JEr

CCII Systems (Pty) Ltd Reg\slvat\on No. 1990/005058/07
Communications
Computer Intelligence
Integration

User Manual

for the

4-Channel New Generation

and

8-Channel High-Speed Serial /0O Adapters

Linux Software Driver

C2|2 Systems Document No. CCII/HSS8/6-MAN/003

Document Issue 1.2

Issue Date 2009-08-20

Print Date 2009-08-20

File Name W:\HSS8\TECH\MAN\CH8MANO03.WPD

Distribution List No.

© C22 Systems The copyright of this document is the property of C2I2 Systems. The document is issued for the sole
purpose for which it is supplied, on the express terms that it may not be copied in whole or part, used by
or disclosed to others except as authorised in writing by C2I2 Systems.

Document prepared by C2I2 Systems, Cape Town

Signature Sheet

Name Signature Date
Completed by A}\
réject En@lneer
X . (Lu%?ﬂ/ Biard Level Products 2.009-09-02
W I? Systems

Accepted by

|

Lo ®6 ane Project Manager T GroS oo™
Board Level Products
C?? Systems
Accepted by A\W
Quility Assupance
X. \(XMS@/‘ \&2 Systors > 0R-09-03.
CCII/HSS8/6-MAN/003 2009-08-22 Issue 1.2
CH8MANO3.WPD Page ii of vi

Signature Sheet

Name Signature Date

Completed by

Project Engineer
Board Level Products
C22 Systems

Accepted by

Project Manager
Board Level Products
C?I2 Systems

Accepted by

Quality Assurance
C2J2 Systems

CCII/HSS8/6-MAN/003 2009-08-22 Issue 1.2

CHB8MANO3.WPD Page ii of vii

Amendment History

Issue Description Date ECP No.

0.1 First draft 2004-11-09 -

0.2 Changes to driver installation 2004-11-24 -

0.3 Changed driver distribution table 2004-11-26 -

1.0 Baselined document 2004-12-20 -

1.1 Implemented ECP, made references to adapters more 2006-06-29 CCII/HSS8/6-ECP/025

generic

1.2 Improve document naming conventions 2009-08-22 CCII/HSS/6-ECP/042
CCII/HSS8/6-MAN/003 2009-08-22 Issue 1.2
CH8MANO03.WPD

Page iii of vii

Contents

L. SCOPE . 1

1.1 IdeNtifiCatioN e e 1

1.2 SYSIEM OV VI BW . . .ottt e e e e e 1

1.3 DOCUMENT OVEIVIBW . . . o ottt e et e e e e e e e e e e e e e 1

2. Applicable and Reference DOCUMENTS i e 2

2.1 Applicable DOCUMENTS e e 2

2.2 ReferenCe DOCUMENESot e e e e e e e e e 2

3. HSSS8 Linux Software Driver Distribution 3

4, Installation Procedure 4

4.1 Compiling the HSS8 Linux Software Driver Module i 4

4.2 Loading the HSS8 Linux Software Driver e 4

5. Using the HSS8 Linux Software Drivert 5

5.1 OpeNINg Of DEVICESo e 5

5.2 Configuring the Channels e 5

5.3 Adding Receive Call-back FUNCHION e e e e e e e e 6

5.4 Reading in Received Datao 6

55 WItING Datao e 7

5.6 CloSING the DBVICES . . . e e 7

5.7 Obtaining the Current Host and Firmware Version Number 7

5.8 HSS8 BUIilt-in TeStS (BITS) . . . ottt e e e e 7

5.9 Enable / Disable Power-On-Self TestS e e e e 8

5,10 Return POST StatUs i e e e e e 8

5.11 RetUN Adapler TYPE . . vttt e e e e e e e 8

6. HSSS8 Linux Software Driver Interface L 10

6.1 HSS8 Linux Software Driver System Calls 10

6.1.1 Open System Call e e e 10

6.1.2 Close System Call 11

6.1.3 Read System Call 11

6.1.4 Write System Call 12

6.1.5 loctl System Call e 13

6.2 HSS8 BIT Data StrUCIUIESo e e e e e e e e e e e e e 14

6.3 Protocol Data StrUCIUIES o e e e 15

B.3.1 UART MOOE .\ 16

6.3.1.1 UART Protocol Information Structure i 16

6.3.1.2 UART Protocol Information Structure Members 17

B.3.2 HDLC MOOE ... 20

6.3.2.1 HDLC Protocol Information Structure i e 20

6.3.2.2 HDLC Protocol Information Structure Members 21

6.3.2.3 Preamble Requirements 23

6.3.3 BISYNC MOUE .. 24

6.3.3.1 BISYNC Protocol Information Structure i 24

6.3.3.2 BISYNC Protocol Information Structure Members, 25

6.3.4 SMC UART MOGEot e e e e e e e e 29

6.3.4.1 SMC UART Protocol Information Structure 29

6.3.4.2 SMC UART Protocol Information Structure Members 30

7. Getting Started 31
CCII/HSS8/6-MAN/003 2009-08-22 Issue 1.2

CHB8MANO3.WPD Page iv of vii

Contact Details e 32

8.1 CONtACE PeISON . .o e e 32
8.2 Physical AdAresst e e e 32
8.3 Postal AdAress 32
8.4 Voice and Electronic Contacts e 32
8.5 ProducCt SUPPOI . . .o 32
SOOI ot e 1
1.1 Identification 1
1.2 SYSEEM OV VIBW . . . e 1
1.3 DOCUMENE OVEIVIEW . . . v vt v ettt e et et e e e e et e e e e e e e et e e 1
Applicable and Reference DOCUMENTS e 2
2.1 Applicable DOCUMENLS 2
2.2 ReferenCe DOCUMENESttt e e e e e e 2
HSS8 Linux Software Driver Distribution 3
Installation ProCedure e 4
4.1 Compiling the HSS8 Linux Software Driver Module e 4
4.2 Loading the HSS8 Linux Software Driver e e 4
Using the HSS8 Linux Software Driver i 5
51 OPeNiNg Of DEVICESot e 5
5.2 Configuring the Channels 5
5.3 Adding Receive Call-back FUNCLION 6
5.4 Reading in Received Dataottt e e 6
55 WIEING Datao o e e e 7
5.6 CloSING the DEVICES . . . o oo e e e 7
5.7 Obtaining the Current Host and Firmware Version Number i, 7
5.8 HSS8 BUIlt-in TeStS (BITS) . . . o oot ettt e e e e e e e e e e e 7
5.9 Enable / Disable Power-On-Self Tests 8
5.10 Return POST StatUSttt e e e 8
5.11 RetUrN Adapter Ty PE . . 8
HSS8 Linux Software Driver Interface 10
6.1 HSS8 Linux Software Driver System Calls e 10
6.1.1 Open System Call 10

6.1.2 Close System Call e 11

6.1.3 Read System Call 11

6.1.4 Write System Call 12

6.1.5 loctl System Call 13

6.2 HSS8 BIT Data StrUCIUIESo e e e 14
6.3 Protocol Data StrUCUIES e e 15
6.3.1 UART MOOEt e e e e 16

6.3.1.1 UART Protocol Information Structure i 16

6.3.1.2 UART Protocol Information Structure Members 17

6.3.2 HDLC MOOEt e e e 20

6.3.2.1 HDLC Protocol Information Structure 20

6.3.2.2 HDLC Protocol Information Structure Members 21

6.3.2.3 Preamble ReqUIrEmMENtS e e 23

6.3.3 BISYNC MOUE ... i e e 24

6.3.3.1 BISYNC Protocol Information Structure i 24

6.3.3.2 BISYNC Protocol Information Structure Members 25

6.3.4 SMC UART MOEo e e e 29

6.3.4.1 SMC UART Protocol Information Structure 29

CCII/HSS8/6-MAN/003 2009-08-22 Issue 1.2
CH8MANO03.WPD Page v of vii

6.3.4.2 SMC UART Protocol Information Structure Members 30

Getting Started e 31
Contact Detailso 32
8.1 CONtACE PeISON . o o e e 32
8.2 Physical Address 32
8.3 PoStal AdArESS . . .o oo e 32
8.4 Voice and ElectroniC CONtACESottt e e e e e 32
8.5 ProdUCE SUPPOIt . . . o e 32
CCII/HSS8/6-MAN/003 2009-08-22 Issue 1.2
CH8MANO03.WPD Page vi of vii

Abbreviations and Acronyms

API Application Program Interface

BCS Block Check Sequence

BISYNC Binary Synchronous Communication

BIT Built-in Test

bit/s bits per second

BRG Baud Rate Generator

CD Carrier Detect

CRC Cyclic Redundancy Check

CTS Clear to Send

DLE Data Link Escape

DPLL Digital Phase-Locked Loop

EEPROM Electrically Erasable Programable Read Only Memory
FIFO First In First Out

HDLC High Level Data Link Control

HSS4NG 4-Channel High-Speed Serial Adapter

HSS8 8-Channel High-Speed Serial

le] Input / Output

LED Light Emitting Diode

MHz MegaHertz

NRZ Non-Return-to-Zero

NRZI Non-Return-to-Zero-Inverted

POST Power-On-Self Test

RAM Random Access Memory

RTS Request to Send

RxD Receive Data

SCC Serial Communications Controller

SDLC Synchronous Data Link control

SMC Serial Management Controller

SYNC Synchronisation

TxD Transmit Data

UART Universal Asynchronous Receiver/Transmitter
CCII/HSS8/6-MAN/003 2009-08-22 Issue 1.2
CH8MANO03.WPD Page vii of vii

1. Scope

1.1 Identification
This document is the user manual for the HSS8 Linux Software Driver for the C2I2 Systems 8-channel
High-Speed Serial (HSS8) Adapter and the 4-Channel High-Speed Serial Adapter (HSS4NG). The HSS4ANG
is based on a stripped down HSS8 Adapter and as such this manual applies, except that only SCC channels
0 - 3 and SMC channels 8 - 9 will be available.

1.2 System Overview
The HSS8 Adapter provides eight channels of simultaneous, high-speed, bi-directional serial communications
and an additional four channels of lower-speed serial communications. The eight high-speed channels are
jumper configurable (on a per channel basis) for RS-232 or RS-422/485 drivers while the lower-speed channels
have RS-232 drivers only.
The HSS8 Linux Software Driver is a low level, device-dependent interface for transferring data over a
C2I2 Systems HSS8 Adapter. The HSS8 Linux Software Driver binaries are provided with explicit installation
instructions.

1.3 Document Overview
This document gives an overview of the HSS8 Linux Software Driver installation procedure and its Software
Driver Interface.

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 1 of 32

2. Applicable and Reference Documents

21 Applicable Documents

2.1.1 MPC8260 PowerQUICC Il Family Reference Manual, MPC8260UM/D, rev. 1, dated May 2003.

212 CCII/HSS8/6-MAN/001, Hardware Reference Manual for the 4-Channel New Generation and 8-Channel
High-Speed Serial I/O Adapters.

2.2 Reference Documents
None.

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 2 of 32

HSS8 Linux Software Driver Distribution

The HSS8 Linux Software Driver software distribution consists of (at least) the following files :

ccHss8LnxSrcV<version>.tar.gz

ccHss8EmbV<version>.hex

flashprog
hss8Readme.txt

hss8Release_emb.txt,
hss8Release_linux.txt

ccHss8Test.c
hss8Flash.txt

hss8Test.txt

HSS8 Linux Software Driver source code.
<version> - Software version is a 3 digit integer :
e 1stdigit :version number
e 2nd digit : revision number
e 3rddigit : beta number

HSS8 firmware.

<version> - Software version is a 3 digit integer :
e 1stdigit :version number
e 2nd digit : revision number

3rd digit : beta number

L]

Flash update utility.
General information and installation notes.

Release notes and revision history :

Please check this file for information on the latest updates.
Sample C code for accessing the HSS8 Linux Software Driver.
Procedure for updating the firmware if required.

Test procedure for verifying HSS8 Linux Software Driver and firmware.

CCII/HSS8/6-MAN/003

2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 3 of 32

4.1

4.2

Installation Procedure
This paragraph describes the installation procedure for the HSS8 Linux Software Driver.

Compiling the HSS8 Linux Software Driver Module

Unpack the HSS8 Linux Software Driver.source file using : tar -xvzf ccHss8LnxSrcV<version>.tar.gz. A
directory named ‘hss8' will be created. Change to ‘hss8/Inx/builds/host/linux’ to build the HSS8 Linux Software
Driver module by typing the following commands :

make clean
make all

Note : The HSS8 Linux Software Driver is only supported on Linux kernel versions 2.6 and upwards.

Loading the HSS8 Linux Software Driver

Within the ‘hss8/Inx/builds/host/linux™ directory are 3 script files to help load the HSS8 Linux Software Driver.
The HSS8 Linux Software Driver may be loaded in two ways :

» Usingscriptfiles (hss8 load/hss8_ unload), which can be invoked from the system’s rc.local file or be called
manually whenever the module is needed.

e Using an init script (hss8_init), to be placed in the directory the Linux distribution uses to load init scripts,
i.e. fetc/init.d or /etc/rc.d/init.d. The HSS8 Linux Software Driver module should be located in the module
directory of the kernel : /lib/modules/[kernel version]/kernel/drivers/misc.

The HSS8 Linux Software Driver supports up to four HSS8 Adapters on one host system. The script files will

detect all HSS8 Adapters present and setup all devices. All HSS8 devices are created in /dev and have the
following naming convention :

hss8 <X> <Y> X - [A - D] indicating which HSS8 Adapter this device belongs to.
Y - [0 - 11] indicating the channel number of the HSS8 Adapter.

The file /proc/devices lists each HSS8 Adapter and its corresponding major number under the character devices
section. Each devices minor number corresponds to the channel number of the HSS8 Adapter.

Note : In order to load the HSS8 Linux Software Driver, the user must have root privileges.

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 4 of 32

5. Using the HSS8 Linux Software Driver
The HSS8 Linux Software Driver is a character driver. Each channel on the HSS8 Adapter is available as a
separate device on Linux and can be accessed with the following file-handling system calls :
e open - open the device (or corresponding channel on the HSS8 Adapter) for reading and writing.
e close - close the device (or corresponding channel on the HSS8 Adapter) for reading and writing.
e read - read from the device (or receive data on the specific channel on the HSS8 Adapter).
e write - write to the device (or send data on the specific channel on the HSS8 Adapter).
e octl - setup the various protocols (UART, HDLC, BISYNC).
5.1 Opening of Devices
Before any device may be accessed, it must be opened with the open system call. The open system call returns
a file descriptor, which is used as a handle to the device for subsequent accesses.
The HSS8 Linux Software Driver allows only one instance of the device to be open at any time. Hence
subsequent open calls will return an error. The user application should share the file descriptor between
processes to access the device at any time.
Example : For device /dev/hss8 A O:
fd = open(*'/dev/hss8 A_ 0", O_RDWR);
if(fd < 0)
printf("'Error opening device: %s - %s\n", "/dev/hss8 A_”, strerror(errno));
return 1;
}
5.2 Configuring the Channels
The HSS8 Adapter has eight Serial Communications Controllers (SCCs) [Channels A - H] that support UART,
HDLC/SDLC and BISYNC protocols, and four Serial Management Controllers (SMC's) [Channels | - L] that
support only asynchronous UART. Devices hss8_[A - D]_[0 - 7] correspond to Channels A - H and devices
hss8 [A-D]_[8-11]to Channels | - L.
After a HSS8 device has been opened, the user must first set the default configuration for each of the channels.
To set the configuration of a channel, a protocol-specific information structure is used. Examples of the required
structure is given in ccHss8Test.c (for the UART protocol) and can be used as a starting point.
The structures allow the user to set all the protocol-specific options available on the HSS8 communication
controller chip (the MPC8260 PowerQUICC 1I™). For available options for each of the structure fields,
see [2.1.1].
The ioctl system call is used to feed the protocol specific structure to the HSS8 Linux Software Driver.
Example : Set device with file descriptor fd to UART mode :
/* Set initial SCC port configuration */
ioctl(fd, HSS8 I0C_SET PORT_CONFIG, &uart_info);
CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 5 of 32

5.3 Adding Receive Call-back Function

The HSS8 Linux Software Driver is able to notify the user if data is available to read. This is accomplished with
asynchronous notification and is enabled as follows :

» The user program needs to specify a process as the owner of the device. This is necessary so that the
kernel knows which process to notify of an event.

» For the Call-back function to determine the file descriptor that caused this signal, the user program must
set the SIGIO flag in the device by means of the F_SETSIG fcntl command.

» To actually enable asynchronous notification, the user program must set the FASYNC flag in the device
by means of the F_SETFL fcntl command.

The above steps are implemented in software as follows :
#include <fcntl_h>

/* setup this process as the owner of the file descriptor */
fcntl (fd, F_SETOWN, getpid(Q));

/* set the SIGIO signal */
fentl (Fd, F_SETSIG, SIGIO);

/* setup async notification */
fentl (Fd, F_SETFL, fcntl(fd, F_GETFL) | FASYNC);

The Call-back function may be setup as follows :
#include <signal.h>
void hss8Test_rx_callback(int signo, siginfo_t *siginfo, void *what)

/* read data */
read(siginfo->si_fd, rx data, 10);

struct sigaction action;

/* setup rx callback */

memset(&action, 0, sizeof(action));
action.sa_sigaction = hss8Test_rx_callback;
action.sa_flags = SA_SIGINFO | SA_NOMASK;

sigaction(SIGI0, &action, NULL);
Note : For more information on the sigaction system call, consult its man page.

5.4 Reading in Received Data

The read system call will return the number of bytes received on the specific channel of the HSS8 Adapter. If
less data is available than the application requested, this amount will be returned immediately.

If no data is present, the read system call will block by default until at least one byte is there. If the flag
O_NONBLOCK has been specified and no data is present, the read system call will return immediately with
a return value of -EAGAIN.

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 6 of 32

55

5.6

5.7

5.8

Example : Read 10 bytes from device with file descriptor fd :

unsigned char rx_data[10];
read(fd, rx data, 10);

Writing Data

The write system call writes data to be send on the specific channel of the HSS8 Adapter. The return value,
if the call was successful, is the number of bytes written.

Blocking is not supported with the write system call. If the specific channel of the HSS8 Adapter cannot accept
anymore data, the write system call will return immediately with a return value of -EBUSY.

Example : Write 4 bytes to device with file descriptor fd :

unsigned char tx_data[4] = {OxAA, O0xBB, OxCC, OxDD};
write(fd, tx _data, 4);

Closing the Devices

Devices are closed with the close system call. Once closed, the corresponding channel of the device will reject
all incoming data. This data will not be available once the device is re-opened.

Obtaining the Current Host and Firmware Version Number

The HSS8 Linux Software Driver, engine version and the firmware version may be obtained with the ioctl
system call. This information is available on all devices per HSS8 Adapter.

char host_string[HSS8 VERSION_STRING_LENGTH] = {0};
char engine_string[HSS8 VERSION_STRING_LENGTH] = {0};
char firmware_string[HSS8 VERSION_STRING _LENGTH] = {0};

status = ioctl(fd, HSS8 10C_ENGINE_VERSION_GET, engine_string);
if(status = 0)

printf("'Could not get current engine version.\n");

status = ioctl(fd, HSS8_10C_EMBEDDED_ VERSION_GET, Ffirmware_string);
if(status = 0)

printf("'Could not get current firmware version.\n");
status = ioctl(fd, HSS8 10C_HOST_VERSION_GET, host_string);
if(status 1= 0)

printf("'Could not get current host version.\n");
printf("'Current driver: V%s\n"', host_string);

printfF("'Current engine: V%s\n"', engine_string);
printfF("'Current firmware: V%s\n\n'", firmware_string);

HSS8 Built-in Tests (BITS)

The structure hss8Bitinfo defined in hss8Controllfc.h stores each channel's statistics : e.g. how many
bytes / packets have been accepted / rejected / sent / received and how many errors were reported. The ioctl
system call fills in the structure with the latest data and returns it to the user application. This information is
available on all devices per HSS8 Adapter.

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 7 of 32

Example : Obtaining each channel's statistics :

hss8Bitinfo bit_info;
ioctl(fd, HSS8 I0C BIT _GET, &bit _info);

To clear the counters on the HSS8 Adapter, use the following ioctl command :

ioctl(fd, HSS8_10C_BIT_CLEAR):

5.9 Enable / Disable Power-On-Self Tests
Various Power-On-Self Tests (POSTs) may be enabled/disabled via the ioctl system call. The following macros
(see hss8Controllfc.h) define the tests :
® HSS8 POST _RAM_DATA ENABLE - Testthe onboard RAM data bus.
® HSS8 POST _RAM_ADDR _ENABLE - Testthe onboard RAM address bus.
e HSS8 POST_RAM_DEV_ENABLE - Test the onboard RAM devices.
® HSS8 POST _KERNEL _CRC_ENABLE - Test the embedded firmware CRC.
To disable all tests, specify zero.
Note : Every time the HSS8 Adapter starts up, the specified tests are run. If the user doesn’t require these
tests anymore, they need to be disabled again. By default, no tests are specified.
Example : Enable all POST tests :
char post_tests = HSS8_POST_RAM_DATA ENABLE | HSS8_ POST_RAM_ADDR_ENABLE |
HSS8_POST_RAM_DEV_ENABLE | HSS8 POST_KERNEL_CRC_ENABLE;
ioctl (fd, HSS8 I0C_POST_ENABLE, &post_tests);
5.10 Return POST Status
The POST status may be obtained via the ioctl system call. The following macros (see hss8Controllfc.h) define
the status :
® HSS8 OK - All tests passed.
e HSS8 EEPROM_UPDATE - EEPROM was corrupt and was reprogrammed.
e HSS8 EEPROM_ERROR - EEPROM read / write error.
e HSS8 RAM _DATA ERROR - RAM databus error.
e HSS8 RAM_ADDR_ERROR - RAM addressbus error.
e HSS8 RAM DEVICE_ERROR - RAM device error.
® HSS8 FLASH MAGIC_ERROR - Flash magic number corrupt.
® HSS8 FLASH_KERNEL_CRC_ERROR - Flash CRC error.
® HSS8 SLAVE PowerQUICC Il_FAIL - Second PowerQUICC Il processor failed to start up.
Example : Get POST status :
char post_status = 0;
ioctl(fd, HSS8 I0C_POST _STATUS, &post_status);
5.11 Return Adapter Type
The adapter type may be obtained via the ioctl system call. The return value will be either 4 or 8, describing a
4-channel (four SCCs and two SMCs available) or 8-channel (eight SCCs and four SMCs available) adapter.
When a 4-channel adapter is present, only the following devices are valid : hss8 [A - D]_[O - 3] (four SCC
channels) and hss8 [A - D]_[8 - 9] (two SMC ports). All other devices, although visible in /dev, will return an
error (-ENODEV) when accessed.
CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 8 of 32

Example : Get adapter type :
char adapter_type = O;

ioctl(fd, HSS8 10C_ADAPTER_TYPE, &adapter_type);

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 9 of 32

6. HSS8 Linux Software Driver Interface

The HSS8 Linux Software Driver source contains the following header files (in *hss8/Inx/src/h’), which should
always be included in user applications :

e hss8LnxDriver.h

. hss8Defs.h

e hss8HostDriver.h

e hss8Controllfc.h

. other header files

IOCTL command definitions.

HSS8 type definitions.

Of only importance for the HSS8 Linux Software Driver are the defines of the HSS8
adapter. The function declarations may be ignored, as they are not applicable to the
HSS8 Linux Software Driver.

Definition of structures and types for all protocols available on the HSS8 Adapter.

Other header files are only used to compile the software driver module and are not
necessary for user applications.

6.1 HSS8 Linux Software Driver System Calls
6.1.1 Open System Call
Function : open
Purpose : Open the HSS8 device (or port) and return a file descriptor.
Arguments :
<pathname> - The path and name of device. Usually “/dev/hss8_X_Y”, where X =[A - D] and
Y =[0 - 11].
<flags> - Always O_RDWR. If no blocking is desired, specify O_NONBLOCK as well
(bitwise-ORed with previous parameter). Do not specify O_ASYNC here, rather
setup asynchronous notification as described in 5.3.
Returns :
fd - File descriptor.
-1 - Error occurred.
Errors :
-ENODEV - Incorrect device specified or device cannot be found.
-EBUSY - The device is already open or the adapter is busy.
-EINTR - The open system call was interrupted by a signal.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl_h>

int open(const char *pathname, int flags);

CCII/HSS8/6-MAN/003

2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 10 of 32

6.1.2

6.1.3

Close System Call

Function :
Purpose :
Arguments :
<fd>
Returns :

0
-1

Errors :

-EBADF
-ENODEV
-EBUSY
-EINTR

#include <unistd.

close

Close the HSS8 device (or port) and release the file descriptor.

h>

int close(int fd);

Read System Call

Function :

Purpose :

Arguments :
<fd>
<buf>
<count>

Returns :
num_bytes
-1

Errors :
-EBADF
-EFAULT
-EAGAIN

-EINTR

#include <unistd.

read

The file descriptor to be closed.

On success.
Error occurred.

Incorrect file descriptor specified.

Incorrect device specified or device cannot be found.
The adapter is busy.

The close system call was interrupted by a signal.

Read from device (or read in received data from port).

ssize_t read(int

h>

File descriptor to read from.
Buffer to read bytes into.
Number of bytes to read from device.

Number of bytes read. This may be less than the bytes requested, which is not
an error. If zero, there are no bytes to read at present.
Error occurred.

Incorrect file descriptor specified.

There was a problem copying data into the user specified buffer.

Non blocking has been specified and no data was immediately available for
reading.

The close system call was interrupted by a signal.

fd, void *buf, size_t count);

CCII/HSS8/6-MAN/003

2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 11 of 32

6.1.4 Write System Call

Function : write
Purpose : Write to device (or send data on specific port).
Arguments :
<fd> File descriptor to write to.
<buf> Buffer containing the data to be written to device.
<count> Number of bytes to write to device. May only be up to a maximum of 32 kBytes.
Returns :
num_bytes Number of bytes written. If zero, no bytes have been written.
-1 Error occurred.
Errors :
-EBADF Incorrect file descriptor specified.
-ENODEV Incorrect device specified or device cannot be found.
-EINVAL The maximum number of bytes to be written has been exceeded.
-EFAULT There was a problem copying data from the user specified buffer.
-EINTR The close system call was interrupted by a signal.

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

CCII/HSS8/6-MAN/003

2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 12 of 32

6.1.5

loctl System Call

Function :
Purpose :
Arguments :

<fd>
<request>

Returns :

0
-1

Errors :

-EBADF
-ENODEV
-EINVAL
-EFAULT
-ENOTTY
-ENOMEM
-EBUSY

ioctl

Configure the protocol of the device or obtain device specific information.

- File descriptor to configure.
- Command to be performed. One of :

HSS8_I0C_SET_PORT_CONFIG
HSS8_IOC_GET_PORT_CONFIG
HSS8_IOC_BIT_CLEAR
HSS8_IOC_BIT_GET
HSS8_IOC_ENGINE_VERSION_GET
HSS8_I0C_EMBEDDED_VERSION_GET
HSS8_IOC_HOST VERSION_GET
HSS8_I0C_POST_ENABLE
HSS8_I0C_POST_STATUS

0. HSS8_IOC_ADAPTER_TYPE

BOoNoGOA~M®ONE

- Command specific argument :

Initialised hss8Protocolinfo structure.
Cleared hss8Protocolinfo structure.
No argument.

Cleared hss8BitInfo structure.

char buffer.

char buffer.

char buffer.

char variable.

char variable.

0. char variable.

BOONOOA~®LONE

- On success.
- Error occurred.

- Incorrect file descriptor specified.
- Incorrect device specified or device cannot be found.
- Incorrect protocol specified for specific device or port.

- The command specific argument references an inaccessible memory area.

- The specified request does not exist.
- Internal temporary kernel memory allocation failed.
- HSS8 Adapter may be busy.

#include <sys/ioctl.h>

int foctl(int fd, int request, ...);

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 13 of 32

6.2 HSS8 BIT Data Structures

The following structures define the HSS8 BIT variables (defined in hss8Controlifc.h) :
BIT Structures :

struct hss8BoardBitInfoStruct

{
hss8UINT32 board_number;
hss8UINT32 firmware_version;
hss8UINT32 firmware_revision;
hss8UINT32 firmware_beta;
char firmware_creation_date[30];
2

typedef struct hss8BoardBitInfoStruct hss8BoardBitinfo;

struct hss8SendBitInfoStruct

{
hss8Count nr_accepted;
hss8Count nr_rejected,;
hss8Count nr_errors;
hss8Count nr_sent;
hss8Count nr_bhytes_accepted;
hss8Count nr_bytes_rejected;
hss8Count nr_bytes_sent;

2

typedef struct hss8SendBitinfoStruct hss8SendBitinfo;

struct hss8ReceiveBitInfoStruct

{
hss8Count nr_buffers_busy;
hss8Count nr_received,;
hss8Count nr_bytes_received;
hss8Count nr_errors;

b

typedef struct hss8ReceiveBitinfoStruct hss8ReceiveBitinfo;

Main BIT Structure :

struct hss8BitlnfoStruct

{
hss8BoardBitIinfo board bit;
hss8SendBitInfo tx_scc bit[HSS8 HW NR_SCC];
hss8ReceiveBitInfo rx_scc_bit[HSS8 HW _NR_SCC];
hss8SendBitInfo tx_smc_bit[HSS8 HW_NR_SMC];
hss8ReceiveBitInfo rx_smc_bit[HSS8 HW NR_SMC];
};

typedef struct hss8BitlnfoStruct hss8Bitinfo;

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 14 of 32

6.3 Protocol Data Structures

Each protocol defines a protocol information structure used to configure a port with protocol specific options.
This paragraph details the information structures used by each protocol and explains the use and limitations
of every structure member.
hss8Protocollnfo structure :

struct hss8Protocol InfoStruct

{
hss8UINT32 protocol_id;
union
{ _
/* SCC info */
hss8UartInfo uart;
hss8HdIcInfo hdlc;
hss8Bisyncinfo bisync;
/* SMC info */
hss8SmcUartinfo smc_uart;
} info;
};

typedef struct hss8Protocol InfoStruct hss8ProtocolInfo;
protocol_id :

HSS8_PROTOCOL_UART
HSS8_PROTOCOL_HDLC
HSS8_PROTOCOL_BISYNC
HSS8_PROTOCOL_SMC_UART

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 15 of 32

6.3.1 UART Mode
This protocol may only be used with the eight SCC ports : Ports A - H.

6.3.1.1 UART Protocol Information Structure

The following structure is defined in the file hss8Controllfc.n and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controllfc.h.

struct hss8UartInfoStruct

{
hss8UINT32 baud_rate;
hss8UINT32 flow_control;

hss8UINT32
hss8UINT32
hss8UINT32

stop_bits;
data_bits;
uart_mode;

hss8UINT32 freeze tx;
hss8UINT32 rx_zero_stop_bits;
hss8UINT32 sync_mode;
hss8UINT32 disable_rx_while_tx;
hss8UINT32 parity_enable;
hss8UINT32 rx_parity;
hss8UINT32 tx_parity;
hss8UINT32 diag_mode;
hss8UINT32 max_receive_ bytes;
hss8UINT32 max_idl;
hss8UINT32 brkcr;
hss8UINT32 parec;
hss8UINT32 frmec;
hss8UINT32 nosec;
hss8UINT32 brkec;
hss8UINT32 uaddril;
hss8UINT32 uaddr2;
hss8UINT32 toseq;
hss8UINT32 cc[8];
hss8UINT32 rccm;
hss8UINT32 clock_source;

};

typedef struct hss8UartinfoStruct hss8Uartinfo;

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 16 of 32

6.3.1.2 UART Protocol Information Structure Members
Name Options Description
baud_rate 1 200 - 1 Mbit/s (RS-232) Used to specify a single baud rate

1 200 - 16 Mbit/s (RS-422/485)
Any values permissible.

The equation to calculate the actual baud rate for asynchronous
UART is as follows :

Actual baud rate = 100 MHz / 16 / ROUND(100 MHz / 16 /
Desired baud rate)

The equation to calculate the actual baud rate for synchronous
UART is as follows :

Actual baud rate = 100 MHz / ROUND(100 MHz / Desired
baud rate)

Where ROUND() implies that the result is rounded to the nearest
integer.

for both transmitter and receiver.

Units in bit/s.

clock_source

HSS8_CLOCK_DEFAULT

BRGs [1-4].

BRG1 for Channels [A and E]
BRG2 for Channels [B and F]
BRG3 for Channels [C and G]
BRG4 for Channels [D and H]

HSS8_CLOCK_BRG1
HSS8_CLOCK_BRG2
HSS8_CLOCK_BRG3
HSS8_CLOCK_BRG4

External Clocks connected on
CLK_IN Pins.

HSS8 CLOCK_EXT1
HSS8 CLOCK_EXT2
HSS8_ CLOCK_EXT3
HSS8 CLOCK_EXT4 Note :

HSS8 CLOCK_EXT[1-2]can
only be used for
Channel [A and B] and
[E and F], while
HSS8_ CLOCK_EXT[3-4]can

HSS8_CLOCK_DEFAULT
connects Baud Rate
Generators (BRGs) [1 - 4] to
Channels [A - D] and
Channels [E - H].

For synchronous UART :

When transmit clock is set to
HSS8_CLOCK_BRG][1 - 4], then
receive clock is still set to
HSS8 CLOCK_EXT[1 - 4] for
Channels [A - D] and [E - H].

For asynchronous UART :
Transmit and receive clocks can
be set to one of
HSS8_CLOCK_BRGJ1 - 4] or
HSS8_CLOCK_EXTI1 - 4].

Note :

There are four BRGs and four
clock input pins per
PowerQUICC Il processor.

only be used for
Channels [C and D] and
[G and H].
flow control HSS8_UART_FLOW_NORMAL Normal or asynchronous flow
- HSS8 UART_FLOW_ASYNC control.
stop_bits HSS8_UART_STOP_BITS_ONE Number of full stop bits.
- HSS8 UART_STOP_BITS_TWO
data bits HSS8_UART_DATA_BITS_5 Number of data bits. Note only
- HSS8 _UART_DATA_BITS_6 channels [I - L] (i.e. the SMC
HSS8 UART_DATA_BITS_7 channels) support nine or more
HSS8 UART_DATA_BITS_8 data bits.
HSS8 UART_DATA_BITS_9
HSS8_UART_DATA_BITS_10
HSS8_UART_DATA_BITS_11
HSS8 _UART_DATA_BITS_12
HSS8_UART_DATA_BITS_13
HSS8 UART_DATA_BITS_14
uart mode HSS8_UART_MODE_NORMAL Select UART mode normal,
- HSS8_UART_MODE_MAN_MM manual multidrop or automatic
HSS8 UART_MODE_AUTO_MM multidrop mode.
CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 17 of 32

Name

Options

Description

freeze tx

HSS8_UART_FREEZE_TX_NORMAL
HSS8_UART_FREEZE_TX_FREEZE

Pause (freeze) transmission.
Transmission continues when set
back to normal.

rx_zero_stop_bits

HSS8_UART_RX_ZERO_STOP_BITS_NORMAL
HSS8_UART_RX_ZERO_STOP_BITS_NONE

If set to none, the receiver
receives data without stop bits.

sync_mode

HSS8_UART_SYNC_MODE_ASYNC
HSS8_UART_SYNC_MODE_SYNC

Select asynchronous (normal) or
synchronous mode.

disable_rx_while_tx

HSS8_UART_DISABLE_RX_WHILE_TX_NORMAL
HSS8_UART_DISABLE_RX_WHILE_TX_DISABLE

Enable (normal) or disable
receiver while transmitting. Used
in multidrop mode to prevent
reception of own messages.

parity_enable

HSS8_UART_PARITY_NO_PARITY
HSS8_UART_PARITY_ENABLE

Enable or disable parity checking.

rx_parity, tx_parity

HSS8_UART_PARITY_ODD
HSS8_UART_PARITY_LOW

HSS8_UART_PARITY_EVEN
HSS8_UART_PARITY_HIGH

Receive and transmit parity.
Parity will only be checked if parity
is enabled.

diag_mode

HSS8_DIAG_NORMAL

Normal operation. Use this for
external loopback.

HSS8_DIAG_LOOPBACK

Internal loopback :

TxD and RxD are connected
internally. The value on RxD,
CTS and CD is ignored. The
transmitter and receiver share
the same clock source.

HSS8_DIAG_ECHO

The transmitter automatically
resends received data bit-by-
bit.

HSS8_DIAG_LOOPBACK_EC | Loopback and echo operation

HO

occur simultaneously.

Set diagnostic mode.

External loopback -
RS-422/485 :

Connect TxD+ to RxD+, TxD- to
RxD-, (CLK_OUT+ to CLK_IN+
and CLK_OUT- to CLK_IN- for
synchronous mode).

External loopback - RS-232 :
Connect TxD to RxD, (CLK_OUT
to CLK_IN for synchronous mode)
and RTS to CTS and CD.

max_receive_hytes

1 to 2 048 (default) or up to 32 kBytes, depending on how many
bytes have been allocated to the RX and TX buffers (See function

hss8Create_device(..)).

Maximum number of bytes that
may be copied into a buffer.

max_idl

0 to 2 048 (default) or up to 32 kBytes, depending on how many
bytes have been allocated to the RX and TX buffers (See function

hss8Create_device(..)).

Maximum idle characters. When a
character is received, the receiver
begins counting idle characters. If
max_idl idle characters are
received before the next data
character, an idle timeout occurs
and the buffer is closed. Thus,
max_idl offers a way to demarcate
frames.

To disable the feature, clear
max_idl. The bit length of an idle
character is calculated as follows :
1 + data length (5-9) + 1 (if parity
is used) + number of stop bits (1-
2). For 8 data bits, no parity, and 1
stop bit, the character length is 10
bits.

brkecr

0-2048

Number of break characters sent
by transmitter. For 8 data bits, no
parity, 1 stop bit, and 1 start bit,
each break character consists of
10 zero bits.

parec

0-65535

Number of received parity errors.

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 18 of 32

Name Options Description
frmec 0-65535 Number of received characters
with framing errors.
nosec 0- 65535 Number of received characters
with noise errors.
brkec 0-65535 Number of break conditions on the

signal.

uaddrl, uaddr2

0x0000 - OxO00FF

Address in multidrop mode. Only
the lower 8 bits are used so the
upper 8 bits should be cleared.

Ob11------ 11111111 -

toseq 0x0000 - Ox00FF Transmit out of sequence
character (e.g. XON, XOFF).
cc[8] 0b00------ cceceeeee - Valid entry. Control character 1 to 8. These
0b10------ cceeeeee - Cntry not valid and is not used. characters can be used to delimit
received messages.
—————— (6 bits) -
Reserved. Initialise to zero.
ccccccecc (8 bits) -
Defines control characters to be
compared to the incoming
character.
rccm Ob11------ 00000000 - Ignore these bits when comparing | Receive control character mask. A

incoming character.
Enable comparing the incoming
character to cc[n].

one enables comparison and a
zero masks it.

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 19 of 32

6.3.2 HDLC Mode
This protocol may only be used with the eight SCC ports : Ports A - H.

6.3.2.1 HDLC Protocol Information Structure

The following structure is defined in the file hss8Controllfc.n and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controllfc.h.

struct hss8HdlIcInfoStruct

{
hss8UINT32 baud_rate;
hss8UINT32 crc_mode;
hss8UINT32 diag_mode;
hss8UINT32 max_receive_bytes;
hss8UINT32 max_frame_bytes;
hss8UINT32 address_mask;
hss8UINT32 addressl;
hss8UINT32 address2;
hss8UINT32 address3;
hss8UINT32 address4;
hss8UINT32 nr_flags between_frames;
hss8UINT32 retransmit_enabled;
hss8UINT32 flag_sharing_enabled;
hss8UINT32 rx_disabled_during tx;
hss8UINT32 bus_mode;
hss8UINT32 bus_mode_rts;
hss8UINT32 multiple_tx_ frames;
hss8UINT32 encoding_method;
hss8UINT32 preamble_length;
hss8UINT32 preamble_pattern;
hss8UINT32 send_idles_or_flags;
hss8UINT32 clock_source;

};

typedef struct hss8HdlIcInfoStruct hss8Hdlclinfo;

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 20 of 32

6.3.2.2 HDLC Protocol Information Structure Members

Name

Options

Description

baud_rate

1200 - 1 Mbit/s (RS-232)
1 200 - 16 Mbit/s (RS-422/485)

Any values permissible.

The equation to calculate the actual baud rate for FMO/1,
Manchester and Diff. Manchester is as follows :

Actual baud rate = 100 MHz / 16 / ROUND(100 MHz
/ 16 / Desired baud rate)

The equation to calculate the actual baud rate for NRZ/NRZI is as
follows :

Actual baud rate = 100 MHz / ROUND(100 MHz /
Desired baud rate)

Where ROUND() implies that the result is rounded to the nearest
integer.

Used to specify a single baud
rate for both transmitter and
receiver.

Units in bit/s.

clock_source

HSS8_CLOCK_DEFAULT

BRGs [1-4].

BRG1 for Channels [A and E]
BRG2 for Channesl [B and F]
BRG3 for Channels [C and G]
BRG4 for Channels [D and H]

HSS8_CLOCK_BRG1
HSS8_CLOCK_BRG2
HSS8_CLOCK_BRG3
HSS8_CLOCK_BRG4

External Clocks connected on
CLK_IN Pins.

HSS8 CLOCK_EXT1
HSS8_CLOCK_EXT2
HSS8_CLOCK_EXT3
HSS8 CLOCK_EXT4 Note :

HSS8 CLOCK_EXT[1 - 2] can
only be wused for
Channels [A and B] and
[E and F], while
HSS8_CLOCK_EXT[3 - 4] can
only be used for
Channels [C and D] and

HSS8_CLOCK_DEFAULT
connects BRGs [1 - 4] to
Channels [A - D] and
Channels [E - H].

For NRZ/NRZI :

When transmit clock is set to
HSS8_ CLOCK_BRGI1 - 4], then
receive clock is still set to
HSS8_CLOCK_EXT[1 - 4] for
Channels [A - D] and [E - H].

For FMO/1, Manchester and
Diff. Manchester :

Transmit and receive clocks can
be set to one of
HSS8_CLOCK_BRG[1 - 4] or
HSS8_CLOCK_EXTI1 - 4].

Note :

There are four BRGs and four
clock input pins per
PowerQUICC Il processor.

[G and H].
crc mode HSS8_HDLC_CRC_MODE_16_BIT HDLC CRC mode.
- HSS8_HDLC_CRC_MODE_32_BIT
diag_mode HSS8_DIAG_NORMAL Normal operation. Use this for | Set diagnostic mode.
- external loopback.
External loopback -
RS-422/485 -

Connect TxD+ to RxD+, TxD- to
RxD-, (CLK_OUT+ to CLK_IN+
and CLK_OUT- to CLK_IN- for
synchronous mode).

External loopback - RS-232 :
Connect TxD to RxD, (CLK_OUT
to CLK_IN for synchronous
mode) and RTS to CTS and CD.
Set diagnostic mode.

For synchronous mode :
see encoding_method.

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 21 of 32

Name

Options

Description

HSS8_DIAG_LOOPBACK Internal loopback :

TxD and RxD are connected
internally. The value on RxD,
CTS and CD s ignored. The
transmitter and receiver share
the same clock source.

HSS8_DIAG_ECHO The transmitter automatically
resends received data bit-by-bit.

HSS8 DIAG_LOOPBACK_EC | Loopback and echo operation
HO occur simultaneously.

max_receive_bytes

110 (2 048 - CRC bytes (2 or 4)) (default) or up to (32 kBytes - CRC
bytes (2 or 4)), depending on how many bytes have been allocated
to the RX and TX buffers (See function hss8Create_device(..)).

Maximum number of bytes to
receive before closing buffer. Set
equal to max_frame_bytes.

max_frame_bytes

1 to 2 048 (default) or up to 32 kBytes, depending on how many
bytes have been allocated to the RX and TX buffers (See function
hss8Create_device(..)).

Maximum number of bytes per
frame. Set equal to the number
of data bytes plus the number of
CRC bytes (either two or four)
per frame.

address_mask

0x0000 - OXFFFF

HDLC address mask. A one
enables comparison and a zero
masks it.

addressl, address2,
address3, address4

0x0000 - OXFFFF

Four address registers for
address recognition. The SCC
reads the frame address from the
HDLC receiver, compares it
with the address registers, and
masks the result with
address_mask.

For example, to recognize a
frame that begins Ox7E (flag),
0x68, 0XAA, using 16-bitaddress
recognition, the address registers
should contain OxAA68 and
address_mask should contain
OXFFFF. For 8-bit addresses,
clear the eight high-order
address bits.

nr_flags_between_frames [0-15 Minimum number of flags
- - - between or before frames.
retransmit_enabled TRUE Enable re-transmit.
- FALSE
flag_sharing_enabled TRUE Enable flag sharing.
FALSE
rx_disabled_during_tx TRUE Disable receive during transmit.
- - - FALSE
bus_mode TRUE Enable bus mode.
- FALSE
bus_mode rts TRUE Enable special RTS operation in
- - FALSE HDLC bus mode.
multiple_tx_frames TRUE Enable multiple frames in
- FALSE transmit FIFO.

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 22 of 32

Name

Options

Description

encoding_method

HSS8_HDLC_ENCODING_METHOD_NRZ
HSS8_HDLC_ENCODING_METHOD_NRZI_MARK
HSS8_HDLC_ENCODING_METHOD_NRZ|_SPACE
HSS8_HDLC_ENCODING_METHOD_FMO
HSS8_HDLC_ENCODING_METHOD_FM1
HSS8_HDLC_ENCODING_METHOD_MANCHESTER
HSS8_HDLC_ENCODING_METHOD_DIFF_MANCHESTER

RX / TX encoding method. NRZ
and NRZI use no DPLL. FMO0/1,
Manchester and Diff_Manchester
use the DPLL for clock
recovery.The clock rate is 16x
when the DPLL is used.

preamble_length

HSS8_DPLL_PREAMBLE_LENGTH_0
HSS8_DPLL_PREAMBLE_LENGTH_8
HSS8_DPLL_PREAMBLE_LENGTH_16
HSS8_DPLL_PREAMBLE_LENGTH_32
HSS8_DPLL_PREAMBLE_LENGTH_48
HSS8_DPLL_PREAMBLE_LENGTH_64
HSS8_DPLL_PREAMBLE_LENGTH_128

Determines the length of the
preamble pattern.

preamble_pattern

HSS8_DPLL_PREAMBLE_PATTERN_00
HSS8_DPLL_PREAMBLE_PATTERN_10
HSS8_DPLL_PREAMBLE_PATTERN_01
HSS8_DPLL_PREAMBLE_PATTERN_11

Determines what bit pattern
precedes each TX frame.

send_idles_or_flags

HSS8_HDLC_SEND_IDLES
HSS8_HDLC_SEND_FLAGS_SYNCS

Send either idles or flags/syncs
between frames as defined by
the protocol. For HDLC the flag
is defined as Ox7E. NRZI
encoding methods may only be
used with flags/syncs.

6.3.2.3 Preamble Requirements

Decoding Method Preamble Pattern MinimumRquel?irrnet:jle Length
NRZI Mark All zeros 8-bit
NRZI Space All ones 8-bit
FMO All ones 8-hit
FM1 All zeros 8-bit
Manchester 101010...10 8-bit
Differential Manchester All ones 8-bit
CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 23 of 32

6.3.3 BISYNC Mode
This protocol may only be used with the eight SCC ports : Ports A - H.

6.3.3.1 BISYNC Protocol Information Structure

The following structure is defined in the file hss8Controllfc.n and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controllfc.h.

struct hss8BisynclnfoStruct

{
hss8UINT32 baud_rate;
hss8UINT32 clock_source;
hss8UINT32 max_receive bytes;
hss8UINT32 min_no_sync_pairs;
hss8UINT32 crc_select;
hss8UINT32 receive_bcs;
hss8UINT32 rx_transparant_mode;
hss8UINT32 reverse_data;
hss8UINT32 disable _rx_while_tx;
hss8UINT32 rx_parity;
hss8UINT32 tx_parity;
hss8UINT32 diag_mode;
hss8UINT32 crcc;
hss8UINT32 prcrc;
hss8UINT32 ptcrc;
hss8UINT32 parec;
hss8UINT32 bsync;
hss8UINT32 bdle;
hss8UINT32 cc[8];
hss8UINT32 rccm;
hss8UINT32 sync;
hss8UINT32 syn_length;
hss8UINT32 send_idles_or_flags;

33

typedef struct hss8BisynclnfoStruct hss8Bisynclnfo;

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 24 of 32

6.3.3.2

BISYNC Protocol Information Structure Members

Name

Options

Description

baud_rate

1200 - 1 Mbit/s (RS-232)
1200 - 16 Mbit/s (RS-422/485)

Any values permissible.

The equation to calculate the actual baud rate for BISYNC is as

follows :

Actual baud rate = 100 MHz / ROUND(100 MHz /

Desired baud rate)

Where ROUND() implies that the result is rounded to the nearest

integer.

Used to specify a single baud rate for
both transmitter and receiver.

Units in bit/s.

clock _source

HSS8_CLOCK_DEFAULT

HSS8_CLOCK_BRG1
HSS8_CLOCK_BRG2
HSS8_CLOCK_BRG3
HSS8_CLOCK_BRG4

BRGs [1 - 4].

BRG1 for Channels [A and E]
BRG2 for Channels [B and F]
BRG3 for Channels [C and G]
BRG4 for Channels [D and H]

HSS8_CLOCK_EXT1
HSS8_CLOCK_EXT?2
HSS8_CLOCK_EXT3
HSS8_CLOCK_EXT4

External Clocks connected on
CLK_IN Pins.

Note :
HSS8_CLOCK_EXT[L - 2]
can only be wused for
Channels [A and B] and
[E and F], while
HSS8_CLOCK_EXT[3 - 4]
can only be wused for
Channels [C and D] and
[G and H].

HSS8_CLOCK_DEFAULT
connects BRGsJ[1 - 4] to
Channels [A - D] and Channels [E - H].

When transmit clock is set to
HSS8 CLOCK_BRG[1 - 4], then
receive clock is still set to
HSS8_CLOCK_EXT[1 - 4] for
Channels [A - D] and [E - H].

Note :

There are four BRGs and four clock
input pins per PowerQUICC I
processor.

max_receive_hytes

1 to (2 048 - 2 CRC bytes) (default) or up to (32 kBytes - 2 CRC
bytes), depending on how many bytes have been allocated to the RX
and TX buffers (See function hss8Create_device(..)).

Maximum number of bytes to receive
before closing buffer.

min_no_sync_pairs

0b0000 (0 pairs) -0b1111 (16 pairs)

Minimum number of SYN1-SYN2 pairs
sent between or before messages. The
entire pair is always sent, regardless of
the syn_length variable.

crc select HSS8_BISYNC_CRC_MODE_16 CRC selection.

- HSS8_BISYNC_CRC_MODE_LRC 1:CRC16 (X16 + X15+ X2 + 1) :
Initialise prcrc and ptcrc to all zeros
or all ones.

2 : LRC (sum check) :
For even LRC, initialise prcrc and
ptcrc to zeros, for odd LRC initialise to
ones.
receive bcs TRUE Enable Receive Block Check
- FALSE Sequence (BCS).
CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CH8MANO03.WPD

Page 25 of 32

Name Options Description
rx_transparant_mode TRUE Enable Receiver transparent mode.
- - FALSE
FALSE :
Normal receiver mode with SYNC
stripping and control character
recognition.
TRUE :
Transparent receiver mode. SYNC's,
DLE’'s and control characters are
recognised only after the leading DLE
character. The receiver calculates the
CRC16 sequence even if it is
programmed to LRC while in
transparent mode. Initialize prcrc to
the CRC16 preset value before setting
rx_transparant_mode.
reverse data TRUE Enable Reverse data.
- FALSE
disable rx while tx TRUE Disable receiver while sending.
- - FALSE
rx_parity HSS8_BISYNC_PARITY_ODD Receive and transmit parity. Parity is
tx parity HSS8 BISYNC_PARITY_LOW ignored unless crc_select = LRC.
— HSS8_BISYNC_PARITY_EVEN
HSS8_BISYNC_PARITY_HIGH
diag_mode HSS8_DIAG_NORMAL Normal operation. Use this for | Set diagnostic mode.
- external loopback.
External loopback - RS-422/485 :
Connect TxD+ to RxD+, TxD- to RxD-,
HSS8_DIAG_LOOPBACK Internal loopback : CLK_OUT+ to CLK_IN+ and
TxD and RxD are connected | CLK_OUT- to CLK_IN-.
internally. The value on RxD,
CTS and CD is ignored. The | External loopback - RS-232:
transmitter and receiver share | Connect TxD to RxD, CLK_OUT to
the same clock source. CLK_IN and RTS to CTS and CD.
HSS8 DIAG_ECHO The transmitter automatically
resends received data bit-by-
bit.
HSS8 DIAG_LOOPBACK_ECHO | Loopback and echo operation
occur simultaneously.
crec 0 CRC constant value.
prcrc 0x0000 or Preset receiver / transmitter
ptcre OXFFFF CRC16/LRC. These values should_be
preset to all ones or zeros, depending
on the BCS used.
parec 0- 65535 Number of received parity errors.

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 26 of 32

Name

Options

Description

bsync

0bv0000000ssSSSSSS

BISYNC SYNC register. Contains the
value of the SYNC character stripped
from incoming data on receive once
the receiver synchronizes to the data
using the SYN1- SYN2 pair.

V -

If v =1 and the receiver is not in hunt
mode when a SYNC character is
received, this character is discarded.

SSSSSsSss (8 hits) -

SYNC character. When using 7-bit
characters with parity, the parity bit
should be included in the SYNC
register value.

bdle

0bv0000000dddddddd

BISYNC DLE register. In transparent
mode, the receiver discards any DLE
character received.

v -

If v =1 and the receiver is not in hunt
mode when a DLE character is
received, this character is discarded.

dddddddd (8 bits) -
DLE character. This character tells the
receiver that the next character is text.

cc[8]

0b0Obh----- ccceceece -
Ob1bh-----cccccccc -

Valid entry.

Entry not valid and is not used.

Control characters 1 to 8.

----- (5 hits) -
Reserved. Initialise to zero.

b -
Block check sequence expected. A
maskable interrupt is generated after
the buffer is closed.

b=0:
The character is written into the
receive buffer and the buffer is closed.

b=1:

The character is written into the
receive buffer. The receiver waits for 1
LRC or 2 CRC bhytes and then closes
the buffer.

h-
Enables hunt mode when the current
buffer is closed.

h=0:

The BISYNC controller maintains
character synchronisation after closing
the buffer.

h=1:

The BISYNC controller enters hunt
mode after closing the buffer. When
b = 1, the controller enters hunt mode
after receiving LRC or CRC.

ccccccecc (8 hits) -

Defines control characters to be
compared to the incoming character.
When using 7-bit characters with
parity, include the parity bit in the
character value.

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 27 of 32

Name

Options

Description

rcem Ob11------ 00000000 - Ignore these bits when comparing | Receive control character mask. Aone
incoming character. enables comparison and a zero masks
Ob11------ 11111111 - Enable comparing the incoming | it.
character to cc[n].
sync 0xssss (2 bytes) SYNC character :
Should be programmed with the sync
pattern.
syn_length HSS8 BISYNC_SYNL_8 HSS8_BISYNC_SYNL_8:

HSS8_BISYNC_SYNL_16

Should be chosen to implement
mono-sync protocol. The receiver
synchronizes on an 8-bit sync pattern
in sync.

HSS8 BISYNC_SYNL_16:
The receiver synchronizes on a 16-bit
sync pattern stored in sync.

send_idles_or_flags

HSS8_BISYNC_SEND_IDLES
HSS8_BISYNC_SEND_FLAGS_SYNCS

Send either idles or flags/syncs
between frames as defined by the
protocol. The flag character is equal to
sync.

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 28 of 32

6.3.4 SMC UART Mode

This protocol may only be used with the four SMC ports : Ports | - L.

6.3.4.1 SMC UART Protocol Information Structure

The following structure is defined in the file hss8Controllfc.n and is given here in abbreviated format
(i.e. reserved and obsolete members are not shown). Always use the structure as defined in hss8Controllfc.h.

struct hss8SmcUartinfoStruct

{
hss8UINT32 max_receive_ bytes;
hss8UINT32 max_idl;
hss8UINT32 data_bits;
hss8UINT32 stop_bits;
hss8UINT32 parity enable;
hss8UINT32 parity mode;
hss8UINT32 diag_mode;
hss8UINT32 baud_rate;

};

typedef struct hss8SmcUartinfoStruct hss8SmcUartinfo;

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 29 of 32

6.3.4.2 SMC UART Protocol Information Structure Members
Name Options Description
baud rate 1 200 - 115.2 kbit/s (RS-232/RS-422/485) Used to specify a single baud rate for
- both transmitter and receiver.
Any values permissible.
Units in bit/s.
The equation to calculate the actual baud rate for the SMC UART is as
follows :
Actual baud rate = 100 MHz / 16 / ROUND(100 MHz / 16
/ Desired baud rate)
Where ROUND() implies that the result is rounded to the nearest integer.
stop_hits HSS8_UART_STOP_BITS_ONE Number of full stop bits.
- HSS8 UART_STOP_BITS_TWO
data bits HSS8_UART_DATA_BITS_5 Number of data bits.

HSS8_UART_DATA BITS_6
HSS8_UART DATA_BITS_7
HSS8_UART_DATA_BITS_8
HSS8_UART_DATA BITS_9
HSS8_UART_DATA BITS_10
HSS8_UART DATA_BITS_11
HSS8_UART_DATA BITS_12
HSS8_UART_DATA BITS_13
HSS8_UART_DATA BITS_14

Note :

Only Channels | - H (i.e. the SMC
channels) support nine or more data bits.

parity_enable

HSS8_UART_PARITY_NO_PARITY
HSS8_UART_PARITY_ENABLE

Enable or disable parity checking.

external loopback.

HSS8_DIAG_LOOPBACK Internal loopback :
TxD and RxD are connected
internally. The value on RxD is

ignored.

HSS8_DIAG_ECHO The transmitter automatically

resends received data bit-by-bit.

HSS8_DIAG_LOOPBACK_ECHO Loopback and echo operation

occur simultaneously.

parity_mode HSS8_UART_SMC_PARITY_ODD Receive and transmit parity. Parity will
- HSS8_UART_SMC_PARITY_EVEN only be checked if parity is enabled.
diag_mode HSS8_DIAG_NORMAL Normal operation. Use this for | Set diagnostic mode.

External loopback - RS-422/485 :
Connect TxD+ to RxD+ and TxD- to
RXD-.

External loopback - RS-232:
Connect TxD to RxD.

max_receive_bhytes

1 to 2 048 (default) or up to 32 kBytes, depending on how many bytes
have been allocated to the RX and TX buffers (See function
hss8Create_device(..)).

Maximum number of bytes that may be
copied into a buffer.

max_idl

0 to 2 048 (default) or up to 32 kBytes, depending on how many bytes
have been allocated to the RX and TX buffers (See function
hss8Create_device(..)).

idle characters. When a
character is received, the receiver
begins counting idle characters. If
max_idl idle characters are received
before the next data character, an idle
timeout occurs and the buffer is closed.
Thus, max_idl offers a way to demarcate
frames.

To disable the feature, clear max_idl.
The bit length of an idle character is
calculated as follows :

1 + data length (5-14) + 1 (if parity is
used) + number of stop bits (1 - 2). For 8
data bits, no parity, and 1 stop bit, the
character length is 10 bits.

Maximum

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 30 of 32

Getting Started

After installing the HSS8 Linux Software Driver according to Paragraph 4, test it by following the test procedure
given in hss8Test.txt.

CCII/HSS8/6-MAN/003 2009-08-20 Issue 1.2

CHB8MANO3.WPD Page 31 of 32

8. Contact Details

8.1 Contact Person

Direct all correspondence and / or support queries to the Project Manager at C2I2 Systems.

8.2 Physical Address

C?J2 Systems

Unit 3, Rosmead Place, Rosmead Centre
67 Rosmead Avenue

Kenilworth

Cape Town

7708

South Africa

8.3 Postal Address

C2I2 Systems
P.O. Box 171
Rondebosch

7701

South Africa

8.4 Voice and Electronic Contacts

Tel : (+27) (0)21 683 5490
Fax : (+27) (0)21 683 5435
Email : info@ccii.co.za
Email : support@ccii.co.za
URL : http://www.ccii.co.za/

8.5 Product Support

Support on C2I2 Systems products is available telephonically between Monday and Friday from 09:00to 17:00 CAT.

Central African Time (CAT = GMT + 2).

CCII/HSS8/6-MAN/003

2009-08-20

Issue 1.2

CH8MANO03.WPD

Page 32 of 32

