
As I write this, spring appears to have finally arrived here in New England – about a month and
a half later than the calendar says it should have. As much as I love warm spring weather, though,
it means that I now have to deal with my lawn again. I know that many people actually enjoy working
on the lawn, but as far as I’m concerned, the greatest advance in lawn-care technology happened
last year when my son became old enough to drive the lawn mower. If you’ve ever seen a 13-year-
old boy driving a lawn tractor, you’ll understand my characterizing him as “constrained-random”
when it comes to getting the lawn cut. I handle the “directed testing” by taking care of the edging
and hard-to-reach spots, and together we manage to get the lawn done in considerably less time
than it used to take me alone.

Of course, cutting the lawn isn’t the only problem. We also
have a rather healthy crop of dandelions this year that have
to be pulled. Just like bugs in a design, they’ll spread if you
don’t get them. Believe it or not, I actually found a tool at
the hardware store specifically for pulling dandelions, so the
other evening I went on a “search and destroy” mission to
pull up all the dandelions on my lawn. Different classes of
bugs require different tools, you see.

Our first article this month came out of a discussion I had
with a colleague at DVCon. He was looking for some ideas
on how to justify an investment in “methodology” to his
management team who, of course, were not as steeped in
these ideas as many of us are. The resulting questions and
answers will hopefully serve to remind all of us of the “First
Principles” behind the technologies, techniques and tools
that we’ve come to rely on to verify our ever more complex
designs.

We next introduce you to the Online UVM/OVM Methodology
Cookbook, a new online resource from our Verification
Academy. The biggest problem with methodology textbooks
is that they often become out of date as soon as they are
published. We published online to mitigate that risk and
commit to update the Cookbook as the Universal Verification Methodology (UVM) from Accellera
evolves. Evolution is inevitable as users and vendors explore features in UVM, and the Cookbook

How Do You Know You Have the Right Tool
for the Right Job? By Tom Fitzpatrick, Editor and Verification Technologist

“As a special treat in
this issue, we next

introduce you to the
Online UVM/OVM

Methodology
Cookbook.”

—Tom Fitzpatrick

A PUBLICATION OF MENTOR GRAPHICS — VOLUME 7, ISSUE 2 — JUNE 2011

The Second of a Two-Part Series
A Methodology for Hardware-Assisted Acceleration

of OVM and UVM Testbenches. page 13

Intelligent Testbench Automation
Capability How the addition of algebraic con-

straints enhances stimulus generation. page 22

Does An Optimized Unified Coverage
Database Really Exist? An overview of the

Unified Coverage Database (UCDB). page 29

Partners’ Corner with NextOp Integrating

the Bugscope assertion synthesis tool into a unified

verification flow with Questa and Veloce. page 32

Partners’ Corner with Test and Verifi-
cation Solutions Introducing their new Functional

Verification Capability Maturity Model. page 36

Partners’ Corner with HDL Design
House Use the UVM to create a family of

testbenches for VITAL models. page 41

Partners’ Corner with Vennsa Techno-
logies How OnPoint tools and Questa automate

the identification of error sources. page 45

Award-Winning DVCon Paper Reprint:
Adam Erickson’s “Are Macros in OVM & UVM

Evil?—A Cost-Benefit Analysis.” page 51

 WHAT’S ON
THE HORIZON?

“First Principles” behind the technologies,

techniques and tools that we’ve come to rely on to

verify our ever more complex designs. page 6

Introducing The Online UVM/OVM
Methodology Cookbook a new resource

from our online Verification Academy. page 9

2

will be a great way for you to keep informed. This particular
article is the overview page for the new UVM register
modeling facility. In it, you’ll see a high-level explanation
of the functionality along with links to other more in-depth
discussions of specific pieces of the package, a format used
throughout the Cookbook. Registered users will also be
able to provide feedback and updates to the articles, which
we’ll review and pass along as necessary.

Our next article is the conclusion of Hans van der Schoot’s
“A Methodology for Hardware-Assisted Acceleration of
OVM and UVM Testbenches,” which we started in the
previous issue. Part two takes us through the mechanics
of implementing the transaction-level interface between
simulation and emulation. You’ll be impressed by the
results that our users have seen in adopting this powerful
combination of technologies.

With the recent announcement of our Questa Ultra plat-
form, we continue to enhance our Intelligent Testbench
Automation (Questa InFact) capability. In “Combining
Algebraic Constraints with Graph-Based Intelligent
Testbench Automation”, you’ll see how the addition of
algebraic constraints enhances the Questa InFact stimulus
generation by simplifying the stimulus definition. The
new import feature also allows Questa InFact to react
to the current state of the design and/or testbench when
producing a new stimulus item. Again, you’ll see some
rather impressive results from actual users of this exciting
new technology.

In “Data Management: Is There Such Thing as an
Optimized Unified Coverage Database?” my colleagues
Darron May and Gabriel Chidolue show yet another
example of Mentor’s leadership in both technology and
standardization. The article provides an overview of the
Unified Coverage Database (UCDB), which provides a
platform for the collection and analysis of coverage data
from multiple tools and verification engines. I think you’ll
see why the UCDB was chosen by Accellera as the
basis for the upcoming Unified Coverage Interoperability
Standard (UCIS).

We have four articles in our “Partners’ Corner” this issue.
The first, “A Unified Verification Flow Using Assertion
Synthesis Technology”, written in conjunction with our
friends at NextOp, shows how their Bugscope assertion
synthesis tool can be integrated into a unified verification
flow with Questa and Veloce. In “Benchmarking Functional
Verification”, our friends at Test and Verification Solutions
expand on the June 2009 article by Harry Foster and
Mike Warner to introduce their new Functional Verification
Capability Maturity Model, which helps you measure
the maturity of your verification process and provides a
framework for planning improvements. Putting standards
into practice, our colleagues at HDL Design House next
share with us their experience in creating “UVM-Based
SystemVerilog Testbenches for VITAL Models”. Find out
the “four Cs” of reusability and how they’ve used UVM
to create a family of testbenches for VITAL models while
minimizing the amount of code they needed to write. We
round out the Partners’ Corner with “Efficient Failure Triage
with Automated Debug: a Case Study” from our partners at
Vennsa Technologies. The article shows you how Vennsa’s
OnPoint tools can be used with Questa to automate the
identification of error sources, whether there are multiple
failures from the same source or multiple sources for a
given failure.

We close this issue with a special treat. We are reprinting a
copy of “Are Macros in OVM & UVM Evil?—A Cost-Benefit
Analysis”, by my friend and colleague Adam Erickson. This
paper won the Best Paper award at DVCon back in March,
and we wanted to make sure that you saw it. Without giving
away the ending, the answer is “yes.” You’ll find a great
explanation of why, and which macros are okay to use.

I hope you’ll all get a chance to stop by the Mentor booth at
DAC to say “hi.” I’ll be happy to take any lawn care tips you
might have, too!

Respectfully submitted,
Tom Fitzpatrick
Editor, Verification Horizons

3

Now you don’t have to wait for the
next printed issue to get the latest.

Hear from the Verification
Horizons Team every week at
VerificationHorizonsBlog.com

4

Page 6
First Principles:
Why Bother With This Methodology Stuff, Anyway?
by Joshua Rensch, Verification Lead, Lockheed Martin and Tom Fitzpatrick, Verification Methodologist,

Mentor Graphics Corporation

Page 9
Online UVM/OVM Methodology Cookbook:
Registers/Overview
by Mark Peryer, Verification Methodologist, Mentor Graphics Corporation

Page 13
A Methodology for Hardware-Assisted
Acceleration of OVM and UVM Testbenches
by Hans van der Schoot, Anoop Saha, Ankit Garg, Krishnamurthy Suresh, Emulation Division, Mentor Graphics

Corporation

Page 22
Combining Algebraic Constraints with
Graph-based Intelligent Testbench Automation
by Mike Andrews, Verification Technologist, Mentor Graphics

Page 29
Data Management: Is There Such a Thing
as an Optimized Unified Coverage Database?
by Darron May, Manager of Verification Analysis Solutions and Gabriel Chidolue, Verification Technologist,

Mentor Graphics Corporation

Table of Contents June 2011 Issue

5

Partners’ Corner
Page 32
A Unified Verification Flow Using
Assertion Synthesis Technology
by Yuan Lu, Nextop Software Inc., and Ping Yeung, Mentor Graphics Corporation

Page 36
Benchmarking Functional Verification
by Mike Bartley and Mike Benjamin, Test and Verification Solutions

Page 41
Universal Verification Methodology
(UVM)-based SystemVerilog
Testbench for VITAL Models
by Tanja Cotra, Program Manager, HDL Design House

Page 45
Efficient Failure Triage with
Automated Debug: a Case Study
by Sean Safarpour, Evean Qin, and Mustafa Abbas, Vennsa Technologies Inc.

Page 51
Are OVM & UVM Macros Evil?
A Cost-Benefit Analysis
by Adam Erickson, Mentor Graphics Corporation

Table of Contents June 2011 Issue

Verification Horizons is a publication
of Mentor Graphics Corporation,
all rights reserved.

Editor: Tom Fitzpatrick
Program Manager: Rebecca Granquist

Wilsonville Worldwide Headquarters
8005 SW Boeckman Rd.
Wilsonville, OR 97070-7777
Phone: 503-685-7000

To subscribe visit:
www.mentor.com/horizons

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

6

Many of us are so used to the idea of “verification
methodology,” including constrained random and functional
coverage, that we sometimes lose sight of the fact that there
is still a large section of the industry to whom these are new
concepts. Every once in a while, it’s a good idea to go back
to “first principles” and understand how we got where we
are and why things like the OVM and UVM are so popular.
Both authors have found ourselves in this situation of trying
to explain these ideas to colleagues and we thought it might
be helpful to document some of the discussions we’ve had.
If you’re new to the idea of object-oriented testbenches in
SystemVerilog and maybe are wondering what all the fuss
about UVM at shows like DAC and DVCon is all about, or
if you’re getting ready to take that plunge, we think these
ideas might help you “begin with the end in mind.” If you’re
an “expert” at this stuff, we hope that this dialog will help
you take a step back and appreciate how far we’ve come
as an industry and remember not to get too hung up on the
whiz-bang features of a methodology but to keep in mind
the ultimate goal, which is to make sure that our chips are
going to work properly.

For discussion purposes, we will refer to “Design
Verification” (DV) as the process by which an ASIC or
FPGA is checked to make sure the design is accurate and
correct. It involves several techniques that depend on the
complexity of the design and its intended application. For
example, if you were interested in verifying a graphics
processor for video game systems its DV would be
different than a design for a safety system of an aircraft.
These techniques include but are not limited to functional
verification, formal verification, formal equivalence and
emulation. This paper will focus on functional verification
but there is a lot of crossover of skills for each of these
techniques.

WHAT IS FUNCTIONAL VERIFICATION?
Functional verification is testing a design in a virtual
environment crafted by a DV engineer utilizing a verification
methodology such as Universal Verification Methodology
(UVM). This is done by driving the various inputs to a
design through simulation and checking to make sure the
outputs are correct. These inputs can be various standard

or proprietary buses and/or discrete signals to the design.
The virtual verification environment is made up of various
components, which will be defined later in the paper. [note:
The DV engineer is trying to create a model of the “real
world” in which the chip will operate.]

These designs can have 1000s of inputs, which would be
impossible to test adequately without the use of various
levels of abstraction. This allows a DV engineer to write
tests at a high level of abstraction but still be able to drive
the design. To give a real world example, say you need to
move a house. At the top level of abstraction, you need to
move the contents of the house; this is similar to moving a
large piece of data from one memory to another. As you
move down the levels of abstraction, you need to move
a pantry; which for a design is like a transaction on the
memory. To the final layer of abstraction, the jar of peanuts
you need to move, which are the individual signals on
whichever memory bus you are using. All you really would
like to worry about is that the house was moved. But the
reality is that part of move is the jar of peanuts.

HOW DO WE TEST EVERYTHING?
These designs can be massive, encompassing many
different functions and paths. There is no practical way to
test every permutation of all states of a large design. That is
technically true, but we can test relevancy and sufficiently
representative large parts of it. A DV engineer uses a
technique called Constrained Random Verification (CRV)
which stresses the design in the most comprehensive
and efficient manner. This consists of constrained random
stimulus, self-checking testbenches, and functional
coverage.

Constrained random stimulus ensures that the stimulus
is meaningful. The constraints are the key, otherwise
we just have random stimulus that may or may not be
representative of real-world stimulus. The design can be
stressed more quickly and the randomness can create
corner cases that a human verifier might miss. Since it is
random, the test can be run multiple times and create
different stimulus each time. This is controlled by a seed fed
into the tool which, along with the constraints, provides

First Principles: Why Bother With This Methodology Stuff, Anyway?
by Joshua Rensch, Verification Lead, Lockheed Martin and Tom Fitzpatrick, Verification Methodologist, Mentor Graphics Corporation

7

a way to produce near infinite sets of valid stimulus.
Say you want to check and make sure that every part of
the house’s roof is waterproof. You could methodically
use an eyedropper on every shingle, which would take
a prohibitively long time. Wouldn’t it be better to use a
sprinkler on it and randomly hit most of the locations and
then use the eyedropper on parts that were missed?

Self-checking is exactly what it sounds like; it automatically
determines if the design performed correctly. In a
traditional testbench methodology, the outputs are typically
manually checked after the inputs are created. With
random stimulus, that method can be tedious and prone to
errors, self-checking at the proper abstraction level to the
rescue. Utilizing a higher level of abstraction to check the
correctness of the design allows for quicker environment
creation and there are additional checkers for the lower
levels of abstraction. Using the house analogy, check that
each room of the house was properly moved and have
lower level checkers verify that each room was moved
properly.

HOW DO WE KNOW WHEN WE ARE DONE?
This is the typical question from various managers in the
field. Luckily there are three metrics that help determine
when the verification is completed. They are functional
coverage, code coverage, and bug curves.

Functional coverage is defined by a concept of assertions
and cover statements. An assertion is defining the proper
behavior for something. An example assertion would be that
a house should keep a person dry. Therefore, if a person
inside a house ever gets wet when it rains, the assertion
fails. The problem is that if it never rains, that assertion
will always be true, but is never tested (we call that
“vacuously true”). That is where a cover comes into play.
A cover states, a person should be inside the house when
it is raining outside and testing isn’t complete unless that
happens. One of the main responsibilities of a DV engineer
is to make sure that all the coverage points are exercised.

Code coverage is built into most simulators. It gives the
percentage of the code that has been exercised. This is

a raw metric, which by itself has limited value. But when
tied with the other metrics, it gives a good measure of
confidence. The reason code coverage is not the only
metric that should be used is that without an understanding
of previous executed code nor the interrelationship with
other statements of code and the results are not verifying
the manner in which the code was executed. This is a
problem because a number of latent defects are found
when code interacts with other code. To take it back to the
house, code coverage would give us an understanding that
we have a house, that we were inside it and that it rained;
it would not give us the idea that we were inside the house
during the rain. It is possible to have 100% code coverage
on a buggy design.

Bug metrics are the last part of this tripod. Tracking
bugs found is important because the verification job isn’t
complete if the bug curve doesn’t flatten out, meaning that if
the DV engineer is pulling out four to five bugs a week, the
design is not completed. But just because the bug curve is
flat doesn’t mean that testing is completed, the functional
and code coverage need to be checked simply because the
DV engineer might be testing the same small piece of logic
and not getting to other logic that needs to be tested.

THIS SOUNDS COMPLICATED, IS THERE ANYTHING
THAT CAN SPEED DEVELOPMENT UP?
Glad you asked, now for a brief history lesson. For a long
time, the industry was fragmented, forcing vendors to have
their own tools and techniques to solve this problem. That
was until SystemVerilog became an IEEE standard in 2004.
Vendors started to support the verification tools within
System Verilog and developing their own methodology
using System Verilog. It wasn’t until this year that they
standardized on a methodology UVM. This had all the
tools to create an environment. To use the house analogy,
System Verilog provided the raw materials to build a house,
wood, stone, metal and glass. UVM provided frames,
doors, windows and sinks to build your environment
from. No longer did you need to develop your own way
of doing things.

First Principles: Why Bother With This Methodology Stuff, Anyway?
by Joshua Rensch, Verification Lead, Lockheed Martin and Tom Fitzpatrick, Verification Methodologist, Mentor Graphics Corporation

8

A UVM environment is built using various objects;
the basic building blocks of which are called UVM
sequences and UVM components.

UVM creates stimulus by using sequences and sequence
items. These define the test that will create the operational
parameters for the test. Think of these as a list of
instructions on how to build the house. There can be several
sequences, which don’t have to have any knowledge of
each other. In the house analogy, they describe how to build
the various rooms that will make up the house. The order in
which these rooms are built does not typically matter.

One pre-defined component is called an agent. These are
the objects that control the various buses into the DUT. It
contains both a driver that presents transactions to the bus
and a monitor, which captures transactions on the bus and
reports them back to the environment. It arbitrates for usage
of the resource it is connected to. Arbitration is essential
to make sure that the environment works in an organized
manner since many sequences could be trying to access
the bus at the same time.

Another pre-defined component is a scoreboard used to
verify that transactions coming out of the DUT are correct.
This is done by using an agent to capture the transaction
and checking against a transaction that was created by
some object in the environment that is predicting what
the DUT will do. These predicted transactions could be
created by some component in the environment getting
the same as the DUT and determining what the DUT
should create.

ARE THERE ADDITIONAL BENEFITS
TO USING THE VERIFICATION ENVIRONMENT?
There are a couple of advantages to using a sophisticated
verification environment. One is that once you have it
built, adding another path or feature isn’t typically difficult.
If you are using a traditional testbench methodology, you
may have a long task to modify the environment to test it.
With this approach it could be as simple as changing the
path the data takes. Also, if a bug is found later on in the
development cycle, it can be replicated and triaged in the
DV environment. This will lead to faster turnaround times
since with simulation there is better visibility into the design.

WHAT KIND OF PERSON DO WE NEED TO DO THIS?
The typical DV engineer has to be a hybrid of a hardware
and software engineer. They need to be able to understand
the hardware world, comprehend the specification of a
hardware product, and translate that into the environment
that needs to be created. They need the skills and
understanding of the world of software but with the grasp
of design to create more complete and correct testing.
Good DV engineers have an understanding of concepts
like Object Oriented Programming and Transaction-
Level Modeling (TLM) to better utilize industry standard
verification techniques.

The DV engineer or team needs to be independent of
the designer or design team. This provides for two sets
of eyes on a design, as each will interpret a specification
or requirements with their own personal bias. This
independent checking will lead to a better design and a
more complete set of documentation, for if the engineers
don’t agree; the customer will likely misinterpret it.

CONCLUSION
How do you calculate the cost of missing a bug? The typical
profile is that there is some initial investment in putting the
infrastructure together followed by a substantial gain as
results start to come in. As a rough example, suppose a
design needs to be verified and it is determined that it would
take 5 days for a DV engineer to create an environment. In
the same span, a non-DV engineer creates, debugs and
executes a test a day so after a week, you have five working
tests. After four days, the directed approach has 4 tests and
the DV approach has none. On the 5th day, the directed
approach has 5 tests, but the DV approach has literally
1000’s of tests. Why?

A properly architected UVM environment allows you
to create many variations on the theme automatically.
Remember, that in addition to randomizing stimulus, you’re
also randomizing the structure of your testbench.

DV is standard for all ASIC companies around the world
and until recently its use on FPGAs has been limited. That
was until the size and complexity of FPGAs made it no
longer a trivial task to debug it in the lab. The earlier in the
development cycle the bug is found, the quicker and cleaner
it can fixed. By doing DV in parallel with the design, it
reduces time in the lab and slips in program schedule.

9

INTRODUCTION

The UVM register model
provides a way of tracking
the register content of a
DUT and a convenience
layer for accessing register
and memory locations
within the DUT.

The register model
abstraction reflects the
structure of a hardware-software register specification,
since that is the common reference specification for
hardware design and verification engineers, and it is also
used by software engineers developing firmware layer
software. It is very important that all three groups reference
a common specification and it is crucial that the design is
verified against an accurate model.

The UVM register model is designed to faciliate productive
verification of programmable hardware. When used
effectively, it raises the level of stimulus abstraction and
makes the resultant stimulus code straight-forward to
reuse, either when there is a change in the DUT register
address map, or when the DUT block is reused as a sub-
component.

HOW THE UVM REGISTER MATERIAL IS ORGANIZED

The UVM register model can be considered from several
different viewpoints and this page is separated into
different sections so that you can quickly navigate to the
material that concerns you most. The diagram to the right
summarizes the various steps in the flow for using the
register model and outlines the different categories of users.

Therefore, the different register viewpoints are:

• The VIP developer
• The Register Model writer
• The Testbench Integrator
• The Testbench User

Online UVM/OVM Methodology Cookbook: Registers/Overview
by Mark Peryer, Verification Methodologist, Mentor Graphics Corporation

10

VIP DEVELOPER VIEWPOINT
In order to support the use of the UVM register package,
the developer of an On Chip Bus verification component
needs to develop an adapter class. This adapter class
is responsible for translating between the UVM register
packages generic register sequence_items and the VIP
specific sequence_items. Developing the adapter requires
knowledge of the target bus protocol and how the different
fields in the VIP sequence_item relate to that protocol.

Once the adapter is in place it can be used by the
testbench developer to integrate the register model
into the UVM testbench.

To understand how to create an adapter the
suggested route through the register material is:

CREATING A REGISTER MODEL
A register model can be created using a register generator
application or it can be written by hand. In both cases, the
starting point is the hardware-software register specification
and this is transformed into the model.

If you are using a generator or writing a register model
based on a register specification then these topics should
be followed in this order:

INTEGRATING A REGISTER MODEL

Integration Pre-requisites
If you are integrating a register model into a testbench,
then the pre-requisites are that a register model has been
written and that there is an adaptor class available for the
bus agent that is going to be used to interact with the DUT
bus interface.

Integration Process
In the testbench, the register model object needs to be
constructed and a handle needs to be passed around the
testbench environment using either the configuration and/or
the resource mechanism.

In order to drive an agent from the register model an
association needs to be made between it
and the target sequencer so that when a
sequence calls one of the register model
methods a bus level sequence_item is
sent to the target bus driver. The register
model is kept updated with the current
hardware register state via the bus agent
monitor, and a predictor component

is used to convert bus agent analysis transactions
 into updates of the register model, pictured at the
top of the next page.

The testbench integrator might also be involved with
implementing other analysis components which reference
the register model, and these would include a scoreboard
and a functional coverage monitor.

For the testbench integrator, the
recommended route through the
register material is outlined in the
table to the right:

USING A REGISTER MODEL
Once it has been integrated, the
register model is used by the
testbench user to create stimulus
using sequences or through analysis
components such as scoreboards and
functional coverage monitors.

The register model is intended to
make it easier to write reuseable
sequences that access hardware

11

registers and areas of memory. The model data structure
is organized to reflect the DUT hierarchy and this makes
it easier to write abstract and reuseable stimulus in terms
of hardware blocks, memories, registers and fields rather
than working at a lower bit pattern level of abstraction.
The model contains a number of access methods which
sequences use to read and write registers. These methods
cause generic register transactions to be converted into
transactions on the target bus.

The UVM package contains a library of built-in test
sequences which can be used to do most of the basic
register and memory tests, such as checking register reset
values and checking the register and memory data paths.
These tests can be disabled for those areas of the register

or memory map where they are not relevant using register
attributes.

One common form of stimulus is referred to as
configuration. This is when a programmable DUT has its
registers set up to support a particular mode of operation.
The register model can support auto-configuration, a
process whereby the contents of the register model are
forced into a state that represents a device configuration
using constrained randomization and then transferred into
the DUT.

The register model supports front door and back door
access to the DUT registers. Front door access uses the
bus agent in the testbench and register accesses use
the normal bus transfer protocol. Back door access uses

simulator data base access routines to
directly force or observe the register
hardware bits in zero time, by-passing
the normal bus interface logic.

As a verification environment evolves,
users may well develop analysis
components such as scoreboards and
functional coverage monitors which
refer to the contents of the register
model in order to check DUT behaviour

12

or to ensure that it has been tested in all required configurations.

If you are a testbench consumer using the register model, then you should read
the following topics in the recommended order:

REGISTER MODEL EXAMPLES
The UVM register use model is illustrated by code excerpts which are taken
from two example testbenches. The main example is a complete verification
environment for a SPI master DUT, in addition to register model this includes
a scoreboard and a functional coverage monitor, along with a number of test
cases based on the use of register based sequences. The other example is
designed to illustrate the use of memories and some of the built-in register
sequences from the UVM library. Download links for these examples are
provided in the table below:

Editor’s Note: This article is an excerpt from the Online UVM/OVM

Methodology Cookbook, available via Mentor Graphics’ Verification

Academy (http://verificationacademy.com)

13

[Editor’s Note: This is part 2 of a two-part article on

this topic. Part 1 appeared in the DVCon (February,

2011) edition of Verification Horizons. This article

should serve as a great companion piece to the

new Verification Academy module, Acceleration of

SystemVerilog Testbenches with Co-Emulation.]

A methodology is presented for writing modern
SystemVerilog testbenches that can be used not only
for software simulation, but especially for hardware-
assisted acceleration. The methodology is founded on a
transaction-based co-emulation approach and enables truly
single source, fully IEEE 1800 SystemVerilog compliant,
transaction-level testbenches that work for both simulation
and acceleration. Substantial run-time improvements are
possible in acceleration mode and without sacrificing
simulator verification capabilities and integrations including
SystemVerilog coverage-driven, constrained-random and
assertion-based techniques as well as prevalent verification
methodologies like OVM or UVM.

IMPLEMENTING A TRANSACTION-LEVEL
HVL–HDL INTERFACE
With the timed and untimed portions of a testbench fully
partitioned, what remains is establishing a transaction-
based communication mechanism for co-emulation. As
suggested above, the use of virtual interface handles on
the HVL side bound to concrete interface instances on the
HDL side enables a flexible transaction transport mode
for HVL-HDL communication provided thus that BFMs
are implemented as SystemVerilog interfaces in the HDL
hierarchy, not as modules. The flexibility stems from the
fact that user-defined tasks and functions in these
interfaces form the API.

Following the remote proxy design pattern discussed earlier,
components on the HVL side acting as proxies to BFM
interfaces can call relevant tasks and functions declared
inside the BFMs via virtual interface handles to drive and
sample DUT signals, initiate BFM threads, configure BFM

parameters or retrieve BFM status. By retaining specifically
the original transactor layer components like driver and
monitor classes as the BFM proxies (see Figure 2) – minus
the extracted BFMs themselves – impact on the original
SystemVerilog object-oriented testbench is minimized. The
proxies form a thin layer in place of the original transactor
layer, which allows all other testbench layer components
to remain intact. This offers maximum leverage of existing
verification capabilities and methodologies.

The remote task/function call mechanism is based for the
most part on the known Accellera SCE-MI 2 function model,
and so it has the same kind of performance benefits as
SCE-MI 2. In the traditional SCE-MI 2 function-based model
it is the SystemVerilog DPI interface that is the natural
boundary for partitioning workstation and emulator models
[1], whereas the proposed methodology here uses the
class object to interface instance boundary as the natural
boundary for the same partitioning. Extensions specifically
designed for SystemVerilog testbench modeling are added,
most notably task calls in the workstation to emulator
direction in which use of time-consuming/multi-cycle
processing elements is allowed. This is essential to be able
to model BFMs on the HDL side that are callable from the
HVL side.

A Methodology for Hardware-Assisted Acceleration
of OVM and UVM Testbenches
by Hans van der Schoot, Anoop Saha, Ankit Garg, Krishnamurthy Suresh, Emulation Division, Mentor Graphics Corporation

14

Figure 5. HDL BFM interface with HVL proxy class

The HVL-HDL co-modeling interface mechanism is
depicted in Figure 5 above. A proxy class bus_driver has
a virtual interface handle m_bfm to a corresponding BFM
model bus_driver_bfm implemented as a synthesizable
interface. Time-consuming tasks and non-blocking functions
in the interface can be called by the driver proxy via the
virtual interface to execute bus cycles, set parameters or
get status information. Notice the ‘bfm’ suffix in the BFM
interface name, which is recommended as a naming
convention. Also notice the use of the bus pin interface
confined to the BFM by inclusion through its port list.

TRANSACTION OBJECT CONVERSION
Classes and other dynamic or unpacked data types in
SystemVerilog are generally not synthesizable and can
therefore not be used as BFM function/task arguments. For
SystemVerilog object-oriented testbenches that extensively
use class-based transactions (e.g. those derived from the
ovm_transaction base class in OVM) it means that these
transactions cannot simply be passed as is between the
BFM interfaces and their proxies. However, since BFM
functions and tasks are user-defined, it may be pertinent
to pass transaction class members as individual packed
arguments, just as shown in the code example of Figure
5 for the address and data attributes of bus transactions.

Or one may choose to utilize special conversion routines
to convert explicitly between class-based transactions and
suitable packed type representations that are synthesizable
such as a bit vector or packed struct. When utilized, it
is recommended to standardize on from_class(...) and
to_class(...) methods defined in an external converter class
for each transaction type that must cross the HVL-HDL
boundary. A code example is given in Figure 6.

1	 class fpu_request extends ovm_transaction;
2	
3	 shortreal a;
4	 shortreal b;
5	 rand op_t op;
6	 rand round_t round;
7	
8	 ...
9	
10 endclass
11	
12	
13 package fpu_trans_util_pkg;
14	 typedef struct packed {
15	 bit [31:0] a;
16	 bit [31:0] b;
17	 op_t op;
18	 round_t round;
19	 } fpu_request_s;
20	

15

21	 typedef bit [$bits(fpu_request_s)-1:0]
22	 fpu_request_vector_t;
23	
24	 ...
25	
26 endpackage27		
28 class fpu_request_converter;
29	
30	 function void to_class(
31	 output fpu_request req,
32	 input fpu_request_vector_t v);
33	 fpu_request_s s = v;
34	 req = new();
35	 req.a = $bitstoshortreal(s.a)
36	 req.b = $bitstoshortreal(s.b);
37	 req.op = s.op;
38	 req.round = s.round;
39	 endfunction
40	
41	 function void from_class(
42	 input fpu_request req,
43	 output fpu_request_vector_t v);
44	 fpu_request_s s;
45	 s.a = $shortrealtobits(req.a);
46	 s.b = $shortrealtobits(req.b);
47	 s.op = req.op;
48	 s.round = req.round;
49	 v = s;
50	 endfunction
51	

52 endclass

Figure 6. Converting transaction objects

for co-emulation

Figure 7 on the following page provides an example
transformation of a purely class-based FPU monitor from
the OVM cookbook example kit [2] into a functionally
equivalent BFM / proxy pair suited for both simulation and
co-emulation. The FPU monitor proxy reimplements tasks
monitor_request() and monitor_response() (i.e. lines 21-30
and 32-46 in Figure 7.b) to call corresponding tasks in the
BFM (i.e. lines 58-68 and 70-73 in Figure 7.b) to perform
the pin-level sampling of FPU request and response
transactions and output these to the BFM proxy. External

converter classes with from_class(...) and to_class(...)
methods are used to convert between FPU transaction
objects and convenient synthesizable packed struct
representations of these transactions (i.e. lines 27 and 39 in
Figure 7.b), as shown in Figure 6 for FPU requests.

For the example above it is assumed that the BFM interface
is instantiated somewhere under the HDL top level
hierarchy and that its corresponding proxy object on the
HVL side has a virtual interface reference to the BFM. The
actual binding of the virtual interface to the hierarchical HDL
path of the BFM is not shown for brevity. Any such binding
mechanism can be made to work also in the context of co-
emulation. For OVM testbenches a recommended method
described in [3] utilizes a general purpose OVM container
class for wrapping any SystemVerilog type so that it can be
used with the OVM configuration mechanism. It works just
fine for binding BFM / proxy pairs.

HDL-TO-HVL BACK-POINTERS
For modeling flexibility and completeness a transaction-
level HVL-HDL co-modeling interface can be defined in
both directions. Similar to an HVL proxy class calling tasks
and functions declared in an HDL interface, as discussed
thus far, one can define how an HDL interface can call
functions1 declared in an HVL class. This would enable
transaction-based HVL-HDL communication initiated
from the HDL side. Specifically, a BFM interface may call
relevant class member functions of its proxy object on the
HVL side for instance to provide sampled transactions for
analysis or indicate other status information.Figure 8 on
the following page illustrates this. As shown, the handle of
a BFM interface to the BFM proxy can be assigned simply
inside the proxy itself via its virtual interface handle to
the BFM. Access to any data members in the BFM proxy
would not be permitted, just as cross signal references into
the BFM are not allowed. Due to language restrictions on
matching types, the proxy class definition together with
any types it depends on must be imported inside the BFM
interface via one or more packages.

16

Figure 7. Transforming an FPU monitor for co-emulation

1	 class fpu_monitor extends ovm_component;
2	
3	 ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	 // VIF handle to pin interface
6	 local virtual fpu_pin_if #(32) m_fpu_pins;
7	
8	 ...
9	
10	 function void connect();
11	 ... // Retrieve m_fpu_pins vif handle
12	 endfunction
13	
14	 task run();
15	 fork
16	 monitor_request();
17	 monitor_response();
18	 join
19	 endtask
20	
21	 task monitor_request();
22	 forever begin
23	 fpu_request req = new();
24	
25	 do
26	 @(posedge m_fpu_pins.clk);
27	 while (m_fpu_pins.start != 1);
28	
29	 req.a = $bitstoshortreal(m_fpu_pins.op_a);
30	 req.b = $bitstoshortreal(m_fpu_pins.op_b);
31	 req.op = op_t′(m_fpu_pins.fpu_op);
32	 req.round = round_t′(m_fpu_pins.rmode);
33	
34	 $cast(m_req_in_process, req.clone());
35	 end
36	 endtask: monitor_request
37	
38	 task monitor_response();
39	 forever begin
40	 fpu_response rsp = new();
41	 fpu_pair pair;
42	
43	 ... // Timed code to sample response
44	
45	 pair = new(m_req_in_process, rsp);
46	 pair_ap.write(pair);
47	 end
48	 endtask: monitor_response
49	
50	 endclass	

	 (a) Original monitor	

1	 class fpu_monitor extends ovm_component;
2	
3	 ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	 // VIF handle to XRTL BFM
6	 local virtual fpu_monitor_bfm m_bfm;
7	
8	 ...
9	
10	 function void connect();
11	 ... // Retrieve m_bfm vif handle
12	 endfunction
13	
14	 task run();
15	 fork
16	 monitor_request();
17	 monitor_response();
18	 join
19	 endtask
20	
21	 task monitor_request();
22	 forever begin
23	 fpu_request req;
24	 fpu_request_s req_s;
25	
26	 m_bfm.monitor_request(req_s);
27	 req_converter.to_class(req, req_s);
28	 $cast(m_req_in_process, req.clone());
29	 end
30	 endtask: monitor_request
31	
32	 task monitor_response();
33	 forever begin
34	 fpu_response rsp;
35	 fpu_response_s rsp_s;
36	 fpu_pair pair;
37	
38	 m_bfm.monitor_response(rsp_s);
39	 rsp_converter.to_class(rsp, rsp_s);
40	 ...
41	 pair = new(m_req_in_process, rsp);
42	 pair_ap.write(pair);
43	 end
44	 endtask: monitor_response
45	
46	 endclass
47	
48	
49	 interface fpu_monitor_bfm(fpu_pin_if fpu_pins);
50	 // pragma attribute fpu_monitor_bfm
 partition_interface_xif
51	
52	 ...
53	
54	 wire clk = fpu_pins.clk;

17

55	
56	 task monitor_request(output
57	 fpu_request_s req); // pragma tbx xtf
58	 @(posedge clk);
59	 while (fpu_pins.start != 1)
60	 @(posedge clk);
61	 req.a = fpu_pins.op_a;
62	 req.b = fpu_pins.op_b;
63	 req.op = op_t′(fpu_pins.fpu_op);
64	 req.round = round_t′(fpu_pins.rmode);
65	 endtask
66	
67	 task monitor_response(output
68	 fpu_response_s rsp); // pragma tbx xtf
69	 ... // Timed code to sample response
70	 endtask
71	
72	 endinterface

	 (b) XRTL monitor BFM with proxy

The use of such object handles in BFM interfaces back
to their proxy classes, or ‘back-pointers’, is not firmly
required for modeling reactive HVL-HDL communication
and one can just stick to using HVL initiated ‘xtf’ tasks and

functions2. Yet this is particularly useful for components
like monitors. A typical monitor continuously listens to
an interface to extract transactions and pass them out to
other testbench components for analysis, just like the FPU
monitor in Figure 7. It initiates communication of observed
transactions to ‘subscribers’ like scoreboards, coverage
collectors or interrupt monitors. It is in effect more natural to
have a monitor BFM ‘push’ instead of the BFM proxy ‘pull’
these transactions out. More importantly, doing so presents
opportunities for significant performance optimization.
Observed transactions are commonly distributed for
analysis using void functions (e.g. the TLM write(...) function
in OVM – i.e. line 46 in Figure 7.a). Such one-way non-
blocking calls can be dispatched and executed concurrently
without even stopping the emulator clocks.

Figure 9 on the following page provides a second take on
remodeling the OVM-based FPU monitor for co-emulation.
This time the monitor BFM calls a void function write of its
proxy via a back-pointer to push sampled FPU request-
response pairs out to the HVL side (i.e. lines 62 and 22-26
in Figure 9.b). The reader is invited to inspect the example
in more detail with respect to the one in Figure 7.

Figure 8. HDL Driver BFM interface with HVL proxy

18

ADDITIONAL METHODOLOGY CONSIDERATIONS
Prying apart transactor layer components into synthesizable
BFMs on the HDL side and untimed transaction-level proxy
objects on the HVL side, as described in the previous
section, has the consequence that the BFMs must be
elaborated statically before run-time. At first sight some
of the capabilities of a truly dynamic testbench may seem
lost. Recall though that it is only the timed interface protocol
that is to be implemented on the HDL side. Since the DUT
interface and protocol are largely static there is no real loss
of functionality. The idea is to retain the bits and pieces that
must be dynamic inside the BFM proxy under the HVL top
level module hierarchy. It should be apparent that a BFM
interface is then in principle controllable completely through
its dynamic proxy, via remote function or task calls. For
instance, in terms of OVM it means that while BFMs cannot
be created using the OVM factory or configured using the
OVM configuration mechanism, the BFM proxies can be
controlled in this way and hence indirectly the static BFMs
themselves.

Thanks to the application of the remote proxy design
pattern, prevalent testbench topology practices can also
be facilitated without much alteration. Figure 10 depicts
the normal view of an OVM agent for simulation and the
adapted view for co-emulation. From the perspective of
the OVM testbench on the HVL side there is no difference.
Certainly, a matching topology of BFM interfaces under the
HDL top can be configured only statically at elaboration-
time, but as suggested by the code example in Figure
11 it is rather straightforward to employ SystemVerilog
conditional or loop generate constructs on the HDL
side in combination with a shared package of static test
parameters imported and used by both HDL and HVL
sides. The topology of a typical testbench is after all static
in nature since it is expected to be fully elaborated before
any testbench component starts running (e.g. the ‘end-of-
elaboration’ phase in OVM executes before the ‘run’ phase).
In case a truly dynamic alternative is desired it is possible to
elaborate a fixed number of BFMs on the HDL side of which
only a subset become active as maintained by the type and
number of dynamically created BFM proxy objects.

Another methodology consideration is that current synthesis
technology does not readily handle SystemVerilog coverage
groups. Coverage groups are well suited for implementing

1	 class fpu_monitor extends ovm_component;
2	
3	 ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	 // VIF handle to pin interface
6	 local virtual fpu_pin_if #(32) m_fpu_pins;
7	
8	 ...
9	
10	 function void build();
11	 ... // Retrieve m_fpu_pins vif handle
12	 endfunction
13	
14	 task run();
15	 @(posedge m_fpu_pins.clk);
16	 fork
17	 monitor_request();
18	 monitor_response();
19	 join
20	 endtask
21	
22	 task monitor_request();
23	 forever begin
24	 fpu_request req = new();
25	
26	 do
27	 @(posedge m_fpu_pins.clk);
28	 while (m_fpu_pins.start != 1);
29	
30	 req.a = $bitstoshortreal(m_fpu_pins.op_a);
31	 req.b = $bitstoshortreal(m_fpu_pins.op_b);
32	 req.op = op_t′(m_fpu_pins.fpu_op);
33	 req.round = round_t′(m_fpu_pins.rmode);
34	
35	 $cast(m_req_in_process, req.clone());
36	 end
37	 endtask: monitor_request
38	
39	 task monitor_response();
40	 forever begin
41	 fpu_response rsp = new();
42	 fpu_pair pair;
43	
44	 ... // Timed code to sample response
45	
46	 pair = new(m_req_in_process, rsp);
47	 pair_ap.write(pair);
48	 end
49	 endtask: monitor_response
50	
51	 endclass	

 (a) Original monitor	

19

1	 class fpu_monitor extends ovm_component;
2	
3	 ovm_analysis_port #(fpu_pair) pair_ap;
4	
5	 // VIF handle to XRTL BFM
6	 local virtual fpu_monitor_bfm m_bfm;
7	
8	 ...
9	
10	 function void connect();
11	 .. // Retrieve m_bfm vif handle
12	 m_bfm.proxy = this;
13	 endfunction
14	
15	 task run();
16	 fork
17	 m_bfm.request_daemon();
18	 m_bfm.response_daemon();
19	 join
20	 endtask
21	
22	 function void write(fpu_pair_s pair_s);
23	 fpu_pair pair = new();
24	 pair_converter.to_class(pair, pair_s);
25	 pair_ap.write(pair);
26	 endfunction
27	
28	 endclass
29	
30	
31	 interface fpu_monitor_bfm(fpu_pin_if fpu_pins);
32	 // pragma attribute fpu_monitor_bfm
 partition_interface_xif
33	
34	 ...
35	
36	 import fpu_tlm_pkg::fpu_monitor;
37	 fpu_monitor proxy;
38	 // pragma tbx oneway proxy.write
39	
40	 fpu_request_s req_in_process;
41	
42	 task request_daemon(); // pragma tbx xtf
43	 ... // Sample requests (req_in_process);
44	 endtask
45	
46	 task response_daemon(); // pragma tbx xtf
47	 fpu_pair_s pair;
48	
49	 @(posedge clk);
50	
51	 forever begin

52	 @(posedge clk);
53	 while (fpu_pins.ready != 1)
54	 @(posedge clk);
55	
56	 ...
57	
58	 pair.req = req_in_process;
59	 pair.rsp.result = fpu_pins.outp;
60	
61	 ...
62	
63	 proxy.write(pair);
64	 end
65	 endtask
66	

67	 endinterface

	

 (b) XRTL monitor BFM with proxy

Figure 9. Transforming an FPU monitor

for co-emulation–take 2

transaction-level coverage concerned with the higher level
functional requirements of a design. This stands in contrast
to assertion coverage which lends itself for measuring the
occurrence of lower level physical events involving the
sampling of DUT signals and state variables, potentially
over multiple consecutive clock cycles [4]. Assertion
coverage fits naturally for BFMs and is in fact supported
for synthesis by TBXTM. Moreover, while surely coverage
groups could be of use in BFMs as well, key to handling any
genuine transaction-level coverage requirement for a BFM
interface is once again the BFM’s HVL proxy object, which
may have coverage groups itself and forward transactions
to other transaction-level coverage analysis components
(e.g. see Figure 9.b).

EMPIRICAL RESULTS
Table 1 on the following page lists empirical results of
applying the proposed transaction-based SystemVerilog
testbench acceleration methodology. For several different
designs the run-times for executing a test with pure
simulation and with co-emulation are compared. The co-
emulation engine used is Mentor Graphic’s Veloce TBXTM.
The results clearly indicate that co-emulation can be much
faster than simulation

20

Figure 10. Normal simulation view and

co-emulation view of an OVM agent

alone. Therefore, if simulation leaves you with insufficient
throughput to meet your verification requirements, rather
than taking calculated risks and limit the length of your
simulation runs, you could greatly improve verification
throughput with realistic tests using co-emulation.

SUMMARY AND CONCLUSIONS
A methodology was described for writing SystemVerilog
and OVM or UVM testbenches that can be used not only
for software simulation, but especially for hardware-assisted
acceleration. For modern transaction-level testbenches,
the pragmatic approach to hardware-assisted speedup
in testbench execution is to have certain testbench

Table 1. Empirical results

components – the lower pin-level components like
drivers, monitors etc. – synthesized into real hardware
and running inside the emulator together with the DUT,
while other non-synthesizable testbench components –
the higher transaction-level components like generators,
scoreboards, coverage collectors etc. – remain in software
running inside the simulator. Communication between
simulator and emulator is then transaction-based, not
cycle-based, reducing communication overhead and
increasing performance because hardware-software data
exchange is infrequent and information rich, and high
frequency pin activity is confined to run in hardware at full
emulator clock rates.

This so-called co-emulation or co-modeling approach
is at the core of the methodology presented, which
further maximizes reuse between pure simulation-based
verification and hardware-assisted acceleration through
the application of an object-oriented remote proxy

design pattern. As a result, truly ‘single source’ and fully
IEEE 1800 SystemVerilog compliant transaction-level
testbenches can be created to work interchangeably for
both simulation and acceleration. In acceleration mode
substantial run-time improvements are made possible and
without sacrificing simulator verification capabilities and
integrations such as modern coverage-driven, constrained-
random and assertion-based techniques and tools.
Additionally, the acceleration methodology is independent
of the SystemVerilog verification methodology used and
applicable to all prevalent methodologies today including
OVM or UVM, and VMM.

In technical summary, the proposed simulation and
acceleration methodology stipulates that a testbench be
partitioned into two completely separated hierarchies, a
synthesizable HDL side and a strictly untimed HVL side.
Cross module and signal references are not permitted
between the two sides. Instead, only transaction-level data

Design Simulation Time Veloce TBXTM Speed-up Factor

Face Recognition Engine (1 MG) ½ hr. 6.58 secs. 128x

Wireless MM Sub-system (1 MG) 53 hrs. 658 secs 288x

Menory Controller (1.1 MG) 5 hrs. 308 secs 60x

Mobile Display Processor (1.2 MG) 5 hrs. 46 secs. 399x

Network Switch (34 MG) 16½ hrs. 240 secs.	 245x

Graphics Sub-system (8 MG)	 86½ hrs. 635 secs.	 491x

21

Figure 11. Topology configuration

exchange is performed via ‘remote procedure invocation’
in SystemVerilog, and with Accellera SCE-MI 2 inspired
performance benefits. Specifically, each DUT interface
protocol – or BFM – on the HDL side is modeled as a
synthesizable SystemVerilog interface with designated
tasks and functions that can be called from the HVL side
through a virtual interface by a dynamic class object that
acts as HVL proxy for the BFM. Transaction objects may
thereby need to be converted into synthesizable arguments.
Conversely, the BFM interface may also have an object
handle back to its proxy to call functions defined in the
proxy. Reactive transaction-based communication is thus
supported across the HVL-HDL boundary in both directions
with either the HVL proxy or the BFM as call initiator. Each
pair of BFM and proxy is to be viewed essentially as a joint
pair representing a single transactor.

REFERENCES

 [1] Accellera – Interfaces Technical Committee, “Standard
Co-Emulation Modeling Interface (SCE-MI) Reference
Manual,” Version 2.1 (Review Copy), October 21, 2010
[2] M. Glasser, “Open Verification Methodology Cookbook,”
Springer, 2009. (Associated example kit available at

www.ovmworld.org/contribution-detail/24891)
[3] A. Rose, M. Glasser, B. Osman, “OVM Configuration and
Virtual Interfaces,” White Paper, Mentor Graphics, 2010.
[4] H. van der Schoot, J. Bergeron, “Transaction-Level
Functional Coverage in SystemVerilog,” DVCon, 2006.
[5] A. Saha, K. Suresh, A. Jain, V. Kulshrestha, S. Gupta,
“An Acceleratable OVM Methodology Based on SCE-MI 2,”
DVCon, 2008.

NOTES

1 Since clocks are running exclusively on the HDL side,
only functions – not tasks – should be called from HDL
to HVL side. Strictly speaking only time-consuming tasks
are problematic, but it is recommended to avoid tasks
altogether.
2 Additionally, next to reactive communication it is possible
to model non-reactive, streaming communication which
can be viewed as an alternative where HVL and HDL
sides are decoupled and run independent threads. Mentor
Graphics’ Veloce TBXTM offers this alternative via the use
of so-called SCEMI pipes which are a kind of ‘acceleration-
friendly’ buffer with unique data-shaping features for
performance, described in the Accellera SCE-MI 2 standard
[1]. This is not further discussed here.

22

ABSTRACT:
The Questa® inFact intelligent testbench automation tool
is already proven to help verification teams dramatically
accelerate the time it takes to reach their coverage goals.
It does this by intelligently traversing a graph-based
description of the test sequences and allowing the user
to prioritize the input combinations required to meet the
testbench coverage metrics while still delivering those
sequences in a pseudo-random order to the device under
test (DUT). The rule language, an extended Backus Naur
Format (BNF) that is used to describe the graph structure,
has recently been enhanced to add two powerful new
features. Algebraic constraints can now be included to define
relationships between the fields of the stimulus description
(such as the fields of an OVM/UVM sequence item). Also,
external testbench values can now be imported into the
graph, allowing for the definition of relationships between
Questa inFact-generated field values and externally selected
values. The Questa inFact algorithms can now target cross
combinations of fields that are under its control with fields
that are outside of Questa inFact’s control. This article
describes these powerful new capabilities in more detail
with some simple application examples.

INTRODUCTION:
The purpose of Questa inFact is to generate meaningful
stimulus automatically and efficiently from a compact
description of the scenario space of interest. Currently
the most widespread automated stimulus generation
methodology is constrained random, which generally
comes hand in hand with coverage metrics defined in the
testbench in order for the verification engineer(s) to track
how well the random generation performed at hitting the
important cases. As every constrained random user knows,
there’s a tradeoff to be made in how far to constrain the
stimulus generation and how comprehensive the coverage
metrics should be. Increasing the scope of the coverage
metrics, especially when the constraint relationships are
complex, tends to push the limits on what can be efficiently
achieved by purely random generation. Limiting the scope
of the verification metrics makes the verification process

more of a gamble, since beyond those metrics it can be
very difficult to tell how effective the random generation
has been.

Questa inFact has been helping verification teams to reach
their desired coverage goals more predictably by defining
the stimulus in a different way – specifically, using a rule
based description that can be compiled into a graph.
Powerful and efficient graph traversal algorithms can then
more intelligently explore the stimulus space producing
vectors that combine the benefits of random generation with
the ability to prioritize specific coverage goals, including
large cross combinations that can leave random generation
stuck anywhere between 70-95% of the desired target.

Recently, the intelligence of the Questa inFact graph
traversal algorithms has been significantly enhanced to
allow algebraic constraints to be solved concurrently with
the graph traversal process, thereby simplifying the stimulus
definition process. This article describes how this powerful
combination can be used to achieve more comprehensive
verification goals in a more efficient and predictable way.

A DIFFERENT APPROACH TO CONSTRAINT SOLVING
When a constrained random solver generates a stimulus
item its goal is to find a random valid solution to the
user’s stimulus description, and to continue this process
repeatedly until the testbench halts and exits. The more
complex the constraints are on what those valid solutions
can be, the harder it is for a purely random engine to
produce all the required combinations to thoroughly
exercise the device under test. The primary issue is that,
as complexity increases, so does the production of
duplicate vectors. Many verification teams therefore can
spend a lot of time analyzing the missed coverage and
manually steering subsequent simulations to try to target
the missing cover points – a process can that can take
weeks in some cases.

As mentioned before, the stimulus description for Questa
inFact can now be a mix of rules (as compiled into graphs)
and algebraic constraints. The power of Questa inFact

Combining Algebraic Constraints with Graph-based Intelligent
Testbench Automation
by Mike Andrews, Verification Technologist, Mentor Graphics

23

was originally in its ability to iterate through the graph
description, randomly producing valid stimulus items while
iterating through all combinations needed to meet the
coverage goals. Where possible, the algorithms will attempt
to meet more than one desired combination at a time from
different cross coverage or individual stimulus field targets.
As each defined coverage goal is achieved, Questa inFact
will automatically revert to purely randomly generating the
values for fields that are no longer involved in the remaining
targets. So meeting a large total number of cover points,
as defined by a number of different cover groups targeting
different fields and field combinations, typically requires
a number of vectors to be generated that is less than this
total. This is in contrast to a pure random methodology,
where the number of vectors needed to reach the desired
coverage can be anything from 10x this total to effectively
infinite.

Combining algebraic constraints with the traditional Questa
inFact rule based description maintains this same ability
to iterate efficiently through all the valid solutions. More
specifically, Questa inFact is iterating through only the
number of combinations that is needed to meet the goals
of the various cover groups the verification engineer is
targeting, since the total number of all valid solutions can be
more than anyone has the time and resources to simulate.

THE NEED FOR CONTEXT DEPENDENT CONSTRAINTS
Questa inFact supports two different types of constraints,
one of which is a global (or static) constraint that must
always be satisfied, and the other is a context dependent
(or dynamic) constraint that only needs to be satisfied for
specific cases. When a dynamic constraint is declared, the
graph structure is used to define the applicable context.

As an example, let’s consider a stimulus generation
application for controlling a robot. One field of the sequence
item selects a general direction for the motion between the
choices LEFT, RIGHT, FRONT or BACK. If the direction
choice is FRONT, for example, then the resulting motion
must be be more in that direction than any other, but will

allow for some sideways component to the vector. Similarly,
if the choice is either LEFT or RIGHT then the robot should
move more sideways than forwards. There are another two
fields to determine the new relative position, called xPos
and yPos.. To ensure that the general direction choice is
obeyed in the FRONT and BACK case, a constraint of ‘Ypos
> Xpos’ is placed on these fields in that case. Where the
direction is either LEFT or RIGHT there should therefore be
the opposite constraint of ‘Xpos > Ypos’. Hence the need
for context dependent constraints to be specified in the
stimulus description.

While the range of xPos and yPos are specified by 12-bit
values, only discrete multiples of 64 and 128 can be used
for these values respectively. Also, in the special case of
direction ‘FRONT’ xPos must also be a multiple of 128.

These constraints on xPos and yPos can be implemented
in SystemVerilog as shown in Figure 1.

Figure 1. SystemVerilog constraints

Yet another field determines the speed, which is either
SLOW or FAST. All directions except for BACK can have
motion at both these speeds, while the BACK direction is
limited to just SLOW.

Combining Algebraic Constraints with Graph-based Intelligent
Testbench Automation
by Mike Andrews, Verification Technologist, Mentor Graphics

24

DEFINING THE STIMULUS
WITH RULES AND CONSTRAINTS
One option in the Questa inFact rule description would be
to simply write a rule (otherwise known as a symbol) called
‘sel_vals’, that simply listed the order of selection of the
fields of the item. Then the SystemVerilog constraints shown
above could be added to the Questa inFact rule file, with one
minor syntactic difference of a ‘;’ terminator for the constraint
block. Figure 2 shows an example segment of the Questa
inFact rules with the sel_val rule and the constraint on xPos.

Figure 2. Example Questa inFact rule segment

In the Questa inFact rule description we can also define
relationships using the graph structure, where a branch
in the graph defines the limitations for the BACK, FRONT
and LEFT & RIGHT directions. I can also apply dynamic
or context-dependent constraints on those branches such
that those constraints will be obeyed only in the intended
context. Figure 3 shows the amended rule for ‘sel_vals’
and the combination of dynamic and static constraints that
would be needed.

Figure 3. Example branched graph rule

In this example, the ‘|’ choice operator is used to define
the optional branches. The first branch limits the direction
choice to BACK, limits the speed choice to SLOW, and then
applies the dynamic constraint xPos_back. The next two
branches similarly group the related field values and the
algebraic constraints that must be applied to fields further
down the graph path. The graph branches recombine
before the selection of xPos and yPos. Figure 4 shows the
graphical view of this rule graph.

 This graphical view makes it much easier to visualize the
stimulus description and has often helped the user to see
errors that would have been much harder to discern using
the text-only constraint description. The dynamic constraints
appear in the graph as upside down trapeziums.

Note that in the graph view, there is an annotation on the
xPos and yPos nodes stating how many bins are defined for
these two fields. Given the large range of possible values,
and the limits on which values are legal as defined by the
constraints, it is obviously not practical to exercise all 4,096
values. A number of interesting bins are therefore defined
for these two fields, and this information is used by the
Questa inFact algorithms as they target the user’s coverage
goals. Figure 5 shows the definition of the bins for these
fields.

The bins declaration follows the declaration of the domain
of the field. The last bin uses a ‘*’ to create an additional
single bin which contains all remaining non-explicitly binned
values. Bins can also be defined on a per coverage goal
basis, so that different cross coverage goals that include the
same variable can be binned differently.

COVERAGE GOALS AND THE STIMULUS SPACE
The sel_vals rule is one rule within a hierarchy of rules
that define the full graph. A higher level rule call RobotCtrl
includes an initialization step, a construct called a repeat,

some nodes that
synchronize the graph
execution with the
testbench, and another
field of the stimulus
item called ‘mode.’
Figure 5 shows the
top-level rule.

25

 Figure 4. Example branched graph

Figure 5. Defining bins in the rule description

Figure 6 shows the top-level graph. The numbers annotated
onto the graph show the size of the stimulus space defined
by the elements of the graph, without considering the effect
of the constraints.

Figure 6. Top-level RobotCtrl rule

The total number of 3080 combinations
does consider any bins defined

that are global, i.e. are not only
associated with a particular

coverage target. It
therefore reflects,
in most cases, the
number of cover points
that would be reported
for a cross cover group
that included all the
fields in the graph,
prior to the definition

of the exclusions due to
constraints.

It is unusual of course to attempt to
cross every field in the stimulus item, since

in most cases that would be an impractical
number of simulation vectors, even with sensible

bins defined.

The coverage metrics tend to combine cross coverage
targets with individual field targets.

Figure 7. Top-level RobotCtrl graph with size annotation

26

Figure 8. Definition of the coverage strategy

In Questa inFact this is achieved by overlaying a user-
defined coverage strategy onto the graph. The coverage
strategy mirrors the coverage goals by specifying which
fields require cross coverage and which are targeted for
single-value coverage.

With our robot control verification project, we will assume
that the cross of all fields is the goal, so our coverage
strategy contains that one goal. A graphical editor can
be used to define the region of interest, which in the fully
expanded graph goes from the ‘mode’ node down to the
yPos node at the bottom. That coverage goal is called a
path coverage goal in Questa inFact terminology and is
given a name for reporting purposes. Figure 8 shows this
goal reflected in the graphical editor.

Any of the fields can be excluded by declaring it a ‘don’t
care’ for this particular goal. An important benefit of Questa
inFact’s ability to comprehend the graph structure and the
constraints simultaneously is that it can report the total
number of valid combinations.

Our example has an additional constraint on the mode field
that limits it to just the last three options, so this will also
be considered in producing the total valid combinations.
Figure 9 shows the result of this calculation that can be
performed independently of simulation at the same time
as the coverage goals are defined. This is expressed as a
‘Path Count’ in the Questa inFact tool.

27

Figure 9. Path Count Result

for the Cross Coverage Goal

While we have 3520 possible combinations of these field
values as binned, the graph structure reduces this number
to 3080, since it reflects the relationship between dir and
speed, and then the constraints further reduce the legal set
to just 1053. It can be difficult to get to this final number in
the presence of many complex relational constraints, and
to have the cover group accurately reflect this, but Questa
inFact can calculate this statically very efficiently. By adding
just 3 bins to mode to reflect the constraint on that field, the
cover group would contain 2640 cover points in the cross.
Without specifying all the remaining illegal combinations in
the cover group definition the total possible coverage that
we can get is 1053/2640 = 39.886%.

COMPARING THE RESULTS
As expected, when the testbench is run with the Questa
inFact graph, all 1053 legal combinations are created in
exactly that number of generated items. The coverage that
is reported for the cross is 39.8%. If we define this as the
coverage target for a constrained random run a comparison
can be made.

As we would expect from a constrained random generation,
the progress towards the coverage goals tails off as we get
closer to the goal, with significant redundancy in the vectors
produced. After 120,000 items, the constrained random
generation has hit 1050 of the 1053 legal combinations. It
takes another 20,000 generated items
to raise this to 1051. A little over another
60,000 items puts us at 1052, and the
final missing combination is achieved
after a total of 271,700 items. The
effective improvement in the number of
vectors it takes to achieve the coverage
goal using Questa inFact is therefore
258x versus the constrained random
equivalent. If each vector took a minute

to simulate (not an unreasonable estimate)
that would mean 17.5 hours of simulation
with Questa inFact, and 4,528 hours
(or almost 27 weeks) with constrained
random. Of course, in a real verification
project, other techniques would be used
to get to coverage faster, such as using

multiple parallel simulations, adding directed tests, or writing
further constraints to steer the random generation closer to
the missing coverage. A combination of these techniques
would probably be used (rather than waiting for three
months for the last three valid vectors).

WHAT IF I CAN’T CONTROL ALL FIELDS
FROM A GRAPH?
A little more complex case is when one or more fields
can’t be selected by the graph, but is a product of some
testbench state. In this case, we would use the new import
feature in inFact to bring awareness of this field value to the
inFact algorithms. With a slight modification (two lines of
code affected) to the example Robot control testbench, we
can move the mode field out of inFact’s control and instead
randomize it before we call the inFact graph to select the
rest of the fields. When a variable is declared as an import
in the graph, then its value is read from the testbench when
the algorithms traverse through that node in the graph.
Figure 10 shows the ‘mode’ field expressed as an import –
denoted by the arrow on the left side of the ellipse.

Note that the domain of the variable is still expressed in the
rules, allowing the inFact algorithms to target all the desired
values and cross combinations.

 Figure 10. Example of an imported variable

28

In this case, during simulation, a different aspect of the
intelligence in Questa inFact’s algorithms is exercised, that
is the ability to react to the testbench state when producing
a new stimulus item. If the value of mode is imported into
the graph, and the coverage strategy is still to produce the
cross of all fields, including mode, then Questa inFact can
still far outperform constrained random, taking only 1340
items to produce all the 1053 valid items.

DO I LOSE ANYTHING WITH THIS APPROACH?
Over the years I have been working with verification
teams and verification technologists I have often heard
this question. After all, random generation produces more
vectors than just the ones needed to meet the coverage
metrics defined by the user. The generally accepted
opinion is that more vectors simulated is equivalent to more
verification. The promise of achieving the targeted coverage
in anything from a 10th to a 1000th of the previously
required vectors can therefore be a concern. The problem
is there is no way to discern if those extra, mostly redundant
vectors, that were generated before were actually exercising
the DUT in a different or useful way. There are two ways to
respond to this concern.

The first way requires virtually no extra effort on behalf
of the verification team, and is to use Questa inFact to
prioritize the needed vectors for coverage, and then
continue to run in a purely random mode for as long as time
and resources allow. A variant of this approach would be
to have Questa inFact target the desired coverage more
than once, taking advantage of the fact that it will produce
different vectors each time, in a totally different order. This
means that the combinations that the verification engineers
thought were of interest get exercised in different contexts.

A second approach assumes that the original verification
metrics were not as comprehensive as they could be.
Expanding the scope of these metrics does of course
require some effort, but this effort clearly pays off in the
confidence level that can be achieved, and as proven in
some cases, in the increased number of bugs that are
found earlier in the verification process.

SUMMARY

As the description of the stimulus to the DUT becomes
more complex, with complex constraint relationships
needing to be defined, reliance on randomly generated
stimulus to achieve comprehensive coverage metrics
becomes a less predictable and more labor intensive
process. With the addition of algebraic constraints to the
Questa inFact rule based stimulus description a more
intelligent approach can be taken, that can be tremendously
effective in saving time and resources and is now much
easier to implement.

29

INTRODUCTION
With the sheer volumes of data that are produced from
today’s verification environments there is a real need for
solutions that deliver both the highest capacities along
with the performance to enable the data to be accessed
and analyzed in a timely manner. There is no one single
coverage metric that can be used to measure functional
verification completeness and today’s complex systems
demand multiple verification methods. This means there is
a requirement not only to unify different coverage metrics’
but also to unify data from multiple tools and verification
engines. Data management forms the foundation of any
verification environment.

DATA STORAGE REQUIREMENTS
The reality of multiple tools, engines and metrics means the
ideal verification database has to support more than just
coverage. It has to have the capabilities to answer many
questions posed by not only the verification engineer, but
also the design engineer, the project manager and all other
stakeholders in the verification process. The database
infrastructure must provide the visibility into the process
across many dimensions. The major requirements of such a
database are as follows

Unification. No one coverage metric or a single
verification engine can measure completeness. The
database has to allow the storage of a large mix of coverage
metrics from many data sources including simulation,
emulation, FPGA prototyping, static formal analysis tools,
software-driven tests and many other application-specific
sources. It should be possible to combine data based on
blocks, systems, instances, tests, users and time to give
the most flexibility. Combining this data based on so many
variables requires a flexible architecture and the need to
store details about how, where and when the coverage
data was generated. This allows the verification engineer
to determine how and when a particular metric was or
wasn’t hit. The process also needs the ability to allow these
metrics and measurements of certain system requirements

to be associated with a verification plan and ultimately
the design specification.

Capacity & Performance. Unifying the verification
data storage from all tools and metrics can result in huge
volumes of data. The storage capacity must be able to
handle the very largest of today’s designs and the designs
of the future. As the stored data increases it is important to
have an environment that is optimized for capacity and has
the performance to manipulate and query potentially large
amounts of data within workable limits. Combining results
from tests that have many millions of coverage bins would
require such a database. This often has a negative impact
on the databases’ capacity and can become a tradeoff.
Ideally a solution should have the ability to solve both the
capacity and performance issues within the largest of
projects now and in the future.

Visibility & Analysis. Allowing queries on stored
verification data requires access to the database. The
results from many verification engine runs need to be
combined and the verification engineer needs to be able to
analyze which runs with which particular settings caused
particular metrics to be hit. This type of analysis is required
to figure out redundancy in tests or to isolate a particular
test or set of tests of a particular feature, thus allowing
the verification process to be further optimized. With the
combining or merging of data it’s also necessary for the
Verification Engineer to be able to query the database to
find out information on the history of how the data was
generated. This includes not only the command line options
for generating the single tool runs but also the utilities
used to add and combine data to the database across the
progression of the project. Reductions and optimizations
are required on the data so that trends can be seen across
the duration of the process. The verification process is
dynamic. With the addition of new functionality in the
design, as well as the process of finding and fixing bugs,
there is a need to be able to look at the trends of different
metrics at a higher level to determine if progress is being
made towards completion.

Data Management: Is There Such a Thing
as an Optimized Unified Coverage Database?
by Darron May, Manager of Verification Analysis Solutions and Gabriel Chidolue, Verification Technologist,

Mentor Graphics Corporation

30

Control. With the continual data analysis throughout
the project the Verification Engineer also needs to have
control over the coverage model and the ability to document
decisions made during the process. The database has to
have the ability to manipulate the overall coverage metrics
into an overall metric showing the level of completion. It also
needs the ability to trade-off one metric from another based
on its importance with a user controlled weighting system.
As verification progresses it’s also important to document
any exclusions to the coverage model and the reasons why
they have been excluded. These types of exclusions could
be made automatically by the verification tools. An example
is a static formal tool excluding unreachable code, ahead of
dynamic simulation

Extensibility/Openness. Finally, the database needs
to be extensible and allow the addition of any information or
metric that may be application-specific or even not currently
known. An example is information or metrics from a tool yet
to be developed. It also needs to be completely open and
have the ability to add or remove any data with a clearly
defined interface. This requirement allows any third-party
tool to write data into the database or extract data, allowing
the unification of data across tools from one or multiple
vendors.

MENTOR GRAPHICS UNIFIED COVERAGE DATABASE
The Unified Coverage Database (UCDB) from Mentor
Graphics has been architected from the ground up to meet
the requirements outlined earlier. The UCDB has been the
default coverage database format for storing code coverage
and functional coverage metrics in both ModelSim and
Questa since version 6.2. In addition, the extensibility of
the UCDB has allowed test data, assertion and coverage
results from Mentor Graphics Questa Formal Verification,
Questa ADMS and Veloce® Emulation products to be
combined. In addition to its coverage storage abilities,
the UCDB also stores verification plans and test-specific
data, making it a solid anchor for any verification team
that intends to adopt a verification methodology that is
driven from verification plans, design and/or requirements
specification documents. One of the biggest verification
challenges is having the ability to bring together the data
and benefits from multiple verification techniques. The
UCDB merge algorithms have been developed to take into
consideration data from both formal (static) and dynamic

verification engines. It has the ability to combine results
and report on any conflicts that may occur when comparing
static and dynamic techniques, as well as allowing a static
formal engine to exclude coverage from the dynamic
simulation engine that is flagged as unreachable.

Leveraging the unique test-associated merging capability
it is possible for a verification team to maintain a single
merged database that contains merged coverage data from
multiple verification runs or simulations in a regression.
A record of the attributes, commands and settings of any
tool are associated with each test or testcase, giving it a
unique label to allow test association with coverage data.
The architecture allows verification plans to be imported
and linked with multiple coverage metrics or tests. This
single database has enough information within it to help
figure out the test(s) that incremented a specific coverage
bin. There is enough information to perform test ranking
(aka coverage grading) on this merged database that allows
the verification team to identify the most effective tests
or seeds in the case of constrained random simulation.
Merge performance has the biggest impact on any ranking
algorithm; to gain the most optimal results the number of
merges required for what if analysis is the square of the
number of tests plus the number of tests, all divided by
two. This greedy algorithm makes the overall performance
of a ranking algorithm very sensitive to the single merge
performance due to the sheer number of merges required
to gain the most optimal result. With the UCDB’s unique
test-association merge, this analysis can be carried out
from the single merge database, bringing the necessary
performance for fast and accurate test analysis. Test
association provides substantial disk space savings
since it is no longer necessary to keep all the individual
coverage databases after a test-associated merge has
been performed. Another benefit is high performance of
the analysis tools. Questa users benefit from two orders of
magnitude reduction in their storage needs.

Once a verification project gets underway, it becomes
necessary to track project momentum by looking at
the trends of metrics over time. The UCDB has been
architected to support shallow or “trend” merge of multiple
merged UCDB databases in order to capture trend
information for coverage within the merged UCDBs. The
resulting trend UCDB can be visualized via graphs, HTML

31

or CSV data that can be extracted from it for processing
and analysis in other tools. Giving users an automated way
of reducing and keeping the relevant data has the benefit of
further reducing the volume of data required to analyze the
project’s progress.

The UCDB is extensible, scalable and open. Many different
verification plan formats including Word, Frame, Excel, and
Docbook can be imported into the UCDB. With a little XML
and Style-sheet knowledge, a user can expand the list even
further. The user can add any test-specific information in
the form of an attribute value pair to the UCDB in addition
to the attributes automatically captured by the tools. For
the ultimate in flexibility, there is the UCDB C API. TCL-
based CLI commands in tools such as ModelSim and
Questa are implemented using the UCDB C API. Since the
UCDB C API is open, it can be leveraged in many different
interesting ways. For example, coverage data in third party
tools can be extracted into the UCDB and then combined
with coverage from Mentor Graphics tools and analyzed
using the Verification Management tool suite in Questa.
The UCDB C API could be used to read existing UCDB
files in order to perform tasks such as generation of custom
reports, performing custom queries or analysis.

Finally, the database requires different access methods
to allow both performance and capacity. This has been
solved in the fact that the database has both in-memory
and streaming access to the stored data. This is extremely
important because different analysis tools have different
requirements. Some need the random access of an in-
memory mode which allows multiple queries, while others
need the performance to quickly access particular data
for reporting purposes. The UCDB has been uniquely
architected to achieve both modes of access and operation
giving the best of both worlds.

THE UCDB HISTORY
Mentor Graphics began architecting the unified database
nearly seven years ago. In early 2006 it released the first
implementation, used natively by its simulation products
to save coverage and assertion data. The database
was developed from the start to store all the information
needed to manage the verification process. The open API
(Application Programming Interface) has been used to
develop all the verification management and coverage tools
within Questa and ModelSim, and is key to its extendibility

to other verification tools such as Questa ADMS and
Questa Formal tools. This proven implementation has
been used and stressed with many users’ designs
and environments allowing the database itself to be
refined, optimized and tuned to provide the capacity and
performance required by the largest of designs.

Soon after the first implementation of Mentor Graphics’
UCDB was being stressed in its use on real projects,
Accellera formed the UCIS (Unified Coverage
Interoperability Standard) working group. This group was
formed with the goal of developing a standard for the
interchange of coverage between vendors. It is made up
of both EDA vendors and user representatives from the
largest companies in the industry. After a period of time,
Mentor Graphics representatives decided to donate its
technology as a starting point for the standard due to the
fact that it clearly met the requirements laid down by the
group. This triggered other donations from other sources.
However, the UCDB API was chosen as the basis of the
standard after a lengthy period of analysis of the donated
technologies, giving further credence to its capabilities.
With the standardization process well under way, users
will start to benefit from Mentor Graphics pioneering work
and database optimizations, particularly as other vendors
introduce solutions based on the UCIS.

CONCLUSION
Mentor Graphics had the vision that the cornerstone
of verification solutions was an optimized and unified
database. The UCDB was architected and implemented
to have the capabilities to allow the unification of all
verification data and allow the development of very powerful
verification management capabilities, which can be found
within Questa today. The UCDB implementation supports
a growing number of both Mentor Graphics and third
party tools, and also many custom user-created analysis
tools using the Open UCDB C API. An optimized unified
database is definitely a reality today, particularly when using
Mentor Graphics products.

32

INTRODUCTION
As SOC integration complexity grows tremendously
in the last decade, traditional blackbox checker based
verification methodology fails to keep up to provide enough
observability needed. Assertion-based verification (ABV)
[1] methodology is widely recognized as a solution to this
problem. ABV is a methodology in which designers use
assertions to capture specific internal design intent or
interface specification and, either through simulation, formal
verification, or emulation of these assertions, verify that the
design correctly implements that intent. Assertions actively
monitor a design (or testbench) to ensure correct functional
behavior. They detect design errors at their source, greatly
increasing observability and decreasing debugging time.

Bugscope Assertion Synthesis
The ABV methodology is easy to adopt in most existing
verification flows since it can be adopted incrementally.
Besides capturing design intent manually with an assertion
language such as system verilog assertion (SVA), an
Assertion Synthesis tool, such as NextOp’s Bugscope,
can be used to create high quality assertions based on
simulation activities [2].

 Given a set of regression tests and the corresponding
RTL, Bugscope generates properties which satisfy three

requirements:

•	 true at every cycle of the simulation
•	 not easily implied by RTL only
•	 orthogonal to each other

These properties are further classified by designers as
either assertions or cover properties. Assertions are
checked in to increase verification observability while cover
properties directly point to the missing functional coverage
by simulation (see Figure 1). Intuitively, Bugscope captures
the design/verification snapshot in the format of properties.
Such information guides further verification. Therefore,
Assertion Synthesis enables a progressive, targeted
verification process, allowing design and verification teams
to more easily uncover corner case bugs, expose functional
coverage holes, and increase verification observability. The
two advantages of Assertion Synthesis are

•	 Reduce manual assertion writing effort for designers
which is believed to be the main hurdle for design
team to adopt ABV;

•	 Synthesized cover properties provide a unique
functional coverage report to the user;

In this article, we describe a unified verification flow by
incorporating Bugscope into Mentor Graphics Questa/
Veloce verification flow. We will demonstrate how to
integrate Bugscope with Questa simulation, Questa formal
verification and Veloce simulation acceleration environment
to achieve better observability.

Questa Simulation
Questa Simulation supports multiple verification
methodologies including Assertion Based Verification
(ABV), the Open Verification Methodology (OVM) and the
Universal Verification Methodology (UVM) to increase
testbench productivity, automation and reusability. It
enables the automatic creation of complex, input-stimulus
using scenarios described in terms of constraints and
randomization using SystemVerilog or SystemC Verification
(SCV) library constructs. Questa Simulation combines all of
these forms of stimulus generation with functional coverage
to identify the functionality exercised by the automatically
generated stimulus. Using assertions as feedback for test

A Unified Verification Flow Using Assertion Synthesis Technology
by Yuan Lu, Nextop Software Inc., and Ping Yeung, Mentor Graphics Corporation

33

Figure 1 Assertion Synthesis Technology

creation, engineers can adjust constraints to focus random
testing on coverage holes.

Questa Formal Verification
Questa Formal Verification supports general assertion-
based formal verification to ensure that the design meets
its specific functional requirements. With support for PSL,
SVA, and OVL, including multi-clocked assertions, Questa
Formal Verification easily verifies very large designs with
many assertions. Its multiple high-capacity formal engines
cooperate to complete verification faster. Questa Formal
Verification is integrated with the Questa Simulation for
easy debug of assertion failures.

Veloce Simulation Acceleration
Veloce Simulation Acceleration speeds up block-level and
full SoC regression test runs by 100s to 1000s of times.
It includes a simulation-like debugging environment, has
100% internal DUT visibility, and supports traditional break
pointing and ABV. In a transaction-based acceleration
environment, Veloce uses TestBench XPress (TBX)
Software [3], and host-based transaction-level test benches
to drive transactors in the Veloce system to drive the
DUT. For test benches written in C/C++ or System C, TBX
interfaces directly with the Veloce and executes the test

bench program. For SystemVerilog testbenches, TBX
runs Questa on the host PC to drive the test bench through
the Veloce-based transactors and DUT.

Questa Verification Management
Questa collects all coverage data — code coverage,
assertions, formal, and functional coverage — into a single
highly efficient Unified Coverage DataBase (UCDB) and
makes them available in real-time within the testbench or
for post-processing with Questa Verification Management.
It can also capture information about the broader
verification context and process, including which verification
tools were used and even which parameters constrained
these tools. The result is a rich verification history, one that
tracks user information about individual test runs and also
shows how tests contribute to the overall coverage objects.

A UNIFIED VERIFICATION FLOW WITH ASSERTION
SYNTHESIS TECHNOLOGY
Given a testbench, no matter whether it is at block level
or chip level, Bugscope generates assertions and cover
properties based on the given tests. Expressed in SVA
with binding statements ready, these property files are
directly given to Questa simulator, Questa formal verifier
or Veloce hardware accelerator to consume to reach
intended coverage goals, check design intent, therefore
reach verification signoff criteria (see Figure 2 on the
following page).

A Unified Verification Flow Using Assertion Synthesis Technology
by Yuan Lu, Nextop Software Inc., and Ping Yeung, Mentor Graphics Corporation

34

 Figure 2 Unified Verification Flow with Assertion

Synthesis Technology

Unified Simulation Flow
Given a block level testbench, Bugscope generates
assertions and cover properties in SVA format. The cover
properties point to functional corner case holes which are
missed by simulation. These SVA properties can be directly
included in Unified Coverage DB which is consumed by
Questa simulator to guide the user to reach 100% functional
coverage.

The synthesized SVA assertions are used in block level
testbench as more random seeds are executed. They
are also shipped with the block RTL together to chip level
simulation using Questa simulator. Note that the chip level
observability is significantly improved by these whitebox
assertions.

Connect Simulation
and Formal Using Bugscope
Usage of formal verification suffers from two fundamental
problems:

•	 Constraints are difficult to write and error prone.
Proofs are as good as the constraints are correct. To
our knowledge, there is no good way to guarantee
correctness of the written constraints [4].

•	 Developing assertions to prove is difficult for designers.

Bugscope provides a natural solution to these two
problems. Based on a Questa simulation environment,
Bugscope extracts both assertions and cover properties.
Note that the cover properties point to the area where
simulation fails to reach. Then we give both assertions and
cover properties to Questa formal verifier to prove. This
methodology naturally solves the above two problems:

•	 Synthesized cover properties provide a good corner
case target to the formal engine to reach. If they are
unreachable, the constraint environment is very likely to
be buggy and should be corrected;

•	 Bugscope supplies a high density sets of assertions
for formal engine to prove. They are easier than typical
manual end-to-end assertions due to its whitebox
nature.

Because Bugscope can provide synthesizable set of SVAs,
the integration between Bugscope and Questa Formal
Verifier is painless.

New Assertion Synthesis Driven
Hardware Accelerator Flow
In recent years, hardware acceleration technology has
matured and been adopted by various leading chip
companies. However, several fundamental issues still
persist

•	 Testbench checking can only be applied on interface
signals. Some features such as performance, whitebox
behaviors are very difficult to capture at interface level.

35

Those types of checking are often omitted.
Therefore, the verification observability is low.

•	 There is no coverage measurement on the quality
of verification. This can be a major hurdle for the
verification team to adopt hardware acceleration.

Assertions provide a natural solution to both of the above
problems. As a matter of fact, Veloce hardware accelerators
can accept SVA assertions as well as SVA cover properties.
The problem is which assertions or cover properties should
be added to the Veloce hardware acceleration. Therefore,
we propose a new Assertion Synthesis driven hardware
acceleration flow (see Figure 3).

 First, we use Bugscope to generate assertions and
cover properties in a Questa simulation environment.
At classification phase, the designers will notify which
assertions and which cover properties they are willing to put
into the hardware acceleration environment. Second, these
assertions and cover properties are filtered through Questa
Formal Verifier. If an assertion is proven to be true, it will be
removed from the list because it will never catch bugs as
long as RTL doesn’t change. Similarly, if a cover property is
proven unreachable, it will be removed from the list because
it will never be reachable as long as RTL doesn’t change.
Note that this step is important because the resource on
Veloce hardware is limited. Table 1 shows the effectiveness
of the Questa Formal Verifier to help reduce the number of
redundant properties. Finally, the left assertions and cover
properties are integrated into Veloce Hardware Accelerator
to improve the observability.

CONCLUSION
This article introduces a new Quest/Veloce verification
methodology based on Assertion Synthesis technology.
This methodology automates the assertion based
verification and solves the observability problem in the
SOC verification. A number of customers have used this
methodology successfully and have found bugs in their
designs [5].

REFERENCE
[1] Harry D. Foster, Adam C. Krolnik, David J. Lacey,
“Assertion-Based Design”, Kluwer Academic Publishers,
2nd edition, 2004.
[2] Yunshan Zhu, Yuan Lu, “Assertion Synthesis: Enabling
Assertion-Based Verification For Simulation, Formal and
Emulation Flows”, Whitepaper, http://www.nextopsoftware.com.
[3] “Transaction-based Simulation Acceleration Software
- TestBench Xpress”, http://www.mentor.com/products/fv/
emulation-systems/veloce/testbench-xpress
[4] Alan J. Hu, Masahiro Fujita, and Chris Wilson, ``Formal
Verification of the HAL S1 System Cache Coherence
Protocol,’’ IEEE International Conference on Computer
Design (ICCD), pp.438--444, 1997.
[5] Jing Li, Nantian Qian, Yuan Lu, “Linking Multiple
Verification Flows Using Automatically Generated
Assertions”, DVCon, 2011.

Block Name #FFs #Assertions #Proven Assertions #Checkin Assertions

BLOCK1	 10330 128 29 99

BLOCK2 20783 101 12 89

BLOCK3 169518 68 37 31

BLOCK4 69566 65 7 58

BLOCK5 270197 362 85 277

Table 1 use Questa Formal Verified to Reduce # of Assertions on Veloce

Figure 3 Assertion Synthesis Driven Hardware Acceleration Flow

36

INTRODUCTION
This article describes “asureMark™ ” - the Functional
verification Capability Maturity Model (FV-CMM™)
benchmarking process developed by TVS to help the user
measure the maturity of their verification processes and to
provide a framework for planning improvements.

When describing any activity it is important to clearly define
its purpose. In this case we needed to understand how our
customers benefit from applying benchmarking:

1.	The constant increase in complexity of electronics
means that functional verification faces an ever growing
challenge. Hence it is essential not only to consider
today’s challenges but anticipate the future. Companies
that are often in crisis because their management has
been effectively ambushed by this constant march of
verification complexity. Companies therefore need
a process that can give them a clear warning before
things go wrong!

2.	Functional verification requires a vast amount of
resources of all kinds: people, machines and EDA
licenses. Even more importantly it has a major
impact on project timescales. Yet often engineers
and management in companies have very different
perceptions of current capabilities and fail to identify or
address key areas of weakness.

3.	A process of continuous improvement needs a shared
‘language’ and framework that can be used to identify
issues, then define, prioritize and monitor tasks. This
is a key requirement for companies to ensure they
will continue to be able to meet future verification
challenges.

Over the years there have been numerous attempts to
develop benchmarking methodologies. One of the most
widely used is the Capability Maturity Model (CMMI)
developed by the Software Engineering Institute at
Carnegie Mellon University. Although aimed at software
engineering it provides a framework that is widely applicable
to most business activities. However, whilst we have drawn

considerable inspiration from CMMI, it has a number of
serious limitations when trying to use it to benchmark a
highly specific activity such as functional verification:

1.	The CMMI is relatively abstract and does not address
domain specific ‘capabilities’, yet these are at the heart
of effective functional verification[1]

2.	Deploying CMMI is actually quite an involved process
that takes considerable time and expertise. Even
reading the specification is quite a lengthy commitment.
Our experience suggested that this would be a major
barrier to adoption.

3.	Function actually follows form. The capabilities of teams
are largely shaped by their organization and practices.
Imposing a rigid benchmarking process can over time
distort an organization and prevent necessary change.
Hence any benchmarking process needed to be flexible
in order to meet the current and future needs of different
companies.

Much the same observations have been made
independently by other industry experts (Foster & Warner,
6/2009). For the above reasons we aimed to develop
a more specific, but flexible and light-weight process
dedicated to benchmarking functional verification. The FV-
CMM™ is a framework that provides a light weight solution
for benchmarking functional verification capability which
can provide:

•	 An integrated view of the organization from the
viewpoint of functional verification

•	 An objective benchmark for measuring the maturity of
functional verification activities

Benchmarking Functional Verification
by Mike Bartley and Mike Benjamin, Test and Verification Solutions

The FV-CMM™ is a framework for benchmarking
functional verification capability which provides:

•	 An integrated view of the organization from
the viewpoint of functional verification

•	 An objective benchmark for measuring the
maturity of functional verification activities

•	 A framework for process improvement that can
help management define goals and priorities

37

•	 A framework for process improvement that can help
management define goals and priorities

Whilst it has some similarities to the ‘Evolving Capabilities
Model’ Foster and Warner proposed it has a unique
approach to decomposing capability in a ‘top down’
fashion and then evaluating maturity ‘bottom up’. The rest
of this article describes the three key elements of this
benchmarking process: capability, maturity and the actual
benchmarking process that TVS adopts.

CAPABILITY
The FV-CMM™ benchmark has a hierarchical structure
that starts by breaking capability down into key process
areas such as ‘functional verification planning and
scenario creation’. These can be customized for each
client as a company developing interface IP will face
different challenges to one developing CPUs or doing
SoC integration. The process areas may also change over
time as companies evolve and technology continues to
develop. The only requirement is that each should have a
clearly defined purpose and a clear impact on functional
verification. We have so far defined 13 possible process
areas ranging from ‘metrics, coverage and closure’ through
‘specification and design’ to ‘organizational capability’.

Each process area consists of a set of specific goals (e.g.
‘ensure the integrity of the code base’) and practices (e.g.
’all tasks should have an agreed completion date’) that
capture key requirements. For example in the case of
‘specification and design’ the specific goals and practices
for functional verification are:

•	 Give the verification team visibility of the architecture
and micro-architecture corner cases

•	 Make the design ‘verification friendly’
•	 Make the design stable to ensure verification isn’t trying

to hit a moving target

These in turn are broken down into example actions and
activities that address that issue. These are not intended
to be exhaustive but do serve to connect the abstract
framework to concrete actions. For example design stability

includes ‘checking whether the project enforces a process
of successively freezing the RTL’. This structure can easily
be customized to the specific needs of different application
domains, different design styles or different companies.

MATURITY
When evaluating maturity we consider three aspects:

Ownership: this can vary from tasks, tools and expertise
being specific to named individuals to ownership being
shared across the project or the entire company wide
community. This corresponds to the level at which: adoption
has occurred, decisions are made, or support can sensibly
be requested. This also reflects the process for continuous
improvement that can vary from best practice being owned
by individuals who implement improvements in an ad hoc
fashion to institutionalized fact based learning.

Visibility: this can vary from undocumented, with no
external input, to living documentation with quantitative
metrics and full involvement of the stakeholders. It
involves the following three key aspects: the availability of
documentation, the use of metrics for measuring progress
and quality, and the use of reviews.

Execution: this can vary from ad hoc and incomplete
to a repeatable process supporting fact based continuous
improvement. Typical characteristics of a repeatable
process are documentation and automation.

The maturity of each aspect is defined as being at one of
five possible levels. Each of these levels corresponds to a
clear step in maturity. These are:

Initial: Processes are typically ad hoc and applied
incompletely or on a best effort basis, especially in times of
crisis. Goals are often not satisfied. Processes are typically
not documented or otherwise made repeatable and best
practice remains in the ownership of individuals rather than
being captured by the organization. Verification planning is
either not performed or is performed and not documented,
or plans are incomplete and not maintained once written.
Stakeholders are not normally involved in the planning.

Benchmarking Functional Verification
by Mike Bartley and Mike Benjamin, Test and Verification Solutions

38

Managed: The processes are performed consistently
and the goals are satisfied. Processes are owned
and aligned at project level. They are automated, or
otherwise repeatable, and will serve to locally capture
best practice. However there are few specific checks on
the capabilities of tools and processes. Initial verification
planning is performed and documented but the plans are
not maintained. Metrics are used to demonstrate progress
(scenario completion, code coverage, bug rate) but not to
check that the plan has been implemented. The status of
the work is only visible to management at defined points
and the predictability of verification completion is weak.

Defined (also known as ΄Planned‘): The
processes are planned in conjunction with the relevant
stakeholders. Implementation is adequately resourced.
The verification plan is either maintained over the life of the
project or is a living plan. In either case there are checks or
coverage metrics allowing the results to be monitored and
reviewed. The capability of specific processes and tools is
reviewed qualitatively to ensure good alignment with tasks.
The predictability of verification completion is strong.

Table 1: Maturity levels for the three key aspects

Best practice is consistently shared across projects.

Quantitatively Managed: Using metrics and profiling.
Living documentation ensures full visibility at all times and
ensures the widest possible involvement of stakeholders in
the verification process.

Optimizing: The organization practices fact based
learning and continuous improvement at an institutional
level using data collected across the organization and
projects. Quantitative metrics are used for both coverage
closure and continuous improvement of product, tools,
process and organization.

Table 1 below details how the five maturity levels map onto
three aspects of ownership, visibility and execution

Process maturity is not a substitute for skilled and dedicated
Engineers but it will make the work of those individuals
more predictable and repeatable, and make it easier for the
organization to learn from best practice.

PROCESS
Evaluation against the FV-CMM™ benchmark proceeds
‘bottom up’ using the example actions and activities to

39

structure evidence gathering. This typically takes the form
of in depth interviews with key project or department staff
including verification managers, design managers and
project managers as well as key verification experts. This
may be backed up by reviewing project documents and
data but it differs in subtle ways from an audit. Here the
intention is to facilitate discovery and draw out the collective
knowledge of the team rather than enforce practices. The
observations are recorded and validated by being fed back
for comment to the interviewees and other relevant staff.
The reviewers then use their expertise and this evidence
to ‘score’ the maturity of each of the three key aspects of
ownership, visibility and execution for the associated goal
or practice. Overall maturity is then evaluated based on
the maturity of the three component aspects. Rather than
impose an arbitrary algorithm we make this a subjective
process, the only restriction being that the overall rating
can’t exceed the range set by the individual aspects,
hence three wrongs can’t make a right! The results for the
individual goals or practices are in turn are used to guide
the overall evaluation of each process area. All these
results are captured in a single easily accessible spread
sheet and can be made even more visible through the use
of spider graphs to present the key results. Sometimes
there is a mismatch in perception between various team
members, or between engineers and management. This
can be identified by following a 360 feedback process
where staff, as well as the reviewers, score the maturity of
the different process areas.

Whilst this evaluation is partially subjective the evidence
based ‘bottom up’ flow aims to ensure the conclusions are
fact based. By defining target maturity levels appropriate to
the business and its future product roadmap a gap analysis
can be conducted. The results can then be used
to identify key issues and plan improvements in either
specific processes or in overall functional verification

maturity. Regular reviews against this model can ensure the
organization maintains an appropriate level or help drive a
process of continuous improvement, though subsequent
audits should aim to apply common standards for evaluating
maturity.

ASUREMARK™ IN ACTION: APPLYING FV-CMM™
TO UVM ADOPTION
TVS is not able to talk in detail about the application of
FV-CMM™ with customers. Instead, this paper will discuss
how it is applied to a company considering adoption of
UVM [2] (the Universal Verification Methodology). UVM is
being developed within Accellera’s Verification Intellectual
Property Technical Subcommittee[3] and is supported
by Mentor Grtableaphics, Cadence and Synopsys. It is
gaining rapid widespread adoption within the verification
community but, in the experience of TVS, mere adoption
of a constrained random methodology such as UVM will
not necessarily lead to verification improvements. The FV-
CMM™ benchmarking process will enable a company to
understand better it’s readiness for the adoption of UVM.

For example, ‘functional verification planning and scenario
creation’ is an important process area within constrained
random verification. This process has a number of goals
such as ‘Ensure the widest possible input into verification
planning’ and ‘Make verification plan and its scenarios
visible’ which break down into practices. The table above
considers two of the practises that contribute the first of
these two goals.

We have found that the output of the benchmarking
process is best presented as a spider diagram such as
the one shown in Figure 1 on the following page. The figure
shows three assessments: internal, external and a target
assessment. Having an internal and external assessment
captures the differences in perceptions between the internal

Table 2: Example application of FV-CMM™ to UVM adoption

40

Figure 1: Spider diagram for verification maturity

team and the external TVS consultants which can lead to
very valuable discussions. Finally, the target assessment
allows for improvement plans to be defined in terms of
the goals and practises required in order to maximise the
benefits of UVM adoption.

SUMMARY
The FV-CMM™ is a flexible, light-weight benchmarking
process specifically targeting functional verification. This
avoids some key limitations of a more general framework
such as CMMI.

Capability is captured top down by identifying process areas
which are then decomposed into goals and practices that
can then be linked to example actions and activities that
connect the benchmarking process to concrete actions.

Evaluation then proceeds bottom up by considering
ownership, visibility and execution. Maturity is rated using
five clearly distinct levels from ‘ad hoc’ to ‘Optimizing’.

Doing a gap analysis against the business requirements
helps TVS’ customers identify weak areas of their
verification process in a timely fashion and the FV-CMM™
also provides a framework for planning improvements.

WORKS CITED
Foster, H., & Warner, M. (6/2009). Evolving Verification
Capabilities. Verification Horizons.

NOTES
[1] For this reason software testing has developed
 the domain specific ´Test Maturity Model
 Integration’ (TMMi)
[2] See http://www.uvmworld.org/
[3] See http://www.accellera.org/activities/vip

ABOUT THE AUTHORS
Mike Bartley and Mike Benjamin have over 35 years
of hardware verification between them gained at
STMicroelectronics, Infineon and start-up fabless
companies. They have both worked as verification
engineers, team leaders, led central functional teams
and worked as consultants advising on company-wide
verification strategy. They have experience in verifying
blocks, CPUs, systems and SoC’s and have applied various
techniques and tools including formal, constrained random,
assertion-based, OVM, testbench qualification, etc.

Both authors work with TVS, an independent hardware
verification consultancy that provides both high-level
consultancy on verification strategy and verification
execution resources in several locations around the
world (www.tandvsolns.co.uk).

41

With the increasing number of different VITAL model
families, there is a need to develop a base Verification
Environment (VE) which can be reused with each new
VITAL model family.

UVM methodology applied to the SystemVerilog Testbench
for the VITAL models should provide a unique VE. The
reusability of such UVM VE is the key benefit compared
to the standard approach (direct testing) of VITAL models
verification. Also, it incorporates the rule of “4 Cs” (Con-
figuration, Constraints, Checkers and Coverage). Thus,
instead of writing specific tests for each DUT feature, a
single test can be randomized and run as part of regression
which speeds up the collection of functional coverage.

The results show that UVM VE testbench, with respect
to a standard direct test bench, requires nearly equal time
to develop. In return it provides re-usability and much
faster verification of each new VITAL model. The changes
one needs to do are mainly related to the test where the
appropriate configuration must be applied.

The prevailing method in verification of VITAL models was
based on the use of a direct testbench where we can point
out two basic problems:

1) For each model, a new testbench needs to be
developed, which is time consuming, and may
only be used with that specific VITAL model.

2) The direct testing does not provide functional
coverage information as the main parameter for
the overall verification progress.

In order to overcome the issues above, the answer was to
migrate to UVM which is based on the well proven OVM
Verification Methodology. The UVM methodology applied
to the SystemVerilog Testbench for VITAL models should
provide a unique VE that can be reused later with minimal
changes.

The initial version of the SystemVerilog VITAL testbench,
which is based on UVM, is intended for verification of serial

flash family of VITAL models. One serial flash VITAL model
contains a set of specific instructions which is common for
all models belonging to the serial model family.

Having reusable verification components, we can
significantly reduce the time needed to set the environ-
ment for verification of each new serial flash model. By
incorporation of “Three Cs” rule (Constraints, Checkers
and Coverage), instead of writing specific tests for each
DUT feature, a single test can be randomized and run
as part of a regression which speeds up the collection
of functional coverage.

The main parts of our UVM environment are:

• Top module
• Test
• Configuration class
• Testbench class
• Environment class

The top module instantiates device-under-test (DUT) and
DUT interface, used for connecting the VE with the DUT.
Also, the top module generates the necessary clock signal
and calls the predefined UVM task run_test(), which is used
for running the specific test. The name of the specific test
must be provided on the command line.

Since all verification components are defined as classes,
they cannot be directly connected to the actual DUT
interface but rather through the construct of virtual interface.
The virtual interface is a SystemVerilog type and it is
instantiated inside a specific VE component which has the
need to access some signals on the actual interface (such
components are the driver and monitor, for example). The
actual interface is made visible to all components through
the use of a predefined configuration table.

The main purpose of the configuration table is to
parametrize the VE components so they can be easily
customized from the specific test. Since UVM does not
allow the interface to be directly added to the configuration
table, a wrapper is defined around each interface.

Universal Verification Methodology (UVM)-based
SystemVerilog Testbench for VITAL Models
by Tanja Cotra, Program Manager, HDL Design House

42

This wrapper is stored in the configuration table by using
the set_config_object() method. This enables every
component, which needs access to the interface,
to be able to retrieve it from the configuration table
by using the get_config_object() method.

The wrapper is a user defined class which extends uvm_
object. It contains the instance of the virtual interface and
its constructor takes the virtual interface as an argument. At
the top level, where the actual interface is instantiated, this
wrapper is also instantiated where, its constructor is called
and the interface is passed in as an argument. This wrapper
is added to the configuration table. Code example would be:

class dut_if_wrapper extends uvm_object;
 virtual dut_interface dut_if_vi;
 function new (string name, virtual dut_interface arg)
 super.new();
 dut_if_i = arg;
 endfunction: new
endclass

module top;
 ...
 dut_interface dut_if ();

 initial begin
 dut_if_wrapper if_wrapper =
 new(“if_wrapper”,dut_if);
 set_config_object(“*”,“dut_if_wrapper”,
 if_wrapper,0);
 ...
 run_test();
 end
endmodule

The set_config_object() sets the object into the
configuration table. The first argument of the set_config_
object() method is *, which is the hierarchical path of the
VE component for which we are setting information. In this
case, the wildcard * makes the DUT interface available
to the entire VE. The second argument is the name of

the configuration parameter that we are setting. The third
argument is the value of that parameter. The last argument
determines if we are adding only the reference to the object
(0) or to the actual object (1). The configuration parameter
stored can then be retrieved inside the build() method of
any component by using the get_config_object(). In this
way, every component gets access to the actual DUT
interface. This verification methodology simplifies accessing
DUT’s signals and significantly improves the verification
environment’s reusability.

Each test contains an instance of the configuration
class and testbench class. Inside the test, the object of
the configuration class is constructed, and if necessary
randomized. Then it is added to the configuration table.

The configuration, as “4th C”, is implemented through
a configuration class. The fields of this class represent
the values which will change when a new serial flash
VITAL model appears. In this case, the fields are timing
parameters (setup and hold times, for example) which
will change with each new model. Similar to the interface
wrapper, set_config_object() and get_config_object()
are also used for this class, so that any component in the
environment can retrieve it, if needed. It is set during the
build phase of the test, so the new DUT will only be required
to set different configuration parameters for the test without
changing the rest of the environment.

The testbench class, consists of the following blocks:

1) Scoreboard
2) Coverage collector
3) Environment

Inside the build_phase() method, these three components
are created. Also, the testbench extends two predefined
methods:

connect_phase() -
to subscribe the scoreboard and coverage collector
to monitor analysis port

end_of_elaboration_phase() -
to set report verbosity level and to print
testbench topology.

43

To provide checkers and coverage, two components are
subscribed to the monitor: scoreboard (which performs
data checks) and coverage_collector (which contains
SystemVerilog coverage groups).

The scoreboard class is defined by extending the base
class uvm_scoreboard. The scoreboard represents a type
of data checker as it checks for the written data integrity,
erasure of particular locations, erasure of whole memory,
read operation results, register access, etc.

The scoreboard collects information on the DUT’s inputs.
Depending on the data driven into the DUT, the DUT’s
functional specification and the current configuration,
the expected output data is calculated and placed in the
scoreboard list. When the output data from the DUT is
collected, the data checker part of the scoreboard checks
whether the DUT’s output data matches the expected
scoreboard’s data. The scoreboard is a crucial block
since it models the DUT behavior.

The scoreboard contains the memory model, resembling
its organization (banks, sectors, subsectors). This memory
model is preloaded with the same data as the DUT.

The scoreboard receives the monitor’s transactions. When
data is being written into a memory location, the monitor
sends this data to the scoreboard, which in turn provides
that this data is written to the memory model.

In the case of reading data, the data checker compares the
DUT’s data with the memo model’s scoreboard data.

During the erase operation, the erase checker checks
if both the memory model and the DUT’s memory were
erased.

This testbench environment allows for functional coverage
to be collected by the use of a coverage collector
component. The coverage collector uses the collected bus
transactions from the monitor and checks if all of the DUT’s
features are covered. Coverage groups include different
coverage items, checking if all of the cover items relevant
combinations were covered by the transactions.

For example, coverage group read_cg checks if all locations
have been read; coverage group write_cg checks if all
locations have been programmed.

All of the necessary coverage groups are defined within
the verification environment in order to check the device’s
functionality.

The environment class instantiates only the agent
component. Since data needs to be driven to the DUT,
this environment requires an active agent which instantiates
the sequencer, driver and monitor.

The DUT being verified with this VE is a memory with
Serial Peripheral Interface (SPI). The main transaction
class, by which all sequences are parametrized, is defined
so that it contains all the necessary information for memory
access (instruction_type, address, data, etc.). It has
constraints to keep the values inside allowed ranges as
specified by the DUT protocol. For example, the number of
address bytes sent to the DUT depends on the instruction.
If READ is issued, constraints keep the number of address
bytes according to protocol to either 3 or 4.

The constraints are an important part of the environment.
They are specified inside the main transaction, and also
inside sequences and tests. The idea is to set constraints
in the test on a specific sequence, and then all lower
constraints (inside sequences and the main transaction)
are set automatically.

All sequences are written and stored inside a separate
file called seq_lib.sv. Inside the specific test one or more
sequences from the seq_lib file are created, randomized
if necessary, and started on the sequencer. For example,
the read sequence contains the fields: address, number_
of_address_bytes and number_of_read_bytes. These fields
are prefixed with rand, but also they are kept in reasonable
range by using constraints. This approach enables the
creation of a smaller number of sequences with random
fields instead of manually writing a large number of specific
sequences in a standard testbench.

44

When a new serial flash VITAL model appears, the changes
can be made from the test by setting the appropriate
configuration. For example, a new serial flash model will
have different timing parameters. From the test, the inline
constraint is used to set appropriate parameters:

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 spi_configuration =
spi_configuration_c::type_id::create(“spi_configuration”);
 ...
 assert(spi_configuration.randomize() with { ... });
 set_config_object(“*”, “spi_configuration”,
spi_configuration, 0);
 spi_configuration.print();
 endfunction: build_phase

Basically, all parameters that change with th new serial
flash model, can be added to the configuration class and
set appropriately from the test. Although this VE cannot be
completely reusable with other families of VITAL models,
it still offers a certain amount of reusability through UVM
features like instance and type overrides.

The results show that this kind of testbench initially
requires more time to develop, but in return provides
re-usability and much faster verification of each new
serial flash VITAL model.

45

Functional debug is a dreadful yet necessary part of today’s
verification effort. At the 2010 Microprocessor Test and
Verification Workshop experts agreed that debug consumes
approximately one third of the design development time.
Typically, debugging occurs in two steps, triage and root
cause analysis. The triage step is applied when bugs are
first discovered through debugging regression failures. This
occurs at the chip, system or sub-system level, where a
verification engineer will group different failures together
and perform an initial investigation to determine which
engineers should deal with the bug. We refer to this as the
triage step due to its similarity to how hospital emergency
rooms assess incoming patients and determine the next
step for treatment. Once the bug has been passed on,
the root cause analysis step begins. Here, the engineer
responsible for the bug will determine its full cause and
how to fix it. Both triage and root cause analysis must
be performed accurately and efficiently to result in an
effective debug process. This article focuses on the often
neglected pain of triage. It presents a case study where a
UVM verification environment is enhanced with powerful
automation tools to improve the overall debug effort. More
specifically, the use of Vennsa’s OnPoint and Mentor
Graphics’ Questa suite of tools can distinguish between
multiple error sources in the design and the testbench as
well as reduce the debugging time by combining different
failures of the same error source.

INTRODUCTION
Consider the following scenario: a verification engineer
comes to work and his first task is to go through the
previous night’s simulation regression failures. He must sort
through the failures based on the simulation log files and
error messages to determine the appropriate engineers to
assign the failures to. Identifying the rightful owner without
wasting other engineers’ time and without submitting
duplicate failures greatly affects the debug efficiency of the
entire team. More specifically, the verification engineer must
answer the following questions as accurately as possible.

•	 Which of the failures are due to the same
error sources?

•	 Which of the failures are due to distinct
error sources?

•	 Which of the failures are “new” bugs and
have not been filed?

•	 Which of the failures have already been filed
as bugs but have not been fixed yet?

•	 Who is the rightful owner of the block to assign
the failure to?

Answering these questions is difficult because there is
limited visibility to the design’s inner workings; which paths
are taken, what conditions are activated, and where the bug
source originates. For example, determining whether two
failures are due to the same error source cannot be known
with full confidence until detailed root cause analysis is
performed and the bug has been removed. In other words,
this is a “catch 22” problem: triage cannot be performed
perfectly until the bug is removed, and debug cannot be
done efficiently until triage is performed.

To understand the inefficiencies stemming from triage it is
worth looking at three typical cases. In case 1, after triage,
the failure is forwarded to an engineer to perform root
cause analysis and remove the bug. After hours of in-depth
analysis, this engineer realizes that the problem does not
originate in his/her block but from another block. This case
is typical and can consume many engineering resources
until the rightful owner is identified and the problem is
corrected.

In case 2, shown in Figure 1 on the following page, there
are two distinct bugs in the design. Both bugs are caught
by a single checker in multiple simulation failures (i.e.
multiple failing log files with a single type of error message).
A checker is any mechanism that can distinguish between
the correct and buggy behaviour of the design such as a
monitor, comparator, scoreboard, or assertion. In this case,
without looking into the design, tracing the signals and
doing root cause analysis, one cannot determine that there
are two distinct bugs in the design. As a result, assuming

Efficient Failure Triage with Automated Debug: a Case Study
by Sean Safarpour, Evean Qin, and Mustafa Abbas, Vennsa Technologies Inc.

46

Figure 1: How 2 distinct bugs can fire the same checker

Figure 2: How the 1 bug can fire two different checkers

that there is only a single bug source, one of the failures
is diagnosed and fixed. The other bug may not be caught
and fixed until a few days later when the first fix has been
applied.

Case 3, shown in Figure 2 above, contains a single bug
source which is caught by two different checkers in different
tests. For example, in one test an assertion may catch the
bug while in another a scoreboard checker may catch it.
In this case, the problem is that during triage one cannot
tell that the failures are caused by the same error source.
As a result, both failures will be forwarded to one or more
engineers to do the root cause analysis only to find out that
they are looking for the same bug.

Fortunately, there is an automated
solution that can address the triage
problem. This article presents a case
study where Vennsa’s OnPoint and
Mentor Graphics’s Questa are used
together to automate the triage task
in a simulation based verification
environment. The solution proposed
answers the major questions posed
by triage engineers and addresses
the difficulties of the three cases
described previously. The next
section provides an overview of the
design and testbench used in the
case study, followed by a descrip-
tion of the failing test cases. The
remainder of the article details the
proposed triage solution followed by
a discussion of the superior results
achieved.

DESIGN AND TESTBENCH OVERVIEW
The following two sections provide an overview of the
design used and its verification environment. The design is
a VGA core and the verification environment is constructed
using Unified Verification Methodology (UVM).

THE DESIGN
The design used in this case study is a VGA/LCD controller
core written in Verilog that is composed of 17 modules
totalling 4,076 lines of code and approximately 90,000
synthesized gates. The controller provides VGA capabilities
for embedded systems. The architecture consists of a Color
Processing module and a Color Lookup Table (CLUT),

47

a Cursor Processing module, a Line FIFO that controls the
data stream to the display, a Video Timing Generator, and
WISHBONE master and slave interfaces to communicate
with all external memory and the host, respectively. A
diagram outlining the major system components is outlined
in Figure 3 at the left.

 The operation of the core is straight forward. Image data is
fetched automatically via the WISHBONE Master interface
from the video memory located outside the primary core.
The Color Processor then decodes the image data and
passes it to the Line FIFO to transmit to the display. The
Cursor Processor controls the location and image of
the cursor processor on the display. The Video Timing
Generator module generates synchronization pulses and
interrupt signals for the host.

THE TESTBENCH
The test suite for the VGA core is constructed using UVM.
Figure 4 above describes the structure of the verification
environment. The testbench consists of the following major
components:

•	 uvm_sequence_item – generates the stimulus
using random stimulus constraints

•	 uvm_sequencer – sets up the sequences
of inputs for the test

•	 uvm_driver – sends the stimulus to the design
under test (DUT)

•	 uvm_monitor – collects and monitors the
output/response

• uvm_scoreboard – checks the correctness
of the outputs

Four main tests are introduced for testing this design.
These include register, timing, pixel data, and FIFO
tests. The transaction (uvm_sequence_item class) has
randomly generated control-data pairing packets under
certain constraints. These transactions are expected to
cover all the VGA operation modes in the tests (and they
may be reused to test other video cores such as DVI,
etc). The sequencer (uvm_sequencer class) exercises
different combinations of these transactions through a
given testing scheme so that most corner cases and/or
mode switching are covered. The monitors (uvm_monitor
class) are connected to the DUT and the reference model
respectively. They check the protocols of the responses,
and make sure that the data being sent to scoreboard has
correct timing. The scoreboard (uvm_scoreboard class) and
checkers (uvm_checker class) contain all the field checkers
which compare the data from the DUT, and reports the
mismatches.

The golden reference model is implemented using C++.
It receives the same set of stimulus from the driver
(uvm_driver class) and produces the expected value of the
outputs. Along with the reference model, 50 SystemVerilog
Assertions (SVA) are also used to do some instant checks.
While running simulation, SVA can catch unexpected
behaviours of the design and prevent corrupted data going
through the flow.

Figure 4: Verification Environment for the VGA Core with UVM classes

48

SIMULATION AND FAILURES - WE HAVE BUGS
The design and testbench are simulated with Mentor
Graphics’ Questa UVM and SVA support. After simulation
is complete the log shows that a total of 5 failures occurred
as shown in log snippet above.

We can see that the UVM checker has fired four times,
three on the WISHBONE slave data port and once on the
vsync port, and an SVA assertion has also fired once.
Without doing any debug, the only triage that can be done
at this stage is by inspecting which checkers failed and
putting into bins the failures accordingly. For instance,
based on the checkers, the following binning can be
performed.

After binning is done, an engineer is assigned to each bin
to further diagnose each failure and fix the problems. This
binning may seem intuitive and simple to implement but,
as discussed in the Introduction, there are cases where
inefficiencies exist as one cannot distinguish between
failure messages and the root cause of the problem.

 VERIFICATION FLOW
WITH VENNSA ONPOINT
Error! Reference source not found. describes the
verification flow with Vennsa OnPoint’s diagnose and

triage engines. As usual, the design
and testbench are simulated with
Mentor Graphics’ Questa simulator.
Once a failure occurs a simulation
value dump file such as wlf, vcd, or
fsdb file is generated and provided
to OnPoint. Vennsa’s OnPoint is
an automated debugger tool that
analyzes a simulation failure (along
with the RTL files and a functional
mismatch) and determines the
root cause of errors. For each
failure, OnPoint’s diagnose engine
automatically generates a list of
suspects that point to locations in
the design that may be the culprit of
the failure. For triage, the suspects

are converted to signatures and passed to OnPoint’s triage
engine, which then bins similar failures together. The bins
contain failures that have a high likelihood of being caused
by the same bug source. The bins are then assigned to
the proper engineer who will perform in depth root cause
analysis and fix the error. The suspects OnPoint finds for
each failure can also be used by the engineers to perform
root cause analysis and fix the bug.

The flow in Figure 5 below consisting of Questa simulation,
OnPoint diagnose and OnPoint triage is applied to the case
study design. OnPoint’s binning results are summarized
below. Note that in addition to the bin number, each failure
also has a hint describing whether the bug is in the RTL,
the testbench stimulus side or the testbench checker side.
Furthermore, the number of suspects found by the OnPoint
diagnose engine is shown in the final column.

Figure 5: Verification flow with Vennsa Onpoint

49

Note that the binning done using Vennsa’s triage engine
is very different from the basic approach based on error
messages alone. Next, the triage results are analyzed with
a discussion detailing the reasoning behind each bin.

ANALYZING TRIAGE PERFORMED BY ONPOINT
In bin 1 of the OnPoint triage results, there is only one
WISHBONE failure, WBS_SLV-01. This failure was binned
together with the other WISHBONE failures in error
message based triage. However, OnPoint’s triage engine
has binned it in isolation because rather than just analyzing
which checker has failed, the engine analyzes the path
of the suspects taken from error source to the checker
boundary. In this case, it can differentiate this path against
those taken in the other failures. Furthermore, OnPoint
has provided a hint that this failure is likely caused by a
bug originating from the testbench stimulus side due to
the high number of primary input suspects found. Figure 6
shows a waveform inside the OnPoint user interface where
the value and time that a fix can be applied on the primary

inputs is shown. A close look
at the input suspects confirms
that the wrong value of 111...
instead of 000... was applied
to the input wbs_dat_i at time
375ns-380ns. Indeed the bug

was in the testbench during the initial read write tests for the
WISHBONE interface which was sent an incorrect value
to the DUT.

The other two WISHBONE failures, WBS_SLV-02 and
WBS_SLV-03, are also binned separately by OnPoint (bin
2 and bin 3). Again, the triage engine determines that the
paths taken from the bug sources to the failure points are
distinct enough to conclude that they stem from different
bug sources. Figure 7 shows a side by side comparison
of each failure’s suspect list with OnPoint’s user interface.
Notice that the suspects generated for each failure are
very different. Using the suspects generated, it is quickly
found that the failure WBS_SLV-03 was caused by an
incorrect initial register state in Color Processor, while the
WBS_SLV-02 failure is caused by an incorrect assignment
to a register in the FIFO module.

Bin 2 also contains the firing assertion SVA_01. Although
the checkers are different, OnPoint binned the assertion

Figure 6: Input suspect view showing that wbs_dat_i is the most likely fix

Figure 7: Suspect view for the WBS_SLV-02 (right) and WBS_SLV-03 (left) failures

50

together with the WBS_SLV-02, after analyzing their
suspects. Therefore, fixing the FIFO bug results in both the
assertion and WBS_SLV-02 passing.

Finally, the failure SYNC_OUT-01 is binned on its own,
similar to regular triage. However, OnPoint gives a hint
that actual root cause of the failure may be in the checker
itself rather than the DUT. This is because the suspects
are all very close to the failure point. Indeed the bug was
found in the C++ reference model that generated the wrong
expected value for the checker.

CONCLUSION
Failure triage is a difficult problem. Relying on error
messages to bin failures results in wasted time and lost
productivity because of wrongfully associating bugs. In this
article, Vennsa’s OnPoint and Mentor Graphic’s Questa
tools are combined to develop an automated simulation and
failure triage flow. A case study on a VGA controller design
demonstrates that OnPoint’s triage engine can provide
insight into the failures thus allowing the failures to be
binned appropriately without any user guidance. As a result,
the efficiency of both the verification and design engineers
can be significantly improved.

51

ABSTRACT
Are macros evil? Well, yes and no. Macros are an
unavoidable and integral part of any piece of software, and
the Open Verification Methodology (OVM) and Universal
Verification Methodology (UVM) libraries are no exception.
Macros should be employed sparingly to ease repetitive
typing of small bits of code, to hide implementation
differences or limitations among the vendors’ simulators, or
to ensure correct operation of critical features. Although the
benefits of the OVM and UVM macros may be obvious and
immediate, benchmarks and recurring support issues have
exposed their hidden costs. Some macros expand into large
blocks of complex code that end up hurting performance
and productivity, while others unnecessarily obscure and
limit usage of otherwise simple, flexible APIs.1

The ‘ovm_field macros in particular have long-term costs
that far exceed their short-term benefit. While they save
you the one-time cost of writing implementations, their run-
time performance and debug costs are incurred over and
over again. Consider the extent of reuse across thousands
of simulation runs, across projects, and, for VIP, across
the industry. These costs increase disproportionately with
increased reuse, which runs counter to the goals of reuse.

In most cases, it takes a short amount of time and far
fewer lines of code to replace a macro with a “direct”
implementation. Testbenches would be smaller and
run faster with much less code to learn and debug. The
costs are fixed and up-front, and the performance and
productivity benefits increase with reuse.

This article will:

• Contrast the OVM macros’ benefits (what they do for
you) with their costs (e.g. inflexibility, low performance,
debug difficulty, etc.) using benchmark results and code
analysis.

• Identify which macros provide a good cost-benefit
trade-off, and which do not.

• Show how to replace high-cost macros with simple
SystemVerilog code.

• Provide insight into the work being done to reduce the

costs of using macros in the UVM, the OVM-based
Accellera standard verification library currently under
development.

1.INTRODUCTION
The hidden costs associated with using certain macros
may not be discovered until the economies of scale and
reuse are expected but not realized. A VIP defined with
certain macros incurs more overhead and may become
more difficult to integrate in large-scale system-level
environments.

The following summarizes our recommendations
on each class of macros in the OVM.

Table 1. Summary Macro Usage Recommendations

Are OVM & UVM Macros Evil? A Cost-Benefit Analysis
by Adam Erickson, Mentor Graphics Corporation

‘3ovm_*_utils Always use. These register the object or
component with the OVM factory. While
not a lot of code, registration can be hard
to debug if not done correctly.

‘ovm_info
| warning |
error | fatal

Always use. These can significantly
improve performance over their function
counterparts (e.g. ovm_report_info).

‘ovm_*_imp_
decl

OK to use. These enable a component to
implement more than one instance of a
TLM interface. Non-macro solutions don’t
provide significant advantage.

‘ovm_field_* Do not use. These inject lots of complex
code that substantially decreases
performance, limits flexibility, and hinders
debug. Manual implementations are
significantly more efficient, flexible,
transparent, and debuggable. In
recognition of these faults, the field
macros have been substantially improved
in the UVM.

‘ovm_do_* Avoid. These unnecessarily obscure a
simple API and are best replaced by a
user-defined task, which affords far more
flexibility and transparency.

52

Application of these recommendations can have a profound
effect. If the ‘ovm_field macros were avoided entirely,
several thousands of lines of code in the OVM library would
not be used, and many thousands more would not be
generated (by the macros).

The following section describes the cost-benefit of each
macro category in more detail.

2. COST-BENEFIT ANALYSES

2.1 ‘ovm_*_utils

Always use.
The ‘ovm_*_utils macros expand into code that registers the
class with the OVM factory, defines the create() method,
and, if the type is not a parameterized class, the get_type_
name() methods. Because type registration with the factory
must be performed in a precise, consistent way, and the
code involved is small and relatively straightforward, these
macros provide convenience without significant downside.

2.2 ‘ovm_info | warning | error | fatal

Always use.
Issuing a report involves expensive string processing. If
the message would be filtered out based on the verbosity,
or if it’s configured action is OVM_ACTION, all the string
processing overhead would be wasted effort. These report
macros improve simulation performance by checking
verbosity and action settings before calling the respective
ovm_report_* method and incurring the cost of processing
the report.

These macros also conveniently provide a report’s location
of invocation (file and line number). You can disable file
and line number by overriding the ovm_report_server or
by defining OVM_REPORT_DISABLE_FILELINE on the
command line.

2.3 ‘ovm_*_imp_decl

OK to use.
These macros define special imp ports that allow
components to implement more than one instance of a
TLM interface. For example, the ovm_analysis_imp calls
the host component’s write method, of which there can be
only one. Multiple such ovm_analsys_imps would all call
the same write method. To get around this, you can invoke
the ovm_*_imp_decl macro to define an imp that calls a
different method in the component. For example:

 ‘ovm_analysis_imp_decl(_exp)
 ‘ovm_analysis_imp_decl(_act)
class scorebd extends ovm_component;
 ovm_analysis_imp_exp #(my_tr,scorebd) expect;
 ovm_analysis_imp_act #(my_tr,scorebd) actual;
 virtual function void write_exp(my_tr tr);
 ...
 endfunction
 virtual function void write_act(my_tr tr);
 ...
 endfunction
endclass

Writes to the expect_ap analysis imp will call write_expect,
and writes to the actual_ap analysis imp will call write_
actual.

The imp_decl macros have a narrow use-model, and they
expand into a small bits of code. They are OK to use, as
they offer a convenience with little downside.

If you do not want to use the *_imp_decl macros, you could
implement the following. Define a generic analysis_imp that
takes a “policy” class as a type parameter. The imps’ write
method calls the static write method in the policy class,
which calls a uniquely-named method in the component.
You will need to define a separate policy class for each
unique instance of the analysis interface, much like what the
ovm_*_ imp_decl macros do for you.

‘ovm_
sequence-
related
macros

Do not use. These macros build up a list
of sequences inside the sequencer class.
They also enable automatic starting of
sequences, which is almost always the
wrong thing to do. These macros are
deprecated in the UVM and thus are not
part of the standard.

53

class aimp #(type T=int, IMP=int, POLICY=int)
 extends ovm_port_base #(tlm_if_base #(T,T));
 `OVM_IMP_COMMON(`TLM_ANALYSIS_MASK,
“ovm_analysis_imp”,IMP)
 function void write (input T t);
 POLICY::write(m_imp , t);
 endfunction
endclass

class wr_to_A #(type T=int, IMP=int);
 static function void write(T tr, IMP comp);
 comp.write_A(tr);
 endfunction
endclass

class wr_to_B #(type T=int, IMP=int);
 static function void write(T tr, IMP comp);
 comp.write_B(tr);
 endfunction
endclass

class my_comp extends ovm_component;
 aimp #(my_tr, my_comp, wr_to_A) A_ap;
 aimp #(my_tr, my_comp, wr_to_B) B_ap;
 virtual function void write_A(my_tr tr);
 ...
 endfunction
 virtual function void write_B(my_tr tr);
 ...
 endfunction
endclass

2.4 ‘ovm_do_*

Avoid.
The ‘ovm_do_* macros comprise a set of 18 macros for
executing sequences and sequence items, each doing
it a slightly different way. Many such invocations in your
sequence body() method will expand into lots of inline code.
The steps performed by the macros are better relegated to
a task.

The ‘ovm_do macros also obscure a very simple interface
for executing sequences and sequence items. Although 18
in number, they are inflexible and provide a small subset
of the possible ways of executing. If none of the ‘ovm_do
macro flavors provide the functionality you need, you
will need to learn how to execute sequences without the
macros. And once you’ve learned that, you might as well
code smartly and avoid them all together.

virtual task parent_seq::body();
 my_item item;
 my_subseq seq;
 ‘ovm_do(item) <-- what do these do?
 ‘ovm_do(seq) <-- side effects? are you sure?
endtask

task parent_seq::do_item(ovm_sequence_item item,...);
 start_item(item);
 randomize(item) [with { ... }];
 finish_item(item);
endtask

virtual task parent_seq::body();
 my_item item = my_item::type_id::create(“item”,,get_
full_name());
 my_seq seq = my_seq::type_id::create(“seq”,,get_full_
name());
 do_item(item);
 seq.start();
endtask

Most uses of the inline constraints seen by this author set
the address or data member to some constant. It would
be more efficient to simply turn off randomization for those
members and set them directly using ’=’. Encapsulating this
procedure in a task is also a good idea. A task for simple
reads/writes is shown on the following page:

54

task parent_seq::do_rw(int addr, int data);
 item= my_item::type_id::create
 (“item”,,get_full_name());
 item.addr.rand_mode(0);
 item.data.rand_mode(0);
 item.addr = addr;
 item.data = data;
 item start_item(item);
 randomize(item);
 finish_item(item);
endtask

virtual task parent_seq::body();
 repeat (num_trans)
 do_rw($urandom(),$urandom());
endtask

2.5 ‘ovm_sequence macros

Do not use.
The macros, ‘ovm_sequence_utils, ‘ovm_sequencer_utils,
‘ovm_update_sequence_lib[_and_item] macros are used
to build up a sequencer’s “sequence library.” Using these
macros, each sequence type is associated with a particular
sequencer type, whose sequence library becomes the list of
the sequences that can run on it. Each sequencer also has
three built-in sequences: simple, random, and exhaustive.

When a sequencer’s run task starts, it automatically
executes the default_sequence, which can be set by
the user using set_config. If a default sequence is not
specified, the sequencer will execute the built-in ovm_
random_sequence, which randomly selects and executes a
sequence from the sequence library.

These macros hard-code sequence types to run on a single
sequencer type, do not support parameterized sequences,
and cause many debug issues related to random execution
of sequences. In practice, the sequencer can not start until,
say, the DUT is out of reset. When it does start, it typically
executes a specific sequence for DUT configuration or
initialization, not some random sequence.

Users often spend lots of time trying to figure out what
sequences are running and why, and they inevitably look
for ways to disable sequence library behavior. (Set the

sequencer’s count variable to 0, use ‘ovm_object_utils
for sequences, and use ‘ovm_component_utils for
sequencers.)

The problems with the sequence library and related
macros grow when considering the UVM, which introduces
multiple run-time phases that can execute in parallel and in
independently timed domains. A single, statically-declared
sequence library tied to a single sequencer type cannot
accommodate such environments. Therefore, the Accellera
VIP-TSC committee decided to officially deprecate the
sequence library and macros. The committee is currently
developing a replacement sequence library feature that has
none of the limitations of its predecessor’s and adds new
capabilities.

2.6 ‘ovm_field_*

Avoid.
The ‘ovm_field macros implement the class operations:
copy, compare, print, sprint, record, pack, and unpack
for the indicated fields. Because fields are specified as a
series of consecutive macros calls, the implementation
of these operations cannot be done in their like-named
do_<operation> methods. Instead, the macros expand into
a single block of code contained in an internal method,
m_field_automation. Class designers can hand-code field
support by overriding the virtual methods— do_copy, do_
compare, etc.. Users of the class always call the non-virtual
methods—copy, compare, etc.— methods, regardless of
whether macros or do_* methods were used to implement
them. For example, consider the implementation of the
ovm_object::copy non-virtual method:

 function void ovm_object::copy(...);
 m_field_automation(COPY,…); //‘ovm_field props
 do_copy(...); // user customizations
endfunction

The non-virtual copy first calls m_field_automation to take
care of the ‘ovm_field-declared properties, then calls the
corresponding virtual do_ copy to take care of the hand-
coded portion of the implementation.

55

Because of the way the ‘ovm_field macros are implemented
and the heavy use of policy classes (comparer, printer,
recorder, etc.), macro-based implementations of the class
operations incur high overhead. The next few sections
provide details on this and other costs..

2.6.1 Code bloat
Consider the simple UBUS transaction definition below.2

class ubus_transfer extends ovm_sequence_item;
rand bit [15:0		 addr;
rand ubus_op		 op;
rand int unsigned	 size;
rand bit [7:0]		 data[];
rand bit [3:0]		 wait_state[];
rand int unsigned	 error_pos;
rand int unsigned	 transmit_delay = 0;
string			 master = “”;
string			 slave = “”;

`ovm_object_utils_begin(ubus_transfer)
`ovm_field_int (addr, 	 UVM_ALL_ON)
`ovm_field_enum (ubus_op, op,	 UVM_ALL_ON)
`ovm_field_int (size,		 UVM_ALL_ON)
`ovm_field_array_int(data,	 UVM_ALL_ON)
`ovm_field_array_int(wait_state,	 UVM_ALL_ON)
`ovm_field_int (error_pos,	 UVM_ALL_ON)
`ovm_field_int (transmit_delay, 	 UVM_ALL_ON)
`ovm_field_string(master,	UVM_ALL_ON |
			 UVM_NOCOMPARE)
`ovm_field_string(slave,	 UVM_ALL_ON |
			 UVM_NOCOMPARE)

`ovm_object_utils_end
endclass

After macro expansion, this 22-line transaction definition
expands to 644 lines, a nearly 30-fold increase. Real-world
transaction definitions far exceed 1,000 lines of code. The
following table shows the number of new lines of code that
each of the ‘ovm_field macros expand into, for both OVM
2.1.1 and UVM 1.0. In UVM 1.0, the macros underwent
significant refactoring to improvement performance and
provide easier means of manually implementing the do_*
methods.

Table 1 Macro expansion – lines of code per macro

In contrast, the manual implementation of the same UBUS
transaction consists of 92 lines of code that is more
efficient and human-readable.

2.6.2 Low performance
The lines of code produced by the expansion of the ‘ovm_
field macros do not actually do much of the actual work.
That is handled by nested calls to internal functions and
policy classes (e.g. ovm_comparer, ovm_printer, etc.).

Table 2 shows how many function calls are made by each
operation for the macro-based solution and the equivalent
manual implementation of the do_ methods. As a control,
the size of the data and wait_state members were fixed
at 4.

 Table 2 Function calls per UBUS operation

Operation OVM
Macro/Manual

UVM
Macro/
Manual

copy
compare

sprint - table
sprint - tree
sprint – line

pack / unpack
record (begin_tr / end_tr)

 38 / 9
51 / 18

1957 / 1840
518 / 441
478 / 405
140 / 28
328 / 46

 8 / 9
17 / 18

187 / 160
184 / 157
184 / 157
80 / 28
282 / 36

Macro Lines of
Code OVM3

 Lines of
Code UVM2

`ovm_field int|object|string|enum

‘ovm_field_sarray_*

‘ovm_field_array_*

‘ovm_field_queue_*

‘ovm_field_aa_*_string

‘ovm_field_aa_object_int

‘ovm_field_aa_int_*

‘ovm_field_event

 51,72,17,41

75-100

127-191

110-187

76-87

97

85

16

 50,75,43,45

117-128

131-150

133-152

75-102

111

85

29

56

Compare these results with a theoretical minimum of one
or two calls, depending on whether the object has a base
class. Calling copy in a macro-based implementation
incurs 38 function calls, but only 9 in a do_compare
implementation—a four-fold difference. Compare incurs 51
method calls with macros versus do_compare’s 18 calls.
Sprinting (and printing) incur thousands of calls for each
operation.

Each function call involves argument allocation, copy, and
destruction, which affects overall performance. The results
were alarming enough that significant effort was taken to
improve the macro implementations in UVM. The UVM
column shows this.

Table 3 shows the run time to complete 500K operations for
the macro-based and manual implementations of the do_*
methods.

Table 3 Performance – 500K transactions, in seconds4

The poor performance results in OVM prompted a
significant effort to improve them in UVM. The results of this
improvement effort show that performance issues for most
operations have largely been mitigated.

Amdahl’s Law [5] states that testbench performance
improvements are limited by those portions of the testbench
that cannot be improved. Although this author still cannot
recommend field macro usage over manual implementation,
the macro performance improvements in UVM are very
welcome because they afford significant performance
improvements achievable in emulation and acceleration.

Note that the sprint times are comparable between
the macro-based and manual implementations. This is

because there is no equivalent manual replacement for
the formatting capabilities of the printer policy class, the
primary source of overhead for this method. The UVM
provides an improved uvm_printer policy class that makes
performance less sensitive to output format.

2.6.3 Not all types supported
The ‘ovm_field macros do not support all the type
combinations you may need in your class definitions. The
following are some of the types that do not have ‘ovm_field
macro support.

• Objects not derived from ovm_object
• Structs and unions
• Arrays (any kind) of events
• Assoc arrays of enums
• Assoc arrays of objects indexed by integrals > 64 bits
• Assoc arrays—no support for pack, unpack, and record
• Multi-dimensional packed bit vectors—For example, bit

[1:3][4:6] a[2]. The [1:3][4:6] dimensions will be flattened,
i.e. treated as a single bit vector, when printing and
recording.

• Multi-dimensional unpacked bit vectors— For example,
bit a[2][4]

• Multi-dimensional dynamic arrays, such as arrays of
arrays, associative array of queues, etc.

2.6.4 Debugging difficulties
The ‘ovm_field (and, still, the `uvm_field) macros expand
into many lines of complex, uncommented code and many
calls to internal and policy-class methods.

If a scoreboard reports a miscompare, or the transcript
results don’t look quite right, or the packed transaction
appears corrupted, how is this debugged? Macros would
have been expanded, and extra time would be spent
stepping through machine generated code which was not
meant to be human readable.

The person debugging the code may not have had anything
to do with the transaction definition. A single debug session
traced to the misapplication, limitation, or undesirable side
effect of an `ovm_field macro invocation could negate the
initial ease-of-implementation benefit it was supposed to
provide. Manually implementing the field operations once
will produce more efficient, straight-forward transaction
definitions.

Operation OVM
Macro/Manual

UVM
Macro/
Manual

copy
compare

sprint - table
sprint - tree
sprint – line

pack / unpack
record (begin_tr/end_tr)

 43 / 2
60 / 6

1345 / 1335
215 / 165
195 / 165
100 / 19
533 / 40

 8 / 2
9 / 6

165 / 159
137 / 137
137 / 132
37 / 18
413 / 37

57

As an exercise, have your compiler write out your
component and transaction definitions with all the
macros expanded.5 Then, contrast the macro-based
implementations with code that uses straight-forward
SystemVerilog:

function bit my_obj::do_compare(ovm_object rhs,
 uvm_comparer comparer);
 do_compare =
 ($cast(rhs_,rhs) &&
 super.do_compare(rhs,comparer) &&
 cmd == rhs_cmd &&
 addr == rhs_.addr &&
 data == rhs_.data);
endfunction

2.6.5 Other limitations
The ‘ovm_field macros have other limitations:

• Integrals variables cannot exceed ‘OVM_MAX_
STREAMBITS bits in size (default is 4096). Changing
this global max affects efficiency for all types.

• Integrals are recorded as 1K bit vectors, regardless of
size. Variables larger than 1K bits are truncated.

• The ovm_comparer is not used for any types other than
scalar integrals, reals, and arrays of objects. Strings,
enums, and arrays of integral, enum, and string types
do not use the ovm_comparer. Thus, if you were to
define and apply a custom comparer policy, your
customizations.

• The ovm_packer limits the aggregate size of all packed
fields to not exceed OVM_MAX_PACKED_BITS. This
large, internal bit vector is bit-by-bit copied and iterated
over several times during the course of the pack and
unpack operations. If you need to increase the max
vector size to avoid truncation, you will affect efficiency
for all types.

2.6.6 Dead code
The ‘ovm_field macros’ primary purpose is to implement
copy, compare, print, record, pack, and unpack for transient
objects. None of these operations are particularly useful
to OVM components. Components cannot be copied
or compared, and pack and unpack doesn’t apply. Print
for components are occasionally useful for debugging
component topology at start of simulation, but you

could get that and more from a GUI debugger without
having to modify the source. In most cases, a simple
$display(“%p”,component) would suffice.

The ‘ovm_field macros also implement a little-known
feature called auto-configuration, which performs an implicit
get_config for every property you declare with an ‘ovm_field
macro inside an ovm_component. While convenient
sometimes, it presumes all macro-declared fields are
intended to be user-configurable, and you sacrifice control
over whether, when, and how often configuration is
retrieved. For ovm_objects, auto-config code is never used.
For ovm_components, this feature incurs significant time
to complete and is in many cases unwanted. To avoid this
overhead, users often disable auto-config by not calling
super.build() and simply call get_config explicitly for the
properties intended to be user-configurable.

Despite performance improvements in UVM, the field
macros still incur code bloat, performance degradation,
debug issues, and other limitations. The UVM also provides
small convenience macros for helping users manually
implement the do_* methods more easily. For these
reasons, this author continues to recommend against using
the field macros.

3. ALTERNATIVE TO ‘OVM_FIELD MACROS
The following sections describe how to write
implementations of copy, compare, etc. without resorting
to the ‘ovm_field macros. In all cases, you override the
do_<method> counterpart. For example, to manually
implement copy, you override the virtual do_copy method.
For UVM, change the O’s to U’s.

3.1 do_copy
Implement the do_copy method as follows:

1 function void do_copy (ovm_object rhs);
2 my_type rhs_;
3 if (!$cast(rhs_,rhs))
4 ‘ovm_fatal(“TypeMismatch”,”...”);
5 super.do_copy(rhs);
6 addr = rhs_.addr;
7 if (obj == null && rhs_.obj != null)
8 obj = new(...);
9 if (obj!=null) obj.copy(rhs_.obj);
10 endfunction

58

Line 1—This is the signature of the do_copy method
inherited from ovm_object. Your signature must be identical.

Lines 2-4— Copy only works between two objects of the
same type. These lines check that the rhs argument is the
same type. If not, a FATAL report is issued and simulation
will exit.

Line 5—Here, we call do_copy in the super class so
any inherited data members are copied. If you omit this
statement, the rhs object will not be fully copied.

Line 6—Use the built-in assignment operator (=) to copy
each of the built-in data types. For user-defined objects,
assignment is copy-by-reference, which means only the
handle value is copied. This leaves this object and the rhs
object pointing to the same underlying object instance.

Lines 7-9—To deep copy the rhs object’s contents into this
object, call its copy method. Make sure the obj handle is
non-null before attempting this.

3.2 do_compare
Implement the do_compare method as follows:

1 function bit do_compare (ovm_object rhs,
ovm_comparer comparer);
2 mybusopmanual rhs;
3 do_compare =
4 ($cast(rhs_,rhs) &&
5 super.do_compare(rhs,comparer) &&
6 addr == rhs_.addr &&
7 obj != null && obj.compare(rhs_.obj)
9);
10 endfunction

Line 1—This is the signature of the do_compare method
inherited from ovm_object. Your signature must be identical.

Line 3—This line begins a series of equality expressions
logically ANDed together. Only if all terms evaluate to true
will do_compare return 1. Should any term fail to compare,
there is no need to evaluate subsequent terms, as it will
have no effect on the result. This is referred to as short-
circuiting, which provides an efficient means of comparing.
We don’t need to check the rhs object for null because
that is already done before do_compare is called. Be sure

to use triple-equal (===) when comparing 4-state (logic)
properties, else x’s will be treated as “don’t care.”

Lines 4-— Compare only works between two objects of
the same type. The $cast evaluates to ’true’ if the cast
succeeds, thereby allowing evaluation of subsequent terms
in the expression. If the cast fails, the two objects being
compared are not of the same type and comparison fails
early.

Line 5—Here, we call do_compare in the super class so
any inherited data members are compared. If you omit this
expression, the rhs object will not be fully compared.

Lines 6—The equality operator (==) can be used to
compare any data type. For objects, it compares only the
reference handles, i.e. it returns true if both handles point to
the same underlying object. You should have one of these
expressions for each member you wish to compare.

Lines 7-8—To compare different instances of a class type,
call the object’s compare method. Make sure the object
handle is non-null before attempting this.

3.3 convert2string
The convert2string method is used to print information
about an object in free-format. It is as efficient and succinct
as the class designer wants, imposing no requirements on
the content and format of the string that is returned. The
author recommends implementing convert2string for use in
`uvm_info messages, where users expect succinct output of
the most relevant information.

1 function string convert2string();
2 return $sformatf(“%s a=%0h, s=%s,
 arr=%p obj=%s “,
 super.convert2string(), // base class
 addr, // integrals
 str, // strings
 arr, // unpacked types
 obj.convert2string()); // objects
3 endfunction

Line 1—This is the signature of the convert2string method
inherited from ovm_object. Your signature must be identical.

Line 2—This line returns a string that represents the

59

contents of the object. Note that it leverages the built-in
$sformatf system function to perform the formatting for
you. Use format specifiers to %h, %d, %b, %s, etc. to
display output in hex, decimal, binary, or string formats. For
unpacked data types, like arrays and structs, use %p for
the most succinct implementation. Be sure to call super.
convert2string.

3.4 do_print
To implement both print and sprint functionality, you only
need to override do_print as follows:

1 function void do_print (ovm_printer printer);
2 super.do_print(printer);
3 printer.print_generic(“cmd”,”cmd_t”,
 1,cmd.name());
4 printer.print_field(“addr”,addr,32);
5 printer.print_array_header(“data”,
 data.size(),
 “byte[$]”);
6 foreach(data[i])
7 printer.print_generic($sformatf(“[%0d]”,i),
 ”byte”,
 8,
 $sformatf(“%0h”,data[i]));
8 printer.print_array_footer(data.size());
9 endfunction

Line 1—This is the signature of the do_print method
inherited from ovm_object. Your signature must be identical.

Line 2—Call super.do_print() to print the base class fields.

Line 3-4—We call methods in the ovm_printer class that
correspond to the type we want to print. Enum types use
the print_generic method, which has arguments for directly
providing field name, type, size, and value.

Line 5-8—Print arrays by printing its header, elements, and
footer in separate statements. To print individual elements,
the author recommends using print_generic, which allows
you to customize what is printed for the element name, type
name, and value.

3.5 do_record
Implement do_record as follows. First, define a simple
macro, ‘ovm_record_field, that calls the vendor-specific

system function for recording a name/value pair, e.g.
$add_attribute. The macro allows you to pass the actual
variable—not some arbitrarily large bit-vector—to $add_
attribute. (The UVM will provide these macro definitions for
you.)

‘ifdef QUESTA
 `define ovm_record_att(HANDLE,NAME,VALUE) \
 $add_attribute(HANDLE,VALUE,NAME);
‘endif
‘ifdef IUS
 ‘define ovm_record_att(HANDLE,NAME,VALUE) \
 <Cadence Incisive implementation>
‘endif
‘ifdef VCS
 ‘define ovm_record_att(HANDLE,NAME,VALUE) \
 <Synopsys VCS implementation>
‘endif
`define ovm_record_field(NAME, VALUE) \
 if (recorder != null &&
 recorder.tr_handle!=0) begin \
 `ovm_record_att(recorder.tr_handle, \
 NAME,VALUE) \
 end

These macros serve as a vendor-independent API
for recording fields from within the do_record method
implementation. Note that, for these macros to work, the
ovm_recorder::tr_handle must be set via a previous call to
ovm_component::begin_tr or ovm_transaction::begin_tr.

The do_record method simply invokes the `uvm_record_
field macro for each of the fields you want recorded:

1 function void do_record(ovm_recorder recorder);
2 super.do_record(recorder);
3 `ovm_record_field(“cmd”,cmd.name()) // enum
4 `ovm_record_field(“addr”,addr) // integral
5 foreach (data[index]) // arrays
6 `ovm_record_field(
$sformatf(“data[%0d]”,index), data[index])
7 obj.record(recorder); // objects
endfunction

60

Line 1—This is the signature of the do_record method
inherited from ovm_object. Your signature must be identical.

Line 2—Be sure to call super.do_record so any inherited
data members are recorded.

Lines 3-7—Records enums, integral types, arrays, and
objects using invocations of the ‘ovm_record_field macro,
or calling a sub-object’s record method.

3.6 do_pack / do_unpack
These operations must be implemented such that
unpacking is the exact reverse of packing. Packing an
object into bits then unpacking those bits into a second
object should be equivalent to copying the first object into
the second.

Packing and unpacking require precise concatenation of
property values into a bit vector, else the transfer would
corrupt the source object’s contents.

To help reduce coding errors, the author advises using
small convenience macros.6 These types of macros are
“less evil” because they expand into small bits of readable
code that users might otherwise have to write themselves.
In fact, the UVM will offer versions of these macros to
facilitate robust manual implementations of do_pack and
do_unpack.

`define ovm_pack_intN(VAR,SIZE) \
 packer.m_bits[packer.count +: SIZE] = VAR; \
 packer.count += SIZE;
`define ovm_pack_array(VAR,SIZE) \
 `ovm_pack_scalar(VAR.size(),32) \
 foreach (VAR `` [index]) begin \
 packer.m_bits[packer.count+:SIZE]=\
 VAR[index]; \
 packer.count += SIZE; \
 end
`define ovm_pack_queueN(VAR,SIZE) \
 `ovm_pack_arrayN(VAR,SIZE)
`define ovm_unpack_intN(VAR,SIZE) \
 VAR = packer.m_bits[packer.count +: SIZE]; \
 packer.count += SIZE;
`define ovm_unpack_enumN(TYPE,VAR,SIZE) \
 VAR = TYPE’(packer.m_bits[packer.count +: \
 SIZE]); \

 packer.count += SIZE;
`define ovm_unpack_queueN(VAR,SIZE) \
 int sz; \ `ovm_unpack_scalar(sz,32) \
 while (VAR.size() > sz) \
 void’(VAR.pop_back()); \
 for (int i=0; i<sz; i++) begin \
 VAR[i]=packer.m_bits[packer.count+:SIZE];\
 packer.count += SIZE; \
 end
`define ovm_pack_int(VAR) \
 `ovm_pack_intN(VAR,$bits(VAR))
 `define ovm_unpack_enum(VAR,TYPE) \
 `ovm_unpack_enumN(VAR,$bits(VAR),TYPE)
 `define ovm_pack_queue(VAR) \
 `ovm_pack_queueN(BAR,$bits(VAR[0])

The ‘ovm_pack_int macro works for scalar built-in integral
types. You can add your own simple macros to support
other types, if you like. For example, reals would need the
$realtobits and $bitstoreal system functions.

The macro implementations manipulate the m_bits and
count properties of the packer object. m_bits is the bit
vector that holds the packed object, and count holds
the index at which the next property will be written to or
extracted from m_bits.

With these simple macros defined, you can implement pack
and unpack as follows:

1 function void do_pack(ovm_packer packer);
2 super.do_pack(packer);
3 `ovm_pack_int(cmd)
4 `ovm_pack_int(addr)
5 `ovm_pack_queue(data)
6 endfunction
7
8 function void do_unpack (ovm_packer packer);
9 super.do_unpack(packer);
10 `ovm_unpack_enum(cmd_t,cmd)
11 `ovm_unpack_int(addr)
12 `ovm_unpack_queue(data)
13 endfunction

61

Line 1—This is the signature of the do_pack method
inherited from ovm_object. Your signature must be identical.

Line 2—Always call super.do_pack first.

Lines 3-5—For each property, invoke one of the
convenience macros, which concatenates values into
the packer’s internal m_bits field and updates the count
variable. Here, we’ve leveraged some convenience macros
to make it simple and less error prone.

Line 8—This is the signature of the do_unpack method
inherited from ovm_object. Your signature must be identical.

Line 9—Always call super.do_unpack first.

Lines 10-12—You must unpack each property in the same
order as you packed them. You will need to cast the bits
when unpacking into strongly typed data types like strings
and enums.

4. CONCLUSION
This articlehas provided insight into the hidden costs behind
the various macros provided in OVM. Some macros expand
into small bits of code that the user would end up writing, or
ensure the correct operation of critical features in the OVM.
Other macros expand into large blocks of unreadable code
that end up hurting performance and productivity in the long
run, or unnecessarily obscure and limit usage of a simple,
flexible API.

In summary:
We recommend always using the ‘ovm_*_utils macros and
the reporting macros: ‘ovm_info, ‘ovm_warning, ‘ovm_
warning, and ‘ovm_fatal. These macros provide benefits
that far exceed their costs.

The ‘ovm_*_imp_decl macros are acceptable because they
provide a reasonable trade-off between convenience and
complexity.

The ‘ovm_field macros have long-term costs that far exceed
their short-term benefit. They save you the one-time cost
of writing implementations. However, the performance and
debug costs are incurred over and over again. Consider
the extent of reuse across thousands of simulation runs,

and across projects. For VIP, reuse extends across the
industry. The more an object definition is used, the more
costly ‘ovm_field macros become in the long-run. While
the UVM improves the performance of the field macros, it
also provides “less evil” macros that help make the do_*
methods easier to implement. In this author’s opinion, it is
still better to implement simple, manual implementations.

The ‘ovm_do macros attempt to hide the start, start_item,
and finish_item methods for sequence and sequence_item
execution. This is unnecessary and confusing. The current
18 macro variants with long names and embedded in-
line constraints cover only small fraction of the possible
ways you can execute sequences and sequence items.
It is easier to learn to use the simple 3-method API,
encapsulating repeated operations inside a task.

The ‘ovm_sequence-related macros hard-code a sequence
to a particular sequencer type and facilitate the auto-
execution of random sequences. Sequences should not
be closely couple to a particular sequencer type, and
they should not be started randomly. Stimulus generation
is typically preceded by reset and other initialization
procedures that preclude their automatic execution. You
should declare sequences with ‘ovm_object_utils and
sequencers with ‘ovm_component_utils, then start specific
sequences explicitly using the start method. The UVM
recognizes these and other shortcomings by deprecating
the macros and OVM sequence library API. A new, superior
sequence library implementation that is decoupled from the
sequencer is currently being developed.

5.ACKNOWLEDGEMENTS
The author wishes to acknowledge the significant
collaborative contributions of John Rose, Senior Product
Engineer at Cadence Design Systems, Inc., toward
improving the performance of the field-macro definitions in
the UVM.

62

6.REFERENCES
[1] “IEEE Standard for SystemVerilog- Unified Hardware
Design, Specification, and Verification Language,” IEEE Std
1800-2009, 2009.

[2] OVM 2.1.1 Reference, ovmworld.org

[3] OVM User Manual, ovmworld.org

[4] Accellera Verfication IP Technical SubCommittee (UVM
Development Website); http://www.accellera.org/apps/org/
workgroup/vip

[5] Amdahl’s Law: http://en.wikipedia.org/wiki/Amdahl’s_law

7.NOTES

1 References to OVM macros shall also apply to UVM
macros unless otherwise stated.

2 The UBUS is a contrived bus protocol used in examples
in the UVM 1.0 User Guide. It’s predecessor in OVM was
XBUS.

3 ‘ovm_field_aa_* macros do not implement record, pack, or
unpack; line counts would be much greater if they did.

4 Simulation results depend on many factors: simulator,
CPU, memory, OS, network traffic, etc. Individual results
will differ, but relative performance should be consistent.

5 For Questa, the vlog option is -Epretty <filename>.

6 Simulators supporting bitstream operators should make
packing and unpacking easier, less error prone, and macro
free: bits = {<<{ cmd, addr, data.size(), data, …};

63

Editor: Tom Fitzpatrick
Program Manager: Rebecca Granquist

Wilsonville Worldwide Headquarters
8005 SW Boeckman Rd.
Wilsonville, OR 97070-7777
Phone: 503-685-7000

To subscribe visit:
www.mentor.com/horizons

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

