Title, and Track Title tag data.

l No Gracenote Identifiers are known for any of the files:

l /sdcard/Red Hot Chili Peppers/By The Way/By The Way.mp3

l /sdcard/Red Hot Chili Peppers/By The Way/Universally Speaking.mp3

l /sdcard/Red Hot Chili Peppers/By The Way/This Is The Place.mp3

l /sdcard/Red Hot Chili Peppers/By The Way/Dosed.mp3

l /sdcard/Red Hot Chili Peppers/By The Way/Don't Forget Me.mp3

l /sdcard/Red Hot Chili Peppers/By The Way/...

l /sdcard/Midnight Oil/10, 9, 8, 7, 6, 5, 4, 3, 2, 1/Outside World.mp3

l /sdcard/Midnight Oil/10, 9, 8, 7, 6, 5, 4, 3, 2, 1/Only The Strong.mp3

l /sdcard/Midnight Oil/10, 9, 8, 7, 6, 5, 4, 3, 2, 1/Short Memory.mp3

l /sdcard/Midnight Oil/10, 9, 8, 7, 6, 5, 4, 3, 2, 1/Read About It.mp3

l /sdcard/Midnight Oil/10, 9, 8, 7, 6, 5, 4, 3, 2, 1/Scream In Blue.mp3

l /sdcard/Midnight Oil/10, 9, 8, 7, 6, 5, 4, 3, 2, 1/...

© 2000 to present. Gracenote, Inc. All rights reserved. Page 23 of 66



Confidential Developer's Guide

Using albumIdDirectory, the base directory /sdcard would be provided. The AlbumID algorithmwill
create two groups, one for Red Hot Chili Peppers and one for Midnight Oil. An identification query is
generated for each group.

After identification is completed the results are provided via a result-ready object. The application can
then process the individual track results by processing the respective GNSearchResponse object.

Related content, such as Cover Art, is not included in the initial result set. When the application calls
GNSearchResponse.getCoverArt(), a query is generated to fetch the cover art.

The application should only call GNSearchResponse.getCoverArt() for one track on each album. This is
to avoid the same Cover Art from being fetched more than once. The application should include some
intelligence to ensure this.

In this example the minimumnumber of queries required to identify the audio tracks and retrieve the
track and albummetadata and cover art for each album is four:

l Two queries for identification

l One query to retrieve Cover Art for Red Hot Chili Peppers' album By The Way

l One query to retrieve Cover Art for Midnight Oil's album 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Applications can minimize the number of queries made through correct configuration, and analysis and
storage of results.

Single Best Match and Multiple Matches

The audio recognition operations MusicID-Stream and MusicID-File can return a single best match or
multiple matches. The default configuration returns a single best match, but this can be changed by
configuring the GNConfig instance provided when the recognition operation is invoked. The multiple
match configuration parameter is described below.

Parameter Description Default

content.musicId.queryPreference.singleBestMatch

When true, single best match is
returned for MusicID-Stream
and MusicID-File recognition
operations. When false, multiple
matches are returned.

true

When configured for a single best match, the best match is identified by comparing the characteristics
of all possible matches against criteria specific to your application. By setting properties in the con-
figuration object, you can change the criteria used in determining the best match.

When multiple matches are configured, all matches are delivered, up to a maximumof ten. The appli-
cation can apply its own criteria to determine the best match and deliver it to the user. The application
can also allow the user to choose the best match.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 24 of 66



Confidential Developer's Guide

Text and Lyric Fragment Search operations always return multiple matches and AlbumID always returns
a single match.

Single best match queries can be configured to return cover art in the recognition response. Cover art
is not delivered with the responses containing multiple matches; however, it can be retrieved with an
additional query by Gracenote Identifier (see Retrieving Related Content by Gracenote Identifier).

Fingerprints
Gracenote Web Services uses audio fingerprints to match audio with metadata and cover art. Mobile
Client can generate audio fingerprints from either of the following sources:

l Audio captured from the microphone or other streaming audio source

l Pulse-code modulation (PCM-encoded) audio stored in a buffer

Generating a Fingerprint

Fingerprints are returned via a result-ready object implementing the Mobile Client protocol GNFin-
gerprintResultReady. Mobile Client calls the result-ready object's GNResultReadymethod when a result
is generated. Your application can use this method to process the result:

// Result-ready object implements GNFingerprintResultReady protocol
@ interface ApplicationFingerprintResultReady : NSObject <GNFin-
gerprintResultReady>
{
}
@ end
// Provide implementation for GNResultReady method
@ implementation ApplicationFingerprintResultReady
- (void) GNResultReady: (GNFingerprintResult*) result
{
// Application code to process fingerprint result
}
@ end

The application must create the result-ready object and provide it when invoking the fingerprint gen-
eration operation:

// Create result-ready object to receive fingerprint result
ApplicationFingerprintResultReady* fingerprintResultReady = [Appli-
cationFingerprintResultReady alloc];
// Invoke fingerprint generation operation
[GNOperations fingerprintMIDStreamFromPcm: fingerprintResultReady config:
config sampleBuffer: sampleBuffer];

Searching by Fingerprint

To submit a fingerprint to Gracenote Web Services for matching, use the method GNOp-
erations:searchByFingerprint:

© 2000 to present. Gracenote, Inc. All rights reserved. Page 25 of 66



Confidential Developer's Guide

// Create result-ready object to receive matching result
ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];
// Invoke matching operation
[GNOperations searchByFingerprint: searchResultReady config: config fin-
gerprintData: fp];

A collection of possible matches is returned as the search result. During fingerprint matching, Mobile
Client sends status updates to notify the application as each of the stages shown in the figure is
reached:

Status flow in fingerprint matching

Text Search
Using the method GNOperations:searchByText:config:artist:albumTitle:trackTitle, Mobile Client can per-
form a text-based search in the Gracenote database for an album title, track title, and/or artist name. A
combination of any of the three fields can be provided to narrow the search results:

// Create result-ready object to receive search result
ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];
// Invoke search operation
[GNOperations searchByText: searchResultReady config: config artistName:
artistName albumTitle: albumTitle trackTitle: trackTitle];

A collection of possible matches is returned as the search result; to get an exact match, use a Grace-
note unique identifier instead of a text search (see Retrieving Related Content by Gracenote Identifier,
below). During the search process, Mobile Client sends status updates to notify the application as each
of the stages shown in the figure is reached:

Status flow in text search

Lyric Fragment Search
Using the method GNOperations:searchByLyricFragment:config:lyricFragement:artist, Mobile Client can
search the Gracenote database using a lyric fragment, optionally augmented by an artist name:

// Create result-ready object to receive search result
ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];

© 2000 to present. Gracenote, Inc. All rights reserved. Page 26 of 66



Confidential Developer's Guide

// Invoke search operation
[GNOperations searchByLyricFragment: searchResultReady config: config lyr-
icFragment: lyricFragment artist: artistName];

A collection of possible matches is returned as the search result. During the search process, Mobile
Client sends status updates to notify the application as each of the stages shown in the figure is
reached:

Status flow in lyric fragment search

Retrieving Related Content
Mobile Client can retrieve content related to an audio recognition result, including:

l Genre

l Mood

l Tempo

l Origin

l Era

l Artist Type

l Cover Art

l Artist Images

l Artist Biographies

l AlbumReviews

Related content can be retrieved from the 2.5.9.8 returned by an audio recognition operation or via a
Gracenote unique albumor track identifier.

For more information on using images returned byMobile Client see Image Resizing Best Practice.

Genre

Mobile Client returns album and track level genre descriptors with a recognition or search result. Genre
descriptors can be displayed to the end-user or can be used to categorize music in the user's collection

© 2000 to present. Gracenote, Inc. All rights reserved. Page 27 of 66



Confidential Developer's Guide

for organization, navigation, or playlist generation.

Genre Levels

Gracenote has multiple levels of genre descriptors. Each level describes the related music with a dif-
ferent amount of detail and granularity.

Two options for genre are available: DEFAULT and EXTENDED. The DEFAULT option returns a single,
default genre descriptor in the result. The EXTENDED option returns multiple levels of genre descrip-
tors in the result.

The recommended option to use depends upon the application, its use-cases, and the target audience.
Some applications might want to use the DEFAULT option, as it is the simplest and contains the most
commonly known genres. Other applications might want to provide a richer genre experience via the
multiple levels in the EXTENDED option. Applications might also use the EXTENDED option to give their
users a choice of which genre level is used.

A Mobile Client operation can be configured for one of these options via the GNConfig object provided
when the operation is invoked. These parameters are described below.

Parameter Description Default

content.genre.level
Sets the option for the genre descriptors returned; DEFAULT
and EXTENDED

DEFAULT

Genre Localization

Gracenote provides a global solution and Mobile Client can be configured to deliver genres specific to a
supported country and in a supported language. The country and language can be configured by set-
ting the appropriate parameters in the GNConfig object provided when invoking a GNOperations
method. These parameters are described below.

Parameter Description Default

content.country
Specifies the country of the delivered genre
descriptors (using ISO county code)

null. Prior to version
2.5.8, it was USA.

content.lang
Specifies the language of the delivered genre
descriptors (using ISO lang code)

""

See Localization and Internationalization for more information.

Accessing Genres

Genre data is delivered via a result-ready object in a GNDescriptor instance. Multiple genre levels can be
delivered for a single albumor track, so a collection of GNDescriptor objects is delivered.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 28 of 66



Confidential Developer's Guide

When track-level genre descriptors are requested, Mobile Client returns them, if they are available. If
track-level descriptors are not available, album-level descriptors are returned instead.

The delivered genre levels are stored in an array of GNDescriptor objects. The order of the GNDe-
scriptor objects in the collection is representative of their level.

Genres are defined by a descriptor and an identifier. The descriptor is a word or phrase describing the
genre. The descriptor string should only be used to display to the end user. Because descriptor names
and user language settings are subject to change, the identifier is best suited for dealing with genre
associations in a programmatic fashion.

The GNDescriptor object is fully described in the data dictionary, see GNDescriptor.

The following code snippet shows how genres can be retrieved from a result-ready object.

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
NSArray* trackMood = bestResponse.trackGenre;
NSArray* albumMood = bestResponse.albumGenre;

// Display or store album and track genre as desired
}

}
@ end

Mood

Mobile Client can return track level mood descriptors with a recognition or search result. Mood descrip-
tors can be displayed to the end-user or can be used to categorize music in the user's collection for
organization, navigation, or playlist generation.

Your application must be entitled to retrieve mood data.

A Mobile Client operation can be configured to include mood descriptors in its response, via the
GNConfig object provided when the operation is invoked. These parameters are described below.

Parameter Description Default

content.mood Set to true to enable retrieval of mood descriptors false

content.mood.level
Sets the option for the mood descriptors returned; DEFAULT
and EXTENDED

DEFAULT

© 2000 to present. Gracenote, Inc. All rights reserved. Page 29 of 66



Confidential Developer's Guide

Mood Levels

Gracenote has multiple levels of mood descriptors. Each level describes the related music with a dif-
ferent amount of detail and granularity.

Two options for mood are available, DEFAULT and EXTENDED. The DEFAULT option returns a single,
default mood descriptor in the result. The EXTENDED option returns multiple levels of mood descrip-
tors in the result.

The recommended option to use depends upon the application, its use cases, and the target audience.
Some applications might want to use the DEFAULT option, as it is the simplest and contains the most
commonly known moods. Other applications might want to provide a richer experience via the
EXTENDED option.  Applications might also use the the EXTENDED option to give their users a choice of
which mood level is used.

Mood Localization

Gracenote provides a global solution and Mobile Client can be configured to deliver moods in a sup-
ported language. The language can be configured by setting the appropriate parameter in the GNCon-
fig object provided when invoking a GNOperation. These parameters are described below.

Parameter Description Default

content.lang Specifies the language of the delivered mood descriptors ""

See Localization and Internationalization for more information.

Accessing Moods

Mood data is delivered via a result-ready object in a GNDescriptor instance. Multiple mood levels may
be delivered for a single track, so a collection of GNDescriptor objects is delivered.

The delivered mood levels are stored in an array of GNDescriptor objects. The order of the GNDe-
scriptor objects in the collection is representative of their level.

Moods are defined by a descriptor and an identifier. The descriptor is a word or phrase describing the
mood. The descriptor string should only be used to display to the end user. Because descriptor names
and user language settings are subject to change, the identifier is best suited for dealing with mood
associations in a programmatic fashion.

The GNDescriptor object is fully described in the data dictionary, see GNDescriptor.

The following code snippet shows how mood data can be retrieved from a result-ready object.

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

© 2000 to present. Gracenote, Inc. All rights reserved. Page 30 of 66



Confidential Developer's Guide

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
NSArray* trackMood = bestResponse.mood;

// Display or store track mood as desired
}

}
@ end

Tempo

Mobile Client can return track-level tempo data with a recognition or search result. Tempo data can be
displayed to the end-user or can be used to categorize music in the user's collection for organization,
navigation, or playlist generation.

Your application must be entitled to retrieve tempo data.

A Mobile Client operation can be configured to include tempo data in its response, via the GNConfig
object provided when the operation is invoked. These parameters are described below.

Parameter Description Default

content.tempo Set to true to enable retrieval of tempo descriptors false

content.tempo.level
Sets the option for the tempo descriptors returned; DEFAULT
and EXTENDED

DEFAULT

Tempo Levels

Gracenote has multiple levels of tempo descriptors. Each level describes the related music with a dif-
ferent amount of detail and granularity.

Two options for tempo are available: DEFAULT and EXTENDED. The DEFAULT option returns a single,
default tempo descriptor in the result. The EXTENDED option returns multiple levels of tempo descrip-
tors in the result.

The recommended option to use depends upon the application, its use cases, and the target audience.
Some applications might want to use the DEFAULT option, and other applications might want to pro-
vide a richer experience via the EXTENDED option. Applications might also use the EXTENDED option to
give their users a choice of which tempo level is used.

Tempo Localization

Gracenote provides a global solution and Mobile Client can be configured to deliver tempo in a sup-
ported language. The language can be configured by setting the appropriate parameter in the GNCon-
fig object provided when invoking a GNOperation. These parameters are described below.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 31 of 66



Confidential Developer's Guide

Parameter Description Default

content.lang Specifies the language of the delivered tempo descriptors ""

See Localization and Internationalization for more information.

Accessing Tempo Data

Tempo data is delivered via a result-ready object in a GNDescriptor instance. Multiple tempo levels may
be delivered for a single albumor track, so a collection of GNDescriptor objects is delivered.

The delivered tempo levels are stored in an array of GNDescriptor objects. The order of the GNDe-
scriptor objects in the collection is representative of their level.

Tempos are defined by a descriptor and an identifier. The descriptor is a word or phrase describing the
tempo. The descriptor string should only be used to display to the end user. Because descriptor names
and user language settings are subject to change, the identifier is best suited for dealing with tempo
associations in a programmatic fashion.

The GNDescriptor object is fully described in the data dictionary, see GNDescriptor.

The following code snippet shows how tempo data can be retrieved from a result-ready object.

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
NSArray* trackTempo = bestResponse.tempo;

// Display or store track tempo as desired
}

}
@ end

Origin, Era, and Artist Type

Mobile Client can return origin, era, and artist type data with a recognition or search result. Origin data
gives the geographic location most strongly associated with the artist. Era data gives the time period
most strongly associated with the artist. Artist type data gives the gender and composition (solo, duo,
group) of the artist. Origin, era, and artist type data can be displayed to the end-user or can be used to
categorize music in the user's collection for organization, navigation, or playlist generation.

A Mobile Client operation can be configured to include origin, era, and artist type data in its response,
via the GNConfig object provided when the operation is invoked. These parameters are described
below.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 32 of 66



Confidential Developer's Guide

Parameter Description Default

content.origin Set to true to enable retrieval of origin descriptors false

content.era Set to true to enable retrieval of era descriptors false

content.artistType Set to true to enable retrieval of artist type descriptors false

Origin, era, and artist type data is delivered as a bundle. If the value of any of the parameters is set to
TRUE, all three types of descriptors are delivered. To turn off delivery of the descriptors, all three param-
eters must be set to FALSE.

Origin, Era, and Artist Type Levels

Gracenote has multiple levels of origin, era, and artist type descriptors. Each level describes the related
music with a different amount of detail and granularity. The following GNConfig parameters set the
option for the origin, era, and artist type descriptors returned:

content.origin.level
Sets the option for the origin descriptors returned;
DEFAULT and EXTENDED

DEFAULT

content.era.level
Sets the option for the era descriptors returned; DEFAULT
and EXTENDED

DEFAULT

content.artistType.level
Sets the option for the artist type descriptors returned;
DEFAULT and EXTENDED

DEFAULT

Two options for origin, era, and artist type descriptors are available: DEFAULT and EXTENDED. The
DEFAULT option returns a single, default descriptor in the result. The EXTENDED option returns mul-
tiple levels of descriptors in the result.

The recommended option to use depends upon the application, its use cases, and the target audience.
Some applications might want to use the DEFAULT option, and other applications might want to pro-
vide a richer experience via the EXTENDED option. Applications might also use the EXTENDED option to
give their users a choice of which level is used.

Origin, Era, and Artist Type Localization

Gracenote provides a global solution and Mobile Client can be configured to deliver origin, era, and art-
ist type in a supported language. The language can be configured by setting the appropriate param-
eter in the GNConfig object provided when invoking a GNOperation. The parameter is described below.

Parameter Description Default

content.lang Specifies the language of the delivered tempo descriptors ""

See Localization and Internationalization for more information.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 33 of 66



Confidential Developer's Guide

Accessing Origin, Era, and Artist Type Data

Origin, era, and artist type data is delivered via a result-ready object in a GNDescriptor instance. Mul-
tiple levels may be delivered, so a collection of GNDescriptor objects is delivered.

The delivered levels are stored in an array of GNDescriptor objects. The order of the GNDescriptor
objects in the collection is representative of their level.

Origin, era, and artist type are defined by a descriptor and an identifier. The descriptor is a word or
phrase describing the origin, era, or artist type. The descriptor string should only be used to display to
the end user. Because descriptor names and user language settings are subject to change, the iden-
tifier is best suited for dealing with origin, era, and artist type associations in a programmatic fashion.

The GNDescriptor object is fully described in the data dictionary, see GNDescriptor.

The following code snippet shows how origin, era, and artist type data can be retrieved from a result-
ready object.

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
NSArray* originDescriptorsArray = bestResponse.origin;
NSArray* eraDescriptorsArray = bestResponse.era;
NSArray* artistTypeDescriptorsArray = bestResponse.artistType;

// Display or store origin, era, and artist type as desired
}

}
@ end

Retrieving Cover Art

Mobile Client can return albumCover Art with a recognition or search result. Cover Art can be used
effectively to enrich the user experience.

Note that only the cover art URL is returned with the result. To get the actual image data, your app
needs to invoke the GNCoverArt.data accessor method, which should be done in a background thread.
See the Sample App for an example of getting cover art data in a background thread.

Your application must be entitled to retrieve Cover Art.

A Mobile Client operation can be configured to include Cover Art in its response, via the GNConfig
object provided when the operation is invoked. These parameters are described below.

Parameter Description Default

© 2000 to present. Gracenote, Inc. All rights reserved. Page 34 of 66



Confidential Developer's Guide

content.coverArt
Set to true to enable retrieval of cover
art.

false (as of version
2.5.8)

content.coverArt.sizePreference
Comma-separated list of cover art size
preferences. Also specifies size pref-
erence for artist images.

"SMALL,MEDIUM,
THUMBNAIL,
LARGE,XLARGE"

The Cover Art size preference takes a comma-separated list of the preferred Cover Art sizes, in order of
preference. Mobile Client will return the first Cover Art image that matches a size in the preference list.
If a size is not in the preference list, it will not be returned.

If an invalid size preference is included in the list, Mobile Client ignores the list and uses the default list
instead.

For more information on using images returned byMobile Client see Image Resizing Best Practice.

You can improve retrieval performance for some operations by retrieving cover art in the background.
For more information, see  Improving Retrieval Performance by Using Enriched Content URLs.

Genre Cover Art

In cases where Gracenote does not have cover art for a particular album, genre-themed artwork is
instead returned in a response. This option can be disabled on a per-query basis by setting the appro-
priate GNConfig parameter as shown below.

Parameter Description Default

content.coverArt.genreCoverArt
Set to true to receive genre cover art when album
cover art is not available

true

To receive genre art, both content.coverArt.genreCoverArt and content.coverArt must be set to true.
Your application also must be entitled for cover art.

The size of the Genre Cover Art returned is governed by the Cover Art size preference GNConfig param-
eter described above.

For more information on using images returned byMobile Client see Image Resizing Best Practice.

Accessing Cover Art

Cover Art is delivered via a result-ready object as a GNCoverArt object. Cover Art is provided as a raw
data in NSdata datatype that can be easily used to draw an image.

The GNCoverArt object is fully described in the data dictionary, see GNCoverArt.

The following code snippet shows how tempo data can be retrieved from a result-ready object.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 35 of 66



Confidential Developer's Guide

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
GNCoverArt* coverArt = bestResponse.coverArt;

// Display or store cover art as desired
}

}
@ end

Artist Images

Mobile Client can return an Artist Image with a recognition or search result. Artist Images can be used
effectively to enrich the user experience.

Your application must be entitled to retrieve Artist Images.

A Mobile Client operation can be configured to include an Artist Image in its response, via the GNCon-
fig object provided when the operation is invoked. These parameters are described below.

Parameter Description Default

content.contributor.images
Set to true to enable retrieval of artist
images

false

content.coverArt.sizePreference
Comma-separated list of artist image
size preferences. Also specifies size pref-
erence for cover art images.

"SMALL,MEDIUM,
THUMBNAIL,
LARGE,XLARGE"

The Artist Image size preference takes a comma-separated list of the preferred Artist Image sizes, in
order of preference. Mobile Client returns the first Artist Image that matches a size in the preference
list. If a size is not in the preference list, it will not be returned.

For more information on using images returned byMobile Client see Image Resizing Best Practice.

You can improve retrieval performance for some operations by retrieving artist images in the back-
ground. For more information, see Improving Retrieval Performance by Using Enriched Content URLs.

Accessing Artist Images

Artist Images are delivered via a result-ready object as a NSData. The raw data can be easily used to
draw an image.

The following code snippet shows how artist images can be retrieved from a result-ready object.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 36 of 66



Confidential Developer's Guide

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
GNImage artistImage = bestResponse.contributorImage;
NSData* artistImageData = artistImage.data;

// Display or store artist image as desired
}

}
@ end

Artist Biographies

Mobile Client can return an Artist Biography with a recognition or search result. Artist Biographies can
be used effectively to enrich the user experience.

Your application must be entitled to retrieve Artist Biographies.

A Mobile Client operation can be configured to include an Artist Biography in its response, via the
GNConfig object provided when the operation is invoked. These parameters are described below.

Parameter Description Default

content.contributor.biography Set to true to enable retrieval of artist biographies false

You can improve retrieval performance for some operations by retrieving artist biographies in the back-
ground. For more information, see Improving Retrieval Performance by Using Enriched Content URLs.

Accessing Artist Biographies

Artist Biographies are delivered via a result-ready object as a collection of String objects, where each
String represents an individual paragraph of the biography.

The following code snippet shows how an artist biography can be retrieved from a result-ready object.

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
NSArray* artistBiography = bestResponse.artistBiography;

© 2000 to present. Gracenote, Inc. All rights reserved. Page 37 of 66



Confidential Developer's Guide

// Display or store artist biography as desired
}

}
@ end

Album Reviews

Mobile Client can return an AlbumReview with a recognition or search result. AlbumReviews can be
used effectively to enrich the user experience.

Your application must be entitled to retrieve AlbumReviews.

A Mobile Client operation can be configured to include AlbumReviews in its response, via the GNCon-
fig object provided when the operation is invoked. These parameters are described below.

Parameter Description Default

content.review Set to true to enable retrieval of album reviews false

You can improve retrieval performance for some operations by retrieving album reviews in the back-
ground. For more information, see Improving Retrieval Performance by Using Enriched Content URLs.

Accessing Album Reviews

AlbumReviews are delivered via a result-ready object as a collection of String objects, where each
String represents an individual paragraph of the review.

The following code snippet shows how an album review can be retrieved from a result-ready object.

// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
NSArray* albumReview     = bestResponse.albumReview;

// Display or store album review as desired
}

}
@ end

Retrieval Methods

Related content can be retrieved from the 2.5.9.8 returned by an audio recognition operation or via a
Gracenote unique albumor track identifier.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 38 of 66



Confidential Developer's Guide

Retrieving Related Content for a Single Best Match

A single best match result returned by an audio recognition operation can contain related content. The
following methods can be used to retreive the respective content:

l GNSearchResponse:coverArt

l GNSearchResponse:contributorImage

l GNSearchResponse:getArtistBiography

l GNSearchResponse:getAlbumReview

The GNConfig object provided to the recognition operation must first be configured to retrieve related
content using the configuration parameters shown above. The following code example illustrates how
to configure the configuration object, initiate a recognition event, and retrieve the related content
from the returned result:

// Set configuration properties
[config setProperty: @"content.coverArt" value: @"1"];
[config setProperty: @"content.contributor.images" value: @"1"];
[config setProperty: @"content.contributor.biography" value: @"1"];
[config setProperty: @"content.review" value: @"1"];
// Define result-ready object to extract related content from recognition
result
@ interface ApplicationSearchResultReady : NSObject <GNSearchResultReady>
{
}
// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestResponse = [result bestResponse];
if (bestResponse != nil)
{

// Extract related content from response
GNCoverArt* coverArt     = bestResponse.coverArt;
NSData*  artistImage     = bestResponse.contributorImage;
NSArray* artistBiography = bestResponse.artistBiography;
NSArray* albumReview     = bestResponse.albumReview;

// Display related content as desired
}

}
@ end
// Use configuration object when invoking a recognition operation
- (void) recognizeFromMic: (GNConfig*) config
{

© 2000 to present. Gracenote, Inc. All rights reserved. Page 39 of 66



Confidential Developer's Guide

// Create result-ready object to receive retrieval result and extract
related content

ApplicationSearchResultReady* searchResultReady = [Appli-
cationSearchResultReady alloc];
// Invoke recognition operation

[GNOperations recognizeMIDStreamFromMic: searchResultReady config: con-
fig];
}

For subsequent operations after an initial identification, retrieving related content from a Gracenote
albumor track identifier is more efficient than repeating the full recognition process. To minimize
response time, extract and store the Gracenote Identifier after the initial recognition operation and use
it for subsequent retrieval operations, as shown in the next section.

Retrieving Related Content by Gracenote Identifier

Gracenote unique album and track identifiers can be obtained from any Gracenote product, enabling
Mobile Client to be easily integrated into a larger music identification system. The following code exam-
ple shows how to obtain a Gracenote Identifier for a specific album and use it to retrieve related con-
tent; the same technique can be used to retrieve related content for a track identifier instead of an
album identifier, by using the methods GNSearchResponse:fetchRelatedContent:forTrackId and GNOp-
erations:fetchByTrackId:config:trackId: instead of GNSearchResponse:fetchRelatedContent:forAlbumId
and GNOperations:fetchByAlbumId:config:albumId:

// Result-ready object to extract related content from recognition result
by album identifier:
// Provide implementation for GNResultReady method
@ implementation ApplicationGetGnIdResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestresponse = [result bestResponse];
if (bestresponse != nil)
{

// Extract album identifier and store for later use
gnAlbumID = bestResponse.albumId;

// Retrieve related content using album identifier
[self fetchRelatedContent: self.config forTrackId: bes-

tresponse.trackId];
}

}
@ end
// Initial recognition request; result will contain a Gracenote album iden-
tifier
// Create result-ready object to receive search result and extract and
store track identifier and related content
ApplicationGetGnIdResultReady* getGnIdResultReady = [Appli-
cationGetGnIdResultReady alloc];

© 2000 to present. Gracenote, Inc. All rights reserved. Page 40 of 66



Confidential Developer's Guide

// Invoke recognition operation
[GNOperations recognizeMIDStreamFromMic: getGnIdResultReady config: con-
fig];
// Later retrieval request using previously stored album identifier
- (void) fetchRelatedContent: config forAlbumId: albumId
{
// Set configuration properties

[config setProperty: @"content.contributor.images" value: @"1"];
[config setProperty: @"content.contributor.biography" value: @"1"];
[config setProperty: @"content.review" value: @"1"];

// Create result-ready object to receive retrieval result
ApplicationSearchResultReady* searchResultReady = [Appli-

cationSearchResultReady alloc];
[GNOperations fetchByAlbumId: searchResultReady config: config trackId:

albumId];
}
// Define result-ready object to extract related content from recognition
result:
// Provide implementation for GNResultReady method
@ implementation ApplicationSearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{
// Get best response from search result

GNSearchResponse* bestresponse = [result bestResponse];
// Extract related content from response

if (bestresponse != nil)
{

NSArray* albumReview     = bestResponse.albumReview;
NSArray* artistBiography = bestResponse.artistBiography;
GNImage*  artistImage     = bestResponse.contributorImage;

}
}

During the retrieval process, Mobile Client sends status updates to notify the application as each of the
stages shown in the figure is reached:

Status flow in related content retrieval by Gracenote Identifier

Track and Album Identifiers can be retrieved from any of Gracenote's products, enabling Mobile Client
to be easily integrated into a larger music identification system.

Retrieving Link Data
When an application is appropriately entitled, Mobile Client returns Link identifiers for all responses pro-
vided in a result-ready Object instance. The identifiers may be sourced from a third party (such as Ama-
zon.com), or theymay be specific to your organization. You can use such Link data, for example, to

© 2000 to present. Gracenote, Inc. All rights reserved. Page 41 of 66



Confidential Developer's Guide

redirect the user to a site (such as Amazon) where they can purchase the matched track, or as a key
into your own data catalog. These examples demonstrate coding this functionality:

// Result-ready object implements GNFingerprintResultReady protocol
@ interface SearchResultReady : NSObject <GNFingerprintResultReady>{
}
@ end
// Provide implementation for GNResultReady method
@ implementation SearchResultReady
- (void) GNResultReady: (GNSearchResult*) result
{

GNSearchResponse* bestresponse = [result bestResponse];
if (response != nil)
{

NSArray linkItems = [response albumLinkData];
if (linkItems != nil)
{

NSEnumeration* e = [linkItems objectEnumerator];
id object;
while (object = [e nextObject])
{

// Use link data as desired
}

}
}

}
@ end

You can tune audio recognition events to prefer results containing Link identifiers from a specific
source, by setting the content.link.preferredSource property of the GNConfig object used when invok-
ing the audio recognition method, as shown here:

// Set the preferred source property to prefer results that contain Link
IDs
// from a specific source
GNConfig* config = [GNConfig init: @"12345678-ABCDEFGHIJKLM-
NOPQRSTUVWXYZ012345"];
[config setProperty: @"content.link.preferredSource" value: @"Amazon"];
[GNOperations recognizeMIDStreamFromMic: searchResultReadyObject config:
config];

Gracenote Web Services returns the best available match containing a Link identifier from that source, if
available. Note, however, that the single best match returned is not necessarily guaranteed to contain
a Link identifier from the preferred source, if none of the available matches contains one from that
source.

While commerce identifiers can be requested, AlbumID does not support the preference of a specific
identifier over the actual Album a song came from. These preferred results can instead be obtained by
using GNOperations.recognizeMIDFileFromFile or GNOperations.recognizeMIDFileFromPcm. See Musi-
cID-File for more information.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 42 of 66



Confidential Developer's Guide

Status Change Updates
When performing an operation, Mobile Client sends status updates to the application via the GNOp-
erationStatusChanged protocol.

To receive status changed updates, the application must create a class that implements a result-ready
protocol and the GNOperationStatusChanged. An instance of the object must be provided when the
operation is invoked.

When an application receives status changed updates, the user can be notified on the progress of the
operation.

For deterministic functions within an operation, the percent completed is also provided. This is cur-
rently only provided for recording audio from the microphone. These examples demonstrate coding
this functionality:

// Result-ready object implements GNSearchResultReady and
// GNOperationStatusChanged protocols
@ interface SearchResultsStatusReady : NSObject <GNSearchResultReady, GNOp-
erationStatusChanged>
{
}
@ end
// Provide implementation for GNOperationStatusChanged method
@ implementation SearchResultsStatusReady
// Method to handle the status changed updates from the operation
- (void) GNStatusChanged: (GNStatus*) status
{

NSString* msg;
if (status.result == RECORDING)
{

msg = [NSString stringWithFormat: @"%@ %d@", status.message, stat-
us.percentDone, @"%"];

}
else
{

msg = status.message;
}

// Display status message to user
}
// Method to handle result returned from operation
- (void) GNResultReady: (GNSearchResult*) result
{
}
@ end
// Create the result-ready object to receive the recognition results then
invoke
// the operation
SearchResultsStatusReady* resultready = [SearchResultsStatusReady alloc];
[GNOperations recognizeMIDStreamFromMic: resultready config: config];

© 2000 to present. Gracenote, Inc. All rights reserved. Page 43 of 66



Confidential Developer's Guide

Canceling an Operation
Mobile Client supports canceling a running operation. To cancel an operation, the application must call
the GNOperations:cancel method with the same result-ready object instance that was provided to the
operation when it was invoked. Mobile Client uses the result-ready object instance to identify which
operation to cancel. These examples demonstrate coding this functionality:

// Create the result-ready object and invoke the operation
SearchResultsStatusReady* resultready = [SearchResultsStatusReady alloc];
[GNOperations recognizeMIDStreamFromMic: resultready config: config];
// Use the result-ready object provided when invoking the operation to can-
cel
// the operation
[GNOperations cancel: resultReady];

When GNOperations:cancel is called, the associated operation is stopped. It is not always possible to
cancel an operation immediately; the operation may need to complete blocking functions before it can
completely cancel. Blocking functions are functions that cannot be interrupted. Some of these func-
tions can also block other operations from continuing.

Important: An operation may not be instantaneously canceled when GNOperations:cancel is called.

Localization and Internationalization
Gracenote provides a global solution and Mobile Client can be configured to deliver metadata that is
specific to a supported region or a supported language. A country or language can be configured by
setting the appropriate GNConfig parameters. The parameters are described below.

Parameter Description

content.country
Specifies the country of the delivered metadata. Default for this is null (as of
version 2.5.8). Prior to this, it was USA

content.lang Specifies the language of the delivered metadata

The specified country and language can affect the delivered metadata in various ways:

1. When a supported country is specified, the genre descriptors for that country are delivered

2. When a supported language is specified, album and track metadata are delivered in that lan-
guage, if available

3. When a supported language is specified, genre, mood, tempo, origin, era, and artist type descrip-
tors are delivered in that language, if available

For a complete list of supported languages see the Mobile Client Reference Guide.

All country codes specified by ISO 3166-1 alpha-3 are supported.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 44 of 66



Confidential Developer's Guide

The iOS Developers Guide also provides information on supporting localization and inter-
nationalization.

Using Mobile Client Debug Logging
Mobile Client can be configured to output useful debugging information to the console. To enable
debugging, set the debugEnabled property to "1", "true", or "True" in a GNConfig object instance, and
provide that instance when invoking an operation, as shown in the example. Note that only operations
that are passed a GNConfig object instance with debugging enabled will generate logging output.

[config setProperty: @"debugEnabled" value: @"1"];

The debug log feature is provided for development only. Production applications cannot have debug
log generation enabled or provide an option to enable it.

During validation, Gracenote ensures debug log generation is not and cannot be enabled by the appli-
cation.

Data Dictionary
This section describes the different data fields returned fromMobile Client. Two different types of
results can be generated byMobile Client: a music search result and a fingerprint creation result. Both
result types are described in the sections below.

Search Result

A Mobile Client search result returns a variety of metadata fields that can be used to enrich the user
experience. The following sections contain a description of each field and the hierarchy in which the
fields are delivered to your application.

GNSearchResult

Contains the result(s) of a search operation.

Field Description Type Accessor Comments

© 2000 to present. Gracenote, Inc. All rights reserved. Page 45 of 66



Confidential Developer's Guide

Responses
Collection of albums that con-
tain tracks that were matched
by the search operation

NSArray responses

Best
Response

Album that contains the track
that is the best match of the
search operation

GNSearchResponse bestResponse

GNSearchResponse

Describes the metadata fields for an album and the track on that album that was matched by the
search operation.

Field Description Type Accessor Comments

AlbumArt-
ist Name

Name of the
album level artist

NSString albumArtist

AlbumArt-
ist Name
Betsumei

Japanese alternate
names and pro-
nunciations for
album level artist
name

NSString
albumArtistBetsumei

AlbumArt-
ist Name
Yomi

Japanese phonetic
representation of
album level artist
name

NSString albumArtistYomi

Album
Genre

Album level genre
descriptors NSArray

albumGenre

Album ID
Gracenote unique
identifier for the
album

NSString albumId

Album
Link Data

Link identifiers
related to the
album

NSArray albumLinkData
albumLinkData can be
nil

© 2000 to present. Gracenote, Inc. All rights reserved. Page 46 of 66



Confidential Developer's Guide

Album
Release
Year

Year the album
was released in

NSString albumReleaseYear

Album
Review

Album review NSArray albumReview
albumReview may or
may not be nil

Album
Title

Title of the album NSString albumTitle

Album
Title Yomi

Japanese phonetic
representation of
Album Title

NSString albumTitleYomi

Album
Track
Count

Number of tracks
on the album

NSInteger albumTrackCount -1 if no track

Artist
Biography

Artist's biography NSArray artistBiography
artistBiographymay or
may not be nil

Artist Era Era descriptors NSArray era

Artist
Image

Image of artist
who contributed
in the album

GNImage contributorImage
contributorImage may
or may not be nil

Artist
Origin

Origin descriptors NSArray origin

Artist
Type

Artist type descrip-
tors

NSArray artistType

Cover Art Album cover art GNCoverArt coverArt

When cover art is not
available, genre art
may be returned
(based on availability)

Track Art-
ist Name Name of the

album artist
NSString artist

Track Art-
ist Name
Betsumei

Japanese alternate
names and pro-
nunciations for Art-
ist name

NSString artistBetsumei

© 2000 to present. Gracenote, Inc. All rights reserved. Page 47 of 66



Confidential Developer's Guide

Track Art-
ist Name
Yomi

Japanese phonetic
representation of
Artist name

NSString artistYomi

Track
Genre

Track genre NSarray trackGenre genre can be nil

Track ID
Gracenote unique
identifer for the
track

NSString trackId
trackId can be nil in the
case of Lyric_search

Track Link
Data

Link identifiers
related to the
track

NSArray trackLinkData
trackLinkData can be
nil

Track
Match
Position

Indicates at what
timeslice within
the song the
audio sample was
matched

NSString songPosition
Unit is in milliseconds;
only applies to Musi-
cID-Stream

Track
Mood

Track level mood
descriptors

NSArray mood

Track
Number

One-based index
of the track on the
album

NSInteger trackNumber -1 if no trackNumber

Track
Tempo

Track level tempo
descriptors

NSArray tempo

Track Title Title of the track NSString trackTitle

Track Title
Yomi

Japanese phonetic
representation of
Track Title

NSString trackTitleYomi

GNAlbumIdSearchResult

Contains the result(s) of an albumId search operation.

Field Description Type Accessor Comments

No Match
Responses

AlbumId results with No_
Match

NSMutableArray noMatchResponses

© 2000 to present. Gracenote, Inc. All rights reserved. Page 48 of 66



Confidential Developer's Guide

Error
Responses

AlbumId results with
GNAlbumIDFileError

NSMutableArray errorResponses

GNAlbumIdSearchResponse

Describes the metadata fields for an album and the track on that album that was matched by the albu-
mId search operation. Inherited fromGNSearchResponse. Contains all GNSearchResponse objects and
fileIndent used in albumId operation per file.

Field Description Type Accessor Comments

GNSearchResponse
All GNSearchResponse
metadata

Inherited from
GNSearchResponse

File Ident File Identifier NSString fileIdent

GNDescriptor

Defines a Gracenote descriptor. The genre, mood, tempo, origin, era, and artist type data delivered by
Mobile Client is referred to as descriptors. This object describes a descriptor by providing its name and
identifier.

Field Description Type Accessor Comments

Descriptor Descriptor name NSString itemData

ID Descriptor identifier NSString itemId

GNAlbumIdFileError

Container class for the errors that can occur in AlbumId operations.

Field Description Type Accessor Comments

Error Message Indicates results with error NSString errMessage

Error Code Error code for file NSString errCode

File Indent File identifier NSString fileIdent

GNLinkData

Holds a collection of Link identifiers and their providers.

Field Description Type Accessor Comments

© 2000 to present. Gracenote, Inc. All rights reserved. Page 49 of 66



Confidential Developer's Guide

Id Actual value from the provider NSString uid

Source
The provider of the Link identifier, such as "Ama-
zon"

NSString source

GNCoverArt

Contains the cover art image for an album.

Field Description Type Accessor Comments

Data Cover art image as a data stream NSData data

MIME
Type

Cover art data type. This can be used to appro-
riately read and render the cover art image.

NSString mimeType

Size
The size of the cover art returned as THUMB,
SMALL, MEDIUM, LARGE or XLARGE. For the size in
pixels see Image Resizing Best Practice.

NSString size

GNImage

Contains the contributor image for an album.

Field Description Type Accessor Comments

Data Contributor image as a data stream. byte[] getData

MIME
Type

Contributor data type. This is used to read and
render the contributor image appropriately.

String getMimeType

Size
The size of the contributor image returned as
THUMB, SMALL, MEDIUM, LARGE or XLARGE. For
the size in pixels see Image Resizing Best Practice.

String getSize

Fingerprint Creation Result

A Mobile Client fingerprint creation result delivers the created fingerprint to your application in a sim-
ple hierarchy described below.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 50 of 66



Confidential Developer's Guide

GNFingerprintResult

Field Description Type Accessor Comments

Fingerprint
Data

Fingerprint generated by
operation. The fingerprint can
be used to recognize the
audio.

NSString fingeprintData

The fingerprint data
can be sent to other
Gracenote products
for other uses.

Considerations
Recognizing Audio from the Microphone

The following practices are recommended when recognizing audio from the microphone:

l Provide clear and concise onscreen instructions on how to record the audio:

l Most failed recognitions are due to incorrect operation by the user.

l Clear and concise instructions help the user correctly operate the application,
resulting in a higher match rate and a better user experience.

l While recording audio from the microphone display a progress indicator:

l When Mobile Client is recording from the microphone, the application can receive
status updates. The status updates indicate what percentage of the recording is
completed.

l The status updates are issued at every tenth percentile of completion, meaning
10%, 20%, 30%, and so on.

l Use this information to display a progress bar (indicator) to notify the user.

l When recording has finished use vibration or a tone (or both) to notify the user.

l Visual only notifications can hamper the user experience because:

l The user may not see the notification if they are holding the handset up to an
audio source.

l The user may pull the device away from an audio source to check if recording has
completed. This may result in a poor quality recording.

l While Web Services is being contacted, display an animation that indicates the
application is performing a function. If the application appears to halt the user

© 2000 to present. Gracenote, Inc. All rights reserved. Page 51 of 66



Confidential Developer's Guide

may believe the application has crashed.

l If no match is found, reiterate the usage instructions and ask the user to try again.

Recognizing Audio from a File using MusicID-File

The following practices are recommended when recognizing audio from a file when using MusicID-File:

l Allow the user to select multiple files for recognition. Submit them concurrently for fastest results.

l Limit the number of stored results and pending recognitions:

l File recognition operations can run concurrently, which allows many requests to
be issued at once.

l Each recognition operation and each returned result requires memory.

l Be careful to limit the number of results stored and pending recognition oper-
ations, to avoid exhausting the device's RAM.

l While Web Services is being contacted, display an animation that indicates the application is per-
forming a function. If the application appears to halt, the user may believe the application has
crashed.

Image Resizing Best Practice

Summary

This topic provides guidance on image implementation by discussing Gracenote's use of predefined
square dimensions to accommodate variances among image orientations.

Description

Gracenote provides a variety of images as part of our enhanced content offerings. For Mobile Client,
these include Cover Art, Artist, and Genre images.

To accommodate variation in the images’ dimensions, we resize the images to fit within standardized
image dimensions a predefined-square so that the longest dimension equals the dimensions of one
side of the square, while the other dimension is somewhat short of the full square. The following
images show how an image is resized within the predefined square. (Note that the outline for the
square is used here only to demonstrate layout. We do not recommend displaying this outline on your
application’s user interface.)

Predefined Square

© 2000 to present. Gracenote, Inc. All rights reserved. Page 52 of 66



Confidential Developer's Guide

Horizontally-oriented Image Examples

Vertically-oriented Image Examples

© 2000 to present. Gracenote, Inc. All rights reserved. Page 53 of 66



Confidential Developer's Guide

The following sections discuss the differences between music images and give the standard image
dimensions for each image type.

Music Cover Art

While CD cover art is often represented by a square, it is more accurately a bit wider than it is tall. The
dimensions of these cover images vary from album to album. Some CD packages, such as a box set,
might even be a radically different shape.

Gracenote Standard Image Dimensions: Music Cover Art

Size W x H (Pixels)

Thumbnail 75 x 75

Small 170 x 170

Medium 450 x 450

Large 720 x 720

Extra Large 1080 x 1080

Artist Images

Like music Cover Art, Artist images are seldom square, and are generally more obviously rectangular
than music cover art. Because music artists range from solo performers to bands with manymembers,
the images may either be wide or tall.

Gracenote Standard Image Dimensions: Artist Images

Size W x H (Pixels)

Thumbnail 75 x 75

Small 170 x 170

Medium 450 x 450

Large 720 x 720

Extra Large 1080 x 1080

© 2000 to present. Gracenote, Inc. All rights reserved. Page 54 of 66



Confidential Developer's Guide

Image Implementation Recommendation

For all images: We recommend that the image be centered horizontally and vertically within the prede-
fined square dimensions, and that the square be transparent so that the background shows through.
This results in a consistent presentation despite variation in the image dimensions.

Searching by Text, Lyric Fragment, and Fingerprint

The following practices are recommended when searching by text, lyric fragment, and fingerprint.

l Allow user to input as much information as possible:

l Text search allows artist name, album title and track title to be entered. Allow the
user to input all of these fields and pass them to Gracenote for the search

l Lyric Fragment search can be augmented with the artist name. Allow the user to
provide the artist name and ensure it is passed to Gracenote for the search.

l While Web Services is being contacted display an animation that indicates the application is per-
forming a function. If the application appears to halt the user may believe the application has
crashed.

Canceling

The following practices are recommended when canceling an operation.

l After calling cancel on an operation ignore all status updates received for that operation.

l The operation may run and, possibly, issue status updates until the blocking func-
tions are completed. In this situation, the status updates should be ignored.

l Display the word Canceling to the user while waiting for a canceled operation to complete block-
ing functions.

l Consider canceling while recording from the microphone:

l A microphone recognition operation is invoked by the user.

l The application starts recording audio and the user invokes cancel.

l Recording may take a one or two seconds to stop.

l Display Canceling until the canceled operation has completed the recording func-
tion

l While canceling, the user should be prevented from invoking a new microphone
recognition operation

© 2000 to present. Gracenote, Inc. All rights reserved. Page 55 of 66



Confidential Developer's Guide

Retry Facility

OccasionallyMobile Phone Handsets are unable to successfully create a network connection. This could
be because the Mobile Phone Handset is not within range of a suitable network or the network is tem-
porarily unavailable due to device or network limitations.

It is recommended that you implement a retry facility that retries the user request several times before
reporting to the user that the request could not be fulfilled. A retry facility allows temporary network
unavailability to go unnoticed by the user.

Resource Management

Mobile Client is a compact library that provides easy access to rich content that can enhance the user's
experience. Its compact size and simplicity are not indicative of the vast amount of content it can
quickly deliver.

It is important that your application is prepared to correctly manage requests for content and is able to
handle the content when it is delivered.

Storing Content in RAM

The richness of the content delivered byMobile Client and the speed of delivery can easily result in meg-
abytes of data being transferred to the device. This can quickly consume the RAM resources available
to applications, especially those operating in a resource-limited environment.

Applications must consider carefully how data is stored and how long it is stored.

If your application performs a single track recognition and then displays the result, the RAM resources
are unlikely to be exhausted. But if the application performs thousands of track recognitions and
intends to display all the returned data, then RAM usage will become an issue.

Applications should limit the amount of data they attempt to store in RAM. For example, an application
that recognizes a user’s entire song collection could limit the number of recognition results using pag-
ing. The application can recognize a small number of songs, display the results for the user to peruse,
and then when prompted by the user, recognize the next set of songs. For more information, see
Result Paging.

Applications should also consider what needs to be stored in RAM. It might be acceptable for your
application to store data returned fromMobile Client directly into persistent memory, only using RAM
to display small subsets of the data to the user.

The schemes used to manage RAM resources will vary greatly with use case and implementation. It is
important that dealing correctly with data delivered fromMobile Client be a major consideration for the
development team early in the design phase.

Request Flow Control

Mobile Client is capable of processing multiple requests concurrently. This facility allows an application
to obtain results faster than issuing one query at a time.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 56 of 66



Confidential Developer's Guide

There is no limit to the number of requests that can be issued; Mobile Client queues the requests until
they can be processed. Each request, whether it is queued or being processed, consumes RAM. If
requests are issued faster than they can be processed, the application may run out of memory.

To avoid this situation an application should implement flow control for issuing requests. The number
of requests pending (queued or being processed) should be capped at a maximum. It is recommended
that you limit the number of pending requests to five.

Applications should issue requests until the number of pending requests reaches the predefined max-
imum. No further requests should be issued until the number of pending requests drops below the
predefined maximum.

In addition, all layers in the application stack should implement request flow control, or be capable of
rejecting requests from upper layers.

For example, if you are developing a middleware layer that interfaces upper layer applications with
Mobile Client, your middleware layer should implement flow control. If the number of pending requests
rises to the predefined maximum, the layer should reject any new requests until the number of pending
requests drops below the predefined maximum. Sophisticated applications will also provide noti-
fications to upper layers when requests can and can’t be accepted (similar to a modem’s XON and XOFF
commands).

Result Paging

In addition to request flow control, an application with user navigable results should optimally use
results paging to limit the number of requests issued and results stored. Paging can also be used to
ensure the application is responsive.

Results paging can be effective in applications that can display a large number of results in sections,
such as a scrolling display, or paged results where Next and Previous controls are used for result navi-
gation.

It is recommended that such applications store the result for three (3) pages: the current page, the pre-
vious page and the next page. As the user navigates through the pages, the results in the current, pre-
vious, and next pages change. As they change the application can delete stored results and retrieve
new results as they are needed to fill the current, previous, and next pages.

Using this scheme the previous and next pages are pre-retrieved, making the application responsive as
the user navigates.

Limiting the total number of results pre-retrieved also limits the amount of content that is stored in
RAM. Gracenote recommends using five results per page. If the user is limited to moving one results
page at a time, only one page of results needs to be retrieved with each move. This limits the number of
concurrent queries to five, as recommended in Request Flow Control.

Error Handling

When an operation cannot be completed, Mobile Client generates the appropriate error information
and returns it via a result-ready Object. Your application should handle the error conditions and

© 2000 to present. Gracenote, Inc. All rights reserved. Page 57 of 66



Confidential Developer's Guide

proceed accordingly.

In the event of an error, Mobile Client returns an error code and an error message. The error code can
be used by your application to react to specific error conditions. The error message contains error con-
dition information, which provides additional clues to the error's cause. Error messages are not suitable
for display to the end-user, as they contain technical information and are English-language specific;
they are also subject to change without warning. The error message displayed to the user should be
derived from the error code.

Sophisticated implementations may provide an error notification mechanism that allows errors to be
investigated in deployed applications. For example, your application can send error information to a
support server or prompt the user to send error information to an email address. Once notification of
an error has been received, technical personnel can investigate the error accordingly.

GNResult.FPXFailure and GNResult.FPXFingerprintingFailure

These errors are generated if Mobile Client cannot generate a fingerprint from an audio sample. Your
application should indicate that the audio cannot be recognized due to an invalid or unsupported for-
mat.

GNResult.FPXRecordingFailure

This error is generated when Mobile Client cannot obtain the microphone for recording an audio sam-
ple. Your application should indicate to the user that the microphone is required to record music for
identification and to try again after closing any applications that may be using the microphone.

GNResult.WSRegistrationInvalidClientIdFailure

This error is generated when the Client ID provided to Mobile Client is not successfully authenticated
byWeb Services. Your application should indicate to the user that the music identification service is
unavailable.

GNResult.WSNetworkFailure

This error is generated when the device does not have a valid network connection; for example, a
Mobile Phone Handset may not be within range of a suitable network. Your application should indicate
that a working Internet connection is required and to try again when the connection is restored.

GNResult.WSFailure

This error is generated when Gracenote Web Services cannot fulfill a request from the Mobile Client.
The accompanying error message is a description of the error condition as provided by Gracenote Web
Services.

Your application should indicate that the user's request could not be fulfilled at the present time. Do
not display the error message to the user, as it contains technical information that is generally not com-

© 2000 to present. Gracenote, Inc. All rights reserved. Page 58 of 66



Confidential Developer's Guide

prehensible to a user. Also, do not attempt to parse the message, as messages returned fromWeb Serv-
ices change regularly without warning.

If your application provides an error notification mechanism, forward the error message to your tech-
nical personnel.

GNResult.WSInvalidDataFormatError

This error is generated when Mobile Client cannot parse the response received fromGracenote Web
Services. This canoccur due to corruption of the results data. Your application should indicate to the
user that their request failed and offer to retry the query.

GNResult.UnhandledError

This error code is reported when an unexpected error occurs that is outside the normal operation of
Mobile Client and outside the scope of Mobile Client's error capture capabilities. The possible causes of
such an error are very broad and include (but are not limited to) platform errors, third-party library
errors, hardware errors, and other similar types of errors.

Your application should indicate that an error occurred and that the current request could not be com-
pleted.

Limiting Query Time

Mobile Client imposes time limits (timeouts) for the amount of time a device takes to create an Internet
connection or fulfill an Internet request. These times can vary depending on:

l The device internal resources (memory, MIPS, and so on.)

l The capacity of the Internet connection (the amount of data that can be transported by the air
interface)

l The availability of the Internet connection (devices maymove in and out of signal range or the net-
work may become congested)

The timeouts chosen byMobile Client are based on the most limited device with the most limited Inter-
net connection capacity and availability. Consequently, for high end devices, these timeouts may be con-
sidered too long.

It is recommended that devices impose their own query timeout mechanism that cancels a query when
it exceeds an application specified time limit. This allows the application the flexibility to limit query
lengths in accordance with the capabilities of the host devices.

When initiating a query to the Gracenote database via Mobile Client, start an application timer with an
application specified timeout. If the timer expires before the query completes, cancel the query using
the GNOperations.cancel() method.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 59 of 66



Confidential Developer's Guide

When calling AlbumID operations, do not set a timer. AlbumID directory operations can take a long
time, depending on many factors, such as the number of tracks in the directory, processor speed, net-
work speed, type, and other factors.

Reducing the Amount of Data Downloaded

By default Mobile Client is configured to return Cover Art with a single match result, such as those
returned for MusicID-Stream and MusicID-File operations.

You can decrease the amount of data your application downloads by configuring Mobile Client to not
request Cover Art. See Cover Art for more details.

Improving Retrieval Performance by Using Enriched Content URLs

There may be cases when you wish to retrieve metadata, descriptors, or external identifiers as quickly as
possible, while lazy-loading enriched content such as cover art in the background. To achieve this,
Mobile Client features a set of APIs that allows you to extract the URL pointers to the enriched content,
giving you greater control over when you load the additional content. Mobile Client provides the fol-
lowing APIs, each of which retrieves a different type of enriched content (cover art, artist images, album
reviews and artist biographies):

l GNSearchResponse.coverArt().url()

l GNSearchResponse.contributorImage().url()

l GNSearchResponse.albumReviewUrl()

l GNSearchResponse.artistBiographyUrl()

Each API returns a string containing the URL for the enriched content. The returned value will be nil if
no enriched content is available. In the case of cover art, if there is no cover art available, the URL for
genre art may be returned (provided the property for genre art is set).

Enriched content URLs are temporary; therefore, the application must be configured to handle expired
URLs. Gracenote currently supports content URLs for a lifespan of one hour, but this may be subject to
change.

The following code examples show how to retrieve the enriched content URLs:

// Retrieve cover art URL
GNCoverArt *coverArt = response.coverArt;
if (coverArt !=nil) {

NSLog(@"%@",coverArt.url);
} else{

NSLog(@"CoverArt is nil");
}

// Retrieve artist image URL
GNImage *contributorGNImage = response.contributorImage;
if (contributorGNImage!=nil) {

© 2000 to present. Gracenote, Inc. All rights reserved. Page 60 of 66



Confidential Developer's Guide

NSLog(@"%@",contributorGNImage.url);
}else {

NSLog(@"ContributorImage is nil");
}

// Retrieve artist biography URL
NSString *artistBiographyUrl = response.artistBiographyUrl;
// Retrieve album review URL
NSString *albumReviewUrl = response.albumReviewUrl;

Error Handling

When the application accesses the URLs, it should handle HTTP errors gracefully. The following table
lists the types of HTTP errors that might occur and the corresponding action to take:

Error Action

HTTP 500
error

Retry fetching the URL once.

HTTP 412
error (Pre-
condition
failed)

The URL has expired. The application should request a new URL from the
Mobile Client SDK, using GNSearchResponse.getTrackId() to get the Gracenote
Identifier. The application should then use GNOperations.fetchByTrackID()
before fetching the URL.

HTTP 4xx
error (other 
400-level
errors)

Handle as if the URL has expired: request a new URL and try fetching the asset
again. If that fails, the application should log an error and not attempt further
retries

AlbumID Operations

As a best practice, the application should retrieve the URLs for tracks separately fromGNSearch-
Response after making an AlbumID request. The application should optimize and retrieve the cover art,
artist image, album review, and artist biography URLs (and images and data) for one track in the album
and not for each track.

Glossary

Link Data

When query results are returned by Gracenote, they can contain Link data that
directly pertains to the result it is embedded in. A single piece of Link data con-
sists of an identifier (Integer) and a source (String). The source is the provider of
the identifier, such as Amazon.com. The identifier is a unique key into the pro-
vider's catalog that can be used to present the user with additional content or
services. A single result can contain multiple pieces of Link data frommultiple
providers.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 61 of 66



Confidential Developer's Guide

Lyric Frag-
ment

A segment of lyrics from a track.

PCM (Pulse
Coded Mod-
ulation)

Pulse Coded Modulation is the process of converting an analog in a sequence of
digital numbers. The accuracy of conversion is directly affected by the sampling
frequency and the bit-depth. The sampling frequency defines how often the cur-
rent level of the audio signal is read and converted to a digital number. The bit-
depth defines the size of the digital number. The higher the frequency and bit-
depth, the more accurate the conversion.

PCM Audio PCM data generated from an audio signal.

Result
Ready
Object

An object that implements a Result Ready Protocol is a Result Ready Object. An
instance of a Result Ready Object must be provided when invoking a Mobile
Client operation so the operation can deliver results to the application.

Result
Ready Pro-
tocol

Mobile Client defines Objective-C protocols that allow Mobile Client operations
to deliver results to the application. These protocols are known as Result Ready
Protocols.

Single Best
Match

Certain audio recognition products provided byMobile Client return a single
result; the single best match. The single best match is determined byWeb Serv-
ices, based on criteria specific to the application. This criteria can be refined by
the application.

Troubleshooting
Sample Application Does Not Start

Problem

When running the Sample Application it does start or hangs with a blank black screen.

Solution

Ensure your Client ID is correctly provided to the GNConfig init method in the viewDidLoad method in
GN_Music_SDK_iOSViewController.m.

Invalid Client Identifier Exception

Problem

When calling GNConfig.init, an exception displays with the following message:

invalid clientId

Solution

Ensure that your Client ID is correctly provided to GNConfig.init in the correct form, which is:

© 2000 to present. Gracenote, Inc. All rights reserved. Page 62 of 66



Confidential Developer's Guide

<Client ID>-<Client ID Tag>

IO Exception While Connecting to Web Services

Problem

The following error occurs when performing a query:

[Mobile:5000] webservices http status: 500: IO exception while connecting
to webservices

Ensure that your device and application have a working connection with the Internet.

This error can be seen due to loss of connectivity with the Internet or Internet traffic congestion on the
handset.

Advanced Implementations
User History

The Mobile Client Sample Application includes a user history feature. It stores the results of certain
operations and allows the user to view them. When viewed, the history record displays the recognized
music, including Cover Art and the location of the user when the operation occurred.

The feature uses a local SQLite database to store the user history information.

Data Model

A simple data model is used to store the data as shown below.

Mobile Client Sample Application User History Database Data Model

To simplify interactions with the database, the implementation uses NSManagedObjectContext.
NSManagedObjectContext presents an interface to the underlying SQLite database via objects. An
object-based interface is easy to create, edit, and recall. Although the Mobile Client Sample Application
uses SQLite, NSManagedObjectContext can be used to provide an object interface to various types of
persistent storage.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 63 of 66



Confidential Developer's Guide

NSManagedObjectContext allows the database object model to be completely implemented in classes.
In this case the data model is implemented in:

l History.m& h

l Metadata.m& h

l CoverArt.m& h

Adding Entries

When results for an appropriate operation are received, an entry is added to the database. Only results
from the following operations are stored:

l Recognizing music from the microphone

l Recognizing music from a PCM sample

l Searching by fingerprint

The process of adding an entry to the database is included in the base search operation class Search-
ByOperation. This allows it to be invoked in the thread that calls GNResultReady for any of the oper-
ations mentioned above. Before adding an entry, a check is made to ensure the database exists, and if
it doesn’t, it is created.

Each record in the database contains a unique ID. The ID is generated by incrementing the ID of the
last entry added to the database. IDs are later used by the mechanism that prunes the database, keep-
ing it within a predetermined size.

A single synchronized method is used to add an entry to the database. Synchronization is essential to
guarantee the integrity of the mechanism used to generate unique IDs and the procedure used to
create a database if it doesn’t already exist.

Limiting Database Size

The size of the database cannot be allowed to grow indefinitely. After adding an entry to the database,
its size is checked to determine if it exceeds a predefined limit of 1000 entries. If there are more than
1000 entries, the oldest entries in the database are deleted, bringing the size back to the prede-
termined limit.

Recalling Entries

The Mobile Client Sample Application exports a mutable copy of the entries in the database in an array.
The data contained within the export can then be used to populate a UI that allows the user to navi-
gate the entries. For large databases, a paging mechanism can be used to reduce the number of
entries exported into memory at any one time.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 64 of 66



Confidential Developer's Guide

UI Best Practices Using MusicID-Stream

Gracenote periodically conducts analysis on its MusicID-Stream product to evaluate its usage and deter-
mine if there are ways we can make it even better. Part of this analysis is determining why some Musi-
cID-Stream recognition queries do not find a match.

Consistently Gracenote finds that the majority of failing queries contain an audio sample of silence, talk-
ing, humming, singing, whistling or live music. These queries fail because the Gracenote MusicID-
Stream service can onlymatch commercially released music.

Such queries are shown to usually originate from applications that do not provide good end user
instructions on how to correctly use the MusicID-Stream service. Therefore Gracenote recommends
that application developers consider incorporating end user instructions into their applications from
the beginning of the design phase. This section describes the Gracenote recommendations for instruct-
ing end users on how to use the MusicID-Stream service in order to maximize recognition rates and
have a more satisfied user base.

This section is specifically targeted to applications running on a user's cellular handset, tablet com-
puter, or similar portable device, although end user instructions should be considered for all appli-
cations using MusicID-Stream. Not all recommendations listed here are feasible for every application.
Consider them options for improving your application and the experience of your end users.

Clear and Accessible

All instructions provided to the user should be easy to understand and accessible at any time. For exam-
ple:

l Use pictures instead of text

l Provide a section in the device user manual (where applicable)

l Provide a help section within the application

l Include interactive instructions embedded within the flow of the application. For example, prompt
the user to hold the device to the audio source.

Rotating Help Message upon Failed Recognition

When a recognition attempt fails, display a help message with a hint or tip on how to best use the Musi-
cID-Stream service; a concise, useful tip can persuade a user to try again. Have a selection of help mes-
sages available; show one per failed recognition attempt but rotate which message is displayed.

Allow the User to Provide Feedback

When a recognition attempt fails, allow the user to submit a hint with information about what they are
looking for. Based on the response, the application could return a targeted help message about the
correct use of MusicID-Stream.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 65 of 66



Confidential Developer's Guide

Audio Recording Animation

While the device is recording an audio sample, display a simple image or animation that explains how to
correctly use MusicID-Stream.

Audio Recording Progress Indicator or Countdown

Use a progress bar or countdown to indicate how long the application will be recording. The user can
use this information to assist in collecting an audio sample that can be successfully recognized.

Audio Recording Completed Cues

Some failing MusicID-Stream recognitions are caused by insufficient or incomplete recording of the
song. To assist the user in assessing if recording is complete, visual, audible and tangible cues can be
used, such as:

l Display a message (only useful if the user is looking at the display)

l Sound a tone or tune (not useful in load environments)

l Vibrate the handset (always useful)

Use Street Sign-like Images

Street sign images are universal and easily recognizable. These can be used to provide clear instruc-
tions about where and how to use and not to use the MusicID-Stream service.

Demo Animation

Provide a small, simple animation that communicates how to use the application. Make this animation
accessible at all times from the Help section.

If requested (and if the application is so entitled), Mobile Client can also provide cover art and Link iden-
tifiers with the recognition results; see Retrieving Cover Art and Retrieving Link Data, below, for further
information.

© 2000 to present. Gracenote, Inc. All rights reserved. Page 66 of 66


	Getting Started with the iOS Sample Application
	Introduction
	Preparing Your iPhone Development Environment
	Installing the iOS SDK
	Running the Sample Application
	Troubleshooting
	Error Message: No architectures to compile for (ARCHS-i386 ppc, VALID_ARCHS=a...
	Error Message: Base SDK Missing in the Overview Dropdown.
	Error Message: CodeSign error: code signing is required for product type 'App...


	Mobile Client iOS Implementation Guide
	Overview
	Deployment
	Creating an iPhone Development Environment
	Using the Sample Application
	Migrating to this Release
	Deprecated, Renamed, and Changed Default GNConfig Parameters
	Deprecated Names
	Case Change Only
	Changed Default Values

	Deprecated GNS
	Deprecated GNSearchResponse Properties



	Technical Requirements
	Framework Size
	Apple Framework dependencies
	Xcode Build Settings
	Linker Flags

	Configuration and Authentication
	Operations
	Invoking Operations
	Receiving Results

	Audio Recognition
	MusicID-Stream
	GNOperations.recognizeMIDStreamFromMic
	GNOperations.recognizeMIDStreamFromPcm
	Audio Sessions and Audio Categories

	MusicID-File
	GNOperations.recognizeMIDFileFromFile
	GNOperations.recognizeMIDFileFromPcm

	AlbumID
	Calling AlbumID Operations Serially
	GNOperations.albumIdFromMPMediaItemCollection:config:collection
	GNOperations.albumIdDirectory:config:directoryPath
	GNOperations.albumIdFile:config:filePaths
	GNOperations.albumIdList:config:list
	AlbumID Configuration
	AlbumID Query Load
	AlbumID Query Load Example


	Single Best Match and Multiple Matches

	Fingerprints
	Generating a Fingerprint
	Searching by Fingerprint

	Text Search
	Lyric Fragment Search
	Retrieving Related Content
	Genre
	Genre Levels
	Genre Localization
	Accessing Genres

	Mood
	Mood Levels
	Mood Localization
	Accessing Moods

	Tempo
	Tempo Levels
	Tempo Localization
	Accessing Tempo Data

	Origin, Era, and Artist Type
	Origin, Era, and Artist Type Levels
	Origin, Era, and Artist Type Localization
	Accessing Origin, Era, and Artist Type Data

	Retrieving Cover Art
	Genre Cover Art
	Accessing Cover Art

	Artist Images
	Accessing Artist Images

	Artist Biographies
	Accessing Artist Biographies

	Album Reviews
	Accessing Album Reviews

	Retrieval Methods
	Retrieving Related Content for a Single Best Match
	Retrieving Related Content by Gracenote Identifier


	Retrieving Link Data
	Status Change Updates
	Canceling an Operation
	Localization and Internationalization
	Using Mobile Client Debug Logging
	Data Dictionary
	Search Result
	GNSearchResult
	GNSearchResponse
	GNAlbumIdSearchResult
	GNAlbumIdSearchResponse
	GNDescriptor
	GNAlbumIdFileError
	GNLinkData
	GNCoverArt
	GNImage

	Fingerprint Creation Result
	GNFingerprintResult


	Considerations
	Recognizing Audio from the Microphone
	Recognizing Audio from a File using MusicID-File
	Image Resizing Best Practice
	Searching by Text, Lyric Fragment, and Fingerprint
	Canceling
	Retry Facility
	Resource Management
	Storing Content in RAM
	Request Flow Control
	Result Paging

	Error Handling
	GNResult.FPXFailure and GNResult.FPXFingerprintingFailure
	GNResult.FPXRecordingFailure
	GNResult.WSRegistrationInvalidClientIdFailure
	GNResult.WSNetworkFailure
	GNResult.WSFailure
	GNResult.WSInvalidDataFormatError
	GNResult.UnhandledError

	Limiting Query Time
	Reducing the Amount of Data Downloaded
	Improving Retrieval Performance by Using Enriched Content URLs
	Error Handling
	AlbumID Operations


	Glossary
	Troubleshooting
	Sample Application Does Not Start
	Invalid Client Identifier Exception
	IO Exception While Connecting to Web Services

	Advanced Implementations
	User History
	Data Model
	Adding Entries
	Limiting Database Size
	Recalling Entries

	UI Best Practices Using MusicID-Stream
	Clear and Accessible
	Rotating Help Message upon Failed Recognition
	Allow the User to Provide Feedback
	Audio Recording Animation
	Audio Recording Progress Indicator or Countdown
	Audio Recording Completed Cues
	Use Street Sign-like Images
	Demo Animation




