
As I write this, spring appears to have finally arrived here in New England – about a month and  
a half later than the calendar says it should have. As much as I love warm spring weather, though,  
it means that I now have to deal with my lawn again. I know that many people actually enjoy working 
on the lawn, but as far as I’m concerned, the greatest advance in lawn-care technology happened 
last year when my son became old enough to drive the lawn mower. If you’ve ever seen a 13-year-
old boy driving a lawn tractor, you’ll understand my characterizing him as “constrained-random” 
when it comes to getting the lawn cut. I handle the “directed testing” by taking care of the edging  
and hard-to-reach spots, and together we manage to get the lawn done in considerably less time 
than it used to take me alone.

Of course, cutting the lawn isn’t the only problem. We also 
have a rather healthy crop of dandelions this year that have 
to be pulled. Just like bugs in a design, they’ll spread if you 
don’t get them. Believe it or not, I actually found a tool at 
the hardware store specifically for pulling dandelions, so the 
other evening I went on a “search and destroy” mission to 
pull up all the dandelions on my lawn. Different classes of 
bugs require different tools, you see. 

Our first article this month came out of a discussion I had 
with a colleague at DVCon. He was looking for some ideas 
on how to justify an investment in “methodology” to his 
management team who, of course, were not as steeped in 
these ideas as many of us are. The resulting questions and 
answers will hopefully serve to remind all of us of the “First 
Principles” behind the technologies, techniques and tools 
that we’ve come to rely on to verify our ever more complex 
designs.

We next introduce you to the Online UVM/OVM Methodology 
Cookbook, a new online resource from our Verification 
Academy. The biggest problem with methodology textbooks 
is that they often become out of date as soon as they are 
published. We published online to mitigate that risk and 
commit to update the Cookbook as the Universal Verification Methodology (UVM) from Accellera 
evolves. Evolution is inevitable as users and vendors explore features in UVM, and the Cookbook 
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will be a great way for you to keep informed. This particular 
article is the overview page for the new UVM register 
modeling facility. In it, you’ll see a high-level explanation 
of the functionality along with links to other more in-depth 
discussions of specific pieces of the package, a format used 
throughout the Cookbook. Registered users will also be 
able to provide feedback and updates to the articles, which 
we’ll review and pass along as necessary. 

Our next article is the conclusion of Hans van der Schoot’s 
“A Methodology for Hardware-Assisted Acceleration of 
OVM and UVM Testbenches,” which we started in the 
previous issue. Part two takes us through the mechanics 
of implementing the transaction-level interface between 
simulation and emulation. You’ll be impressed by the 
results that our users have seen in adopting this powerful 
combination of technologies.

With the recent announcement of our Questa Ultra plat-
form, we continue to enhance our Intelligent Testbench 
Automation (Questa InFact) capability. In “Combining 
Algebraic Constraints with Graph-Based Intelligent 
Testbench Automation”, you’ll see how the addition of 
algebraic constraints enhances the Questa InFact stimulus 
generation by simplifying the stimulus definition. The 
new import feature also allows Questa InFact to react 
to the current state of the design and/or testbench when 
producing a new stimulus item. Again, you’ll see some 
rather impressive results from actual users of this exciting 
new technology.

In “Data Management: Is There Such Thing as an 
Optimized Unified Coverage Database?” my colleagues 
Darron May and Gabriel Chidolue show yet another 
example of Mentor’s leadership in both technology and 
standardization. The article provides an overview of the 
Unified Coverage Database (UCDB), which provides a 
platform for the collection and analysis of coverage data 
from multiple tools and verification engines. I think you’ll  
see why the UCDB was chosen by Accellera as the 
basis for the upcoming Unified Coverage Interoperability 
Standard (UCIS).

We have four articles in our “Partners’ Corner” this issue. 
The first, “A Unified Verification Flow Using Assertion 
Synthesis Technology”, written in conjunction with our 
friends at NextOp, shows how their Bugscope assertion 
synthesis tool can be integrated into a unified verification 
flow with Questa and Veloce. In “Benchmarking Functional 
Verification”, our friends at Test and Verification Solutions 
expand on the June 2009 article by Harry Foster and 
Mike Warner to introduce their new Functional Verification 
Capability Maturity Model, which helps you measure 
the maturity of your verification process and provides a 
framework for planning improvements. Putting standards 
into practice, our colleagues at HDL Design House next 
share with us their experience in creating “UVM-Based 
SystemVerilog Testbenches for VITAL Models”. Find out 
the “four Cs” of reusability and how they’ve used UVM 
to create a family of testbenches for VITAL models while 
minimizing the amount of code they needed to write. We 
round out the Partners’ Corner with “Efficient Failure Triage 
with Automated Debug: a Case Study” from our partners at 
Vennsa Technologies. The article shows you how Vennsa’s 
OnPoint tools can be used with Questa to automate the 
identification of error sources, whether there are multiple 
failures from the same source or multiple sources for a 
given failure.

We close this issue with a special treat. We are reprinting a 
copy of “Are Macros in OVM & UVM Evil?—A Cost-Benefit 
Analysis”, by my friend and colleague Adam Erickson. This 
paper won the Best Paper award at DVCon back in March, 
and we wanted to make sure that you saw it. Without giving 
away the ending, the answer is “yes.” You’ll find a great 
explanation of why, and which macros are okay to use.

I hope you’ll all get a chance to stop by the Mentor booth at 
DAC to say “hi.” I’ll be happy to take any lawn care tips you 
might have, too!

 
Respectfully submitted, 
Tom Fitzpatrick 
Editor, Verification Horizons
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Now you don’t have to wait for the  
next printed issue to get the latest.

Hear from the Verification 
Horizons Team every week at 
VerificationHorizonsBlog.com
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Many of us are so used to the idea of “verification 
methodology,” including constrained random and functional 
coverage, that we sometimes lose sight of the fact that there 
is still a large section of the industry to whom these are new 
concepts. Every once in a while, it’s a good idea to go back 
to “first principles” and understand how we got where we 
are and why things like the OVM and UVM are so popular. 
Both authors have found ourselves in this situation of trying 
to explain these ideas to colleagues and we thought it might 
be helpful to document some of the discussions we’ve had. 
If you’re new to the idea of object-oriented testbenches in 
SystemVerilog and maybe are wondering what all the fuss 
about UVM at shows like DAC and DVCon is all about, or 
if you’re getting ready to take that plunge, we think these 
ideas might help you “begin with the end in mind.” If you’re 
an “expert” at this stuff, we hope that this dialog will help 
you take a step back and appreciate how far we’ve come 
as an industry and remember not to get too hung up on the 
whiz-bang features of a methodology but to keep in mind 
the ultimate goal, which is to make sure that our chips are 
going to work properly.

For discussion purposes, we will refer to “Design 
Verification” (DV) as the process by which an ASIC or 
FPGA is checked to make sure the design is accurate and 
correct. It involves several techniques that depend on the 
complexity of the design and its intended application. For 
example, if you were interested in verifying a graphics 
processor for video game systems its DV would be 
different than a design for a safety system of an aircraft. 
These techniques include but are not limited to functional 
verification, formal verification, formal equivalence and 
emulation. This paper will focus on functional verification 
but there is a lot of crossover of skills for each of these 
techniques.

WHAT IS FUNCTIONAL VERIFICATION?
Functional verification is testing a design in a virtual 
environment crafted by a DV engineer utilizing a verification 
methodology such as Universal Verification Methodology 
(UVM). This is done by driving the various inputs to a 
design through simulation and checking to make sure the 
outputs are correct. These inputs can be various standard  
 

or proprietary buses and/or discrete signals to the design. 
The virtual verification environment is made up of various 
components, which will be defined later in the paper. [note: 
The DV engineer is trying to create a model of the “real 
world” in which the chip will operate.]

These designs can have 1000s of inputs, which would be 
impossible to test adequately without the use of various 
levels of abstraction. This allows a DV engineer to write 
tests at a high level of abstraction but still be able to drive 
the design. To give a real world example, say you need to 
move a house. At the top level of abstraction, you need to 
move the contents of the house; this is similar to moving a 
large piece of data from one memory to another.  As you 
move down the levels of abstraction, you need to move 
a pantry; which for a design is like a transaction on the 
memory. To the final layer of abstraction, the jar of peanuts 
you need to move, which are the individual signals on 
whichever memory bus you are using.  All you really would 
like to worry about is that the house was moved.  But the 
reality is that part of move is the jar of peanuts.

HOW DO WE TEST EVERYTHING?
These designs can be massive, encompassing many 
different functions and paths. There is no practical way to 
test every permutation of all states of a large design. That is 
technically true, but we can test relevancy and sufficiently 
representative large parts of it. A DV engineer uses a 
technique called Constrained Random Verification (CRV) 
which stresses the design in the most comprehensive 
and efficient manner. This consists of constrained random 
stimulus, self-checking testbenches, and functional 
coverage. 

Constrained random stimulus ensures that the stimulus 
is meaningful. The constraints are the key, otherwise 
we just have random stimulus that may or may not be 
representative of real-world stimulus. The design can be 
stressed more quickly and the randomness can create 
corner cases that a human verifier might miss. Since it is 
random, the test can be run multiple times and create  
different stimulus each time. This is controlled by a seed fed 
into the tool which, along with the constraints, provides  
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a way to produce near infinite sets of valid stimulus. 
Say you want to check and make sure that every part of 
the house’s roof is waterproof. You could methodically 
use an eyedropper on every shingle, which would take 
a prohibitively long time. Wouldn’t it be better to use a 
sprinkler on it and randomly hit most of the locations and 
then use the eyedropper on parts that were missed?

Self-checking is exactly what it sounds like; it automatically 
determines if the design performed correctly. In a 
traditional testbench methodology, the outputs are typically 
manually checked after the inputs are created. With 
random stimulus, that method can be tedious and prone to 
errors, self-checking at the proper abstraction level to the 
rescue. Utilizing a higher level of abstraction to check the 
correctness of the design allows for quicker environment 
creation and there are additional checkers for the lower 
levels of abstraction. Using the house analogy, check that 
each room of the house was properly moved and have 
lower level checkers verify that each room was moved 
properly.

HOW DO WE KNOW WHEN WE ARE DONE?
This is the typical question from various managers in the 
field. Luckily there are three metrics that help determine 
when the verification is completed. They are functional 
coverage, code coverage, and bug curves.

Functional coverage is defined by a concept of assertions 
and cover statements. An assertion is defining the proper 
behavior for something. An example assertion would be that 
a house should keep a person dry. Therefore, if a person 
inside a house ever gets wet when it rains, the assertion 
fails. The problem is that if it never rains, that assertion 
will always be true, but is never tested (we call that 
“vacuously true”). That is where a cover comes into play. 
A cover states, a person should be inside the house when 
it is raining outside and testing isn’t complete unless that 
happens. One of the main responsibilities of a DV engineer 
is to make sure that all the coverage points are exercised. 

Code coverage is built into most simulators. It gives the 
percentage of the code that has been exercised. This is  
 

a raw metric, which by itself has limited value. But when 
tied with the other metrics, it gives a good measure of 
confidence. The reason code coverage is not the only 
metric that should be used is that without an understanding 
of previous executed code nor the interrelationship with 
other statements of code and the results are not verifying 
the manner in which the code was executed. This is a 
problem because a number of latent defects are found 
when code interacts with other code. To take it back to the 
house, code coverage would give us an understanding that 
we have a house, that we were inside it and that it rained; 
it would not give us the idea that we were inside the house 
during the rain. It is possible to have 100% code coverage 
on a buggy design.

Bug metrics are the last part of this tripod. Tracking 
bugs found is important because the verification job isn’t 
complete if the bug curve doesn’t flatten out, meaning that if 
the DV engineer is pulling out four to five bugs a week, the 
design is not completed. But just because the bug curve is 
flat doesn’t mean that testing is completed, the functional 
and code coverage need to be checked simply because the 
DV engineer might be testing the same small piece of logic 
and not getting to other logic that needs to be tested.

THIS SOUNDS COMPLICATED, IS THERE ANYTHING 
THAT CAN SPEED DEVELOPMENT UP?
Glad you asked, now for a brief history lesson. For a long 
time, the industry was fragmented, forcing vendors to have 
their own tools and techniques to solve this problem. That 
was until SystemVerilog became an IEEE standard in 2004. 
Vendors started to support the verification tools within 
System Verilog and developing their own methodology 
using System Verilog. It wasn’t until this year that they 
standardized on a methodology UVM. This had all the 
tools to create an environment. To use the house analogy, 
System Verilog provided the raw materials to build a house, 
wood, stone, metal and glass. UVM provided frames,  
doors, windows and sinks to build your environment  
from. No longer did you need to develop your own way  
of doing things.

First Principles: Why Bother With This Methodology Stuff, Anyway? 
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A UVM environment is built using various objects;  
the basic building blocks of which are called UVM 
sequences and UVM components. 

UVM creates stimulus by using sequences and sequence 
items. These define the test that will create the operational 
parameters for the test. Think of these as a list of 
instructions on how to build the house. There can be several 
sequences, which don’t have to have any knowledge of 
each other. In the house analogy, they describe how to build 
the various rooms that will make up the house. The order in 
which these rooms are built does not typically matter.

One pre-defined component is called an agent. These are 
the objects that control the various buses into the DUT. It 
contains both a driver that presents transactions to the bus 
and a monitor, which captures transactions on the bus and 
reports them back to the environment. It arbitrates for usage 
of the resource it is connected to. Arbitration is essential 
to make sure that the environment works in an organized 
manner since many sequences could be trying to access 
the bus at the same time.

Another pre-defined component is a scoreboard used to 
verify that transactions coming out of the DUT are correct. 
This is done by using an agent to capture the transaction 
and checking against a transaction that was created by 
some object in the environment that is predicting what  
the DUT will do. These predicted transactions could be 
created by some component in the environment getting  
the same as the DUT and determining what the DUT  
should create.

ARE THERE ADDITIONAL BENEFITS  
TO USING THE VERIFICATION ENVIRONMENT?
There are a couple of advantages to using a sophisticated 
verification environment. One is that once you have it 
built, adding another path or feature isn’t typically difficult. 
If you are using a traditional testbench methodology, you 
may have a long task to modify the environment to test it. 
With this approach it could be as simple as changing the 
path the data takes. Also, if a bug is found later on in the 
development cycle, it can be replicated and triaged in the 
DV environment. This will lead to faster turnaround times 
since with simulation there is better visibility into the design.

WHAT KIND OF PERSON DO WE NEED TO DO THIS?
The typical DV engineer has to be a hybrid of a hardware  
and software engineer. They need to be able to understand 
the hardware world, comprehend the specification of a 
hardware product, and translate that into the environment 
that needs to be created. They need the skills and 
understanding of the world of software but with the grasp 
of design to create more complete and correct testing.  
Good DV engineers have an understanding of concepts 
like Object Oriented Programming and Transaction-
Level Modeling (TLM) to better utilize industry standard 
verification techniques. 

The DV engineer or team needs to be independent of 
the designer or design team. This provides for two sets 
of eyes on a design, as each will interpret a specification 
or requirements with their own personal bias. This 
independent checking will lead to a better design and a 
more complete set of documentation, for if the engineers 
don’t agree; the customer will likely misinterpret it.

CONCLUSION
How do you calculate the cost of missing a bug? The typical 
profile is that there is some initial investment in putting the 
infrastructure together followed by a substantial gain as 
results start to come in. As a rough example, suppose a 
design needs to be verified and it is determined that it would 
take 5 days for a DV engineer to create an environment. In 
the same span, a non-DV engineer creates, debugs and 
executes a test a day so after a week, you have five working 
tests. After four days, the directed approach has 4 tests and 
the DV approach has none. On the 5th day, the directed 
approach has 5 tests, but the DV approach has literally 
1000’s of tests. Why?

A properly architected UVM environment allows you 
to create many variations on the theme automatically. 
Remember, that in addition to randomizing stimulus, you’re 
also randomizing the structure of your testbench.

DV is standard for all ASIC companies around the world 
and until recently its use on FPGAs has been limited. That 
was until the size and complexity of FPGAs made it no 
longer a trivial task to debug it in the lab. The earlier in the 
development cycle the bug is found, the quicker and cleaner 
it can fixed. By doing DV in parallel with the design, it 
reduces time in the lab and slips in program schedule.



9

INTRODUCTION 

The UVM register model 
provides a way of tracking 
the register content of a 
DUT and a convenience 
layer for accessing register 
and memory locations 
within the DUT.

The register model 
abstraction reflects the 
structure of a hardware-software register specification, 
since that is the common reference specification for 
hardware design and verification engineers, and it is also 
used by software engineers developing firmware layer 
software. It is very important that all three groups reference 
a common specification and it is crucial that the design is 
verified against an accurate model. 

The UVM register model is designed to faciliate productive 
verification of programmable hardware. When used 
effectively, it raises the level of stimulus abstraction and 
makes the resultant stimulus code straight-forward to 
reuse, either when there is a change in the DUT register 
address map, or when the DUT block is reused as a sub-
component. 

HOW THE UVM REGISTER MATERIAL IS ORGANIZED 

The UVM register model can be considered from several 
different viewpoints and this page is separated into 
different sections so that you can quickly navigate to the 
material that concerns you most. The diagram to the right 
summarizes the various steps in the flow for using the 
register model and outlines the different categories of users.

Therefore, the different register viewpoints are: 

• The VIP developer 
• The Register Model writer 
• The Testbench Integrator 
• The Testbench User 

Online UVM/OVM Methodology Cookbook: Registers/Overview  
by Mark Peryer, Verification Methodologist, Mentor Graphics Corporation
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VIP DEVELOPER VIEWPOINT 
In order to support the use of the UVM register package, 
the developer of an On Chip Bus verification component 
needs to develop an adapter class. This adapter class 
is responsible for translating between the UVM register 
packages generic register sequence_items and the VIP 
specific sequence_items. Developing the adapter requires 
knowledge of the target bus protocol and how the different 
fields in the VIP sequence_item relate to that protocol. 

Once the adapter is in place it can be used by the  
testbench developer to integrate the register model  
into the UVM testbench. 

To understand how to create an adapter the  
suggested route through the register material is:

CREATING A REGISTER MODEL 
A register model can be created using a register generator 
application or it can be written by hand. In both cases, the 
starting point is the hardware-software register specification 
and this is transformed into the model.

If you are using a generator or writing a register model 
based on a register specification then these topics should 
be followed in this order:

INTEGRATING A REGISTER MODEL 

Integration Pre-requisites
If you are integrating a register model into a testbench, 
then the pre-requisites are that a register model has been 
written and that there is an adaptor class available for the 
bus agent that is going to be used to interact with the DUT 
bus interface. 

Integration Process 
In the testbench, the register model object needs to be 
constructed and a handle needs to be passed around the 
testbench environment using either the configuration and/or 
the resource mechanism. 

In order to drive an agent from the register model an 
association needs to be made between it 
and the target sequencer so that when a 
sequence calls one of the register model 
methods a bus level sequence_item is 
sent to the target bus driver. The register 
model is kept updated with the current 
hardware register state via the bus agent 
monitor, and a predictor component  

is used to convert bus agent analysis transactions 
 into updates of the register model, pictured at the  
top of the next page. 

The testbench integrator might also be involved with 
implementing other analysis components which reference 
the register model, and these would include a scoreboard 
and a functional coverage monitor. 

For the testbench integrator, the 
recommended route through the 
register material is outlined in the  
table to the right:

USING A REGISTER MODEL 
Once it has been integrated, the 
register model is used by the 
testbench user to create stimulus 
using sequences or through analysis 
components such as scoreboards and 
functional coverage monitors. 

The register model is intended to 
make it easier to write reuseable 
sequences that access hardware 
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registers and areas of memory. The model data structure 
is organized to reflect the DUT hierarchy and this makes 
it easier to write abstract and reuseable stimulus in terms 
of hardware blocks, memories, registers and fields rather 
than working at a lower bit pattern level of abstraction. 
The model contains a number of access methods which 
sequences use to read and write registers. These methods 
cause generic register transactions to be converted into 
transactions on the target bus. 

The UVM package contains a library of built-in test 
sequences which can be used to do most of the basic 
register and memory tests, such as checking register reset 
values and checking the register and memory data paths. 
These tests can be disabled for those areas of the register 

or memory map where they are not relevant using register 
attributes.

One common form of stimulus is referred to as 
configuration. This is when a programmable DUT has its 
registers set up to support a particular mode of operation. 
The register model can support auto-configuration, a 
process whereby the contents of the register model are 
forced into a state that represents a device configuration 
using constrained randomization and then transferred into 
the DUT. 

The register model supports front door and back door 
access to the DUT registers. Front door access uses the 
bus agent in the testbench and register accesses use 
the normal bus transfer protocol. Back door access uses 

simulator data base access routines to 
directly force or observe the register 
hardware bits in zero time, by-passing 
the normal bus interface logic. 

As a verification environment evolves, 
users may well develop analysis 
components such as scoreboards and 
functional coverage monitors which 
refer to the contents of the register 
model in order to check DUT behaviour 
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or to ensure that it has been tested in all required configurations. 

If you are a testbench consumer using the register model, then you should read 
the following topics in the recommended order:

REGISTER MODEL EXAMPLES
The UVM register use model is illustrated by code excerpts which are taken 
from two example testbenches. The main example is a complete verification 
environment for a SPI master DUT, in addition to register model this includes 
a scoreboard and a functional coverage monitor, along with a number of test 
cases based on the use of register based sequences. The other example is 
designed to illustrate the use of memories and some of the built-in register 
sequences from the UVM library. Download links for these examples are 
provided in the table below: 

Editor’s Note: This article is an excerpt from the Online UVM/OVM 

Methodology Cookbook, available via Mentor Graphics’ Verification 

Academy (http://verificationacademy.com)
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[Editor’s Note: This is part 2 of a two-part article on 

this topic. Part 1 appeared in the DVCon (February, 

2011) edition of Verification Horizons. This article 

should serve as a great companion piece to the 

new Verification Academy module, Acceleration of 

SystemVerilog Testbenches with Co-Emulation.]

A methodology is presented for writing modern 
SystemVerilog testbenches that can be used not only 
for software simulation, but especially for hardware-
assisted acceleration. The methodology is founded on a 
transaction-based co-emulation approach and enables truly 
single source, fully IEEE 1800 SystemVerilog compliant, 
transaction-level testbenches that work for both simulation 
and acceleration. Substantial run-time improvements are 
possible in acceleration mode and without sacrificing 
simulator verification capabilities and integrations including 
SystemVerilog coverage-driven, constrained-random and 
assertion-based techniques as well as prevalent verification 
methodologies like OVM or UVM.

IMPLEMENTING A TRANSACTION-LEVEL  
HVL–HDL INTERFACE
With the timed and untimed portions of a testbench fully 
partitioned, what remains is establishing a transaction-
based communication mechanism for co-emulation. As 
suggested above, the use of virtual interface handles on 
the HVL side bound to concrete interface instances on the 
HDL side enables a flexible transaction transport mode 
for HVL-HDL communication provided thus that BFMs 
are implemented as SystemVerilog interfaces in the HDL 
hierarchy, not as modules. The flexibility stems from the  
fact that user-defined tasks and functions in these 
interfaces form the API.

Following the remote proxy design pattern discussed earlier, 
components on the HVL side acting as proxies to BFM 
interfaces can call relevant tasks and functions declared 
inside the BFMs via virtual interface handles to drive and 
sample DUT signals, initiate BFM threads, configure BFM 

parameters or retrieve BFM status. By retaining specifically 
the original transactor layer components like driver and 
monitor classes as the BFM proxies (see Figure 2) – minus 
the extracted BFMs themselves – impact on the original 
SystemVerilog object-oriented testbench is minimized. The 
proxies form a thin layer in place of the original transactor 
layer, which allows all other testbench layer components 
to remain intact. This offers maximum leverage of existing 
verification capabilities and methodologies.

The remote task/function call mechanism is based for the 
most part on the known Accellera SCE-MI 2 function model, 
and so it has the same kind of performance benefits as 
SCE-MI 2. In the traditional SCE-MI 2 function-based model 
it is the SystemVerilog DPI interface that is the natural 
boundary for partitioning workstation and emulator models 
[1], whereas the proposed methodology here uses the 
class object to interface instance boundary as the natural 
boundary for the same partitioning. Extensions specifically 
designed for SystemVerilog testbench modeling are added, 
most notably task calls in the workstation to emulator 
direction in which use of time-consuming/multi-cycle 
processing elements is allowed. This is essential to be able 
to model BFMs on the HDL side that are callable from the 
HVL side. 

A Methodology for Hardware-Assisted Acceleration  
of OVM and UVM Testbenches  
by Hans van der Schoot, Anoop Saha, Ankit Garg, Krishnamurthy Suresh, Emulation Division, Mentor Graphics Corporation
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Figure 5. HDL BFM interface with HVL proxy class 

 
The HVL-HDL co-modeling interface mechanism is  
depicted in Figure 5 above. A proxy class bus_driver has 
a virtual interface handle m_bfm to a corresponding BFM 
model bus_driver_bfm implemented as a synthesizable 
interface. Time-consuming tasks and non-blocking functions 
in the interface can be called by the driver proxy via the 
virtual interface to execute bus cycles, set parameters or 
get status information. Notice the ‘bfm’ suffix in the BFM 
interface name, which is recommended as a naming 
convention. Also notice the use of the bus pin interface 
confined to the BFM by inclusion through its port list.

TRANSACTION OBJECT CONVERSION 
Classes and other dynamic or unpacked data types in 
SystemVerilog are generally not synthesizable and can 
therefore not be used as BFM function/task arguments. For 
SystemVerilog object-oriented testbenches that extensively 
use class-based transactions (e.g. those derived from the 
ovm_transaction base class in OVM) it means that these 
transactions cannot simply be passed as is between the 
BFM interfaces and their proxies. However, since BFM 
functions and tasks are user-defined, it may be pertinent 
to pass transaction class members as individual packed 
arguments, just as shown in the code example of Figure 
5 for the address and data attributes of bus transactions. 

Or one may choose to utilize special conversion routines 
to convert explicitly between class-based transactions and 
suitable packed type representations that are synthesizable 
such as a bit vector or packed struct. When utilized, it 
is recommended to standardize on from_class(...) and 
to_class(...) methods defined in an external converter class 
for each transaction type that must cross the HVL-HDL 
boundary. A code example is given in Figure 6. 

1	 class fpu_request extends ovm_transaction;
2	
3	   shortreal a;
4	   shortreal b;
5	   rand op_t op;
6	   rand round_t round;
7	
8	   ...
9	
10 endclass
11	
12	
13 package fpu_trans_util_pkg;
14	   typedef struct packed {
15	     bit [31:0] a;
16	     bit [31:0] b;
17	     op_t op;
18	     round_t round;
19	   } fpu_request_s;
20	  
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21	   typedef bit [$bits(fpu_request_s)-1:0]
22	     fpu_request_vector_t;
23	
24	   ...
25	
26 endpackage27		
28 class fpu_request_converter;
29	
30	   function void to_class(
31	       output fpu_request req,
32	       input fpu_request_vector_t v);
33	     fpu_request_s s = v;
34	     req = new();
35	     req.a = $bitstoshortreal(s.a)
36	     req.b = $bitstoshortreal(s.b);
37	     req.op = s.op;
38	     req.round = s.round;
39	   endfunction
40	
41	   function void from_class(
42	       input fpu_request req, 
43	       output fpu_request_vector_t v);
44	     fpu_request_s s;
45	     s.a = $shortrealtobits(req.a);
46	     s.b = $shortrealtobits(req.b);
47	     s.op = req.op;
48	     s.round = req.round;
49	     v = s;
50	   endfunction
51	

52 endclass

Figure 6. Converting transaction objects  

for co-emulation

Figure 7 on the following page provides an example 
transformation of a purely class-based FPU monitor from 
the OVM cookbook example kit [2] into a functionally 
equivalent BFM / proxy pair suited for both simulation and 
co-emulation. The FPU monitor proxy reimplements tasks 
monitor_request() and monitor_response() (i.e. lines 21-30 
and 32-46 in Figure 7.b) to call corresponding tasks in the 
BFM (i.e. lines 58-68 and 70-73 in Figure 7.b) to perform 
the pin-level sampling of FPU request and response 
transactions and output these to the BFM proxy. External 

converter classes with from_class(...) and to_class(...) 
methods are used to convert between FPU transaction 
objects and convenient synthesizable packed struct 
representations of these transactions (i.e. lines 27 and 39 in 
Figure 7.b), as shown in Figure 6 for FPU requests.

For the example above it is assumed that the BFM interface 
is instantiated somewhere under the HDL top level 
hierarchy and that its corresponding proxy object on the 
HVL side has a virtual interface reference to the BFM. The 
actual binding of the virtual interface to the hierarchical HDL 
path of the BFM is not shown for brevity. Any such binding 
mechanism can be made to work also in the context of co-
emulation. For OVM testbenches a recommended method 
described in [3] utilizes a general purpose OVM container 
class for wrapping any SystemVerilog type so that it can be 
used with the OVM configuration mechanism. It works just 
fine for binding BFM / proxy pairs.

HDL-TO-HVL BACK-POINTERS 
For modeling flexibility and completeness a transaction-
level HVL-HDL co-modeling interface can be defined in 
both directions. Similar to an HVL proxy class calling tasks 
and functions declared in an HDL interface, as discussed 
thus far, one can define how an HDL interface can call 
functions1 declared in an HVL class. This would enable 
transaction-based HVL-HDL communication initiated 
from the HDL side. Specifically, a BFM interface may call 
relevant class member functions of its proxy object on the 
HVL side for instance to provide sampled transactions for 
analysis or indicate other status information.Figure 8 on 
the following page illustrates this. As shown, the handle of 
a BFM interface to the BFM proxy can be assigned simply 
inside the proxy itself via its virtual interface handle to 
the BFM. Access to any data members in the BFM proxy 
would not be permitted, just as cross signal references into 
the BFM are not allowed. Due to language restrictions on 
matching types, the proxy class definition together with 
any types it depends on must be imported inside the BFM 
interface via one or more packages.
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Figure 7. Transforming an FPU monitor for co-emulation

1	 class fpu_monitor extends ovm_component;
2	
3	   ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	   // VIF handle to pin interface
6	   local virtual fpu_pin_if #(32) m_fpu_pins;
7	
8	   ...
9	
10	   function void connect();
11	     ... // Retrieve m_fpu_pins vif handle
12	   endfunction
13	
14	   task run();
15	     fork
16	       monitor_request();
17	       monitor_response();
18	     join
19	   endtask
20	
21	   task monitor_request();
22	     forever begin
23	       fpu_request req = new();
24	
25	       do
26	         @(posedge m_fpu_pins.clk);
27	       while (m_fpu_pins.start != 1);
28	
29	       req.a = $bitstoshortreal(m_fpu_pins.op_a);
30	       req.b = $bitstoshortreal(m_fpu_pins.op_b);
31	       req.op = op_t′(m_fpu_pins.fpu_op);
32	       req.round = round_t′(m_fpu_pins.rmode);
33	
34	       $cast(m_req_in_process, req.clone());
35	     end
36	   endtask: monitor_request
37	
38	   task monitor_response();
39	     forever begin
40	       fpu_response rsp = new();
41	       fpu_pair pair;
42	
43	       ... // Timed code to sample response
44	
45	       pair = new(m_req_in_process, rsp);
46	       pair_ap.write(pair);
47	     end
48	   endtask: monitor_response
49	
50	 endclass	

	                (a) Original monitor	

 

1	 class fpu_monitor extends ovm_component;
2	
3	   ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	   // VIF handle to XRTL BFM
6	   local virtual fpu_monitor_bfm m_bfm;
7	
8	   ...
9	
10	   function void connect();
11	     ... // Retrieve m_bfm vif handle
12	   endfunction
13	
14	   task run();
15	     fork
16	       monitor_request();
17	       monitor_response();
18	     join
19	   endtask
20	
21	   task monitor_request();
22	     forever begin
23	       fpu_request req;
24	       fpu_request_s req_s;
25	
26	       m_bfm.monitor_request(req_s);
27	       req_converter.to_class(req, req_s);
28	       $cast(m_req_in_process, req.clone());
29	     end
30	   endtask: monitor_request
31	
32	   task monitor_response();
33	     forever begin
34	       fpu_response rsp;
35	       fpu_response_s rsp_s;
36	       fpu_pair pair;
37	
38	       m_bfm.monitor_response(rsp_s);
39	       rsp_converter.to_class(rsp, rsp_s);
40	       ...
41	       pair = new(m_req_in_process, rsp);
42	       pair_ap.write(pair);
43	     end
44	   endtask: monitor_response
45	
46	 endclass
47	
48	
49	 interface fpu_monitor_bfm(fpu_pin_if fpu_pins);
50	 // pragma attribute fpu_monitor_bfm 
            partition_interface_xif
51	
52	   ...
53	
54	   wire clk = fpu_pins.clk;
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55	
56	   task monitor_request(output 
57	       fpu_request_s req); // pragma tbx xtf
58	     @(posedge clk);
59	     while (fpu_pins.start != 1)
60	       @(posedge clk);
61	     req.a = fpu_pins.op_a;
62	     req.b = fpu_pins.op_b;
63	     req.op = op_t′(fpu_pins.fpu_op);
64	     req.round = round_t′(fpu_pins.rmode);
65	   endtask
66	
67	   task monitor_response(output 
68	     fpu_response_s rsp); // pragma tbx xtf
69	     ... // Timed code to sample response
70	   endtask
71	
72	 endinterface

	    (b) XRTL monitor BFM with proxy

 
 
The use of such object handles in BFM interfaces back  
to their proxy classes, or ‘back-pointers’, is not firmly  
required for modeling reactive HVL-HDL communication 
and one can just stick to using HVL initiated ‘xtf’ tasks and  
 

functions2. Yet this is particularly useful for components 
like monitors. A typical monitor continuously listens to 
an interface to extract transactions and pass them out to 
other testbench components for analysis, just like the FPU 
monitor in Figure 7. It initiates communication of observed 
transactions to ‘subscribers’ like scoreboards, coverage 
collectors or interrupt monitors. It is in effect more natural to 
have a monitor BFM ‘push’ instead of the BFM proxy ‘pull’ 
these transactions out. More importantly, doing so presents 
opportunities for significant performance optimization. 
Observed transactions are commonly distributed for 
analysis using void functions (e.g. the TLM write(...) function 
in OVM – i.e. line 46 in Figure 7.a). Such one-way non-
blocking calls can be dispatched and executed concurrently 
without even stopping the emulator clocks.

Figure 9 on the following page provides a second take on 
remodeling the OVM-based FPU monitor for co-emulation. 
This time the monitor BFM calls a void function write of its 
proxy via a back-pointer to push sampled FPU request-
response pairs out to the HVL side (i.e. lines 62 and 22-26 
in Figure 9.b). The reader is invited to inspect the example 
in more detail with respect to the one in Figure 7. 
 
 
 
 
Figure 8. HDL Driver BFM interface with HVL proxy
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ADDITIONAL METHODOLOGY CONSIDERATIONS 
Prying apart transactor layer components into synthesizable 
BFMs on the HDL side and untimed transaction-level proxy 
objects on the HVL side, as described in the previous 
section, has the consequence that the BFMs must be 
elaborated statically before run-time. At first sight some 
of the capabilities of a truly dynamic testbench may seem 
lost. Recall though that it is only the timed interface protocol 
that is to be implemented on the HDL side. Since the DUT 
interface and protocol are largely static there is no real loss 
of functionality. The idea is to retain the bits and pieces that 
must be dynamic inside the BFM proxy under the HVL top 
level module hierarchy. It should be apparent that a BFM 
interface is then in principle controllable completely through 
its dynamic proxy, via remote function or task calls. For 
instance, in terms of OVM it means that while BFMs cannot 
be created using the OVM factory or configured using the 
OVM configuration mechanism, the BFM proxies can be 
controlled in this way and hence indirectly the static BFMs 
themselves.

Thanks to the application of the remote proxy design 
pattern, prevalent testbench topology practices can also 
be facilitated without much alteration. Figure 10 depicts 
the normal view of an OVM agent for simulation and the 
adapted view for co-emulation. From the perspective of 
the OVM testbench on the HVL side there is no difference. 
Certainly, a matching topology of BFM interfaces under the 
HDL top can be configured only statically at elaboration-
time, but as suggested by the code example in Figure 
11 it is rather straightforward to employ SystemVerilog 
conditional or loop generate constructs on the HDL 
side in combination with a shared package of static test 
parameters imported and used by both HDL and HVL 
sides. The topology of a typical testbench is after all static 
in nature since it is expected to be fully elaborated before 
any testbench component starts running (e.g. the ‘end-of-
elaboration’ phase in OVM executes before the ‘run’ phase). 
In case a truly dynamic alternative is desired it is possible to 
elaborate a fixed number of BFMs on the HDL side of which 
only a subset become active as maintained by the type and 
number of dynamically created BFM proxy objects.

Another methodology consideration is that current synthesis 
technology does not readily handle SystemVerilog coverage 
groups. Coverage groups are well suited for implementing

1	 class fpu_monitor extends ovm_component;
2	
3	   ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	   // VIF handle to pin interface
6	   local virtual fpu_pin_if #(32) m_fpu_pins;
7	
8	   ...
9	
10	   function void build();
11	     ... // Retrieve m_fpu_pins vif handle
12	   endfunction
13	
14	   task run();
15	     @(posedge m_fpu_pins.clk);
16	     fork
17	       monitor_request();
18	       monitor_response();
19	     join
20	   endtask
21	
22	   task monitor_request();
23	     forever begin
24	       fpu_request req = new();
25	
26	       do
27	         @(posedge m_fpu_pins.clk);
28	       while (m_fpu_pins.start != 1);
29	
30	       req.a = $bitstoshortreal(m_fpu_pins.op_a);
31	       req.b = $bitstoshortreal(m_fpu_pins.op_b);
32	       req.op = op_t′(m_fpu_pins.fpu_op);
33	       req.round = round_t′(m_fpu_pins.rmode);
34	
35	       $cast(m_req_in_process, req.clone());
36	     end
37	   endtask: monitor_request
38	
39	   task monitor_response();
40	     forever begin
41	       fpu_response rsp = new();
42	       fpu_pair pair;
43	
44	       ... // Timed code to sample response
45	
46	       pair = new(m_req_in_process, rsp);
47	       pair_ap.write(pair);
48	     end
49	   endtask: monitor_response
50	
51	 endclass	
 

                              (a) Original monitor	
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1	 class fpu_monitor extends ovm_component;
2	
3	    ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	   // VIF handle to XRTL BFM
6	   local virtual fpu_monitor_bfm m_bfm;
7	
8	   ...
9	
10	   function void connect();
11	 ..  // Retrieve m_bfm vif handle
12	     m_bfm.proxy = this;
13	   endfunction
14	
15	   task run();
16	     fork
17	       m_bfm.request_daemon();
18	       m_bfm.response_daemon();
19	     join
20	   endtask
21	
22	   function void write(fpu_pair_s pair_s);
23	     fpu_pair pair = new();
24	     pair_converter.to_class(pair, pair_s);
25	     pair_ap.write(pair);
26	   endfunction
27	
28	 endclass
29	
30	
31	 interface fpu_monitor_bfm(fpu_pin_if fpu_pins);
32	   // pragma attribute fpu_monitor_bfm 
              partition_interface_xif
33	
34	   ...
35	
36	   import fpu_tlm_pkg::fpu_monitor;
37	   fpu_monitor proxy;
38	   // pragma tbx oneway proxy.write
39	
40	   fpu_request_s req_in_process;
41	
42	   task request_daemon(); // pragma tbx xtf
43	     ... // Sample requests (req_in_process);
44	   endtask
45	
46	   task response_daemon(); // pragma tbx xtf
47	     fpu_pair_s pair;
48	
49	     @(posedge clk);
50	
51	     forever begin

52	       @(posedge clk);
53	       while (fpu_pins.ready != 1)
54	         @(posedge clk);
55	
56	       ...
57	
58	       pair.req = req_in_process;
59	       pair.rsp.result = fpu_pins.outp;
60	
61	       ...
62	
63	       proxy.write(pair);
64	     end
65	   endtask
66	

67	 endinterface

	

                     (b) XRTL monitor BFM with proxy

Figure 9. Transforming an FPU monitor  

for co-emulation–take 2

 
transaction-level coverage concerned with the higher level 
functional requirements of a design. This stands in contrast 
to assertion coverage which lends itself for measuring the 
occurrence of lower level physical events involving the 
sampling of DUT signals and state variables, potentially 
over multiple consecutive clock cycles [4]. Assertion 
coverage fits naturally for BFMs and is in fact supported 
for synthesis by TBXTM. Moreover, while surely coverage 
groups could be of use in BFMs as well, key to handling any 
genuine transaction-level coverage requirement for a BFM 
interface is once again the BFM’s HVL proxy object, which 
may have coverage groups itself and forward transactions 
to other transaction-level coverage analysis components 
(e.g. see Figure 9.b). 
 

EMPIRICAL RESULTS
Table 1 on the following page lists empirical results of 
applying the proposed transaction-based SystemVerilog 
testbench acceleration methodology. For several different 
designs the run-times for executing a test with pure 
simulation and with co-emulation are compared. The co-
emulation engine used is Mentor Graphic’s Veloce TBXTM. 
The results clearly indicate that co-emulation can be much 
faster than simulation 



20

Figure 10. Normal simulation view and  

co-emulation view of an OVM agent 

 
 
alone. Therefore, if simulation leaves you with insufficient 
throughput to meet your verification requirements, rather 
than taking calculated risks and limit the length of your 
simulation runs, you could greatly improve verification 
throughput with realistic tests using co-emulation.

SUMMARY AND CONCLUSIONS 
A methodology was described for writing SystemVerilog  
and OVM or UVM testbenches that can be used not only  
for software simulation, but especially for hardware-assisted 
acceleration. For modern transaction-level testbenches,  
the pragmatic approach to hardware-assisted speedup  
in testbench execution is to have certain testbench  
 
 
Table 1. Empirical results

 

components – the lower pin-level components like 
drivers, monitors etc. – synthesized into real hardware 
and running inside the emulator together with the DUT, 
while other non-synthesizable testbench components – 
the higher transaction-level components like generators, 
scoreboards, coverage collectors etc. – remain in software 
running inside the simulator. Communication between 
simulator and emulator is then transaction-based, not 
cycle-based, reducing communication overhead and 
increasing performance because hardware-software data 
exchange is infrequent and information rich, and high 
frequency pin activity is confined to run in hardware at full 
emulator clock rates.

This so-called co-emulation or co-modeling approach 
is at the core of the methodology presented, which 
further maximizes reuse between pure simulation-based 
verification and hardware-assisted acceleration through 
the application of an object-oriented remote proxy 

design pattern. As a result, truly ‘single source’ and fully 
IEEE 1800 SystemVerilog compliant transaction-level 
testbenches can be created to work interchangeably for 
both simulation and acceleration. In acceleration mode 
substantial run-time improvements are made possible and 
without sacrificing simulator verification capabilities and 
integrations such as modern coverage-driven, constrained-
random and assertion-based techniques and tools. 
Additionally, the acceleration methodology is independent 
of the SystemVerilog verification methodology used and 
applicable to all prevalent methodologies today including 
OVM or UVM, and VMM.

In technical summary, the proposed simulation and 
acceleration methodology stipulates that a testbench be 
partitioned into two completely separated hierarchies, a 
synthesizable HDL side and a strictly untimed HVL side.  
Cross module and signal references are not permitted 
between the two sides. Instead, only transaction-level data 
 

Design Simulation Time Veloce TBXTM Speed-up Factor

Face Recognition Engine (1 MG) ½ hr. 6.58 secs. 128x

Wireless MM Sub-system (1 MG) 53 hrs. 658 secs 288x

Menory Controller (1.1 MG) 5 hrs. 308 secs 60x

Mobile Display Processor (1.2 MG) 5 hrs. 46 secs. 399x

Network Switch (34 MG) 16½ hrs. 240 secs.	 245x

Graphics Sub-system (8 MG)	 86½ hrs. 635 secs.	 491x
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Figure 11. Topology configuration

 
exchange is performed via ‘remote procedure invocation’ 
in SystemVerilog, and with Accellera SCE-MI 2 inspired 
performance benefits. Specifically, each DUT interface 
protocol – or BFM – on the HDL side is modeled as a 
synthesizable SystemVerilog interface with designated 
tasks and functions that can be called from the HVL side 
through a virtual interface by a dynamic class object that 
acts as HVL proxy for the BFM. Transaction objects may 
thereby need to be converted into synthesizable arguments. 
Conversely, the BFM interface may also have an object 
handle back to its proxy to call functions defined in the 
proxy. Reactive transaction-based communication is thus 
supported across the HVL-HDL boundary in both directions 
with either the HVL proxy or the BFM as call initiator. Each 
pair of BFM and proxy is to be viewed essentially as a joint 
pair representing a single transactor.
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NOTES

1 Since clocks are running exclusively on the HDL side, 
only functions – not tasks – should be called from HDL 
to HVL side. Strictly speaking only time-consuming tasks 
are problematic, but it is recommended to avoid tasks 
altogether. 
2 Additionally, next to reactive communication it is possible 
to model non-reactive, streaming communication which 
can be viewed as an alternative where HVL and HDL 
sides are decoupled and run independent threads. Mentor 
Graphics’ Veloce TBXTM offers this alternative via the use 
of so-called SCEMI pipes which are a kind of ‘acceleration-
friendly’ buffer with unique data-shaping features for 
performance, described in the Accellera SCE-MI 2 standard 
[1]. This is not further discussed here.
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ABSTRACT:
The Questa® inFact intelligent testbench automation tool 
is already proven to help verification teams dramatically 
accelerate the time it takes to reach their coverage goals. 
It does this by intelligently traversing a graph-based 
description of the test sequences and allowing the user 
to prioritize the input combinations required to meet the 
testbench coverage metrics while still delivering those 
sequences in a pseudo-random order to the device under 
test (DUT).  The rule language, an extended Backus Naur 
Format (BNF) that is used to describe the graph structure,  
has recently been enhanced to add two powerful new 
features. Algebraic constraints can now be included to define 
relationships between the fields of the stimulus description 
(such as the fields of an OVM/UVM sequence item).  Also, 
external testbench values can now be imported into the 
graph, allowing for the definition of relationships between 
Questa inFact-generated field values and externally selected 
values. The Questa inFact algorithms can now target cross 
combinations of fields that are under its control with fields 
that are outside of Questa inFact’s control. This article 
describes these powerful new capabilities in more detail  
with some simple application examples.

INTRODUCTION:
The purpose of Questa inFact is to generate meaningful 
stimulus automatically and efficiently from a compact 
description of the scenario space of interest. Currently 
the most widespread automated stimulus generation 
methodology is constrained random, which generally 
comes hand in hand with coverage metrics defined in the 
testbench in order for the verification engineer(s) to track 
how well the random generation performed at hitting the 
important cases. As every constrained random user knows, 
there’s a tradeoff to be made in how far to constrain the 
stimulus generation and how comprehensive the coverage 
metrics should be. Increasing the scope of the coverage 
metrics, especially when the constraint relationships are 
complex, tends to push the limits on what can be efficiently 
achieved by purely random generation. Limiting the scope 
of the verification metrics makes the verification process 

more of a gamble, since beyond those metrics it can be 
very difficult to tell how effective the random generation  
has been.

Questa inFact has been helping verification teams to reach 
their desired coverage goals more predictably by defining 
the stimulus in a different way – specifically, using a rule 
based description that can be compiled into a graph. 
Powerful and efficient graph traversal algorithms can then 
more intelligently explore the stimulus space producing 
vectors that combine the benefits of random generation with 
the ability to prioritize specific coverage goals, including 
large cross combinations that can leave random generation 
stuck anywhere between 70-95% of the desired target.

Recently, the intelligence of the Questa inFact graph 
traversal algorithms has been significantly enhanced to 
allow algebraic constraints to be solved concurrently with 
the graph traversal process, thereby simplifying the stimulus 
definition process. This article describes how this powerful 
combination can be used to achieve more comprehensive 
verification goals in a more efficient and predictable way.

A DIFFERENT APPROACH TO CONSTRAINT SOLVING
When a constrained random solver generates a stimulus 
item its goal is to find a random valid solution to the 
user’s stimulus description, and to continue this process 
repeatedly until the testbench halts and exits. The more 
complex the constraints are on what those valid solutions 
can be, the harder it is for a purely random engine to 
produce all the required combinations to thoroughly 
exercise the device under test. The primary issue is that,  
as complexity increases, so does the production of 
duplicate vectors. Many verification teams therefore can 
spend a lot of time analyzing the missed coverage and 
manually steering subsequent simulations to try to target 
the missing cover points – a process can that can take 
weeks in some cases.

As mentioned before, the stimulus description for Questa 
inFact can now be a mix of rules (as compiled into graphs) 
and algebraic constraints. The power of Questa inFact 

Combining Algebraic Constraints with Graph-based Intelligent  
Testbench Automation 
by Mike Andrews, Verification Technologist, Mentor Graphics
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was originally in its ability to iterate through the graph 
description, randomly producing valid stimulus items while 
iterating through all combinations needed to meet the 
coverage goals. Where possible, the algorithms will attempt 
to meet more than one desired combination at a time from 
different cross coverage or individual stimulus field targets. 
As each defined coverage goal is achieved, Questa inFact 
will automatically revert to purely randomly generating the 
values for fields that are no longer involved in the remaining 
targets. So meeting a large total number of cover points, 
as defined by a number of different cover groups targeting 
different fields and field combinations, typically requires 
a number of vectors to be generated that is less than this 
total. This is in contrast to a pure random methodology, 
where the number of vectors needed to reach the desired 
coverage can be anything from 10x this total to effectively 
infinite.

Combining algebraic constraints with the traditional Questa 
inFact rule based description maintains this same ability 
to iterate efficiently through all the valid solutions. More 
specifically, Questa inFact is iterating through only the 
number of combinations that is needed to meet the goals 
of the various cover groups the verification engineer is 
targeting, since the total number of all valid solutions can be 
more than anyone has the time and resources to simulate.

THE NEED FOR CONTEXT DEPENDENT CONSTRAINTS
Questa inFact supports two different types of constraints, 
one of which is a global (or static) constraint that must 
always be satisfied, and the other is a context dependent 
(or dynamic) constraint that only needs to be satisfied for 
specific cases. When a dynamic constraint is declared, the 
graph structure is used to define the applicable context.

As an example, let’s consider a stimulus generation 
application for controlling a robot. One field of the sequence 
item selects a general direction for the motion between the 
choices LEFT, RIGHT, FRONT or BACK.  If the direction 
choice is FRONT, for example, then the resulting motion 
must be be more in that direction than any other, but will 

allow for some sideways component to the vector. Similarly, 
if the choice is either LEFT or RIGHT then the robot should 
move more sideways than forwards. There are another two 
fields to determine the new relative position, called xPos 
and yPos.. To ensure that the general direction choice is 
obeyed in the FRONT and BACK case, a constraint of ‘Ypos 
> Xpos’ is placed on these fields in that case. Where the 
direction is either LEFT or RIGHT there should therefore be 
the opposite constraint of ‘Xpos > Ypos’. Hence the need 
for context dependent constraints to be specified in the 
stimulus description.

While the range of xPos and yPos are specified by 12-bit 
values, only discrete multiples of 64 and 128 can be used 
for these values respectively. Also, in the special case of 
direction ‘FRONT’ xPos must also be a multiple of 128. 

These constraints on xPos and yPos can be implemented  
in SystemVerilog as shown in Figure 1.

 

Figure 1. SystemVerilog constraints

 
Yet another field determines the speed, which is either 
SLOW or FAST. All directions except for BACK can have 
motion at both these speeds, while the BACK direction is 
limited to just SLOW.

Combining Algebraic Constraints with Graph-based Intelligent  
Testbench Automation 
by Mike Andrews, Verification Technologist, Mentor Graphics
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DEFINING THE STIMULUS  
WITH RULES AND CONSTRAINTS
One option in the Questa inFact rule description would be 
to simply write a rule (otherwise known as a symbol) called 
‘sel_vals’, that simply listed the order of selection of the 
fields of the item. Then the SystemVerilog constraints shown 
above could be added to the Questa inFact rule file, with one 
minor syntactic difference of a ‘;’ terminator for the constraint 
block. Figure 2 shows an example segment of the Questa 
inFact rules with the sel_val rule and the constraint on xPos.

Figure 2. Example Questa inFact rule segment

 
In the Questa inFact rule description we can also define 
relationships using the graph structure, where a branch 
in the graph defines the limitations for the BACK, FRONT 
and LEFT & RIGHT directions. I can also apply dynamic 
or context-dependent constraints on those branches such 
that those constraints will be obeyed only in the intended 
context. Figure 3 shows the amended rule for ‘sel_vals’ 
and the combination of dynamic and static constraints that 
would be needed.

  
Figure 3. Example branched graph rule

In this example, the ‘|’ choice operator is used to define 
the optional branches. The first branch limits the direction 
choice to BACK, limits the speed choice to SLOW, and then 
applies the dynamic constraint xPos_back. The next two 
branches similarly group the related field values and the 
algebraic constraints that must be applied to fields further 
down the graph path. The graph branches recombine 
before the selection of xPos and yPos. Figure 4 shows the 
graphical view of this rule graph.

 This graphical view makes it much easier to visualize the 
stimulus description and has often helped the user to see 
errors that would have been much harder to discern using 
the text-only constraint description. The dynamic constraints 
appear in the graph as upside down trapeziums.

Note that in the graph view, there is an annotation on the 
xPos and yPos nodes stating how many bins are defined for 
these two fields. Given the large range of possible values, 
and the limits on which values are legal as defined by the 
constraints, it is obviously not practical to exercise all 4,096 
values. A number of interesting bins are therefore defined 
for these two fields, and this information is used by the 
Questa inFact algorithms as they target the user’s coverage 
goals. Figure 5 shows the definition of the bins for these 
fields.

The bins declaration follows the declaration of the domain 
of the field. The last bin uses a ‘*’ to create an additional 
single bin which contains all remaining non-explicitly binned 
values. Bins can also be defined on a per coverage goal 
basis, so that different cross coverage goals that include the 
same variable can be binned differently.

COVERAGE GOALS AND THE STIMULUS SPACE
The sel_vals rule is one rule within a hierarchy of rules 
that define the full graph. A higher level rule call RobotCtrl 
includes an initialization step, a construct called a repeat, 

some nodes that 
synchronize the graph 
execution with the 
testbench, and another 
field of the stimulus 
item called ‘mode.’ 
Figure 5 shows the  
top-level rule.
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 Figure 4. Example branched graph

 

Figure 5. Defining bins in the rule description

Figure 6 shows the top-level graph. The numbers annotated 
onto the graph show the size of the stimulus space defined 
by the elements of the graph, without considering the effect 
of the constraints. 
 

Figure 6. Top-level RobotCtrl rule

 

The total number of 3080 combinations 
does consider any bins defined 

that are global, i.e. are not only 
associated with a particular 

coverage target. It 
therefore reflects, 
in most cases, the 
number of cover points 
that would be reported 
for a cross cover group 
that included all the 
fields in the graph, 
prior to the definition 

of the exclusions due to 
constraints.

It is unusual of course to attempt to 
cross every field in the stimulus item, since 

in most cases that would be an impractical 
number of simulation vectors, even with sensible 

bins defined.

The coverage metrics tend to combine cross coverage 
targets with individual field targets. 

Figure 7. Top-level RobotCtrl graph with size annotation
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Figure 8. Definition of the coverage strategy 

 

In Questa inFact this is achieved by overlaying a user-
defined coverage strategy onto the graph. The coverage 
strategy mirrors the coverage goals by specifying which 
fields require cross coverage and which are targeted for 
single-value coverage.

With our robot control verification project, we will assume 
that the cross of all fields is the goal, so our coverage 
strategy contains that one goal. A graphical editor can 
be used to define the region of interest, which in the fully 
expanded graph goes from the ‘mode’ node down to the 
yPos node at the bottom. That coverage goal is called a 
path coverage goal in Questa inFact terminology and is 
given a name for reporting purposes. Figure 8 shows this 
goal reflected in the graphical editor.

 

 
Any of the fields can be excluded by declaring it a ‘don’t 
care’ for this particular goal. An important benefit of Questa 
inFact’s ability to comprehend the graph structure and the 
constraints simultaneously is that it can report the total 
number of valid combinations.

Our example has an additional constraint on the mode field 
that limits it to just the last three options, so this will also 
be considered in producing the total valid combinations. 
Figure 9 shows the result of this calculation that can be 
performed independently of simulation at the same time 
as the coverage goals are defined. This is expressed as a 
‘Path Count’ in the Questa inFact tool.
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Figure 9. Path Count Result  

for the Cross Coverage Goal

 
While we have 3520 possible combinations of these field 
values as binned, the graph structure reduces this number 
to 3080, since it reflects the relationship between dir and 
speed, and then the constraints further reduce the legal set 
to just 1053. It can be difficult to get to this final number in 
the presence of many complex relational constraints, and 
to have the cover group accurately reflect this, but Questa 
inFact can calculate this statically very efficiently. By adding 
just 3 bins to mode to reflect the constraint on that field, the 
cover group would contain 2640 cover points in the cross. 
Without specifying all the remaining illegal combinations in 
the cover group definition the total possible coverage that 
we can get is 1053/2640 = 39.886%.

COMPARING THE RESULTS
As expected, when the testbench is run with the Questa 
inFact graph, all 1053 legal combinations are created in 
exactly that number of generated items. The coverage that 
is reported for the cross is 39.8%. If we define this as the 
coverage target for a constrained random run a comparison 
can be made.

As we would expect from a constrained random generation, 
the progress towards the coverage goals tails off as we get 
closer to the goal, with significant redundancy in the vectors 
produced. After 120,000 items, the constrained random 
generation has hit 1050 of the 1053 legal combinations. It 
takes another 20,000 generated items 
to raise this to 1051. A little over another 
60,000 items puts us at 1052, and the 
final missing combination is achieved 
after a total of 271,700 items. The 
effective improvement in the number of 
vectors it takes to achieve the coverage 
goal using Questa inFact is therefore 
258x versus the constrained random 
equivalent. If each vector took a minute 

to simulate (not an unreasonable estimate) 
that would mean 17.5 hours of simulation 
with Questa inFact, and 4,528 hours 
(or almost 27 weeks) with constrained 
random. Of course, in a real verification 
project, other techniques would be used 
to get to coverage faster, such as using 

multiple parallel simulations, adding directed tests, or writing 
further constraints to steer the random generation closer to 
the missing coverage. A combination of these techniques 
would probably be used (rather than waiting for three 
months for the last three valid vectors).

WHAT IF I CAN’T CONTROL ALL FIELDS  
FROM A GRAPH?
A little more complex case is when one or more fields 
can’t be selected by the graph, but is a product of some 
testbench state. In this case, we would use the new import 
feature in inFact to bring awareness of this field value to the 
inFact algorithms. With a slight modification (two lines of 
code affected) to the example Robot control testbench, we 
can move the mode field out of inFact’s control and instead 
randomize it before we call the inFact graph to select the 
rest of the fields. When a variable is declared as an import 
in the graph, then its value is read from the testbench when 
the algorithms traverse through that node in the graph. 
Figure 10 shows the ‘mode’ field expressed as an import – 
denoted by the arrow on the left side of the ellipse. 

Note that the domain of the variable is still expressed in the 
rules, allowing the inFact algorithms to target all the desired 
values and cross combinations.

 
 
     Figure 10. Example of an imported variable 
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In this case, during simulation, a different aspect of the 
intelligence in Questa inFact’s algorithms is exercised, that 
is the ability to react to the testbench state when producing 
a new stimulus item. If the value of mode is imported into 
the graph, and the coverage strategy is still to produce the 
cross of all fields, including mode, then Questa inFact can 
still far outperform constrained random, taking only 1340 
items to produce all the 1053 valid items.

DO I LOSE ANYTHING WITH THIS APPROACH?
Over the years I have been working with verification 
teams and verification technologists I have often heard 
this question. After all, random generation produces more 
vectors than just the ones needed to meet the coverage 
metrics defined by the user. The generally accepted 
opinion is that more vectors simulated is equivalent to more 
verification. The promise of achieving the targeted coverage 
in anything from a 10th to a 1000th of the previously 
required vectors can therefore be a concern. The problem 
is there is no way to discern if those extra, mostly redundant 
vectors, that were generated before were actually exercising 
the DUT in a different or useful way. There are two ways to 
respond to this concern.

The first way requires virtually no extra effort on behalf 
of the verification team, and is to use Questa inFact to 
prioritize the needed vectors for coverage, and then 
continue to run in a purely random mode for as long as time 
and resources allow. A variant of this approach would be 
to have Questa inFact target the desired coverage more 
than once, taking advantage of the fact that it will produce 
different vectors each time, in a totally different order. This 
means that the combinations that the verification engineers 
thought were of interest get exercised in different contexts.

A second approach assumes that the original verification 
metrics were not as comprehensive as they could be. 
Expanding the scope of these metrics does of course 
require some effort, but this effort clearly pays off in the 
confidence level that can be achieved, and as proven in 
some cases, in the increased number of bugs that are  
found earlier in the verification process.

SUMMARY

As the description of the stimulus to the DUT becomes 
more complex, with complex constraint relationships 
needing to be defined, reliance on randomly generated 
stimulus to achieve comprehensive coverage metrics 
becomes a less predictable and more labor intensive 
process. With the addition of algebraic constraints to the 
Questa inFact rule based stimulus description a more 
intelligent approach can be taken, that can be tremendously 
effective in saving time and resources and is now much 
easier to implement.
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INTRODUCTION
With the sheer volumes of data that are produced from 
today’s verification environments there is a real need for 
solutions that deliver both the highest capacities along 
with the performance to enable the data to be accessed 
and analyzed in a timely manner. There is no one single 
coverage metric that can be used to measure functional 
verification completeness and today’s complex systems 
demand multiple verification methods. This means there is 
a requirement not only to unify different coverage metrics’ 
but also to unify data from multiple tools and verification 
engines. Data management forms the foundation of any 
verification environment.

DATA STORAGE REQUIREMENTS
The reality of multiple tools, engines and metrics means the 
ideal verification database has to support more than just 
coverage. It has to have the capabilities to answer many 
questions posed by not only the verification engineer, but 
also the design engineer, the project manager and all other 
stakeholders in the verification process. The database 
infrastructure must provide the visibility into the process 
across many dimensions. The major requirements of such a 
database are as follows

Unification. No one coverage metric or a single 
verification engine can measure completeness. The 
database has to allow the storage of a large mix of coverage 
metrics from many data sources including simulation, 
emulation, FPGA prototyping, static formal analysis tools, 
software-driven tests and many other application-specific 
sources. It should be possible to combine data based on 
blocks, systems, instances, tests, users and time to give 
the most flexibility. Combining this data based on so many 
variables requires a flexible architecture and the need to 
store details about how, where and when the coverage 
data was generated. This allows the verification engineer 
to determine how and when a particular metric was or 
wasn’t hit. The process also needs the ability to allow these 
metrics and measurements of certain system requirements 

to be associated with a verification plan and ultimately  
the design specification.

Capacity & Performance. Unifying the verification 
data storage from all tools and metrics can result in huge 
volumes of data. The storage capacity must be able to 
handle the very largest of today’s designs and the designs 
of the future. As the stored data increases it is important to 
have an environment that is optimized for capacity and has 
the performance to manipulate and query potentially large 
amounts of data within workable limits. Combining results 
from tests that have many millions of coverage bins would 
require such a database.  This often has a negative impact 
on the databases’ capacity and can become a tradeoff. 
Ideally a solution should have the ability to solve both the 
capacity and performance issues within the largest of 
projects now and in the future.

Visibility & Analysis. Allowing queries on stored 
verification data requires access to the database. The 
results from many verification engine runs need to be 
combined and the verification engineer needs to be able to 
analyze which runs with which particular settings caused 
particular metrics to be hit. This type of analysis is required 
to figure out redundancy in tests or to isolate a particular 
test or set of tests of a particular feature, thus allowing 
the verification process to be further optimized. With the 
combining or merging of data it’s also necessary for the 
Verification Engineer to be able to query the database to 
find out information on the history of how the data was 
generated. This includes not only the command line options 
for generating the single tool runs but also the utilities 
used to add and combine data to the database across the 
progression of the project. Reductions and optimizations 
are required on the data so that trends can be seen across 
the duration of the process. The verification process is 
dynamic. With the addition of new functionality in the 
design, as well as the process of finding and fixing bugs, 
there is a need to be able to look at the trends of different 
metrics at a higher level to determine if progress is being 
made towards completion.

Data Management: Is There Such a Thing  
as an Optimized Unified Coverage Database?  
by Darron May, Manager of Verification Analysis Solutions and Gabriel Chidolue, Verification Technologist,  

Mentor Graphics Corporation
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Control. With the continual data analysis throughout 
the project the Verification Engineer also needs to have 
control over the coverage model and the ability to document 
decisions made during the process. The database has to 
have the ability to manipulate the overall coverage metrics 
into an overall metric showing the level of completion. It also 
needs the ability to trade-off one metric from another based 
on its importance with a user controlled weighting system. 
As verification progresses it’s also important to document 
any exclusions to the coverage model and the reasons why 
they have been excluded. These types of exclusions could 
be made automatically by the verification tools. An example 
is a static formal tool excluding unreachable code, ahead of 
dynamic simulation

Extensibility/Openness. Finally, the database needs 
to be extensible and allow the addition of any information or 
metric that may be application-specific or even not currently 
known. An example is information or metrics from a tool yet 
to be developed. It also needs to be completely open and 
have the ability to add or remove any data with a clearly 
defined interface. This requirement allows any third-party 
tool to write data into the database or extract data, allowing 
the unification of data across tools from one or multiple 
vendors.

MENTOR GRAPHICS UNIFIED COVERAGE DATABASE
The Unified Coverage Database (UCDB) from Mentor 
Graphics has been architected from the ground up to meet 
the requirements outlined earlier. The UCDB has been the 
default coverage database format for storing code coverage 
and functional coverage metrics in both ModelSim and 
Questa since version 6.2. In addition, the extensibility of 
the UCDB has allowed test data, assertion and coverage 
results from Mentor Graphics Questa Formal Verification, 
Questa ADMS and Veloce® Emulation products to be 
combined. In addition to its coverage storage abilities, 
the UCDB also stores verification plans and test-specific 
data, making it a solid anchor for any verification team 
that intends to adopt a verification methodology that is 
driven from verification plans, design and/or requirements 
specification documents. One of the biggest verification 
challenges is having the ability to bring together the data 
and benefits from multiple verification techniques. The 
UCDB merge algorithms have been developed to take into 
consideration data from both formal (static) and dynamic 

verification engines. It has the ability to combine results 
and report on any conflicts that may occur when comparing 
static and dynamic techniques, as well as allowing a static 
formal engine to exclude coverage from the dynamic 
simulation engine that is flagged as unreachable.  

Leveraging the unique test-associated merging capability 
it is possible for a verification team to maintain a single 
merged database that contains merged coverage data from 
multiple verification runs or simulations in a regression. 
A record of the attributes, commands and settings of any 
tool are associated with each test or testcase, giving it a 
unique label to allow test association with coverage data. 
The architecture allows verification plans to be imported 
and linked with multiple coverage metrics or tests. This 
single database has enough information within it to help 
figure out the test(s) that incremented a specific coverage 
bin. There is enough information to perform test ranking 
(aka coverage grading) on this merged database that allows 
the verification team to identify the most effective tests 
or seeds in the case of constrained random simulation. 
Merge performance has the biggest impact on any ranking 
algorithm; to gain the most optimal results the number of 
merges required for what if analysis is the square of the 
number of tests plus the number of tests, all divided by 
two. This greedy algorithm makes the overall performance 
of a ranking algorithm very sensitive to the single merge 
performance due to the sheer number of merges required 
to gain the most optimal result. With the UCDB’s unique 
test-association merge, this analysis can be carried out 
from the single merge database, bringing the necessary 
performance for fast and accurate test analysis. Test 
association provides substantial disk space savings 
since it is no longer necessary to keep all the individual 
coverage databases after a test-associated merge has 
been performed. Another benefit is high performance of 
the analysis tools. Questa users benefit from two orders of 
magnitude reduction in their storage needs.

Once a verification project gets underway, it becomes 
necessary to track project momentum by looking at 
the trends of metrics over time. The UCDB has been 
architected to support shallow or “trend” merge of multiple 
merged UCDB databases in order to capture trend 
information for coverage within the merged UCDBs. The 
resulting trend UCDB can be visualized via graphs, HTML 
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or CSV data that can be extracted from it for processing 
and analysis in other tools. Giving users an automated way 
of reducing and keeping the relevant data has the benefit of 
further reducing the volume of data required to analyze the 
project’s progress.

The UCDB is extensible, scalable and open. Many different 
verification plan formats including Word, Frame, Excel, and 
Docbook can be imported into the UCDB. With a little XML 
and Style-sheet knowledge, a user can expand the list even 
further. The user can add any test-specific information in 
the form of an attribute value pair to the UCDB in addition 
to the attributes automatically captured by the tools. For 
the ultimate in flexibility, there is the UCDB C API. TCL-
based CLI commands in tools such as ModelSim and 
Questa are implemented using the UCDB C API. Since the 
UCDB C API is open, it can be leveraged in many different 
interesting ways. For example, coverage data in third party 
tools can be extracted into the UCDB and then combined 
with coverage from Mentor Graphics tools and analyzed 
using the Verification Management tool suite in Questa. 
The UCDB C API could be used to read existing UCDB 
files in order to perform tasks such as generation of custom 
reports, performing custom queries or analysis.

Finally, the database requires different access methods 
to allow both performance and capacity. This has been 
solved in the fact that the database has both in-memory 
and streaming access to the stored data. This is extremely 
important because different analysis tools have different 
requirements. Some need the random access of an in-
memory mode which allows multiple queries, while others 
need the performance to quickly access particular data 
for reporting purposes. The UCDB has been uniquely 
architected to achieve both modes of access and operation 
giving the best of both worlds.

THE UCDB HISTORY
Mentor Graphics began architecting the unified database 
nearly seven years ago. In early 2006 it released the first 
implementation, used natively by its simulation products 
to save coverage and assertion data. The database 
was developed from the start to store all the information 
needed to manage the verification process. The open API 
(Application Programming Interface) has been used to 
develop all the verification management and coverage tools 
within Questa and ModelSim, and is key to its extendibility 

to other verification tools such as Questa ADMS and 
Questa Formal tools. This proven implementation has 
been used and stressed with many users’ designs 
and environments allowing the database itself to be 
refined, optimized and tuned to provide the capacity and 
performance required by the largest of designs. 

Soon after the first implementation of Mentor Graphics’ 
UCDB was being stressed in its use on real projects, 
Accellera formed the UCIS (Unified Coverage 
Interoperability Standard) working group. This group was 
formed with the goal of developing a standard for the 
interchange of coverage between vendors. It is made up 
of both EDA vendors and user representatives from the 
largest companies in the industry. After a period of time, 
Mentor Graphics representatives decided to donate its 
technology as a starting point for the standard due to the 
fact that it clearly met the requirements laid down by the 
group. This triggered other donations from other sources. 
However, the UCDB API was chosen as the basis of the 
standard after a lengthy period of analysis of the donated 
technologies, giving further credence to its capabilities. 
With the standardization process well under way, users 
will start to benefit from Mentor Graphics pioneering work 
and database optimizations, particularly as other vendors 
introduce solutions based on the UCIS.

CONCLUSION 
Mentor Graphics had the vision that the cornerstone 
of verification solutions was an optimized and unified 
database. The UCDB was architected and implemented 
to have the capabilities to allow the unification of all 
verification data and allow the development of very powerful 
verification management capabilities, which can be found 
within Questa today. The UCDB implementation supports 
a growing number of both Mentor Graphics and third 
party tools, and also many custom user-created analysis 
tools using the Open UCDB C API. An optimized unified 
database is definitely a reality today, particularly when using 
Mentor Graphics products.
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INTRODUCTION
As SOC integration complexity grows tremendously 
in the last decade, traditional blackbox checker based 
verification methodology fails to keep up to provide enough 
observability needed. Assertion-based verification (ABV) 
[1] methodology is widely recognized as a solution to this 
problem. ABV is a methodology in which designers use 
assertions to capture specific internal design intent or 
interface specification and, either through simulation, formal 
verification, or emulation of these assertions, verify that the 
design correctly implements that intent. Assertions actively 
monitor a design (or testbench) to ensure correct functional 
behavior. They detect design errors at their source, greatly 
increasing observability and decreasing debugging time.

Bugscope Assertion Synthesis
The ABV methodology is easy to adopt in most existing 
verification flows since it can be adopted incrementally. 
Besides capturing design intent manually with an assertion 
language such as system verilog assertion (SVA), an 
Assertion Synthesis tool, such as NextOp’s Bugscope, 
can be used to create high quality assertions based on 
simulation activities [2]. 

 Given a set of regression tests and the corresponding 
RTL, Bugscope generates properties which satisfy three 

requirements: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

•	 true at every cycle of the simulation
•	 not easily implied by RTL only
•	 orthogonal to each other 

These properties are further classified by designers as 
either assertions or cover properties. Assertions are 
checked in to increase verification observability while cover 
properties directly point to the missing functional coverage 
by simulation (see Figure 1). Intuitively, Bugscope captures 
the design/verification snapshot in the format of properties. 
Such information guides further verification. Therefore, 
Assertion Synthesis enables a progressive, targeted 
verification process, allowing design and verification teams 
to more easily uncover corner case bugs, expose functional 
coverage holes, and increase verification observability. The 
two advantages of Assertion Synthesis are

•	 Reduce manual assertion writing effort for designers 
which is believed to be the main hurdle for design  
team to adopt ABV;

•	 Synthesized cover properties provide a unique 
functional coverage report to the user; 

In this article, we describe a unified verification flow by 
incorporating Bugscope into Mentor Graphics Questa/
Veloce verification flow. We will demonstrate how to 
integrate Bugscope with Questa simulation, Questa formal 
verification and Veloce simulation acceleration environment 
to achieve better observability.

Questa Simulation
Questa Simulation supports multiple verification 
methodologies including Assertion Based Verification 
(ABV), the Open Verification Methodology (OVM) and the 
Universal Verification Methodology (UVM) to increase 
testbench productivity, automation and reusability. It 
enables the automatic creation of complex, input-stimulus 
using scenarios described in terms of constraints and 
randomization using SystemVerilog or SystemC Verification 
(SCV) library constructs. Questa Simulation combines all of 
these forms of stimulus generation with functional coverage 
to identify the functionality exercised by the automatically 
generated stimulus. Using assertions as feedback for test  
 

A Unified Verification Flow Using Assertion Synthesis Technology 
by Yuan Lu, Nextop Software Inc., and Ping Yeung, Mentor Graphics Corporation
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Figure 1 Assertion Synthesis Technology 

 

 
creation, engineers can adjust constraints to focus random 
testing on coverage holes. 

Questa Formal Verification
Questa Formal Verification supports general assertion-
based formal verification to ensure that the design meets 
its specific functional requirements. With support for PSL, 
SVA, and OVL, including multi-clocked assertions, Questa 
Formal Verification easily verifies very large designs with 
many assertions. Its multiple high-capacity formal engines 
cooperate to complete verification faster. Questa Formal 
Verification is integrated with the Questa Simulation for 
easy debug of assertion failures.

Veloce Simulation Acceleration
Veloce Simulation Acceleration speeds up block-level and 
full SoC regression test runs by 100s to 1000s of times. 
It includes a simulation-like debugging environment, has 
100% internal DUT visibility, and supports traditional break 
pointing and ABV. In a transaction-based acceleration 
environment, Veloce  uses TestBench XPress (TBX) 
Software [3], and host-based transaction-level test benches 
to drive transactors in the Veloce system to drive the 
DUT. For test benches written in C/C++ or System C, TBX 
interfaces directly with the Veloce and executes the test 

bench program. For SystemVerilog testbenches, TBX  
runs Questa on the host PC to drive the test bench through  
the Veloce-based transactors and DUT.

Questa Verification Management
Questa collects all coverage data — code coverage, 
assertions, formal, and functional coverage — into a single 
highly efficient Unified Coverage DataBase (UCDB) and 
makes them available in real-time within the testbench or  
for post-processing with Questa Verification Management.  
It can also capture information about the broader 
verification context and process, including which verification 
tools were used and even which parameters constrained 
these tools. The result is a rich verification history, one that 
tracks user information about individual test runs and also 
shows how tests contribute to the overall coverage objects.

A UNIFIED VERIFICATION FLOW WITH ASSERTION 
SYNTHESIS TECHNOLOGY
Given a testbench, no matter whether it is at block level 
or chip level, Bugscope generates assertions and cover 
properties based on the given tests. Expressed in SVA  
with binding statements ready, these property files are 
directly given to Questa simulator, Questa formal verifier  
or Veloce hardware accelerator to consume to reach 
intended coverage goals, check design intent, therefore 
reach verification signoff criteria (see Figure 2 on the 
following page).

A Unified Verification Flow Using Assertion Synthesis Technology 
by Yuan Lu, Nextop Software Inc., and Ping Yeung, Mentor Graphics Corporation
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 Figure 2 Unified Verification Flow with Assertion 

Synthesis Technology 

Unified Simulation Flow
Given a block level testbench, Bugscope generates 
assertions and cover properties in SVA format. The cover 
properties point to functional corner case holes which are 
missed by simulation. These SVA properties can be directly 
included in Unified Coverage DB which is consumed by 
Questa simulator to guide the user to reach 100% functional 
coverage.

The synthesized SVA assertions are used in block level 
testbench as more random seeds are executed. They 
are also shipped with the block RTL together to chip level 
simulation using Questa simulator. Note that the chip level 
observability is significantly improved by these whitebox 
assertions.

Connect Simulation  
and Formal Using Bugscope
Usage of formal verification suffers from two fundamental 
problems:

•	 Constraints are difficult to write and error prone. 
Proofs are as good as the constraints are correct. To 
our knowledge, there is no good way to guarantee 
correctness of the written constraints [4].

•	 Developing assertions to prove is difficult for designers. 

Bugscope provides a natural solution to these two 
problems. Based on a Questa simulation environment, 
Bugscope extracts both assertions and cover properties. 
Note that the cover properties point to the area where 
simulation fails to reach. Then we give both assertions and 
cover properties to Questa formal verifier to prove. This 
methodology naturally solves the above two problems:

•	 Synthesized cover properties provide a good corner 
case target to the formal engine to reach. If they are 
unreachable, the constraint environment is very likely to 
be buggy and should be corrected;

•	 Bugscope supplies a high density sets of assertions 
for formal engine to prove. They are easier than typical 
manual end-to-end assertions due to its whitebox 
nature. 

Because Bugscope can provide synthesizable set of SVAs, 
the integration between Bugscope and Questa Formal 
Verifier is painless.

New Assertion Synthesis Driven  
Hardware Accelerator Flow
In recent years, hardware acceleration technology has 
matured and been adopted by various leading chip 
companies. However, several fundamental issues still 
persist

•	 Testbench checking can only be applied on interface 
signals. Some features such as performance, whitebox 
behaviors are very difficult to capture at interface level. 



35

Those types of checking are often omitted.  
Therefore, the verification observability is low.

•	 There is no coverage measurement on the quality 
of verification. This can be a major hurdle for the 
verification team to adopt hardware acceleration. 

Assertions provide a natural solution to both of the above 
problems. As a matter of fact, Veloce hardware accelerators 
can accept SVA assertions as well as SVA cover properties. 
The problem is which assertions or cover properties should 
be added to the Veloce hardware acceleration. Therefore, 
we propose a new Assertion Synthesis driven hardware 
acceleration flow (see Figure 3).

 First, we use Bugscope to generate assertions and 
cover properties in a Questa simulation environment. 
At classification phase, the designers will notify which 
assertions and which cover properties they are willing to put 
into the hardware acceleration environment. Second, these 
assertions and cover properties are filtered through Questa 
Formal Verifier. If an assertion is proven to be true, it will be 
removed from the list because it will never catch bugs as 
long as RTL doesn’t change. Similarly, if a cover property is 
proven unreachable, it will be removed from the list because 
it will never be reachable as long as RTL doesn’t change. 
Note that this step is important because the resource on 
Veloce hardware is limited. Table 1 shows the effectiveness 
of the Questa Formal Verifier to help reduce the number of 
redundant properties. Finally, the left assertions and cover 
properties are integrated into Veloce Hardware Accelerator 
to improve the observability. 

CONCLUSION
This article introduces a new Quest/Veloce verification 
methodology based on Assertion Synthesis technology. 
This methodology automates the assertion based 
verification and solves the observability problem in the 
SOC verification. A number of customers have used this 
methodology successfully and have found bugs in their 
designs [5].
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Block Name #FFs #Assertions #Proven Assertions #Checkin Assertions

BLOCK1	 10330  128  29  99

BLOCK2 20783 101 12 89

BLOCK3 169518 68 37 31

BLOCK4 69566 65 7 58

BLOCK5 270197 362 85 277

Table 1 use Questa Formal Verified to Reduce # of Assertions on Veloce

Figure 3 Assertion Synthesis Driven Hardware Acceleration Flow
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INTRODUCTION
This article describes “asureMark™ ” - the Functional 
verification Capability Maturity Model (FV-CMM™) 
benchmarking process developed by TVS to help the user 
measure the maturity of their verification processes and to 
provide a framework for planning improvements. 

When describing any activity it is important to clearly define 
its purpose. In this case we needed to understand how our 
customers benefit from applying benchmarking:

1.	The constant increase in complexity of electronics 
means that functional verification faces an ever growing 
challenge. Hence it is essential not only to consider 
today’s challenges but anticipate the future. Companies 
that are often in crisis because their management has 
been effectively ambushed by this constant march of 
verification complexity. Companies therefore need 
a process that can give them a clear warning before 
things go wrong!

2.	Functional verification requires a vast amount of 
resources of all kinds: people, machines and EDA 
licenses. Even more importantly it has a major 
impact on project timescales. Yet often engineers 
and management in companies have very different 
perceptions of current capabilities and fail to identify or 
address key areas of weakness.

3.	A process of continuous improvement needs a shared 
‘language’ and framework that can be used to identify 
issues, then define, prioritize and monitor tasks. This 
is a key requirement for companies to ensure they 
will continue to be able to meet future verification 
challenges.     

Over the years there have been numerous attempts to 
develop benchmarking methodologies. One of the most 
widely used is the Capability Maturity Model (CMMI) 
developed by the Software Engineering Institute at 
Carnegie Mellon University. Although aimed at software 
engineering it provides a framework that is widely applicable 
to most business activities. However, whilst we have drawn 

considerable inspiration from CMMI, it has a number of 
serious limitations when trying to use it to benchmark a 
highly specific activity such as functional verification:

1.	The CMMI is relatively abstract and does not address 
domain specific ‘capabilities’, yet these are at the heart 
of effective functional verification[1]

2.	Deploying CMMI is actually quite an involved process 
that takes considerable time and expertise. Even 
reading the specification is quite a lengthy commitment. 
Our experience suggested that this would be a major 
barrier to adoption.

3.	Function actually follows form. The capabilities of teams 
are largely shaped by their organization and practices. 
Imposing a rigid benchmarking process can over time 
distort an organization and prevent necessary change. 
Hence any benchmarking process needed to be flexible 
in order to meet the current and future needs of different 
companies.  

Much the same observations have been made 
independently by other industry experts (Foster & Warner, 
6/2009). For the above reasons we aimed to develop 
a more specific, but flexible and light-weight process 
dedicated to benchmarking functional verification. The FV-
CMM™ is a framework that provides a light weight solution 
for benchmarking functional verification capability which 
can provide:

•	 An integrated view of the organization from the 
viewpoint of functional verification

•	 An objective benchmark for measuring the maturity of 
functional verification activities

Benchmarking Functional Verification 
by Mike Bartley and Mike Benjamin, Test and Verification Solutions

The FV-CMM™ is a framework for benchmarking 
functional verification capability which provides:

•	 An integrated view of the organization from  
the viewpoint of functional verification

•	 An objective benchmark for measuring the 
maturity of functional verification activities

•	 A framework for process improvement that can 
help management define goals and priorities
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•	 A framework for process improvement that can help 
management define goals and priorities 

Whilst it has some similarities to the ‘Evolving Capabilities 
Model’ Foster and Warner proposed it has a unique 
approach to decomposing capability in a ‘top down’ 
fashion and then evaluating maturity ‘bottom up’. The rest 
of this article describes the three key elements of this 
benchmarking process: capability, maturity and the actual 
benchmarking process that TVS adopts.

CAPABILITY
The FV-CMM™ benchmark has a hierarchical structure 
that starts by breaking capability down into key process 
areas such as ‘functional verification planning and 
scenario creation’.  These can be customized for each 
client as a company developing interface IP will face 
different challenges to one developing CPUs or doing 
SoC integration. The process areas may also change over 
time as companies evolve and technology continues to 
develop. The only requirement is that each should have a 
clearly defined purpose and a clear impact on functional 
verification. We have so far defined 13 possible process 
areas ranging from ‘metrics, coverage and closure’ through 
‘specification and design’ to ‘organizational capability’.

Each process area consists of a set of specific goals (e.g. 
‘ensure the integrity of the code base’) and practices (e.g. 
’all tasks should have an agreed completion date’) that 
capture key requirements. For example in the case of 
‘specification and design’ the specific goals and practices 
for functional verification are:

•	 Give the verification team visibility of the architecture 
and micro-architecture corner cases

•	 Make the design ‘verification friendly’
•	 Make the design stable to ensure verification isn’t trying 

to hit a moving target 

These in turn are broken down into example actions and 
activities that address that issue. These are not intended 
to be exhaustive but do serve to connect the abstract 
framework to concrete actions. For example design stability  
 

includes ‘checking whether the project enforces a process 
of successively freezing the RTL’. This structure can easily 
be customized to the specific needs of different application 
domains, different design styles or different companies.

MATURITY
When evaluating maturity we consider three aspects: 

Ownership: this can vary from tasks, tools and expertise 
being specific to named individuals to ownership being 
shared across the project or the entire company wide 
community. This corresponds to the level at which: adoption 
has occurred, decisions are made, or support can sensibly 
be requested. This also reflects the process for continuous 
improvement that can vary from best practice being owned 
by individuals who implement improvements in an ad hoc 
fashion to institutionalized fact based learning.

Visibility: this can vary from undocumented, with no 
external input, to living documentation with quantitative 
metrics and full involvement of the stakeholders. It 
involves the following three key aspects: the availability of 
documentation, the use of metrics for measuring progress 
and quality, and the use of reviews.

Execution: this can vary from ad hoc and incomplete 
to a repeatable process supporting fact based continuous 
improvement. Typical characteristics of a repeatable 
process are documentation and automation.

The maturity of each aspect is defined as being at one of 
five possible levels. Each of these levels corresponds to a 
clear step in maturity. These are:

Initial: Processes are typically ad hoc and applied 
incompletely or on a best effort basis, especially in times of 
crisis. Goals are often not satisfied. Processes are typically 
not documented or otherwise made repeatable and best 
practice remains in the ownership of individuals rather than 
being captured by the organization. Verification planning is 
either not performed or is performed and not documented, 
or plans are incomplete and not maintained once written. 
Stakeholders are not normally involved in the planning.  
 

Benchmarking Functional Verification 
by Mike Bartley and Mike Benjamin, Test and Verification Solutions
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Managed: The processes are performed consistently 
and the goals are satisfied. Processes are owned 
and aligned at project level. They are automated, or 
otherwise repeatable, and will serve to locally capture 
best practice.  However there are few specific checks on 
the capabilities of tools and processes. Initial verification 
planning is performed and documented but the plans are 
not maintained. Metrics are used to demonstrate progress 
(scenario completion, code coverage, bug rate) but not to 
check that the plan has been implemented. The status of 
the work is only visible to management at defined points 
and the predictability of verification completion is weak.

Defined (also known as ΄Planned‘): The 
processes are planned in conjunction with the relevant 
stakeholders. Implementation is adequately resourced. 
The verification plan is either maintained over the life of the 
project or is a living plan. In either case there are checks or 
coverage metrics allowing the results to be monitored and 
reviewed. The capability of specific processes and tools is 
reviewed qualitatively to ensure good alignment with tasks. 
The predictability of verification completion is strong.  
 
 
Table 1: Maturity levels for the three key aspects

Best practice is consistently shared across projects.

Quantitatively Managed: Using metrics and profiling. 
Living documentation ensures full visibility at all times and 
ensures the widest possible involvement of stakeholders in 
the verification process.

Optimizing: The organization practices fact based 
learning and continuous improvement at an institutional 
level using data collected across the organization and 
projects. Quantitative metrics are used for both coverage 
closure and continuous improvement of product, tools, 
process and organization. 

Table 1 below details how the five maturity levels map onto 
three aspects of ownership, visibility and execution

Process maturity is not a substitute for skilled and dedicated 
Engineers but it will make the work of those individuals 
more predictable and repeatable, and make it easier for the 
organization to learn from best practice.

PROCESS
Evaluation against the FV-CMM™ benchmark proceeds 
‘bottom up’ using the example actions and activities to  
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structure evidence gathering. This typically takes the form 
of in depth interviews with key project or department staff 
including verification managers, design managers and 
project managers as well as key verification experts. This 
may be backed up by reviewing project documents and 
data but it differs in subtle ways from an audit. Here the 
intention is to facilitate discovery and draw out the collective 
knowledge of the team rather than enforce practices. The 
observations are recorded and validated by being fed back 
for comment to the interviewees and other relevant staff.  
The reviewers then use their expertise and this evidence 
to ‘score’ the maturity of each of the three key aspects of 
ownership, visibility and execution for the associated goal 
or practice. Overall maturity is then evaluated based on 
the maturity of the three component aspects. Rather than 
impose an arbitrary algorithm we make this a subjective 
process, the only restriction being that the overall rating 
can’t exceed the range set by the individual aspects, 
hence three wrongs can’t make a right! The results for the 
individual goals or practices are in turn are used to guide 
the overall evaluation of each process area. All these 
results are captured in a single easily accessible spread 
sheet and can be made even more visible through the use 
of spider graphs to present the key results. Sometimes 
there is a mismatch in perception between various team 
members, or between engineers and management. This 
can be identified by following a 360 feedback process 
where staff, as well as the reviewers, score the maturity of 
the different process areas.

Whilst this evaluation is partially subjective the evidence 
based ‘bottom up’ flow aims to ensure the conclusions are 
fact based. By defining target maturity levels appropriate to 
the business and its future product roadmap a gap analysis 
can be conducted. The results can then be used  
to identify key issues and plan improvements in either 
specific processes or in overall functional verification 

maturity. Regular reviews against this model can ensure the 
organization maintains an appropriate level or help drive a 
process of continuous improvement, though subsequent 
audits should aim to apply common standards for evaluating 
maturity.

ASUREMARK™ IN ACTION: APPLYING FV-CMM™ 
TO UVM ADOPTION
TVS is not able to talk in detail about the application of 
FV-CMM™ with customers. Instead, this paper will discuss 
how it is applied to a company considering adoption of 
UVM [2] (the Universal Verification Methodology). UVM is 
being developed within Accellera’s Verification Intellectual 
Property Technical Subcommittee[3] and is supported 
by Mentor Grtableaphics, Cadence and Synopsys. It is 
gaining rapid widespread adoption within the verification 
community but, in the experience of TVS, mere adoption 
of a constrained random methodology such as UVM will 
not necessarily lead to verification improvements. The FV-
CMM™ benchmarking process will enable a company to 
understand better it’s readiness for the adoption of UVM.

For example, ‘functional verification planning and scenario 
creation’ is an important process area within constrained 
random verification. This process has a number of goals 
such as ‘Ensure the widest possible input into verification 
planning’ and ‘Make verification plan and its scenarios 
visible’ which break down into practices. The table above 
considers two of the practises that contribute the first of 
these two goals.

We have found that the output of the benchmarking  
process is best presented as a spider diagram such as  
the one shown in Figure 1 on the following page. The figure 
shows three assessments: internal, external and a target 
assessment. Having an internal and external assessment 
captures the differences in perceptions between the internal  

Table 2: Example application of FV-CMM™ to UVM adoption
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Figure 1: Spider diagram for verification maturity

 
team and the external TVS consultants which can lead to 
very valuable discussions. Finally, the target assessment 
allows for improvement plans to be defined in terms of 
the goals and practises required in order to maximise the 
benefits of UVM adoption. 

SUMMARY
The FV-CMM™ is a flexible, light-weight benchmarking 
process specifically targeting functional verification. This 
avoids some key limitations of a more general framework 
such as CMMI. 

Capability is captured top down by identifying process areas 
which are then decomposed into goals and practices that 
can then be linked to example actions and activities that 
connect the benchmarking process to concrete actions. 

Evaluation then proceeds bottom up by considering 
ownership, visibility and execution. Maturity is rated using 
five clearly distinct levels from ‘ad hoc’ to ‘Optimizing’. 

Doing a gap analysis against the business requirements 
helps TVS’ customers identify weak areas of their 
verification process in a timely fashion and the FV-CMM™ 
also provides a framework for planning improvements. 
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With the increasing number of different VITAL model 
families, there is a need to develop a base Verification 
Environment (VE) which can be reused with each new 
VITAL model family.

UVM methodology applied to the SystemVerilog Testbench 
for the VITAL models should provide a unique VE. The 
reusability of such UVM VE is the key benefit compared 
to the standard approach (direct testing) of VITAL models 
verification. Also, it incorporates the rule of “4 Cs” (Con-
figuration, Constraints, Checkers and Coverage). Thus, 
instead of writing specific tests for each DUT feature, a 
single test can be randomized and run as part of regression 
which speeds up the collection of functional coverage. 

The results show that UVM VE testbench, with respect  
to a standard direct test bench, requires nearly equal time 
to develop. In return it provides re-usability and much 
faster verification of each new VITAL model. The changes 
one needs to do are mainly related to the test where the 
appropriate configuration must be applied.

The prevailing method in verification of VITAL models was 
based on the use of a direct testbench where we can point 
out two basic problems:

1) For each model, a new testbench needs to be 
developed, which is time consuming, and may  
only be used with that specific VITAL model. 
 
2) The direct testing does not provide functional 
coverage information as the main parameter for  
the overall verification progress.  

In order to overcome the issues above, the answer was to 
migrate to UVM which is based on the well proven OVM 
Verification Methodology. The UVM methodology applied  
to the SystemVerilog Testbench for VITAL models should 
provide a unique VE that can be reused later with minimal 
changes. 

The initial version of the SystemVerilog VITAL testbench, 
which is based on UVM, is intended for verification of serial 

flash family of VITAL models. One serial flash VITAL model 
contains a set of specific instructions which is common for 
all models belonging to the serial model family. 

Having reusable verification components, we can 
significantly reduce the time needed to set the environ- 
ment for verification of each new serial flash model. By 
incorporation of “Three Cs” rule (Constraints, Checkers  
and Coverage), instead of writing specific tests for each 
DUT feature, a single test can be randomized and run  
as part of a regression which speeds up the collection  
of functional coverage.

The main parts of our UVM environment are: 

• Top module
• Test
• Configuration class
• Testbench class
• Environment class

 
The top module instantiates device-under-test (DUT) and 
DUT interface, used for connecting the VE with the DUT. 
Also, the top module generates the necessary clock signal 
and calls the predefined UVM task run_test(), which is used 
for running the specific test. The name of the specific test 
must be provided on the command line.

Since all verification components are defined as classes, 
they cannot be directly connected to the actual DUT 
interface but rather through the construct of virtual interface. 
The virtual interface is a SystemVerilog type and it is 
instantiated inside a specific VE component which has the 
need to access some signals on the actual interface (such 
components are the driver and monitor, for example). The 
actual interface is made visible to all components through 
the use of a predefined configuration table.

The main purpose of the configuration table is to 
parametrize the VE components so they can be easily 
customized from the specific test. Since UVM does not 
allow the interface to be directly added to the configuration 
table, a wrapper is defined around each interface.  

Universal Verification Methodology (UVM)-based  
SystemVerilog Testbench for VITAL Models  
by Tanja Cotra, Program Manager, HDL Design House
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This wrapper is stored in the configuration table by using 
the set_config_object() method. This enables every 
component, which needs access to the interface,  
to be able to retrieve it from the configuration table  
by using the get_config_object() method.

The wrapper is a user defined class which extends uvm_
object. It contains the instance of the virtual interface and 
its constructor takes the virtual interface as an argument. At 
the top level, where the actual interface is instantiated, this 
wrapper is also instantiated where, its constructor is called 
and the interface is passed in as an argument. This wrapper 
is added to the configuration table. Code example would be:

class dut_if_wrapper extends uvm_object;
   virtual dut_interface dut_if_vi;
   function new (string name, virtual dut_interface arg)
       super.new();
       dut_if_i = arg;
   endfunction: new
endclass

module top;
    ...
    dut_interface dut_if ();

    initial begin
       dut_if_wrapper if_wrapper =  
           new(“if_wrapper”,dut_if);
       set_config_object(“*”,“dut_if_wrapper”, 
            if_wrapper,0);
      ...
     run_test();
   end
endmodule

 
The set_config_object() sets the object into the 
configuration table. The first argument of the set_config_
object() method is *, which is the hierarchical path of the 
VE component for which we are setting information. In this 
case, the wildcard * makes the DUT interface available 
to the entire VE. The second argument is the name of 

the configuration parameter that we are setting. The third 
argument is the value of that parameter. The last argument 
determines if we are adding only the reference to the object 
(0) or to the actual object (1). The configuration parameter 
stored can then be retrieved inside the build() method of 
any component by using the get_config_object(). In this 
way, every component gets access to the actual DUT 
interface. This verification methodology simplifies accessing 
DUT’s signals and significantly improves the verification 
environment’s reusability. 

Each test contains an instance of the configuration 
class and testbench class. Inside the test, the object of 
the configuration class is constructed, and if necessary 
randomized. Then it is added to the configuration table.

The configuration, as “4th C”, is implemented through 
a configuration class. The fields of this class represent 
the values which will change when a new serial flash 
VITAL model appears. In this case, the fields are timing 
parameters (setup and hold times, for example) which 
will change with each new model. Similar to the interface 
wrapper, set_config_object() and get_config_object() 
are also used for this class, so that any component in the 
environment can retrieve it, if needed. It is set during the 
build phase of the test, so the new DUT will only be required 
to set different configuration parameters for the test without 
changing the rest of the environment.

The testbench class, consists of the following blocks:

1) Scoreboard
2) Coverage collector
3) Environment

Inside the build_phase() method, these three components 
are created. Also, the testbench extends two predefined 
methods: 

connect_phase() -  
to subscribe the scoreboard and coverage collector  
to monitor analysis port

end_of_elaboration_phase() -  
to set report verbosity level and to print  
testbench topology.
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To provide checkers and coverage, two components are 
subscribed to the monitor: scoreboard (which performs 
data checks) and coverage_collector (which contains 
SystemVerilog coverage groups).

The scoreboard class is defined by extending the base 
class uvm_scoreboard. The scoreboard represents a type 
of data checker as it checks for the written data integrity, 
erasure of particular locations, erasure of whole memory, 
read operation results, register access, etc.

The scoreboard collects information on the DUT’s inputs. 
Depending on the data driven into the DUT, the DUT’s 
functional specification and the current configuration, 
the expected output data is calculated and placed in the 
scoreboard list. When the output data from the DUT is 
collected, the data checker part of the scoreboard checks 
whether the DUT’s output data matches the expected 
scoreboard’s data. The scoreboard is a crucial block  
since it models the DUT behavior.

The scoreboard contains the memory model, resembling 
its organization (banks, sectors, subsectors). This memory 
model is preloaded with the same data as the DUT.

The scoreboard receives the monitor’s transactions. When 
data is being written into a memory location, the monitor 
sends this data to the scoreboard, which in turn provides 
that this data is written to the memory model.

In the case of reading data, the data checker compares the 
DUT’s data with the memo model’s scoreboard data. 

During the erase operation, the erase checker checks 
if both the memory model and the DUT’s memory were 
erased.

This testbench environment allows for functional coverage 
to be collected by the use of a coverage collector 
component. The coverage collector uses the collected bus 
transactions from the monitor and checks if all of the DUT’s 
features are covered. Coverage groups include different 
coverage items, checking if all of the cover items relevant 
combinations were covered by the transactions.

For example, coverage group read_cg checks if all locations 
have been read; coverage group write_cg checks if all 
locations have been programmed.

All of the necessary coverage groups are defined within 
the verification environment in order to check the device’s 
functionality.

The environment class instantiates only the agent 
component. Since data needs to be driven to the DUT,  
this environment requires an active agent which instantiates 
the sequencer, driver and monitor.

The DUT being verified with this VE is a memory with  
Serial Peripheral Interface (SPI). The main transaction 
class, by which all sequences are parametrized, is defined 
so that it contains all the necessary information for memory  
access (instruction_type, address, data, etc.). It has 
constraints to keep the values inside allowed ranges as 
specified by the DUT protocol. For example, the number of 
address bytes sent to the DUT depends on the instruction. 
If READ is issued, constraints keep the number of address 
bytes according to protocol to either 3 or 4.

The constraints are an important part of the environment. 
They are specified inside the main transaction, and also 
inside sequences and tests. The idea is to set constraints 
in the test on a specific sequence, and then all lower 
constraints (inside sequences and the main transaction)  
are set automatically.

All sequences are written and stored inside a separate 
file called seq_lib.sv. Inside the specific test one or more 
sequences from the seq_lib file are created, randomized  
if necessary, and started on the sequencer. For example,  
the read sequence contains the fields: address, number_
of_address_bytes and number_of_read_bytes. These fields 
are prefixed with rand, but also they are kept in reasonable 
range by using constraints. This approach enables the  
creation of a smaller number of sequences with random 
fields instead of manually writing a large number of specific 
sequences in a standard testbench.
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When a new serial flash VITAL model appears, the changes 
can be made from the test by setting the appropriate 
configuration. For example, a new serial flash model will 
have different timing parameters. From the test, the inline 
constraint is used to set appropriate parameters: 

         function void build_phase(uvm_phase phase);
             super.build_phase(phase);
             spi_configuration = 
spi_configuration_c::type_id::create(“spi_configuration”);
                     ...
             assert(spi_configuration.randomize() with { ... });
             set_config_object(“*”, “spi_configuration”,  
spi_configuration, 0);
             spi_configuration.print();
         endfunction: build_phase

  
Basically, all parameters that change with th new serial 
flash model, can be added to the configuration class and 
set appropriately from the test. Although this VE cannot be  
completely reusable with other families of VITAL models, 
it still offers a certain amount of reusability through UVM 
features like instance and type overrides.

The results show that this kind of testbench initially  
requires more time to develop, but in return provides  
re-usability and much faster verification of each new  
serial flash VITAL model.
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Functional debug is a dreadful yet necessary part of today’s 
verification effort. At the 2010 Microprocessor Test and 
Verification Workshop experts agreed that debug consumes 
approximately one third of the design development time. 
Typically, debugging occurs in two steps, triage and root 
cause analysis. The triage step is applied when bugs are 
first discovered through debugging regression failures. This 
occurs at the chip, system or sub-system level, where a 
verification engineer will group different failures together 
and perform an initial investigation to determine which 
engineers should deal with the bug. We refer to this as the 
triage step due to its similarity to how hospital emergency 
rooms assess incoming patients and determine the next 
step for treatment.  Once the bug has been passed on, 
the root cause analysis step begins. Here, the engineer 
responsible for the bug will determine its full cause and 
how to fix it. Both triage and root cause analysis must 
be performed accurately and efficiently to result in an 
effective debug process. This article focuses on the often 
neglected pain of triage. It presents a case study where a 
UVM verification environment is enhanced with powerful 
automation tools to improve the overall debug effort. More 
specifically, the use of Vennsa’s OnPoint and Mentor 
Graphics’ Questa suite of tools can distinguish between 
multiple error sources in the design and the testbench as 
well as reduce the debugging time by combining different 
failures of the same error source.

INTRODUCTION
Consider the following scenario: a verification engineer 
comes to work and his first task is to go through the 
previous night’s simulation regression failures. He must sort 
through the failures based on the simulation log files and 
error messages to determine the appropriate engineers to 
assign the failures to. Identifying the rightful owner without 
wasting other engineers’ time and without submitting 
duplicate failures greatly affects the debug efficiency of the 
entire team. More specifically, the verification engineer must 
answer the following questions as accurately as possible.  
 

•	 Which of the failures are due to the same  
error sources?

•	 Which of the failures are due to distinct  
error sources?

•	 Which of the failures are “new” bugs and  
have not been filed?

•	 Which of the failures have already been filed  
as bugs but have not been fixed yet?

•	 Who is the rightful owner of the block to assign  
the failure to? 

Answering these questions is difficult because there is 
limited visibility to the design’s inner workings; which paths 
are taken, what conditions are activated, and where the bug 
source originates. For example, determining whether two 
failures are due to the same error source cannot be known 
with full confidence until detailed root cause analysis is 
performed and the bug has been removed. In other words, 
this is a “catch 22” problem: triage cannot be performed 
perfectly until the bug is removed, and debug cannot be 
done efficiently until triage is performed.

To understand the inefficiencies stemming from triage it is 
worth looking at three typical cases. In case 1, after triage, 
the failure is forwarded to an engineer to perform root 
cause analysis and remove the bug. After hours of in-depth 
analysis, this engineer realizes that the problem does not 
originate in his/her block but from another block. This case 
is typical and can consume many engineering resources 
until the rightful owner is identified and the problem is 
corrected.

In case 2, shown in Figure 1 on the following page, there 
are two distinct bugs in the design. Both bugs are caught 
by a single checker in multiple simulation failures (i.e. 
multiple failing log files with a single type of error message). 
A checker is any mechanism that can distinguish between 
the correct and buggy behaviour of the design such as a 
monitor, comparator, scoreboard, or assertion. In this case, 
without looking into the design, tracing the signals and 
doing root cause analysis, one cannot determine that there 
are two distinct bugs in the design. As a result, assuming  

Efficient Failure Triage with Automated Debug: a Case Study  
by Sean Safarpour, Evean Qin, and Mustafa Abbas, Vennsa Technologies Inc.
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Figure 1: How 2 distinct bugs can fire the same checker 

Figure 2: How the 1 bug can fire two different checkers

 
that there is only a single bug source, one of the failures 
is diagnosed and fixed. The other bug may not be caught 
and fixed until a few days later when the first fix has been 
applied.

Case 3, shown in Figure 2 above, contains a single bug 
source which is caught by two different checkers in different 
tests. For example, in one test an assertion may catch the 
bug while in another a scoreboard checker may catch it. 
In this case, the problem is that during triage one cannot 
tell that the failures are caused by the same error source. 
As a result, both failures will be forwarded to one or more 
engineers to do the root cause analysis only to find out that 
they are looking for the same bug.

Fortunately, there is an automated 
solution that can address the triage 
problem. This article presents a case 
study where Vennsa’s OnPoint and 
Mentor Graphics’s Questa are used 
together to automate the triage task 
in a simulation based verification 
environment. The solution proposed 
answers the major questions posed 
by triage engineers and addresses 
the difficulties of the three cases 
described previously. The next 
section provides an overview of the 
design and testbench used in the 
case study, followed by a descrip-
tion of the failing test cases. The 
remainder of the article details the 
proposed triage solution followed by 
a discussion of the superior results 
achieved.

DESIGN AND TESTBENCH OVERVIEW
The following two sections provide an overview of the 
design used and its verification environment. The design is 
a VGA core and the verification environment is constructed 
using Unified Verification Methodology (UVM).

THE DESIGN
The design used in this case study is a VGA/LCD controller 
core written in Verilog that is composed of 17 modules 
totalling 4,076 lines of code and approximately 90,000 
synthesized gates. The controller provides VGA capabilities 
for embedded systems. The architecture consists of a Color 
Processing module and a Color Lookup Table (CLUT),  
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a Cursor Processing module, a Line FIFO that controls the 
data stream to the display, a Video Timing Generator, and 
WISHBONE master and slave interfaces to communicate 
with all external memory and the host, respectively. A 
diagram outlining the major system components is outlined 
in Figure 3 at the left.

 The operation of the core is straight forward. Image data is 
fetched automatically via the WISHBONE Master interface 
from the video memory located outside the primary core. 
The Color Processor then decodes the image data and 
passes it to the Line FIFO to transmit to the display. The 
Cursor Processor controls the location and image of 
the cursor processor on the display. The Video Timing 
Generator module generates synchronization pulses and 
interrupt signals for the host.

THE TESTBENCH
The test suite for the VGA core is constructed using UVM. 
Figure 4 above describes the structure of the verification 
environment. The testbench consists of the following major 
components:

•	 uvm_sequence_item – generates the stimulus  
using random stimulus constraints 

•	 uvm_sequencer – sets up the sequences  
of inputs for the test

•	 uvm_driver – sends the stimulus to the design  
under test (DUT)

•	 uvm_monitor – collects and monitors the  
output/response

• uvm_scoreboard – checks the correctness  
of the outputs 

Four main tests are introduced for testing this design. 
These include register, timing, pixel data, and FIFO 
tests. The transaction (uvm_sequence_item class) has 
randomly generated control-data pairing packets under 
certain constraints. These transactions are expected to 
cover all the VGA operation modes in the tests (and they 
may be reused to test other video cores such as DVI, 
etc). The sequencer (uvm_sequencer class) exercises 
different combinations of these transactions through a 
given testing scheme so that most corner cases and/or 
mode switching are covered. The monitors (uvm_monitor 
class) are connected to the DUT and the reference model 
respectively. They check the protocols of the responses, 
and make sure that the data being sent to scoreboard has 
correct timing. The scoreboard (uvm_scoreboard class) and 
checkers (uvm_checker class) contain all the field checkers 
which compare the data from the DUT, and reports the 
mismatches.

The golden reference model is implemented using C++. 
It receives the same set of stimulus from the driver 
(uvm_driver class) and produces the expected value of the 
outputs. Along with the reference model, 50 SystemVerilog 
Assertions (SVA) are also used to do some instant checks. 
While running simulation, SVA can catch unexpected 
behaviours of the design and prevent corrupted data going 
through the flow.

Figure 4: Verification Environment for the VGA Core with UVM classes
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SIMULATION AND FAILURES - WE HAVE BUGS
The design and testbench are simulated with Mentor 
Graphics’ Questa UVM and SVA support. After simulation  
is complete the log shows that a total of 5 failures occurred 
as shown in log snippet above.

We can see that the UVM checker has fired four times, 
three on the WISHBONE slave data port and once on the 
vsync port, and an SVA assertion has also fired once. 
Without doing any debug, the only triage that can be done 
at this stage is by inspecting which checkers failed and 
putting into bins the failures accordingly. For instance, 
based on the checkers, the following binning can be 
performed.

After binning is done, an engineer is assigned to each bin 
to further diagnose each failure and fix the problems. This 
binning may seem intuitive and simple to implement but, 
as discussed in the Introduction, there are cases where 
inefficiencies exist as one cannot distinguish between 
failure messages and the root cause of the problem.

 VERIFICATION FLOW 
WITH VENNSA ONPOINT 
Error! Reference source not found. describes the 
verification flow with Vennsa OnPoint’s diagnose and 

triage engines. As usual, the design 
and testbench are simulated with 
Mentor Graphics’ Questa simulator. 
Once a failure occurs a simulation 
value dump file such as wlf, vcd, or 
fsdb file is generated and provided 
to OnPoint. Vennsa’s OnPoint is 
an automated debugger tool that 
analyzes a simulation failure (along 
with the RTL files and a functional 
mismatch) and determines the 
root cause of errors. For each 
failure, OnPoint’s diagnose engine 
automatically generates a list of 
suspects that point to locations in 
the design that may be the culprit of 
the failure. For triage, the suspects 

are converted to signatures and passed to OnPoint’s triage 
engine, which then bins similar failures together. The bins 
contain failures that have a high likelihood of being caused 
by the same bug source. The bins are then assigned to 
the proper engineer who will perform in depth root cause 
analysis and fix the error. The suspects OnPoint finds for 
each failure can also be used by the engineers to perform 
root cause analysis and fix the bug.

The flow in Figure 5 below consisting of Questa simulation, 
OnPoint diagnose and OnPoint triage is applied to the case 
study design. OnPoint’s binning results are summarized 
below. Note that in addition to the bin number, each failure 
also has a hint describing whether the bug is in the RTL, 
the testbench stimulus side or the testbench checker side. 
Furthermore, the number of suspects found by the OnPoint 
diagnose engine is shown in the final column. 

Figure 5: Verification flow with Vennsa Onpoint
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Note that the binning done using Vennsa’s triage engine 
is very different from the basic approach based on error 
messages alone. Next, the triage results are analyzed with 
a discussion detailing the reasoning behind each bin. 

ANALYZING TRIAGE PERFORMED BY ONPOINT
In bin 1 of the OnPoint triage results, there is only one 
WISHBONE failure, WBS_SLV-01. This failure was binned 
together with the other WISHBONE failures in error 
message based triage. However, OnPoint’s triage engine 
has binned it in isolation because rather than just analyzing 
which checker has failed, the engine analyzes the path 
of the suspects taken from error source to the checker 
boundary. In this case, it can differentiate this path against 
those taken in the other failures. Furthermore, OnPoint 
has provided a hint that this failure is likely caused by a 
bug originating from the testbench stimulus side due to 
the high number of primary input suspects found. Figure 6 
shows a waveform inside the OnPoint user interface where 
the value and time that a fix can be applied on the primary 

inputs is shown. A close look 
at the input suspects confirms 
that the wrong value of 111... 
instead of 000... was applied 
to the input wbs_dat_i at time 
375ns-380ns. Indeed the bug 

was in the testbench during the initial read write tests for the 
WISHBONE interface which was sent an incorrect value  
to the DUT.

The other two WISHBONE failures, WBS_SLV-02 and 
WBS_SLV-03, are also binned separately by OnPoint (bin 
2 and bin 3). Again, the triage engine determines that the 
paths taken from the bug sources to the failure points are 
distinct enough to conclude that they stem from different 
bug sources. Figure 7 shows a side by side comparison 
of each failure’s suspect list with OnPoint’s user interface. 
Notice that the suspects generated for each failure are 
very different. Using the suspects generated, it is quickly 
found that the failure WBS_SLV-03 was caused by an 
incorrect initial register state in Color Processor, while the 
WBS_SLV-02 failure is caused by an incorrect assignment 
to a register in the FIFO module.

Bin 2 also contains the firing assertion SVA_01. Although 
the checkers are different, OnPoint binned the assertion 

Figure 6: Input suspect view showing that wbs_dat_i is the most likely fix

Figure 7: Suspect view for the WBS_SLV-02 (right) and WBS_SLV-03 (left) failures
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together with the WBS_SLV-02, after analyzing their 
suspects. Therefore, fixing the FIFO bug results in both the 
assertion and WBS_SLV-02 passing.

Finally, the failure SYNC_OUT-01 is binned on its own, 
similar to regular triage. However, OnPoint gives a hint 
that actual root cause of the failure may be in the checker 
itself rather than the DUT. This is because the suspects 
are all very close to the failure point. Indeed the bug was 
found in the C++ reference model that generated the wrong 
expected value for the checker.

CONCLUSION
Failure triage is a difficult problem. Relying on error 
messages to bin failures results in wasted time and lost 
productivity because of wrongfully associating bugs. In this 
article, Vennsa’s OnPoint and Mentor Graphic’s Questa 
tools are combined to develop an automated simulation and 
failure triage flow. A case study on a VGA controller design 
demonstrates that OnPoint’s triage engine can provide 
insight into the failures thus allowing the failures to be 
binned appropriately without any user guidance. As a result, 
the efficiency of both the verification and design engineers 
can be significantly improved.
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ABSTRACT 
Are macros evil? Well, yes and no. Macros are an 
unavoidable and integral part of any piece of software, and 
the Open Verification Methodology (OVM) and Universal 
Verification Methodology  (UVM) libraries are no exception. 
Macros should be employed sparingly to ease repetitive 
typing of small bits of code, to hide implementation 
differences or limitations among the vendors’ simulators, or 
to ensure correct operation of critical features. Although the 
benefits of the OVM and UVM macros may be obvious and 
immediate, benchmarks and recurring support issues have 
exposed their hidden costs. Some macros expand into large 
blocks of complex code that end up hurting performance 
and productivity, while others unnecessarily obscure and 
limit usage of otherwise simple, flexible APIs.1 

The ‘ovm_field macros in particular have long-term costs 
that far exceed their short-term benefit. While they save 
you the one-time cost of writing implementations, their run-
time performance and debug costs are incurred over and 
over again. Consider the extent of reuse across thousands 
of simulation runs, across projects, and, for VIP, across 
the industry. These costs increase disproportionately with 
increased reuse, which runs counter to the goals of reuse. 

In most cases, it takes a short amount of time and far 
fewer lines of code to replace a macro with a “direct” 
implementation. Testbenches would be smaller and 
run faster with much less code to learn and debug. The 
costs are fixed and up-front, and the performance and 
productivity benefits increase with reuse. 

This article will: 

•  Contrast the OVM macros’ benefits (what they do for 
you) with their costs (e.g. inflexibility, low performance, 
debug difficulty, etc.) using benchmark results and code 
analysis. 

•  Identify which macros provide a good cost-benefit 
trade-off, and which do not. 

•  Show how to replace high-cost macros with simple 
SystemVerilog code. 

•  Provide insight into the work being done to reduce the 

costs of using macros in the UVM, the OVM-based 
Accellera standard verification library currently under 
development. 

1.INTRODUCTION 
The hidden costs associated with using certain macros 
may not be discovered until the economies of scale and 
reuse are expected but not realized. A VIP defined with 
certain macros incurs more overhead and may become 
more difficult to integrate in large-scale system-level 
environments. 

The following summarizes our recommendations  
on each class of macros in the OVM. 

Table 1. Summary Macro Usage Recommendations 

Are OVM & UVM Macros Evil? A Cost-Benefit Analysis  
by Adam Erickson, Mentor Graphics Corporation

‘3ovm_*_utils Always use. These register the object or 
component with the OVM factory. While 
not a lot of code, registration can be hard 
to debug if not done correctly. 

‘ovm_info 
| warning | 
error | fatal

Always use. These can significantly 
improve performance over their function 
counterparts (e.g. ovm_report_info).

‘ovm_*_imp_
decl 

OK to use. These enable a component to 
implement more than one instance of a 
TLM interface. Non-macro solutions don’t 
provide significant advantage. 

‘ovm_field_*  Do not use. These inject lots of complex 
code that substantially decreases 
performance, limits flexibility, and hinders 
debug. Manual implementations are 
significantly more efficient, flexible, 
transparent, and debuggable. In 
recognition of these faults, the field 
macros have been substantially improved 
in the UVM.

‘ovm_do_* Avoid. These unnecessarily obscure a 
simple API and are best replaced by a 
user-defined task, which affords far more 
flexibility and transparency. 
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Application of these recommendations can have a profound 
effect. If the ‘ovm_field macros were avoided entirely, 
several thousands of lines of code in the OVM library would 
not be used, and many thousands more would not be 
generated (by the macros).  

The following section describes the cost-benefit of each 
macro category in more detail. 

2. COST-BENEFIT ANALYSES 
 
2.1 ‘ovm_*_utils 

Always use. 
The ‘ovm_*_utils macros expand into code that registers the 
class with the OVM factory, defines the create() method, 
and, if the type is not a parameterized class, the get_type_
name() methods. Because type registration with the factory 
must be performed in a precise, consistent way, and the 
code involved is small and relatively straightforward, these 
macros provide convenience without significant downside. 

2.2 ‘ovm_info | warning | error | fatal 

Always use.  
Issuing a report involves expensive string processing. If 
the message would be filtered out based on the verbosity, 
or if it’s configured action is OVM_ACTION, all the string 
processing overhead would be wasted effort. These report 
macros improve simulation performance by checking 
verbosity and action settings before calling the respective 
ovm_report_* method and incurring the cost of processing 
the report.  

These macros also conveniently provide a report’s location 
of invocation (file and line number). You can disable file 
and line number by overriding the ovm_report_server or 
by defining OVM_REPORT_DISABLE_FILELINE on the 
command line.  

2.3 ‘ovm_*_imp_decl 

OK to use. 
These macros define special imp ports that allow 
components to implement more than one instance of a 
TLM interface. For example, the ovm_analysis_imp calls 
the host component’s write method, of which there can be 
only one. Multiple such ovm_analsys_imps would all call 
the same write method. To get around this, you can invoke 
the ovm_*_imp_decl macro to define an imp that calls a 
different method in the component. For example:  

  ‘ovm_analysis_imp_decl(_exp) 
  ‘ovm_analysis_imp_decl(_act) 
class scorebd extends ovm_component; 
  ovm_analysis_imp_exp #(my_tr,scorebd) expect; 
  ovm_analysis_imp_act #(my_tr,scorebd) actual; 
  virtual function void write_exp(my_tr tr); 
       ... 
  endfunction 
  virtual function void write_act(my_tr tr); 
       ... 
  endfunction 
endclass  

Writes to the expect_ap analysis imp will call write_expect, 
and writes to the actual_ap analysis imp will call write_
actual.  

The imp_decl macros have a narrow use-model, and they 
expand into a small bits of code. They are OK to use, as 
they offer a convenience with little downside. 

If you do not want to use the *_imp_decl macros, you could 
implement the following. Define a generic analysis_imp that 
takes a “policy” class as a type parameter. The imps’ write 
method calls the static write method in the policy class, 
which calls a uniquely-named method in the component. 
You will need to define a separate policy class for each 
unique instance of the analysis interface, much like what the 
ovm_*_ imp_decl macros do for you. 

‘ovm_
sequence-
related 
macros 

Do not use. These macros build up a list 
of sequences inside the sequencer class. 
They also enable automatic starting of 
sequences, which is almost always the 
wrong thing to do. These macros are 
deprecated in the UVM and thus are not 
part of the standard. 
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class aimp #(type T=int, IMP=int, POLICY=int) 
    extends ovm_port_base #(tlm_if_base #(T,T)); 
  `OVM_IMP_COMMON(`TLM_ANALYSIS_MASK,                   
“ovm_analysis_imp”,IMP) 
  function void write (input T t); 
    POLICY::write(m_imp , t); 
  endfunction 
endclass 
 
class wr_to_A #(type T=int, IMP=int); 
  static function void write(T tr, IMP comp); 
    comp.write_A(tr); 
  endfunction 
endclass 
 
class wr_to_B #(type T=int, IMP=int); 
  static function void write(T tr, IMP comp); 
    comp.write_B(tr); 
  endfunction 
endclass 
 
 
class my_comp extends ovm_component; 
  aimp #(my_tr, my_comp, wr_to_A) A_ap; 
  aimp #(my_tr, my_comp, wr_to_B) B_ap; 
  virtual function void write_A(my_tr tr); 
   ... 
  endfunction 
  virtual function void write_B(my_tr tr); 
   ... 
  endfunction 
endclass 

 

2.4  ‘ovm_do_* 

Avoid.  
The ‘ovm_do_* macros comprise a set of 18 macros for 
executing sequences and sequence items, each doing 
it a slightly different way. Many such invocations in your 
sequence body() method will expand into lots of inline code. 
The steps performed by the macros are better relegated to 
a task. 

The ‘ovm_do macros also obscure a very simple interface 
for executing sequences and sequence items. Although 18 
in number, they are inflexible and provide a small subset 
of the possible ways of executing. If none of the ‘ovm_do 
macro flavors provide the functionality you need, you 
will need to learn how to execute sequences without the 
macros. And once you’ve learned that, you might as well 
code smartly and avoid them all together.   

virtual task parent_seq::body(); 
  my_item item; 
  my_subseq seq; 
  ‘ovm_do(item)  <-- what do these do? 
  ‘ovm_do(seq)   <-- side effects? are you sure? 
endtask 
 
----------- 
task parent_seq::do_item(ovm_sequence_item item,...); 
  start_item(item); 
  randomize(item) [with { ... }]; 
  finish_item(item); 
endtask 
 
virtual task parent_seq::body(); 
 my_item item = my_item::type_id::create(“item”,,get_
full_name()); 
 my_seq  seq =  my_seq::type_id::create(“seq”,,get_full_
name()); 
 do_item(item); 
 seq.start(); 
endtask  
 

Most uses of the inline constraints seen by this author set 
the address or data member to some constant. It would 
be more efficient to simply turn off randomization for those 
members and set them directly using ’=’. Encapsulating this 
procedure in a task is also a good idea. A task for simple 
reads/writes is shown on the following page: 



54

 
task parent_seq::do_rw(int addr, int data); 
  item= my_item::type_id::create 
               (“item”,,get_full_name()); 
  item.addr.rand_mode(0); 
  item.data.rand_mode(0); 
  item.addr = addr; 
  item.data = data; 
  item start_item(item); 
  randomize(item); 
  finish_item(item); 
endtask 
 
virtual task parent_seq::body(); 
  repeat (num_trans)  
    do_rw($urandom(),$urandom()); 
endtask 

 

2.5  ‘ovm_sequence macros 

Do not use.  
The macros, ‘ovm_sequence_utils, ‘ovm_sequencer_utils, 
‘ovm_update_sequence_lib[_and_item] macros are used 
to build up a sequencer’s “sequence library.” Using these 
macros, each sequence type is associated with a particular 
sequencer type, whose sequence library becomes the list of 
the sequences that can run on it. Each sequencer also has 
three built-in sequences: simple, random, and exhaustive. 

When a sequencer’s run task starts, it automatically 
executes the default_sequence, which can be set by 
the user using set_config. If a default sequence is not 
specified, the sequencer will execute the built-in ovm_
random_sequence, which randomly selects and executes a 
sequence from the sequence library. 

These macros hard-code sequence types to run on a single 
sequencer type, do not support parameterized sequences, 
and cause many debug issues related to random execution 
of sequences. In practice, the sequencer can not start until, 
say, the DUT is out of reset. When it does start, it typically 
executes a specific sequence for DUT configuration or 
initialization, not some random sequence. 

Users often spend lots of time trying to figure out what 
sequences are running and why, and they inevitably look  
for ways to disable sequence library behavior. (Set the  
 

sequencer’s count variable to 0, use ‘ovm_object_utils 
for sequences, and use ‘ovm_component_utils for 
sequencers.) 

The problems with the sequence library and related 
macros grow when considering the UVM, which introduces 
multiple run-time phases that can execute in parallel and in 
independently timed domains. A single, statically-declared 
sequence library tied to a single sequencer type cannot 
accommodate such environments. Therefore, the Accellera 
VIP-TSC committee decided to officially deprecate the 
sequence library and macros. The committee is currently 
developing a replacement sequence library feature that has 
none of the limitations of its predecessor’s and adds new 
capabilities.   

 

2.6 ‘ovm_field_* 

Avoid. 
The ‘ovm_field macros implement the class operations: 
copy, compare, print, sprint, record, pack, and unpack 
for the indicated fields. Because fields are specified as a 
series of consecutive macros calls, the implementation 
of these operations cannot be done in their like-named 
do_<operation> methods. Instead, the macros expand into 
a single block of code contained in an internal method, 
m_field_automation. Class designers can hand-code field 
support by overriding the virtual methods— do_copy, do_
compare, etc.. Users of the class always call the non-virtual 
methods—copy, compare, etc.— methods, regardless of 
whether macros or do_* methods were used to implement 
them. For example, consider the implementation of the 
ovm_object::copy non-virtual method: 
 

 function void ovm_object::copy(...); 
  m_field_automation(COPY,…); //‘ovm_field props 
  do_copy(...);           // user customizations 
endfunction 
 

The non-virtual copy first calls m_field_automation to take 
care of the ‘ovm_field-declared properties, then calls the 
corresponding virtual do_ copy to take care of the hand-
coded portion of the implementation.
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Because of the way the ‘ovm_field macros are implemented 
and the heavy use of policy classes (comparer, printer, 
recorder, etc.), macro-based implementations of the class 
operations incur high overhead. The next few sections 
provide details on this and other costs.. 

2.6.1 Code bloat 
Consider the simple UBUS transaction definition below.2 

class ubus_transfer extends ovm_sequence_item;                                 
rand bit [15:0		  addr;   
rand ubus_op		  op;   
rand int unsigned	 size;   
rand bit [7:0]		  data[];   
rand bit [3:0]		  wait_state[];   
rand int unsigned	 error_pos;   
rand int unsigned	 transmit_delay = 0;   
string			  master = “”;   
string			  slave = “”; 

`ovm_object_utils_begin(ubus_transfer)     
`ovm_field_int  (addr,           	 UVM_ALL_ON)     
`ovm_field_enum (ubus_op, op,	 UVM_ALL_ON)     
`ovm_field_int  (size,		  UVM_ALL_ON)     
`ovm_field_array_int(data,	 UVM_ALL_ON)     
`ovm_field_array_int(wait_state,	 UVM_ALL_ON)
`ovm_field_int  (error_pos,	 UVM_ALL_ON)
`ovm_field_int  (transmit_delay, 	 UVM_ALL_ON)
`ovm_field_string(master,	UVM_ALL_ON |
			   UVM_NOCOMPARE)     
`ovm_field_string(slave,	 UVM_ALL_ON |
			   UVM_NOCOMPARE)   

`ovm_object_utils_end  
endclass 

 

After macro expansion, this 22-line transaction definition 
expands to 644 lines, a nearly 30-fold increase. Real-world 
transaction definitions far exceed 1,000 lines of code. The 
following table shows the number of new lines of code that 
each of the ‘ovm_field macros expand into, for both OVM 
2.1.1 and UVM 1.0. In UVM 1.0, the macros underwent 
significant refactoring to improvement performance and 
provide easier means of manually implementing the do_* 
methods. 

Table 1 Macro expansion – lines of code per macro 

In contrast, the manual implementation of the same UBUS 
transaction consists of 92 lines of  code that is more 
efficient and  human-readable. 

2.6.2 Low performance 
The lines of code produced by the expansion of the ‘ovm_
field macros do not actually do much of the actual work. 
That is handled by nested calls to internal functions and 
policy classes (e.g. ovm_comparer, ovm_printer, etc.). 

Table 2 shows how many function calls are made by each 
operation for the macro-based solution and the equivalent 
manual implementation of the do_ methods. As a control, 
the size of the data and wait_state members were fixed  
at 4. 
  

 Table 2 Function calls per UBUS operation 

 

Operation OVM  
Macro/Manual 

UVM 
Macro/ 
Manual 

copy 
compare 

sprint - table 
sprint - tree 
sprint – line 

pack / unpack 
record (begin_tr / end_tr) 

 38 / 9 
51 / 18 

1957 / 1840 
518 / 441 
478 / 405 
140 / 28 
328 / 46 

 8 / 9 
17 / 18 

187 / 160 
184 / 157 
184 / 157 
80 / 28 
282 / 36

Macro  Lines of  
Code OVM3

 Lines of 
Code UVM2

`ovm_field int|object|string|enum 

‘ovm_field_sarray_* 

‘ovm_field_array_* 

‘ovm_field_queue_* 

‘ovm_field_aa_*_string 

‘ovm_field_aa_object_int 

‘ovm_field_aa_int_* 

‘ovm_field_event 

 51,72,17,41 

75-100 

127-191 

110-187 

76-87 

97 

85 

16

 50,75,43,45 

117-128 

131-150 

133-152 

75-102 

111 

85 

29
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Compare these results with a theoretical minimum of one 
or two calls, depending on whether the object has a base 
class. Calling copy in a macro-based implementation 
incurs 38 function calls, but only 9 in a do_compare 
implementation—a four-fold difference. Compare incurs 51 
method calls with macros versus do_compare’s 18 calls. 
Sprinting (and printing) incur thousands of calls for each 
operation. 

Each function call involves argument allocation, copy, and 
destruction, which affects overall performance. The results 
were alarming enough that significant effort was taken to 
improve the macro implementations in UVM. The UVM 
column shows this. 

Table 3 shows the run time to complete 500K operations for 
the macro-based and manual implementations of the do_* 
methods.  

Table 3 Performance – 500K transactions, in seconds4 

The poor performance results in OVM prompted a 
significant effort to improve them in UVM. The results of this 
improvement effort show that performance issues for most 
operations have largely been mitigated. 

Amdahl’s Law [5] states that testbench performance 
improvements are limited by those portions of the testbench 
that cannot be improved. Although this author still cannot 
recommend field macro usage over manual implementation, 
the macro performance improvements in UVM are very 
welcome because they afford significant performance 
improvements achievable in emulation and acceleration. 

Note that the sprint times are comparable between 
the macro-based and manual implementations. This is 

because there is no equivalent manual replacement for 
the formatting capabilities of the printer policy class, the  
primary source of overhead for this method. The UVM 
provides an improved uvm_printer policy class that makes 
performance less sensitive to output format. 

2.6.3 Not all types supported 
The ‘ovm_field macros do not support all the type 
combinations you may need in your class definitions. The 
following are some of the types that do not have ‘ovm_field 
macro support. 

• Objects not derived from ovm_object 
• Structs and unions 
• Arrays (any kind) of events 
• Assoc arrays of enums 
• Assoc arrays of objects indexed by integrals > 64 bits 
• Assoc arrays—no support for pack, unpack, and record 
• Multi-dimensional packed bit vectors—For example, bit 

[1:3][4:6] a[2]. The [1:3][4:6] dimensions will be flattened, 
i.e. treated as a single bit vector, when printing and 
recording. 

• Multi-dimensional unpacked bit vectors— For example, 
bit a[2][4] 

• Multi-dimensional dynamic arrays, such as arrays of 
arrays, associative array of queues, etc. 

2.6.4 Debugging difficulties 
The ‘ovm_field (and, still, the `uvm_field) macros expand 
into many lines of complex, uncommented code and many 
calls to internal and policy-class methods. 

If a scoreboard reports a miscompare, or the transcript 
results don’t look quite right, or the packed transaction 
appears corrupted, how is this debugged?   Macros would 
have been expanded, and extra time would be spent 
stepping through machine generated code which was not 
meant to be human readable. 

The person debugging the code may not have had anything 
to do with the transaction definition. A single debug session 
traced to the misapplication, limitation, or undesirable side 
effect of an `ovm_field macro invocation could negate the 
initial ease-of-implementation benefit it was supposed to 
provide. Manually implementing the field operations once 
will produce more efficient, straight-forward transaction 
definitions. 

Operation OVM  
Macro/Manual 

UVM 
Macro/ 
Manual 

copy 
compare 

sprint - table 
sprint - tree 
sprint – line 

pack / unpack 
record (begin_tr/end_tr) 

 43 / 2 
60 / 6 

1345 / 1335 
215 / 165 
195 / 165 
100 / 19 
533 / 40 

 8 / 2 
9 / 6 

165 / 159 
137 / 137 
137 / 132 
37 / 18 
413 / 37 
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As an exercise, have your compiler write out your 
component and transaction definitions with all the 
macros expanded.5 Then, contrast the macro-based 
implementations with code that uses straight-forward 
SystemVerilog:  

function bit my_obj::do_compare(ovm_object rhs, 
                          uvm_comparer comparer); 
    do_compare = 
      ($cast(rhs_,rhs) && 
       super.do_compare(rhs,comparer) && 
       cmd  == rhs_cmd && 
       addr == rhs_.addr && 
       data == rhs_.data); 
endfunction 

 

2.6.5 Other limitations  
The ‘ovm_field macros have other limitations: 

• Integrals variables cannot exceed ‘OVM_MAX_
STREAMBITS bits in size (default is 4096). Changing 
this global max affects efficiency for all types. 

• Integrals are recorded as 1K bit vectors, regardless of 
size. Variables larger than 1K bits are truncated. 

• The ovm_comparer is not used for any types other than 
scalar integrals, reals, and arrays of objects. Strings, 
enums, and arrays of integral, enum, and string types 
do not use the ovm_comparer. Thus, if you were to 
define and apply a custom comparer policy, your 
customizations. 

• The ovm_packer limits the aggregate size of all packed 
fields to not exceed OVM_MAX_PACKED_BITS. This 
large, internal bit vector is bit-by-bit copied and iterated 
over several times during the course of the pack and 
unpack operations. If you need to increase the max 
vector size to avoid truncation, you will affect efficiency 
for all types.  

2.6.6 Dead code 
The ‘ovm_field macros’ primary purpose is to implement 
copy, compare, print, record, pack, and unpack for transient 
objects. None of these operations are particularly useful 
to OVM components. Components cannot be copied 
or compared, and pack and unpack doesn’t apply. Print 
for components are occasionally useful for debugging 
component topology at start of simulation, but you 

could get that and more from a GUI debugger without 
having to modify the source. In most cases, a simple 
$display(“%p”,component) would suffice. 

The ‘ovm_field macros also implement a little-known 
feature called auto-configuration, which performs an implicit 
get_config for every property you declare with an ‘ovm_field 
macro inside an ovm_component. While convenient 
sometimes, it presumes all macro-declared fields are 
intended to be user-configurable, and you sacrifice control 
over whether, when, and how often configuration is 
retrieved. For ovm_objects, auto-config code is never used. 
For ovm_components, this feature incurs significant time 
to complete and is in many cases unwanted. To avoid this 
overhead, users often disable auto-config by not calling 
super.build() and simply call get_config explicitly for the 
properties intended to be user-configurable. 

Despite performance improvements in UVM, the field 
macros still incur code bloat, performance degradation, 
debug issues, and other limitations. The UVM also provides 
small convenience macros for helping users manually 
implement the do_* methods more easily. For these 
reasons, this author continues to recommend against using 
the field macros. 

3. ALTERNATIVE TO ‘OVM_FIELD MACROS 
The following sections describe how to write 
implementations of copy, compare, etc. without resorting 
to the ‘ovm_field macros. In all cases, you override the 
do_<method> counterpart. For example, to manually 
implement copy, you override the virtual do_copy method. 
For UVM, change the O’s to U’s. 

3.1 do_copy 
Implement the do_copy method as follows:  

1  function void do_copy (ovm_object rhs); 
2    my_type rhs_; 
3    if (!$cast(rhs_,rhs)) 
4      ‘ovm_fatal(“TypeMismatch”,”...”);  
5    super.do_copy(rhs); 
6    addr = rhs_.addr; 
7    if (obj == null && rhs_.obj != null)  
8      obj = new(...); 
9    if (obj!=null) obj.copy(rhs_.obj);   
10 endfunction 
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Line 1—This is the signature of the do_copy method 
inherited from ovm_object. Your signature must be identical. 

Lines 2-4— Copy only works between two objects of the 
same type. These lines check that the rhs argument is the 
same type. If not, a FATAL report is issued and simulation 
will exit.  

Line 5—Here, we call do_copy in the super class so 
any inherited data members are copied. If you omit this 
statement, the rhs object will not be fully copied. 

Line 6—Use the built-in assignment operator (=) to copy 
each of the built-in data types. For user-defined objects, 
assignment is copy-by-reference, which means only the 
handle value is copied. This leaves this object and the rhs 
object pointing to the same underlying object instance. 

Lines 7-9—To deep copy the rhs object’s contents into this 
object, call its copy method. Make sure the obj handle is 
non-null before attempting this. 

3.2 do_compare 
Implement the do_compare method as follows:  

1 function bit do_compare (ovm_object rhs,                          
ovm_comparer comparer); 
2   mybusopmanual rhs;                                  
3   do_compare = 
4     ($cast(rhs_,rhs) &&  
5      super.do_compare(rhs,comparer) &&  
6      addr == rhs_.addr && 
7      obj != null && obj.compare(rhs_.obj) 
9     ); 
10 endfunction  

Line 1—This is the signature of the do_compare method 
inherited from ovm_object. Your signature must be identical. 

Line 3—This line begins a series of equality expressions 
logically ANDed together. Only if all terms evaluate to true 
will do_compare return 1. Should any term fail to compare, 
there is no need to evaluate subsequent terms, as it will 
have no effect on the result. This is referred to as short-
circuiting, which provides an efficient means of comparing. 
We don’t need to check the rhs object for null because 
that is already done before do_compare is called. Be sure 

to use triple-equal (===) when comparing 4-state (logic) 
properties, else x’s will be treated as “don’t care.” 

Lines 4-— Compare only works between two objects of 
the same type. The $cast evaluates to ’true’ if the cast 
succeeds, thereby allowing evaluation of subsequent terms 
in the expression. If the cast fails, the two objects being 
compared are not of the same type and comparison fails 
early.  

Line 5—Here, we call do_compare in the super class so 
any inherited data members are compared. If you omit this 
expression, the rhs object will not be fully compared. 

Lines 6—The equality operator (==) can be used to 
compare any data type. For objects, it compares only the 
reference handles, i.e. it returns true if both handles point to 
the same underlying object. You should have one of these 
expressions for each member you wish to compare.  

Lines 7-8—To compare different instances of a class type, 
call the object’s compare method. Make sure the object 
handle is non-null before attempting this. 

3.3 convert2string 
The convert2string method is used to print information 
about an object in free-format. It is as efficient and succinct 
as the class designer wants, imposing no requirements on 
the content and format of the string that is returned. The 
author recommends implementing convert2string for use in 
`uvm_info messages, where users expect succinct output of 
the most relevant information.  

1 function string convert2string(); 
2   return $sformatf(“%s a=%0h, s=%s, 
                                   arr=%p obj=%s “, 
         super.convert2string(), // base class 
         addr,                             // integrals 
         str,                                // strings 
         arr,                               // unpacked types 
         obj.convert2string());   // objects 
3 endfunction 
 

Line 1—This is the signature of the convert2string method 
inherited from ovm_object. Your signature must be identical.  

Line 2—This line returns a string that represents the 
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contents of the object. Note that it leverages the built-in 
$sformatf system function to perform the formatting for 
you. Use format specifiers to %h, %d, %b, %s, etc. to 
display output in hex, decimal, binary, or string formats. For 
unpacked data types, like arrays and structs, use %p for 
the most succinct implementation. Be sure to call super.
convert2string. 

3.4 do_print 
To implement both print and sprint functionality, you only 
need to override do_print as follows:  

1 function void do_print (ovm_printer printer); 
2   super.do_print(printer); 
3   printer.print_generic(“cmd”,”cmd_t”, 
                                      1,cmd.name()); 
4   printer.print_field(“addr”,addr,32); 
5   printer.print_array_header(“data”, 
                                                data.size(), 
                                                “byte[$]”); 
6   foreach(data[i]) 
7      printer.print_generic($sformatf(“[%0d]”,i), 
                                         ”byte”, 
                                          8, 
                      $sformatf(“%0h”,data[i]));  
8  printer.print_array_footer(data.size()); 
9 endfunction 
 

Line 1—This is the signature of the do_print method 
inherited from ovm_object. Your signature must be identical. 

Line 2—Call super.do_print() to print the base class fields. 

Line 3-4—We call methods in the ovm_printer class that 
correspond to the type we want to print. Enum types use 
the print_generic method, which has arguments for directly 
providing field name, type, size, and value. 

Line 5-8—Print arrays by printing its header, elements, and 
footer in separate statements. To print individual elements, 
the author recommends using print_generic, which allows 
you to customize what is printed for the element name, type 
name, and value. 

3.5 do_record 
Implement do_record as follows. First, define a simple 
macro, ‘ovm_record_field, that calls the vendor-specific 

system function for recording a name/value pair, e.g. 
$add_attribute. The macro allows you to pass the actual 
variable—not some arbitrarily large bit-vector—to $add_
attribute. (The UVM will provide these macro definitions for 
you.)  

‘ifdef QUESTA 
   `define ovm_record_att(HANDLE,NAME,VALUE) \ 
         $add_attribute(HANDLE,VALUE,NAME); 
‘endif 
‘ifdef IUS 
   ‘define ovm_record_att(HANDLE,NAME,VALUE) \ 
           <Cadence Incisive implementation> 
‘endif  
‘ifdef VCS 
   ‘define ovm_record_att(HANDLE,NAME,VALUE) \ 
            <Synopsys VCS implementation> 
‘endif 
`define ovm_record_field(NAME, VALUE) \ 
     if (recorder != null && 
         recorder.tr_handle!=0) begin \ 
           `ovm_record_att(recorder.tr_handle, \ 
                            NAME,VALUE) \ 
   end 
 

These macros serve as a vendor-independent API 
for recording fields from within the do_record method 
implementation. Note that, for these macros to work, the 
ovm_recorder::tr_handle must be set via a previous call to 
ovm_component::begin_tr or ovm_transaction::begin_tr.  

The do_record method simply invokes the `uvm_record_
field  macro for each of the fields you want recorded: 
 

1 function void do_record(ovm_recorder recorder); 
2   super.do_record(recorder);  
3   `ovm_record_field(“cmd”,cmd.name()) // enum 
4   `ovm_record_field(“addr”,addr) // integral  
5   foreach (data[index])          // arrays 
6     `ovm_record_field(       
$sformatf(“data[%0d]”,index), data[index]) 
7   obj.record(recorder);          // objects 
endfunction 
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Line 1—This is the signature of the do_record method 
inherited from ovm_object. Your signature must be identical. 

Line 2—Be sure to call super.do_record so any inherited 
data members are recorded. 

Lines 3-7—Records enums, integral types, arrays, and 
objects using invocations of the ‘ovm_record_field macro, 
or calling a sub-object’s record method. 

3.6 do_pack / do_unpack  
These operations must be implemented such that 
unpacking is the exact reverse of packing. Packing an 
object into bits then unpacking those bits into a second 
object should be equivalent to copying the first object into 
the second. 

Packing and unpacking require precise concatenation of 
property values into a bit vector, else the transfer would 
corrupt the source object’s contents. 

To help reduce coding errors, the author advises using 
small convenience macros.6 These types of macros are 
“less evil” because they expand into small bits of readable 
code that users might otherwise have to write themselves. 
In fact, the UVM will offer versions of these macros to 
facilitate robust manual implementations of do_pack and 
do_unpack.  

`define ovm_pack_intN(VAR,SIZE) \ 
    packer.m_bits[packer.count +: SIZE] = VAR; \ 
    packer.count += SIZE; 
`define ovm_pack_array(VAR,SIZE) \ 
     `ovm_pack_scalar(VAR.size(),32) \ 
     foreach (VAR `` [index]) begin \ 
       packer.m_bits[packer.count+:SIZE]=\ 
                                          VAR[index]; \ 
       packer.count += SIZE; \ 
     end 
`define ovm_pack_queueN(VAR,SIZE) \ 
    `ovm_pack_arrayN(VAR,SIZE) 
`define ovm_unpack_intN(VAR,SIZE) \ 
    VAR = packer.m_bits[packer.count +: SIZE]; \ 
    packer.count += SIZE; 
`define ovm_unpack_enumN(TYPE,VAR,SIZE) \ 
    VAR = TYPE’(packer.m_bits[packer.count +: \ 
                                      SIZE]); \ 

 
    packer.count += SIZE; 
`define ovm_unpack_queueN(VAR,SIZE) \ 
     int sz; \     `ovm_unpack_scalar(sz,32) \ 
     while (VAR.size() > sz) \ 
       void’(VAR.pop_back()); \ 
     for (int i=0; i<sz; i++) begin \ 
       VAR[i]=packer.m_bits[packer.count+:SIZE];\ 
       packer.count += SIZE; \ 
     end 
`define ovm_pack_int(VAR) \ 
     `ovm_pack_intN(VAR,$bits(VAR)) 
 `define ovm_unpack_enum(VAR,TYPE) \ 
     `ovm_unpack_enumN(VAR,$bits(VAR),TYPE) 
 `define ovm_pack_queue(VAR) \ 
     `ovm_pack_queueN(BAR,$bits(VAR[0])
 
 

The ‘ovm_pack_int macro works for scalar built-in integral 
types. You can add your own simple macros to support 
other types, if you like. For example, reals would need the 
$realtobits and $bitstoreal system functions. 

The macro implementations manipulate the m_bits and 
count properties of the packer object. m_bits is the bit 
vector that holds the packed object, and count holds 
the index at which the next property will be written to or 
extracted from m_bits.  

With these simple macros defined, you can implement pack 
and unpack as follows:  

1 function void do_pack(ovm_packer packer);     
2    super.do_pack(packer);  
3    `ovm_pack_int(cmd) 
4    `ovm_pack_int(addr) 
5    `ovm_pack_queue(data) 
6  endfunction 
7  
8  function void do_unpack (ovm_packer packer); 
9    super.do_unpack(packer);  
10   `ovm_unpack_enum(cmd_t,cmd) 
11   `ovm_unpack_int(addr) 
12   `ovm_unpack_queue(data) 
13 endfunction 
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Line 1—This is the signature of the do_pack method 
inherited from ovm_object. Your signature must be identical. 

Line 2—Always call super.do_pack first. 

Lines 3-5—For each property, invoke one of the 
convenience macros, which concatenates values into 
the packer’s internal m_bits field and updates the count 
variable. Here, we’ve leveraged some convenience macros 
to make it simple and less error prone. 

Line 8—This is the signature of the do_unpack method 
inherited from ovm_object. Your signature must be identical. 

Line 9—Always call super.do_unpack first. 

Lines 10-12—You must unpack each property in the same 
order as you packed them. You will need to cast the bits 
when unpacking into strongly typed data types like strings 
and enums. 

4. CONCLUSION  
This articlehas provided insight into the hidden costs behind 
the various macros provided in OVM. Some macros expand 
into small bits of code that the user would end up writing, or 
ensure the correct operation of critical features in the OVM. 
Other macros expand into large blocks of unreadable code 
that end up hurting performance and productivity in the long 
run, or unnecessarily obscure and limit usage of a simple, 
flexible API. 

In summary: 
We recommend always using the ‘ovm_*_utils macros and 
the reporting macros: ‘ovm_info, ‘ovm_warning, ‘ovm_
warning, and ‘ovm_fatal. These macros provide benefits 
that far exceed their costs. 

The ‘ovm_*_imp_decl macros are acceptable because they 
provide a reasonable trade-off between convenience and 
complexity. 

The ‘ovm_field macros have long-term costs that far exceed 
their short-term benefit. They save you the one-time cost 
of writing implementations. However, the performance and 
debug costs are incurred over and over again. Consider 
the extent of reuse across thousands of simulation runs, 

and across projects. For VIP, reuse extends across the 
industry. The more an object definition is used, the more 
costly ‘ovm_field macros become in the long-run. While 
the UVM improves the performance of the field macros, it 
also provides “less evil” macros that help make the do_* 
methods easier to implement. In this author’s opinion, it is 
still better to implement simple, manual implementations. 

The ‘ovm_do macros attempt to hide the start, start_item, 
and finish_item methods for sequence and sequence_item 
execution. This is unnecessary and confusing. The current 
18 macro variants with long names and embedded in-
line constraints cover only small fraction of the possible 
ways you can execute sequences and sequence items. 
It is easier to learn to use the simple 3-method API, 
encapsulating repeated operations inside a task. 

The ‘ovm_sequence-related macros hard-code a sequence 
to a particular sequencer type and facilitate the auto-
execution of random sequences. Sequences should not 
be closely couple to a particular sequencer type, and 
they should not be started randomly. Stimulus generation 
is typically preceded by reset and other initialization 
procedures that preclude their automatic execution. You 
should declare sequences with ‘ovm_object_utils and 
sequencers with ‘ovm_component_utils, then start specific 
sequences explicitly using the start method. The UVM 
recognizes these and other shortcomings by deprecating 
the macros and OVM sequence library API. A new, superior 
sequence library implementation that is decoupled from the 
sequencer is currently being developed. 
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7.NOTES

1 References to OVM macros shall also apply to UVM 
macros unless otherwise stated. 

2 The UBUS is a contrived bus protocol used in examples 
in the UVM 1.0 User Guide. It’s predecessor in OVM was 
XBUS.  

3 ‘ovm_field_aa_* macros do not implement record, pack, or 
unpack; line counts would be much greater if they did. 

4 Simulation results depend on many factors: simulator, 
CPU, memory, OS, network traffic, etc. Individual results 
will differ, but relative performance should be consistent. 

5 For Questa, the vlog option is -Epretty <filename>. 

6 Simulators supporting bitstream operators should make 
packing and unpacking  easier, less error prone, and macro 
free: bits = {<<{ cmd, addr, data.size(), data, …};
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