
Dec 2000
Page 1

HOT505CA_1
A Hands-On Introduction to the C505CA

using DAvE 2.1, the C505CA Starter Kit,
Keil µVision2, and an oscilloscope

Dec 2000
Page 2

Contents (I)

� Introduction
– Introduction to HOT505CA_1
– Short Introduction to DAvE 2.1
– Short Introduction to Keil µVision2

Dec 2000
Page 3

Contents (II)

� C500 Architectural Overview
– 8 bit Products
– Product Numbering Scheme
– C505CA Block Diagram
– C500 CPU Core
– Internal & External Memory
– Interrupt System
– C505CA Peripheral Overview

Dec 2000
Page 4

Contents (III)

� C505CA Hands-On Peripheral Training
– Exercise Overview
– How to set up the Hardware and Software
– Files to build a program
– Hints regarding DAvE 2.1 and the Exercises
– Peripherals in Detail + Exercises

Dec 2000
Page 5

Introduction to HOT505CA_1

� HOT505CA_1 is a Hands-On Training material created for the
C505CA, using

– the KitCON-505C Starter Kit

– the Keil µVision2 development environment including the C51
compiler, A51 Assembler, BL51 Linker/Locator, Debugger

– DAvE, the Digital Application Engineer from Infineon
Microcontrollers (Version 2.1)

– an oscilloscope (for visualization purposes).
– A Windows95 or higher PC

� HOT505CA_1 shows the user from scratch how to generate
software for the C505CA with DAvE and the Keil tool chain:

– There are several exercises included, small tasks to be solved
using every peripheral of the C505CA.

– The user creates a new project in DAvE and configures the
device, following the detailed instructions.

Dec 2000
Page 6

Introduction to HOT505CA_1 (cont.)

– After having generated the code, the user
� switches to Keil µVision2,
� creates a new project,
� adds some User Code,
� compiles, assembles, links and locates the project.

– After compilation with µVision2, the user
� connects to the kitCON-505C via the PC serial port,
� loads, starts and debugs his example,
� confirms his working program with a scope (screen shots are

included for most of the examples).

Dec 2000
Page 7

Short Introduction to DAvE 2.1

� DAvE is your Digital Application Engineer from Infineon Microcontrollers.
� DAvE can help you compare and evaluate the different members of the Infineon

C500 (8-Bit) and C166 (16-Bit) families of microcontrollers and help you find the
right chip for your embedded control application.

� DAvE can be your one-stop access point to all standard knowledge associated
with Infineon embedded technology expertise by offering you context sensitive
access to user's manuals, data sheets, application notes etc. directly in your
development environment.

� DAvE can help you program the Infineon microcontroller you want to use in your
project, by offering you intelligent wizards that help you configure the chip to
work the way you need it and automatically generate C-level templates with
appropriate access functions for all of the on chip peripherals and interrupt
controls.

� You can follow an exciting online multimedia tutorial on how to use DAvE. To
start the tutorial click on the "Tutorial" item in the Add-Ins menu.

� More DAvE info at www.infineon.com/DAvE

Dec 2000
Page 8

Short Introduction to the Keil µVision2
Integrated Development Environment

� Keil µVision2:
– µVision2, the IDE from Keil Software, combines Project

Management, Source Code Editing, and Program
Debugging in one powerful environment. The Quick Start
guide on the starter Kit CD ROM gives you the information
necessary to use µVision2 for your own projects. It
provides a step-by-step introduction of the most commonly
used µVision2 features including:
� Project Setup for the Make and Build Process
� Editor facilities for Modifying and Correcting Source Code
� Program Debugging and Additional Test Utilities

� More information is available on the Starter Kit CD
ROM or at www.keil.com.

Dec 2000
Page 9

C500 Architectural Overview

� 8 bit Products
� Product Numbering

Scheme
� C505CA Block

Diagram
� C500 CPU Core
� Internal & External

Memory
� Interrupt System
� C505CA Peripheral

Overview

SAB-C501SAB-C501

25
6B

 R
AM

8k OTP

Dec 2000
Page 10

8-bit Products

Low-CostLow-CostGeneral PurposeGeneral Purpose

* >3KB RAM
* MDU
* 512 Byte Boot ROM
* Many Timers
* USART
* 29 ch. Capture/
 Compare Unit
* 8 data-pointers
* P-MQFP-100

C509C509

C504C504
*16K ROM/OTP
* 512 Bytes RAM
* 8 ch. 10-bit A/D
* Motor Control Peripheral
* 3 16-bit Timers
* USART

High-IntegrationHigh-Integration

C505CAC505CA
* 32k/16k ROM or OTP
* 1280 bytes RAM
* Full CAN 2.0B
 Active Controller
* 4 ch. Capture/
 Compare Unit
* 8 ch. 10 bit A/D
* USART
* 3 16-bit Timers
* 8 data-pointers

C515CC515C
C515A with
* 64K ROM/OTP
*+1KB RAM
* Full CAN 2.0B
 Active Controller
* SSC
* 8 ch. 10 bit A/D
* 8 data-pointers

C505LC505L
C505 with
* 32k OTP
* 128 seg. LCD controller
* Real Time Clock
* 8 ch. 10-bit A/D
* P-MQFP-80

C515C515
* 8 k ROM
* 256 bytes RAM
* 4 ch. Capture /
 Compare Unit
* 8 ch. 8 bit A/D
* USART
* 3 16-bit Timers
* PLCC 68

C517AC517A
Replaces 80C517A
* >2k RAM
* 32k ROM
* USART
* UART
* 21 ch Capture/
 Compare Unit
* 12 ch. 10 bit A/D
* Many Timers
* 8 Data Pointers
* P-LCC-84

C541UC541U
* 8K OTP
* 256 Bytes RAM
* Full & Low Speed
 USB Module 4+1 EP
* SSC
* 2 16 bit Timers
* P-LCC-44

* 512 Bytes RAM
* 16 k ROM/OTP
* USART
* SSC
* 3 16-bit Timers
* P-LCC-44

C513AOC513AO

C508C508
* 1280 bytes RAM
* 32k OTP/ROM
* USART
*Enhanced Motor
 Control Peripheral
* 8 ch. 10 bit A/D
* Extra 4 ch. Capture/
 Compare Unit
* 8 Data Pointers
* Built-in PLL (x2)
* P-MQFP-64

C505AC505A
* 32k/16k ROM or OTP
* 1280 bytes RAM
* 4 ch. Capture/
 Compare Unit
* 8 ch. 10 bit A/D
* USART
* 3 16-bit Timers
* 8 data-pointers

Dec 2000
Page 11

C505 Part Numbering Scheme

SA F C505 CA - 4 E _ M
Standard Prefix:
Always “SA”

Temperature Range:
B = 0 to 70°C H = -40 to 110°C
F = -40 to 85°C K = -40 to 125°C

Basic Type (with CMOS indicator):
One letter with three numbers

e.g. C504, C167

Functionality Option Field (optional):
For the C505 the functionality field can be:

(blank) - C505 - Basic C505
C - C505C - CAN
A - C505A - C505 + Enhancements
CA - C505CA - CAN + Enhancements
L - C505L - LCD Controller

ROM Size (n x 8k):
(blank) - ROMless
1 = 8k 4 = 32k
2 = 16k 8 = 64k

ROM Type:
L = ROMless
R = Mask ROM
E = EPROM (OTP)
F = Flash
H = EEPROM

Package Type:
P = P-DIP
M = P-MQFP
N = P-LCC

Speed Designator:
Max Speed for all C505
Devices is 20 MHz

Dec 2000
Page 12

C505CA Block Diagram

Timer 0

Timer 1

USART

10-Bit ADC

Oscillator Watchdog

Interrupt Unit

RAM
256 x 8

Emulation
Support logic

(Enhanced Hooks)

OSC & Timing

C500 CORE
8 Datapointers

Prog. Watchdog
Timer

8 lines Port 3

CAN
v2.0B
Active

Controller

Timer 2
CAP/COM

2 lines Port 4

ROM/OTP
16k x 8 or

32k x 8

XRAM
1k x 8

Port 2

Port 0

Port 1

8 lines

 8 lines

8 lines

Dec 2000
Page 13

Architectural Overview
(adapted to C505CA)

� Complete 8-bit architecture with fully compatible instruction
set to standard 8051 (8052) microcontroller

� Up to 20 MHz CPU clock results in an instruction cycle time of
300ns which guarantees highest CPU performance

– CPU Frequency = External Clock Frequency ÷ 6

� To avoid an accumulator bottleneck
four banks with eight General Purpose Registers (GPRs) are
implemented

– The register banks are fixed located in the lower 32 locations of
the internal RAM

� Easy and efficient programming is supported by powerful
instructions

– 64 of 111 instructions are executed in one machine cycle
– 256 directly addressable bits

� Transparent programming of on-chip peripherals via Special
Function Register (SFR) interface

Dec 2000
Page 14

Block Diagram
C500 CPU (8051 Compatible)

Dec 2000
Page 15

Addressing Modes

� Register Addressing
– 8 registers (R0 - R7) in one of the four available register

banks
� e.g. MOV A,Rr

� Direct Addressing
– Special Function Registers (SFRs) and the lower 128

bytes of internal RAM
� e.g. MOV dadr1,dadr2

� Immediate Addressing
– Constants in the program memory are allowed to be part

of the instruction
� e.g. MOV A,#const8

Dec 2000
Page 16

Addressing Modes (cont.)

� Register Indirect Addressing
– 256 bytes of internal RAM or the lower 256 bytes of

external data memory (or XRAM) via the contents of either
R0 or R1 in the selected register bank
� e.g. MOV @Ri,A or MOVX @Ri, A

– External data memory using 16 bit data pointer
� e.g. MOVX @DPTR, A

� Base Register Plus Index Register Addressing
– Indirect move from the location whose address is the sum

of a base register (DPTR or PC) and index register
� e.g. MOVC A, @A+DPTR

Dec 2000
Page 17

CPU Fetch/Execute Sequence

 S1 S2 S3 S4 S5 S6

 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
P1 P2P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

ALE
Read
Opcode

Read
Opcode (Discard) Read next Opcode

Again

a) 1 Byte, 1 Cycle Instruction, e.g. INC A
Read
Opcode

Read 2nd
Byte Read next

Opcode

b) 2 Byte, 1 Cycle Instruction, e.g. ADD A, #Data

 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

Read
Opcode Read next Opcode (Discard)

Read next Opcode again

c) 1 Byte, 2 Cycle Instruction, e.g. INC DPTR

 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

Read
Opcode

Read next
Opcode
(Discard)

Read next Opcode again

d) MOVX (1 Byte, 2 Cycle)

No Fetch
No ALE

No Fetch

ADDR DATA
Access of External Memory

 S1 S2 S3 S4 S5 S6

1 External
Oscillator
Period

Dec 2000
Page 18

Memory Map -- C505CA
(Harvard Architecture)

FFH

80H

Code Space (External) Data Space (Internal) Data Space

External
EPROM
(32 k)

(/EA = 0)

Internal
ROM/
OTP

(32 k)

(/EA = 1)

7FFFH

0000H

External
Data

Memory
(XDATA)

0000H

F6FFH

Internal
CAN Cntr.
(256 Bytes)

Internal
XRAM
(1k Bytes)

FFFFH

FC00H

F7FFH

F700H

Internal
RAM

(128 Bytes)

7FH

00H

FFFFH

8000H

External
EPROM
(32 k)

External
Data

Memory
(XDATA)

SFR

(128 Bytes)

Direct
Address

Internal
RAM

(128 Bytes)

Indirect
Address

Dec 2000
Page 19

Memory Map (cont.)
Internal Data Space

FFH

80H

SFR

(128 Bytes)

Direct
Address

Internal
RAM

(128 Bytes)

Indirect
Address

Direct and Indirect
Address

Register Bank 3

Register Bank 2

Register Bank 1

Register Bank 0

Bit Addressable
Area

(128 bits)

07 06 05 04 03 02 01 00

7F 7E 7D 7C 7B 7A 79 78

Scratch Pad RAM

Every 8th SFR
is Bit AddressableUseful for Stack

00H

20H

30H

7FH

Internal
RAM

(128 Bytes)

7FH

00H

Dec 2000
Page 20

8 Data Pointers
8051 Enhancement

� Avoid 8051’s Datapointer Bottleneck when accessing
external data memory or internal XRAM

� Ensure Compatibility with existing software

- - - - - .2 .1 .0

DPSEL
0092H

DPH DPL
0083H 0082H

External Data Memory
Or XRAM

Dec 2000
Page 21

External Bus Access

Dec 2000
Page 22

External Connection to Memory

PSEN

WR

OE

P0 AD0-7

P3.6 / WR P3.7 / RD

A0-7

P2 A8-A15XRAMInternal
Memory

C500
74HC
373

Code Memory
(up to 64 kBytes)

A8-A15

A0-A7

AD0-7

without
XRAM
area

Data Memory
(up to 64 kBytes)

RD WR

ALE

Dec 2000
Page 23

Interrupt System

� Interrupt Controller
– Short interrupt response time
– Context Switching
– Short interrupt service overhead
– Low total latency gives highest real-time performance
– Comprehensive prioritization scheme

� Easy scheduling of complex real-time systems by using
up to 4 priority levels

� Simultaneous interrupts of same priority undergo a
group-wise arbitration (using the inherent priority
structure)

Dec 2000
Page 24

Four Programmable Priority Levels

Group 0

Group 1

Group 2

Group 3

Group 4

Group 5
IP0 IP1

Lowest
Priority
Level

HighestExt. Int. 0
A/D Conv.

Timer 0
CAN & SW

Ext. Int. 1
Ext. Int. 3

Timer 1
Ext. Int. 4

USART
Ext. Int. 5

Timer 2
Ext. Int. 6

Dec 2000
Page 25

Inherent Priority Structure
 - Only used for Simultaneous Interrupts of Same Priority

Ext. Int. 0

Group 0
A/D

Conv.

Group 1

Timer 0
CAN &

SW

Group 2

Ext. Int. 1
Ext. Int. 3

Group 3

Timer 1
Ext. Int. 4

Group 4

USART
Ext. Int. 5

Group 5

Timer 2
Ext. Int. 6

High

LowLow High

Dec 2000
Page 26

Interrupt Processing

INTR Flag is Set

Peripheral Interrupt

Peripheral Interrupt

Peripheral Interrupt

Peripheral Interrupt

External Interrupt

External Interrupt

Priority Check

Comparison of
Interrupt Priority

with CPU
Runtime Priority

if
higher
Priority

Interrupt Control Register of the appropriate peripheral

INTR Service:

Push Program
Counter onto

Stack

Set new CPU
priority

LCALL
according

to peripheral
vector number

Group Check
(Placement

within Inherent
Priority

Structure)
For

Simultaneous
interrupts of

same Priority
Clear

INTR Flag
(not for
all flags)

4 Priority Levels

Dec 2000
Page 27

Peripherals Set of the C505CA

� 2 Timer/Counter units (T0 & T1)
– 16 bit timers with 4 operating modes (including 1 reload mode)

� A 3rd 16 bit Timer/Counter with 4 Channel Capture Compare
– 2 Capture Modes and 2 Compare Modes

� Independent Full Duplex USART
– 3 Asynchronous modes, 1 Synchronous mode
– Dedicated Baudrate Generator

� 8 channel 10-Bit A/D Converter
� Full CAN Controller

– Conforms to CAN 2.0B Active specification
– 15 Message Object
– Up to 1Mb/s

� Watchdog: 15-bit Reload-timer causes reset on overflow

Dec 2000
Page 28

C505CA Hands-On Peripheral Training

� Exercise Overview
� How to set up the

Hardware and Software
� Peripherals in Detail +

Exercises
– Timer/Counter 0
– Timer/Counter 1
– USART
– A/D Converter
– Timer 2
– CAN Module

Dec 2000
Page 29

Exercise Overview

� Exercise for USART and T0/T1:
– 5URT_1 - Asynchronous Serial Transmission of data

periodically
– 5URT_2 - Synchronous Serial Transmission of data periodically

� Exercise for Timer 2 (CAPTURE/COMPARE UNIT):
– 5T2_1 - PWM using Timer 2
– 5T2_2 - Signal Generation / Signal Detection with

Timer 2*

� Exercise for the Analog to Digital Converter:
– 5ADC_1 - Control the Pulse Width of a PWM signal with an

ADC Value (using the ADC ISR)**

� Exercise for the CAN Module:
– 5CAN_1 - Transmit a standard CAN Message with the

On-Chip CAN Module (C505C and C505CA only)

* Requires External Connections
** Requires External Connections and Components

Dec 2000
Page 30

Hints regarding the Exercises

� Exercise numbering scheme:
– Generally the exercise name contains the starter kit, the

peripheral the exercise was mainly designed for and a
running number

– Exercise “5URT_2” would be the 2nd example for the
USART using the kitCON-505C Starter Kit

� To create a new exercise:
– For each exercise, use a different subdirectory

c:\hot505CA_1\newex (e.g. c:\hot505CA_1\5URT_1)

Dec 2000
Page 31

System Setup:
Directory Structure

� Create a subdirectory on your hard drive:
c:\hotC505CA_1

� Create the following subdirectories on you hard drive to
store the project and code for each of the exercises:

c:\hot505CA_1\5URT_1
c:\hot505CA_1\5URT_2
c:\hot505CA_1\5T2_1
c:\hot505CA_1\5T2_2
c:\hot505CA_1\5ADC_1
c:\hot505CA_1\5CAN_1

Dec 2000
Page 32

Tool/Project Flow

DAvE

C Code

Keil
Compiler/

Linker

Hex Code

Keil
Debugger

Phytec
Evaluation

Board

Oscilloscope

µVision2

Dec 2000
Page 33

System Setup:
kitCON-505C Hardware Setup

� Make sure that all jumpers are in their default positions
as described in the KitCON-505C Hardware-Manual.

� Make sure that jumper JP11 is open.
� Attach only an unregulated power supply with 8V to 12V

/500 mA to X2 on the KitCON-505C. Double check the
correct polarity!

� Connect your Starter Kit board to your IBM compatible
PC using a serial cable (connector X4 to COM1 - X4 is
the connector closest to the RESET button on the board)

NOTE: These examples assume that the KitCON-505C is
equipped with a 16 MHz crystal. Earlier editions of the
board may have slower crystals. This will effect the
timing of periodic interrupts, and some of the settings in
DAvE.

Dec 2000
Page 34

System Setup:
kitCON-505C Hardware Setup (cont.)

� The Keil Monitor Program MUST be programmed into
the Flash of the kitCON-505C

– The Keil Monitor is programmed into the Flash on all
boards by default. If the flash is erased or re-
programmed, the Monitor will need to be re-programmed

– Use the Phytec FlashTools to program the Keil Monitor
(mon505.hex) into the Flash
� See the KitCON-505C Hardware Manual for details on

programming the kitCON-505C Flash.

� If your board has a C505C device, you should replace it
with a C505CA.

– Be careful when opening the socket on the board. The
socket is easily damaged.

Dec 2000
Page 35

System Setup:
kitCON-505C Hardware Setup (cont.)

8V-12V DC / 500mA
Tip: Inside “+”, Outside: “-”

RS232

X5

P1

Reset Button S1

Jumper BlockC505CA

X3 Connector
CAN Bus Port

Dec 2000
Page 36

System Setup:
kitCON-505C Hardware Setup (cont.)

You need this
page when you

do the
exercises...

X3

Dec 2000
Page 37

System Setup:
Intall DAvE 2.1 (If you haven’t already)

� Insert the DAvE 2.1 CD in your CD ROM drive.
� Run CD ROM\Setup.exe.
� Follow the setup program’s instructions.

– Install the microcontrollers you’d like to work with. You can
always re-install or delete derivatives later on.

– Be sure to install the Smart Search.
– If you’d like to get a detailed introduction to DAvE 2.1, be sure to

include the tutorial. You can delete it afterwards to free up space.

� If you don’t have Acrobat Reader installed on your PC, do so
by choosing to install Acrobat Reader which is included on the
DAvE CD.
(Hint: You need Acrobat Reader 4.0 or higher)

Please note:
You need WINDOWS 95 or later or WINDOWS NT in order to
run DAvE!

Dec 2000
Page 38

System Setup:
Install Keil µVision2

� Most of the Starter Kit CDROMs contain an old version
of µVision.

� Please go to the Keil web-site (www.keil.com) and
download the latest Keil 8051 evaluation tools.

Please Note:
The Evaluation version of the Tools is restricted to 2k of
Code. The Code will be located at address 0x4000.

Dec 2000
Page 39

Hints regarding DAvE 2.1

� To create a new Project with DAvE:
– Select “File | New” from the pull down menu or press
– Select your microcontroller and click “create”

� To generate code with DAvE:
– Select “File | Generate Code” from the pull down menu or press

� To configure a peripheral:
– Move your mouse over the peripheral when DAvE shows the block diagram

and click the left mouse button

� To get context specific help in DAvE:
– Move your mouse over the item you want to find out about, sometimes a

yellow text window will pop up
– When configuring a peripheral, click the info-button arrow

to go to the corresponding User’s Manual chapter
– Select “View | Register Explorer” or press

� Validate each alpha numeric entry by pressing ENTER
� To save & close any DAvE window, click or

Dec 2000
Page 40

Hints regarding the Exercises

� The exercises are created in a way that they use only
peripherals which have been introduced already (either
directly before the exercise or in previous exercises)

� If an exercise does not work when running the
debugger:

– Check the oscilloscope connections (right pin?)
– Check the DAvE / µVision configurations
– Re-generate the code with DAvE (USER CODE remains!)
– Recompile the exercise in µVision
– Reload the exercise into the debugger and run it again
– The debugger may appear to react slowly when using

Windows NT

Dec 2000
Page 41

Let’s get
started now!

Let’s get
started now!

Dec 2000
Page 42

Peripheral Overview: Universal Sync./Async.
Receiver Transmitter (USART)

� Baud Rate Generation from External Oscillator, Dedicated Baud Rate
Generator, or Timer 1

� Mode 0
– Synchronous Mode (Half Duplex)
– Fixed Baud Rate (fosc/6)
– 8 data bits (LSB first)
– TxD Pin used as shift clock
– RxD Pin used for data

� Mode 1
– Asynchronous Mode (Full Duplex)
– Variable Baud Rate
– 8 data bits (LSB first)
– 1 Start Bit (0); 1 Stop Bit (1)

Dec 2000
Page 43

Peripheral Overview: Universal Sync./Async.
Receiver Transmitter (USART) - cont.

� Mode 2
– Asynchronous Mode (Full Duplex)
– Fixed Baud Rate (fosc/16 or fosc/32)
– 9 data bits (LSB first) -- Parity, Multiprocessor Communication
– 1 Start Bit (0); 1 Stop Bit (1)

� Mode 3
– Asynchronous Mode (Full Duplex)
– Variable Baud Rate
– 9 data bits (LSB first) -- Parity, Multiprocessor Communication
– 1 Start Bit (0); 1 Stop Bit (1)

� Interrupts
– After data reception
– After data transmission
– After data reception & 9th data bit is a “1”
– After data reception & no errors

Dec 2000
Page 44

USART Function Diagram

BD

10-Bit Timer
fosc

SRELH SRELL

3 to 2
MUX

SM0 SM1

Timer 1 Overflow

Mode 1
Mode 3 ÷2

÷16

SMOD

Baud
Rate
Clock

÷6 Mode 0
Mode 2

fosc

SBUF

SBUF

Baud Rate Clock

InterruptControl/Timing/Mode
Logic

TI

RI
>1

∇

Shift Reg

Shift Reg TxD

RxD

SCON

Dec 2000
Page 45

Peripheral Overview:
Timer/Counter 0 and 1

� 2 separate 16 Bit Timers/Counters
– Timer when clocked by external oscillator (fosc ÷ 6)
– Counter when clocked by external pin (P3.4/T0 or P3.5/T1)
– Can measure pulse widths when used as a “Gated Timer”

� Clocked by external oscillator when P3.2/INT0 or P3.3/INT1 is high

� 4 Operating Modes
– Mode 0

� 8 bit timer/counter with 5 bit (divide by 32) prescaler
� Interrupt on rollover (if desired)

– Mode 1
� 16 bit timer/counter
� Interrupt on rollover (if desired)

– Mode 2
� 8 bit timer with 8 bit reload on overflow
� Interrupt on rollover (if desired)

Dec 2000
Page 46

Peripheral Overview:
Timer/Counter 0 and 1 - cont.

– Mode 3
� Timer 0 becomes 2 separate 8 bit timers/counters with

individual interrupts on overflow (if desired)
� Timer 1 becomes a 16 bit timer that can be started and

stopped at any time, but cannot cause an interrupt
� Useful when an “extra” timer is needed

Dec 2000
Page 47

Timer/Counter 0 and 1 Operating Modes

Osc ÷6

C/T

P3.2/INT0
or

P3.3/INT1

Gate

P3.4/T0
or

P3.5/T1 TR0 or TR1

THx
(8 bits)

TLx
(5 bits) TFx

Interrupt

MODE 0

Osc ÷6

C/T

P3.2/INT0
or

P3.3/INT1

Gate

P3.4/T0
or

P3.5/T1 TR0 or TR1

THx
(8 bits)

TLx
(8 bits) TFx

Interrupt

MODE 1

Dec 2000
Page 48

Timer/Counter 0 and 1 Operating Modes (cont.)

Osc ÷6

C/T

P3.2/INT0
or

P3.3/INT1

Gate

P3.4/T0
or

P3.5/T1 TR0 or TR1

TLx
(8 bits)

THx
(8 bits)

TFx
Interrupt

MODE 2

Osc ÷6

C/T

P3.2/INT0
Gate

P3.4/T0
TR0

TL0
(8 bits)

TH0
(8 bits) TF1

Interrupt

MODE 3

Reload

TF0 Interrupt

TH1
(8 bits)

TL1
(8 bits)

M0 M1

TR1

Dec 2000
Page 49

Exercise 5URT_1 - Periodic Asynchronous Serial
Data Transmission - Description

� Objective: Send asynchronous serial data periodically
using the USART and Timer 0

– Period: 1 overflow of Timer 0 in mode 0 (3.072 ms with a
16 MHz crystal)

– Data: Send constant data (0x55) at a baud rate of 9600

– Use USART mode 1 (8 data bits, 1 start bit, 1 stop bit,
variable baud rate)

Dec 2000
Page 50

Exercise 5URT_1 - DAvE Configurations

� Start DAvE 2.1
� Select “Create a new project” from the Startup Dialog or click
� Select the 8-Bit microcontroller C505CA and click “Create”

(if this microcontroller is not on the list, you need to re-install it
from the DAvE 2.1 CD ROM)

� DAvE will create the project
� Save your project by selecting “File | Save” or press

– Browse to directory “c:\hot505CA_1\5URT_1\”
– Enter project name: “5URT_1”
– Click “Save”

� You will see the C505CA block diagram and the Project
Settings Window (configuration see next slide)

� To get back to the Project Settings window in case you close
it: Select “File | Project Settings”

Dec 2000
Page 51

Exercise 5URT_1 - DAvE Configurations (cont.)

� Project Settings:
– System Clock:

� External Oscillator Frequency: Set to 16 MHz (or the crystal
frequency of your KitCON-505C board)

– Close

NOTE:
By default, DAvE enables access to the CAN controller
and XRAM

Dec 2000
Page 52

Exercise 5URT_1 - DAvE Configurations (cont.)

� Configure T0 (Timer/Counter 0):
– Timer 0

� Timer Mode (M1, M0):
– 8 bit timer/counter (TH0) with divide-by-32 prescaler (TL0)

� Timer Options:
– Run Timer (TR0)

� Interrupt Control:
– Enable Timer 0 interrupt (ET0)

– Functions
� T01v_Init

– Close

NOTE:
This causes Timer 0 to act as an 13-bit timer that causes
an interrupt when it overflows

This function Initializes T0

Dec 2000
Page 53

Exercise 5URT_1 - DAvE Configurations (cont.)

� Configure 8-Bit USART
– Control:

� Global:
– Use TXD (P3.1) for serial Channel

� Mode Control (SM0, SM1)
– Mode 1: 8-bit data, 1 startbit, 1 stopbit, variable baudrate (async)

� Baudrate Clock Source
– Use the Internal Baud Rate Generator
– Divide by 2 (optional)

� Baudrate
– Required Baudrate = 9600

– Functions
� USART_vInit
� USART_vSendData

– Close

� Generate Code ()
� DAvE will show you all the files that he has generated

(File Viewer is opened automatically)

This function Initializes the USART
We will use this function to transmit data

Dec 2000
Page 54

Exercise 5URT_1 - µVision2 Configurations

� Start Keil µVision2

NOTE:
µVision2 is able to read the DAvE project settings
(contained in the .dpt file) and automatically create a
µVision2 project. µVision2 will also automatically
generate the assembly startup file!

� Create the new Project by opening the DAvE .dpt file
– Project: Open Project:

c:\hot505CA_1\5URT_1\5URT_1.dpt

Dec 2000
Page 55

Exercise 5URT_1 - µVision2 Configurations (cont.)

� Setup the µVision2 Target Options
– Project: Options for Target ‘Target 1’:
– Target:

� Use On-Chip XRAM (0xFC00-0xFFFF): Check
� Off-chip Code Memory: Eprom Start - 0x4000

Eprom Size - 0x4000
� Off-chip Xdata memory: no external RAM needed

– Debug:
� Use: Keil Monitor-51 Driver - select
� Load Application at Startup - check

– Click OK

� Use the tree to open all .c files

Demo Tools always
place code at 0x4000

Dec 2000
Page 56

Exercise 5URT_1 - Add User Code

� Edit MAIN.C:
– include endless loop in main():

// USER CODE BEGIN (Main,2)

while(1) {};

// USER CODE END

� Edit T01.C:
– transmit serial data when the Timer 0 ISR (T01_viIsrTmr0) is

executed:
// USER CODE BEGIN (T01_IsrTmr0,1)

USART_vSendData(0x55);

// USER CODE END

� Build All
– This will compile and link the project and create an object file and

hex file.

This is an
ASCII ‘U’

Dec 2000
Page 57

Exercise 5URT_1 - Run the Code

� Make sure the evaluation board is powered and connected to
COM1

� Press the Reset Button on the board
� Start the Debugger
� View Serial Window #1
� Press “Run”
� You should see many “U”s being written in the Serial window.

This is data sent by the C505CA to the PC via the USART!
� To stop the code press the RESET button on the evaluation

board (the Halt button on the debugger will not work).

NOTE: If you see strange characters in the serial window, it is
because the debugger or the USART are not set to 9600
baud. Double check the debugger options or the DAvE
settings.

Dec 2000
Page 58

Exercise 5URT_2 - Periodic Synchronous Serial
 Data Transmission - Description

� Objective: Send synchronous serial data periodically
using the USART and Timer 1

– Period: 16 Timer 1 counts
� Timer 1 in mode 2

– Reload value of 0xF0 overflow of Timer 1 in mode 0 (6 µs with a
16 MHz crystal)

– Data: Send constant data (0xAA)

– Use USART mode 0
� 8 data bits
� Fixed Baud Rate

– 1/6 external oscillator frequency
– 2.666 Mb/s (@ 16 MHz)

Dec 2000
Page 59

Exercise 5URT_2 - DAvE Configurations

� Start DAvE 2.1
� Select “Create a new project” from the Startup Dialog or click
� Select the 8-Bit microcontroller C505CA and click “Create”

(if this microcontroller is not on the list, you need to re-install it
from the DAvE 2.1 CD ROM)

� DAvE will create the project
� Save your project by selecting “File | Save” or press

– Browse to directory “c:\hot505CA_1\5URT_2\”
– Enter project name: “5URT_2”
– Click “Save”

� You will see the C505CA block diagram and the Project
Settings Window (configuration see next slide)

� To get back to the Project Settings window in case you close
it: Select “File | Project Settings”

Dec 2000
Page 60

Exercise 5URT_2 - DAvE Configurations

� Project Settings:
– System Clock:

� External Oscillator Frequency: Set to 16 MHz (or the crystal
frequency of your KitCON-505C board)

– Close

Dec 2000
Page 61

Exercise 5URT_2 - DAvE Configurations (cont.)

� Configure T1 (Timer/Counter 1):
– Timer 1

� Timer Mode (M1, M0):
– 8 bit timer/counter (TL1) with 8-bit auto-reload (TH1)

� Timer Register
– Timer auto-reload = 0xF0

� Timer Options:
– Run Timer (TR1)

� Interrupt Control:
– Enable Timer 1 interrupt (ET1)

– Functions
� T01v_Init

– Close

NOTE: This causes Timer 1 to count from 0xF0 to 0xFF
and cause an interrupt when it overflows.

Dec 2000
Page 62

Exercise 5URT_2 - DAvE Configurations (cont.)

� Configure 8-Bit USART
– Control:

� Global:
– Use TXD (P3.1) for serial Channel

� Mode Control (SM0, SM1)
– Mode 0: 8-bit Shift register, fixed baud rate (sync)

– Functions
� USART_vInit
� USART_vSendData

– Close

� Generate Code ()
� DAvE will show you all the files that he has generated

(File Viewer is opened automatically)

Dec 2000
Page 63

Exercise 5URT_2 - µVision2 Configurations

� Start Keil µVision2

NOTE:
µVision2 is able to read the DAvE project settings
(contained in the .dpt file) and automatically create a
µVision2 project. µVision2 will also automatically
generate the assembly startup file!

� Create the new Project by opening the DAvE .dpt file
– Project: Open Project:

c:\hot505CA_1\5URT_2\5URT_2.dpt

Dec 2000
Page 64

Exercise 5URT_2 - µVision2 Configurations (cont.)

� Setup the µVision2 Target Options
– Project: Options for Target ‘Target 1’:
– Target:

� Use On-Chip XRAM (0xFC00-0xFFFF): Check
� Off-chip Code Memory: Eprom Start - 0x4000

Eprom Size - 0x4000
� Off-chip Xdata memory: no external RAM needed

– Debug:
� Use: Keil Monitor-51 Driver - select
� Load Application at Startup - check

– Click OK

� Use the tree to open all .c files

Demo Tools always
place code at 0x4000

Dec 2000
Page 65

Exercise 5URT_2 - Add User Code

� Edit MAIN.C:
– include endless loop in main():

// USER CODE BEGIN (Main,2)

while(1) {};

// USER CODE END

� Edit T01.C:
– transmit serial data when the Timer 1 ISR (T01_viIsrTmr1) is

executed:
// USER CODE BEGIN (T01_IsrTmr1,1)

USART_vSendData(0xAA);

// USER CODE END

� Build All
– This will compile and link the project and create an object file and

hex file.

Dec 2000
Page 66

Exercise 5URT_2 - Run the Code

� Make sure the evaluation board is powered and connected to
COM1

� Connect the Oscilloscope to P3.1/TxD (connector X3 pin 97)
and P3.0/RxD (connector X3 pin 93)

� Press the Reset Button on the board
� Start the Debugger
� Press “Run”
� You should see signals similar to those on the next slide

� To stop the code press the RESET button on the evaluation
board (the Halt button on the debugger will not work).

Dec 2000
Page 67

Exercise 5URT_2 - Screenshot

µs-2 -1 0 1 2 3 4 5 6 7

V

-10
-8
-6
-4
-2
0
2
4
6
8

10
V

-4
-2
0
2
4
6
8
10

P3.1 / TxD -- Shift Clock (Top)
P3.0 / RxD -- Data (Bottom)

Example 5URT_2

Dec 2000
Page 68

Timer 2 with 4 Channel Capture/Compare Unit

� 16 bit Timer/Counter
– In Timer mode the timer increments at fosc/6 or fosc/12
– In Counter mode the timer increments every falling edge

of P1.7/T2
– In Gated Timer mode the timer increments at fosc/6 or

fosc/12 when P1.7/T2 is high (good for pulse width
measurement)

� 4 Channel Capture/Compare Module
– 4 16-bit registers can hold capture or compare values

� In capture modes, the registers will latch the timer value in
response to external pin transitions (or software)

� In compare modes, pin transitions occur when the timer
reaches the register value (PWM generation)

� One of the channels can be used as a 16-bit reload value for
the timer

Dec 2000
Page 69

Timer 2 - Functional Overview

CAP/COM/Reload
(CRCL/CRCH)

CAP/COMReg
 (CCL3/CCH3)

CAP/COM Reg
(CCL2/CCH2)

CAP/COM Reg
(CCL1/CCH2)

I/O Pin
Control

CC0CC0
CC1CC1
CC2CC2
CC3CC3

16-bit General Purpose
Timer/Counter Unit

ComparatorComparator Comparator Comparator∇ ∇ ∇ ∇

Dec 2000
Page 70

Timer 2 - Functional Diagram
16 bit Timer Unit

T2
P1.7 &

T2EX
P1.5

CRCL CRCH

∆
3 to 1
Mux

T2R0,

T2R1

fosc ÷6

÷12

T2PS

T2I0 T2I1

Timer 2 (16-bit)
TL2 TH2

Interrupt
Request

EXF2

>1

TF2
4 to 1
Mux

Dec 2000
Page 71

Timer 2 - Functional Diagram
Capture Modes

� Mode 0
– Timer Contents Captured on positive edge of CCx Pin

(CC0 can capture on positive or negative edge)

� Mode 1
– Timer Contents can be captured by a write (dummy value)

to the low byte of the capture/compare register -- Mode 1
Interrupt
RequestCC1

CC2
CC3

CCLx CCHx

 ∇

Timer 2
TL2 TH2

Write to
Low Byte

COCALx COCAHx

CC0

I3FR

CRCL CRCH
ORChannel 0

Only

IEXx

Dec 2000
Page 72

Timer 2 - Functional Diagram
Compare Modes

� CCx pin is set when timer reaches compare value. Pin
is reset when timer overflows -- Mode 0

� CCx pin is either set or reset when timer reaches
compare value. Pin is reset when timer overflows --
Mode 1

16-bit Compare

CCLx CCHx

CCx

Overflow Channel 0
Only

I3FR

CRCL CRCH

Mode 0

T2CM
Mode 1

Only

IEXx

Interrupt
Request

OR Output
Pin 1.x/CCx

Compare Value

Timer Value

TL2 TH2

S Q
R
Flip-Flop

P1.x
shadow

∇

Dec 2000
Page 73

Exercise 5T2_1 - PWM Generation - Description

� Use the Timer 2 Capture/Compare module to generate
PWM signals

– Frequency:
� 10 kHz

– Duty Cycle:
� 75% on P1.1 / CC1 (channel 1)
� 50% on P1.2 / CC2 (channel 2)

Dec 2000
Page 74

Exercise 5T2_1 - DAvE Configurations

� Start DAvE 2.1
� Select “Create a new project” from the Startup Dialog or click
� Select the 8-Bit microcontroller C505CA and click “Create”

(if this microcontroller is not on the list, you need to re-install it
from the DAvE 2.1 CD ROM)

� DAvE will create the project
� Save your project by selecting “File | Save” or press

– Browse to directory “c:\hot505CA_1\5T2_1\”
– Enter project name: “5T2_1”
– Click “Save”

� You will see the C505CA block diagram and the Project
Settings Window (configuration see next slide)

� To get back to the Project Settings window in case you close
it: Select “File | Project Settings”

Dec 2000
Page 75

Exercise 5T2_1 - DAvE Configurations (cont.)

� Project Settings:
– System Clock:

� External Oscillator Frequency: Set to 16 MHz (or the crystal
frequency of your KitCON-505C board)

– Close

Dec 2000
Page 76

Exercise 5T2_1 - DAvE Configurations (cont.)

� Configure Timer 2:
– Timer 2:

� Mode (T2I1, T2I0):
– Timer Function

� Reload Mode (T2R1, T2R0):
– Mode 0: auto-reload upon timer overflow

� Reload Value (CRCH, CRCL):
– Register Value = 0xFEF5 (at 16 MHz for 10kHz frequency)

– Channel 0/1:
� Channel 1 Mode:

– Compare enabled

� Channel 1 Compare:
– Register value (CCH1, CCL1) = 0xFF37 (at 16 MHz for 75%

duty cycle)

Dec 2000
Page 77

Exercise 5T2_1 - DAvE Configurations (cont.)

– Channel 2/3:
� Channel 2 Mode:

– Compare enabled

� Channel 2 Compare:
– Register value (CCH2, CCL2) = 0xFF99 (at 8 MHz for 50% duty

cycle

– Functions:
� T2_vInit

– Close

� Generate Code ()
� DAvE will show you all the files that he has generated

(File Viewer is opened automatically)

Dec 2000
Page 78

Exercise 5T2_1 - µVision2 Configurations

� Start Keil µVision2

NOTE:
µVision2 is able to read the DAvE project settings
(contained in the .dpt file) and automatically create a
µVision2 project. µVision2 will also automatically
generate the assembly startup file!

� Create the new Project by opening the DAvE .dpt file
– Project: Open Project:

c:\hot505CA_1\5T2_1\5T2_1.dpt

Dec 2000
Page 79

Exercise 5T2_1 - µVision2 Configurations (cont.)

� Setup the µVision2 Target Options
– Project: Options for Target ‘Target 1’:
– Target:

� Use On-Chip XRAM (0xFC00-0xFFFF): Check
� Off-chip Code Memory: Eprom Start - 0x4000

Eprom Size - 0x4000
� Off-chip Xdata memory: no external RAM needed

– Debug:
� Use: Keil Monitor-51 Driver - select
� Load Application at Startup - check

– Click OK

� Use the tree to open all .c files

Demo Tools always
place code at 0x4000

Dec 2000
Page 80

Exercise 5T2_1 - Add User Code

� Edit MAIN.C:
– include endless loop in main():

// USER CODE BEGIN (Main,2)

while(1) {};

// USER CODE END

� Build All
– This will compile and link the project and create an object

file and hex file.

Dec 2000
Page 81

Exercise 5T2_1 - Run the Code

� Make sure the evaluation board is powered and connected to
COM1

� Connect the Oscilloscope to P1.1/CC1 (connector X3 pin 89)
and P1.1/CC2 (connector X3 pin 86)

� Press the Reset Button on the board
� Start the Debugger
� Press “Run”
� You should see signals similar to those on the next slide

� To stop the code press the RESET button on the evaluation
board (the Halt button on the debugger will not work).

Dec 2000
Page 82

Exercise 5T2_1 - Screenshot

µs0 20 40 60 80 100 120 140 160 180 200

V

-10

-8

-6

-4

-2

0

2

4

6

8

10
V

-2

0

2

4

6

8

10

P1.1 / CC1 -- 75% Duty Cycle (Top)
P1.2 / CC2 -- 50 % Duty Cycle (Bottom)

Example 5T2_1

Dec 2000
Page 83

Exercise 5T2_2 - Signal Generation & Detection
with Timer 2 - Description

� Objective
– Generate a 50% duty cycle PWM signal using T2 channel

1 (Frequency: 1 kHz)
– Use the channel 1 PWM signal (rising edge) to trigger a

T2 capture event on channel 2 and cause an interrupt.
� Timer 2 contents will be written automatically to channel 2

Capture/Compare register (CCH2 and CCL2)
� Use the capture ISR to toggle pin P1.4

� KitCON-505C Configurations:
– Connect pin P1.1/CC1 (connector X3 pin 89)

with pin P1.2/CC2 (connector X3 pin 86):

P1.1 / CC1
Signal Output

(X3 pin 89)

P1.2 / CC2
Signal Detection

(X3 pin 86)

Dec 2000
Page 84

Exercise 5T2_2 - DAvE Configurations

� Start DAvE 2.1
� Select “Create a new project” from the Startup Dialog or click
� Select the 8-Bit microcontroller C505CA and click “Create”

(if this microcontroller is not on the list, you need to re-install it
from the DAvE 2.1 CD ROM)

� DAvE will create the project
� Save your project by selecting “File | Save” or press

– Browse to directory “c:\hot505CA_1\5T2_2\”
– Enter project name: “5T2_2”
– Click “Save”

� You will see the C505CA block diagram and the Project
Settings Window (configuration see next slide)

� To get back to the Project Settings window in case you close
it: Select “File | Project Settings”

Dec 2000
Page 85

Exercise 5T2_2 - DAvE Configurations (cont.)

� Project Settings:
– System Clock:

� External Oscillator Frequency: Set to 16 MHz (or the crystal
frequency of your KitCON-505C board)

– Close

Dec 2000
Page 86

Exercise 5T2_2 - DAvE Configurations (cont.)

� Configure Timer 2:
– Timer 2:

� Mode (T2I1, T2I0):
– Timer Function

� Reload Mode (T2R1, T2R0):
– Mode 0: auto-reload upon timer overflow

� Reload Value (CRCH, CRCL):
– Register Value = 0xF596 (at 16 MHz for 1kHz frequency)

– Channel 0/1:
� Channel 1 Mode:

– Compare enabled

� Channel 1 Compare:
– Register value (CCH1, CCL1) = 0xFACB (at 16 MHz for 50%

duty cycle)

Dec 2000
Page 87

Exercise 5T2_2 - DAvE Configurations (cont.)

– Channel 2/3:
� Channel 2 Mode:

– Capture on rising edge at pin P1.2 / CC2

� Channel 2 Interrupt:
– Enable CC2 interrupt

– Functions:
� T2_vInit

– Close

� Generate Code ()

� DAvE will show you all the files that he has generated
(File Viewer is opened automatically)

Dec 2000
Page 88

Exercise 5T2_2 - µVision Configurations

� Start Keil µVision2

NOTE:
µVision2 is able to read the DAvE project settings
(contained in the .dpt file) and automatically create a
µVision2 project. µVision2 will also automatically
generate the assembly startup file!

� Create the new Project by opening the DAvE .dpt file
– Project: Open Project:

c:\hot505CA_1\5T2_2\5T2_2.dpt

Dec 2000
Page 89

Exercise 5T2_2 - µVision Configurations

� Setup the µVision2 Target Options
– Project: Options for Target ‘Target 1’:
– Target:

� Use On-Chip XRAM (0xFC00-0xFFFF): Check
� Off-chip Code Memory: Eprom Start - 0x4000

Eprom Size - 0x4000
� Off-chip Xdata memory: no external RAM needed

– Debug:
� Use: Keil Monitor-51 Driver - select
� Load Application at Startup - check

– Click OK

� Use the tree to open all .c files

Demo Tools always
place code at 0x4000

Dec 2000
Page 90

Exercise 5T2_2 - Add User Code

� Edit MAIN.C:
– include endless loop in main():

// USER CODE BEGIN (Main,2)

while(1) {};

// USER CODE END

� Edit T2.C:
– define P1.4 as an SFR bit

// USER CODE BEGIN (T2_General,1)

sbit P1_4 = P1^4;

// USER CODE END

Dec 2000
Page 91

Exercise 5T2_2 - Add User Code (cont.)

– toggle pin P1.4 in the channel 2 capture ISR:
// USER CODE BEGIN (T2_IsrEx5,1)

P1_4 = !P1_4;

// USER CODE END

� Build All
– This will compile and link the project and create an object

file and hex file.

Dec 2000
Page 92

Exercise 5T2_2 - Run the Code

� Make sure the evaluation board is powered and connected to
COM1

� Connect the Oscilloscope to P1.1/CC1 (connector X3 pin 89)
and P1.4 (connector X3 pin 87)

� Press the Reset Button on the board
� Start the Debugger
� Press “Run”
� You should see signals similar to those on the next slide

� To stop the code press the RESET button on the evaluation
board (the Halt button on the debugger will not work).

Dec 2000
Page 93

Exercise 5T2_2 - Screenshot

ms

V

-10

-8

-6

-4

-2

0

2

4

6

8

10
V

-2

0

2

4

6

8

10

P1.1 / CC1 -- 50% Duty Cycle (Top)
P1.4 -- (Bottom)
Example 5T2_2

Rising Edges

ISR toggles pin

Dec 2000
Page 94

Analog-to-Digital Converter

� 8 channel multiplexed input
� Programmable conversion time
� 10 bit resolution
� 6 µsec minimum conversion time
� Internal Capture and Hold circuit
� Single or Continuous conversion modes
� Busy Flag
� End of Conversion interrupt

Dec 2000
Page 95

Analog-to-Digital Converter -
Functional Diagram

Start of Conversion (dummy byte)

ADCL1 ADCL0

ADCON1

Conversion Clock

(2 MHz max.)
Clock Prescaler

÷32, 16, 8, 4

ADCON0
BSY

ADCON0 & ADCON1

Port 1

8 to 1
Mux

MX2 MX1 MX0

Sample
&

Hold

10-Bit
Analog

To
Digital

Converter

ADCON0

Single / Continuous Mode

ADM

IADC
IRCON

(Conversion Complete Interrupt)

 ADDATH

ADDATL

VAREF VAGND

fOSC

Dec 2000
Page 96

Exercise 5ADC_1 - Control the Pulse Width of a
PWM signal with an ADC Value - Description

� Objective:
– Control the Pulse Width of Timer 2 channel 1 from approximately

0% to 100% with an ADC Value from the ADC channel 0.
� ADC will be placed in “Continuous Conversion Mode”
� ADC ISR will update the PWM duty cycle

� KitCON-505C Configuration:
– Connect VAREF and VAGND to VCC and GND (respectively)

� connect X3 pin 1 to X3 pin 61
� connect X3 pin 3 to X3 pin 62

– Connect a potentiometer to A/D channel 0 (pin P1.0 - connector
X3 pin 69)

Vcc
(e.g. X3 pin 1
or X3 pin 2)

GND
(e.g. X3 pin 3
or X3 pin 4)

A/D input channel 0
P1.0 / AN0 (X3 pin 69 or 85)

Dec 2000
Page 97

Exercise 5ADC_1 - DAvE Configurations

� Start DAvE 2.1
� Select “Create a new project” from the Startup Dialog or click
� Select the 8-Bit microcontroller C505CA and click “Create”

(if this microcontroller is not on the list, you need to re-install it
from the DAvE 2.1 CD ROM)

� DAvE will create the project
� Save your project by selecting “File | Save” or press

– Browse to directory “c:\hot505CA_1\5ADC_1\”
– Enter project name: “5ADC_1”
– Click “Save”

� You will see the C505CA block diagram and the Project
Settings Window (configuration see next slide)

� To get back to the Project Settings window in case you close
it: Select “File | Project Settings”

Dec 2000
Page 98

Exercise 5ADC_1 - DAvE Configurations (cont.)

� Project Settings:
– System Clock:

� External Oscillator Frequency: Set to 16 MHz (or the crystal
frequency of your KitCON-505C board)

– Close

Dec 2000
Page 99

Exercise 5ADC_1 - DAvE Configurations(cont.)

� Configure Timer 2:
– Timer 2:

� Mode (T2I1, T2I0):
– Timer Function

� Reload Mode (T2R1, T2R0):
– Mode 0: auto-reload upon timer overflow

� Reload Value (CRCH, CRCL):
– Register Value = 0xFF00 (8 bit resolution to match A/D)

– Channel 0/1:
� Channel 1 Mode:

– Compare enabled

– Functions:
� T2_vInit
� T2_vSetMatch

– Close

Dec 2000
Page 100

Exercise 5ADC_1 - DAvE Configurations (cont.)

� Configure 10-bit ADC:
– Control:

� Input Selection:
– Use P1.0 for ADC channel 0

� Conversion Options:
– Continuous conversion (ADM)

� Interrupt Control:
– Enable A/D interrupt (EADC)

– Functions:
� ADC_vInit
� ADC_vStart
� ADC_ubRead8BitConv

– Close

� Generate Code ()
� DAvE will show you all the files that he has generated

(File Viewer is opened automatically)

Dec 2000
Page 101

Exercise 5ADC_1 - µVision Configurations

� Start Keil µVision2

NOTE:
µVision2 is able to read the DAvE project settings
(contained in the .dpt file) and automatically create a
µVision2 project. µVision2 will also automatically
generate the assembly startup file!

� Create the new Project by opening the DAvE .dpt file
– Project: Open Project:

c:\hot505CA_1\5ADC_1\5ADC_1.dpt

Dec 2000
Page 102

Exercise 5ADC_1 - µVision Configurations (cont.)

� Setup the µVision2 Target Options
– Project: Options for Target ‘Target 1’:
– Target:

� Use On-Chip XRAM (0xFC00-0xFFFF): Check
� Off-chip Code Memory: Eprom Start - 0x4000

Eprom Size - 0x4000
� Off-chip Xdata memory: no external RAM needed

– Debug:
� Use: Keil Monitor-51 Driver - select
� Load Application at Startup - check

– Click OK

� Use the tree to open all .c files

Demo Tools always
place code at 0x4000

Dec 2000
Page 103

Exercise 5ADC_1 - Add User Code

� Edit MAIN.C:
– start A/D converter and include endless loop in main():

// USER CODE BEGIN (Main,2)

ADC_vStart(CHANNEL_0, ADC_MODE_CONT);

while(1) {};

// USER CODE END

Dec 2000
Page 104

Exercise 5ADC_1 - Add User Code (cont.)

� Edit ADC.C:
– Move A/D result to the Capture/Compare register

// USER CODE BEGIN (ADC_Isr,0)

T2_vSetMatch(1, 0xFF00 |
ADC_ubRead8BitConv());

// USER CODE END

� Build All
– This will compile and link the project and create an object

file and hex file.

Dec 2000
Page 105

Exercise 5ADC_1 - Run the Code

� Make sure the evaluation board is powered and connected to
COM1

� Connect the Oscilloscope to P1.1/CC1 (connector X3 pin 89)
and the potentiometer to P1.0 (connector X3 pin 69 or 85)

� Press the Reset Button on the board
� Start the Debugger
� Press “Run”
� As you adjust the potentiometer, you should see the duty

cycle of the PWM on P1.0 change.

� To stop the code press the RESET button on the evaluation
board (the Halt button on the debugger will not work).

Dec 2000
Page 106

Infineon, The CAN Reference!

Dec 2000
Page 107

User Benefits

� CAN is low cost
– Serial bus with two wires: good price/performance ratio
– Low cost protocol devices available driven by high volume

production in the automotive and industrial markets
– About 15.000.000 CAN nodes in use so far

� CAN is reliable
– Sophisticated error detection and error handling

mechanisms results in high reliability transmission
– Example: 500 kbit/s, 25% bus load, 2000 hours per year:

One undetected error every 1000 years
– Erroneous messages are detected and repeated
– Every bus node is informed about an error
– High immunity to Electromagnetic Interference

Dec 2000
Page 108

User Benefits (cont.)

� CAN means real-time
– Short message length (0 to 8 data bytes / message)
– Low latency between transmission request and actual

start of transmission
– Inherent Arbitration on Message Priority (AMP)
– Multi Master using CSMA/CD + AMP method

� CAN is flexible
– CAN Nodes can be easily connected / disconnected

(i.e. plug & play)
– Number of nodes not limited by the protocol

� CAN is fast
– maximum data rate is 1 MBit/s @ 40m bus length

(still about 40 kBit/s @ 1000m bus length)

Dec 2000
Page 109

User Benefits (cont.)

� CAN allows Multi-Master Operation
– Each CAN node is able to access the bus
– Bus communication is not disturbed by faulty nodes
– Faulty nodes self swith-off from bus communication

� CAN means Broadcast Capability
– Messages can be sent to single/multiple nodes
– All nodes simultaneously receive common data

� CAN is standardized
– ISO-DIS 11898 (high speed applications)
– ISO-DIS 11519-2 (low speed applications)

Dec 2000
Page 110

Higher Layer Protocols

� CAN Application Layer (CAL)
– Layer-7-standard defined by CiA (CAN in Automation)
– Network management service provides initialization,

surveillance and configuration of nodes in a standardized
way

– Takes care of all aspects for the realization of open
communication via CAN (makes sure manufacturer-
specific systems work together)

– Available implementations of CAL make it easy for the
user to define sophisticated standardized Controller Area
Networks

Dec 2000
Page 111

Higher Layer Protocols (cont.)

� CANopen (CiA DS-301)
– Application profile based on CAL
– While CAL determines the way of communicating, an

Application Profile determines the meaning of specific
messages for the respective application

– Target: device interchangeability for certain applications

� Further higher level protocols / standards:
– Automotive Sector: VOLCANO, OSEK (in development)
– Industrial Automation: DeviceNet (ODVA),

SDS (Honeywell)

Dec 2000
Page 112

Application Examples

� CAN in motor vehicles (cars, trucks, buses)
– Enables communication between ECUs like engine

management system, anti-skid braking, gear control,
active suspension ... (power train)

– Used to control units like dashboard, lighting, air
conditioning, windows, central locking, airbag, seat belts
etc. (body control)

� CAN in utility vehicles
– e.g. construction vehicles, forklifts, tractors etc.
– CAN used for power train and hydraulic control

Dec 2000
Page 113

Application Examples (cont.)

� CAN in trains
– High need of data exchange between the different

electronic subsystem control units
– Mainly data about acceleration, braking, door control, error

messages etc. but also for diagnosis

� CAN in industrial automation
– Excellent way of connecting all kinds of automation

equipment (control units, sensors and actuators)
– Used for initialization, program and parameter up-

/download, exchange of rated values / actual values,
diagnosis etc.

– Machine control (printing machines, paper- and textile
machines etc.): Connection of the different intelligent
subsystems

– Transport systems

Dec 2000
Page 114

Application Examples (cont.)

� CAN in medical equipment
– Computer tomographs, X-ray machines, dentist chairs, wheel

chairs

� CAN in building automation
– Heating, air conditioning, lighting, surveillance etc.
– Elevator and escalator control

� CAN in household appliances
– Dishwashers, washing machines, even coffee machines...

� CAN in office automation
– photo copier, interface to document handler, paper feeding

systems, sorter
– communicates status, allows in field connection or "hot swapping"
– DocuText Systems, i.e. automatic print, sort and bind on demand

Dec 2000
Page 115

Some things worth knowing about CAN

� Developed in the mid-eighties by BOSCH
� Asynchronous serial bus with linear bus structure and

equal nodes (Multi Master bus)
� CAN does not address nodes (address information is

inside the messages combined with message priority)
� Two bus states: dominant and recessive
� Bus logic according to "Wired-AND" mechanism:

dominant bits (Zeros) override recessive bits (Ones)
� Bus Access via CSMA/CD with NDA (Carrier Sense

Multiple Access/ Collision Detection with Non-
Destructive Arbitration)

Dec 2000
Page 116

Some things worth knowing about CAN (cont.)

NODE A

NODE B

recessive

dominant
recessive

dominant
bus idle

CAN BUS

recessive

dominant

Node B sends out recessive
but reads back dominant level

Node B loses arbitration
and switches to receive

Dec 2000
Page 117

Typical CAN node structure

CAN_H

CAN_L

e.g.
SAK82C900

 CAN-
 Transceiver

 CAN-Bus

 CAN-Controller

 Host-Controller

Application

e.g.
80C166

e.g.
ABS

e.g.
C167CR

or
C5x5Cx

e.g.
EMS

Node A Node B

(more nodes)

UDiff

CAN

Dec 2000
Page 118

CAN Data Frames

� There are mainly two ways of communicating:
– One node is 'talking', all other nodes 'listen'
– Node A is asking Node B for something and gets the

answer.

� To 'talk', CAN nodes use Data Frames.
– A Data Frame consists of an Identifier, the data to be

transmittedand a CRC-Checksum.

Identifier CRC-FieldData Field (0..8 Bytes)

Dec 2000
Page 119

CAN Data Frames (cont.)

– The identifier specifies the contents of the message
('engine speed', 'oil temperature', etc.) and the message
priority

– The Data Field contains the corresponding value
('6000 rpm', '110°C', etc.)

– The Cyclic Redundancy Check is used to detect
transmission errors.

– All nodes receive the Data Frame. Those who do not need
the information, just don't store it.

Dec 2000
Page 120

CAN Remote Frames

� To 'ask' for information, CAN nodes use Remote
Frames.

– A Remote Frame consists of the Identifier and the CRC-
Checksum.
It contains no data.

– The identifier contains the information that is requested
('engine speed', 'oil temperature', etc.) and the message
priority.

– The node that is supposed to provide the requested
information
(e.g. the sensor for the oil temperature) does so by
sending the corresponding Data Frame (same identifier,
the Data Field contains the desired information).

Identifier CRC-Field

Dec 2000
Page 121

CAN Remote Frame Scenario

Data Frame; Identifier 'oil_tmp';
contains desired information

~~~~~
~~~~~

Remote Frame; Identifier 'oil_tmp'Node A

Node B

(oil temp.-
sensor)

How hot is the oil ?

115°C115 °C !

Dec 2000
Page 122

Standard CAN / Extended CAN

� Most CAN nodes talk in the 'language' that most other
CAN nodes understand: They use Standard Data or
Remote Frames.

– A Standard Frame contains an identifier which is 11 bits
long.

– With this 11 bits, 211 (=2048) different messages can be
addressed.

– CAN nodes using Standard-CAN-Frames use the CAN
Specification Version 2.0A.

� Some CAN nodes talk with a special 'accent':
They use Extended Data or Remote Frames.

– An Extended Frame contains an identifier which is 29 bits
long.

Dec 2000
Page 123

Standard CAN / Extended CAN (cont.)

– Over 536 million (229) different messages can be
addressed.

– CAN nodes using Extended-CAN-Frames use the CAN
Specification Version 2.0B (active).

� Some Standard-CAN nodes don't understand this
'accent', but they tolerate it and just don't care.

– If an Extended Frame is 'on the air', these CAN nodes
cannot store the data, but they as well do not produce
errors.

– These CAN nodes use CAN Version 2.0A, but are also
known as Version 2.0B passive.

– They can be used in a Controller Area Network where
Extended Frames are used.

Dec 2000
Page 124

Standard CAN / Extended CAN (cont.)

� Some Standard-CAN nodes don't understand and also
don't tolerate this 'accent'.

– If an Extended Frame is 'on the air', these CAN nodes
produce errors.

– These CAN nodes use only CAN Version 2.0A.
– They can not be used in a Controller Area Network where

Extended Frames are used.

� Infineon 8 bit parts: C505CA, C515C: V2.0B active
� Infineon 16 bit parts: C167CR, C164CI, C167CS,

C161CS: V2.0B active

Dec 2000
Page 125

Basic CAN / Full CAN

� In some CAN controllers, only the basic CAN functions are
implemented. They are called Basic-CAN controllers.

– Mostly there's only one transmit buffer and one or two receive
buffers for transmission and reception of the Data- / Remote
Frames.

– Each incoming message is stored. The host CPU has to decide
whether the message data is needed or not.

– Therefore these controllers should only be used in CANs with
very low baudrates and/or very few messages because of the
high CPU load. Advantage: They use the least possible silicon
area.

Received
Messages

Receive Buffer

CAN Bus

Host CPU

Transmit Buffer

CPU load

low high

Basic-CAN Controller

Messages
to be sent

�

Dec 2000
Page 126

Basic CAN / Full CAN (cont.)

� In the other CAN controllers, also message management and
acceptance filtering are implemented. They are called Full-
CAN controllers.

– There are several Message Objects, each with its own identifier.
– Only if a message for one of these preprogrammed identifier is

received, it is stored and the CPU is interrupted.
– In this way, the CPU load is low.

� All Infineon CAN-Controllers are Full-CAN controllers.
But they also provide Basic-CAN functionality.

Full-CAN Controller

Message Object 2
CAN Bus

Host CPU

Message Object n CPU load

low high

Message Object 1

.

.

Accep-
tance

Filtering

Message
Manage-

ment

�

Dec 2000
Page 127

Features of the CAN Module on the C505CA

� Functionality corresponds to
AN 82527

� Complies with CAN spec
V2.0B active
(Standard- and Extended-CAN)

� Maximum CAN Transfer Rate
(1 MBit/s)

� Full CAN Device
– 15 Message Objects with their

own identifier and their own
status and control bits

– Each Message Object can be
defined as Transmit or Receive
Object

Dec 2000
Page 128

Features of the CAN Module on the C505CA
(cont.)

� Programmable Mask Registers for Acceptance Filtering
– Global Mask for incoming Messages (Full-CAN-Objects)
– Additional Mask for Message Object 15

(Basic-CAN-Feature)

� Basic CAN Feature (Message Object 15)
– Equipped with two Receive Buffers
– Own Mask Register for Acceptance Filtering

� Connection to the Host CPU (C500-Core)
– Module access via SFRs in chip XRAM
– Interrupt connection to the CPU; Flexible interrupt event

control

� To connect the application to CAN only a CAN
transceiver is needed

Dec 2000
Page 129

Connecting the C505CA to CAN

CAN-Bus
Transceiver

Receive

Transmit
CAN_H

CAN_L

P4.5

P4.6

CAN_L

E.g. P1.0

P0.0

P3.7

C505CA

CAN_H
CAN_RxD

CAN_TxD

R(opt)
(Standby)

Vref

n.c.

Connection
to the

Application

Dec 2000
Page 130

Exercise 5CAN_1 - Transmitting a Standard
CAN Message with the CAN Module

� Objective:
– Generate a Standard CAN (11-bit-Identifier) Message with the

on-chip CAN Module*
– Use maximum bus speed of 1 Mbaud
– Use Message Object 5
– Use Identifier 0x123
– Use 8 Data Bytes containing the data 0x00, 0x11, …, 0x77.

� * Hints:
– As long as no receiving node is connected to the KitCON-505C,

the C505CA will not receive an acknowledge for its transmission
and therefore will keep on trying to transmit the CAN message
“forever”.

– Connect another Starter Kit with CAN Capability or a CAN
Analyzer to the CAN bus to generate real CAN data transfers.

Dec 2000
Page 131

Exercise 5CAN_1 - DAvE Configurations

� Start DAvE 2.1
� Select “Create a new project” from the Startup Dialog or click
� Select the microcontroller C505CA and click “Create”

(if this microcontroller is not on the list, you need to re-install it
from the DAvE 2.1 CD ROM*)

� DAvE will create the project
� Save your project by selecting “File | Save” or press

– Browse to directory “c:\hot505CA_1\5CAN_1\”
– Enter project name: “5CAN_1”
– Click “Save”

� You will see the C505CA block diagram and the Project
Settings Window (configuration see next slide)

� To get back to the Project Settings window in case you close
it: Select “File | Project Settings”

Dec 2000
Page 132

Exercise 5CAN_1 - DAvE Configurations (cont.)

� Project Settings:
– System Clock:

� External Oscillator Frequency: Set to 16 MHz (or the crystal
frequency of your KitCON-505C board)

� CAN Baudrate
– Disable prescaler (f [CAN] = f [OSC] / 2)

Check this box only if the external oscillator frequency is less
than 16 MHz

– Close

Dec 2000
Page 133

Exercise 5CAN_1 - DAvE Configurations (cont.)

� Configure CAN Module:
– Baudrate:

� Bit Timing (in time quanta)
– Time Segment (TSeg1) before sample point [tq]: 4
– Time Segment (TSeg2) after sample point [tq]: 3

� Baudrate: Enter desired Baudrate: 1000 Kbaud

– Objects:
� Configure Object 5:

– Enable Control: Enable Message Object (MSGVAL)
– Identifier Selection: Standard 11 bit
– Message Direction: Transmit data frames, receive and answer remote

frames
– Data Length Code: Select 8 Data Bytes
– Data fields: Enter Data Bytes (0x00, 0x11, …, 0x77)
– Arbitration Register: Enter Identifier 11-bit: 0x123
– Save & close

– Functions: Include functions CAN_vInit and CAN_vTransmit
– Close

Dec 2000
Page 134

Exercise 5CAN_1 - DAvE Configurations (cont.)

� Generate Code ()

� DAvE will show you all the files that he has generated
(File Viewer is opened automatically)

Dec 2000
Page 135

Exercise 5CAN_1 - µVision Configurations

� Start Keil µVision2

NOTE:
µVision2 is able to read the DAvE project settings
(contained in the .dpt file) and automatically create a
µVision2 project. µVision2 will also automatically
generate the assembly startup file!

� Create the new Project by opening the DAvE .dpt file
– Project: Open Project:

c:\hot505CA_1\5CAN_1\5CAN_1.dpt

Dec 2000
Page 136

Exercise 5CAN_1 - µVision Configurations (cont.)

� Setup the µVision2 Target Options
– Project: Options for Target ‘Target 1’:
– Target:

� Use On-Chip XRAM (0xFC00-0xFFFF): Check
� Off-chip Code Memory: Eprom Start - 0x4000

Eprom Size - 0x4000
� Off-chip Xdata memory: no external RAM needed

– Debug:
� Use: Keil Monitor-51 Driver - select
� Load Application at Startup - check

– Click OK

� Use the tree to open all .c files

Demo Tools always
place code at 0x4000

Dec 2000
Page 137

Exercise 5CAN_1 - Add User Code

� Edit MAIN.C:
– Transmit Message Object 5
– Include endless loop:

// USER CODE BEGIN (Main,2)
CAN_vTransmit(5);
while(1) {};

// USER CODE END

� Build all
– This will compile and link the project and create an object

file and hex file.

Dec 2000
Page 138

Exercise 5CAN_1 - Run the Code

� Make sure the evaluation board is powered and connected to
COM1

� Connect the Oscilloscope to P4.0/TXDC (connector X3 pin
56)

� Press the Reset Button on the board
� Start the Debugger
� Press “Run”
� You should see signals similar to those on the next slide

� To stop the code press the RESET button on the evaluation
board (the Halt button on the debugger will not work).

Dec 2000
Page 139

Exercise 5CAN_1 - Screenshot: CAN Message

µs
-10 -8 -6 -4 -2 0 2 4 6 8 10

V

-10

-8

-6

-4

-2

0

2

4

6

8

10

P4.0 / TXDC (CAN TRANSMIT PIN)
2 usec/div

1 bit time = 1us -> 1Mb/s

µs
0 50 100 150 200 250 300 350 400 450 500

V

-10

-8

-6

-4

-2

0

2

4

6

8

10

P4.0 / TXDC (CAN TRANSMIT PIN)
The CAN message is automatically re-transmitted because no other

node is present to receive and acknowledge the message.

Dec 2000
Page 140

Watchdog Timer

� 15-Bit timer overflow results in:
– Software reset
– Sets WDTS flag

� Programmable input clock
� High 7-bits reload register
� Timer period from 153.6µs to 314.6ms @20 MHz
� Can be reloaded with a special instruction sequence

– Set Bit WDT
– Set Bit SWDT

Dec 2000
Page 141

Watchdog Timer Block Diagram

service
WDT & SWDT

7-bit
reload zero

WDTS

Software
Reset

 15-bit Timer

high 7 bits low Byte

WDTPSEL

 CPU CLK / 2

on
overflow
(7FFCH)

 CPU CLK / 16

