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Modeling and Analysis of TinyOS Sensor Node Firmware:
A CSP Approach
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Wireless sensor networks are an increasingly popular application area for embedded systems. Individual
sensor nodes within a network are typically resource-constrained, event-driven, and require a high degree of
concurrency. This combination of requirements motivated the development of the widely used TinyOS sensor
node operating system. The TinyOS concurrency model is a lightweight nonpreemptive system designed to
suit the needs of typical sensor network applications. Although the TinyOS concurrency model is easier
to reason about than preemptive threads, it can still give rise to undesirable behavior due to unexpected
interleavings of related tasks, or unanticipated preemption by interrupt handlers. To aid TinyOS developers
in understanding the behavior of their programs we have developed a technique for using the process algebra
Communicating Sequential Processes (CSP) to model the interactions between TinyOS components, and
between an application and the TinyOS scheduling and preemption mechanisms. Analysis of the resulting
models can help TinyOS developers to discover and diagnose concurrency-related errors in their designs
that might otherwise go undetected until after the application has been widely deployed. Such analysis is
particularly valuable for the TinyOS components that are used as building blocks for a large number of
other applications, since a subtle or sporadic error in a widely deployed building block component could be
extremely costly to repair.
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1. INTRODUCTION

Wireless sensor networks are becoming an increasingly widespread application of em-
bedded systems. In the past decade they have moved from being used primarily in
research applications to deployment in a wide range of industrial and commercial con-
texts. One of the most popular sensor network operating systems for both research and
commercial use is TinyOS [Culler 2006; Levis et al. 2005]. TinyOS and the applications
that run on it are written in nesC [Gay et al. 2003], a dialect of C that adds support
for a component-based programming model. TinyOS applications are constructed as
graphs of components that interact both with each other, and with the underlying
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TinyOS scheduler and platform hardware. Ensuring that all of these interactions are
correct is an important part of developing a reliable TinyOS application.

Understanding how TinyOS application components interact with each other is com-
plicated by the necessary inclusion of concurrency within the TinyOS model of compu-
tation. Concurrency is introduced by interrupts, which can cause one component to
preempt the execution of another, and by tasks, which are a way for components to de-
fer the execution of operations that are not time-critical [Levis et al. 2003]. Although
the designers of TinyOS and nesC have taken care to provide a relatively easy-to-
understand concurrency model, the possibility of unanticipated interleavings of differ-
ent activities may still cause undesirable application behavior. For example, consider
the following simplified extract from the AlarmToTimerC component [Sharp 2008] dis-
tributed as part of TinyOS 2.x, which creates a periodic timer from a hardware counter
by using the task that signals a timer firing to also restart the hardware counter for
the next timer interval.

1: command void Timer.stop() { call Alarm.stop(); }
2:
3: task void fired() {
4: call Alarm.startAt(call Alarm.getAlarm(), m_period);
5: signal Timer.fired();
6: }
7:
8: async event void Alarm.fired() { post fired(); }

The cycle of repeated timer firings will usually stop when Timer.stop() is called,
because stopping the Alarm (line 1) disables the interrupt-driven Alarm.fired() event
that triggers the next timer interval. However, should Timer.stop() be called after the
fired() task has been posted to the task scheduler (line 8), but before that task has
been executed the timer cycle will not actually stop. Later execution of the fired() task
(lines 3–6), which does not check whether or not the timer is actually supposed to be
active, will restart the timer. This erroneous behavior occurs because of an apparently
unanticipated interleaving of the concurrent stop and restart activities that makes
use of the alarm state to track the timer state fail in some instances. In practice,
application developers are usually shielded from unexpected AlarmToTimerC behavior
by the higher-level timer virtualization framework, which does correctly handle the
interleaving of stop and restart activities. However, any developer that makes direct
use of the AlarmToTimerC component may find their application susceptible to sporadic
errors caused by periodic timers that fail to stop.

One method of helping developers understand the possible behaviors of concurrent
programs is the application of model-checking to systematically explore the state-space
of an abstract model of the program [Clarke and Wing 1996]. TinyOS applications
possess a number of features that make them well-suited to the application of model-
checking. Unlike general C programs, TinyOS applications have a component-based
structure that already provides a set of well-defined abstractions. In addition, the in-
dividual application components encapsulate state, and provide clearly defined module
interfaces that are easily translated into a modeling formalism. We have opted to use
the process algebra CSP (Communicating Sequential Processes) [Roscoe 1998] as the
formalism for building models to be checked, since its characteristics are well matched
to those of nesC and TinyOS.

— TinyOS applications are concurrent; CSP is designed to model concurrency.
— TinyOS applications are event-driven; CSP is an event-based formalism.
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— TinyOS applications are hierarchical compositions of components; CSP process mod-
els are hierarchical compositions of processes.

— TinyOS applications are composed by wiring together interfaces; CSP processes are
composed by wiring together channels.

In this article, we build on the intuitive correspondence between nesC programs and
CSP processes to develop a systematic mapping from nesC to CSP, and add models
of the TinyOS task-scheduler and preemption rules to construct CSP processes that
model TinyOS applications.

— We define a mapping from nesC programs to CSP process models that formalizes the
component interactions within a nesC program (Section 3.1). This mapping is more
accurate and comprehensive than previous efforts at process algebraic modeling of
TinyOS applications, providing a model that correctly represents the sequential na-
ture of most nesC function execution, and that includes representations of mutable
variables, argument passing, and multiple levels of interrupt priority. As part of the
mapping, we define several processes that ease the translation from nesC to CSP,
by providing a nesC-like embedded domain-specific language over the underlying
process model (Section 3.2).

— We describe a new CSP model of TinyOS task-scheduling and preemption that in-
cludes modeling of prioritized interrupts and nested atomic blocks (Section 3.3). This
model clarifies the execution semantics of TinyOS, and allows interactions between
TinyOS applications and the TinyOS concurrency mechanisms to be analyzed.

— As part of our TinyOS preemption model, we introduce a novel technique for model-
ing the relationship between multiple prioritized interrupts, based on tracking the
execution context and corresponding priority level of each event in the interrupt
handling function (Section 3.3.2). In addition to being useful for modeling TinyOS
applications this technique is applicable to the more general problem of modeling
firmware interrupt-handling, and is also potentially useful for modeling priority-
based preemptive multithreading systems,

— We present an example that demonstrates how a CSP model of a TinyOS component
can be used to expose and correct subtle concurrency-related errors in sensor-node
firmware (Section 4).

We discuss other approaches to analyzing TinyOS applications in Section 5.

2. BACKGROUND

In this section we briefly review the basic features of TinyOS and CSP.

2.1. TinyOS and nesC

TinyOS is an operating system designed to meet the needs of programming resource-
constrained network embedded systems [Levis et al. 2005]. TinyOS is not a hard real-
time operating system, but provides an event-driven reactive programming model
within a very small footprint. The TinyOS distribution provides a lightweight task-
scheduling system, and a library of components that implement services useful in net-
worked embedded systems, such as communications, timing, and sensing.

The nesC language was created to support TinyOS [Gay et al. 2003]. Reflecting
TinyOS’ component-based philosophy, nesC programs are compositions of interacting
components. There are two kinds of components: modules, which implement new
functionality, and configurations, which define connections between components. Each
nesC component has one or more interfaces, made up of commands and events (e.g.,
Figure 1). Commands request that a component perform some service, while events
signal to a component that an activity it requested has been completed, or that an
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Fig. 1. Timer interface.

Fig. 2. BlinkC module.

Fig. 3. BlinkAppC configuration.

external phenomenon such as an interrupt has occurred. A component that provides
an interface must implement each command, and may signal any of the events. A
component that uses an interface must implement handlers for each event, and may
call any of the commands (e.g., Figure 2). Configuration components connect (“wire”)
interface providers to interface users (e.g., Figure 3).

The behavior of nesC programs is largely event-driven. Hardware interrupts trigger
events, the effects of which propagate up the component graph as a cascade of further
events. Where the response to an event is not time-critical the overall responsiveness
of the application may be improved by deferring the response until the processor is
idle, allowing other events to be processed in the interim. Deferred execution is accom-
plished by posting a task that executes the deferred activities.

TinyOS provides a nonpreemptive task scheduler that queues pending tasks in first-
in/first-out order, and executes those tasks whenever the processor is not occupied re-
sponding to an interrupt. Each task is executed in a run-to-completion style, which
makes tasks atomic with respect to each other and thereby prevents data races be-
tween tasks. Execution in a task context is thus referred to as synchronous execution.
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Tasks can be preempted by interrupt-triggered asynchronous events. Commands or
events able to be executed in an interrupt context are required to be labeled as asyn-
chronous using the async keyword [Gay et al. 2005]. This allows the nesC compiler to
check for possible race conditions.

The reliability of TinyOS applications can be improved prior to deployment by
subjecting the application to simulation via TOSSIM [Levis et al. 2003], unit test-
ing [Woehrle et al. 2007], and perhaps lab testing. But uncovering concurrency-related
errors via testing and simulation is a difficult task, due to the timing sensitivity
of many concurrency errors. Furthermore, even if an error is found during testing,
pinning down the actual source of the problem can be a time-consuming process. It is
therefore worthwhile to consider other options for analyzing the concurrent behavior
of TinyOS applications.

2.2. Communicating Sequential Processes

CSP [Roscoe 1998] is a mathematical theory of concurrency and interaction, in which
concurrent systems are modeled as collections of event-transition systems (processes)
that interact by synchronizing on shared events. CSP events are abstract symbols that
represent interactions or communications. For example, a process model of an online
purchasing system might include events that represent ordering an item, confirm-
ing the order, providing payment, and shipping the ordered item. Interfaces between
processes are defined using channels that carry values of some specified type; each
occurrence of a value being passed through a channel corresponds to a single event.

Sequential processes are defined by using the prefix operator, →, to specify se-
quences of events. For example, an online purchase can be described by the process

OnlinePurchase =
order?item → confirm!item → request payment!cost(item) →

receive payment?p → ship!item → SKIP,

where ? and ! indicate channel input and output respectively, and SKIP is a primi-
tive process representing successful termination. Unfortunately, the purely sequential
online purchase process defined above will ship an item regardless of the amount of
payment received. However, the CSP process notation also provides a variety of other
operators for defining behaviors, such as:

— Conditional behavior (if p = cost(item) then . . . else . . .);
— Alternative courses of action (DisplayCart � DisplayCatalog);
— Nondeterministic behavior (Transaction � Error);
— Process sequencing (Server(x) = Login; Hello; . . .);
— Parallel execution (Servers = Server(1) ||| Server(2));
— Interaction through an interface (Customer |[ OrderEvents ]| Servers).

CSP includes a rich theory of process refinement and equivalence based on ana-
lyzing the sequences of events that processes can be observed to perform. The FDR2
model-checker [Gardiner et al. 2005] is a mature analysis tool that can be used to auto-
matically check CSP models for properties such as deadlock or livelock, and to evaluate
process models for conformance to specifications.

3. CSP MODELS OF TINYOS APPLICATIONS

Our CSP models of TinyOS applications are broken into two major parts. One part
is the mapping from nesC to CSP that allows application code to be translated into
a model in which each component in the application is represented by a CSP process,
and the overall application is defined by combining the component processes. The other
part is a model of the TinyOS runtime environment that provides boot-up, scheduling,
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Fig. 4. Structure of the CSP TinyOS model.

and preemption mechanisms, and acts as a context for the application model. Figure 4
shows the structure of our CSP model. In the remainder of this section we explain the
behavior of the processes that make up the model, and the significance of the channels
through which the processes interact.

3.1. Mapping nesC to CSP

Since we are interested in examining the component interactions within a TinyOS
application our mapping from nesC to CSP focuses on modeling the execution of nesC
commands and events. We model nesC components as CSP processes, and model the
nesC commands, events, interrupts, variable operations, and task control functions as
CSP events.

3.1.1. CSP Event Structure. The CSP events that represent nesC commands and events
are compound symbols that encode information about the command or event, the in-
terface and component with which it is associated, and the execution context (syn-
chronous or asynchronous). For example, initiation of the read() command from the
Read interface by a component SenseC in a synchronous execution context is repre-
sented by the event exec.begin.sync.SenseC.Read read.

Although it is tempting to map execution of a nesC command or event directly to
a single CSP event, as previous work on process algebraic analysis of TinyOS appli-
cations has done [Rosa and Cunha 2007], such a mapping does not accurately repre-
sent command/event execution. Commands and events in nesC are compiled down to
C functions [Levis 2006]. Execution of a command that calls another command will
not complete until the called command has completed, and control has returned to the
calling command. To capture the behavior of function calls in the CSP model we repre-
sent command/event execution as a pair of events that indicate the beginning and end
of an execution.

In general then, nesC commands and events are represented by CSP events associ-
ated with the exec channel:

channel exec : Exec.SyncType.NesC Function
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Fig. 5. Datatypes for interfaces.

where the types

datatype Exec = begin | end
datatype SyncType = sync | async.IntPriority
datatype IntPriority = prio.{0 . . MAX PRIORITY}

contain symbols that encode the execution step, the execution context, and, in asyn-
chronous contexts, the interrupt preemption level. The use of SyncType will become
clear when we introduce modeling of interrupt preemption in Section 3.3.

The NesC Function type that appears in the definition of exec is a set that is spe-
cific to the TinyOS application being modeled. It contains symbols that encode the
component and interface of each command or event, and, for those functions that take
arguments, the set of argument values the function can receive (see Figure 5). We
encode interfaces as types that combine the interface name with the name of each
function in the interface, using the format <interface-name> <function-name> (see
Figure 5). The interface of a component is the union of the individual interfaces the
component provides and uses. We prepend the component interface set with the com-
ponent name to model the component-local namespaces used in nesC [Levis 2006]. In
the case of interfaces that are renamed within the component, we incorporate the new
name into the prepended component name (see Figure 5). Finally, the NesC Function
type is the union of all component interfaces. For example, in an application containing
the components MainC, SenderC, and TimerC, the corresponding NesC Function is:

nametype NesC Function =
⋃
{MainC IF, SenderC IF, TimerC IF}.

Asynchronous execution is triggered by interrupts, which are processed by corre-
sponding interrupt handlers. We model the interrupt handlers using events with a
similar structure to those used to model regular nesC functions, although using sepa-
rate channels to allow interrupt handling to be easily distinguished from other nesC
operations. The interrupt channel is:

channel tos interrupt : Exec.IntPriority.IntHandler,

where Exec and IntPriority are as defined above, and IntHandler is a type similar in
concept to NesC Function but specifically used to represent interrupt handlers.

Synchronous execution is managed through the TinyOS task scheduler. We
model task execution much as commands, events, and interrupt handlers are modeled.
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Posting of tasks to the scheduler is modeled by the task post channel, while initiation
and completion of task execution are modeled as task exec events:

channel task post : SyncType.Task
channel task exec : Exec.Task.

Task is a datatype specific to the application being modeled. The Task datatype
consists of symbols that represent each task in the application, using the form
<component-name> <task-name>. For example, the symbol for a task sendDone() in
a module SenderC would be SenderC sendDone.

Task execution events should only be generated by the TinyOS scheduler, and thus
can only occur in synchronous execution contexts. In contrast, task post events may
occur both in synchronous and asynchronous contexts. Indeed, posting a task is the
standard way to transition from asynchronous processing to synchronous processing.
Consequently, we include SyncType information in the task post events, providing a
way to identify the execution context of a given post operation.

Within the body of a task, command, event, or interrupt handler, a program may
modify or read state variables that are shared with other functions. We model opera-
tions on variables in terms of “get” and “set” operations on those variables. Variables
intended only for use in a synchronous context are accessed through the var channel.
Variables able to be used in both synchronous and asynchronous contexts are accessed
through the async var channel, which includes information about the execution con-
text of the operation.

datatype VarOp = getv | setv
channel var : VarOp.NesC Variable
channel async var : SyncType.VarOp.NesC Variable

The type NesC Variable that appears in both the var and async var channel decla-
rations is an application-specific type that defines both variable names and variable
data types. For example, in an application with a single variable used to track the
operational state of the program, we might define NesC Variable as

datatype State = STATE IDLE | STATE PROCESSING
datatype NesC Variable = state.State.

In this example, the event async var.async.prio.3.setv.state.STATE IDLE represents
setting the value of the state variable to an idle state, with the operation being executed
from an interrupt of priority level 3.

3.1.2. Modules. We model modules as processes that provide a selection of behaviors
corresponding to the functions implemented by the module. A module model may also
contain processes representing the key state variables used by the module implemen-
tation. The function part is defined as a parallel composition of processes that repre-
sent individual command, event-handling, or task functions. The state-variables are
similarly defined as a parallel composition of processes that represent each variable.
The module model itself is then a parallel composition of the function and variable
parts, interfacing with each other through a set of channels that represent the vari-
able value assignment and retrieval. The general form of module process models is
shown in Figure 6. Several examples of this approach to modeling modules appear in
Section 4.

Although the module structure in Figure 6 appears to place all functions in a parallel
composition, the actual execution sequence of the synchronous functions is constrained
to follow a path prescribed by the TinyOS scheduler model (Section 3.3.1) and the call-
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Fig. 6. General structure of module process models.

graph of the application. In an earlier version of our nesC-to-CSP mapping [McInnes
2009] we suggested that the synchronous parts of modules should be modeled as a
single process external choice (�) over the synchronous functions. This works well for
simple modules and small state-spaces (as the examples in Section 4 show), but our
experiences with larger modules have shown that modeling the synchronous functions
using parallel composition opens new interaction possibilities by allowing modules to
safely make callbacks, and decomposes the model state-space in a way that permits
faster compilation by FDR2.

3.1.3. Commands and Events. Within a module process, we model the behavior of an
individual function f as the process

FnDef (f , Body) = exec.begin.sync.f → Body ; exec.end.sync.f → SKIP,

where Body is a process defining the actions performed by the command or event. Note
that FnDef provides a model for synchronous functions only, since its events include
the symbol sync. Because asynchronous functions can be called from both synchronous
and asynchronous contexts, we require a slightly more complex model to properly cap-
ture their behavior. The process

AsyncFnDef (f , Body) =
� s : SyncType • exec.begin.s.f → Body(s) ; exec.end.s.f → SKIP

is similar to FnDef , but keeps track of the SyncType execution context of the initiating
event, and also propagates that execution context to the Body process.

The preceding definitions model simple functions that lack arguments. This is a rea-
sonable approach for many nesC commands and events. Indeed, we prefer to use func-
tion definitions without arguments wherever possible, since doing so reduces the size
of the model state-space. However, in some situations it is useful to be able to model
argument passing. To achieve this, we incorporate the argument values as additional
components of the exec events, and assume that the Body process is defined in a way
that allows it to accept argument values.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1, Article 5, Publication date: January 2013.



5:10 A. I. McInnes

FnDefArgs(f , Body) =
exec.begin.sync.f ?arg → (Body(arg) ; exec.end.sync.f .arg → SKIP)

AsyncFnDefArgs(f , Body) =
� s : SyncType • exec.begin.s.f ?arg →

(Body(s)(arg) ; exec.end.s.f .arg → SKIP)

Thus, for example, a synchronous function MessageP.Send send that takes an argu-
ment msg could be defined as

FnDefArgs(MessageP.Send send,λmsg • <do something with msg>),

where the Body process is defined as a lambda function that accepts the argument msg
and then performs various actions.

In general, the actions performed in the Body of a function will be calls to other
functions, and variable reads or writes. We use CSP sequential composition (; ),
conditionals (if . . . then), and recursion to capture control-flow, and model function
calls with the process

FnExec(s)(f ) = exec.begin.s.f → exec.end.s.f → SKIP,

where s indicates the execution context of the call, and f may contain both a function
name and any argument values passed to the function. Synchronizing FnExec with a
corresponding FnDef process has the effect of triggering execution of the function f ,
and blocking the FnExec process until the body of the FnDef has completed. Block-
ing FnExec in this way provides the desired behavior for nested command and event
executions. For example, in the composite process

FnDef (App.Say hello, FnExec(sync)(MessageP.Send send.hello))
|[{|exec.begin.sync.MessageP, exec.end.sync.MessageP|}]|
FnDefArgs(MessageP.Send send,λmsg • <do something with msg>)

the function App.Say hello cannot complete until execution of MessageP.Send send
has completed. Similary, the synchronization on MessageP execution events ensures
that MessageP.Send send cannot begin execution until App.Say hello permits it. The
sequence of events produced by the process will therefore be as follows.

exec.begin.sync.App.Say hello
exec.begin.sync.MessageP.Send send.hello

· · ·<do something with ‘hello’> · · ·
exec.end.sync.MessageP.Send send.hello

exec.end.sync.App.Say hello

3.1.4. Tasks. The behavior of tasks is modeled similarly to the behavior of commands
and events, as a task body surrounded by beginning and end events:

task(t, Body) = task exec.begin.t → Body ; task exec.end.t → SKIP.

Unlike commands or events, tasks are triggered by the scheduler (Section 3.3). Tasks
are added to the scheduler by posting, an action modeled by the processes

post(t) = task post.sync.t → SKIP
async post(s)(t) = task post.s.t → SKIP.

The post process can only be used in synchronous contexts, while async post tracks the
execution context and can thus be used in asynchronous contexts.
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3.1.5. Variables. We model each state variable as a process that can report its current
value (getv) or accept a new value (setv). However, we make a distinction between those
variables intended for use only in a synchronous context, and those that can be used in
asynchronous contexts. This allows us both to track the execution context of variable
accesses, and to flag potential race conditions when variables are accessed from the
wrong execution context. The process definition for synchronous-only variables is

Var(name, val) =
(var.getv.name!val → Var(name, val))
� (var.setv.name?val′ → Var(name, val′))
� (async var? : SyncType? : VarOp!name? → tos datarace → STOP),

while that for asynchronous variables is

AsyncVar(name, val) =
(async var?s : SyncType!getv!name!val → AsyncVar(name, val))
� (async var?s : SyncType!setv!name?val′ → AsyncVar(name, val′))
� (var? : VarOp!name? → tos datarace → STOP).

3.1.6. Configurations. We model the inter-component connections defined by a config-
uration as a parallel composition of component processes synchronizing on events in
their connected interfaces. However, because exec events are structured to give each
module its own namespace (Section 3.1.1), modules do not by themselves have any
events in common. We therefore use the CSP renaming operator to map events associ-
ated with one module to corresponding events in the other module.

The wiring of components A and B to each other is modeled by the process

wiring(A, B, Connections) =
let

SharedIF = {exec.e.s.IFa.f | (IFa, , Fns) ∈ Connections,
e ∈ Exec, f ∈ Fns, s ∈ SyncType}

within
(A |[ SharedIF]|

(B[[exec.e.s.IFb.f ← exec.e.s.IFa.f | (IFa, IFb, Fns) ∈ Connections,
e ∈ Exec, f ∈ Fns, s ∈ SyncType]])),

where Connections is a set of 3-tuples specifying the interfaces to be connected. The
wiring process renames exec events for IFb.f to appear as the corresponding IFa.f
events, and synchronizes A and B on the shared IFa.f events.

Multiple-wiring of interfaces results in fan-in and fan-out of calls to and from the
multiply connected component. Fan-in is well-modeled by using a multiple-renaming
scheme. Modeling fan-out is slightly more complex, since it is necessary to enforce
serial execution of the fan-out functions. Our approach to modeling fan-out is to insert
an intermediate process between the caller and the functions called in the fan-out. This
approach resembles the nesC compiler’s use of intermediate functions to implement
fan-out [Gay et al. 2005].

FanOut(comp, Fns, OutComps) =
let

AwaitOut = exec.begin?s : SyncType!comp?f : Fns → ExecOut(s, f , OutComps)
ExecOut(s, f , {}) = exec.end.s.comp.f → AwaitOut
ExecOut(s, f , Comps) =
� c : Comps • exec.begin.s.c.f → exec.end.s.c.f → ExecOut(s, f , Comps \ {c})

within
AwaitOut
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Fig. 7. NesC statements and corresponding CSP expressions.

3.2. Easing the Translation

Although the mapping described above allows nesC programs to be in modeled in CSP,
the resulting model can be complex to construct, and may bear little resemblance to
the original nesC program. However, we can overlay the basic process model with what
amounts to an embedded domain-specific language that more closely matches nesC
syntax, simplifying the translation to CSP.

For synchronous functions, we use the following processes.

command(f , Body) = FnDef (f , Body)
command args(f , Body) = FnDefArgs(f , Body)
event(f , Body) = FnDef (f , Body)
event args(f , Body) = FnDefArgs(f , Body)
call(f ) = FnExec(sync)(f )
signal(f ) = FnExec(sync)(f )

These allow us to translate nesC statements into similar looking CSP expressions, as
the MTimer.fired() example in Figure 7 illustrates.

Similarly, for asynchronous functions, and calls from asynchronous contexts, we de-
fine the processes as follows.

async command(f , Body) = AsyncFnDef (f , Body)
async command args(f , Body) = AsyncFnDefArgs(f , Body)
async event(f , Body) = AsyncFnDef (f , Body)
async event args(f , Body) = AsyncFnDefArgs(f , Body)
async call(s)(f ) = FnExec(s)(f )
async signal(s)(f ) = FnExec(s)(f )

The asynchronous call and signal must be invoked with an argument specifying the
caller’s execution context. The initial execution context is typically set in the interrupt
handler that triggers a particular asynchronous activity, and then propagated through
FnExec and AsyncFnDef calls. The propagation through AsyncFnDefs can be handled
by defining the Body of the AsyncFnDef as an anonymous function that takes an exe-
cution context as an argument (see Figure 7).

For variable access, we define the following processes.

assign(name, val) = var.setv.name!val → SKIP
read(name, P) = var.getv.name?v → P(v)
async assign(s)(name, val) = async var.s.setv.name!val → SKIP
async read(s)(name, P) = async var.s.getv.name?v → P(v)

As with the asynchronous call and signal, asynchronous operations on variables
require the specification of an execution context. Furthermore, the read processes
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use a continuation-passing style in which the read is parameterized by a pro-
cess that represents the continuation of the program behavior, and to which is
passed the retrieved variable value. By using anonymous functions to handle this
argument passing we can achieve a compact yet readable notation for express-
ing operations on variables. For example, without the read and assign processes
the nesC

y = x + 1;

would be written as

var.getv.xvar?x → var.setv.yvar!(x + 1) → SKIP,

while using read and assign allows us to write

read(xvar,λ x • assign(yvar, x + 1)).

Finally, we define some auxiliary processes for creating interrupt handlers. The basic
interrupt handler is parameterized by a function name f ∈ IntHandler, a priority
level priority ∈ IntPriority, and a Body that specifies the behavior of the interrupt
handler.

TOSH INTERRUPT(f , priority, Body) =
tos interrupt.begin.priority.f →

Body(async.priority) ; tos interrupt.end.priority.f → SKIP.

A variation on the basic interrupt handler permits the creation of handlers that
accept a value of some kind, allowing compact expression of interrupt handlers that
read a value from a hardware device at the start of their execution.

TOSH INTERRUPT input(f , priority, Body) =
tos interrupt.begin.priority.f ?x →

(Body(async.priority)(x) ; tos interrupt.end.priority.f .x → SKIP).

TinyOS also allows the definition of interrupts handlers that are not preemptible.
These are referred to as “signals.” We model a signal as an interrupt with a priority
level higher than any other interrupt.

TOSH SIGNAL(f , Body) =
TOSH INTERRUPT(f , prio.SIGNAL PRIORITY, Body)

TOSH SIGNAL input(f , Body) =
TOSH INTERRUPT input(f , prio.SIGNAL PRIORITY, Body).

3.3. Scheduling and Preemption Models

Mapping from nesC to CSP is only one part of modeling a TinyOS application.
TinyOS applications are composed of both the nesC program, and the infrastructure
of TinyOS (see Figure 4). Given a model of a nesC program, AppComponentGraph,
we model the complete TinyOS application as a composite process that combines the
AppComponentGraph with models of the TinyOS boot-up and scheduling systems, and
of interrupt preemption.

The process Configuration MainC (Section 3.3.1) is our abstract model of the
TinyOS MainC component. It encapsulates the boot process and the task scheduler.
The Preemption process (Section 3.3.2) models the relationship between synchronous
and asynchronous execution in TinyOS. We developed these models based on existing
descriptions of TinyOS execution semantics [Levis 2006], and examination of the
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TinyOS 2.x source code. Using these processes, the complete application model is
defined as:

Application(AppComponentGraph, BootWiring, InitWiring) =
let

App =
((AppComponentGraph
|[{exec.e.s.b.f | e ∈ Exec, s ∈ SyncType, b ∈ BootWiring, f ∈ BootIF}]|

FanOut(MainC, BootIF, BootWiring))
|[{exec.e.s.i.f | e ∈ Exec, s ∈ SyncType, i ∈ InitWiring, f ∈ InitIF}]|

FanOut(MainC SoftwareInit, InitIF, InitWiring))
AppMainIF =

{exec.e.s.f | e ∈ Exec, s ∈ SyncType, f ∈ MainC IF}
∪{|task post, task exec|}

PreemptIF =
{|atomic blk, task exec, task post, exec, var, async var, tos interrupt|}

within
(App |[ AppMainIF ]| Configuration MainC) |[ PreemptIF ]| Preemption

where Configuration MainC and AppComponentGraph synchronize on all events pre-
fixed by exec.begin.s.MainC or exec.end.s.MainC for s ∈ SyncType, and all events as-
sociated with the task post and task exec channels. Both processes synchronize with
Preemption on all events associated with the channels atomic blk, task exec, task post,
exec, var, async var, tos interrupt. The FanOut processes ensure that all components
with ApplicationComponentGraph that are associated with the Boot or Init interfaces
are connected to Configuration MainC.

3.3.1. MainC and Scheduler. The TinyOS MainC component provides platform and soft-
ware initialization, and is also the component in which the TinyOS scheduler re-
sides [Levis 2006]. The MainC component has two interfaces, modeled in CSP as follows.

datatype BootIF = Boot booted
datatype InitIF = Init init
datatype MainC IF = MainC.BootIF | MainC SoftwareInit.InitIF

Within MainC, system startup activities are handled by RealMainP. Following the
standard RealMainP module [Levis 2007], we define BootProcess as follows.

BootProcess = atomic(call(MainC SoftwareInit.Init init) ;
sched.runTasks → sched.doneTasks → SKIP) ;

signal(MainC.Boot booted) ; sched.runTasks → SKIP

Note that BootProcess does not model platform initialization, but does include soft-
ware initialization. The meaning of the atomic() wrapper around software initializa-
tion will be clarified in the discussion of Preemption.

The MainC process combines BootProcess with a model of the scheduler:

Configuration MainC = BootProcess |[ {|sched|} ]| Scheduler.

Synchronization between BootProcess and Scheduler prevents tasks from being
executed during initialization, and also prevents the boot process from signaling
MainC.Boot booted until any tasks posted during initialization have been executed.

The Scheduler process models the standard TinyOS FIFO scheduler. In TinyOS 2.x,
posting a task to the scheduler when it is already enqueued has no effect [Levis 2006].
Our model reflects this behavior.
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Internally, the Scheduler model is split into several processes, each representing a
different scheduler state.

Scheduler =
let

SchInit(Q, P) = · · ·
SchNext(〈〉, ) = · · ·
SchNext(〈t〉� Q, P) = . . .
SchExec(Q, P, t) = · · ·

within
SchInit(〈〉, Task)

In the initial state, tasks may be posted to the scheduler, but are not executed.
The scheduler transitions to a state in which tasks can be executed when the
sched.runTasks event occurs. Tasks are only added to the task queue if they are in
the set, P, of “postable” tasks not yet enqueued. The queue is modeled as a sequence.
Notationally, 〈a, b〉 is a sequence containing values a and b, and s � t is the concate-
nation of the sequences s and t. The process modeling the initial scheduler state is the
following.

SchInit(Q, P) =
(sched.runTasks → SchNext(Q, P))
� (task post?s : SyncType?t : P → SchInit(Q � 〈t〉, P \ {t}))
� (task post?s : SyncType?t′ : (Task \ P) → SchInit(Q, P))

If the task queue is empty, then any task can be posted. In addition, the empty-
queue state is the only one in which the sched.doneTasks event, which triggers the
MainC.Boot booted event, can occur. This ensures that tasks posted during software
initialization are cleared before the boot signal is sent.

SchNext(〈〉, ) =
(task post?s : SyncType?t → SchNext(〈t〉, Task \ {t}))
� (sched.doneTasks → SchInit(〈〉, Task))

If the task queue is not empty, the task at the head of the queue is executed. If a
task is in the postable set, posting that task causes it to be added to the end of the task
queue and removed from the postable set. Otherwise, the task posting is ignored. Note
that a task is added to the postable set as soon as it has started executing. This allows
tasks to post themselves.

SchNext(〈t〉� Q, P) =
(task exec.begin!t → SchExec(Q, P ∪ {t}, t)
� (task post?s : SyncType?t′ : P → SchNext(〈t〉� Q � 〈t′〉, P \ {t′}))
� (task post?s : SyncType?t′′ : (Task \ P) → SchNext(〈t〉� Q, P))

Finally, when the scheduler is executing a task, it waits for the task to complete
before returning to a state in which it is ready to execute another task.

SchExec(Q, P, t) =
(task exec.end.t → SchNext(Q, P))
� (task post?s : SyncType?t′ : P → SchExec(Q � 〈t′〉, P \ {t′}, t))
� (task post?s : SyncType?t′′ : (Task \ P) → SchExec(Q, P, t))

Although the model just described uses an explicit sequence-based representation
of the scheduler queue to allow a clearer presentation, better model-checking perfor-
mance with FDR2 can be achieved by constructing a functionally identical task sched-
uler model that models the queue as a chain of smaller buffer processes.
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3.3.2. Preemption. The Preemption process models preemption of synchronous execu-
tion by asynchronous events, and also preemption of low-priority interrupts by higher-
priority interrupts. It does this by blocking all events associated with the preempted
execution context whenever a preemption event occurs, and only allowing their exe-
cution to resume when the preempting activity has completed. We split Preemption
into two major execution modes, which represent synchronous and asynchronous
execution.

Preemption =
let

SyncExec(atomicDepth) = · · ·
AsyncExec(〈〉, atomicDepth) = · · ·
AsyncExec(Stack, atomicDepth) = · · ·

within
SyncExec(0)

Each execution mode places constraints on the functions that an application can ex-
ecute. To apply these constraints, the Preemption process synchronizes with the sched-
uler and application models on all events associated with the task exec and exec chan-
nels, as well as atomic blk, task post, var, async var, and tos interrupt. Within both
execution modes, the application can prevent preemption from occurring by declaring
an atomic block. The transition into and out of an atomic block is communicated to the
Preemption model via the events atomic blk.begin and atomic blk.end. These events
are used in the application model to define an atomic block via the process

atomic(Block) = atomic blk.begin → Block ; atomic blk.end → SKIP

which wraps the execution of the process Block in the required atomic blk events.
The synchronous execution mode permits task execution, function execution, and

operations on both synchronous and asynchronous variables. If the application is not
in an atomic block then interrupt events may occur. When an interrupt occurs, the
interrupt and its priority level are pushed onto the stack of active interrupts, which
is modeled as a sequence, and execution transitions to the asynchronous mode. The
process model is

SyncExec(atomicDepth) =
(� s : SyncActions • s → SyncExec(atomicDepth))
� (atomicDepth = 0 & tos interrupt.begin?p : IntPriority?i →

AsyncExec(〈(p, i)〉, 0))
� (atomic blk.begin → let depth = atomicDepth + 1 within

if depth > MAX ATOMIC DEPTH
then tos atomic err → STOP
else SyncExec(depth))

� (atomicDepth > 0 & atomic blk.end → SyncExec(atomicDepth – 1))

where

SyncActions = {|task exec, task post.sync, exec.begin.sync, exec.end.sync,
var, async var.sync|}.

Although nested atomic blocks are optimized away by the nesC compiler [Levis
2006], the preemption model is constructed on the assumption that program trans-
lation will be from source code. Therefore, the SyncExec process permits nesting of
atomic blocks, although the nesting is necessarily restricted to a finite depth to allow
model-checking. Following the approach used by Kleine and Helke [2009], we ensure

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1, Article 5, Publication date: January 2013.



Modeling and Analysis of TinyOS Sensor Node Firmware: A CSP Approach 5:17

the soundness of this abstraction by emitting the tos atomic err event to flag
situations where the maximum depth is exceeded.

In the asynchronous mode, the Preemption process will only perform events allowed
in the current priority level. By synchronizing with the application model on the exec,
task post, var, and async var channels, the Preemption process thereby causes all
events associated with lower priority execution contexts to be blocked. Interrupts with
a higher priority than the current context can occur, in which case the interrupt is
pushed onto the stack of active interrupts, and the execution context shifts to the pri-
ority level of the new interrupt. This causes the events associated with the previous
context to become blocked, while allowing events at the new priority level to proceed.
Thus execution of the new interrupt preempts execution of the lower-priority inter-
rupt. When the active interrupt completes, it is removed from the interrupt stack, and
execution of the next interrupt on the stack resumes. Once the interrupt stack is empty
execution returns to the synchronous mode.

AsyncExec(〈〉, atomicDepth) = SyncExec(atomicDepth)
AsyncExec(Stack, atomicDepth) =

let
(prio.priority, intr) = head(Stack)
Ps = {prio.p | prio.p ∈ IntPriority, p > priority}

within
(�a : AsyncActions(prio.priority) • a → AsyncExec(Stack, atomicDepth))
� (tos interrupt.end.prio.priority.intr → AsyncExec(tail(Stack), atomicDepth))
� (atomicDepth = 0 & tos interrupt.begin?p : Ps?i →

AsyncExec(〈(p, i)〉� Stack, 0))
� (atomic blk.begin → let depth = atomicDepth + 1 within

if depth > MAX ATOMIC DEPTH
then tos atomic err → STOP
else AsyncExec(Stack, depth))

� (atomicDepth > 0 & atomic blk.end → AsyncExec(Stack, atomicDepth – 1))

where

AsyncActions(p) = {exec.e.async.p.f | e ∈ Exec, f ∈ NesC Function}
∪{|task post.async.p, async var.async.p|}.

4. EXAMPLE

Given both a mapping from nesC programs to CSP processes, and a model of TinyOS
scheduling and preemption, we can now look at an example of using CSP models of
TinyOS applications to analyze the component interactions within an application. We
return to the AlarmToTimerC component discussed at the beginning of the article, and
show how a CSP model can be used to diagnose the unstoppable timer problem and to
verify a solution.

4.1. Modeling

A simplified version of the AlarmToTimerC module appears in Figure 8. To conserve
space and focus on the functionality relevant to this example we omit functions used
for running the timer in a one-shot mode, and functions associated with the extended
interface for querying the timer state. The corresponding CSP model appears in
Figure 9. Note that the model completely omits the m period variable, and abstracts
from the actual alarm timing. However, the basic structure and behavior of the nesC
code is clearly reflected in the model.
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Fig. 8. AlarmToTimerC module.

Fig. 9. AlarmToTimerC CSP model.

In addition to the model of AlarmToTimerC it is useful to have a model of the AlarmC
component to which it is connected. For this we use a simplified state-machine alarm
component model (Figure 10) that approximates the behavior of the platform-specific
alarms provided with TinyOS. When the alarm is commanded to start it moves to the
Running state, and can then signal an AlarmHW fire interrupt. When the alarm is
commanded to stop it moves to the Idle state. The process skip() = λ • SKIP accepts
an argument—necessary in the body of an async command—but ignores the argument
and simply passes control to the next process.

We combine the AlarmToTimerC and AlarmC components to form the TimerC
configuration by wiring the two components together through the Alarm interface, and
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Fig. 10. Simple AlarmC CSP model.

Fig. 11. TimerTestC CSP model.

also causing the Timer interface of AlarmToTimerC to be accessible as a pass-through
connection (a simple renaming of events).

Configuration TimerC =
passthru(wiring(Module AlarmToTimerC, Module AlarmC,

{(AlarmToTimerC, AlarmC, AlarmIF)}),
AlarmToTimerC, TimerC, {TimerIF})

4.2. Analysis

To analyze the AlarmToTimerC component, we embed it in a simple test application
designed to run the timer, produce an observable tick event at each timer-firing, and
command the timer to stop after 10 timer-firings have occurred (Figure 11). We then
use FDR2 to refinement-check this application model against a specification process
that produces a finite number of ticks.

Ticks(0) = STOP
Ticks(N) = tick → Ticks(N – 1)

TimerTestApp = Application(Configuration TimerTestC, {TimerTestC}, {})
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assert Ticks(5) 	T TimerTestApp \ (Σ \ {tick})
assert Ticks(15) 	T TimerTestApp \ (Σ \ {tick})
assert Ticks(100) 	T TimerTestApp \ (Σ \ {tick})

The refinement assertions state that there should be no possible execution of
TimerTestApp that produces an execution trace containing more than the specified
number of tick events. As expected, a check of the first assertion fails because the test
application is designed to run the timer for more than 5 ticks. However, checks of the
second and third assertions also fail, indicating that the timer is not stopping after 10
timer-firings, or indeed after 100 timer-firings.

The following counterexample trace provided by FDR2 illustrates the problem.

· · ·
task exec.begin.TimerTestC stop
exec.begin.sync.TimerTestC.Timer stop

tos interrupt.begin.prio.255.AlarmHW fire
exec.begin.async.prio.255.AlarmToTimerC.Alarm fired
task post.async.prio.255.AlarmToTimerC fired
exec.end.async.prio.255.AlarmToTimerC.Alarm fired
tos interrupt.end.prio.255.AlarmHW fire

exec.begin.sync.AlarmToTimerC.Alarm stop
exec.end.sync.AlarmToTimerC.Alarm stop
exec.end.sync.TimerTestC.Timer stop
task exec.end.TimerTestC stop
· · ·
task exec.begin.AlarmToTimerC fired
exec.begin.sync.AlarmToTimerC.Alarm start
exec.end.sync.AlarmToTimerC.Alarm start
· · ·

As this trace shows, FDR2 is able to find a possible sequence of events in which the
alarm interrupt preempts execution of the task that stops the timer, and posts the
AlarmToTimerC fired task. When that task is later executed it restarts the alarm,
and the timer cycle begins anew despite the stop command. While this problem-
atic sequence of events will not always occur, the fact that it can occur means that
correct timer behavior depends on the unpredictable relative timing of interrupt
and task executions. This leaves the application susceptible to seemingly random
errors.

One way to remedy the problem is to add a state variable to the AlarmToTimerC
component that is set to true when the timer is started, and to false when the timer
is commanded to stop. The modified version of AlarmToTimerC should check the state
variable before restarting the timer.

StateVars = Var(running, false)
FiredTask = (task(AlarmToTimerC fired,

read(running,λ run •
(if run then call(AlarmToTimerC.Alarm start) else SKIP) ;

signal(AlarmToTimerC.Timer fired))) ; FiredTask)

Rechecking the refinement assertions on the revised version of the application model
indicates that the timer still produces more than 5 ticks, but there is no longer a pos-
sible sequence of events that can cause the timer to run indefinitely. The close resem-
blance between the model and the corresponding nesC code for AlarmToTimerC makes
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it easy to see how to translate the solution that was developed in the CSP model into
application code.

bool running = FALSE;
task void fired() {

if(running == TRUE)
call Alarm.startAt(call Alarm.getAlarm(), m_period);

signal Timer.fired();
}

5. RELATED WORK

The work most closely related to ours is probably Rosa and Cunha’s [2007] effort to for-
malize nesC programs using LOTOS. Similar work by Völgyesi et al. [2005] proposed
the use of hierarchical interface automata to analyze nesC component interactions.
Our CSP modeling approach draws inspiration from both efforts. It extends that ear-
lier work by using a dual-event model of function-calls that gives a more accurate
representation of nesC execution, and by adding models of TinyOS scheduling and
preemption to facilitate analysis of their impact on application behavior.

More recently, Bucur and Kwiatkowska [2009] built on the SATABS verification tool
for ANSI-C, extending it to incorporate models of the TosThreads API for multithread-
ing on TinyOS and the TinyOS kernel. Their work focuses on detecting violations of
low-level safety-properties, such as misuse of pointers and out-of-bounds array access.

Xie et al. [2006] proposed using the COSPAN model-checker for coverification of
TinyOS applications and hardware. Their approach to modeling TinyOS applications
in the S/R language includes a model of scheduling and preemption. However, their
scheduler model differs from ours in that it directly controls the execution of each in-
dividual function-call. Our model more closely resembles the TinyOS task scheduler,
which is responsible for coordinating task execution but does not directly control indi-
vidual function-calls. In addition, their scheme for modeling preemption is only able to
represent a single priority level.

Kothari et al. [2008] developed a technique for extracting state-machines from
TinyOS programs using symbolic execution. The resulting state-machines provide an
abstracted view of the TinyOS program. In principle, symbolic execution could also be
used to check the TinyOS program for desirable properties. However, doing so would
require extending Kothari’s method with some kind of specification language for defin-
ing the properties, and with a mechanism for checking those specifications during sym-
bolic execution.

Kleine and Helke [2009] proposed using CSP to verify implementations of real-time
multithreaded applications. Their approach appears to be similar to ours, in that it
splits the CSP model into separate parts representing the application, the operat-
ing system, and the runtime environment. However, their models are derived from
a compiled intermediate representation of a program rather than from source code,
and model a preemptive multithreading system rather than TinyOS-style mixed syn-
chronous and interrupt-driven execution. Also, their preemption model relies on ex-
plicitly tracking the program counter state of each thread, whereas in our model that
information is implicit in the execution state of each CSP process.

An alternative to static analysis of interaction models is runtime checking of the
component interactions. To support such checks, Archer et al. [2007] recently proposed
the addition of interface contract specifications to TinyOS applications. Runtime con-
tract checking can provide useful diagnostic information when an error is encountered.
But, as with other testing techniques, interface contracts cannot provide any informa-
tion about bugs that are not triggered by the testing regime.
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6. CONCLUSIONS

Although the TinyOS concurrency model is easier to reason about than shared-memory
threads, unplanned interactions between background tasks and preemptive interrupts
can lead to unexpected application behavior. To help TinyOS application developers
gain a better understanding of the concurrent behavior of their applications we have
developed an approach for modeling TinyOS applications using the process algebra
CSP. Our approach provides a mapping from nesC programs to CSP processes, and a
model of the TinyOS scheduling and preemption mechanisms.

Modeling and model-checking of TinyOS applications is complementary to verifica-
tion methods such as testing and runtime contract checks. Model-checking permits
analyses that can uncover low-probability bugs that might otherwise go undetected
until the application has been widely deployed. Such analyses seem particularly im-
portant for TinyOS components that are intended to be building blocks for creating
large numbers of applications. In addition, model-checkers generate counterexample
traces when an error is detected, providing a clear indication of the sequence of com-
mands, events, tasks, and interrupts that led to the error. These counterexamples are
useful for diagnosing and fixing errors in an application design, and are also poten-
tially helpful for application developers seeking to gain insight into how the TinyOS
scheduler, tasks, and preemption mechanisms interact with each other.

In addition to allowing application-level models to be analyzed, one advantage of us-
ing CSP as the modeling language and FDR2 as the model-checker is that refinement-
checking can also be used to validate an abstract model of the sensor node behavior
against the TinyOS application model. This is a capability not available with temporal-
logic model checkers. The transitive and monotone nature of the refinement rela-
tion [Roscoe 1998] guarantees that properties checked on networks of valid abstract
nodes also hold for identical networks of application-level models, without having to
directly check the larger state-space of the application-level network model.

Our modeling approach does have some limitations. It does not presently support
multiple simultaneous calls to the same function. Nor does it support return values
from commands or events. Also, as with any application of model-checking, state-
explosion is a concern. The example presented in this article can be checked within
a few seconds on a modern computer. The analysis of larger applications requires sub-
stantially more time and memory. In practice, careful use of abstraction is likely to be
the key to successfully checking real applications.
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