638 Series

Digital Servo Drive

Product Manual

Additional Supporting Documentation

UL: CD	EASYRIDER® Windows - Software
UL: 07-02-09- 02	HIPERFACE [®] Feedback System
UL: 07-05-02- 03	Product Manual - Bus Interface SUCOnet K
UL: 07-05-03- 02	Product Manual Bus Interface CAN
UL: 07-05-04- 02	Product Manual - Bus Interface Profi Bus DP
UL: 07-05-05- 02	Product Manual - Bus Interface Interbus S
UL: 07-05-07- 02	Product Manual - I/O Interface
UL: 07-05-08- 02	Product Manual - Bus Interface DeviceNet
UL 07-09-04-02	Product Manual - Suppression Aids EH
UL: 10-06-03	Product Manual – Serial Tranfer Protocol EASY-Serial

Additional Supporting Documentation

UL: 10-06-05	Product Manual - BIAS [®] Commands
UL: 12-01	Product Manual - Plugs
UL: 12-02	Product Manual - Cables
UL: 12-03	Product Manual - Ballast Resistors

©Parker Hannifin GmbH Co. KG

All rights reserved. No portion of this description may be produced or processed in any form without the consent of the company.

Changes are subject to change without notice.

Parker Hannifin has registered in part trademark protection and legal protection of designs. The handing over of the descriptions may not be construed as the transfer of any rights.

Made in Germany, 2008

The M	Most Important Thing First	Page 8
	y Precautions	
1	General Information	
1.1	System Description	
1.1	Special Features of the 638 Servo Drive	
	Overview of Standard Digital Communication	
•	Determining Criteria for the Utilization of the 638 Drive	
•	Operation Configuration	
1.2	Model Code	
•	Combination Possibilities for the Various Communication / I/O - Modules	
•	Module Slots Layout	
•	Module Design	15
1.3	Dimensions	
•	638A Series	
•	638B Series	
2	Connection Assignments and Functions	
_ 2.1	Insulation Concept	
2.2	Overview of Compact Unit Connections	19
•	638A01 to 638A06	
•	638B03 to 638B15	20
2.3	Assignments Power Connections	21
•	Power, Ballast, DC Bus - Connection X60	21
•	24V - Control Supply Voltage X01	
•	Motor - Connection X61	
•	Brake / Thermo - Connection X62	
2.4	Feedback Sensor X30	
•	Feedback - Module X300	
•	Feedback Connection X30 (SUB D 09 Socket)	
•	Feedback - Module X300 with Memory 638A	
2.5	Service-Interface COM1 (RS232)	
2.6	Safe Torque Off	
•	Connection Safe Torque Off X11	
•	Connection WITHOUT the utilization of the Safe Torque Off, (STO), function	
2.7	Signal Connection	
•	Control Signal Plug X10 (SUB D25 Socket)	
2.8	Multi-Function X40Incremental - Output	
•	Incremental - Input	
•	Stepper Motor Input	
•	SSI-Encoder Interface	
2.9	Fieldbus Interface COM2	
2.5	Pinning for RS232	
	Pinning for RS422/485	
•	Pinning for CAN or DeviceNet.	
•	Pinning for Profibus DP	
•	Pinning for SUCOnet K	
•	Pinning for EA5 I/O-Interface (Digital In and Outputs)	
2.10	Fieldbus Interface COM2 in Combination with COM3 (OPTION SLOT A/B)	36
•	Pinning for Interbus S (RP IBS)	36
2.11	Fieldbus Interface RP 2CA, 2C8	
•	Pinning CAN1-BUS and CAN2-BUS	
•	Pinning RP 2C8 X120 (with I/O's)	
_	DIP Switch Position for Option Module RP 2CA and RP 2C8	
2.12	Fieldbus Interface RP CCA, CC8	39
•	Pinning CAN1-BUS, CAN2-BUS and RS485	39
•	Pinning RP CC8 X120 (with I/O's)	39
_	DIP Switch Position for Option Module RP CCA and RP CC8	40

	Page
Connection Assignments and Functions	
Fieldbus Interface RP PCA, PC8	41
Pinning Profibus DP and CAN2-BUS and RS485	41
Pinning RP PC8 / X120 (with I/O's)	41
DIP Switch Position for Option Module RP PCA, PC8	
Overview of the Terminal Cross Section	
Operating Mode	44
Operating Mode General	44
Operating Modes and Pin Functions	45
Configurable Pin Functions (Operating Mode Dependent)	
Functions Diagrams with Protection Mode "Switch Off"	47
Mechanical Installation	49
Mounting	
Control Cabinet Mounting	
Cooling and Ventilation	
Electrical Installation	
Installation General	
Safety Danger of Electric Shock	
Danger of Electric Snock Dangerous Areas	
Grounding - Safety Grounding	
Ground Connections	
Short-Circuit Capacity and Discharge Currents	
Power Mains Connection	
Types of power mains	
Mains supply voltage range 638A	
Mains supply voltage range 638B/C	
Protective Ground Connection (PE)	
Cable cross section	
Dimensioning of power mains cable and the over-current protection	
DC Link Parallel Connection	54
General	54
Variation 1; Servo Drives without DC LINK protection	
Variation 2; Servo Drives with DC LINK protection	
Function Softstart	
Installation Instructions and Warnings	
Layout of the Ballast Capacity	
Fuses , Contactors	
638A	
638B	
638C	
Brake ResistorSelection of the Brake Resistor	
Configuration of the Brake Resistor	
5	
Wiring Instructions	
General Wiring Instructions	
General Information	
Control Cabling	
Power Cabling	
Analog Setpoint	
Safety Rules	
Electromagnetic Compatibility (EMC)	
Hints for Mounting	
Example for Mounting	64

	Page
Hardware Configuration	
Jumpers Power Board Layout Plan 638A	
Power Board Layout Plan 638B/C	
•	
Commissioning	
Commissioning Preparation	
Step 1: Wiring and Communications Test	
Step 2 :Feedback Test and Motor Selection	
Step 2.2 Motor Selection	
Step 2.4 Motor with HIPERFACE Feedback	
Step 2.5 Motor with SIN-COS Feedback Linear Motor	
Step 3 : Power Up and Drive Activation	
Step 3.1 Power Up	
Step 3.2 Drive Activation	
Step 4 : Control Loop Optimization	
Step 4.1 Control Loop Optimization with Rotary Motors	
Step 4.2 Control Loop Optimization with Linear Motors	
Step 5 : Operation Mode Selection	
Step 6 : Fieldbus Interface	
Step 7 : Data Save	77
Safe Torque Off (STO)	79
General Introduction	
Important Technical Terms and Explanations	
Stop Category according to EN 60204-1 (Chapter. 9.2.2)	
Applications in Accordance with the Regulations	81
Trained Personnel	
Benefits with the Employment of the Safe Torque Off Function	
Safety Instructions and Limitations	
Safe Torque Off Function, (STO)	
Block Circuit Diagram	83
Status Diagram and Function of Terminals STO1# und STO2#	
Configuration and Parameter Settings	85
Application Example of STO (Safe Torque Off)	
Application Example 1	
Application Example 3	
Application Example 4	
STO Function Test	
Signal Inputs Technical Data - Terminal Connection X11	
Diagnosis and Trouble-Shooting	
7-Segment-Display	
Reset of a Drive Trouble	
Trouble-Shooting	
Standards and Certifications	
Compliance with Regulations Limitations and Racic Conditions	
L OMBRUSTON WITH PORTUGIONS LIMITATIONS AND PASIS L'ANDITIONS	

	Page
Technical Data	
General Technical Data	107
Power Circuit	107
Control Circuit	107
Signal Inputs and Outputs - Connection X10	107
Thermo-Control X30	107
Thermo-Control X62	108
Brake-Control X62	
Signal Inputs and Outputs - Connection X120B resp. 1200	D108
Digital Control	
Digital Communication	
Resolver Evaluation / Transmitter Principles	109
Controller System	
Mechanical Data	
Technical Unit Data	
638A	
Output Power 638A	
Singlephase and Threephase supply	
638B	
Output Power 638B	114
Software	
EASYRIDER® Windows - Software	
Introduction	
Program layout	
Execute a BIAS program	
Execute a PLC program	
Execute a Mathematics program	
BIAS - Commands	
Appendix	
STO - Safety - Parameter - Report - Proposal	
Memo	
Modification Record	122
WOODIGATION RECOID	1//

The Most Important Thing First

Thank you for your confidence in choosing our products.

These operating instructions are intended to provide an overview of the technical data and features of our products.

Please read the operating instructions completely before operating the product.

Should you have any questions, please contact your nearest service representative.

Improper application of this product in combination with dangerous high voltage can lead to serious injury or death.

Damage can also occur to motors or other products. Therefore, we request that you strictly observe our safety and installation instructions.

Safety Precautions

We assume that as an expert, you are familiar with and will observe all of the relevant safety regulations, especially in accordance with VDE 0100, VDE 0113, VDE 0160, EN 50178, the accident prevention regulations of the employer's liability insurance company and the DIN regulations.

Additionally, it is imperative that all relevant European Union Safety Directives be observed.

Depending on the type and location of the installation, additional regulations, e.g. UL, DIN, must also be fully observed.

If our products are operated in connection with components from other manufacturers, their operating instructions are also subject to be strictly observed.

Safety Precautions

Digital servo drives, corresponding to EN 61800-5-1/VDE 0160, are electronic power components utilized for the regulation of the flow of energy in high-voltage

electrical power installations. They are exclusively designed, configured and approved to supply our servo motors. Handling, installation, operation, and maintenance are only permitted under the conditions of and in keeping with the effective and/or legal regulations, regulation publications and this technical document.

The operator must make sure that these regulations are strictly followed.

The Concept of Galvanic Separation and Insulation:

Galvanic separation and insulation corresponding to EN 61800-5-1/VDE 0160, provides for additional insulation protection.

In addition, all digital signal inputs and outputs are provided with a galvanic separation utilizing either a relay or an optical coupler. In this way, an increased level of protection against potential interference and a limitation of potential damage due to incorrect connections are provided.

The voltage level must not exceed the designated low safety voltage of 60V DC or 25V AC, respectively, in accordance with EN 61800-5-1/VDE 0160.

The operator must make sure that these regulations are strictly followed.

Danger!

High Voltage!
Danger of Electrocution!
Life Threatening Danger!

Certain parts of the servo drive are supplied with dangerous electrical current. Physical contact with these components can cause death, life threatening injuries and/or serious damage to equipment and property.

Caution!

Due to safety considerations and product guarantees, the operator is prohibited from opening the servo drive case. Service, maintenance and repair of our products should only be carried out by specified representatives of the company. Expert configuration and professional installation, as described by this document, are the best way to insure problem-free operation of our servo drives!

Safety Precautions

Please Observe!

Pay Special Attention to the Following:

Permissible Protection Class: Protective Grounding - operation is only permitted when the protective conductor is connected according to regulations. Operation of the servo drive when employing a residual current operated protective device as the sole protection against indirect touching, is not permissible.

The servo drive may only be used in conjunction with machines or electrical systems when placed in control cabinets which comply with EEC- Directive98/37EEC (Machine Directive) and EEC Directive 89/336/EEC (EMC – Directive).

Work on or with the servo drive may only be carried out with insulated tools. Installation work may only be done in a de-energized state. When working on the

drive, one should not only block the active input, but also separate the drive completely from the main power connection.

CAUTION - Risk of Electrical Shock:

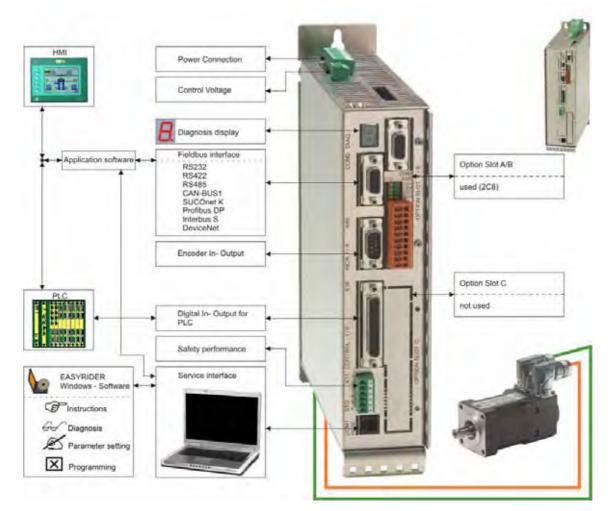
Wait 3 minutes after switching the component off to allow the capacitors to discharge.

Screws sealed with varnish fulfill an important protection function and may not be

tampered with or removed.

It is prohibited to penetrate the inside of the unit with objects of any kind. Protect the unit from falling parts, pieces of wire, metal parts, etc., during installation or other work in the control cabinet. Metal parts can lead to a short-circuit in the servo drive.

Before putting the unit back into operation, remove any additional covers so that the unit does not overheat. When conducting measurements on the servo drive it is imperative to pay attention to the electrical isolation.

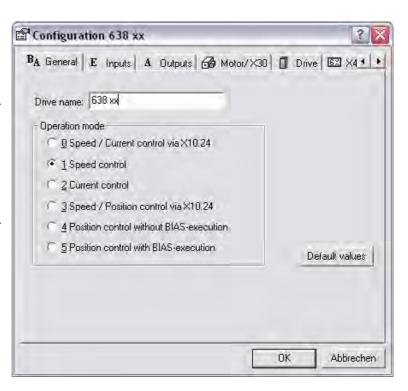

We are not liable for damage which may occur when the product instructions and/or the applicable regulations are not explicitly observed!

1.1 System Description

Special Features of the 638 Servo Drive

- The digital <u>638</u> servo drive provides for the electrical connection, rotational speed and position control of the **AC servo motor**.
- All of the functions and system controls are digitally regulated, employing a sampling rate of 105µs.
- The 638 servo drive supports the safety function "Safe Torque Off", STO, providing for a
 definitive system shut-down, for protection against an unanticipated start-up, in accordance
 with
 - the requirements as stated in EN 13489-1, Category 4, Performance Level e and EN1037.
- The feedback generated from the braking energy is dissipated through the employment of internal ballast resistance and when required through the employment of additional external ballast resistance.
- The AC supply voltage can be directly connected or it can be connected through a transformer, as required. (Important: only operated on networks which are grounded at the centre point (TN networks)
- The servo drive additionally requires a 24 V DC control supply voltage connection.
- The **built-in internal EMC filter** corresponds to the requirements regarding susceptibility to interference for industrial systems as described in EN50081-1.
- By employing various option modules, through **2 additional plug-in receptacles**, it is possible to increase the potential connections to the **field bus system** and/or the input/output terminals.
- Various motor feedback loop systems can be supported by employing the flexible feedback module X300.
- Through the employment of additional 638 drives it is optionally possible to couple the DC link.
- Minimal Housing Dimension is provided through the intelligent compact design of the unit.

Overview of Standard Digital Communication


1 General Information

Determining Criteria for the Utilization of the 638 Drive

Decisions relating to the appropriate selection of the motor type, feedback system and drive type, as well as the system layout and option modules required, are dependant upon the specific application and the anticipated operating mode of the system.

There are 6 operating modes to choose from:

- <u>0</u> Seed / Current control switchable via Input X10.24
- 1 Speed control
- 2 Current control
- <u>3</u> Speed / Position control switchable via Input X10.24
- <u>4</u> Position control without BIAS execution
- <u>5</u> Position control with BIAS - execution

Operation Configuration

There are opportunities ranging from simple current and speed control to programmable position control processes (PLC), supported by the 1500 BIAS command blocks.

"BIAS" User shell for intelligent drive controls:

See Chapters: "■ Operation Modes" and "■ Software"

1.2 Model Code

											Special
Marking	а	b	С	d	е	f	g	h	h1	i	j
Type:	638	Х	XX	Χ	F	Х	STO	XXX	XXX	XXX	XXX

Type:	638		Х	XX	Х		F	Х	\$10	XXX	(XX	X XXX	XXX
Marking								Descript	ion				
а	638	=	= <u>6th</u> . Generation Digital Servo Drive										
b				Size:									
	Α	=	Size A			В	=	Size B		С	=	Size C	
С			Rated (Current:				Rated Cu	rrent:				
	01	=	1,0 am	•		03	=	2,5 amps					
	02	=	2,0 am			05	=	5,0 amps			he	ing pre	nared
	04	=	4,0 am			08	=	7,5 amps				ing pro	parca
	06	=	6,0 am	ps		10 15	=	10,0 amps					
d						15	= Int	15,0 amps					
u			638A				Ш	termediate \ 638B	voitage.				
	3	=		OC / 230 V	AC	3	=	325 VDC	/ 230 VAC	:			
	Ŭ	_	020 VL	70 / 200 V		6	_	565 VDC					
						7	=	678 VDC					
е	F	=	With In	tegrated F						= Stand	dard		
	A	=		-		-side	Y-01	apacitators					
	0			t EMC - C		Side	1 -00	μασιαισίδ		= Stand			
f	U	=			•					= Stand	aard		
g				Performar									
	STO	=		orque Off						= Stand			
h					-module	RP -	·XXX	on the driv	e for com	munica	tion via <u>(</u>	COM2	
	000	=	No Opt										
	232	=		2 interface								\cong slot A (
	422	=		2 interface								≅ slot A (I	•
	485	=		5 interface								≅ slot A (I	
	CAN		CAN –									≅ slot A (I	
	2CA			N (without								\cong slot B (
		=		N + 4 outp		4 inp	outs					\cong slot B (
	CCA			N + RS 48		-1.4 :						≅ slot B (•
		=			-	a 4 in	iputs	s + RS 485				≅ slot B (
	DEV SUC			Bus / Devi	ceinet							≅ slot B (
	PDP											\cong slot B (A	•
	IBS	=	Interbu									\equiv slot B (I	,
		_			1N2 + 4	outni	ute a	and 4 inputs	+ RS 485	;		\cong slot B (I	•
	PCA			is DP + C/				ina + inputs	1110 400	•		\cong slot B (A	•
		<u> </u>		terface (5				1				\cong slot B (
h1	LAO	_							200			= 3101 D (/	Ŋ
""	000			-	is iviodu	ie on	uie (drive via <u>X2</u>	.00				
	000	=	No Opt										
	EAE	=		terface (1			utpu	its)				≅ slot C	
i			X300 –	- Functions	s Modul	е							
	RD2	=	Standa	rd X30 Re	esolver -	- Mod	dule :	2nd Versior	1	= Stand	dard	\cong slot D	
	HF2	=	HIPER	FACE® -	Module	2nd	Vers	sion				\cong slot D	
	SC2	=		Cosine - M								\cong slot D	
				emorych									
	RM1			er + Mem								≅ slot D	
		=				-		2nd Version	n			≅ slot D	
	SM1	=	Sine/Co	osine + M	emory-	Modu	le 2r	nd Version				≅ slot D	
j			Enter o	nly when	used								
	X7x	=	Broad-l	band cont	act X10	.7 - X	10.8						
	BSx	=	Moistu	re/Conder	sation F	roted	ction						
											_		

^{*}Only CAN2 can be employed when utilizing the option module located at slot [C], (internal BUS / COM3 B).

General Information 1

Combination Possibilities for the Various Communication / I/O - Modules

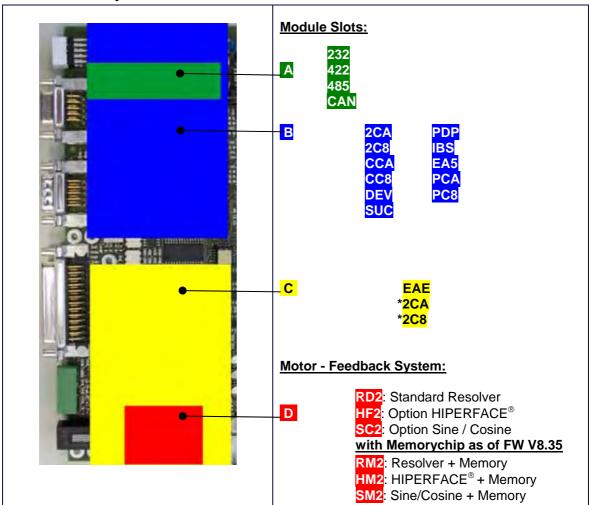
Slot	>		-	١							В							С	
Option Module	>	2	4	4	С	2	2	С	С	D	S	P	1	Е	Р	Р	Е	*2	*2
		3	2	8	Α	С	С	С	С	Е	U	D	В	Α	С	С	Α	С	С
Model Code		2	2	5	N	Α	8	Α	8	V	С	Р	S	5	8	Α	Е	Α	8
638xxxxFxSTO2320		•	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO232E		•	•	-	-	-	•	-	-	-	•	-	-	-	-	-	•	-	-
638xxxxFxSTO2322		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
638xxxxFxSTO2322		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
638xxxxFxSTO4220		-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO422E		-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTO4222		-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
638xxxxFxSTO4222		-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
638xxxxFxSTO4850		-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO485		-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTO4852		-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
638xxxxFxSTO4852		-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
638xxxxFxSTOCAN		-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTOCAN		-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTO2CA		-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO2CA		-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTO <mark>2C8</mark>		-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-
638xxxxFxSTO2C8		-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	-	-
638xxxxFxSTOCCA		-	-	-	-	-	-	•	-	-	-	-	-	-	-	-			
638xxxxFxSTOCCA		-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	•		
638xxxxFxSTOCC8		-	-	-	-	-	-	-	•	-	-	-	-	-	-	-			
638xxxxFxSTOCC8		-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	•		
638xxxxFxSTODEV		-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
638xxxxFxSTODEV		-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	-
638xxxxFxSTOSUC		-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
638xxxxFxSTOSUC		-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	•	-	<u> </u>
638xxxxFxSTOPDP		-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
638xxxxFxSTOPDP		-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	•	-	-
638xxxxFxSTOPDP		-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	•	-
638xxxxFxSTOIBS		-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	
638xxxxFxSTOIBS		-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	-	-
638xxxxFxSTOIBS		-	-	-	-	-	-	-	-	-	-	-	•	-	_	-	<u> </u>	•	-
638xxxxFxSTOIBS2		-	-	-	-	-	-	-	-	-	-	-	•	-	_	_	H	_	•
638xxxxFxSTOEA5		-	-	-	-	-	-	-	-	-	-	-	-	•	-	_	Ė	-	
638xxxxFxSTOEA5		-	-	-	-	<u> </u>	-	-	-	-	-	-		•	-	_	Ė	-	-
638xxxxFxSTOPC8		-	-	-	-	-	-	-	-	-	-	-	_	-	•	-	-	-	_
638xxxxFxSTOPC8		-	-	-	-	_	-	-	-	-	-	-	_	-	•	-	•	-	-
638xxxxFxSTOPCA		-	-	-	-			-	-	-	-	-	-	-	-	•	Ť	-	-
638xxxxFxSTOPCA		-	-	-	-			-	-	-	-	-	-	-	_	•	•	-	-
638xxxxFxSTO000E		-	-	-	_	_	_	_	_	_	_	-	_	_	_	-	÷	-	_
030XXXXFX310000	No Onti		<u> </u>	-			<u> </u>	<u> </u>	-	-		-	-				_	-	

000 = No Option ● Possible Combination

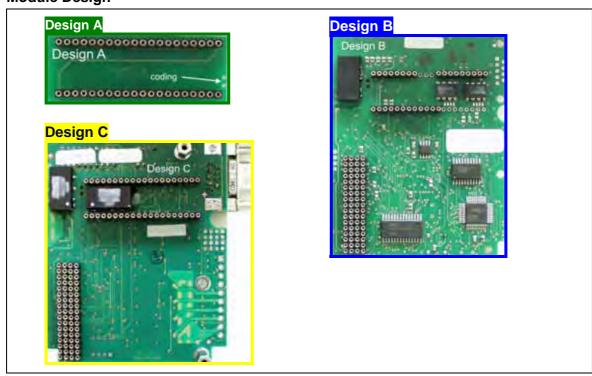
*Only CAN2 can be employed when utilizing the option module located at slot [C], (internal BUS / COM3 B)

Example:

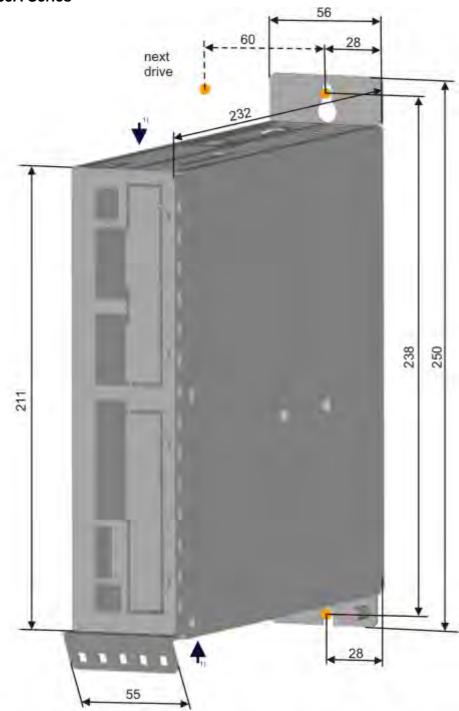
```
638A043F0STO232EAERD2
```


```
638
                            = 6th. Generation Digital Servo Drive
  Α
                            = Size A
    04
                            = 4 Amps Rated Current
                            = 325 VDC (230 VAC)
                            = With Integrated Filter
                            = Without EMC - Clip
          STO
                            = Safe Torque Off
              232
                            = RS 232 Interface ≅ on slot A
```

= I/O Interface 14/10 **EAE** \cong on slot C


RD2 = Standard X30 Resolver \cong on slot D (Motor - Feedback system)

Module Slots Layout


Module Design

1 General Information

1.3 Dimensions

• 638A Series

2 x M5 mounting screw


For sufficient air circulation you must a expansion space from 100mm on the inlet- and outlet-cooling

Important:

- Please note that on the front side of the unit, approximately 70 mm of additional space is required for the signal mating plugs!
- When installing multiple servo drives, there is minimum space on the side.
- The unit should only be mounted vertically as shown.

next drive

• 638B Series

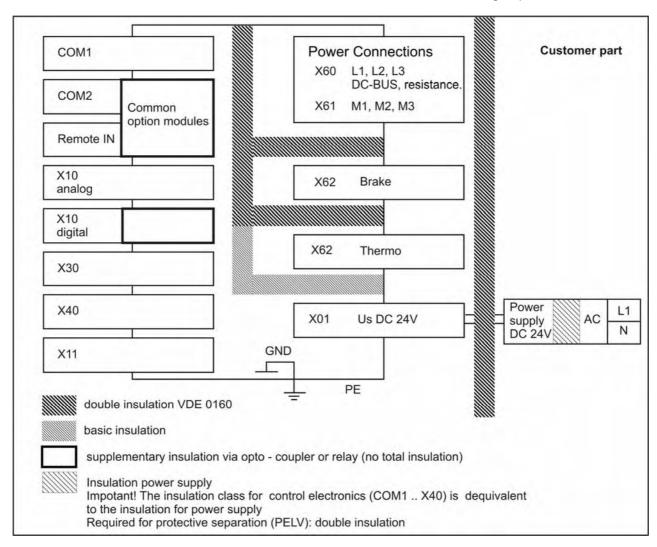
4 x M5 mounting screw

For sufficient air circulation you must a expansion space from 100mm minimum on the inlet- and outlet-cooling

A = 66mm for 638B03.. and 638B05..

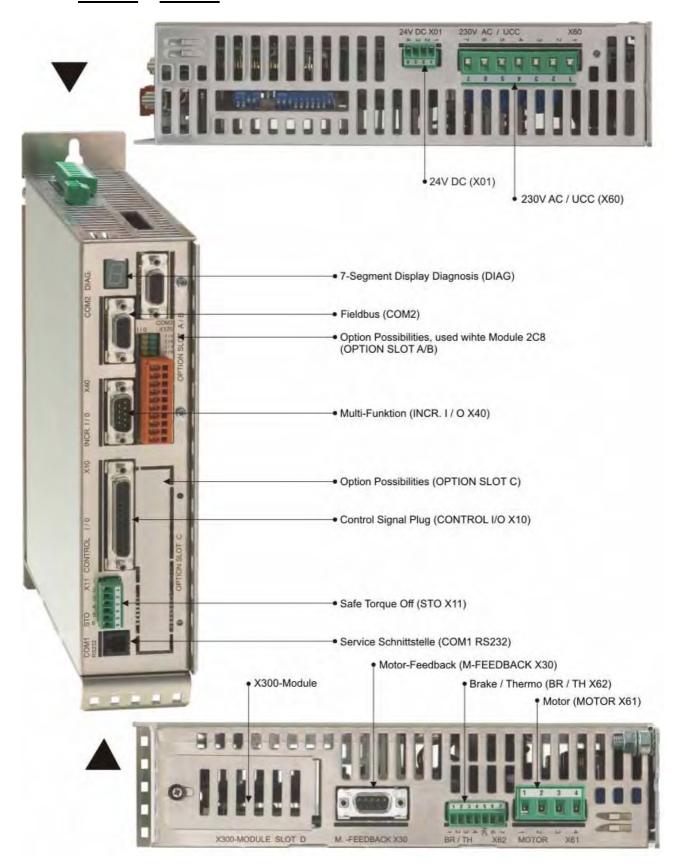
= 86mm for 638B08..; 638B10.. and 638B15..

B = 44mm for 638B03.. and 638B05..


= 64mm for 638B08..; 638B10.. and 638B15...

Important:

- Please note that on the front side of the unit, approximately 70 mm of additional space is required for the signal mating plugs!
- When installing multiple servo drives, there is minimum space on the side.
- The unit should only be mounted vertically as shown.


2.1 Insulation Concept

The insulation of the 638 units is achieved in various insulation classes or groups.

2.2 Overview of Compact Unit Connections

• <u>638A01..</u> to <u>638A06..</u>

638B03.. to 638B15.. 24V DC (X01) 230 ~ 460 VAC / UCC (X60) 7-Segmen Display diagnosis (DIAG) Fieldbus (COM2) Option possibilities (OPTION SLOT A/B) Multi Function (INCR. I / O X40) Control Signal Plug (CONTROL I/O X10) Safe Torque Off (STO X11) Option possibilities (OPTION SLOT C) X300 - Module Service Interface (COM1 RS232) Braek / Thermo (BR / TH X62) Motor (MOTOR X61) Motor-Feedback (M-Fedback X30)

2.3 Assignments Power Connections

• Power, Ballast, DC Bus - Connection X60

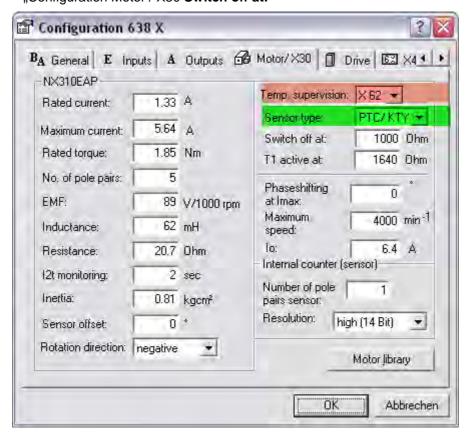
638A Plug - X60									
PIN	Designation	Function							
1	0VP	0 Volt DC Bus							
2	RB1/+UCC	External – Ballast Resistor / + DC - Bus							
3	RB2	External – Ballast Resistor							
4	L1	Power Connection 1, 230V AC							
5	L2	Power Connection 2, 230V AC							
6	L3 / N	Power Connection 3, 230V AC / Ground							
7	PE	Protective Ground							

638E	638B Plug - X60									
PIN	Designation	Function								
1	0VP	0 Volt DC Bus								
2	RB1/+UCC	External – Ballast Resistor / + DC - Bus								
3	RB2	External – Ballast Resistor								
4	L1	Power Connection 1, 400V AC								
5	L2	Power Connection 2, 400V AC								
6	L3	Power Connection 3, 400V AC / Ground								
7	PE	Protective Ground								

24V - Control Supply Voltage X01

Plug - X01								
PIN	Designation	Function						
1	+24V	Supply Us (Input)						
2	+24V	Supply Us (Output with PIN 1 jumpered)						
3	0V	Reference Potential 0V						
4	0V	Reference Potential 0V						

Motor - Connection X61


Plug	j - X61	638A	
PIN	Designation	Function	4 19 x
1	M1 / U	Motor Supply	MOTOR MOTOR
2	M2 / V	Motor Supply	638B
3	M3 / W	Motor Supply	PE M3
4	PE	Protective Ground	WOLCON

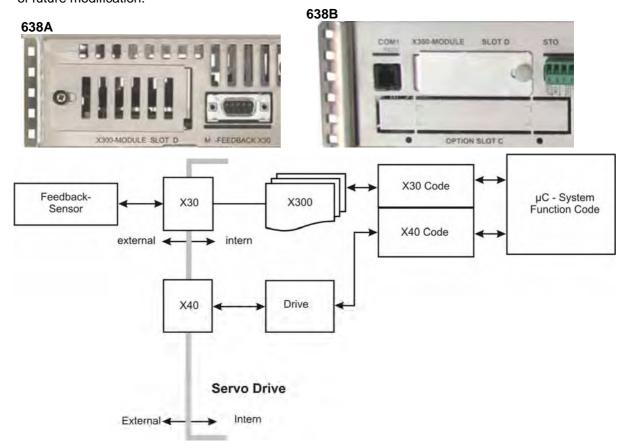
Brake / Thermo - Connection X62

Stec	ker - X62	638A			
PIN	Bezeichnun g	Funktion		6 X	
1	+24V	Input; Supply Voltage Mechanica	al Brake	2 3 正	
2	0V	Input; Refer. Potential Supply Vo Mechanical Brake	638B		
3	BR+	Control Mechanical Brake	- H-		
4	BR-	Control Mechanical Brake	10 In 10		
5	-	Not assigned		- IR+	
6	TH+	Thermo PTC ¹⁾ /NTC	Setup and Wiring	247-	
7	TH-	Thermo PTC ¹⁾ /NTC	<u>example</u>	×	

With parameter setting PTC can you temperature sensor Typ KTY (note poling) or thermo switch used.

EASYRIDER Menu "Configuration Motor / X30 **Switch off at:**" use resistor value in Ohm. For thermo switch is the value 1000 Ohm in the EASYRIDER Menu "Configuration Motor / X30 **Switch off at:**"

2.4 Feedback Sensor X30


The feedback system creates a digital value from the feedback position sensor.

From this value the following is derived:

- Commutation according to the pole division
- Actual rotational speed value
- Position value for the position controller

Feedback - Module X300

The X30 connection is directly connected to the Feedback - Module X300. The mode of operation of the feedback system is specified by this plug-in module. (see: • Layout Module Slots) The 638 – Drive system therefore offers a built-in flexibility and provides for the possibility of future modification.

Model Type X300	Description			
X300_RD2	Resolver	Standard		
X300_HF2	HIPERFACE®	Option		
X300_SC2	Sine/Cosine	Option		
X300_RM1	Resolver + Memory	Option as of Firmware V 8.35		
X300_HM1	HIPERFACE®+ Memory	Option as of Firmware V 8.35		
X300_SM1 Sine/Cosine + Memory Option as of Firmware V 8.35				
Additional types available upon request.				

Plug and Play

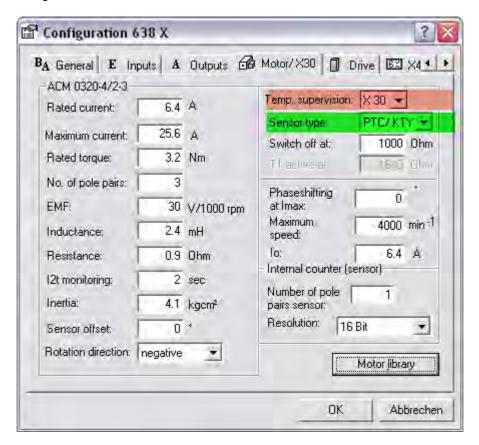
The 638 Servo Drive is able to identify the type of X300 Module employed. The EASYRIDER® Windows – Software loads the correct function code.

You follow the instructions in the EASYRIDER® Windows – Software.

For feedback module RD2 the function code is already pre-set (factory default).

Note

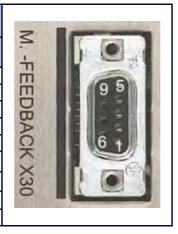
When employing the Feedback Module X300_HF2 (HIPERFACE®), please pay attention to documentation 07-02-09-02-E-Vxx.


Feedback Connection X30 (SUB D 09 Socket)
 Pinning for the Motor - Feedback - Socket X30 when employed with:

Resolver Module X300 RD2 or X300-RM1(Standard Module)

With parameter setting PTC can you temperature sensor Typ KTY (note poling) or thermo switch used.

EASYRIDER Menu "Configuration Motor / X30 **Switch off at:**" use resistor value in Ohm. For thermo switch is the value 1000 Ohm in the EASYRIDER Menu "Configuration Motor / X30 **Switch off at:**"


HIPERFACE® - Module X300_HF2 or X300_HM1

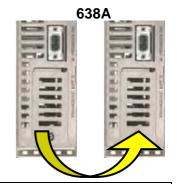
Modu	Module: X300_HF2 / X300_HM1			
PIN X30	Function			
1	GND			
2	10 VDC			
3	cos +			
4	sin +			
5	data -			
6	-			
7	ref cos			
8	ref sin			
9	data +			

Sine / Cosine - Module X300_SC2 or X300_SM1

Modu	Module: X300_SC2 / X300_SM1			
PIN X30	Function			
1	GND			
2	5,5 V			
3	cos +			
4	sin +			
5	zero pulse -			
6	-			
7	ref cos			
8	ref sin			
9	zero pulse +			

Feedback - Module X300 with Memory

As of firmware version V8.35 the 638 Drive supports the X300-x**M-**Modules.


This module has an additional memory chip (Flash).

This flash stores the complete drive data. (firmware, function code, parameters, application program)

When a drive is defect the X300-memory module can be replaced with the complete drive data in the new drive.

You need no additional configuration work or software tools.

Requirement: The drive type must be equal (same current)!

Attention during the 1.st switch on of the control voltage after the X300 module replacement!

After the replacement of the X300 module, make sure that the 1st switch on of the 24V control voltage has no interruption during 60 seconds.

(It is necessary that the copy program for Firmware and X300 Feedback function code are not interrupted.)

Applications in Accordance with the Regulations

When the 638A Drive supports the safety function "Safe Torque Off", in the sense of providing a definitive stopping of the equipment, with protection against unanticipated start-up, in accordance with regulations EN954-1, Category 3 and EN, after the X300 module change one must follow the instructions completely as stated in the validation report.

2.5 Service-Interface COM1 (RS232)

Functions:

- Supports all diagnostic and parameter configuration activities
- PC connection utilizing our communications cable KnPC/D
- Communication utilizing our operational program software (EASYRIDER® Windows - Software)

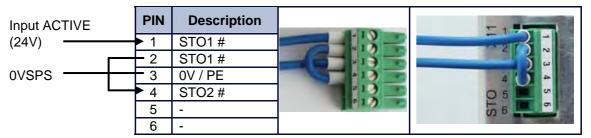
Com 1 RS232		Function Drive Side		RS232 on PC	
	PIN		PIN		
4-Pin Modular Plug		THE RESIDENCE OF THE PARTY OF T		6 Com1 PC	
RXD	1	Receive Serial Data	3	TXD	
TXD	2	Send Serial Data	2	RXD	
	3	Do Not Connect			
GND	4	Ground	5	GND	

Order code	Length	Description
KnPC637+/631-03.0	3 m	PC-Side Sub D 09-Plug
KnPC637+/631-05.0	5 m	Drive-Side 4-Pin RJ 10-Plug

<u>Note</u>

The service interface port is not galvanically separated and should therefore not be used as the operations interface port (fixed wiring)!

The network connection with the PC must be located near the Drive in order to receive the reference potentials of the units together.


2.6 Safe Torque Off

Connection Safe Torque Off X11

Plug	y - X11	- ,	
PIN	Description	Function	×2
1	STO1#	Channel 1 (ACTIVE_STO1)	3
2	STO1#	Channel 1 (ACTIVE_STO1) Parallel to PIN 1	4
3	0V / PE	Reference Potential 0V	0.5
4	STO2#	Channel 2 (ACTIVE_STO2)	E 6
5	-	Ready potential-free contact assembly	0) 0
6	-	Ready potential-free contact assembly	

Further description of this function can be found in Chapter "Safe Torque Off" (STO)

Connection WITHOUT the utilization of the Safe Torque Off, (STO), function

The control supply voltage must be definitively separated, in accordance to regulation EN 1578

2.7 Signal Connection

Control Signal Plug X10 (SUB D25 Socket)

Inputs / Outputs

Cont	Control Signal Plug X10					
PIN X10	Function	Туре	Description	X10		
1	Shielding Connection		Screen	2513		
2	Configurable (Operating Mode)	ОРТО	Input			
3	Stabilized Auxiliary Supply Voltage -12VDC; max. 80 mA		Output Auxiliary Supply Voltage			
4	Configurable (Operating Mode)	OPTO				
5	Reference Point to X10.18		Input Analog 0+/-10V / Ri = 10 kOhm	0/1		
6	Configurable	-	Output Analog			
7	Through JP100 (soldered jumper) assignable as a free and loopable potential for the READY Contacts		Optional	CONTROL		
8	ON: Drive trouble free OFF: Drive problem or power supply interruption	Relays	Output Constant: Ready	8		
9	Reference Point for Digital Input		Reference Point for Digital Inputs			
10	Ground for Analog Signal		Ground			
11	Configurable (Operating Mode)	OPTO	Input			
12	Configurable (Operating Mode)	OPTO	Output			
13	Configurable (Operating Mode)	ОРТО	Output			
14	Configurable (Operating Mode)	ОРТО	Input			
15	Configurable (Operating Mode)	OPTO	Input			
16	Stabilized Auxiliary Supply Voltage +12V DC; max 80 mA		Output Auxiliary Supply Voltage			
17	Configurable	-	Output Analog			
18	Rotational Speed Setpoint; Scaleable differential with respect to X10.5		Input Analog 0+/-10V / Ri = 10 kOhm			
19	Specifications for the Power Limits - can be activated and are scaleable (0+10V for 0 I _{max})		Input Analog 0+10V Ri = 10 kOhm			
20	Configurable (Operating Mode)	OPTO	Output			
21	Nominal: 24VDC		Supply for Outputs			
22	Configurable (Safety Functions)	OPTO	Input			
23	-	-	-			
24	Configurable (Operating Mode)	OPTO	Input			
25	Configurable (Operating Mode)	OPTO	Input			

Data for the digital in and outputs: See Chapter. "■ General Technical Data"

2.8 Multi-Function X40

Description of the X40:

Via a programmable I/O processor, the X40 connection can be configured differently. EASYRIDER® Windows - Software

Standard functions:

- Incremental output
- Incremental input
- Stepper motor pulse inputs
- SSI interface

The unobstructed configurability provides ideal conditions for synchronous applications.

General Data	X40
Plug Type:	SUB D 09 male plug
Maximum Input or Output Frequency:	312 kHz
Maximum Cable Length - connected to galvanically insulated terminals (Encoder, controls)	25 m; For extended distances please contact our engineer
Maximum Cable Length - connected to ground related terminals (other drives, controls)	2 m, Pay attention to provide for good common grounding!
Maximum Number of Signal Inputs - to one as incremental output configured device	8
Output Signals:	Driver Model MAX483 or compatible, RS422
Differential Logic Level:	$L \leq 0.5V$ $H \geq 2.5V$
Nominal Range:	0,0 5,0V 150mA max.
Input Signals:	Receiver Model MAX481 or compatible, RS422
Differential Input Level:	Diff min = 0,2V
Nominal Signal Difference:	1,0V
Current Consumption:	14 mA (depending on the frequency)

Notice:

Master / Slave Operation

1 Master, Maximum 8 Slaves

Condition: Devices must be located directly side by side!

• Incremental - Output

EASYRIDER® Windows - X40 Connection: Mode = Incremental Output

Incremental encoder simulation for processing in positioning modules

Standard: 1024 increments with Pulse Duty Cycle

Additional selectable pulse settings: 16384, 8192, 4096, 2048, 512, 256, 128, 64

Inc. I/O X40				
PIN X40	Function	Designation	X40	
1	Channel B	В		6
2	Channel B - Inverted	/B		6 '
3	Shield Connector	Shield		
4	Channel A	Α	2/	13 : .
5	Channel A - Inverted	/A	-	9 5
6	Reference *	GND	8	
7	Channel Z - Inverted Zero Impulse	/Z	INCR.	
8	Channel Z, zero impulse	Z		
9	Supply Voltage Output Max. 150 mA	+ 5 VDC		

Pulse resulution	Max. permissible speed
≥1024 Incr./rpm	12000 rpm
2048 Incr./rpm	7600 rpm
4096 Incr./rpm	3800 rpm
8192 Incr./rpm	1900 rpm
16384 Incr./rpm	950 rpm

Design Rule:

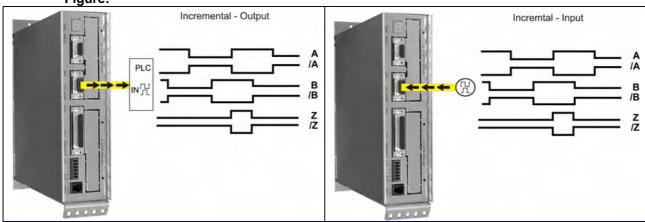
The input frequency range of the connected control must equal at least the value of the pulse output frequency on the X40.

n = max. speed (rpm)

x = increments e.g. 1024

f = output frequency at X40.1,2,4,5

Formula:
$$f = \frac{1,2*(n*x)}{60} = [Hz]$$


Example: n = 4000 1/min

$$f = \frac{1,2*(4000*1024)}{60} = 81920 \text{ Hz}$$

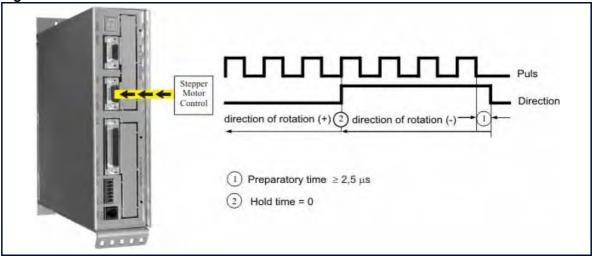
Incremental - Input

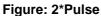
EASYRIDER® Windows - Software **X40 Connection: Mode = Incremental Input** Parameter range of the input signals: 10...1000000 increments

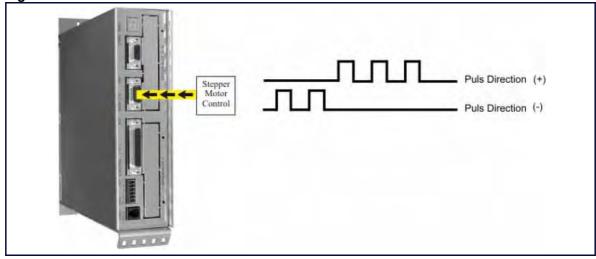
Figure:

Note:

The operation of incremental encoders via long cables may cause a voltage drop of the encoder power supply. We recommend the use of a separate voltage supply if necessary.


Stepper Motor <u>Input</u>


Two different modes are available


EASYRIDER® Windows - Software **X40 Connection: Mode = Stepper Motor (Pulse+Direction)**EASYRIDER® Windows - Software **X40 Connection: Mode = Stepper Motor (2*Pulse)**

INCR	INCR. I/O X40			_	
PIN X40	Function Mode: Pulse+Direction	Mode: 2*Pulse	Designation	X40	
1	Output: Drive Acti	ve - Inverted	/READY		6
2	Output: Drive Active		READY		
3	Shield Connector		Shield		
4	Pulse Inverted	Pulse - Inverted	-	2	
5	Pulse	Pulse -	-	-	9 5
6	Reference Potential (generally to connect)		GND	INCR	
7	Direction Inverted	Pulse + Inverted	-	ž	
8	Direction	Pulse +	-		
9	Supply Voltage Output Max. 150 mA		+5 VDC		

Figure: Pulse+Direction

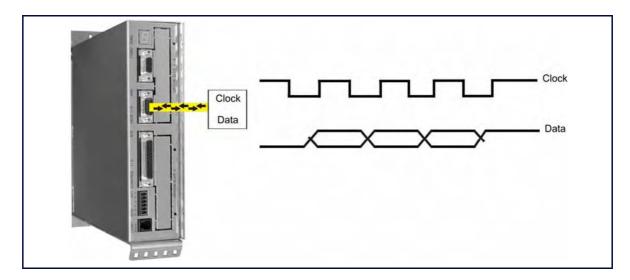
SSI-Encoder Interface

EASYRIDER® Windows - Software

- X40 Connection: Modus = SSI_13 Bit Singleturn Input
- X40 Connection: Modus = SSI_14 Bit Singleturn Input
- X40 Connection: Modus = SSI_25 Bit Multiturn Input / (13 Bit Single- / 12 Bit Multiturn)
- X40 Connection: Modus = SSI_26 Bit Multiturn Input / (14 Bit Single- / 12 Bit Multiturn)
- X40 Connection: Modus = SSI_18 Bit Multiturn Input / (16 Bit Single- / 2 Bit Multiturn)

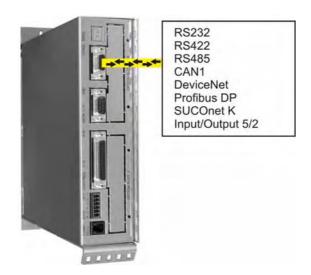
Incr. I/O X40			
PIN X40	Function	Designation	
1	Serial Data from SSI Encoder, GRAY Code up to 26 Bit - Inverted	/DATA	0
2	Serial Data from SSI Encoder, GRAY Code up to 26 Bit	DATA	X40
3	Shield Connector	Shield	6 1
4	Clock Output - Inverted Standard Frequenzy: 179 kHz	/TAKT	0
5	Clock Output Standard Frequenzy: 179 kHz	TAKT	INCR. 17
6	Reference Potential	GND	S III
7	Do Not Connect		Z
8	Do Not Connect		
9	Supply Voltage Output Max. 150 mA If other data required: a) Use of X300 Module b) External Supply	+5 VDC	

TAKT and /TAKT twisted pairs


DATA and /DATA twisted pairs

Cable Shielded - shielding grounded at both ends,

Max. Cable Length: 200m


Note:

For further information about SSI (Synchronous Serial Interface), please refer to the documentation of the appropriate suppliers. (e.g.: Comp. Sick or Hengstler)

2.9 Fieldbus Interface COM2

Additional functions can be realized through the optional employment of the **Options Modules**

Pinning for RS232

Module: RP 232		
PIN	Function	
1	-	
2	RXD	
3	TXD	
4	-	
5	GND / 485-GND	
6	-	
7	-	
8	-	
9	-	

• Pinning for RS422/485

Module: RP 422 oder RP 485		
PIN	Function	
1	-	
2	-	
3	-	
4	Data In	
5	GND	
6	Data In - Inverted	
7	Data Out - Inverted	
8	Data Out	
9	-	

Options module **RP 422**, <u>without</u> galvanic separation Options module **RP 485**, <u>with</u> galvanic separation Parallel wiring for up to 16 units. (Full - Duplex, 4-Wire)

• Pinning for CAN or DeviceNet

Module: RP CAN (CAN BUS1) or RP DEV		
PIN	Function	Designation
1	-	-
2	CAN_L Bus Line (dominant low)	CAN_L
3	Ground	CAN-GND
4	•	-
5	-	•
6	Optional Ground	CAN-GND
7	CAN_H Bus Line (dominant high)	CAN_H
8	-	
9	-	-

with galvanic separation

Pinning for Profibus DP

Module: RP DP		
PIN	Function	Designation
1	-	-
2	•	-
3	Line B	В
4	Request to Send	RTS
5	Ground	PDP-GND
6	Potential +5V	+5V
7	-	-
8	Line A	Α
9	-	-

with galvanic separation

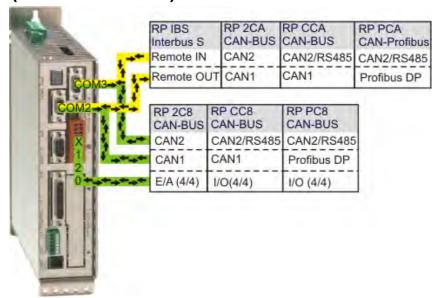
• Pinning for SUCOnet K

Module: RP SUC		
PIN	Function	Designation
1	-	-
2	•	-
3	Data Line +	TA/RA
4	•	-
5	Signal Ground	SGND
6	•	-
7	Data Line -	TB/RB
8	-	-
9	-	-

with galvanic separation

Pinning for EA5 I/O-Interface (Digital In and Outputs)

Mod	Module: RP EA5			
PIN	Function	Designation	Status	
1	BIAS Input 101	Standard	Input	
2	BIAS Input 102	Standard	Input	
3	BIAS Input 107	Standard	Input	
4	BIAS Input 108	Standard	Input	
5	0VSPS	Ground reference 0VSPS	В	
6	BIAS Input 106	Standard	Input	
7	BIAS Output 109	Standard	Output	
8	BIAS Output 110	Standard	Α	
9	+24VSPS	Ext. +24V feed-in	UB	



with galvanic separation

Notice!

The inputs with the internal numbers 107 and 108 must be connected to pin numbers 3 and 4. The outputs with the internal numbers 109 and 110 must be connected to pin numbers 7 and 8.

2.10 Fieldbus Interface <u>COM2</u> in Combination with <u>COM3</u> (OPTION SLOT A/B)

Pinning for Interbus S (RP IBS)

Remote OUT - Outgoing Interface (SUB D09 Socket)

Module: RP IBS		
PIN	Function	Designation
1	Data Line OUT Forward (error voltage A)	DO2
2	Data Line IN Backward (error voltage A)	DI2
3	Reference Potential	IBS-GND
4	-	=
5	VCCI	+5V
6	Data Line OUT Forward (error voltage B)	/DO2
7	Data Line IN Backward (error voltage B)	/DI2
8	-	-
9	Reporting Input *	RBST

* for additional Interbus S - Interfaces

Remote IN - Incoming Interface (SUB D09 Plug)

Module: RP IBS		
PIN	Function	Designation
1	Data Line IN Forward (error voltage A)	DO1
2	Data Line OUT Backward (error voltage A)	DI1
3	Reference Potential	IBS-GND
4	-	-
5	-	-
6	Data Line IN Forward (error voltage B)	/DO1
7	Data Line OUT Backward (error voltage B)	/DI1
8	-	-
9	-	-

with galvanic isolation

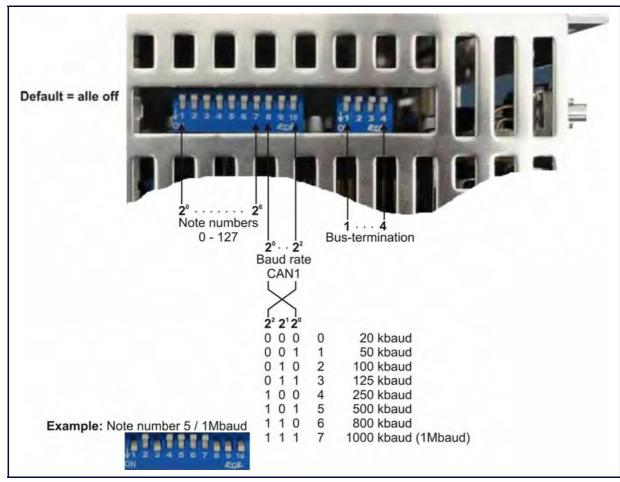
2.11 Fieldbus Interface RP 2CA, 2C8

• Pinning CAN1-BUS and CAN2-BUS

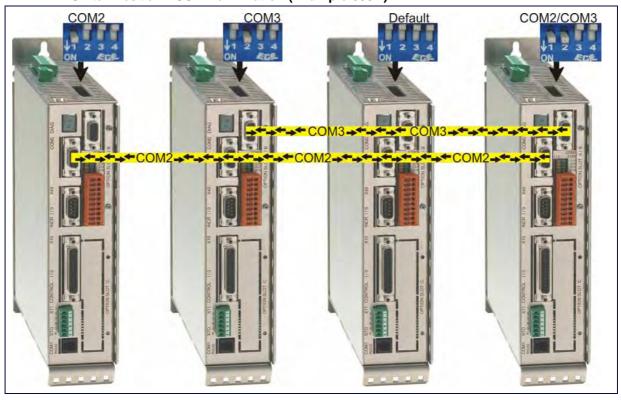
Mod	ule: RP 2CA, 2C8		CAN1	CAN2
PIN	Function	Designation	2	
1	-	-		
2	CAN_L Bus Line (dominant low)	CAN_L	COM2	9 5
3	Ground	CAN-GND		
4	-	-		
5	-	-	6.1	6 4
6	Optional Ground	CAN-GND		
7	CAN_H Bus Line (dominant high)	CAN_H		
8	-	-		COM3
9	-	-		

with galvanic isolation

Pinning RP 2C8 X120 (with I/O's)


X120	Fu	ınction	BIAS PIN	Status	COM3
7.120	0	1	DIAOT III	Otatas	1/0 X120
1	BIAS	Reset Drive Fault	Input 121	Input	1/5 2/6 3/7 4/8
2	BIAS	Limit Switch +	Input 122	Input	
3	BIAS	Limit Switch -	Input 123	Input	
4	BIAS	Reference Switch	Input 124	Input	I/O's
5	BIAS	Cam 1	Output 125	Output	B 5
6	BIAS	Cam 2	Output 126	Output	7
7	BIAS	Cam 3	Output 127	Output	ED 11 8
8	BIAS	Cam 4	Output 128	Output	100 11 9
9	Ext. +24 V Supply		-	Ub	0
10	Ground Reference 0 V		-	В	

The signal status of the I/O's is shown with a 2mm LED LED on I/O = high / LED off I/O = low. (min./max. cable cross-section: $0.08 \text{mm}^2 / 1.5 \text{mm}^2$)


2 Connection Assignments and Functions

DIP Switch Position for Option Module RP 2CA and RP 2C8

DIP - Switch Position CAN

DIP – Switch Position BUS – Termination (Example 638A)

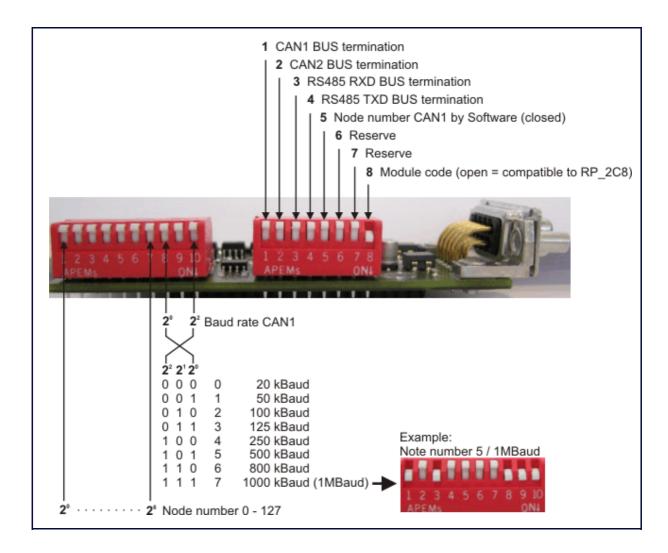
2.12 Fieldbus Interface RP CCA, CC8

• Pinning CAN1-BUS, CAN2-BUS and RS485

Mod	Module: RP CCA, CC8			
PIN	Function	Designation		COM2
1	-	-		O L
2	CAN_L Bus Line (dominant low)	CAN_L		95
3	Ground	CAN-GND	CAN1	
4	-	-	-	
5	-	-		6 4
6	Optional Ground	CAN-GND		
7	CAN_H Bus Line (dominant high)	CAN_H		
8	-	-		
9	-	-		
	CAN2	RS485		
1	-	Data-IN inv.		
2	CAN_L Bus Line (dominant low)	-		
3	Ground	485-/CAN-GND		
4	-	DATA-IN	CANO DUE / DE 405	
5	-	GND (optional)	CAN2-BUS / RS485	
6	Ground	485-/CAN-GND		6 4
7	CAN_H Bus Line (dominant high)	-		
8	-	Data-OUT		
9	-	Data-OUT inv.		COM3

with galvanic isolation

• Pinning RP CC8 X120 (with I/O's)


X120		unction	BIAS PIN	Status	COM3
	0				1/0 X120
1	BIAS	Reset	Input 121	Input	2/6
	B., (0	Drive Fault	mpat 121	mpat	3(7
2	BIAS	Limit Switch +	Input 122	Input	4
3	BIAS	Limit Switch -	Input 123	Input	
4	DIAG	Reference	Len 1.404	lan t	1101 III 3
4	BIAS	Switch	Input 124	Input	I/O's
5	BIAS	Cam 1	Output 125	Output	5
6	BIAS	Cam 2	Output 126	Output	7
7	BIAS	Cam 3	Output 127	Output	ED E 8
8	BIAS	Cam 4	Output 128	Output	E 1 9
9	Ext. +24 V Supply		-	Ub	0
10	Ground Re	eference 0 V	-	В	

The signal status of the I/O's is shown with a 2mm LED LED on I/O = high / LED off I/O = low. (min./max. cable cross-section: 0,08mm² / 1,5mm²)

2 Connection Assignments and Functions

- DIP Switch Position for Option Module RP CCA and RP CC8

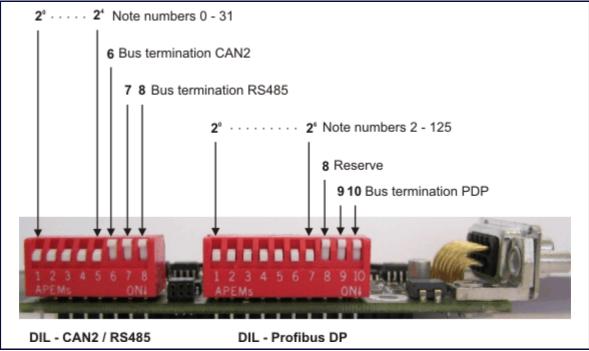
DIP - Switch Position CAN

2.13 Fieldbus Interface RP PCA, PC8

Pinning Profibus DP and CAN2-BUS and RS485

Mod	ule: RP PCA, PC8			2
PIN	Function	Designation		COM2
1	-	-		Ŭ a
2	-	-		9 9
3	Line B	В	Profibus DP	
4	Request to Send	RTS	1 Tollbus Di	
5	Ground	PDP-GND		6 4
6	Potential +5V	+5V		
7	-	-		(32)
8	Line A	Α		
9	-	-		
	CAN2	RS485		
1	-	Data-IN inv.		
2	CAN_L Bus Line (dominant low)	-		
3	Ground	485-/CAN-GND		Ma a
4	-	DATA-IN	CANO DUE / DE 40E	
5	-	GND (optional)	CAN2-BUS / RS485	
6	Ground	485-/CAN-GND		6 1
7	CAN_H Bus Line (dominant high)	-		
8	-	Data-OUT		
9	-	Data-OUT inv.		COM3

Pinning RP PC8 / X120 (with I/O's)


X120	Function		BIAS PIN	Status	COM3
X120	0	1	DIAO I III	Otatus	1/0 X120
1	BIAS	Reset Drive Fault	Input 121	Input	1/5 2/6 3/7 4/8
2	BIAS	Limit Switch +	Input 122	Input	1/8
3	BIAS	Limit Switch -	Input 123	Input	
4	BIAS	Reference Switch	Input 124	Input	I/O's
5	BIAS	Cam 1	Output 125	Output	B 5
6	BIAS	Cam 2	Output 126	Output	0 7
7	BIAS	Cam 3	Output 127	Output	BD W 8
8	BIAS	Cam 4	Output 128	Output	100 10 19
9	Ext. +24 V Supply		-	Ub	0
10	Ground Re	eference 0 V	-	В	

The signal status of the I/O's is shown with a 2mm LED LED on I/O = high / LED off I/O = low. (min./max. cable cross-section: 0,08mm² / 1,5mm²)

2 Connection Assignments and Functions

DIP Switch Position for Option Module RP PCA, PC8

DIP - Switch Position CAN2 / RS485 and Profibus DP

Further information for the Profibus DP: See Documentation 07-05-04-02-E-Vxxxx.

2.14 Overview of the Terminal Cross Section

Cross Section	ı	638A	638B	638C
		[mm²]	[mm ²]	[mm ²]
X60 Line,	Solid Core / Multiple conductor line	0,2-2,5	0,2-10 0,2-6	0,75-16 0,75-16
Brakeresistor	Flexible with ferrule without plastic sleeve	0,25-2,5	0,25-6	0,5-16
DC-Link	Flexible with ferrule with plastic sleeve	0,25-2,5	0,25-4	0,5-16
	Flexible with TWIN- ferrule with plastic sleeve	0,5-1	0,25-1,5	0,5-6
	Approbation Data UL/C-UL-US CSA	[AWG] 30-12 28-12		[AWG] 20-6
Stud Torque [N		0,5-0,6	Spring tension	1,7-1,8
X01 Control	Solid Core and Multiple conductor line	0,14-1,5	0,14-1,5	0,14-1,5
Voltage X11	Flexible with ferrule without plastic sleeve	0,25-1,5	0,25-1,5	0,25-1,5
STO, Active X62	Flexible with ferrule with plastic sleeve	0,25-0,5	0,25-0,5	0,25-0,5
Brake, Thermo	Flexible with TWIN- ferrule with plastic sleeve	0,5-1	0,25-1	0,25-1
	Approbation Data UL/C-UL-US	[AWG] 30-14	[AWG] 30-14	[AWG] 30-14
0. 17	CSA	30-14	30-14	30-14
Stud Torque [N	Im] Solid Core /	0,2-0,22	0,2-0,22	0,2-0,22
X61 Motor	Multiple conductor line	0,2-2,5 0,2-2,5	0,2-10 0,2-6	0,2-10 0,2-6
Wotor	Flexible with ferrule without plastic sleeve	0,25-2,5	0,25-6	0,25-6
	Flexible with ferrule with plastic sleeve	0,25-2,5	0,25-4	0,25-4
	Approbation Data	[AWG]	[AWG]	[AWG]
	UL/C-UL-US	30-12 28-12	28-8	28-8
01 17	CSA		28-8	28-8
X120	Stud Torque [Nm]		0,7-0,8	0,7-0,8
Option 2C8,	Solid Core and Multiple conductor line	0,08-1,5	0,08-1,5	0,08-1,5
PC8, CC8	Approbation Data	[AWG]	[AWG]	[AWG]
	UL/C-UL-US CSA	28-14 28-14	28-14 28-14	28-14 28-14
	COA	20-14	20-14	20-14

3 Operating Mode

3.1 Operating Mode General

The preselection of the device functions are carried out by choosing the operating modes 0...5 according to the following table, **see:** ■ Operating modes and pin functions, (EASYRIDER® Windows - Software).

Each operating mode allows for the assignment of different in and output functions (F0..F6).

Operating Mode	Reference Source	Hints for Selecting the Operating Mode				
0 1 2	Analog (X10.5/18)	Switching the operating modes 1 and 2 through input X10.24 Speed control analog Torque controller analog				
3	Analog (X10.5/18) / Digital	Simple applications with the requirement of switching between position and speed control position controller (input X10.24). Handling like operating mode 4				
4	Digital or Analog in acc. to parameter setttings					
pos. selection (Nr. 09) function F2 data 2º2 ⁴						
input start	function F2 X10	0.2				
axis move to s	selected position-number					
output positio	reached function F0 X1	0.12				
t1= 2ms minimum t2= 2ms m		inimum				
5	Digital or Analog in acc. to programming or via digital communication (e.g. fieldbus)	Simple to complex systems using BIAS instructions - (up to 1500 command blocks) PLC Functions				

3.2 Operating Modes and Pin Functions

		Operating Modes						
Available Contact Numbers	0 Torque / Speed- Control	1 Speed Control	2 Torque Control	3 Position / Speed Control	4 Position Control	5 Position Control + BIAS Functions		
Input X10.14	F0, F1	F0, F1	F0, F1	F0, F1, F2, F3	F0, F1, F2, F3,F6	F0, F1, F2,F6		
Input X10.15	F0, F1	F0, F1	F0, F1	F0, F1, F2, F3	F0, F1, F2, F3,F6	F0, F1, F2,F6		
Input X10.4					F2,F6	F0, F2, F3,F6		
Input X10.25					F2,F6	F0, F2, F3,F6		
Input X10.11	F1	F1	F1	F1	F1,F2,F6	F0, F1, F2, F3,F6		
Input X10.24	F0 L = torque- H = speed control			F0 L = torque- H = speed control	F1, F2,F6	F1, F2, F3,F6		
Input X10.2					F0	F2, F3		

Output X10.12	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5
Output X10.13	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5
Output X10.20	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5
Output X62.3 X62.4	F0, F2, F5	F0, F2, F5	F0, F2, F5	F0, F1,F3, F5	F0, F1,F3, F5	F0, F1, F2, F3, F4, F5

3 Operating Mode

3.3 Configurable Pin Functions (Operating Mode Dependent)

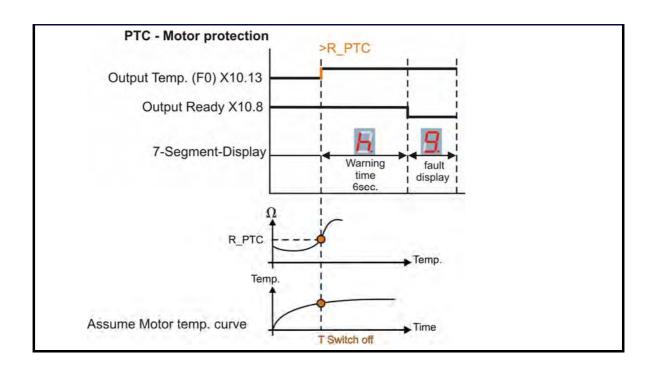
	Input Functions (Operating Mode Dependent)									
Input Nr.	Function F0	Function F1	Function F2	Function F3	Function F4	Function F5	Function F6 ²⁾			
Input X10.14	X	3) limit switch +	1) set selection data 2 ⁰	move manually +	X	X	CAN Node no. 2 ⁰			
Input X10.15	X	3) limit switch -	1) set selection data 2 ^a	move manually -	X	X	CAN Node no. 2 ^a			
Input X10.4	latch input 1	extended latch	1) set selection data 2 ^b	X	X	X	CAN Node no. 2 ^b			
Input X10.25	latch input 2	X	1) set selection data 2 ^C	X	X	X	CAN Node no. 2 ^C			
Input X10.11	start (slope 0- >1) for BIAS - move commands	3) regulator trouble reset	1) set selection data 2 ^d	X	X	X	CAN Node no. 2 ^d			
Input X10.24	operating mode selection (0) – 1or 2 (3) – 1or 4	3) reference sensor	1) set selection data 2 ^{max}	X	X	X	CAN Node no. 2 ^{max}			
	start (slope 0>1) with position set selection in position control (4)	X	strobe (slope 0>1) for BIAS-set selection	X	X	X	X			
Output X10.12	position reached	reference output	X	tracking window exceded	synchron- format trigger	no drive trouble				
011	40,000,000,000			tua alda a	atart affaat					

Output X10.12	position reached	reference output	X	tracking window exceded	synchron- format trigger	no drive trouble	-
Output X10.13	temperature monitoring	reference output	X	tracking window exceded	start offset trigger	no regulator trouble	-
Output X10.20	warning	reference output	X	tracking window exceded	X	no drive trouble	-
Output X62.3 X62.4	active ok (motor brake)	reference output	X	tracking window exceded	X	no drive trouble	-

BIAS function is freely programmable in operating mode 5. - No function in operating modes 0 to 4.

Fast input for optimal timing.

- With every row (from the top to the bottom) in which the function F2 is assigned to an input, the binary value (2ⁿ) increases by 1. (See example)
 Operating mode 4: Only numbers 0 9 are allowed to be set!
- 2) Only possible with module RP-CAN.
- 3) If the Option RP 2C8 / PC8 (See: Fieldbus interface COM2-COM3) is inserted, the contact functions as described for the X10-plug are not valid. The inputs are freely programmable utilizing the BIAS program.



3.4 Functions Diagrams with Protection Mode "Switch Off"

In accordance with EASYRIDER® Windows – Software "Commissioning / Motor / Motor/30"

3 Operating Mode

4.1 Mounting

In order to guarantee the best possible air circulation for the cooling unit, the servo drive should only

be installed in a vertical position. The vertical installation above other systems or heat producing units can cause overheating.

4.2 Control Cabinet Mounting

Installation should be carried out only in a control cabinet in which the inside is free from dust, corrosive fumes, gases and liquids.

Make absolutely sure that the condensing of evaporating liquids including atmospheric moisture is avoided. Should the digital servo drive be installed in a place where condensation is likely, a suitable anti-condensation heater must be installed. The heater must be SWITCHED OFF during normal operation.

Automatic switch off is recommended

The servo drives should not be installed in areas which have been classified as dangerous, unless they have been installed in an approved enclosure and in accordance with applicable regulations. In such an application double check all aspects of the installation.

Please pay attention during installation of the unit to provide for adequate space and ventilation! (See: "

Dimensions")

General Rule:

It is better to place heat-producing devices low in an enclosure to support internal convection and to spread out the heat. If placing such devices up high is unavoidable, enlarging the upper dimensions at the expense of height or the installation of fans should be considered.

4.3 Cooling and Ventilation

The digital servo drives are inherently designed to protect against damage which may be caused due to overheating. A temperature sensor is mounted on the heat sink. When the temperature reaches a level above >95°C, the unit will be automatically shut-down. This setting can not be altered.

The cooling of the power module will be assisted as much as possible with an internal fan. Depending upon the temperature the fan unit will operate at one of two levels, in order to limit unnecessary wear and potential pollution.

Make sure a cabinet of proper size is selected for adequate air circulation.

If the device is placed and operated in a non-ventilated environment, the case volume of the specified control cabinet must be calculated in accordance with the following table!

Unit	Volume / Cabinet
638A01 638A06	0,12 m³
638B03 638B05	0,15 m³
638B08 638B15	0,25 m³
638C	0,35 m³

For more specific information, please refer to the information provided by the manufacturer of the cabinet.

5 Electrical Installation

5.1 Installation General

Safety

The voltages carried by power supply cables, motor cables, connectors, and certain parts of the drive can cause serious electric shock and even death

Danger of Electric Shock

Caution!

Risk of electrical shock, wait 3 minutes after switching off, for discharging of the capacitors.

Disconnect the drive unit from the mains before working on it. A period of **three** minutes **must** pass after switching off so that the internal capacitors can discharge completely. Until the discharge

time is over, there can be dangerous voltage stored in the module!

Persons, who monitor or carry out electrical installation and maintenance must be adequately qualified and schooled in these activities.

Dangerous Areas

The use of variable speed drives of all kinds can invalidate the certification for dangerous areas (apparatus group and/or temperature class) of explosion-protected motors. Inspection and certification for the complete installation of servo motors and electronic components **must** be obtained.

Grounding - Safety Grounding

The grounding impedance must meet the requirements of local industrial safety regulations and should be inspected and checked at appropriate and regular intervals

Ground Connections

It is recommended to attach a ground bus, made of high conductivity copper, as near as possible to

the servo-rack or regulator modules in order to minimize the length of the cable run connections. The recommended dimensions are:

Thickness: d = 5 to 6 mm

Length (m)	Width (mm)	d
< 0,5	20	grounding bus-bar
0,5 < 1,0	40] b
1,0 < 1,5	50	▼
		l ' l

Due to increased discharge currents > DC 10mA resp. > AC 3,5mA the grounding connection of the drive has to be connected 2 times. At power supply connector X60.7 and at the housing grounding screw!

Short-Circuit Capacity and Discharge Currents

Due to the working principles of servo drives, there may discharge currents to the ground exceeding DC 10mA resp. AC 3,5mA.

Suitable for use in a system capable of delivering not more than 5000 RMS symmetrical amperes 240V (638A) or 480V (638B/C) maximum. (Note according to UL508C)

5.2 Power Mains Connection

Types of power mains

The 638 servo drives can be directly connected to TT- and TN-Systems (TT- and TN-Systems are three-phase systems with grounded neutral).

When using the servo drive in IT mains (three-phase systems without grounded neutral), isolation transformers must be used.

The secondary neutral must be grounded and connected to the 638 protective ground conductor.

General is valid, that with a phase-earth voltage (rated isolation voltage) > 300V AC the isolation requirements (necessary clearance- and creapage distance, Test voltage, etc.) Concerning the EC Low Voltage Guideline is not filled anymore and so that the CE conformity is not given.

Mains supply voltage range 638A

The nominal supply voltage range is 1/3*230V AC +/-10%.

Respective intermediate transformers must be used for higher supply voltages.

With grounded power mains, autotransformers can also be used to adjust the voltage.

Neutral does not have to be connected for this type of transformer.

It is possible to use a lower supply voltage range. Note: In this case the internal DC–BUS capacity may be not high enough (specially in 1 phase mains supply) and the user has to adjust the undervoltage monitoring parameter of the drive.

Mains supply voltage range 638B/C

The nominal supply voltage range is 3*400 / 480 AC +/-10%.

It is possible to use a lower supply voltage range. Note: In this case the internal DC-BUS capacity may be not high enough and the user has to adjust the undervoltage monitoring parameter of the drive.

Protective Ground Connection (PE)

The following information concerning the protective ground connection corresponds to EN 61800-5-1 Item 4.2.5.4.1 and 4.2.5.4.2.

Cable cross section

The cross section for the protective ground conductor at X60 corresponds to the external conductor.

The 638 servo drive is a devices with increased leakage current (larger than 3,5 mA AC or 10mA DC). Therefore a second protective ground conductor must be connected at the case-groundbolt. (with the same cross-section as the first protective ground conductor on X60).

Dimensioning of power mains cable and the over-current protection

The cross-section from the power main cable and the rated current for the over-current protection should be dimensioned for the average current load to be expected.

In the supply line a protection about a protective circuit breaker or fuse shall be provided. Circuit breakers with tripping-characteristic C or fuses with tripping-characteristic gM are to be used.

One determines the load to be expected on the average as follows:

1-phase supply:
$$I_{mains}[A] = \frac{S[VA]}{U_{Netz}[V]}$$
 3-phase supply: $I_{mains}[A] = \frac{S[VA]}{\sqrt{3} \times U_{Netz}[V]}$

The apparent power S can be calculated to that as follows:

$$S[VA] = M_{eff}[Nm] \times k \times \frac{2 \times \pi \times n_{average}[\min - 1]}{60}$$

The constant k for the different servo drives can be taken from the following table:

5 Electrical Installation

Туре	638A-1A	638A-2A	638A-4A	638A-6A
constant k	1,4	1,22	1,22	1,2

Type	638B-03	638B-05	638B-08	638B-10	638B-15
constant k	1,29	1,13	1,13	1,11	1,08

When information about load torque, Inertia and the friction-situation be there, the effective momentum is calculated with following formula:

(in case of correct motor dimensioning also the rated torque of the employed motor can be used):

$$M_{eff}[Nm] = \sqrt{\frac{1}{T_{cycle}[s]} \times \sum_{i} M_{i}[Nm] 2 \times t_{i}[s]}$$

For the determination of $n_{average}$ there must be corresponding information about the positioning-cycle.

$$n_{average}[\min-1] = \frac{1}{T_{cycle}[s]} \times \sum_{i} n_{i}[\min-1] \times t_{i}[s]$$

The cross section of the power main cable and the rated current of the used fuse are chosen in accordance with table "Current-carrying capacity of PVC isolated three-phase cable or single conductors" so, that the permissible current-carrying capacity of the chosen cross section larger or alike to the calculated main current. With drive groups this is the sum of the main currents.

$$I_{current-carrying \ capacity} \ge I_{main}$$
 $I_{current-carrying \ capacity} \ge \sum I_{main}$

The rated current of the fuse must be equal to or less than the permissible current-carrying capacity of the chosen cross sectional cable.

$$I_R \le I_{current-carrying\ capacity}$$
 $I_R \le \sum I_{current-carrying\ capacity}$

The following table show the maximum current load of PVC insulated three-phase cables (or conducting wires) according to IEC60204-1 at 40°C environmental temperature and 70°C maximum conductor temperature.

Line cross section	Individual wires in insulating conduit or cable duct	Cable in insulating conduit or cable duct	Cable on walls	Cable in a cable tray
	B1	B2	С	Е
[mm2]	[Aeff]	[Aeff]	[Aeff]	[Aeff]
0,75	7,6			
1,0	10,4	9,6	11,7	11,5
1,5	13,5	12,2	15,2	16,1
2,5	18,3	16,5	21	22
4,0	25	23	28	30
6,0	32	40	36	37
10	44	40	50	52
16	60	53	66	70

When determinating the cross section for he power mains, make sure that the cross section selected is within the range that can be used with power mains terminal X60. See Assignments Power Connections.

Dimensioning the Line Contactor

The rated current of the line conductor is oriented to the over-current for the power mains connection.

The line contactor is set up so that nominal operating current specified by the manufacturer of the line contactor for catergory AC-1 is approximately 1.3 times the rated current of the over current protection.

Fault Current Protection

Servo Drive of the 638series can cause a DC current in protective grounding.

Where for the protection in case of a direct or indirect contact residual current device (RCD) is used, only a RCD of the type B (AC-DC sensitive) is permissible on the current supply side.

If is permissible for application should types with increased trip current (300mA) and/or. short time-delayed to be used.

A another preventive measure must be used, e.g. separation from the environment by double or reinforced insulation or separation from the public supply system by a transformer.

Rated Fault Current

Line filters have high discharge currents due to intern capacities.

In the servo drive of the series 638 an intern line filter is integrated.

Additional discharge currents are caused by the capacities of the Motor cable and the motor winding.

Through the PWM frequency of the Inverter the leakage

current have high frequently rates.

The suitability of the RCD is to test for the respective application.

Generally we do not recommend the operation with RCD's.

The value of the leakage current depends on the following points:

- Length and characteristic of the motorcable
- PWM-Frequency
- Operation with or without shielding
- How and where is the motor housing grounded

Comment:

High fault currents can occur:

- Extreme unbalance factor of the three phase system.
- When connecting to the power mains (short-term single- or two-phase operation because of contact chatter on the line contactor)

Estimation:

Single-phase or two-phase operation (as intermediate state when switching on the line

$$I_A[A] = \frac{U_{Netz}[V] \times 2 \times \pi \times f_{Netz}[Hz] \times C_A[F]}{\sqrt{3}}$$

Single-phase operation with neutral line:

$$I_{A}[A] = \frac{U_{Netz}[V] \times 2 \times \pi \times f_{Netz}[Hz] \times C_{A}[F]}{\sqrt{3}} \qquad I_{A}[A] = \frac{U_{Netz}[V] \times 2 \times \pi \times f_{Netz}[Hz] \times C_{A}[F]}{2 \times \sqrt{3}}$$

The discharge capacitance C_A the various 638 Servo Drives can be taken from the following table:

		Servo Drives	_	Filter
	638A-0106 1phase	638A-0106 3phase	638A-0106A 1/3phase (JP 600 open)	LNF RA-230/12 1phasig
Discharge capacitance	230nF	277nF	136nF	10nF
		Servo Drives	_	
	-	638B0315 3phasig	638B0315 x A 3phasig	
Discharge capacitance	-	1610nF	200nF	

Recommendation:

For less leakage current operation with 1 phase supply it can be recommended the following combination. Use a Servo Drive with the optional Version 638Axx-3-A 1) and a low leakage linefilter Typ LNF RA *230/12.

When several 638A servo drives operates with 1phase supply and 3 phase are available in the machine, the drives should be divided similar on the 3 phases so that the charging currents obliterate mutually when the system is powered up.

Note:

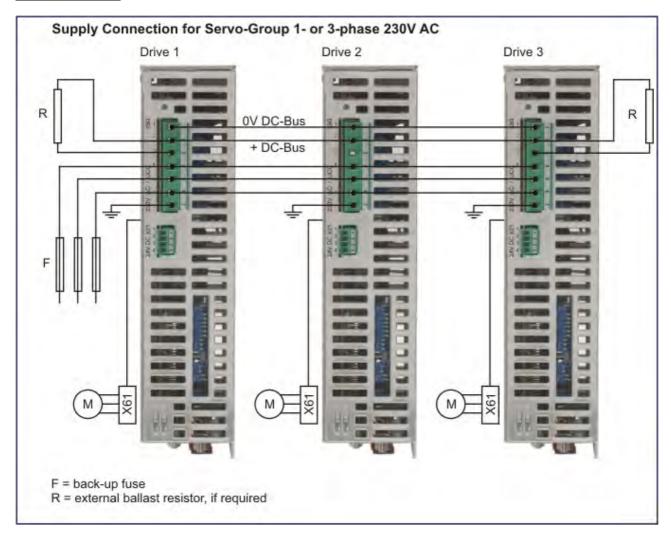
It only allowed, to connect the DC-Link Voltage between drives which are connected to the same phase or which have 3 phase supply.

¹⁾ AC-sided Y-Capacitance deactive (JP600 open, see chapter Jumper)

5 Electrical Installation

5.3 DC Link Parallel Connection

General


With the operation of a group of drives it is possible to couple the DC link circuit of the 638 Drives.

Advantages:

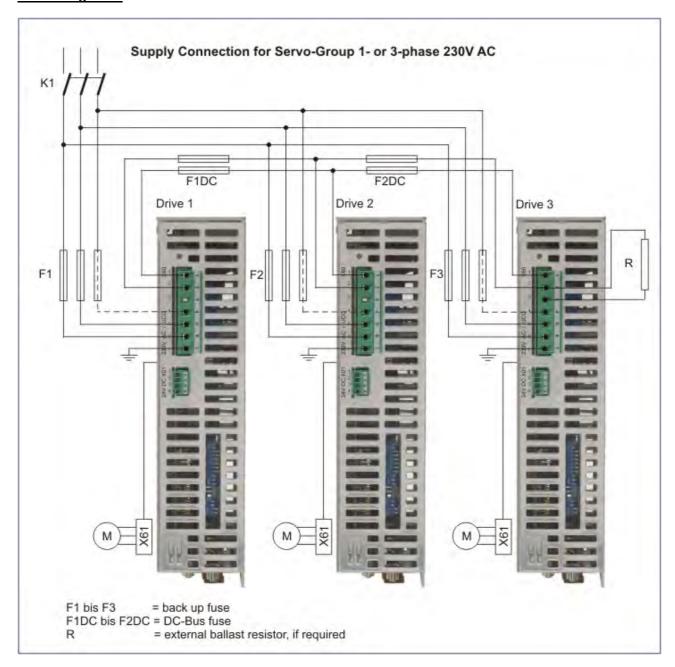
- Positive energy balancing utilization of braking energy, with energy equalization achieved through the DC link
- Smaller load on the ballast resistors
- Increased DC link capacity through smaller residual rippling, specifically with single phase applications
- Increase of the internal ballast peak performance
- > Increase of the internal ballast continuous power rating
- Internal unit balancing resistance provides for a uniform rectifier load sharing with a parallel incoming power supply

Variation 1; Servo Drives without DC LINK protection

Block Diagram 1

Advantage:

no DC-fuses necessary.


Disadvantage:

Sum of power limited by line fuse.

• Variation 2; Servo Drives with DC LINK protection

Block Diagram 2

Advantage:

Sum of power not limited by line fuse.

Disadvantage:

> DC-fuses necessary.

5 Electrical Installation

Function Softstart

When switch on the supply voltage the DC link capacities become over a resistance loaded. Attain the undervoltage threshold + constant waiting period (2,4s) that becomes charging resistor by

a relay bridges. The operating status "undervoltage "changes at the same time in "ready". When switching the supply voltage off the soft starting function becomes only after falling below undervoltage threshold again actively. It is therefore particularly with intermediate circuit-coupled Drives importantly before restarting the supply voltage to wait to those under voltage threshold is reached.

Up to standard undervoltage threshold of 160V the unchargeing time for the 6A-Drives is approx. 30 seconds.

Uncharging time to undervoltage threshold (160V) see table:

Тур	638A0106	638B0305	638B0815	638C
time	max. 30sec.	max. 28sec.	max.42sec.	being prepared

Installation Instructions and Warnings

- > The DC-Link connections of the Series 638 are not short circuit and earth fault proof and not protected against polarity reversal. A short circuit on the DC-Bus wires can be damage the rectifier in the Device.
 - In order to protect the rectifier also in the circuit variant 1, mains fuses of the class gRL must be set in. These are fuses with combined protection for wires and semiconductors.
- With a common DC link bus, one should employ the 638A Series of Servo Drives exclusively.
- Drives which are located immediately next to each other, within the same control cabinet, should be carefully arranged with the DC links being made employing a short wire connection.

Note:

Connect maximum 4 Servo drives together.

Note:

Units should be turned on together as shown. (Contactor K1) Switching delays can endanger the function of the rectifier and the "soft-power-up-circuitry", (wear effect).

Note:

The failure of individual AC fuses can go unnoticed as the power continues to be delivered through the DC-bus of the units connected in parallel. Regular checks of the fuses are therefore strongly recommended.

Note:

Careful planning and wiring are imperative! A short-circuit on DC bus link connections can cause serious damage to the rectifiers and drives.

Note:

With single phase power-supply at 638A Devices it is recommended that only the same phase is used for all coupled drives. The connection of different phases generates a DC-Link voltage of 565V DC! This can damage the devices.

Layout of the Ballast Capacity

Energy, which is produced by the electrical brake motor, will be fed into the DC link and then through the DC link coupling to serve other motors within the sequence. Only a portion of the energy which is produced in this manner leads to an increase in the DC link voltage and will then, at a specified voltage threshold, be converted to heat and released through the units' internal or external ballast. Therefore, an energy exchange occurs between the units, creating a positive energy balancing and overall work load balance of the ballast switches. A significant reduction factor in the load can be anticipated, depending upon the specifics of the installation.

La	yout Step by Step (without reduction factors)	Remarks
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Addition of all internal unit ballast continuous ratings Addition of all internal unit ballast peak performance ratings For information concerning the required data and design layout of the ballast resistance: See Chapter	The load on the internal ballast will be evenly divided between all of the units connected in parallel.
>	"• Layout of the Ballast Resistance" Arrange the external ballast resistance with regard for the braking power occurrence, if possible.	

5 Electrical Installation

5.4 Fuses, Contactors

• 638A

Servo - Driver			638A01	638A02	638A04	638A06	
Fuse, Contactor							
FI – Switch			Not recomm	mended			
Input Supply Current	1)	[A]	2, 8	4,7	9,4	11	
1 phase	4.						
Input Supply Current 3 phase	1)	[A]	1,6	2,7	5,4	7,8	
Fusible cut-out VDE		Туре	616A gG	616A gG	1016A gG	16A gG	
Automatic circuit breaker VDE		Туре	B6A16A	B6A16A	B10A16A	B16A	
Fusible cut-out UL	2)	Туре	6A15A	6A15A	1015A	15A	
Line contactor	3)	Туре	DILM7	DILM7	DILM7	DILM7	
Fusible cut-out	4)	Туре	10A16A	10A16A	10A16A	10A16A	
DC-link resp. AC-supply variant 1	ŕ		gRL	gRL	gRL	gRL	

• 638B

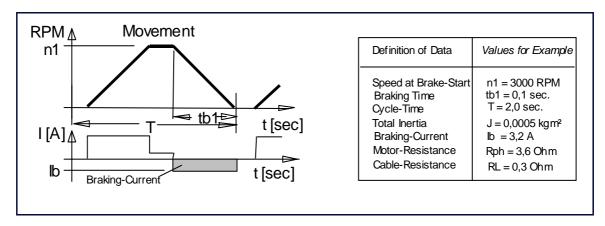
Servo - Driver			638B03	638B05	638B08	638B10	638B15
Fuse, Contactor							
FI – Switch			Not recomm	mended.			
Input Supply Current 3 phase	1)	[A]	3,2	5,6	8,5	8,9	11,4
Fusible cut-out VDE		Туре	616A gG	616A gG	1016A gG	16A gG	16A gG
Automatic circuit breaker VDE		Туре	B6A16A	B6A16A	B10A16A	B16A	B16A
Fusible cut-out UL	2)	Туре	6A15A	6A15A	1015A	15A	15A
Line contactor	3)	Туре	DILM7	DILM7	DILM12	DILM15	DILM15
Fusible cut-out DC-link resp. AC-supply variant 1	4)	Туре	10A30A gRL	10A30A gRL	10A30A gRL	1630A gRL	16A30A gRL

• 638C

Servo Drive			638Cxx	638Cxx	
Fuse, Contactor e					
FI – Switch			Not recom	mended	
Input Supply Current	1)	[A]	XX	XX	
3 phase					
Fusible cut-out VDE		Туре	32A gG	40A gG	
Automatic circuit breaker VDE		Туре	B32A	B40A	
Fusible cut-out UL	2)	Туре	35A	40A	
Line contactor	3)	Туре	DILM32	DILM40	
Fusible cut-out	4)	Туре	32A gRL	40A gRL	
DC-link resp. AC-supply					
variant 1					

- 1) At maximum output voltage and rated current.
- 2) UL listed (JDDZ) Fusible cut-out Class K5 or H, or rather UL listed (JDRX) Class H.
- 3) Recommended e.g. Klöckner Moeller
- 4) Class gRL are fuese with combient protect for Cable and Semiconductor. e.g. Fa. SIBA Sicherungs-Bau GmbH Serie 60 034.34.16; Fuseholder 5106304.x (up to 30A) Serie 50124.34.xx, Fuseholder 5105804.3 (up to 40A)

If these fuses are used, the mains voltage may only be switched on, when the Softstart - function is active. (Device in Undervoltage operating state).



5.5 Brake Resistor

Selection of the Brake Resistor

When employing a breaking mechanism with an operating motor driven system, the contained energy flows back into the drive. The capacitors within the motor can absorb a small portion of the excess energy. The rest of the energy must be dissipated through a resistor in heat. The activation of the Brake Resistor occurs, depending upon the voltage threshold. The resistance load is electronically simulated and monitored by our software (EASYRIDER® Windows - Software). Peak power (Pmax) and continuous power output (Pd) must be configured so that the specific requirements of the application are fulfilled.

The general rule for resistance measurements is as follows: Pmax / Pd <= 59.

Selection	
Step 1	Example
Evaluation of the Brake Capacity (Approximation without capacitor load, friction and drive power loss)	
Power of Motion:	Pkin = 0,0055 * 0,0005 * 3000 ² /0,1
Pkin = 0,0055 * J * n12 / tb1 [W]	Pkin = 247 W
Motor Power Loss:	Pvmot = 3,2 ² * (3,6 + 0,3)
Pvmot = lb² * (Rph + RL) [W]	Pvmot = 40 W
Continuous Power:	Pd = 0,9 * (247 - 40) * 0,1 / 2
Pd = 0,9 * (Pkin-Pvmot) * tb1 / T [W]	Pd = 9,3 W
Peak Power:	Pmax = (1,8 * 247) - 40
Pmax = (1,8 * Pkin) - Pvmot [W]	Pmax = 405 W
Mazeuramente Head:	

Measurements Used:

J Total Inertia [kgm²]

n1 RPM at Start of Braking [RPM]

tb1 Braking Time [Sec]
T Cycle Time [Sec]

Ib Motor Braking Current [A]

Rph Motor Resistance (terminal/ terminal) $[\Omega]$ RL Cable Resistance of the Power Cable $[\Omega]$

5 Electrical Installation

Step 2 Is internal and/or external Brake Resistor required?	Example-Drive Type: 638
Is the internal Brake Resistor sufficient or is no internal resistance available? Should no resistance be available then appropriately sized external Brake Resistor can be employed to meet system requirements according to the table (See below),	Overall Rating: Internal Resistance: Continuous Power Pd = 20W Peak Power Pmax = 0,83kW Requirement: Pd = 9,3W Pmax = 405W
External and internal resistance can be employed in a parallel configuration. In this case the internal and external capacities can be added together.	Result: The internal configuration is sufficient

Selection Brake Resistor

Only Parker or by our released ballast resistors used!

Servo Drives	Possible Brake Resistor
638A01 / 638A02 / 638A04 / 638A06	33R 100W
638B033 / 638B053	100R 100W, 56R 200W
638B036 / 638B056	100R 100W
638B037 / 638B057	100R 100W
638B083	100R 100W, 56R 200W, 36R 300W, 33R 300W
638B086	100R 100W,
638B087	100R 100W
638B106 / 638B156	100R 100W, 56R 200W, 36R 300W, 33R 300W
638B107 / 638B157	100R 100W, 56R 200W, 36R 300W, 33R 300W
638C	being prepared

Configuration of the Brake Resistor

Brake Resistor Circuit Configurations

1. Activate Electronic Resistance:

The electronic resistance will be activated. "Activate Brake Resistor = Y" (Default - setting)

2. Switching Threshold:

The switching threshold is to be selected.

"Ucc Brake Resistor On = 375V" for a 230V AC incoming power supply (Default - setting)

"Ucc Brake Resistor On = 375V" for a 400V AC incoming power supply(Default - setting)

"Ucc Brake Resistor On = 375V" for a 480V AC incoming power supply (Default - setting)

3. Resistance Value:

The total resistance value is determined by the selection of both the internal and external brake resistor values which are combined to provide the overall parallel resistance.

When the brake resistors deviate from the table "**Selection Brake Resistor**", it should be noted that the minimal external resistance value of the controller is not undercut.

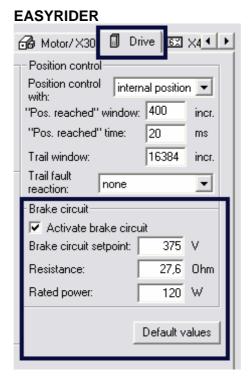
(see ■ Technical Unit Data).

4. Rated Power:

The brake resistor performance rating is determined by the sum of the selected internal and external brake resistor capacity values.

When the brake resistors deviate from the table "**Selection Brake Resistor**", it should be noted that the minimal external resistance value of the controller is not undercut.

(see ■ Technical Unit Data).


Note:

The somewhat similar ratio of Pd – continuous power rating to Pmax – peak power rating is a prerequisite for the correct monitoring of the brake resistor employed in a parallel configuration.

This is guaranteed with the standard design configurations.

Example for 638A:

Determination of the resistance values through the employment of both internal and external resistors.

Internal "Brake Resistor = 170 Ohm" External "Brake Resistor = 33 Ohm"

Formula:
$$\frac{1}{\text{Rges.}} = \frac{1}{\text{R int.}} + \frac{1}{\text{Rext.}}$$

$$\frac{1}{\text{Rges.}} = \frac{1}{170\Omega} + \frac{1}{33\Omega} \Rightarrow \text{Rges.} = 27,6\Omega$$

Selected Resistance Value = 27,6 Ohm

Determination of the brake resistor rating through the employment of both the internal and external brake resistor ratings

Internal "Brake Resistor Rating = 20 Watt" External "Brake Resistor Rating = 100 Watt"

Formula : Pges. = Pint. + Pext.
Pges. =
$$20W + 100W \Rightarrow Pges. = 120W$$

Selected Power Rating = 120 Watt

CAUTION!

Installation of External Brake Resistors

Brake resistors create heat!

The Brake Resistor must therefore be installed in a manner which provides safeguards against the potential danger of inadvertent touching or the danger of fire, during both normal operations and under fault conditions.

6 Wiring Instructions

6.1 General Wiring Instructions

General Information

Digital servo drives are designed for **operation in metallic grounded enclosures**.

For problem free operation, as well as for the observance of all regulations,

the drive unit back must be connected with the cabinet mounting plate electrically and fixed.

Control Cabling

Recommended cross section 0,25 mm². The control signal lines must be laid seperately from the power signal lines: **See** "• **Hints for Mounting**"

The resolver cable must contain three shielded pairs and must be shielded as a whole.

The shielding should be connected to the ground spread out on the drive side.

We recommend using the resolver cable KIR.

Cables utilized for transmitting data must always be shielded!

Power Cabling

Recommended selection according to rated current. Use only 75° Cu-cables.

Analog Setpoint

The setpoint input is a differential input. Therefore the poling can be configured depending upon the application requirements.

<u>Important:</u> the setpoint voltage must be galvanically connected to the reference potential of the control connections (plug X10). It is possible to connect one pole directly to the ground, GND.

Safety Rules

Caution!

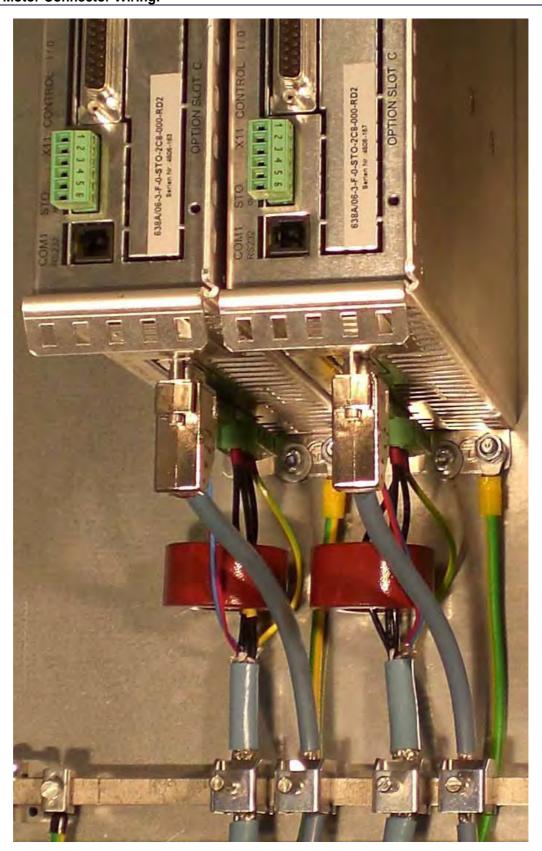
Plug / Unplug all mating connector is only allowed:

- Power Supply off
- Control Voltage off
- DC Link discharge (discharge time > 3 minutes)
- The user must ensure protection against accidental touching

6.1 Electromagnetic Compatibility (EMC)

Conformity, in accordance with the EEC Directive 89/336/EEC has been evaluated using a reference-system, consisting of a compact type drive and a line-filter on mounting-plate, connected to an AC-synchronous motor. The motor cable is mainly responsible for EMC emissions. The motor cable must be installed therefore employing exceptional care. The layout of grounding is very important. Grounding has to be low-impedance for high frequencies. That means, all ground connecting parts have to be connected over a large surface contact area. The measurements provided are valid only with the use of our cables, suppression aids and line filters and by application of the following wiring instructions:

Hints for Mounting


Α	All components are mounted inside of	Guunnan
	a steel control cubicle on a mounting plate	
	(min. thickness 3mm).	3mm
	Recommended: Galvanized	
В	The connection between the drive housing, the filter	
	housing and the mounting plate must be bare metal	
	and not reduced by varnish.	
	All screws must be properly tightened!	-
С	Use only our filters and cables for motor and resolver connections.	
D	Place all wires and cables as close as possible to	
	grounded metal parts.	+
Е	Separate power and control cables.	A A A
	Minimum distance: 0,3m	
	Cross Points: 90°	0,3 m
	Avaid ashle loons. The way between the line filter and	ы в в
F	Avoid cable loops. The run between the line-filter and drive has to be as close and short as possible (drilled).	
	drive has to be as close and short as possible (drilled).	
G	Maintain the shielding as close as possible to the	
	cable-end (max distance 8 cm).	
		8 cm max
Н	Connect shielded connections according to general	
	view of connections: See chapter 2.1. Ground shielding	
	on both sides, with the shortest possible cable run. For long cables: Connect additional shielded areas	<u> </u>
	along the way.	=
ı	Connect the shielded area to well grounded points.	
K	Connect unused wires in cables to the ground	₩ ₹
'	Connect unused wires in cables to the ground.	
L	Install control cables close to grounded metal parts or	
	shielding when leaving the control cubicle	
M	Pay close attention to the grounding of control-	
	transformer (DC 24V). Use a transformer with a metal socket and pay attention to provide for good conductive	
	contact on mounting plate.	
N	Pay close attention to the overall grounding of the	
	complete system. Interconnect several mounting plates	
	using copper rails or copper band. Pay attention to the	
	ground connection between the control cabinet and the equipment!	
	edaibinetif;	

6 Wiring Instructions

Example for Mounting

X61 Motor Connector Wiring:

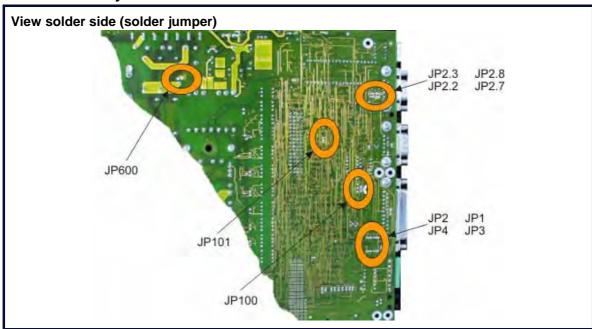
7.1 Jumpers

All jumpers are set to a standard preset!

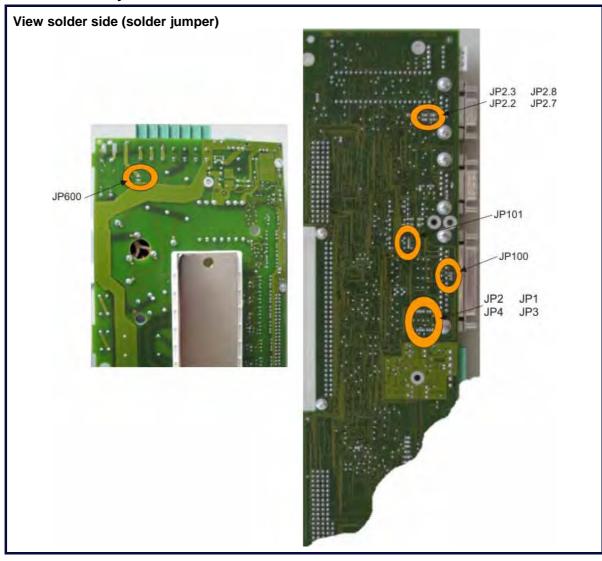
JP100, Bridged Pad		JP 100
2 and 3 (standard)	READY contact with reference to common output supply voltage on X10.21	
1 and 3	READY contact can be freely wired	1 3 2

JP101, Bridged Pad.		JP 101
2 and 3 (standard)	Analog input X10.19 without internal pull-up.	$\bullet \Box \bullet \Box$
1 and 3	Analog input X10.19 with internal pull-up to +12 V	2 3 1

JP1, JP2, Bridged Pad	Adjust identically !!
2 and 3 (standard)	X10.15 = high active
1 and 3	X10.15 = low active


JP3, JP4, Bridged Pad	Adjust identically !
2 and 3 (standard)	X10.14 = high active
1 and 3	X10.14 = low active

JP2.8, JP2.3, JP2.7, JP2.2	
Open	Default, RP -CAN, -DEV, -2CA, -2C8,-CC8, -CCA, -PDP, -PC8, -PCA,
Close	RP -232, -422, -485, -IBS, -EA5, -SUC


JP600	
Open	Default
Close	Minimal current leakage with external filter operation

7 Hardware Configuration

Power Board Layout Plan 638A

Power Board Layout Plan 638B/C

8.1 Commissioning Preparation

Caution!

Improper installation conditions and/or wiring can cause uncontrolled movement and operation of the equipment.

Please carefully observe all safety instructions and regulations for the protection of both the equipment and personnel!

- It is recommended that one utilize the **EASYRIDER**® Windows Software Program for the initial set-up of the equipment. This program communicates through the serial interface of the computer to the attached drive.
 - Information concerning the operation of the EASYRIDER® software is discussed in this chapter. We suggest that the software be first run in the "Simulation" mode in order for the user to become familiar with and comfortable the system. The EASYRIDER® Windows Software also provides for additional interactive "Help" functions.
- Due to security concerns some of the Menus are password protected.
 The set up and start up of the equipment must be carried out by qualified personnel only.
- The installation must be performed taking into consideration all of the specific safety regulations and security related functions, concerning the equipment.

 Double check all safety and security related items, including the limit switch.
- The conformity of the motor feedback system and the X300 feedback module built-in to the drive must be checked by examining the name plates on the equipment.
- For the initial equipment start up involving critical applications, we recommend that a test be run without the mechanical connection being made. If problems do arise then they can be solved without risk of damage to any other attached equipment.
- An experienced installer does have the possibility of tailoring the installation to meet the specific application requirements, provided that he/she assumes all of the responsibility for any
 - alterations or deviations from the prescribed installation instructions.

8 Commissoning

8.2 <u>Step</u> ①: Wiring and Communications Test

10	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
1.1	Before Starting the Equipment! Check the wiring; in particular: supply voltage, incoming powerline, motor wiring, motor polarity, feedback system, (Resolver; HIPERFACE® etc.), polarity Sine / Cosine etc.	-	638 Connector Assignment Electrical Installation Wiring Instructions Model Code
1.2	First uncouple the motor shaft, before addressing critical mechanical problems.	Limitation of potential danger	
1.3	Connection of the Diagnostic Interface Link for the Drive - COM1 RS232 Connection to the PC and start EASYRIDER Windows Software.	EASYRIDER for Windows Software Start side:	EASYRIDER Software Cable Interface USB RS232 Adapter
1.4	Settings for the Connected COM Ports With the PC in Options Menu—> select "Interface Selection". Cottors Whichon T Select Communication Select Communication Encountry Springly Encountry Authorization Level Moully Password / Authorization Level Moully Password Encountry Remote control Cancel Remote control	The selected COM Port is shown on the lower right hand corner of the window of the EASYRIDER for Windows Software	The available connections to the PC are shown in the Device Manager under System Control Application Manager Anothers (COMMUNICIPE) Anothers (COMMUNICIPE)
1.5	Supply Voltage US = 24V DC through X01-Connection to the system.	7 Segment Display:	Pin Assignments for the Power Supply Connection X01 7 Segment Display Symbol:
1.6	Check the communications connections and functions by utilizing the Diagnosis window or by employing the F9 button on the keyboard. Diagnosis Options Window ? Diagnosis F9 Graphical Diagnosis Fieldbusdiagnosis Ctrl+F9 Graphical Memory Dump Force BIAS variables	EASYRIDER Diagnosis Window:	It is always the last window where settings have been made which will be opened!
	On to <u>Step</u> ② <u>~</u>		_

8.3 <u>Step</u> ②. :Feedback Test and Motor Selection

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.1.1	Prerequisite: Step ① The feedback sensor is connected to the 638 Drive through the X30 connection port.		638 X30 Connector Assignment
	Optionally. Temperature sensor and/or Brakre are connected to the X62 connector. (with X62 Thermo notice Step 2.2.3	7 5 NC 4 3 2 2 1 1	638 X62 Connector Assignment
2.1.2	Make the X30 connection to the driv only when the power supply is disconnected!	Eliminate the risk of a short circuit!	
2.1.3	Check the counter function by looking at the Actual Position Locator – Display 1 under the Drive Diagnosis window of the EASYRIDER Software and the movement of the motor shaft. ひじ with linear motors the movement of the rotor.	Diagnosis: 638 06 A - 4711 Drive In-/ outputs BIAS Mathematics act.position 1: 0 INKR Motor actual speed: 0 rpm effective current: 0 A Rotor position: 0 * Status Drive Dif COM 1 I I co DK Motor feedback DK	When employing a motor with a brake, make certain that the brake is opened

8 Commissoning

• <u>Step</u> 2.2 Motor Selection

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.2.1	Prerequisite: Step ① The motor cable is connected to the 638 Drive through the X61 connection port	-	638 X61 Connector Assignment
2.2.2	In the EASYRIDER configuration menu for "Motor", select Motor Library and then scroll down to the appropriate motor utilizing the motor type information as listed on the name plate. EASYRIDER File Commissioning Tuning Comma PA In- / Outputs Motor Drive X40 Supervision Safety Positionblocks Fieldbus Special Functions	Motortibrary Ele Lot ACM25325Y ACM2500125AY-3 ACM250125AY-3 AC	When employing motors from other manufacturers it is possible to input and store the specific motor characteristics in the Customer Motor Library.
2.2.3	Optionally: select temperature sensor Motor/×30 Drive X4 Temp. supervision: ×30 Sensor type: ×30 Switch off at: 0 Ohm T1 active at: 0 Ohm	Select the temperature sensor connection X30 or X62 in EASYRIDER. Default: X30	638 X30 Connector Assignment or 638 X62 Connector Assignment
2.2.4	In the EASYRIDER configuration menu for "Motor", send the selected motor information on to the drive and save the selection.	-	_

• Step 2.3 Motor with Resolver Feedback

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.3	With standard motors, equipped with Resolver Feedback, when the unit is properly wired and the proper motor is selected, no additional action is required. For every360° motor shaft turn a position value of 2 ¹⁶ = 65536 pulses is sensed.		
	On to <u>Step</u> ③ <u>▼</u>	\$ ○ √	_

• Step 2.4 Motor with HIPERFACE Feedback

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.4	The characteristics of the HIPERFACE – Feedback System, as the absolute measuring device (multi-turn provider), allows for 2 additional parameter settings. 1. Selection of the position location, per rotation 16 or 20 bit. 2. Selection of the absolute position value according to the connection between the motor and the mechanical component. Note: It is necessary to initially provide the angular commutation parameter value as the absolute value for the HIPERFACE provider, when employing a motor from another manufacturer with HIPERFACE-Feedback		
	On to <u>Step</u> ③ <u>▼</u>		<u> </u>

• <u>Step</u> 2.5 Motor with SIN-COS Feedback Linear Motor

20	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
2.5	Additional settings are required with the employment of this variation, which are described in the following section: Step 4.2. Optimization Linear Motors.		
	On to <u>Step</u> ③ <u>▼</u>	\$ ○ ▼	_

8 Commissoning

8.4 Step ③: Power Up and Drive Activation

• Step 3.1 Power Up

30	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
3.1.1	Prerequisite: Step 1+2 The power supply is connected to the X60 connection of the 638 Drive.	-	X60 Connector Assignment
3.1.2	Establish the X60 connection, when lacking, only when the drive system is not connected to the power supply!	In order to eliminate the risk of a short circuit!	
3.1.3	Terminals 1 and 4 on the X11 STO connection should be set at 0 V.	The drive remains in a non- activated condition even after the power is connected.	X11 Connector Assignment STO = Safe Torque Off
3.1.4	Turn on the power and check the voltage in the Drive Diagnostic Menu. Diagnosis: 638 06 A - 4711 Drive In-/ outputs BIAS Mathematics Internal Memory Dump act.position 1: 0 INKR act.position 2: 0 INKR Motor Drive Investigation In	The drive will show a DC link voltage Ucc of approx. 325 V DC with an incoming supply of 230 V AC, in a non-activated condition.	7 Segment Display:

• Step 3.2 Drive Activation

	Step 3.2 Drive Activation			
30		Action, Function	Anticipated Result	Remark, Cause of Fault Condition
3.2.1	It is necessary to make additional settings as described in Step 4.2 Optimization Linear Motor , When employing a motor with a Sin/Cos Feedback system.		In the event that the Feedback System = Sin/Cos On to Step 4.2	
3.2.2	Terminals 1 and 4 on the X11 STO connection should be set at 24 V.		Driver – power stage is activated and the 7 segment display shows: The drive is now set in the operations mode (Delivery condition; Speed control set to the analog setpoint)	X11 Connector Assignment The motor shaft can be set to turn slower through the 0-V offset setting of the analog setpoint input.
	In the event that no fault condition arises On to Step 4			
	Further function test from the STO – terminal, as per statement in chapter Safe Torque Off .			
Other- wise 3.2.3	of to	ith unanticipated operation or overheating the motor, turn off the drive and attempt locate the cause of the problem. Identify ad rectify the fault condition.	A.B.A.A.	Diagnosis and Troubleshooting
	and perform Step ③ again		\odot	_

8.5 <u>Step</u> 4: Control Loop Optimization

• <u>Step</u> 4.1 Control Loop Optimization with Rotary Motors

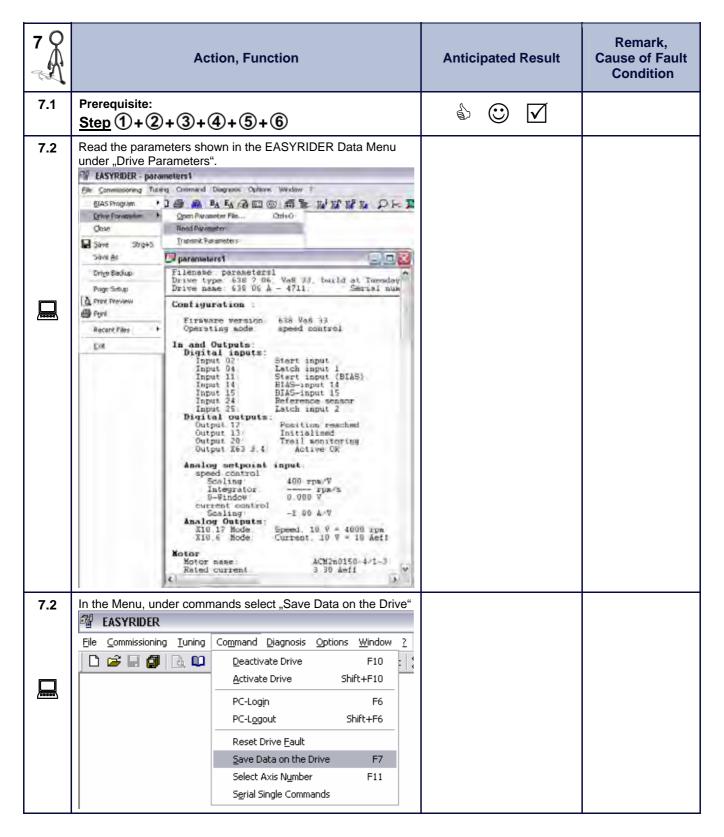
40	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
4.1.1	Prerequisite: Step 1+2+3		
4.1.2	In the EASYRIDER Commissioning Menu select "Speed Controller" and with F8=Start the Test Generator.	Check the speed and power variation characteristics utilizing an oscilloscope and through the adjustment of the P and I sections set the parameters for the control rigidity.	
4.1.3	Attach the mechanical component with the motor shaft.		
4.1.4	Perform step 4.1.2 again	Pay attention with linear motion! The speed generator is controlled by time and recognizes no parameters unless the limit switch is configured!	
4.1.5	Within the EASYRIDER Commissioning Menu select "Position Control", when employing the position control settings. Set the position and speed, with F8=Start the Test Generator.	Check the speed, power variation and control deviation characteristics utilizing an oscilloscope and through the adjustment of the P, I and V sections set the parameters for the power control rigidity.	
	On to <u>Step</u> ⑤ <u>▼</u>	§ ○ ✓	_

8 Commissoning

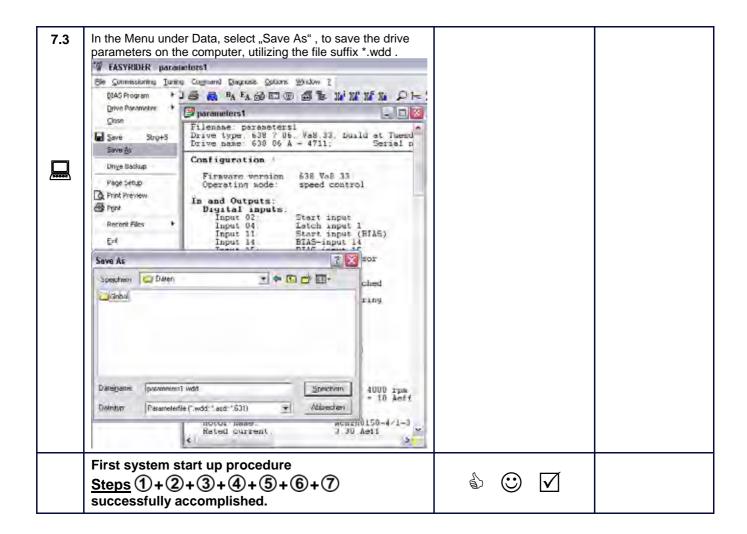
• <u>Step 4.2</u> Control Loop Optimization with Linear Motors

Step	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
4.2.1	Prerequisite: Step 1+2+3		
	Under		
	Construction!!!		
	On to <u>Step</u> ⑤ <u>▼</u>		<u> </u>

8.6 <u>Step</u> **5**: Operation Mode Selection


50	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
5.1	Prerequisite: $\underline{\text{Step}} \textcircled{1} + \textcircled{2} + \textcircled{3} + \textcircled{4}$		
5.2	In the EASYRIDER configuration menu, select "General" and then select the appropriate operating mode. Tonfiguration 638 06 A - 4711 BA General E Inputs A Outputs Motor/X30 Drive X4 Poive name: 638 06 A - 4711 Operation mode Operation mode Operation mode Operation mode A Speed / Current control via X10.24 A Position control without BIAS-execution Speed / Position control with BIAS-execution OK Abbrechen	With the selection of the operating mode, one must also select additional settings. For example: * On/Off Configuration * Analog Setpoint Selection and Integrator * Position Blocks * BIAS Program * Fieldbus Interface	Additional information and assistance is available through the utilization of the online help for EASYRIDER Software.
	On to <u>Step</u> ⑥ <u>▼</u>		_

8 Commissoning


8.7 <u>Step</u> **6**: Fieldbus Interface

60	Action, Function	Anticipated Result	Remark, Cause of Fault Condition
6.1	Prerequisite: $\underline{\text{Step}} \textcircled{1} + \textcircled{2} + \textcircled{3}$		
6.2	The overall system commissioning and the communications test of the fieldbus interface are dependent upon the interface configuration of the drive. If there is not an options board connected then there are no more additional settings required, and one can move on to Step 7.		
6.3.	In the configurations menu, under "Fieldbus" additional settings may be required, depending upon the connection interface for the fieldbus board.	Additional information concerning start up procedure for the fieldbus interface connection can be found in the handbook about the Options Board.	
	On to <u>Step</u> ⑦ <u>▼</u>	∅ ⊙ ✓	

8.8 Step 7: Data Save

8 Commissoning

9.1 General Introduction

The following documentation is meant to provide the basic information concerning our drive controller and an understanding about the advanced, safety oriented machine construction. References to standards or other regulations are made in a general overview manner. The specific

standards or regulations for your installation will vary depending upon the equipment employed and

the specifics of your application.

For more information we suggest referring to specific technical literature, for example: BIA-Report 6/97 and BIA-Report 5/2003 (Information of the German Professional Trade Association).

These reports can be downloaded from: http://www.hvbg.de/d/bia/pub/rep/index.html

Important Technical Terms and Explanations

Term	Explanation
Safety Category 3 Performance Level d according to EN 13849-1	Definition according to the regulation: Circuit with built-in protective functions for individual fault conditions. Some, but not all faults will be recognized. The frequent occurrence of fault conditions can lead to a loss of the safety functions. The remainder of the risk must be understood and accepted. The determination for the application of the appropriate safety category requirements, (risk analysis), lies with the installer and operator of the equipment. You can reference the method described in EN13849-1:1996, Appendix B, as an example.
Safety Category 4 Performance Level e according to EN 13849-1	Definition according to the regulation The safety related parts must be designed in a way, that a single fault condition in each safety related part will not guide to loss of the safety function and the single fault will be detected before or on next demand of the safety function. If this is not possible, ab accumulation of faults should not a lead to the loss of the safety function. The determination for the application of the appropriate safety category requirements, (risk analysis), lies with the installer and operator of the equipment. You can reference the method described in EN13849-1:1996, Appendix B, as an example.
,Safe Stop'	With the activation of "Safe Torque Off", the energy supply to the drive is definitively interrupted, according to the requirements of EN1037, section 4.1. The drive unit is not allowed to rotate and will therefore not be able to generate any dangerous
or alternatively: "Safe Torque Off"	rotational movements, (See EN 1037, section 5.3.1.3). The stopping position must not be monitored. Should there be the potential of an outside energy source affecting the drive and STO
or abbreviated as:	function, for example the dropping of a hanging load, then additional action needs to be taken to guarantee that no additional movement takes place, (i.e. installation of a mechanical brake).
STO	The following measures are appropriate for incorporation with "Safe Torque Off": Protection between power connection and the drive system (Line Fault Protection) Protection between the power unit and the motor (Motor Protection) Protected lock of the control of the solid state power component (Start-up Lockout)
Start-Up Lockout	Protected lock of the control of the solid state power component. With help of this function one can establish the activation of the "Safe Torque Off".

• Stop Category according to EN 60204-1 (Chapter. 9.2.2)

Stop Category	Requirement	System Reaction	Note
0	Shutdown by immediate shut-off of power supply to the machines' driving components	Uncontrolled Shutdown	Uncontrolled shutdown is the stopping of the machines' movement by eliminating the power supply to the power components of the machine. Available brakes and/or other mechanical braking systems should be employed.
1	Shutdown, by a means which maintains the power supply connection to the machine drive component, to bring movement to a standstill. The power connection will be broken only after standstill has been achieved.	Controlled Shutdown	Controlled shutdown is the stopping of the machines' movement by for example, the setback of the electronic command signals to zero as soon as the stop signal is recognized by the controller, while the power supply to the machine drive components remains intact until a standstill condition is achieved.
2	Shutdown, by a means which maintains the power supply connection to the machine drive component.	Controlled Shutdown	This category will not be covered in the functions description of the manual.

Applications in Accordance with the Regulations

The 638 Drive supports the safety function "Safe Torque Off", in the sense of providing a definitive stopping of the equipment, with protection against unanticipated start-up, in accordance with regulations EN ISO 13849-1, Category 4, Performance Level e and EN 1037.

The motor must stopped controlled through the machine controller. However, it does not provide for any verification of cessation of movement which may have been produced from some external source. One must pay specific attention to the vertical axes, without a mechanical self-inhibitor or balanced weight.

According to Machine Regulations 89/392/EWG, i.e. EN 292; EN 954 und EN 1050, when considering the safety and risk analysis, the machine constructor is responsible to make certain that the overall safety system for the whole machine takes all of the integrated components into consideration. Note that the electrical drives must also be included in this consideration.

One must pay attention to and follow the instructions completely as stated in the validation report, with regard to the initial start-up, service intervals, troubleshooting and repair of the equipment. The STO conformance protocol outlines a suggestion for the documentation of the relevant safety parameters in the validation report.

Trained Personnel

Planning, installation and initial system commissioning require a detailed understanding of this information

Protective safety standards and risk mitigation issues which are connected to the specifics of the installation must be recognized and taken into consideration, as well as appropriate actions to be taken in the event of an emergency.

Benefits with the Employment of the Safe Torque Off Function Safety Category 4 performance Level e according to EN 13849-1:

Performance	Application of the Safe	Conventional Solution : Utilization of
Feature	Torque Off Function	External Switching Components
Requirement		
Reduced Switching Effort	Simple circuitry, certified application examples The grouping of multiple drives together on a main contactor is possible.	Two safety-oriented performance protections in series connections required.
Application in Production Processes	Extremely high switching frequency through the use of almost wear-free technology (Low voltage relays and	This performance feature is not achievable through the employment of conventional technology.
High Switching Frequency, High Reliability, Less Wear	an electronic switch). The condition "Safe Torque Off" is achieved through the use of a wear-free electronic switches (IGBT'S).	
Application in Production Processes	The drive remains power and control related in a connected condition. No significant wait time with re-start.	With the utilization of power contactors on the incoming power line, a long wait time is required for the energy discharge from the DC link.
Faster Reaction Time, Faster Re-Start		With the use of two motor side power contactors, it is possible to increase the reaction time, however one must recognize the potential disadvantages:: a) Make certain that switching occurs only in a power free condition, (DC Power! Prevent arcing). b) Increased cost for EMC conforming cabling.
Emergency Stop Function	According to the German Edition of the Standards: Permissible without mechanical power switch element activation 1)	Shutdown employing a mechanical switching element is required.

¹⁾ According to the forward of the German edition of the standards EN 60204-1/11.98, electronic equipment for use with the emergency stop mechanism is acceptable, as long as the requirements in the safety categories, like those required in EN13849-1, are completely observed.

Safety Instructions and Limitations

No Galvanic Separation of the Outputs

The galavanic separation does not occur through the starting lockout function. This therefore does not in any way provide protection against an "electrical spike".

For operation interruptions, maintenance, service and cleaning of the equipment, the entire system must be definitively and galvanically separated from the power supply at the main switch box and confirmation should be made that the system can not restart (See EN 60204-1;5.3).

Potential Sudden Jerking or Movement under Fault Condition

In the event that two fault conditions appear at the same time in the power unit, it is possible that unit may exhibit a sudden jerking or movement within a small angle of rotation. This is dependent upon the number of pole pairs of the motor. (Rotary Type:2-pole = 180°, 4-pole = 90°, 6-pole = 60°, 8-pole = 45°; Linear Motors: 180° electric).

Malfunction during the Active Braking Phase with Stop Category 1; EN 60204-1

(controlled stop with reliable monitored time delay)

If a fault in the drive system occurs during the active braking phase, the axel can coast to a stop, uncontrolled or in the worst case continue to operate until the expiration of the predetermined shut-off time.

Hanging Loads or Influencing External Forces

In the event of a power failure the hanging loads can possibly fall in an uncontrolled manner endangering people or equipment. The operation of hanging

axes therefore requires special attention relating to risk analysis and mitigation with hanging loads.

Not for Use in Drive Applications in Field Weakening Operation Ranges!

With motors which are employed in field weakening operation ranges, it is important to note that the operation of the STO function can be adversely affected, specifically involving an uncontrolled increase in rotational speed, life threatening over voltage and explosion of the drive unit!

Minimal request of safety function

The safety function STO must activate for at least weekly.

Acknowledgement

The configurable acknowledgement is only permissible with category B.

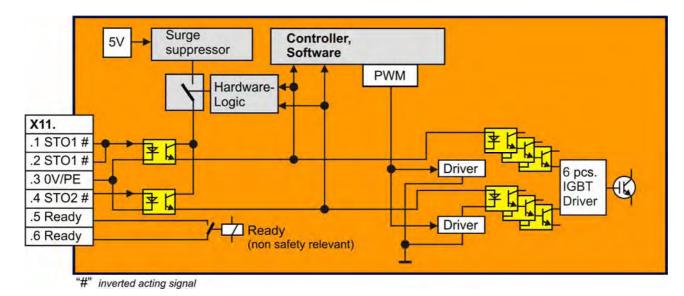
9.2 Safe Torque Off Function, (STO)

General

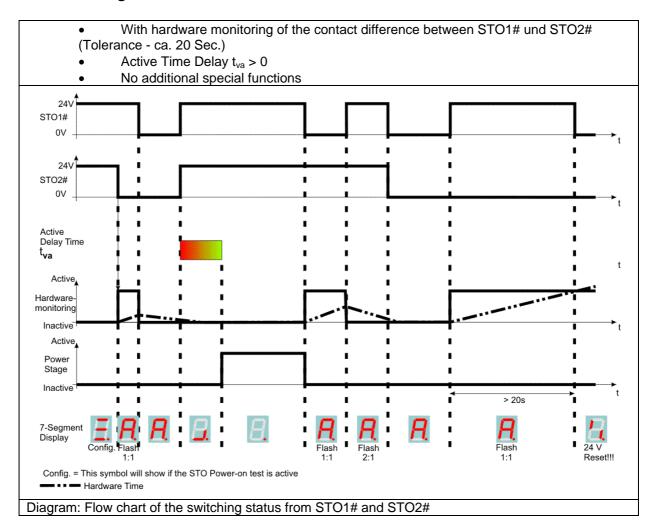
The electricity flow to the motor windings is controlled through a solid state power component bridge

(6-times IGBT). A microprocessor switch with PWM logic switches the IGTB's rotating field orientation. Optical couplings are employed between the control logic and the power unit to provide for electrical isolation.

The X11 Connector Plug (STO) is located on the front of the drive unit. This connector plug is controlled utilizing two optical couplings which communicate over **two channels** through terminals **STO1#** and **STO2#**, and which in a controlled condition supplies the PWM optical coupler with control of the solid state power component.


A test takes place to determine the condition of the input channels. Within the given window of time the condition of both channels must be identical. In the event that a fault condition exists, (different signals from STO1# and STO2#), then the coupling power supply is shut-off and a signal is sent to the 7 segment display.

The re-activation of the power supply to the coupling is then only possible by performing a hardware reset, by turning the equipment off and then back on again.


In addition to the description of the hardware based shut-off through the two channel communication, the internal unit processor provides for a software based shutdown of the PWM circuit. The PWM circuit can be set for time delayed activation, after the recognition of the activation

of both STO inputs, through the programming of the safety parameters for the active time delay.

• Block Circuit Diagram

Status Diagram and Function of Terminals STO1# und STO2#

Note for Standard Operation:

The STO inputs should always be operated simultaneously.
 If the safety parameter Active Time Delay is t_{va} = 0 s, then both STO inputs will be turned on immediately after recognition.

9.3 Configuration and Parameter Settings

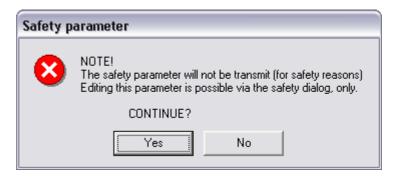
General Instructions for Parameter Settings

The safe torque off, 'STO', basic function is a built-in, hardware oriented safety function which is not configurable.

Depending upon the specific application however, it is possible to alter specific settings on the drive

side which can increase the operational safety factor.

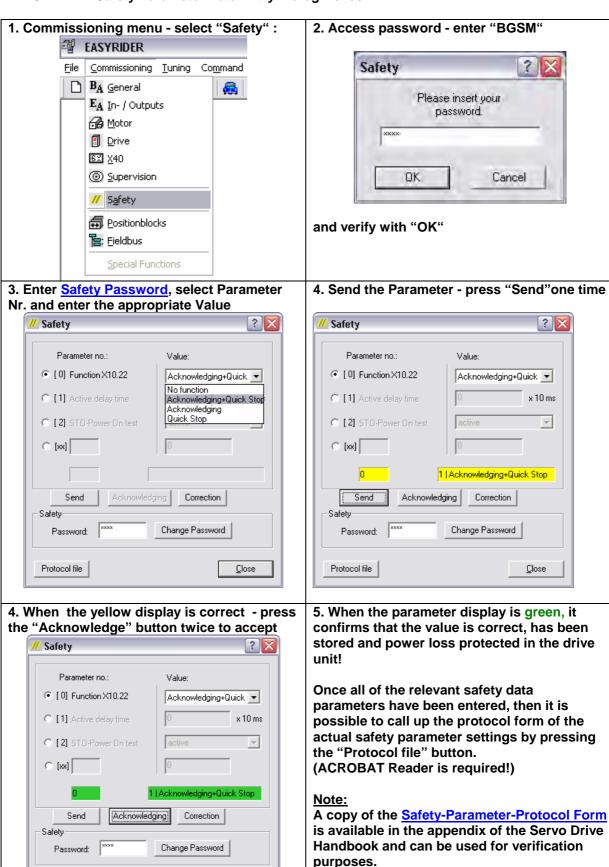
The configuration and programming of the safety parameters can be accomplished utilizing the Diagnosis and Parameter Setting screen in EASYRIDER for Windows.


This configuration process has been designed to assist the user in making the proper parameter settings, in an attempt to eliminate the potential for systematic programming errors and/or improper parameter settings.

Required Actions for the Configuration of Relevant Safety Parameters

- Special password protected access is required to reach the relevant safety parameter setting screens.
- The transmission of the data through the PC interface follows a specially designed protected procedure, including: CRC check, drive specific password and a double confirmation and acknowledgement process for the parameter values entered.
- After the confirmation and acknowledgement of the entered data, the parameter values are saved in the drive and protected even in the event of a power loss.
- The parameter values are stored twice within the drive, and provide for automatic periodic verification of the memory cell accordance.
- Any other means of accessing the safety and security related data, as described here, is not permitted.
- The creation of a parameter protocol, which can be stored as a document with appropriate name and date information.

The relevant safety, secondary function parameters – Acknowledgement and Active Time Delay, can only be set within the Configuration Safety dialog box. The data are saved under Parameter Data utilizing the suffix *.WDD. But the safety relevant data will not transmit by "Transmit Parameters".



In the Configuration Safety dialog box the relevant safety parameters will shown by an open parameter file. The user has to transmit the parameter safely to the drive.

EASYRIDER Safety Parameter Data Entry Dialog Boxes

Protocol file

Close

Safety Parameter List

The following safety functions are presently able to be configured:

Parameter 0: Function Input X10.22
 Parameter 1: Active-Time Delay
 Parameter 2: STO-Power-On-Test

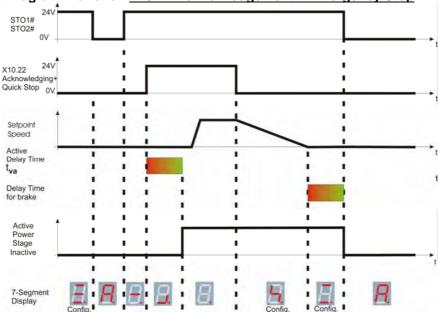
Parameter 0	Value Range	Explanation	Note	Flow Chart
	Without Function	No safety relevance. Function X10.22 is freely programmable (BIAS) Initial Factory Settings (default values)		
	Acknowledgement + Emergency Stop	STO-function activation through additional low→high edge of the X10.22 input acknowledgement and Emergency Stop before the STO shutdown through additional high→low edge of the X10.22 input.	See below	
Function X10.22	Acknowledgement	STO-function activation through additional low→high edge of the X10.22 input acknowledgement.	After the recognition of the edge – the active time delay will be started!	
	Emergency Stop	Before the STO shutdown through additional high→low edge of the X10.22 input.	After the recognition of the edge, when the rotational speed =0 then the emergency stop ramp will be executed and when the rotational speed =0, the time delay for the brake will be started!	

Parameter 1	Value Range	Explanation
Active-Time Delay	4 Initial Factory Settings (Default Value) 4- 500 (*10 ms)	Time delay for the activation of the final stage after acknowledgement (24 V) of both STO inputs, for example of the acknowledgement inputs (in the event that they have been configured).
increments)		Note: If the STO inputs, for example, the acknowledgement inputs are removed (0V) before the expiration of the active time delay, then the time will be reset and only reactivated with a new edge (24 V).

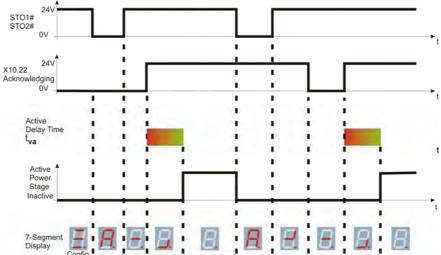
Parameter 2	Value Range	Explanation
STO-Power-On- Test	activate (0),(default) deactivate (1)	The STO-Power-on-Test does not allow by deactivated STO (STO1# and STO2# High) to activate the drive. The 7-Segment-Display shows . The drive will able to activate after the safety function STO was activated and is deactivate. The safety function could activated by a safety gate or an emergency stop It is possible to use a PLC to automate this test.

Safety Password

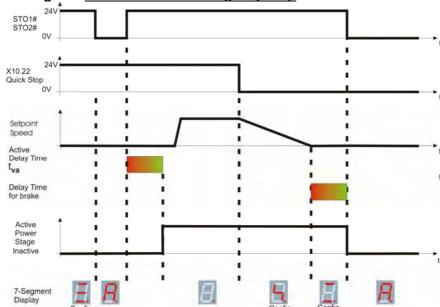
The safety password must be entered in the appropriate field, every time that the Safety Parameter Configuration screen is selected.


The password is always comprised of 4 letters.

The difference between large and small case letters is recognized.


The drive side initial factory setting of the password is "SAFE".

The responsibility to set the new safety password lies with the operator of the equipment. The new safety password should only be shared with authorized personnel, for example: anyone who works on the STO, and/or has responsibilities in the areas of equipment operating guidelines or equipment safety and security.


Flow Chart Diagram: Function X10.22 Acknowledgement + Emergency Stop

Flow Chart Diagram: Function X10.22 Acknowledgement

9.4 Application Example of STO (Safe Torque Off)

Example	Function
Application Example 1	Safety door monitoring or emergency shut-down with protection monitoring switch
Application Example 2	Safety door monitoring or emergency shut-down with protection monitoring switch and time delay
Application Example 3	Safety door monitoring or emergency shut-down WITHOUT protection monitoring switch
Application Example 4	Safety door monitoring or emergency shut-down with protection monitoring switch and time delay of several drives

Minimal request of safety function (from Cat. 3 and PL d)

The safety function STO must activate for at least weekly.

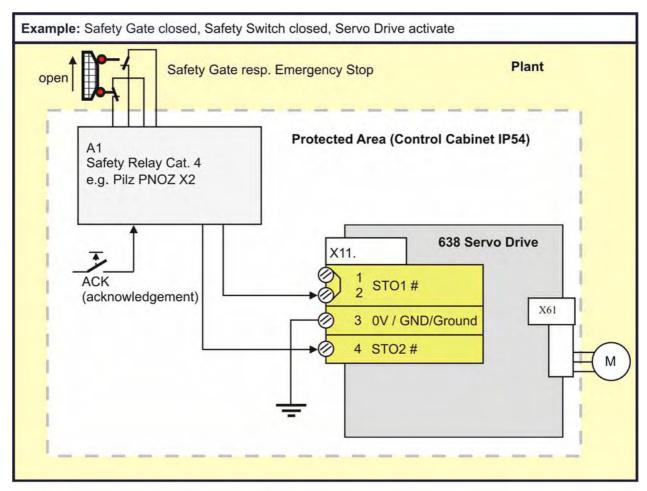
This request is very important for application continuous operation and is satisfy by open the guard door and activate the emergency stop. If the Safe torque off is activate very often, additional measures are not necessary.

(Only if the Guard door and/or the emergency stop is connected directly or via safety unit at the 638 X11).

Additional Minimal request of safety function by Cat. 4 and PL e

The category 4 and PL e can only be attained if the STO-power on test is enabled.

The STO-power on test needs low-level at both STO# inputs by switch on the 24V control voltage. The drive can not activate if one or both STO-inputs have high-level.

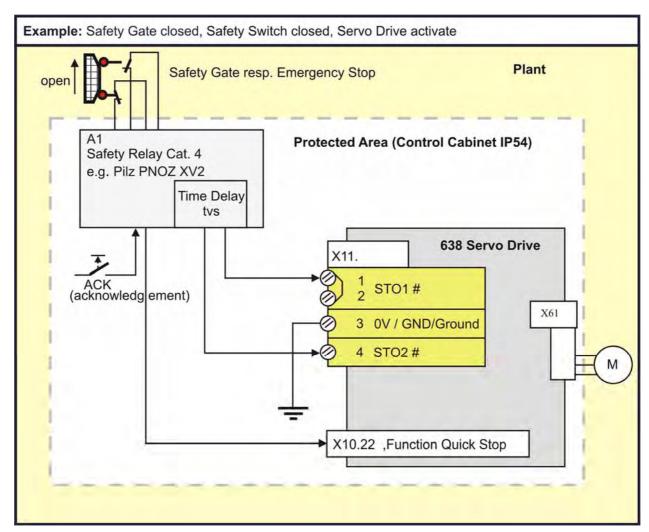

The function must configure in the Safety-Dialog parameter 2 (default Active).

These minimal requests are necessary to detect a failure. Failure detection is only possible if the safety function is activated.

Both measures could execute by a PLC.

Application Example 1

Function/Action	Response	Protection EN 954-1	n Level ISO 13849-1	Stop Cat. According to EN60204
Safety door monitoring or emergency shut-down with protection monitoring switch	The ,STO' is tripped when the safety door is opened or emergency shutdown switch is activated.	Cat. 4	PL e	0


Important

The category 4 and PL e protection level can only be achieved with an active STO-Power-On-Test.

Note

Application Example 2

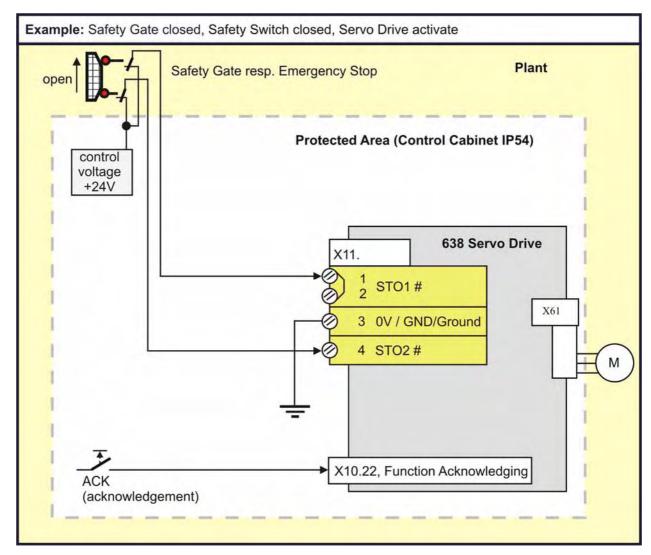
Function/Action	Response/Reaction	Protectio EN 954-1	n Level ISO 13849-1	Stop Cat. According to EN60204	
Safety door monitoring or emergency shut-down with protection monitoring switch and time delay	Active braking occurs when the safety door is opened, the emergency shutdown switch is activated or tripping of the ,STO' occurs due to time delay.	Cat. 4	PL e	1	

Important

The category 4 and PL e protection level can only be achieved with an active STO-Power-On-Test.

Explanation

The protection switch unit A1 must be set up with a fail-safe time delay as determined and required by the specific category relating to the application environment.


The 638 Servo Drive must be properly configured for the operating environment (See: Chapter Configuration and Parameter Settings).

Note

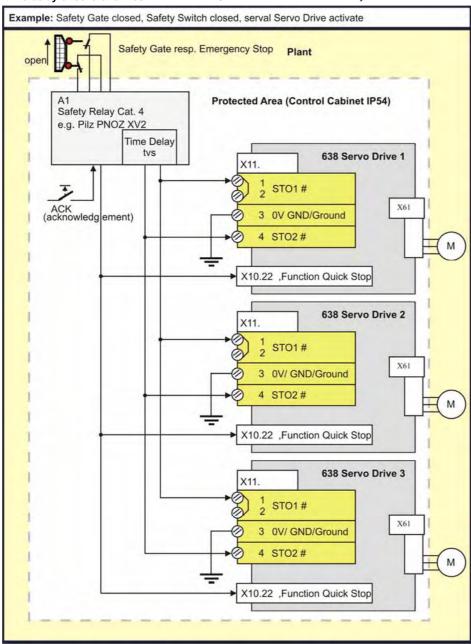
Application Example 3

Function/Action	Response/Reaction	Protection EN 954-1	n Level ISO 13849-1	Stop Cat. According to EN60204
Safety door monitoring or emergency shut-down WITHOUT protection monitoring switch	The ,STO' is tripped when the safety door is opened or emergency shut-down switch is activated.	Cat. 3	PL d	0

Explanation

The signals for STO1# and STO2# are delivered utilizing two separate channels. The wiring layout plan

must allow for the physical separation of the wiring channels or incorporate adequate insulation protection and separation.


Note

The acknowledgement is only permissible with category B.

The acknowledgement is **not** permissible for use if the dangerous area is <u>accessible</u>. In this case, employment of an external acknowledgement unit is necessary.

Application Example 4

Function/Action	Response/Reaction	Protection EN 954-1	n Level ISO 13849-1	Stop Cat. According to EN60204
Safety door monitoring or emergency shut-down with protection monitoring switch and time delay of several drives	Active braking occurs when the safety door is opened, the emergency shutdown switch is activated or tripping of the ,STO' occurs due to time delay.	Cat. 4	PL e	1

Important

The category 4 and PL e protection level can only be achieved with an active STO-Power-On-Test.

Explanation

The protection switch unit A1 must be set up with a fail-safe time delay as determined and required by the specific category relating to the application environment.

The 638 Servo Drive must be properly configured for the operating environment

(See: Chapter Configuration and Parameter Settings). Only 16 drives could plug together in a group.

Note

9.5 STO Function Test

The STO function must be tested when:

- The system is set-up for the first time. See: <u>Commissioning</u>
- Any component of the system is replaced.
- Any activity involving the wiring takes place.
- After all modifications to the drive system. (For example: parameter modifications, software updates, etc.)
- Established maintenance schedules dictate or after the machine has been inactive for a long period of time.

The STO functions test must be carried out by qualified personnel, with consideration for the required safety provisions. Depending upon the system configuration and application, additional or other tests may be required.

Test Steps:

STO Test Step 1

STO Test Step 2

STO Test Step 3

STO Test Step 4

STO Test Step 5

STO-TEST Step	10	Action /	Function	Anticipated Re	Remark, Cause of Fault Condition	
STO-TEST 1.1	;	iisite: Safety Parameter: STO "Power On" Supply Voltage US	Test is Active	Parameter-Nr.: Wert: © [0] Funktion X10.22 © [1] Aktiv-Verzögerungszeit © [2] S10-Einschalttest Aktiv	unktion values x 10 ms	
STO-TEST 1.2		Voltage to Il X11.1 and Il X11.4	O18 0			If the safety parameter, "Start-up Test" – is deactivated, then the drive will be activated immediately after the switch is turned on!
STO-TEST 1.3	Supply \	Voltage US = 24 V t	to the System		\boldsymbol{H}	Test steps 2-4 can then be performed anyway.
STO-TEST Step	20	Action /	Function	Anticipated Result		Remark, Cause of Fault Condition
STO-TEST 2.1	-		STO XII	flash	A.	
STO-TEST 2.2	Wait app	orox. 20 seconds	Check 7-Segment- Display	flash	A.	
STO-TEST 2.3	After app	prox. 20 seconds	Check 7-Segment- Display	Software-STO control mechanism successful	B	
STO-TEST 2.4	Switch of Voltage Termina			Hardware- STO control mechanism successful	B	

STO-TEST Step	3 4	Function	Anticipated Result	Remark, Cause of Fault Condition
STO-TEST 3.1	Terminal X11.4 Test: Rebuild STO Test Step 1	Switch the 24V Supply Voltage Off→On	\blacksquare	
STO-TEST 3.2	Switch off 24 V DC Voltage at Terminal X11.4	IIX OIS	A flash	
STO-TEST 3.3	Wait approx. 20 seconds	Check 7-Segment- Display	R flash	
STO-TEST 3.4	After approx. 20 seconds	Check 7-Segment- Display	Software-STO control mechanism successful	
STO-TEST 3.5	Switch on 24 V DC Voltage at Terminal X11.4		Hardware- STO control mechanism successful	

STO-TEST Step	4 \(\	Function	Anticipated Result	Remark, Cause of Fault Condition
STO-TEST 4.1	Terminal X11.1 and Terminal X11.4 Test: Rebuild STO Test Step 1	Switch the 24V Supply Voltage Off→On		
STO-TEST 4.2	Switch Off 24 V DC Voltage at Terminal X11.1 and Terminal X11.4	STO XIII	A.	
STO-TEST 4.3	Wait approx. 20 seconds	Check 7-Segment- Display	A.	
STO-TEST 4.4	After approx. 20 seconds Switch on 24 V DC Voltage at Terminal X11.1 and Terminal X11.4		If the drive has no fault and no other switch off condition is set - then the drive is activated.	

STO-TEST Step	5 O Action / Function
STO-TEST 5	Once all of the relevant safety test steps have been accomplished, the actions taken must be documented. The protocol form can be found in the Appendix STO - Safety - Parameter - Report - Proposal.

9.6 Signal Inputs Technical Data - Terminal Connection X11

General	The technical data provided in the section General Technical Data is valid, with the exception of the data listed below.
Nominal Voltage from the Inputs	24 V DC
Required Insulation from the Control Voltage 24V	protective extra-low voltage (PELV)
STO – Control Voltage Protection	1A
Number of Inputs Signal Inputs via Opto-Coupler	2 L = 07 V DC or open H = 1530 V DC I _{in} at 24VDC: 8 mA
STO1#	L = STO activate H = STO deactivate
STO2#	L = STO activate H = STO deactivate
Break Time at Unequal Input Conditions Function see Status Diagram	approx. 20 seconds

10.1 7-Segment-Display

Many sources of faults can be narrowed down with the diagnosis display.

Display	Explanation	Ou	tput		Servo drive		
(Code) ⁴	Comment	Ready	Warnin	631	635/637	637+	637f/638
			g ²⁾				
00h	no display	off	off	$\overline{\checkmark}$	$\overline{\checkmark}$	V	$\overline{\checkmark}$
	any control voltage? external fuses ok?						
<u>'-'-</u>	,						
03h	system ready for operate	on	off	\checkmark	$\overline{\checkmark}$	V	$\overline{\checkmark}$
-	drive ready not active						
<u></u> .	drive ready, not active						
01h	drive active and ready for operate!	on	off	\checkmark	$\overline{\checkmark}$	V	$\overline{\checkmark}$
<u></u>	DC link voltage within the limits, power stage active, fault-free						
12h	internal STOP with serial deactivating	-"	-"	$\overline{\mathbf{A}}$	V	V	$\overline{\checkmark}$
1211	mornar or or man contain accountaining	off	off	Ľ	Ľ		
	activate drive via serial interface						
						_	
82h	drive of serial interface (bus interface) deactivated !	off	off	V		$\overline{\mathbf{V}}$	
	only if bus interface is integrated						
	, , , , , , , , , , , , , , , , , , , ,						
90h	deactivated with delay time for the brake			\checkmark	$\overline{\checkmark}$	$\overline{\mathbf{Q}}$	$\overline{\checkmark}$
	deactivated via input.	on	off				
— •	deactivated via serial command.	off	off				
92h	Active input is activated with switching on	off	off	$\overline{\mathbf{V}}$	$\overline{\checkmark}$	V	$\overline{\checkmark}$
\rightarrow	24 V control voltage			X10. 7	X10. 22	X10. 2	X10. 22
_ .	switch enable X10.xx switch on 0 V and after that 24 V			7,10.1	X10.22	2	X10.22
46h	Under voltage of control voltage	off	off		V	V	$\overline{\mathbf{V}}$
		011			_		_
<u></u> .	Power supply switched on? Power supply o.k? internal fuse o.k.? control voltage < 17 V						
60h	Under voltage in DC-bus < Ua low threshold	off	off	$\overline{\mathbf{V}}$	$\overline{\checkmark}$	V	\checkmark
 .	check power supply (power supply unit, wiring, fuse), check under voltage parameter						
DAh	feedback system error (e.g. resolver)	off	off	$\overline{\mathbf{A}}$	$\overline{\checkmark}$	V	$\overline{\checkmark}$
BAIT	,	OII	OII				ب
<u>_</u> .	wiring to encoder system ok?						
200	encoder system supply ok?						
DAh 00h	"flashing" Resolver - Feedbacksystem Error	off	off	Ш			☑ 8.36
I CONT	wiring to resolver system ok?	1					3.30
DAL		-"	-"			П	$\overline{\mathbf{V}}$
2 DAh	HIPERFACE Feedbacksystem Error	off	off	Ш			8.36
Eh 6Eh	wiring to HIPERFACE system ok?	1					
I_I.	Check serial HIPERFACE channel						

Displa	ау	Explanation	Ou	tput		S	ervo dr	ive
	de) ⁴	Comment	Ready	Warnin	631	635/637	637+	637f/638
B .	F2h	l²t- overload of the drive does the control loop oscillate? P-amplification too high mechanics stiff?	1)	1)	V	V	V	<u> </u>
H	66H	requirements too high? is warning /8/ evaluated? l²t overload of the motor does the control loop oscillate? P-amplification too high mechanics stiff? requirements too high? is warning /8/ evaluated?	1)	1)	V	V	V	Ø
5.	B6h	over temperature of the output stage (> 90°C) adequate cooling of the regulator? ambient temperature too high?	1)	1)	V	V	V	Ø
8.	3Eh	over voltage on DC bus ballast module ok? adequate ballast module?	1)	1)	$\overline{\checkmark}$	V	V	Ø
<i>B.</i>	E0h	chassis shorting and short circuit due to hardware motor cabling ok? digital-loops setup ok? short circuit to chassis in the motor? braking resistor: ohm- value too low? try to start fresh! send in for repair	off	off	V	V	V	Ø
8.	FEH	WARNING! Overload of the regulator I²t or motor I²t or temp output stage too high. If no reaction within approx. 3sec.it switches off with signals /3/, /4/ or /5/. Signal /8/ clears when there is no more danger or it is switched off mechanics stiff? defective bearings; cold grease? reduce requirements and creep to next possible	on	1)	V	Ŋ		Ø
8	F6h	over temperature motor(NTC/PTC) check overload of the motor / cooling etc.	off	1)	V	V	V	Ø
H.	2Eh	motor temperature too high check overload of the motor / cooling etc.	on	1)	V	V	V	Ø
吕	80h	ballast active Brake energy is removed	on	off	V	V	V	Ø
8.	38h	Warning: I²t ballast too high ballast resistance usage >90%	on	on	V	V	V	Ø
Н.	7Ch	switch off ballast ballast resistance overloaded	off	off	V	V	V	Ø
H.	6Ch	X 300 – Module not inserted or wrong inserted or defect X 300 testing	off	off			V	Ø

Displ	ay	Explanation	Ou	tput		S	ervo dr	ive	
		Comment	Ready	Warnin	631	635/637	637+	637f/638	
(Cc	ode) ⁴			g ²⁾					
	6Eh	X 300 – setting wrong	off	off					
		X 30 / X40 Counter-Configuration test in							
		the EASYRIDER® Windows – Software							
	1Ch	tracking window exceeded 3)	on		$\overline{\mathbf{V}}$	$\overline{\checkmark}$			
L.		only in operation mode position control, will be deleted with the next run-command							
	1Eh	tracking error with switch off	on	off		V	<u> </u>		
ij		only in operation mode "position control"							
	20h	limit switch + 3)	on	off	V	$\overline{\checkmark}$	V	Ø	
\Box .		limit switch + X10.xx on 0 Volt, from Firmware 6.16			X10. 8	X10. 14	X10. 1	X10. 14	
	08h	limit switch - 3)	on	off	V	$\overline{\checkmark}$	V	Ø	
Π.		limit switch - X10.xx on 0 Volt, from Firmware 6.16			X10. 9	X10. 15	X10. 1 5	X10. 15	
1	9Eh	limit switch + / limit switch -	on	on off	n off	N.		V	
₾.		both limit switch X10.xx on 0 Volt, from Firmware 6.16			X10. 8 X10. 9	X10. 14 X10. 15	X10.1 4 X10.1 5	X10. 14 X10. 15	
	76h	memory-checksum-error	off	off	V	V	V		
Ü		try new start, store the value again							
出.	76h	Different Drive type on X300-xM Module	aus	aus				☑ 638 with X300 xM- Module only	
	62h	DC Bus Unterspannung < 100 V			V				
		-							
	4Eh	1: internal software error, Watchdog	off	off	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\mathbf{V}}$		
		2: blinking: BIAS software error]					V	
		1: Firmware version check							
•		2: Bias program error fix							
	EEh	starting lockout RP SBT with 637f starting lockout STO1 and STO2 with 638	on	off				\square	
П.		Terminal X290. 3/4 check with 637f TerminalX11. 1/4 check with 638							
	24h	STO1 und STO2 Signale Difference>20 Seconds	off	off				☑	
U.		Switch Off /On Control Voltage						638 only	

Displ	ay	Explanation	Output		-		ervo dr	ive
(Co	ode) ⁴	Comment	Ready	Warnin g ²⁾	631	635/637	637+	637f/638
田	26h	X10.22 Quickstop Ramp active	on	off				☑ 638 only
<i>B.</i>	42h	X10.22 low high slope missing	on	off				☑ 638 only
	2Ah	Max. speed overload check speed limits resp. setpoint speed	off	off				V
B.	4Ah	CAN - Open 402 Sync Message error in Interpolated positioning mode	on	off	√ 6.19c			☑ 8.19d
8	9Ch	SSI – Encoder Error	on	off				☑ 8.21
B .	9Ch	CAN1-BUS Error Flashing display Noise on bus or lane missing!	on	off				☑ 8.33
<u>H</u> .	1Ah	CAN2 Bus Error Flashing Display: Control loop synchronization between drives						✓ 8.36
B .	CEh	Profibus-Module Error	on	off				√ 8.31
Ħ.	ECh	Warning:setpoint current maximum limit reached and no actual current measurement (check motor connection)	on	off				☑ 8.34
8.	30h	638 Active Delay time runs	on	off				☑ 638 only
Ε.	8Eh	638 SAFETY- Parameter Ram Error	off	off				☑ 638 only
8.	C4h	638 X300 xM Module, Memory Error Firmware, Alteracode and Parameters missing	off	off				\sqrt
H	44h	638 X300 xM Module, Memory Error Alteracode and Parameter- and BIAS-Data missing	off	off				638 only with X300 xM- Module

Display	Explanation	Ou	tput		S	ervo dr	ive
(Code) ⁴	Comment	Ready	Warnin g ²⁾	631	635/637	637+	637f/638
04h	638 X300 xM Module, Memory Error Alteracode missing	off	off				
40h	638 X300 xM Module, Memory Error Parameter- and BIAS-Data missing	off	off				

- 1) Reaction to these errors chapter: "■ Function diagrams from inputs and outputs"
- 2) With configuration corresponding chapter : "

 Operating modes and pin functions"
- 3) Operating mode "Position Control" only
- 4) The display code you can get with the serial command "internal diagnosis 2" (0x26) in byte 16.

The error signals are shown as long as there is control voltage (Us), also when the power (DC-Bus) is switched off for safety reasons.

10.2 Reset of a Drive Trouble

A general precondition for correct execution of the Reset is the elimination of the error cause.

Possible error signals

at

blinking (BIAS)

The error signals of the drive can be reset via:

1. Control voltage OFF/ON,

2. the serial command "Drive Reset" 0x02

The host login must be occurred.

The drive must be deactivated via the serial command "deactivate Drive" 0x00.

3. the fieldbus-command "Drive Reset" 0x16 (22 decimal)

The host login must be occurred via the BUS command 0x01. The drive must be deactivated via the BUS command "deactivate Drive" 0x14.

The fieldbus command "Drive Reset" with constant repetition of the fieldbus command 0x16 will be works-off only once.

For further processing, it is necessary, meanwhile to send another control word (e.g. 0 status order).

4. Viva 0 - 1 flank on input X10.11

Precondition:

- The input X10.11 is with function 1"Reset drive fault" configured (EASYRIDER® Windows – Software)
- There is no host login.
- The input Active,(X10.22) is inactive (0V)
- The signal must be present min. 250 ms

5. Viva 0 - 1 flank on input X120.1

Precondition:

- The input X120.1 is with function 1"Reset drive fault" configured (EASYRIDER® Windows Software)
- There is no host login.
- The input Active,(X10.22) is inactive (0V) 1)
- The signal must be present min. 250 ms

Notice !!

After remove of the tracking error deactivation the warning message (tracking error) is active up to the next move command.

The **error signal**

(releasing before ready) can be reset by deactivation the drive.

10.3 Trouble-Shooting

The following list refers to faults which can occur during operation.

Display:

Error	Explanation and remedy	
no motor run despite current flow	motor mechanically blocked? motor brake released?	1)
motor runs unevently	check setpoint wiring check grounding and shielding too high P-amplification in the speed controller reduce value	
	(with EASYRIDER® setting/speed control) too small I-time in the speed controller? reduce value	
	(with EASYRIDER® setting/speed control)	
no reaction of setpoint progression, despite torque in standstill	Limit switch functions effective (BIAS)	
no current flow; no torque despite activating the regulator correctly	motor cables interrupted? Is input "I extern" (X10.19) activated (config. menu) and not notched up? limit switch - input activated and not notched up?	
Interference symptoms with power frequency	Ground loops in setpoint or actual value wiring? Shieldings laid on both sides? Signal cables near high voltage cables?	
Motor takes up preferred positions after activation	Position encoder or motor cables with reversed poles? Resolver or Feedback- encoder incorrectly adjusted? Number of motor poles wrong matching? (config. menu)	1)
Motor runs up immediately after activation although there is no setpoint	Motor cables or feedback- cables reversed? Encoder incorrectly adjusted? (e.g. Resolver)	1)
Motor reaches in idling cycle very different	Feedback-Encoder incorrectly adjusted	
speed when running to the right or to the left	(e.g. Resolver)	

1) Display

or

mostly short after activating; before warning

11.1 Compliance with Regulations, Limitations and Basic Conditions

European Directives			
EG Low-Voltage Guidlines In accordance with EN61800-5-1			
2006/95/EC	Safety requirements – Electrical, thermal and energy.		
EG-EMC-Directive EN 61 800-3, Emissions and immunity levels for			
2004/108/EC	Power drive systems.		

UL - Approved / being prepared					
Underwriter Laboratory StandardUL 508 CPower Conversion Equipment					
UL File-No.	E				
Canadian Standards Association	C22.2 No.14	Industrial Control Equipment			

Insulation Requirement				
Protection Class EN 50 178 I				
Overvoltage Category	IEC 60364-4-443:1999	III		
Pollution Degree	EN 61800-2, 4.1.2.1	2		

Environmental Conditions				
General Environment	al	EN 61800-2		
Ambient Temperature	Rating:			
	Operations	IEC 60721-3-3	+ 5 bis +40 °C, 3K3	
	Storage	IEC 60721-3-3	-25 bis +55 °C, 1K4	
	Transport	IEC 60721-3-2	-25 bis +70 °C, 2K3	
Allowable Humidity:				
	Operations	IEC 60721-3-3	<= 85% non-condensing, 3K3	
	Storage	IEC 60721-3-3	<= 95%, 1K4	
	Transport	IEC 60721-3-2	<= 95% at +40 °C, 2K3	
Vibration:		EN60068-2-6	10Hz ≤ f ≤ 57Hz sinusoidal	
		Test FC	0,075mm amplitude	
			57Hz ≤ f≤150Hz sinusoidal 1g	
			10 sweep cycles per axis	
			1 Oktave / Minute	
Air Pressure			86 kPa – 106 kPa	
Protection		EN 60529	IP20	
Altitude		Under <= 1000m above sea level with 100% power rating		
		Over >1000m <= 2000m above sea level, decreated the power rating by 1% per 100m		
Method of Cooling		638B 03 / 05	Convention cooling	
		All 638A,	Forced ventilation (internal fan)	
		638B 08 / 10 / 15		
		All 638C		

11 Standards and Certifications

EMC - Requirement				
		638A	638B	638C
EMC – Emission	EN 61 800-3	max. Motor cable length		
(Conducted)	First Environment C1	20m ¹⁾	2)	
EMC – Emission	First Environment C2	40m	20m	
(Radiated)	Second Environment C3		20m	
	EN 61 800-3			
	First Environment C1			
	First Environment C2			
	Second Environment C3			
EMC – Immunity	EN 61800-3			
Levels	(include EN 50081-2	3)	3)	
	and EN 50082-2)	meet	meet	
		meet	meet	
EMC - Emission	EN 61 800-3	Minimum standards for the Second		d
(Conducted)	First Environment C1	Environment are kept to.		
	First Environment C2			
	Second Environment C3			

¹⁾ for max. 100m motor cable length, use the drive with Option A (less leakage current) and the external filter Type LNF RA *230/12.

Motor cable length of 60m, possible.

10 dB in the frequency range of 30-1000MHz necessary.

²⁾ With external Filter of the Serie LNFB, is a group RFI suppression for max. 4 Device with a overall

³⁾ For the operation in the first environment with unlimited availability is a cabinet damping of at least

12.1 General Technical Data

Power Circuit

Galvanic Separation from the Control Circuit	in acc. with EN 61800-5-1/ UL 508C
Specifications in accordance with	EN 61800-5-1 / UL 508C and cUL
Short Circuit and to Frame Test for	min. 2000 releases
Overvoltage Monitoring	max. 400V DC ±5V DC
	max. 810V DC ±10V DC (638B/C)
Undervoltage Monitoring	min. 15V DC; configurable
Overheating Switch Off at	95 ° C +/- 5%
Clock Frequency Powerstage	638A: 9,5 kHz
	638B/C: 4,75kHz / 9,5kHz
Frequency of Current Ripple	9,5 kHz / 19 kHz

Control Circuit

Galvanic Separation from the Power Circuit	in acc. with EN 61800-5-1 / UL 508
Further Information:	See: "■ Insulation Concept"

• Signal Inputs and Outputs - Connection X10

Additional Galvanic Separation from Power and Control Circuit		
Nominal Voltage of the In and Outputs	24 V DC	
Number of Outputs Signal Outputs via OPTO Coupler	U _{max} = 45V DC; I = 060 mA; short circuit procresistive load	of,
Signal Outputs via RELAY	U _{max} = 45V DC; I = 1uA1,2A	
Contact Protection with Inductive Load	internal varistor	
Number of Inputs Signal Outputs via OPTO Coupler	8 L = 07 V DC or open H = 1530 V DC I _{in} 24VDC: 8 mA	
Shortest Time for a Signal to All Inputs - to Accept the Signal in an Application:	> 1 ms	
Damping of the Transfer from Low to High (0>24V):	fast input: 20µs (X10.4, X10.25)	default input: 200µs
Interrupt Response Time for Fast Input	10μs (X10.4, X10.25)	
Damping of the Transfer from High to Low (24>0V)	fast input: 250µs (X10.4, X10.25)	default input: 1000µs

• Thermo-Control X30

No galvanic Separation to the Control Circuit	
Measurement Voltage at 100 / 1640 / 9999 Ohm	0,15V / 1,7V / 3,8V
Measurement Range	1009999Ohm, short-circuit proof (Thermoswitch evaluable)

12 Technical Data

• Thermo-Control X62

Galvanic Separation to the Control Circuit Galvanic Separation to the Power Circuit	Basic Isolated in acc. with EN 61800-5-1 Double Isolation in acc. with EN 61800-5-1
Measurement Voltage at 100 / 1640 / 6000 Ohm	0,15V / 1,7V / 3,2V
Measurement Range	1006000Ohm, short-circuit proof
	(Thermoswitch evaluable)

• Brake-Control X62

Galvanic Separation to the Control Circuit / - Power Circuit	Double Isolation in acc. with EN 61800-5-1
Nominal Voltage Supply	24V DC
Max. Brake Current	2A
Contact Protection for inductive Load	Internal Varistor (BR+ <-> BR-)

• Signal Inputs and Outputs - Connection X120B resp. 120C

Additional Galvanic Separation from Power and Control Circuit			
Nominal Voltage of the In and Outputs	24 V DC +20% / -10%		
Number of Outputs	4		
Signal Outputs via OPTO Coupler	resistive load Imax. = 2A		
	inductive load max. 1Henry		
	l _{out} .	Inductance	Max. Switching Frequency
	1A	1H	1Hz
	1A	0,1H	10Hz
	0,33A	1H	10Hz
	0,2A	0,5H	50Hz
	short-circuit current limited by (5A) over-heating protection, active overvoltage clamping (50V); keyed		
Number of Inputs Signal Outputs via OPTO Coupler	4 L = 07 V DC or open H = 1530 V DC I _{in} at 24VDC: 8 mA		
Shortest Time for a Signal to All Inputs to Accept the Signal in an Application:	> 1 ms		
Damping of the Transfer from	default input:		
Low to High (0>24V):	200µs		
Damping of the Transfer from	default input: 1000µs		
High to Low (24>0V)			

• Digital Control

Current Control	
Loop-Cycle-Time	105 μs
Settings	according to factory specifications or motor data
Current Limits - Adjustment by:	speed control -menu
	Analog Input
	010V = 0100%; can be standardized, 10Bit

Speed Control	
Loop-Cycle-Time	105 μs
Settings	speed control menu
Differential Setpoint Input Analog	U _{soll} = 10 V, can be normed; R _i = 10k
Resolution (including sign)	14 bit
Digital Setpoint Input	via interfaces

Position Control	
Loop-Cycle-Time	105 µs

Digital Communication

RS232 - Service Interface	COM1
	19200 baud, 8 data bits, 1 start bit, 1 stop bit, parity: even
<u>Optional</u>	
RS232 / RS422 / RS 485 on SUB D – Socket	COM2
CAN1, Profibus DP, SUCOnet K on SUB D – Socket Interbus S on SUB D – Socket (OUT)	
Interbus S (Remote IN) CAN2	additional on SUB D – socket

Resolver Evaluation / Transmitter Principles

General: The specified data refers to the combination of the standard resolver interface with Function Module - X300_RD2; operated with the SSD Drives Resolver R 21-T05, R15-T05						
Carrier Frequency	f _t = 4,75 kHz					
Ripple of the Actual Speed Value Signal	2% 1)					
Max. Position Resolution for One Revolution	65536 / 16 bit					
Absolute Position Accuracy	+/- 0,7 ° 1)					
Relative Position Accuracy	+/- 0,08 ° ¹⁾					

¹⁾ Data was checked – actual data results: Quality improved

12 Technical Data

Controller System

System Start-Up Time after Switching On the Control Voltage	max. 6 seconds
Data Memory / Organization	Flash Eprom 256 KB RAM 64 KB; EEPROM 96 kByte

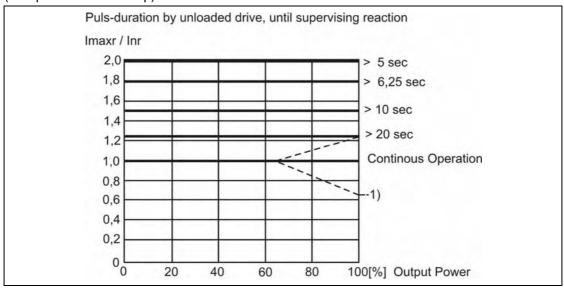
Mechanical Data

Dimensions	see " <u>■ Dimensions</u> "				
	638A	638B03	638B08	638C	
		/05	/10/15		
Weight	1,6 Kg	2,7Kg	4,4Kg		

12.2 Technical Unit Data

• 638A

Servo Drive				638A01	638A02	638A04	638A06	
Input								
Supply Voltage 5060 Hz		min.	[V]	14				
(grounded at the centre		Un	[V]		230			
point TN networks)		max.	tolerance		+10	0%		
Phases	1)				1 o	r 3		
Supply System				"	■ Fuse, Cont	actors, Filter	"	
Inrush Current Limitation		type		Softstart	: capacitor - p	re-charging o	ver 390Ω	
Control Voltage	2)	Us	[V]		21,5 2	24 29		
Control Current Incl. Fan		Is DC						
Permanent:			[A]		nominal 0,4 r			
Inrush peak:			[A/ms]	nor	minal 3 maxim	num 6/0,8; 2,5	/25	
Output								
Sine Voltage with Un		Unr	[Veff]		22	-		
Derating of Unr				Depend	ling on load o	r with 1-phase	supply	
Rated Current Efficiency		Inr	[A]	1	2	4	6	
Max. Current Efficiency		lmaxr	[A]	2	4	8	12	
Time for Imax	1)		Sec	5	5	5	5	
Min. Motor Inductance		Lph/ph	[mH]	10	6	3	2	
(terminal / terminal)								
Brake Circuit								
Operating Point DC		Ub	[V]		37			
Max. Power		Pbmax	[kW]		5	,5		
Rated Power		Pbnenn	[W]		60	00		
Internal Brake Resistor		Rbint	$[\Omega]$			70		
		Pd	[W]		2			
		Pmax	[W]	830				
Min. Ext. Brake Resistor	2)	Rbextmin	$[\Omega]$	33 (use only our approved types)				
General								
Power Loss		max.	[W]		1	7		
Fan, Electronics		max.						
Fan Control			[V]		2-stage	control		
Power Loss		nominal	[W/A]	7 (4,75kHz) / 9 (9,5kHz				
Rating Class per A			[**// 1]	/ (4,/3KHZ)/9(9,3KHZ				

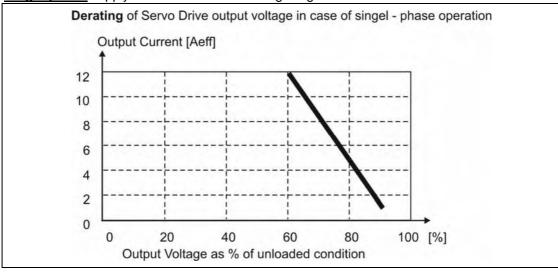

¹⁾ Reference "• Output Power"

²⁾ Recommended: Transformer power supply

12 Technical Data

Output Power 638A

In the event of continuous operation in the full-load range, the limits as shown in the following diagram need to be respected. Typical servo applications are not affected by this restriction. (S3 operation: Start/Stop).


1) At servo drive 638A/06..:

Load limitations decreased to 66% with 1phase incoming supply and continuous operation and speed. (S1)

Singlephase and Threephase supply

Due to the line-ripple of the DC-Bus, the rate of usable output voltage is reduced as follows. This reduction affects the maximum attainable speed of the applied motor.

<u>Three-phase</u> supply: The unloaded output voltage will be reduced to approx. 90%, maximally 85 % <u>Single-phase</u> supply: 50 – 60Hz: see following Diagram:

Hint for Parameterization:

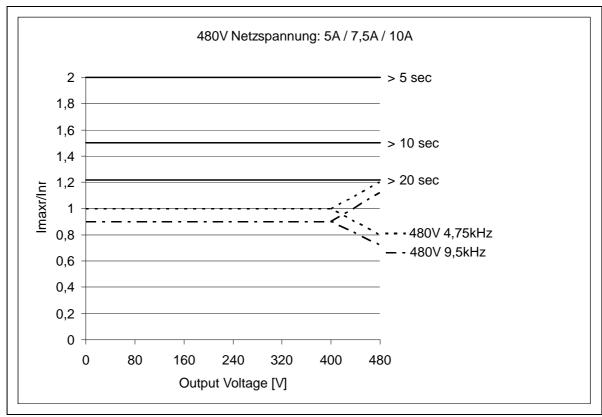
To avoid the unexpected tripping of the under voltage threshold, the parameter setting should be left on the default values (EASYRIDER® Windows – Software).

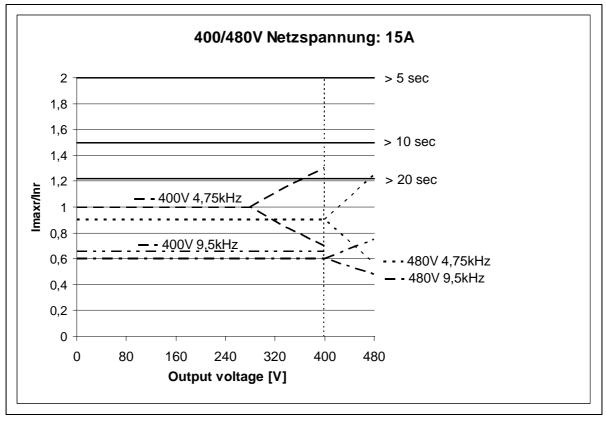
Required motor-terminal-voltage for specified speed.

Approxima	Approximation: (up to 3000RPM)						
Ukl =	1,2 * (EMF * n / 1000) + I * (Rph + RL) [V]						
Ukl	Required Motor Voltage [V _{RMS}]						
EMF	Back-EMF of Motor [V _{RMS}] / 1000 RPM						
Rph	Resistance of Motor (between terminals) $[\Omega]$						
RL	Line Resistance of Motor cable $[\Omega]$						
I	Motor Current [A RMS]						

638B

Servo-Drive				638B03	638B05	638B08	638B10.	638B15
nput								
Supply Voltage 5060 Hz		min.	[V]	14				
(grounded at centre point		Un	[V]			400 /480		
TN – networks)		max.	olerance			-25% / +10%		
Phases	1)					3		
Supply System					" <u>■ Powe</u>	er Mains Conr	nection"	
Inrush Current Limitation		type		Sc	ftstart : capac	itor – pre-cha	rging over 34	0Ω
Control Voltage	2)	Us	[V]		2	1,5 24 2	9	
Control Current nominal/maximal	3)	Is DC	[A]	0,6	/ 1,0	0,7 / 1,1	0,8 /	1,2
Control Current Inrush peak:		Is DC	[A/ms]		nominal 3	3 maximal 6/0	,8; 2,5/25	
Output								
Sine-Voltage with Un		Unr	[Veff]			388 / 465		
Minderung von Unr					Acco	rding to the lo	ad 1)	
Rated Current 400V AC/ 4,75kHz		Inr	[A]	2,5	5	7,5	10	15
Rated Current 400V AC/ 9.5 kHz		Inr	[A]	2,5	5	7,5	10	10
Rated Current 480V AC/ 4,75kHz		Inr	[A]	2,5	5	7,5	10	14,5
Rated Current 480V AC/ 9,5kHz		Inr	[A]	2,5	4,5	6,8	9	9
Max. Current efficiency		Imaxr	[A]	5	10	15	20	30
Time for Imax	1)	minimal	Sec	5	5	5	5	5
Min. Motor Inductance		Lph/ph	[mH]	8,9 / 10	4,5 / 5,0	3,3 / 3,0	2,2 / 2,5	1,5 / 1,7
4,75kHz 400 / 480V AC								
Min. Motor Inductance		Lph/ph	[mH]	4,4 / 5,0	2,2 / 2,5	1,5 / 1,7	1,1 / 1,2	0,7 / 0,8
9,5kHz 400 / 480V AC								
Brake Circuit								
Operating Point DC		Ub	[V]			675 / 760		
Max. Power 400/480V AC		Pbmax	[kW]	6,5	7,4	9,8 / 10,9	22 /	25,5
Rated power		Pbnenn	[W]			1100		
Internal Brake Resistor		Rbint	[Ω]	68			330	
		Pd	[W]	1		30		
400V / 480V AC	4\	Pmax	[W]	670 / 849			1380 / 1750	
min. ext. Brake Resistor	4)	Rbextmin	$[\Omega]$	78 /	/ 88	54 / 62	22/24	22/24
400/480V								
General						<u> </u>	1	
Power Loss		maximal	[W]	24 26,4 28,8		3,8		
Fan, Electronics Fan Control			[//]					
Power Loss			[V]					
Rating Class per A		nominal	[W]	N] 11,5 (400V/4,75kHz), 15,8 (400V/9,5kHz), 11,8 (480V/4,75kHz), 16,8 (480V/9,5kHz)				
Rating Class per A		<u> </u>			11,0 (4007/4,	1 UNTIZ), 10,0	(4 00 V/9,3KHZ)

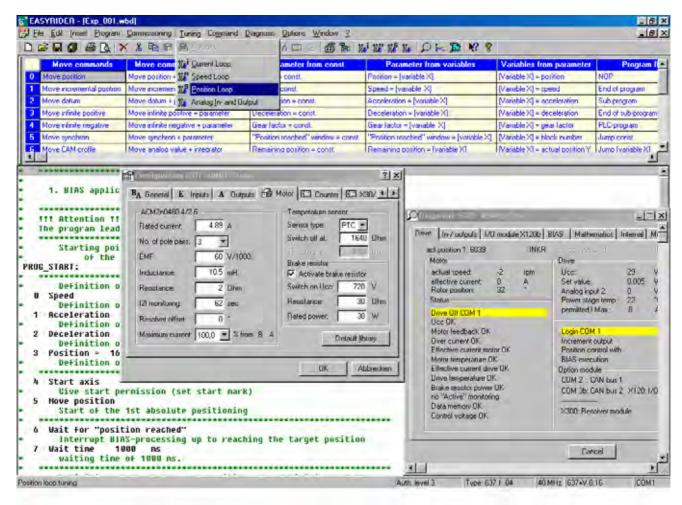

¹⁾ Reference "• Output Power 638B"
2) Recommended: Transformator power supply


12 Technical Data

Output Power 638B

In the event of continuous operation in the full-load range, the limits as shown in the following diagram need to be respected. Typical servo applications are not affected by this restriction. (S3 operation:Start/Stop).

At mains voltage 400V no restriction of the output power on the devices withstands 5 / 7,5 / 10A.



13.1 EASYRIDER® Windows - Software

EASYRIDER® Windows software is a useful and convenient tool to use to control all drive functions.

Detailed online help information and instructions are available.

EASYRIDER® Instructions: (extract)

- O Auto pilot function as an interactive tutorial
- System identification
- O BIAS instruction-set editor
- Oszilloscope function
- Start-up and commissioning tools
- Setting of parameters and setting of configurations
- O Servo diagnostics, interface diagnostics and fieldbus diagnostics
- O Motor library
- O Save system data in file and load system data from file
- O Send system data to servo drive and save system data in servo drive
- O Load system data from servo drive

Important:

Edited data in EASYRIDER® is transmitted to the RAM of the servo drive and becomes **active only after** executing the **SEND** command. **Only the instruction** "**SAVE in EEPROM**", writes data into a non volatile memory. Data is stored there in the event of power failure.

13.2 Introduction

The selection of the Operating Mode 5 with the Drives 630 Serie activates the complete functionality of all control loops and the BIAS-program processing.

The EASYRIDER Software is the programming tool to create, load and save the BIAS Programs.

The programming language "BIAS"

Bedienersprache für intelligente Antriebs – Steuerungen

was developed to allow the programming of complex and yet clear programs. Therefore the BIAS commands were divided according to their function into the 12 following command groups:

- 0. Move command
- Move command + parameters
- 2. Parameter commands
- "Parameter from variables" commands
- 4. "Parameter into variables" commands
- 5. Control commands
- 6. Flag commands
- 7. In-/ output commands
- 8. Variable commands
- 9. Mathematics commands 1
- 10. Mathematics commands 2
- 11. Floating point commands

With these commands you will be able to program the required machine process in chains of steps. The size of a program is limited to a maximum of 1500 BIAS commands.

BIAS – Command overview

The design of the programs occurs with EASYRIDER software at the PC and can be transmitted into the servo drive via serial communication.

If you create the BIAS program with the **EASYRIDER** shell, jump labels, comments and a unit for the position presettings are provided.

A further possibility is programming or transmitting and controlling the BIAS program via a field bus respectively. The necessary command coding is listed in the command instruction.

During the calculation of a BIAS-program is is possible to start parallel a PLC SPS-Task and/or a Mathematics-Task.

The PLC-Task is calculated parallel to the BIAS-Task and has a subset of the commands.

Save Table
The command is allowed in the PLC-Task only

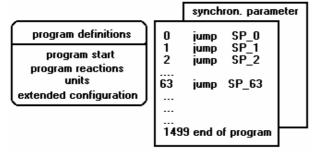
The Mathematik-Task is calculated in the interruptfree processing time of the drive and has also subset of the commands.

Profile value =
[Variable X]
THe command is allowed in the Math only.

Program layout

A BIAS program consists of 3 basic memory areas.

1. The program definition:


contains all definitions for starting and processing a BIAS program, the entries for defining a unit for position presetting and the necessary configurations of the inputs and outputs.

2. The command memory:

contains up to 1500 BIAS commands.

3. The synchronous parameters:

contain the definitions for the 16 synchronous profile blocks and the 2048 supporting points.

The basic memory areas are part of the BIAS program.

In the EASYRIDER for Windows Software the extension is *.WBD.

Execute a BIAS program

The BIAS processing is started in operating mode 5 "position control with BIAS processing" after activating the output stage of the regulator.

The first BIAS block to be executed is determined in the <u>BIAS program definition</u> (Parameter "program start").

After that, the regulator processes one BIAS command sequentially every trajectory cycle. If the BIAS processing encounters a move command, it can be started with the Low-High slope of the start input.

Serie	Input	Configuration
635/637/637+/637f/638:	X10.11	"Start input BIAS" (Function 0)
631:	X10.9	"Start input" (Function 3)

Alternatively, move commands are started when the start identifier is set before the move command, via the BIAS command "Start axis".

The following blocks will be processed after a successful start.

If the command, "Wait for "position reached" follows a move command, block processing will only be continued after the target position is reached.

	Drive type:	Trajectory cycle:
	631/635/637	1,899ms
Ì	637+/637f/638	0,844ms

Execute a PLC program

A cyclic PLC program for supervisory monitoring tasks can be started parallel to the sequential processing of a BIAS program

The PLC program is started by processing the BIAS command, "PLC program".

After the PLC program is activated the programmed PLC commands are processed as of the specified block number.

The command "end of program, mode = 0" within a PLC program causes a jump back to the start of the PLC program.

The regulator processes one PLC command sequentially every trajectory cycle.

The reaction of the PLC program to the deactivation of the output stage can be adjusted in the BIAS program definition (parameter "program reaction PLC program"). Thus it is possible to allow the PLC program to continue to process also during the deactivation of the regulator. Is in this mode the first command of the BIAS execution the command "PLC program" the PLC task starts automatically independently of the state (deactive/active) of the drive.

In the plc-loop not all of the BIAS commands are allowed.

In the 3 command overview the allowed commands are listed.

The check of allowed commands is done by the drive during run time!

Drive type	Trajectory cycle
631/635/637	1,899ms
637+/637f/638	0,844ms

Execute a Mathematics program

A 3 task as math program for supervisory calculation can be started parallel to the sequential processing of a BIAS program and/or PLC program.

The mathematics-program is started by processing the BIAS command, "Mathematics program". After the mathematics program is activated the programmed mathematics commands are processed as of the specified block number.

The command "end of program, mode =0" within a mathematic - program causes a jump back to the start of the mathematics program.

The command "end of program, mode =3" cancels the mathematics program.

The reaction of the mathematics program to the deactivation of the output stage can be adjusted in the <u>BIAS program definition</u> (parameter "program reaction mathematics program").

Thus it is possible to allow the mathematics program to continue to process also during the deactivation of the regulator.

In this mode the command "Mathematic program" is executed at the first or second line (if the PLC program is on line 1) of the BIAS progam or at line 0, if the drive is not enabled. The calculation of the mathematics commands is done in the interruptfree calculation time of the drive. In a standard application approx. 10 commands are processed every 2ms

13.3 BIAS - Commands

Position = const.	[Variable X] = position	BIAS-execution pointer	[Variable X] =flag Y	Profile value = [variable X]	Save table	PLC-program
This command is only permitted in	This command is only	This command is only permitted in the				
in the BIAS- task	in the BIAS, PLC and MATH-	in the PLC and MATH-Task	in the BIAS and PLC -Task	the MATH-Task	permitted in the MATH-Task	BIAS and MATH-Task
	Task					

_		1 4	l 2	2	4	5	G	7	0	9	Α	В
	0	1	2	3	4	5	6	/	8	9	A	
0	Move position	Move position + parameter	Position = const.	<u>Position =</u> [variable X]	[Variable X] = position	<u>NOP</u>	Flag X = const.	If input X ? const.	[Variable X] = const.	Mathematic program	<u>Table</u> [[variable X]] = const.	<pre>[D Variable X] = [D Variable Y]+ [D Variable Z]</pre>
1	Move incremental position	Move incremental position + parameter	Speed = const.	Speed = [variable X]	[Variable X] = speed	End of program	If flag X ? const.	If output X ? const.	If [variable X] ? const.	Profile initialization = const.	<u>Table</u> [[variable X]] = <u>[Y_Variable Z]</u>	<pre>[D Variable X] = [D Variable Y] - [D Variable Z]</pre>
2	Move datum	Move datum + parameter	Acceleration = const.	Acceleration = [Variable X]	[Variable X] = acceleration	Sub- program	<u>Flag X =</u> <u>flag Y</u>	Output X = const.	[Variable X] = [variable Y] + const.	Profile cycle length = [variable X]	[X Variable Y]= Table [[variable Z]]	<pre>[D Variable X] = [D Variable Y] * [D Variable Z]</pre>
3	Move infinite positive	Move infinite positive + parameter	Deceleration = const.	<u>Deceleration =</u> [variable X]	[Variable X] = deceleration	End of Sub-program	Flag X = input Y	Output X = flag Y	[Variable X] = [variable Y] – const.	[Variable X] = profile value	[W Variable X] = [Y Variable Z]	<pre>[D Variable X] = [D Variable Y] / [D Variable Z]</pre>
4	Move infinite negative	Move infinite negative + parameter	Gear factor = const.	Gear factor = [Variable X]	[Variable X] = gear factor	PLC-program	Flag X = output Y		[Variable X] = [variable Y] * const.	Profile value = [variable X]	[X Variable Y] = const.	If [D_Variable X] ? [D_Variable Y]
5	Move synchron	Move synchron + parameter	"Position reached" window = const.	"Position reached" window =[variable X]	[Variable X] = block number	Jump const.	Flag X = flag Y & flag Z		<pre>[Variable X] = [variable Y] / const.</pre>		[Variable [X]] = const.	<pre>[D Variable X] = SIN {[D Variable Y]}</pre>
6	Move CAM profile	Move analogue value + integrator	Remaining position = const.	Remaining position = [variable X]	[Variable X] = actual position Y	Jump [variable X]	Flag X = flag Y flag Z		<u>[Variable X] = flag Y</u>		[Variable [X]] = [variable Y]	[D_Variable X] = COS {[D_Variable Y]}
7	Synchronous settings 1	Move speed + integrator	Ramp filter = const., [variable X]	M <u>aximal current =</u> [variable X]	[Variable X] = analogue input Y	BIAS-Execution pointer = const.	<u>Flag X =</u> flag Y ^ flag Z		[Variable X] = [variable Y].bit Z number	Save table	[Variable [X]] = [variable Y]	[D_Variable X] = SQRT {[D_Variable Y]}
8	Synchronous settings 2	Move speed + variable	Actual position X = const.	Actual position X = [variable Y]	[Variable X] = latch position Y	Wait for "position reached"	<u>Flag X = </u>	IBT- mask number = const.	[Variable X] = [variable Y]		[Variable X] = [variable Y] ? [variable Z]	
9	Move PID; speed		If actual position X ? const.	Analogue output X = [variable Y]	[Variable X] = actual speed Y	Wait time = const.	Flag X = status Y	IBT- notification number = const.	If [variable X] ? [variable Y]		<pre>[Variable X] = [variable Y] ?</pre>	
Α	Move PID; torque	Cycle length = const.	If actual position X ? [variable Y]	PID scaling	[Variable X] = latch status Y	Wait time = [variable X]	If status X ? const.	CAN Command = [variable X]	[Variable X]= [variable Y] + [variable Z]			
В	Set point [axis no.] = const.	Cycle length = [variable X]	Sensor window = const.	Sensor window = [variable X]	[Variable X] = position Y; axis no.	BIAS-execution pointer = [variable X]	Mode X = const.	IBT- data transfer	[Variable X]= [variable Y] - [variable Z]			
С	Set point [axis no.] = [variable X]	Load parameter set X = [variable[Y]]	Sensor position = const.	Sensor position = [variable X]	[Variable X] = value Y	Jump [var.[X]]; length = const.; from	Flaq X = [variable Y]	CAN2 Command = [variable X]	[Variable X]= [variable Y] * [variable Z]			
D	Move relative		Sensor adjustment 1 = const.	<u>Sensor</u> adjustment 1 = [variable X]	[Variable X] = axis status, axis no. Y	Execute X commands	[Variable X]. bit[Y] = const.		[Variable X]= [variable Y] / [variable Z]			
E	Start axis		Sensor adjustment 2 = const.	<u>Sensor</u> adjustment 2 = [variable X]			If [var. X]. bit Y == const. then jump		[Teachvariable X] = [variable Y]			
F	Stop axis	Stop axis ± parameter	Update parameter	PID parameter		<u>Virtual program</u>	Axis state, axis no. X, bit Y = const., [flag Z]		[Variable X] = [teachvariable Y]			

Command group "Move commands"

Command group "Parameter commands"

Command group "Variable commands"

Command group "Flag commands"

Command group "Conditional jump commands"

Command group "Program control commands"
Command group "Mathematic commands"
Command group "Output commands"
Command group "CAN- Commands"
Command group "637f commands"

14 Appendix

14.1 STO - Safety - Parameter - Report - Proposal

1	General Inform	mation	
•		ding to STO inspection instructine:	on:
2	Safety - Para	meter Configuration	
	Parameter-No.	Parameter description	Parameter value
			no Function
	0	Function X10.22	Acknowledgement + Quick Stop
			Acknowledgement
			Quick Stop
	1	Active-deceleration time	x 10ms
			deactivate
	2	STO-Power On test	activate
	STO Function	test according to manua	al; Step 1 checked
		anual 07-02-12-02-E, Chapter ST	
	(00011000001		Step 3 checked
			Step 4 checked
			Step 4 checked
Ļ	Acknowledge	ment according as confi	guration;
			successful checked
			not used
5	Quick Stop ac	cording as configuration	n;
	•	J J	successful checked
			not used
	Quick stop inte	grator (Commissioning; Super	vision) rpm/s
	Quion otop into	grator (Commissioning, Caper	violett)
Accep	otance test date:	In-	service inspection date:
0:		0:	
Signa	ture inspector	Sig	nature inspector
		Date:	
		Signature insp	ector

	•
	 •
	,
	ı
1	

16 Modification Record

Version	Modification	Chapter	Date	Name	Comment
V0106	preliminary version	-	07.04.2006	N. Dreilich	
V0206	preliminary version	-	-	-	
V0306	final version	-	21.08.2006	N. Dreilich	
V0406	STO - expansion		28.09.2006	N. Dreilich	New Photos
V0507	Intenal Version	-		N. Dreilich	
V0608	complete 638B	-	17.07.2008	N. Dreilich	Phase
V0608	complete 638B		17.07.2008	N. Dreilich	Phase

Parker Hannifin GmbH & Co. KG

Electromechanical & Drives Automation Group Im Sand 14 D-76669 Bad Schönborn Tel. +49(0) 7253/9404-0 Fax +49(0) 7253/9404-99 sales.automation@parker.com Parker Hannifin GmbH & Co. KG Electromechanical & Drives Automation Group Robert-Bosch-Straße 22 D-77656 Offenburg Tel. +49(0) 781/509-0 Fax +49(0) 781/509-98176 sales.automation@parker.com Parker Hannifin GmbH & Co. KG Electromechanical & Drives Automation Group Von-Humboldt-Straße 10 D-64646 Heppenheim Tel. +49(0) 6252/7982-0 Fax +49(0) 6252/7982-05 sales.automation@parker.com

