IUP

Portable User Interface

Version 2.2

(iup@tecgraf.puc-rio.br)

IUP is a portable toolkit for building graphical user interfaces. It offers
a configuration API in three basic languages: C, Lua and LED. 1UP's
purpose is to allow a program to be executed in different systems
without any modification, therefore it is highly portable. Its main
advantages are:

¢ high performance, due to the fact that the system uses native

interface elements
o fast learning by the user, due to the simplicity of its API.

This work was developed at Tecgraf/PUC-Rio by means of the
partnership with PETROBRAS/CENPES.

The IUP Team:

Antonio Escafo Scuri
Mark Stroetzel Glasberg

Tecgraf - Computer Graphics Technology Group, PUC-Rio, Brazil
http://www.tecgraf.puc-rio.br/iup

Overview

IUP is a portable toolkit for building graphical user interfaces. It offers APIs in three
basic languages: C, Lua and LED.

Its library contains about 100 functions for creating and manipulating dialogs.

IUP's purpose is to allow a program to run in different systems without changes - this
toolkit provides the applications a high portability. Supported systems include: Motif,
Microsoft Windows 98, Microsoft Windows NT, Microsoft Windows 2000 and Microsoft
Windows XP.

IUP uses an abstract layout model based on the boxes-and-glue paradigm from the TX

text editor. This model, combined with the dialog-specification language (LED) or with
the Lua binding (lupLua) makes the dialog creation task more flexible and independent
from the graphics system's resolution.

Currently available interface elements can be categorized as follows:

e Primitives (effective user interaction): dialog, label, button, text,
multi-line, list, toggle, canvas, frame, image.

e Composition (ways to show the elements): hbox, vbox, zbox, fill.

e Grouping (definition of a common functionality for a group of elements): radio.

e Menu (related both to menu bars and to pop-up menus): menu, submenu,
item, separator.

o Extended (additional elements built outside the library): dial, gauge,
matrix, tabs, valuator, GL canvas, color chooser, color
browser, toolbar.

e Dialogs (useful predefined dialogs): file selection, message, alarm,
data input, list selection.

Hence IUP has some advantages over commercial interface toolkits available in the
industry:

e Simplicity: due to the small number of functions and to its attribute mechanism,
the learning curve for a new user is often faster.

o Portability: the same functions are implemented in each one of the platforms, thus
assuring the interface system's portability.

o Customization: the dialog specification language (LED) and the Lua binding
(lupLua) are two mechanisms in which it is possible to customize an application for
a specific user with a simple-syntax text file.

o Flexibility: its abstract layout mechanism provides flexibility to dialog creation.

o Extensibility: the programmer can create new interface elements as needed.

IUP is free software, can be used for public and commercial applications.
Availability
The library is available for several compilers:
e GCC and CC, in the UNIX environment
e Visual C++, Borland C++, Watcom C++ and GCC (Cygwin and MingW), in the
Windows environment

The library is available for several operating systems:

e UNIX (SunOS, IRIX, AlX and Linux)
e Microsoft Windows NT/2K/XP

Support

The official support mechanism is by e-mail, using iup AT tecgraf.puc-rio.br (replace "
AT " by "@"). Before sending your message:

Check if the reported behavior is not described in the user guide.
Check if the reported behavior is not described in the specific format
characteristics.

Check the History to see if your version is updated.

Check the To Do list to see if your problem has already been reported.

If all these points were checked, you can report your problem. Please specify in your
message: function, attribute, callback, platform and compiler.

Announcements of new versions are done by the read only list iup-1 AT tecgraf.puc-
rio.br (replace " AT " by @). Send a request to the support e-mail to be added or
removed from the list.

Credits

This work was developed at Tecgraf by means of the partnership with
PETROBRAS/CENPES.

People who took part in IUP's development:

André Carregal

André Costa

Andreé Derraik

Antonio Scuri

Carlos Augusto Mendes
Carlos Henrique Levy

Carlos José Pereira de Lucena
Claudio Coutinho de Biasi
Danny Reinhold

Diego Nehab

Diogo Martinez

Enio Emanuel Russo
Guilherme Fonseca Alvarenga
Henrique Dalcin Mendes Pinheiro
Leonardo Constantino Oliveira
Luiz Henrique de Figueiredo
Marcelo Gattass

Mark Stroetzel Glasberg
Mauricio Oliveira Carneiro
Milton Jonathan

Neil Armstrong

Renato Borges

Renato Cerqueira

Roberto Beauclair

Vinicius Almendra

We must also mention engineer Enio Emanuel Russo, from PETROBRAS, who
effectively contributed to the system's specification and project.

The initial version of the present document was developed by Carlos Henrique Levy, Neil

Armstrong and André Carregal, being supervised and oriented by Luiz Martins, Luiz

Henrique de Figueiredo, Marcelo Gattass and Carlos José Pereira de Lucena at Tecgraf,

PUC-Rio for the Data Processing Sector (SEPROC) at CENPES/PETROBRAS.
Documentation

This toolkit is available at http://www.tecgraf.puc-rio.br/iup.

The full documentation can be downloaded from the Download by choosing the
"Documentation Files™" option.

The documentation is also available in Adobe Acrobat (iup.pdf ~1.0Mb) and Windows
HTML Help (iup.chm ~900Kb) formats.

The HTML navigation uses the WebBook tool, available at http://www.tecgraf.puc-
rio.br/webbook.

Publications
This product stimulated the following scientific publications:

e Levy, C. H.; Figueiredo, L. H.; Gattass, M.; Lucena, C.; and Cowan, D. "IUP/LED:
A Portable User Interface Development Tool". Software: Practice & Experience,
26 #7 (1996) 737-762. [spe95.pdf]

e Levy, C. H. "IUP/LED: Uma Ferramenta Portéatil de Interface com Usuario". M.Sc.
dissertation, Computer Science Department, PUC-Rio, 1993.[levy93.pdf]

e Figueiredo, L. H.;Gattass, M.; and Levy, C.H. "Uma Estratégia de Portabilidade
para Aplicacdes Gréficas Interativas”. Proceedings of VI SIBGRAPI (1993), 203-
211. [sib93.pdf]

e Oliveira Prates, R.; Figueiredo, L. H.; and Gattass, M. "Especificacdo de Layout
Abstrato por Manipulacédo Direta". Proceedings of VII SIBGRAPI (1994), 165-172.
[sib94.pdf]

e Oliveira Prates, R.; Gattass, M. ;and Figueiredo, L. H. "Visual LED: uma
ferramenta interativa para geracao de Interfaces gréficas". M.Sc. dissertation,
Computer Science Department, PUC-Rio, 1994. [prates94.pdf]

Tecgraf Library License

This product is free software: it can be used for both academic and commercial purposes at absolutely
no cost. There are no royalties or GNU-like "copyleft” restrictions. It is licensed under the terms of the
MIT license reproduced below, and so is compatible with GPL and also qualifies as Open Source
software. It is not in the public domain, Tecgraf and Petrobras keep its copyright. The legal details are
below.

The spirit of this license is that you are free to use the library for any purpose at no cost without
having to ask us. The only requirement is that if you do use it, then you should give us credit by
including the copyright notice below somewhere in your product or its documentation. A nice, but
optional, way to give us further credit is to include a Tecgraf logo in a web page for your product.

The library is designed and implemented by a team at Tecgraf/PUC-RIio in Brazil. The

implementation is not derived from licensed software. The library was developed by request of
Petrobras. Petrobras permits Tecgraf to distribute the library under the coditions here presented.

Copyright © 1994-2004 Tecgraf / PUC-Rio and PETROBRAS S/A.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software™), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

5
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS I1S", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

History of Changes

Version 2.2.2 (07/0ct/2004)

General
e Fixed bug in lupGetFile FILTER initialization.
e Improved IMINACTIVE automatic generation algorithm.
o New zip package for download with iup images in LED format.
o New application lupView to load and display LED files.

o Fixed some attribute storage in iupMask and lupGetParam. Fixed bug when several masks are
used in the same dialog.

o Replaced the internal Lua4 code for a smaller hash table module. Thanks to Danny Reinhold.
o Fixed lupGetParam invalid memory access.

o lupNextField and lupPreviousField now only changes the focus for the checked toggle inside a
radio.

o lupGetAttributes now returns the pointer address if attribute is a known internal pointer data.
o Now pressing Enter over a button activates it, even if it is not the DEFAULTENTER button.
o Esc and Backspace keys now will be translated even if CapsLock is active.

Windows
e New ENTERWINDOW_CB and LEAVEWINDOW _CB for buttons.
o Fixed double click for button, toggle and list were not being considered as two clicks.

o removed FLAT style from toggles with IMPRESS image. Fixed size of toggle with image.

New attribute SHOWDROPDOWN to open the dropdown list programmatically.

Removed a black border around lupMultiline and lupText.

Removed the TABSTOP for non marked Toggles inside a Radio.

Fixed invalid memory access when menu item is activated and all dialog controls are disabled.

Fixed lupFileDlg ignored the x,y parameters of lupPopup.
Motif
o Enter in lupMultiline activated the DEFAULTENTER button instead of adding a new line.
o Fixed invalid memory access when set FONT to NULL.
o Fixed ACTION callback called for lupList when list contents were cleared.
lupControls
e lupTree and lupTabs did not propagate to the parent the K_ANY callback for non used keys.
lupMatrix

e The TITLEs, BGCOLORs, FGCOLORs and FONTSs attributes were incorrectly set after a
DELLIN, ADDLIN, DELCOL or ADDCOL.

¢ In Windows when the user double click a dropdown list now will start opened.
e The user callback scroll_cb was incorrectly registered.
e New "HIDEFOCUS" attribute to hide the focus mark when drawing.

e Now in MARK_MODE=CELL and MULTIPLE=YES you can click on the title area to mark a
full line or collumn at once.

e New BGCOLOR_CB and FGCOLOR_CB callbacks.

o Fixed when MARKMODE=LIN/COL/LINCOL if the first cell in the line/column is selected the
click in the title area was ignored.

lupLua

Removed "print" debug calls in internal code.

lupGetAttribute/iup.GetAttribute now returns an user data if attribute is a known internal
pointer data.

New lupGetAttributeData/iup.GetAttributeData that returns the data always as an used data.

Fixed incomplete initialization of image object returned by lupLoadlmage.

Version 2.2.1 (25/Aug/2004)
General

o Fixed some minor bugs introduced in version 2.2.

e Fixed HTML help navigation.

o For disabled buttons and toggles when the IMINACTIVE is not defined by IMAGE is defined,
we replace the non transparent colors by a darker version of the background color creating the
disabled effect.

o New key K_PAUSE.

Windows

o Fixed dynamic cursor creation.

Toggle with inactive image could be enabled/disabled only once.

Fixed toggle in Radio behavior.

Some keys were not being treated correctly.

Improved key codes management.
Motif

o Fixed lupList setattribute VALUE and list items activated the ACTION callback.
Controls

Circular lupDial now uses abssolute angle.

CARET did not work when set inside EDITION_CB in lupMatrix.

Check for double initialization of lupControls.

Better resize management for lupVal and lupDial.

lupControls now depends on the CD library version 4.3.3 in Motif.

lupLua

e Wrong implementation of DROPCHECK_CB.

Version 2.2 (11/Aug/2004)
INCOMPATIBILITIES

o Definition of K_parenleft changed to K_parentleft in C and all Lua bindings.

e Major lupLuab change (see lupLua section bellow).
e lupLua4 is not supported.
o Motif 1.x is not supported.
General
o Documentation in Portuguese removed from the manual.
e Changed and documented the default palette used in luplmage.
o luplmage can now have up to 256 colors.

o New mouse wheel callback "WHEEL_CB" for Windows and Motif. If not defined the wheel
will automatically scroll the canvas vertically.

o Changes on global attributes:
"COMPUTERNAME", "USERNAME" - now implemented also in Motif.
"COPYRIGHT" - not documented
"SCREENDEPTH", "SYSTEMVERSION" - new for Windows and Motif
"SYSTEM" - Implementation were different from the documentation
"CURSORPOS" was documented as if it was only for Windows.
"LOCKLOOP" now implemented also in Motif..

e The definitions [IUP_SBDRAGYV and IUP_SBDRAGH were not documented.

Callback MENUSELECT_CB changed to HIGHLIGHT_CB. Now implemented also in Motif.
New menu callback MENUCLOSE_CB.

New utility functions lupMessagef and lupGetint2.

Improved visual appearance of lupScanf, lupAlarm and lupListDialog.

New creation attribute "SEPARATOR" for lupLabel so you can create vertical or horizontal
line separators.

New lupGetText predefined dialog.

Now all the predefined dialogs consult the global attribute IUP_PARENTDIALOG.

New "HELP_CB" callback for all interactive controls.

The "KEYPRESS_CB" callback now will be called repeatedly if the key is pressed and held.
lupList can now have an edit box associated.

The OLD newfocus parameter of the KILLFOCUS_CB is now NULL always, in Windows and
Motif.

e The BGCOLOR color for luplmage transparency was not according to the documentation.

It was using the default background color of the dialog.

Now it uses the BGCOLOR of the control where it is inserted.

Windows
e Menus for notification icons (system tray) were not working correctly.
¢ Cursors in Windows now accept more than 2 colors and can have size different from 32x32.

o luplmage was rewritten in Windows to be more simple and flexible. This also solved some
weird button backgrounds in gcc3.

o New global attributes "SHIFTKEY" and "CONTROLKEY" can be "ON" or "OFF", return the

Motif

the key state (windows only).

The default size for buttons in Windows was increased by 2 characters.

Returning IUP_CLOSE in a SHOW_CB of an lupPopup wasn't closing dialog.

lupOpen instead of initializing OLE, now only initializes COM (Colnitialize).

The border of buttons are now drawn by a system function instead of simulated.

New attribute "PLACEMENT" to show the dialog maximized or minimized.

In lupFileDIlg when browsing for folder it will use a new interface, with a resizable dialog and
other features.

Also in lupFileDlg fixed start position for lupPopup. New file selection callback and preview
area. lupFileDlg was not using the IUP_PARENTDIALOG attribute. Default value for
IUP_NOOVERWRITEPROMPT was wrong. ALLOW_NEW was inconsistent with the
documentation.

The button callback now is called only when the button is released inside the button area.
WOM callback renamed to WOM_CB.

New "HELPBUTTON" attribute for the dialog.

The menu item now accepts auxiliary bitmaps.

When the dialog has a multiline and the user press ESC the window was improperly closed.

Fixed comboox resize feedback. When resizing the dialog the combobox was temporarily
opened.

lupCanvas was not receiving arrow keys events correctly in keypress_cb.

lupHide now can close popup dialogs.

Attribute TABSIZE for lupMultiline in Windows was not documented.

Default value for attribute BGCOLOR for lupCanvas in Windows was not documented.
Direction keys now are processed by the ACTION callback for lupText.

The GETFOCUS_CB and KILLFOCUS_CB management for the controls was reviewed and
optimized.

GETFOCUS_CB now works for toggle and button.

First RESIZE_CB of the canvas received a wrong canvas size.

Label alignment for images was always center.

New global attribute: "MOTIFVERSION".

10
e IUP_SBDRAGY and IUP_SBDRAGH were not implemented.

e HIGHLIGHT_CB menu item callback.

o "COMPUTERNAME", "USERNAME" and "LOCKLOOP" global attributes.

o lupMessage now uses native XmMessageBox.

o The overwrite confirmation dialog was closing the file open if the user answered "No".
e Implemented the IUP_NOOVERWRITEPROMPT attribute for lupFileDlg.

e The dropdown list now uses the Motif 2 combobox widget. So IUP is not compatible with Motif
1.x anymore.

o Now the GETFOCUS callback is also invoked when the list is dropdown.
o KEYPRESS_CB is now called only for lupCanvas.

Controls
e DEFAULTESC and DEFAULTENTER were missing in lupGetColor.

o New function lupLoadlmage that uses the library IM to load an image file (implemented in an
additional library).

o New dialog lupGetParam, similar to lupScanf but uses variable controls for fields.
e lupTabs now uses the FGCOLOR for the text color.

e ICTL_DASHED was missing in the documentation of lupGauge.
The control now has the attributes MIN and MAX just like the valuator.

o For lupVal and lupDial, new keyboard and mouse wheel support.
New attribute "SHOWTICKS" to show tick marks around the valuator.
New attribute "UNIT" to change the angle unit to degrees in the dial.
Completely changed visual of the controls.
The controls can now be deactivated and it displays focus feedback.
o Updated visual for the lupGauge and lupTabs controls.
e In lupTabs the popup menu to select a tab sometimes did not set the new tab.
Matrix

Documentation reviewed and reorganized.
Returning IUP_CLOSE in CLICK_CB was not closing application.

The scrollbar drag will now simultaneously scroll the matrix.

New callback "DROPCHECK _CB" to aid the dropdown feedback in the cell.

New utility functions: lupMatSetAttribute, lupMatStoreAttribute lupMatGetFloat,
lupMatSetfAttribute, lupMatGetAttribute, lupMatGetint.

Tree

11
Fixed some display erros in Windows because of an error in the size of the scrollbar.

In Windows pressing a key in a menu activates the k_any of the last active element. In the
matrix this turns into an infinit loop. The matrix now uses the keypress_cb instead of the k_any
callback.

Fixed empty selection in the dropdown list if the user press a regular key to start editing the cell.
Fixed invalid dropdown value if the user changed focus to the scrollbars.

CLICK_CB was called twice in a double click (press+release).

In Motif, the textbox and the dropdown did not open when you double click a cell. But now the
user still needs to click again in the control to put it into focus.

After editing the cell in the last line, now the focus goes to the column on the right at the last
line, instead of the first line.

BGCOLOR now works also for titles.

FONT attribute now can be set/get just like BGCOLOR and FGCOLOR. But the cell size is
calculated always from the matrix attribute [IUP_FONT.

Documentation reviewed and reorganized.

e CTRL and SHIFT accepts only values IUP_YES and IUP_NO.

Default value of SHIFT and CONTROL is NO, it was NULL.
Pressing Space without Control now activates the RENAMENODE_CB callback.

lupLua

The selection callback wasn't working in Lua 5 binding.

MOUSEMOVE_CB in Dial control was receiving wrong angle parameter in Lua 5 binding.
lupGLCanvas wasn't working in Lua 5 binding.

Major lupLua5 change.

It now complies to LTN7 (namespaces). All exported functions are accessed only through
iup.FunctionName (no lup prefix anymore)

All callbacks in Lua are now access through their exact name in the C API. Mostly add sufix
" cb" to name (most common callbacks renamed for ex: getfocus_cb, killfocus_cb). Also some
names were fix: valuech >> value_cb and mapcb >> map_cbh.

Numeric definitions also changed: IUP_DEFAULT >> jup.DEFAULT

String definitions for values are no longer supported, use "YES", "NO", etc.

iupcb changed to iup.colorbrowser.

e Use LoadLibrary to load IUP from Lua.

There was no stack pop in color processing loop fo luplmage in lupLuab.

e lupLua4 is not supported anymore.

LEDC

Added support for lupTree and lupSbox.
Fixed include for lupColorBrowser.
Fixed small invalid memory access.

12

Version 2.1 (18/Feb/2004)

General

New split-panel control: lupSbox
lupTree and lupMatrix libraries are now part of iupcontrols

New functions to traverse IUP controls: lupGetNextChild, lupGetBrother, lupGetParent
lupAppend accepts elements other than predefined internal controls (allowing CPI containers)
Focus now may go to CPI controls

Attribute IUP_X, IUP_Y are now valid for every control that has a native representation
(returns the position of the control in screen coordinates)

CURSORPOQOS global attribute is now returned from the driver

lupGetFile was not allowing new files and should not change user directories

lupGetFile was not accepting long directories

lupAlarm does not take [ENTER] as buttonl click anymore

lupScanf does not accept "," when option is float
Windows 95 is no longer supported

lupTree

Trying to get attribute NAME for and invalid ID returns NULL

Fixed attributes IUP_CTRL e IUP_SHIFT for mouse interaction

lupMatrix

Special keys such as backspace, control+c, etc. are now ignored when not in edit mode
leaveitem/enteritem were not being generated when the focus was leaving or entering the matrix
leaveitem/enteritem should not being called when the cell enters edition mode through the
mouse

Windows

lupOpen/lupClose now initializes OLE (Olelnitialize/OleUninitialize)

ENTERWINDOW/LEAVEWINDOW reimplementation. LEAVEWINDOW does not fail
anymore

Mouse hook removed. Better performace

New attributes TRAY, TRAYTIP and TRAYIMAGE and new callback TRAYCLICK_CB
which allows a dialog to be put in the tray

Action in lupText now responds to the [ENTER] key
Some keys were not working with keypress callback: \1["; /.,

New attribute NATIVEPARENT, which makes any dialog in Windows able to be parent of a
IUP dialog (even from other toolkits)
Better protection dealing with other processes messages

13
lupFileDialog when used to get directory was not updating STATUS attribute correctly
IUP_APPEND small memory problem fix
atexit removed
KILLFOCUS_CB and GETFOCUS_CB were not being called when focus goes to the menu

e MAP_CB in acanvas is now called before RESIZE_CB (like the Motif driver)
e ALT-F4 was not working to close application

o Images sometimes show black using Visual C: do not use option in Visual C 6.0
/INODEFAULTLIB:libcd

o IUP_TIP does not show when the fade effect is on: MS fixed the problem, use autoupdate
lupLua 3.2, 4.0, 5.0

Functions exported to Lua: lupGetType, lupGetParent, lupGetNextChild, lupGetBrother
lupTimer, lupShox binding

lupTreeGetTable, lupTreeSetTableld, lupTreeGetTableld functions created

Several bug fixes in lupLua 5.0

New function iuplua_pushihandle, iuplua_dofile and iuplua_dostring, lupGetFromC

If iuplua_dofile and iuplua_dostring are used errors are reported through ERRORMESSAGE
function

Default _ERRORMESSAGE function shows a dialog with the error

lupLua5: Removed Lua redefinitions of dofile and dostring

Minor bug in lupTree function TreeSetValue

lupListDialog was not returning a table as it should when in multiple mode

lupVal
o Attribute IUP_VALUE wasn't taking effect when set before mapping
e CD canvas was being altered during mouse movement event
Manual

CPI manual revision

lupLua manual revision
Several examples revised

e Controls section rearranged
Distribution

e README on how to compile IUP with tecmake

Version 2.0.1 (31/Jul/2003)
General

o Attribute TUP_TYPENAME replaced by lupGetType function

14
e minor bugs introduced in 2.0 because of internal old misuse of the hash table.
o Following controls were not working with LED: val, dial, gl, matrix, tree.
o New canvas attribute "DRAWSIZE" that returns the drawing area of the canvas (in Windows
we may have an addicional border included in "RASTERSIZE").

Windows

e Memory invasion when eliminating an item from an lupList with multiple items.

o Callback IUP_OPEN_CB sometimes was not being called.

o New dialog attribute "BRINGFRONT" which forces dialog to be the window in the front.
Useful for multithreaded applications.

o Attribute ACTIVE was not working with radio control.

o Now folder selection in lupFileDIg uses IUP_DIRECTORY as a start path.

e Now when ESC or ENTER is pressed KEYPRESS_CB is generated

Motif

o Dropdown were becoming unstable when VALUE attribute is set after lupMap.

Dropdown were not being positioned accordingly.

lupList was not selecting the first item.

lupTimer callback were called only once.

The value "BGCOLOR" in a value of an image color table index appeared with erroneous color.

keyboard and mouse callbacks were not being called when in full screen.

LEDC

o Updated to reflect 2.0 changes like "iupmatrx™ to "iupmatrix".
o Now tests if name is not NULL before using lupSetHandle.

lupLua

o New binding for Lua 5. This is beta version since uses old notation "iuplabel" instead of
"iup.label”.

Version 2.0 (23/Jun/2003)

General

o IUP has undergone a large internal reorganization, but no structural or algorithmic changes have
occurred. The purpose of this reorganization was to standardize function, variable and module
nomenclature. This process is not yet complete, but the few remaining details will be solved in
the next version.

o Table Hash was completely replaced with a modified version of Lua 4. This version is internal
of IUP and does not affect applications. This has brought us a better management of the
memory used by attributes.

e The CPI was changed to allow the creation of native controls, as well as controls based on
lupCanvas. The internal controls were not yet rewritten over the new CPI - this will be done
progressively in the next versions.

e The Ihandle definition changed from "void" to "typedef struct lhandle_
Ihandle;". This has direct implications on C++ applications that did not do pointer typecast.
In C++, code errors might occur and, in C, there might be warnings.

15
New control lupTimer. Allows creating timers in Windows and Motif.
New callback "KEYPRESS_CB". Allows intercepting any key and replacing all callbacks
"K O XXX".
lupHe I p was rewritten in a simpler way. In Windows, it simply uses the system's
configuration to open a URL and, in UNIX, it directly runs Netscape or another executable
configured by an environment variable.
New attribute "FULLSCREEN", allows creating a dialog that occupies exactly the whole screen.
Dialog lupGetFi le was rewritten using lupFileDlg.

Windows

New attribute "CURSORPOS", allows programmatically changing the cursor's position on the
screen.

New attribute "NOOVERWR I TEPROMPT™ for lupFileDlg. It prevents lupFileDIlg in
Save mode from asking the user if s/he really wishes to overwrite a file.

Problem corrected in the file list in the use of attribute "MULTIPLE_FILES" for
lupFileDlg. When only a folder was selected, it was not setting the "STATUS" attribute in a
cancelled action.

Greater driver stability - Thandle is no longer dependant on the native handle (HWND).

New global attributes "HINSTANCE", "SYSTEMLANGUAGE", "COMPUTERNAME",
"USERNAME".

Global attribute TUP_SYSTEM now returns a more complete string.

Cursor now changes instantly - it only changed before returning to IUP.

e Inaninactive lupToggle, the IMINACT I'VE image is now correct.

Motif

The Tupmot library no longer exists. Tecmake has been updated, but those who use their own
metafiles must remove this file from the list of libraries in the application.

New attribute "AUTOREPEAT™" allows turning on and off the automatic repetition mode of
pressed keys.

lupLua

[4/5] lupListDialog when selection type is 1 (single) was not returning any value.
[4/5] Callbacks mapch and showcb had their names wrong: map_cb and show_cb
[3] Callback action in lupMultiline was not passing the parameter "after",
[4/5] In lupTree, callbacks "afterselection” and "beforeselection” were
replaced with the callback "selection”,

lupControls

We have joined seven libraries in one: dial, gauge, cb, gc, mask, tabs and val. But
neither the initialization functions nor each control's inclusion files were changed. The source
code does not need to be altered, except for the makefiles. Tecmake was given a flag
USE__TUPCONTROLS to automatically include this library.

lupMatrix

The name of the library was changed from "tupmatrx” to "tupmatrix". The same for the
inclusion files. Therefore, all applications that use lupMatr ix must change the source code
and the makefile to reflect these changes.

16

lupTree

In one case, the active CD canvas was not being returned to the old canvas before drawing.

lupGL

In Linux, the additional GLw library was added to the control library.
New attributes for query in UNIX: CONTEXT (GLXContext), VISUAL (XVisual Info*),

COLORMAP (Colormap).

Version 1.9.1 (17/0ct/2002)

General

« Version number now resides in Tup . h (it is also included in the library during compilation.)

Windows Driver

lupLabel with \n was not working.

Line-break in attribute TUP_TIP is now accepted.

Double-click in the Windows top-left corner made the program crash.

1UP_READONLY was only accepted if used before lupMap ina lupText or
lupMultiline,

Windows Driver was limiting initial elements of a lupList to 999.

New attribute FULLSCREEN created.

The codes of the numeric keyboard when the CapsLock was turned on were not mapped
correctly to 1UP.

New callback added MENUSELECT_CB (called when the mouse hovers over a menu or item.) -
not fully implemented.

Motif Driver

I1UP_MOTFONT did not accept IUP fonts. Now it accepts both native fonts and 1UP fonts.

It is acceptable now to select an option in a popup menu with any mouse key.
Attribute TUP_STATUS in a filedlg was not working in a silicon.

lupLua

Better error messages.
In the Tuptree control, the callback BRANCHOPEN_CB was not passing the node parameter.

In the Tuptree control, new functions were implemented to associate and retrieve a Lua Table

from a node or leaf.
lupGLCanvas binding.

lupTree

Expand and collapse no more alters selection of elements.

When all nodes were deleted using "DELNODEOQ", "CHILDREN" inside a tree_selection
callback, the program crashed.

BRANCH_OPEN now passes parameter node.

1UP_DEPTH now works for folders and leaves. Attention: the depth works only with the

17
appointed element, not with its children.
Some conditions necessary for a DEPTH change were wrong.
Redraw optimization.
When a tree was big, the scrollback was not working properly.
When the tree was totally expanded and the scrollbar was all down, collapsing folders made the
thumb be wrongly calculated.
PGDN and PGUP were stopping in any folder that was closed.
Even when the user did not want a folder or leaf to be selected, sometimes the tree allowed it.

o When the tree's folder does not have children, an empty box is shown next to it (instead of the +

and - symbol.)

e Sometimes an error occurred in selection when a double click was done in a tree.

Callback RENAMENODE_CB now works correctly.

When the TreeSetValue function was used to define a tree, using a folder with no leaves
made the program crash.

New attribute "COLORTd" allows the text color to be changed.

lupTabs

IUP_REPAINT was not repainting the elements in its interior.

lupMatrx

The attributes lUP_DEFAULTESC and 1UP_DEFAULTENTER of a dialog were not working in
Windows (they work only when the matrix is not in edition mode.)

The matrix did not show the selected elements when the focus passed to another interface
element.

In a dropdown, when the user left edition mode changing the focus away from the matrix, the
previously entered value was lost.

Selection with the control key now works for selecting and deselecting.

The cell with the input focus now draws the selection status.

The attribute 1UP_MARKED now works after the matrix is mapped.

The matrix now starts with no cell selected.

Clicking on the first column of a marked line with MARK_MODE L IN now also deselects the
line.

When MARK _MODE is LIN, COL or LINCOL the selection is not done on the focused cell.
When MARK _MODE is CELL and MULT IPLE is NO the whole line cannot be marked.

When MARK_MODE is NO nothing can be selected.

The [TAB] key in the matrix now changes focus to next element.

When MARK_MODE was NO (default), after leaving the edition mode with [ENTER] the cell
was being marked.

lupVal

Mousemove is now standardized.

Idle is not used anymore (better optimization and code simplicity.)
Minimum and maximum value when different from 0 and 1 now work.
Clicking a position in the middle of the lupVal now work correctly.

Version 1.9.0 (18 Dec 2001)

General

18
e The K_ANY callback now considers the state of the CAPSLOCK key. The native behavior of
the combination of the keys CAPSLOCK and SHIFT was kept.
e New binding for IUP: Lua 4.0.
o New binding for lupMask.

Windows Driver

o Driver Windows now deals only with messages generated for [UP elements (this used to be a
problem with CD's print dialog).

Label fonts did not work when set before lupMap.

Attribute TUP_FILTERUSED now can be set on before the creation of lupFileDIg.

Tip in Windows now accepts \n.

Tip in Windows is now modified immediatly after it is set though programming.

T1p now can be removed immediatly.

In a SubMenu, the attribute ACT I'VE was not working propertly.

The OPEN_CB callback was implemented in the SubMenu.

Motif Driver

e Callback OPEN_CB in a SubMenu was providing wrong parameter.
o Attribute 1UP_BORDER in a dialog was working differently from the manual when the
window manager was sawfish.

lupMask Control

o lupMask was becoming unstable when the user set the attribute lUP_SELECTION in a
lupText.
e There was a bug in the lupMask-lupMatr ix combination.

lupMatrx Control

e Adding a new column or line is now correctly dealing with color inheritance.

e There was 1UP_MARK_MODE defined but not: TUP_LIN, 1UP_COL, 1UP_LINCOL and
IUP_CELL.

e The drop_cb callback was being called for any focus change. It is now being called just when
the matrix enters edition mode.

e The matrix was not showing the selected cells when the user changed focus from the matrix.

e The matrix was not calling K_ANY from the parent if the callback had been set after matrix
creation.

e IUP_RIGHTCLICK_CB is now called 1UP_CLICK_CB. This callback is now called for every

mouse button.
e New callback 1UP_MOUSEMOVE_CB.

lupTree Control

o Attribute TUP_MARKED now also sets.

o lupTree's binding now exports functions to set and get ID.

e Redraw is now done with one attribute. This avoids unecessary redraw when the user wants to
insert a lot of data.

e lupTree now takes leafs and nodes before lupMap.

o Clicking to selecta LEAF was not always working in Windows.

o BRANCHOPEN and BRANCHCLOSE callbacks were not testing the return value correctly.

19

o Double clicking was not working propertly. When the user clicked a node, while the timer was
still waiting for the second click, it was impossible to click a nother node.

o Hitting the space button with CTRL pressed now marks the element immediatly.

o SELECTION_CB callback was created. This callback is called when any type of mark is made
on the Tree. The return value blocks this action.

o Removed callbacks BEFORESELECTION_CB and AFTERSELECTION_CB.

o Setting TUP_VALUE though programming does not activate callbacks anymore.

e Keyboard control, including arrow keys, PGUP, PGDOWN, HOME e END were not working
propertly.

e Clicking + or - was not activating the SELECT I0N_CB callback.

e SELECTION_CB is now in the binding. BEFORESELECTION_CB and
AFTERSELECTION_CB are not.

e The IUP_MARKED1d attribute now returns TUP_YES or 1UP_NO depending on the state of

the node's mark. If the node does not exist, the returned value is NULL.

lupTree was breaking when it tried to erase a marked node inside BRANCHCLOSE_CB.

The BRANCHCLOSE_CB callback was not being called for the correct node.

SELECTION_CB was included in the binding.

Including a new leaf now does not alter selection.

lupGL Control

o Created attribute ""ERROR"" indicating error in a GL canvas.
lupCB Control

¢ User canvas was not being reactivated after the mouse callbacks.

lupLua

lupGetGlobal and lupSetGlobal were not doing toupper.

New function created to get an Ihandle created in C: lupGetFromC.

The 1UP_BUTTON_CB callback was not being called.

Functions I1sshift, iscontrol, isbuttonl, isbutton2, isbutton3and
isdouble are now exported.

lupPreviousField and lupNextField were not implemented.

o The OPEN_CB callback was implemented in the binding with the name OPEN.

¢ New callback TUP_MOUSEMOVE_CB for matrix.

Version 1.8.9 (07 May 2001)
lupMatrx Control
o If the user defined FGCOLOR while the matrix was in edition mode, the application crashed.
e Hitting Esc was causing garbage to be written in the matrix field.
e A bug that made the value_ed1t callback be called several times was fixed (it was called
several times because the matrix kept trying to exit the edition mode with other events).

lupTree Control

e New lupTree control.

20
Scrollbar.
Multiple selection.
Default image size: 16x16.
Lua Binding.

lupCB Control

The name of the Lua colorbrowser element has changed. Now it is called 1upcb, not cb.

Windows Driver

The TUP_MULT IPLEFILES attribute was created. Now it is possible, in Windows, to select
several filesina FileDlg.
lupHe lp now only initializes DDE when it is used.

Version 1.8.8 (15 Mar 2001)

The global .h, macros.h, rgb.hand hls_h files are no longer exported by 1UP.

Some keys were in conflict among themselves (shift-home and 4, for instance). Shift-space and
Ctrl-space were added to the K_ANY callback (Windows and Motif).

IUP_VISIBLE was returning NULL on IUP when the dialog was not mapped.
lupSetLanguage can now be called before lupOpen();

tuptoolbar and 1upfiletext were removed from the distribution.

CPI
 Several defines (such as strieq) are no longer exported from fupcpi -h
¢ Functions iupAddSymbol, iupGetSymbol, iupgetdata and iupsetdata are no
longer exported from the CPI.
Motif Driver

The Tip font is now inherited from the element it belongs.

Inserting a text (FUP_INSERT or ITUP_APPEND) on Motif was ignoring the maximum number
of characters.

Some ITALIC fonts were not working.

Several visibility problems were fixed for ZBOX inside a ZBOX.

The default value of the ALLOWNEW attribute (in ¥1 leopen mode) allowed creating a new file
(now standardized).

lupTabs Control

lupTabs was not considering attribute 1UP_AL IGNMENT,

Tabs was not showing the selected element if it was selected while the Tabs was invisible (it
was a Motif bug).

The <TAB> key was neither passing the focus to lupTabs nor taking the focus off it.

The S1ZE attribute is now defined for the tabs of lupTabs — ICTL_TABSIZE.

Changing the text value for Tabs was not recomputing the Tabs size.

The appearance of lupTabs was enhanced.

lupTabs now sends the focus back to the first element when the user tries to shift right after

21
the last element.
Now a redraw can be forced on Tabs with the lUP_REDRAW attribute.

lupMatrx Control

Ctrl+arrows was not working properly.

e The behavior of the DEL key to delete a set of cells now also considers the return of the

IUP_EDITION_CB callback.

The mark is now shown (not the focus) when matrx loses the focus (users were having
problems when wishing to hit a button to cause an action over the matrix).

Oh the NT platform, the fields of the created matrix had the wrong values when an automatic
scroll occurred.

Right-clicking the matrix now passes the control parameter (as in BUTTON_CB) isshift
(r), iscontrol(r), isbuttonl(r), isbutton2(r), isbutton3(r),
isdouble(r)

o Vertically scrolling by dragging the thumb now works properly.

The focus is now correctly drawn inside the matrix (when only half the cell appears, half of the
focus is drawn).

When leaving the edition mode by clicking an element outside the matrix, the focus was
remaining on the lupText in the matrix.

Colors and alignments are now moved when a cell is moved either by adding new lines or
columns or by deleting lines or columns.

¢ The matrix now leaves the edition mode whenever lines or columns are removed.
o When the user clicked a cell near the end of the matrix (on the x coordinate) an automatic scroll

was made and the cell beside the desired cell was marked.

Windows Driver

KEY in lupltem was replicating the underlined KEYs (and some times adding the wrong
values because of that).

lupLua.exe

Now works properly with all controls.

IUP Manual

All elements now have examples at least in lupLua and C.
The TupMask manual was created.

Version 1.8.7 (23 Nov 2000)

The alignment of composition elements can now be changed on-the-fly.

Current language treatment has been changed. ATTENTION: previous putenv no longer
works! Use new functions lupSetLanguage and lupGetLanguage. Default language:
Portuguese.

lupAlarm's design was reformulated. Now all buttons have the same size.

Functions lupUnMapFont and lupMapFont were created to make the use of the driver’s
fonts easier.

Attribute TUP_FONT now accepts a string either with the native font or the IUP font, and
always returns the native font (attributes WINFONT and MOTFONT are now obsolete).

Motif Driver

22
Motif did not have K_ANY for lupList in dropdown mode.
The IUP_VISIBLE attribute now works for FRAME, ZBOX, VBOX, HBOXand RADIO
(all elements were tested). Now it is no longer lost for internal HBOX elements when the HBOX
visibility is changed.
When the user changed from one ZBOX to another, the first one was forgetting which elements
were visible.

Windows Driver

When Toggle 1 (default) begins deactivated, it no longer remains marked forever.

Toggle with image now accepts images 1UP_IMPRESS and 1UP_IMINACTIVE, but it
follows the Windows standard for Toggle manipulation.

Toggle was not verifying whether it was active or not when it was created.

Canvas redraw was optimized. The canvas now uses transparent color as default. The user is in
charge of drawing the canvas, but now it no longer “blinks” when a redraw is made. Tip: To
avoid unnecessary canvas redraws, do not put it inside a frame and use the
1UP_CLIPCHILDREN attribute.

Initializing Toggle (or Rad10) with a value and then modifying it via callback was marking
both toggles.

Changing Toggle’s color (1UP_FGCOLOR) was not working on Windows unless its
background color was also changed.

lupltem outside a submenu was not calling the callback.

On Windows, the 1TUP_HOTSPOT attribute was being read incorrectly (the correct form is with

.

lupMatrix Control

DROPDOWN’s function in Matrix was corrected. Now the user fulfills the dropdown values,
which always start at position 1. If the user wishes, he/she can set the initial dropdown value by
checking the TUP_PREVIOUSVALUE attribute about the dropdown element passed as
parameter. This attribute returns the previously selected string value.

Dropdown now enters “edition mode” just as regular fields do.

Dropdown can automatically close after the user’s choice. Simply return 1UP_CONT INUE for
the callback chosen by the dropdown.

Now the dropdown accepts the ESC key, restoring its previous value.

An element with focus is now drawn with double focus.

The color of a selected element is now 20% attenuated.

When the user entered edition mode using the mouse and exited it hitting ENTER, the cell
remained selected.

Matrix no longer gets lost when it has 0 lines.

Matrix was not accepting a user to return a constant string with “\n’ from a callback.

A Matrix that loses the focus does not lose the selection (but it is not apparent).

TAB no longer changes cells in the Matrix (it now changes IUP elements).

Hitting ‘delete’ on a marked element deletes everything.

Matrix leaves the edition mode when lupText’s exit arrows are used.

There was a computation mistake in cell size when the Matrix was in edition mode.

When the user scrolls, the Matrix exits the edition mode.

ALL problems caused by cdActivate in Matrix were solved.

Other Extended Controls

The element from lupGL was not getting the focus when it was the only element in the dialog.
In lupGL, OpenGL now synchronizes its functioning with Motif (g IXWaitX) at resize.

23
lupGC now works with TUP_ENGL I1SH’s variable set (cancel/cancela, red/Verm,
etc.)
lupGauge now accepts changing text or percentage values on-the-fly.

Tabs font now has a differentiated color when it is inactive.

lupLua

lupScanft at lupLua was not performing the final dialog’s popup.

lupSetLanguage, lupGetLanguage, lupMapFont and lupUnMapFont were
created at lupLua.

It now considers the TUPLUA_QUIET attribute.

The callbacks in lupLua are now inherited (eg.: k_any from a dialog is called when
lupCanvas does not have k_any).

The library’s opening message now follows a standard.

lupLua was passing Lua’s pointer to IUP instead of copying its value in lupSetHandle
(making it crash).

lupLua Program

tup lua was not running with TupVal and lupGetColor.
1uplua now accepts several files as a parameter.

tupluais now joined with tupluafull

1up lua now shows line number and cursor column.

Version 1.8.6 (21 Jun 2000)

o All libraries were generated for AlX 4.3.2, which is available in new IBM machines.

A series of memory management problems was solved for all platforms.

Attribute TUP_SELECTEDTEXT now can also be used to change the selected text in a
lupText and lupMultiline field.

The TupLabel element now takes the TUP_ALIGNMENT attribute into account.

The lupList (dropdown) element now always leaves some option selected (unless there is
none to select).

When the selected elements value in lupL ist (dropdown) is changed, it now remains selected
with the new value.

User Manual

The user manual is now also available in several Windows Help formats, including the help
format for Visual C++ (5 and 6). To configure your account for Visual C++ to access IUP’s
Help, run W2 \iup\help\iuphelp.reg (ATTENTION: On Visual Studio, IUP’s manual
must be activated and deactivated through option “Help -> Use extension Help”). Other
available formats can be found at W= \iup\Help.

A general revision of the user manual is being made.

The CPI manual was rewritten.

Several examples were included.

An application called “tupluatest” (W:\iup\bin) was created to run the lupLua
examples included in the manual (it works with the controls using the installed DLLS).

Windows Driver

There is no longer any restriction for the number of dialogs created using IUP (the only
limitation now is Windows’ capacity to create native elements).

24

e Events of lupButton and lupToggle were being improperly called when a lupHide or a
lupShow was made on the dialog.

o A bug when drawing an image associated to a lupToggl e element was fixed.

e The functioning of attributes TUP_DEFAULTENTER and 1UP_DEFAULTESC was corrected.

e Now, when a user changes the selection of a multiple lupList via programming, IUP
internally updates the selection.

e The IUP_BGCOLOR attribute to define a new cursor was not standardized with the Motif
driver, and color 0 in the Windows image was never allowed to be transparent.

e A bug in the dropdown list was fixed. It was not calling callback GETFOCUS_CB, causing
instability in the lupMatrix element).

e The transparency color in a cursor now must be color number 0 (according to the manual, this is
the way it was supposed to be).

e The lupList (dropdown) callback is no longer called for element 0 (which does not exist).

e A button in a Popup dialog was only allowing to be pressed via mouse. Now it can be pressed

with the space key.

e The “lupSetAttribute(x, IUP_VISIBLE, IUP_YES)"” call, when X was a dialog, was
not working.

e Calling lupHide with a frame, with [hvz]box or with rad 10 was not the same thing as
calling “lupSetAttribute(n, IUP_VISIBLE, IUP_NO)".

e The IUP_MOUSEPOS position in a dialog’s lupPopup was not functioning.

Motif Driver

o Several memory leaks were fixed. They occurred when lupGetAttribute called functions
from XM which allocated memory to store the attribute’s value. This change may cause
problems for applications which did not copy the value returned from lupGetAttribute
and used the returned string. This usage of the return value from lupGetAttribute is not
appropriate, because the user has to copy this string if he/she intends to remain using it (the
returned string is intern to IUP).

« The dialog's Close callback was not closing the application when it returned 1UP_CLOSE.

e The TUP_ACTION callback from TupMulti I ine was not returning the new text value if the
key was validated (parameter after).

o The dropdown list was not automatically showing the first element when it was opened.

e The Motif driver now returns the default font when “lupGetAttribute(n, 1UP_FONT)”

is performed.
lupLua

¢ The names of callbacks show_cb and map_cb were corrected.
e A bug that made a toggle image not appear was fixed.

Extended Controls

e The default cursor of the lupMatrix element now looks like the MS Excel cursor.
(Remember to call lupMatrixOpen() even when using lupLua!)

o Alignment (center) of the field in column 0 of the lupMatrix element.

e The user can now return TUP_CONT INUE at the action callback of element lupMatrix to
allow IUP to go on treating pressed keys in the conventional IUP way.

o The dropdown list at lupMatr ix was losing its current value when the user changed cells.

e The lupGetColor element was being drawn outside the canvas (old problem in
cdActivate).

e The font in lupTabs is now inherited.

o Attributes ICTL_ACTIVE_FONT, ICTL_INACTIVE_FONT, ICTL_FONT were

25
implemented in the lupTabs element.
o Attribute TlUP_MARGIN was implemented for the lupGauge element.

Version 1.8.5 (18 Apr 2000)

e The versions of libraries ITUP and lupLua were synchronized. From this version on, these tools
will be distributed together.

e The library generation mechanism was changed to use libmake. All DLLs are available and
following the same standard as the DLLs of other Tecgraf libraries.

o A FAQ was created for IUP: http://www.tecgraf.puc-rio.br/~mark/iup/fag-iup.txt.

o Several memory management problems were fixed.

o Attribute ITUP_DIALOGTYPE can now assume three values: lUP_OPEN, IUP_SAVE and
IUP_DIR. Due to the creation of TUP_DIR, the lUP_ALLOWDIR attribute is no longer used.

e One more value was added to attribute BGCOLOR:- TUP_TRANSPARENT (used only by the
Canvas to avoid unnecessary drawing).

e Function lupGetError was removed from 1up.h.

¢ Function lupDataEntry was removed from 1up.h.

Windows Driver

e Function tupdrvSetldleFunction was added to make the Windows driver compatible
with Motif.

The bug that made IUP crash when using MessageBox inside a button callback was fixed.
lupDestroy now reconfigures the button control function (it was making IUP crash).

The 1UP_READONLY attribute was implemented (valid for Text and Multiline).

The 1UP_FILTERUSED attribute was implemented: it informs which is the filter selected by
the user (1, 2, 3...).

e A bug that caused lupPopup (lupMenu(item)) not to call the item’s callback was fixed.

Motif Driver

lupDestroy was corrected. In a lupFrame, it made IUP crash.

lupList was corrected. It crashed when the user changed its elements and tried to set
1UP_VALUE.

The memory leak at lupGetFi e was removed.

List elements were not being correctly deleted.

lupMatrix Element
e The bug in the NT matrix was fixed. It was not refreshing added elements (the values on the

cells were wrong).
e The bug in the scroll matrix was fixed.

Version 1.8.4 (09 Dec 1999)
Windows Driver

e A problem, which called the dropdown callback even for an already-deleted element, was fixed.
e Function lupHelp is now available.

26
A bug was fixed; it caused excessive system resource usage when dialogs with several elements
were used.
The size of the version dialog was corrected.

o A bug was fixed; it made IUP crash depending on the use of MessageBox. Same for

lupFileDialog.

Callback TUP_BUTTON_CB was added for the lupButton element.

A bug was fixed; it made lupGetInt(d, IUP_X) return a wrong value when the dialog was
maximized.

CPI Controls

The color inheritance problem was fixed.
Corrections were made to the Dial size.
Attributes of colors FGCOLOR, BGCOLOR, and fonts FONT, WINFONT, MOTIFFONT.

Version 1.8.3 (15 Jun 1999)

Windows Driver

The 1UP_ACTI'VE attribute now also works in the frame.

The action callback in Multi I 1ne now also accepts the DEL key.

Toggl e element now accepts an image.

The 1UP_TOOLBOX attribute was implemented for dialogs.

A bug was removed; it made a second lupShow in a dialog reset its position to the center of
the screen.

Treatment of the S1ZE and RASTERS 1 ZE attributes was changed.

The TUP_ACTION callback now treats the DEL key and commands and keys from the Cut and
Paste menu.

A conflict was solved; it made the key - generate a call to the callback as if it were key “ (plic).
Keyboard accelerators for menus now work, since the focus is no longer on the dialog. When a
dialog receives the focus back, it sets the focus to the last control inside it that had the focus.
1UP_K_ANY no longer issues beeps when keys are pressed on the canvas.

When the TUP_STARTFOCUS attribute is not defined, the focus is set for the first control in the
dialog that accepts it, thus preventing the dialog from keeping the focus and allowing the menus
to be called via accelerator.

Attribute TUP_SELECT ION was implemented.

Motif Driver

Color management for 8bpp displays (256 colors) was re-implemented. Basic colors used by
IUP (black, white and the grays used for highlight and shadow) are now reserved, and the
search for colors in the palette was optimized.

Elements such as lupCanvas now have their own visual, independent from their “parent’s”. If
allowed by the display, the default visual of a canvas will be TrueColor (24bpp); if not, it will
be the same as the default display visual.

The lupToggle element now processes the IMAGE attribute differently: it now shows the
toggle with the same appearance as the lupButton element, but maintaining its functionality
— the button remains pressed until the user clicks it again. The IMPRESS attribute can be used
to define the image used for the pressed button. In this case, the user is in charge of giving it a
3D appearance.

IMPORTANT: The size of the dialog can be adjusted after being mapped, by means of the

27
SI1ZE and RASTERSIZE attributes

= The size of the dialog has now precedence over the smallest size required by its children
(either having been specified in its creation or in run-time).

= Attributing a NULL value to the S1ZE or RASTERSIZE (in C) of a dialog will re-
compute its size according to the size of its children.

= Partial dimensions (###X and xX###) are now treated correctly.

= Therefore, applications that define sizes for dialogs (either in LED or in C) smaller than
the minimum size required by their children will show truncated dialogs. To force a
computation based on the size of the children, set any of these attributes to NULL (in C)
or simply do not define them in LED. As a general rule, avoid specifying a dialog size
unless there is a real need for such — in this case, be careful to specify a sufficient size.

o lupFileDlg:

= The default value for the DIALOGTYPE attribute was not being recognized (the program
aborted when there was no defined value).
= When ALLOWNEW = NO, the dialog informs if the user is specifying a non-existing file
(instead of simply returning, as was happening).
= When the dialog type was OPEN, the returned value was —1 (Cancel) even when the user
confirmed the operation.

If DIALOGTYPE is SAVE, a confirmation is required if the file already exists.

A new dialog was created for each popup without destroying the previous dialog.

The NOCHANGED IR attribute was implemented.

The dialog does not return if the user specifies a new file when attribute ALLOWNEW =

NO. The same happens when attribute ALLOWDIR = NO and a directory is specified. In

these cases, alerts are shown.

e The 1upGetColor function for CPI controls was replaced in functionality by the
1UpGetRGB function (TupGetColor is maintained for compatibility purposes, but it should
no longer be used).

o TRUECOLORCANVAS was created. It indicates if the display allows the creation of
TrueColor windows (> 8bpp), even if the default is PseudoColor.

e Tabs: a problem was fixed concerning the use of the VISIBLE attribute for elements belonging
to a non-selected tab.

o lupHelp: allows using a browser (default = Netscape) for viewing HTML pages.

e The ACTION_CB callback, from lupText, now receives, apart from Thandle* and Int, a
char™ pointing to the new text value in case the key is confirmed.

o Dropdown lists were not correctly processing the VISIBLE attribute.

o A problem with the initialization of multiple-selection lists was solved: the VALUE attribute was
not being respected in some cases.

o Attributes FGCOLOR and BGCOLOR from the dropdown list were not being correctly updated.

o lupLoopStep was re-implemented: now it no longer blocks when there are no events to be
processed (it simply returns DEFAULT).

o The dropdown list is closed when the associated textbox is totally or partially darkened.

e The dropdown list was not being closed when the dialog lost the focus if lupldle was
registered.

e A problem in the exhibition of CPI controls was fixed.

o New return code (CONT INUE) was created, specific for key callbacks, to be used when the
event is to be propagated to the parent of the element receiving it.

o In some situations, elements destroyed by means of lupDestroy were receiving events,
making the application abort.

o The redefinition of items in the main menu was making the dialog return to its original size.

e Consulting attribute BGCOLOR in a dropdown list was aborting the application.

e Consulting attributes BGCOLOR and FGCOLOR of a canvas with a different visual from the
default was generating an X-Windows error message.

e The problem with lupFileDlg was fixed (the application was aborting).

28
lupDestroy in a bar menu was inducting an infinite loop to the application.
The list now matches the documentation: it calls the action callback for the de-selected element
(with the v = O parameter).
Bug correction: The use of a Motif attribute instead of a function was making Motif lost control
of memory management (memory already liberated was liberated again, which aborted the
application).
ACTION in lupText caused SIGSEV when the user pressed ENTER.
New lupMapFont for mapping IUP fonts -> Motif.

Version 1.8.2

Windows Driver (12 Jan 99)

Function char* lupMapFont(char* font) converts a IUP font describer (used by
the TUP_FONT attribute) into a native font describer (used by 1TUP_WIN_FONT).

File Drag & Drop was implemented in dialogs and canvases, via the lUP_DROPFILES_CB
callback.

Attribute TUP_EXTFILTER was implemented for the lupFi leDIg control, allowing the use
of more than one filter.

Changes were made to allow the creation of CPI elements other than CANVASes or dial ogs.
The IUP_ACTIVE attribute of a dialog can now be changed after it was mapped.

List callback correction: the callback is now called both for selected and not selected items.
New function void lupHelp(char *url) shows a URL in a Netscape window.

The treatment of the new return value for keyboard callbacks, 1UP_CONT INUE, was
implemented.

1UP_CURSOR attribute was implemented.

A code was added to treat the case of toggle de-selection via lupSetAttribute.
IUP_CARET now uses “,’ as a separator instead of old “:”.

A restriction was eliminated that prevented the function tupGetTextSize from being called
passing a dialog or frame as a parameter.

New text callback was implemented; it receives the text both before and after the change, and
receives the code of the typed key.

It was possible to set two activated radio toggles by selecting VALUE for one of them on the
radio and VALUE = ON on the other toggle.

Attributes lUP_STARTFOCUS, I1UP_DEFAULTENTER and 1UP_DEFAULTESC were
implemented.

The TUP_VALUE of a lupRadio was not allowing to be changed if it was not visible.

A problem was corrected for the lists, which were being reset between a

lupShow/ lupPopup and another.

Attribute TUP_SELECTEDTEXT was implemented. It returns the selected text (if there is any),
with the “\r’ already filtered.

A bug was corrected; it caused and “Assertion Failed” when the mouse was moved after a
window was destroyed.

The value of 1TUP_VALUE of a lupText and a lupMulti I ine now does not contain ‘\r’,

Motif Driver v1.8.2 (14 Aug 98)

lupFileDIlg was corrected: the ITUP_FILE and 1UP_DIR attributes were not being treated

correctly.
In some specific situations, closing a dialog could lead to the end of lupMainLoop, causing

an abortion of the application.

29

Version 1.8.1

Windows Driver v1.8.1 (17 Jul 98)

Correction: IUP’s Matrix element was being shown with different fonts from the ones used by
IUP, especially on UNIX platforms.

A bug related to ZBOX was fixed.

lupAppend on Multi line now includes ‘\n’ at the end of the text.

A font set by CD no longer affects canvas size computation.

lupSetAttribute froma lupRadio’s VALUE with the name of a toggle with more than
one name now works.

Default attributes now store values that match the documentation.

Function TupFlush was implemented.

Small errors in dialog size computations were corrected.

Now the dialog size is changed when the size of one of its children increases.

Motif Driver v1.8.1 (16 Jun 98)

Correction: IUP’s Matrix element was being shown with different fonts from the ones used by
IUP, especially on UNIX platforms.
Dropdown list (combo box) remained opened if the element was hidden or destroyed.

e The use of popup dialogs was sometimes preventing the last IlUP_CLOSE (or 1UP_DEFAULT)

from ending lupMainLoop.
[LINUX] The button press event was not being received by the canvas when the CTRL
key was pressed.

Version 1.8 (29 May 98)

- General (also includes changes to both drivers)

BUG: Valuator, Dial and Gauge could cause an invalid memory access on resize or
destroy.

BUG: The parse of CPI elements described in LED was corrected.

BUG: Valuator was removing the application’s idle action.

NEW: FILEDLG control.

NEW: lupStoreAttribute function.

NEW: lupSetfAttribute function.

NEW: lupSetGlobal, lupGetGlobal and lupStoreGlobal functions for global
attributes.

NEW: K_sCR key; shift-enter combination is now treated by IUP (callback: 1UP_K_sCR,
code: K_sCR).

NEW: IUP_TYPENAME attribute returns the name of the element type.

NEW: CPI popup method.

o NEW: Definition of global attributes (verification only) lUP_VERSION, 1UP_DRIVER,

IUP_SYSTEM and 1UP_SCREENSIZE.

NEW: Attributes TUP_X and ITUP_Y were implemented, for dialogs only. They provide the
dialog’s upper left corner coordinates in relation to the upper left corner of the screen.

NEW: IUP_SHRINK attribute to change the computation of the position and size of elements.
NEW: CPI control for an OpenGL canvas.

30
e CHANGE: The 1UP_TYPE attribute of the lupFi1eDIg control was changed into

1UP_DIALOGTYPE, which must contain OPEN, SAVE or NULL.

CHANGE: The lupSetAttributes function now returns the Thandle*.

CHANGE: The lupSetAttribute function no longer returns the old value.

CHANGE: CPI’s create method now creates the handle.

CHANGE: New function for CPI class creation.

CHANGE: Some obsolete definitions of 1up - h are now only available when the

1UP_COMPAT macro is set.

e CHANGE: The ICTL_TYPE attribute of the lupTabs control was changed to
ICTL_TABTYPE.

- Lua Binding
o« NEW: 1upkey_open function allows using IUP’s key definitions in Lua.
- Windows Driver

o NEW: Image now accepts “BGCOLOR” color. This turns the color associated to the index into
the background color of the element linked to the image.

e BUG: the TUP_TITLE attribute of the lup I'tem element can now be changed after the
element has been mapped.

e BUG: A color problem was fixed; it occurred when the name or path of the executable file
contained spaces.

- Motif Driver

BUG: The dropdown list no longer remains on the screen.

BUG: The computation of scrollbar attributes POSX and POSY was fixed.

BUG: Double-cl ick was only being generated for the first button.

BUG: FRAME layout was corrected.

BUG: The color of the menu item was corrected.

BUG: The management of the nested elements of a ZBOX and/or with the VISIBLE attribute
defined for its children was fixed.

BUG: The color remained undefined when the value of attribute FGCOLOR or BGCOLOR was
not valid.

BUG: General cleaning was made to remove memory leaks from the driver.

NEW: Attributes TUP_X and IUP_Y to provide the pixel position of any element.

NEW: Attribute TUP_RASTERSIZE can be consulted.

NEW: Menu item now accepts ‘\'t’ to align the text to the right — Windows already allowed it.
NEW: Version number was added; can be retrieved with tecver.

CHANGE: Multiline’s scrollbar is no longer deactivated with ACT 1VE=NO,

CHANGE: Multiline’sand 11st’s BGCOLOR no longer affects the scrollbars.

Version 1.7
e The implemented code was made compatible with manual specifications. 1up . h was changed

to reflect that. To use old definitions, set lUP_COMPAT before including the Tup . h file to the
applications.

To Do

31
General

« Allow the functions lupAppend and lupDetach to be used for dynamic creation of menus
and lupTabs.

To allow lupShow after a lupPopup.

To show a border for visual location of VBOX, HBOX and FILL. Can be a dialog attribute.
Transform all controls into CPI controls, improve the possibility of implementing new drivers.
Flat button activated by mouse hover.

a gtk driver in Linux?

a wxWidgets driver?

a MacOS X driver

Reduce flicker when dialog is resized.

Change all comments in the source code to english. Add comments to the internal includes for
Doxygen.

Attribute for boxes to retrieve the child controls like in lupLua. For now you should use
lupGetNextChild and lupGetBrother.

o Fix names of headers, initialization functions and libraries that do not have the "iup" prefix.
o Improve the fullscreen policy.
e Add a Tutorial section to the manual with some "simple” examples.
e Install IUP in a GForge environment.
Motif

o Callback SHOW_CB is not called when the dialog is hidden because of PARENTDIALOG.

o Sometimes the size of TEXT when it is opened is much larger in old SunOS. Resizing makes
the text go back to the correct size. (The problem persists even if run on Linux, simply by
viewing it on SunQOS, seems to be a bug in the SunOS Motif.)

o Several warnings in the SunOS when using the OpenGL canvas.

o When another Window Manager is running the lupPopup disable the other windows, but they
can be placed in front of the popup window if PARENTDIALOG is not used. Also in this case,
some window decorations do not work.

Windows

o Enable XP Visual Styles. When using a manifest file, the text in the controls are being mixed
with unicode chars.

lupControls
e A vertical lupGauge?
lupMatrix

 In Motif, when start editing using a double click, the user must click again to the edit control get
the focus.

o When removing a line, if it has the focus an invalid call to enteritem_cb/leave_item_cb will
occur for the removed cell.

o Copy and paste compatible with Excel?

e Sort for columns?

lupTree

e Drag and Drop.

32
e Rename node like in lupMatrix.
o Images with variable sizes for nodes.

lupLua
e lupGetParam binding.
New Controls
Spin Button
Image Listbox
Concrete Layout Container (to position elements with abssolute coordinates relative to the box)

Grid Container (to distribute elements in a grid)
lupOle control

Comparing IUP with Other Interface Toolkits

Why to still maintain IUP if today we have so many other popular toolkits?
This is a question we always ask to ourselves before going on for another year.

To answer that question we must first define the characteristics of the "ideal" toolkit, list
the available toolkits and compare them with the "ideal™ and with 1UP.

We would like a toolkit that has:

e Portability. That provides an abstraction for User Interface in Windows, UNIX
and Macintosh.

e Free License and Open Source. This means that we can also produce commercial
applications. The pure GPL license can not be used but the LGPL can but must
contain an exception stating that derived works in binary form may be distributed
on the user's own terms. This is a solution that satisfies those who wish to produce
GPL'ed software and also those producing proprietary software. Many libraries are
distributed with this license combination.

e Small and Simple API. This is rare. Many libraries assume that an Interface
toolkit is also a synonymous of a system abstraction and accumulate thousands of
extra functions that are not related to User Interface. At Tecgraf we like many small
libraries instead of one big library. Almost all available toolkits today are in C++
only, so C applications are excluded, also this means a hundred classes to include
and understand each member function. The use of attributes makes a lot of things
more elegant and simpler to understand.

o Native Look & Feel. Many toolkits draw their own controls. This gives an
uniformity among systems, but also a disparity among the available applications in
the same system. Native controls are also faster because they are drawn by the
system. But the problem is what's "native” in UNIX? Some commercial
applications in UNIX start using Motif as the "native™ option. It is the official
standard but because of license restrictions, before the OpenMotif event, the system
became old and some good alternatives were developed, including GTK and Qt.

Toolkits

With these characteristics in mind we select some of the available toolkits:

33

Name |License b?)sgate Version|Language |Platforms [Controls| Team |Comments
1998- . .
Vv LGPL 2003/03 1.9 C++ Win, X native 1
. 2000- Win, X, Still no 1.0
ZooLib |MIT 2003/04 0.9 C++ Mac own 4+9 version
License
1998- Win, X, restrictions, Still
Fresco |LGPL 15504702 [AlPha |CH+ Mac own 19 in Alpha, Use
CORBA...
2002- Win, X
* H H
YAAF BSD 2004/03 1.1a8 |C++ Mac own 1+9
1997- Win, X Small and
* ’]
GraphApp |BSD 2004/03 3.52 ¢ Mac own 1 interesting.
1997- . great look, lincese
*]
FOX |LGPL 2004/03 1.1.51 |C++ Win, X [own 3+15 totaly free?
. was from Digital
1998- Win, X .
* ’]
FLTK [LGPL 2004/04 115 C++ Mac own 3+16 :Z)omaln. Easy to
earn.
target for X-
1997- . Windows, basis
* ’
GTK+ |LGPL 2004/03 2.4 C Win, X own 9 of GNOME,
Windows is apart
X is free for Non
Commercial,
. basis of KDE,
Qt GPL %(9)(9)3/03 331 |C++ \|</|Vz|;12 A lown (many) |Windows is paid,
Emulates the
native look and
feel
i 1992- Win, X i
* 1 l
wxWidgets | LGPL 2004/02 2.4.2 C++ Mac native |6+11
1994- . .
*
1UP MIT 2004/08 2.2 C Win, X native 2

More toolkits can be found here: The GUI Toolkit, Framework Page.

An interesting article can be found here: GUI Toolkits for The X Window System.

Conclusions

From the selected toolkits using the defined approach we can eliminate some toolkits:

The 4 first are not updated anymore or the development is very slow.

GraphApp is an one author only project. FOX has a great look but the license can be
restrictive in some cases. FLTK promesses a new version with a better look, but until then
it does not have a pretty good look. The FLTK documentation also does not help.

GTK+ can be used as a replacement for Motif, but not as a "portable™ toolkit since is

34
target for X-Windows. Qt has several license limitations, although is a very stable and
powerful toolkit. Qt can be also used as a replacement for Motif.

The "best" free solution that we choose is wxWidgets becase of the native controls and its
portability.

Developing IUP
IUP uses Native Controls in Windows and Motif. Mac port is outdated and not
maintained for long time, MacOS 9 was terrible. With Mac OS X we may have the
opportunity to do something better. IUP is in C, is small and powerful.
But today only 2 developers, only a few extra help and many other projects to work
simultaneously. So it is hard to keep the code updated. One possibility that can reduce our
demand is to implement IUP on top of one of these toolkits, so we can focus on the best
of our toolkit: its API, the dynamic layout, the Lua binding and the CPI controls. But this
is a polemic issue...

Also 1UP does not have a wide localization feature, it only includes support for messages
in English and Portuguese. And it does not have support for Unicode characters.

.. "Make it Reusable, Make it Simple, Make it Small™ ...

Screenshots

Click on the picture to enlarge image.

]

Oeled DESED H DEM =5 Gt
. —iew

o) -
TMmmal — -_— - il

it

System Control

Before running any of IUP’s functions, function lupOpen must be run to initialize the
toolkit.

After running the last IUP function, function lupClose must be run so that the toolkit
can free internal memory and close the interface system.

Executing these functions in this order is crucial for the correct functioning of the toolkit.

Between calls to the lupOpen and 1upClose functions, the application can create
dialogs and display them. However, IUP is an event-oriented interface system, so it will
keep a loop “waiting” for the user to interact with the application. For this loop to occur,
the user must call the lupMainLoop function, which is generally used right before
lupClose. When the user closes the application, function lupMainLoop will return,
calling lupClose and ending the application’s execution. .

Therefore, usually an application employing IUP will have a code in the main function
similar to the following:

void main(void)
if (lupOpen() == I1UP_ERROR)
{

fprintf(stderr, "Error Opening IUP.™)
return;

}

iupMainLoop();
lupClose();
¥

Abstract Layout

Most interface toolkits employ the concrete layout model, that is, element positioning in
the dialog is absolute in coordinates relative to the upper left corner of the dialog’s client
area. This makes it easy to position the elements on it by using an interactive tool usually
provided with the system. It is also easy to dimension them. Of course, this positioning
intrinsically depends on the graphics system’s resolution. Moreover, when the dialog size

36

is altered, the elements remain on the same place, thus generating an empty area below
and to the right of the elements. Besides, if the graphics system’s resolution changes, the
dialog inevitably will look larger or smaller according to the resolution increase or

decrease.

IUP implements an abstract layout concept, in which the positioning of elements is done
relatively instead of absolutely. For such, composition elements are necessary for
composing the interface elements. They are boxes and fillings invisible to the user, but
that play an important part. When the dialog size changes, these elements expand or
retract to adjust the positioning of the elements to the new situation.

Watch the codes below. The first one refers to the creation of a dialog for the Microsoft
Windows environment using its own resource API. The second uses IUP. Note that, apart
from providing the specification greater flexibility, the IUP specification is simpler,
though a little larger. In fact, creating a dialog on IUP with several elements will force
you to plan your dialog more carefully — on the other hand, this will actually make its

implementation easier.

Moreover, this IUP dialog has an indirect advantage: if the user changes its size, the
elements (due to being positioned on an abstract layout) are automatically re-positioned

horizontally, because of the tupfi I'l elements.

| in Windows I in lupLua
dialogo = iupdialog
dialogo DIALOG 0, 0O, 108, 34 { i Ubhbox
STYLE WS_MINIMIZEBOX | WS_MAXIMIZEBOX | { P
WS_CAPTION | WS_SYSMENU | iupFi 113
CAPTlomsﬁi?lﬁﬁgﬁAME iupbutton{title="0k",size="40"}
BEGIN iupbutton{title="Cancel",size="
PUSHBUTTON "Ok',1DOK,16,9,33,15 _%g?f:;!£{5XlSH ap="10"
PUSHBUTTON “Cancel", IDCANCEL,57,9,33,15 4’ grn= - 93p=
END

title="Titulo"
b

O

- Titulo B

Caricel

m] E3

Cance

Now see the same dialog in LED and in C:

| in LED

ir

DIALOGLTITLE="Titulo™"]

HBOX[MARGIN=""15x15", GAP="10""]
(

)
)

dialog = lupSetAttributes(lupDial

lupSetAttributes(lupHbox
(

FILLO lupFillQ, . § §

r e A AL . lupSetAttributes(lupButton(*'0
BUTTON[SIZE:"40"]("Ok ,do:noth|ng)z lupSetAttributes(lupButton('C
BUTTON[SI1ZE="40"] (**Cancel™,do_nothing), lupFill Q)

FILLO NULL ’

), "MARGIN=15x15, GAP=10"),
), "TITLE = Titulo")

37
Following, the abstract layout of this dialog:

Element Hierarchy Layout Visualization

Dialog
HBox
Fill 7 0Ok Cancel 7
Button
Button
Fill

The composition elements are vertical boxes (vbox), horizontal boxes (hbox) and filling
(Fill). There is also a depth box in which layers of elements can be created for the same
dialog, and the elements in each layer are only visible when that given layer is active.

Elements

IUP contains several user interface elements. The library’s main characteristic is the use
of native elements. This means that the drawing and management of a button or menu is
done by the native interface system, not by IUP. This makes the application’s
appearance more similar to that of other applications in that system. On the other hand,
the application’s appearance can vary from one system to another.

Even though IUP is not totally object oriented — because of the interface system’s event
mechanism, as well as other reasons — the elements follow a certain hierarchy. The
creation process for an element occurs before the creation of the dialog in which that
element will be inserted. Therefore, when the element is created, its parent is not known,
but after the dialog is created all elements receive a parent. This mechanism is quite
different from that of native systems, who first create the dialog and then the element,
using the dialog as a parent. This feature creates some limitations for IUP, usually related
to the insertion and removal of elements of an already mapped dialog.

Now we come to the notion of mapping. Since the elements are created differently from
the native system, native elements can only be created after the dialog — and this can only
happen after the programmer has called the lupShow function to show the dialog. We
often need the elements to be created so we can use some other functionality of those
elements before they are visible to the user. For that purpose, the lupMap function was
created. It maps IUP’s elements to native system elements. The lupShow function
internally uses lupMap before showing the dialog on the screen, in case it has not been
called.

Each element contains a unique creation function, and all of its management is done by
means of attributes and callbacks, using only functions that can apply to all elements.

Attributes

Attributes are values associated to the elements and modified by means of functions
lupSetAttribute, lupSetAttributes and lupStoreAttribute. The values

passed for such functions are always strings. In C and in lupLua there are several string
definitions, such as 1UP_YES, which is actually “YES”. In LED there is no need to add
the prefix TUP_ or quotation marks.

Since the attributes are strings, there are two functions to store them:

38

o lupSetAttribute stores only a pointer to the string and does not
duplicate it.

o lupStoreAtribute duplicates the string, allowing you to use it for
other purposes.

With lupSetAttribute you can also store particular application attributes. This can
be very useful, for instance, used together with callbacks — which are global functions
called by IUP when the user interacts with an interface element, and receive the element
relative to the action as a parameter. For example, by storing a C pointer to some
element’s specific data, the user can retrieve it inside the callback through function
lupGetAttribute. Therefore, even if the callbacks are global functions, the same
callback can be used for several objects, even of different types.

Elements included in other elements inherit their attributes, unless an attribute is defined
inside the element. This means there is an inheritance mechanism inside a given dialog.
Therefore, when you consult the attribute of an undefined element, the inheritance
mechanism will check the element containing it, and so forth, until it reaches the dialog.
This means, for example, that if you set the TUP_MARGIN attribute of a Vbox containing
several other elements, including other vboxXes, all the elements depending on it will be
affected. Please note: not all attributes are inherited. Exceptions are: lUP_TITLE,
IUP_SI1ZE, I1UP_VALUE, 1UP_ALIGNMENT and IUP_FULLSCREEN.

In ITUP’s documentation you will notice several common attributes to the elements.
Some attributes that serve almost all elements are not mentioned in each one of the
elements. We assume that the programmer knows they exist. In some cases, common
attributes behave differently in different elements. In such cases, there are comments
explaining the expected behavior. This also applies to the callbacks.

In Lua, the elements are implemented as tables, and the attributes can be accessed as
indices. For further detail, please see the Lua Binding documentation.

Events

Events are handled through callbacks. Callbacks are functions the application can register
to be called by IUP when a given user action occurs. Please refer to the above comment
on the use of attributes and callbacks.

Even though callbacks have different purposes from attributes, they are actually
associated to an element by means of an attribute. To associate a function to a callback,
the user must employ the lupSetAttribute function, linking the action to a name
(passed as a string). From this point on, this name will refer to a callback. By means of
function lupSetFunction, the user connects this name to the callback.

For example:

lupSetAttribute(meulhandle, 1UP_ACTION,
"botao_ foi_apertado™);
lupSetFunction("'botao_foi_apertado™, (Icallback)
mybtpressed) ;

Therefore, callbacks also have some of the attributes’ functionalities. The most important
one is inheritance. Though many callbacks are specific to a given element, a callback can
be set to a composition element, such as a vbox, which contains other elements, and

39
while the composition element does not call that callback all other elements contained in
it will call the same callback, unless the callback is redefined in the element.

All callbacks receive at least the element which activated the action as a parameter.
The callbacks implemented in C by the application must return one of the below values:

o IUP_DEFAULT: Proceeds normally with user interaction. In case other return

values do not apply, the callback should return this value.
e IUP_CLOSE: Makes the lupMainLoop function return the control to the

application. Depending on the state of the application, 1TUP_CLOSE will close all
windows.

o TUP_IGNORE: Makes the native system ignore that callback action. Applies only
to some actions. Please refer to specific action documentation to know whether
1UP_IGNORE applies to it or not.

o IUP_CONTINUE: Makes the element ignore the callback and pass the treatment of

the execution to the parent element.

In Lua, the callbacks are implemented as methods, using the language’s resources for
object orientation. Thus, the element is implicitly passed as the se I ¥ parameter and the
functions do not need to return a value, since the binding is in charge of returning
IUP_DEFAULT. Note that the callbacks in lupLua do not contain the suffix “_CB”. For

further detail, see the Lua Binding documentation.

An important detail when using callbacks is that they are only called when the user
actually executes an action over an element. A callback is not called when the
programmer sets a value via lupSetAttribute. For instance: when the programmer

changes a selected item on a list, no callback is called.

LED

LED is a dialog-specification language whose purpose is not to be a complete
programming language, but rather to make dialog specification simpler than in C. IUP’s
binding for Lua was made a posteriori and completely replaces the LED files. Besides,
Lua is a complete language, so a good deal of the application can be implemented with it.
However, this means that the application must link its program to the Lua and to the
lupLua libraries, as well as the IUP library.

The LED or Lua files are interpreted and can be sent together with the application’s
executable. However, this often becomes an inconvenience. To deal with it, there are the
LEDC and the LuaC compilers.

In LED, attributes and expressions follow this form:

element[attributel=valuel,attribute2=value2, .. .]
(...expression...)

The names of the elements must not contain the “Tup” prefix. Attribute values are always

interpreted as strings, but they need to be in quotes (“...”) only when they include spaces.
The “1UP_" prefix must not be added to the names of the attributes and predefined

values. Expressions contain parameters for creating the element.

In LED there is no distinction between upper and lower case, except for attribute names.

40
Though the LED files are text files, there is no way to interpret a text in memory — there

is only the TupLoad function, which loads a LED file and creates the IUP elements
defined in it. Naturally, the same file cannot be loaded more than once, because the

elements would be created again. This file interpretation does not map the elements to the
native system.

To simply view a LED file objects use the LED viewer application, see lupView in the
applications included in the distribution.

Example

The following example creates a dialog with virtually all of IUP’s elements as well as
some variations of them, with some attributes changed. The same example is

implemented in C, LED and Lua. Both screens presented are from the same example, one
in Windows 95 and the other in IRIX.

| inC || in LED [jin lupLua|
lsample.c][sample.led|jsample.lual

| Win32 | Motif
- _|:|><| = Dislog 0
-IJI,.\I*-‘IHHJ-'I Itern-1 [femi-2 Disabled —— | O E————
Item-1 Checked | | ‘ |
Buttonl Juttond Disablec I Iten=1 Checked -
IE Tten? Buttonl . $hatsend Hisabled
'iar:e I List-1 Frame
v
o List-3 I
* Togglel in Radio ogzle
 ToggleZ in Radio “ Togglel in Radio
Dirop List-2 - + ToggleZ in Radio

Portability

To compile programs in C, simply include file 1up . h. If the application only uses
functions from IUP and other portable languages such as C or Lua, with the same
prototype for all platforms, then the application immediately becomes platform
independent, at least concerning user interface, because the implementation of the ITUP
functions is different in each platform. The linker is in charge of solving the IUP
functions using the library specified in the project/makefile. For further information on
how to link your application, please refer to the specific driver documentation.

Generating Applications

The generation of applications is highly dependent on each system. Please refer to each of
IUP drivers’ documentation.

IUP can also work together with other interface toolkits. The main problem is the
lupMainLoop function. If you are going to use only Popup dialogs, then it is very simple.
But to use non modal dialogs without the lupMainLoop you must call lupLoopStep from
inside your own message loop. Also it is not possible to use lup controls with dialogs

41
from other toolkits and vice-versa.

There is also a guide on using the Dev-C++ IDE Project Options and Visual C++ IDE
Project Properties.

Dev-C++ IDE Project Options Guide

http://www.bloodshed.net/devcpp.html

"Bloodshed Dev-C++ is a full-featured Integrated Development Environment (IDE) for
the C/C++ programming language. It uses Mingw port of GCC (GNU Compiler
Collection) as it's compiler. Dev-C++ can also be used in combination with Cygwin or
any other GCC based compiler.”

It has many features, and integrated debug and it is free! To use IUP with Dev-C++ you
will need to download the "mingw3" binaries in the download page.

After unpacking the file in your conputer you must configure your Project Options. In the
Project Options dialog there are 3 important places:

o General / Type - you can configure Win32 GUI or Win32 Console, but if you set to

console it will always create a console screen behind your window when the
program starts. Do not select "Support Windows XP Themes".

o

o Parameters / Linker - where you are going to list the libraries you use, for example:

-liup
-liupcontrols
-lcd

-lcdiup
-Icomctl32
-lole32

In this configuration you are using also the additional library of Controls that
uses the CD library, also available at the download page.

¥

o Directories / Library Directories and Include Directories - where you are going to

list the include path, for example:

--\._\iup\lib\mingw3
--\..\cd\lib\mingw3

or
c:\tecgraf\iup\lib\mingw3
c:\tecgraf\cd\lib\mingw3

And:

--\. .\iup\include
--_..\cd\include

or
c:\tecgraf\iup\include
c:\tecgraf\cd\include

e

'

[wrowoea] I

]

e e |

In some cases the IDE may force the compilation of C files as C++. If do not want that
then uncheck the option in the settings for each file. Still in the Project Options dialog, in

the Files tab, select the file and uncheck "Compile File as C++".

7 e

Visual C++ IDE Project Properties Guide

This guide was built using Microsoft Visual Studio .NET 2003, which includes Visual

C++7.1.

To create a new project go to the menu "File / New / Project":

P = e

Progeper ol b e O oAy MR 1R

42

43
Select "Win32 Project™ on the Templates. Before finishing the Wizard, select
"Application Settings". Mark "Windows application™ and "Empty project".

You can also create a "Console application™, and whenever you execute your application
a text console will also be displayed. But this is a very useful situation so you can the use
standard C printf function to display textual information for debugging purposes.

Then add your files in the menu "Project / Add New Item™ or "Project / Add Existing
Iltem".

After creating the project you must configure it to find the IUP includes and libraries. In
Visual Studio there are two places where you can do this.

One is in the menu "Tools / Options™, then select "Project / Visual C++ Directories™.
Select "Include Files" or "Library Files" in "Show directories for:". In this dialog you will
configure parameters that will affect all the projects you open.

Or you can configure the parameters only for the project you created. In this case go the
menu "Project / Properties”. To configure the include files location select "C/C++/
General™ in the left tree, then write the list of folders separated by ";" in "Additional
Include Directories™.

To configure the library files location select "Linker / General” in the left tree, then write
the list of folders separated by ;" in "Additional Library Directories".

44

Now you must add the libraries you use. In this same dialog, select "Linker / Input™ in the
left tree, then write the list of files separated by spaces " " in "Additional Dependencies”.

In this sample configuration the project is using the additional library of Controls that
uses the CD library, also available at the download page.

When you build the project the Visual C++ linker will display the following message:

LINK : warning LNK4098: defaultlib “LIBC® conflicts with use of other lil

The default configuration use the C run time library with debug information, and IUP
uses the C run time library without debug information. You can simply ignore this
warning or change your project properties in "C/C++ / Code Generation™ in the left tree,
then change "Run Time Library" to "Single Threaded (/ML)".

If you want to use multithreading then you must use the DLL version of the IUP libraries.
They are built with the "Multi-threaded DLL (/MD)" option. Or you must rebuild the
libraries with your own parameters.

Building IUP

IUP runs on many different systems and interact with many different libraries such as Motif,
OpenGL, Canvas Draw (CD) and Lua (3.2, 4.0 and 5.0). In order to assist in the compilation process,
IUP uses Tecmake.

Tecmake is essentially a general GNU makefile with a series of predefined targets and
rules with the purpose of providing those in charge of developing libraries and

45
applications the necessary tools so that versions for different platforms can be generated
homogeneously. In other words, the tecmake user does not need to create a makefile nor
be concerned with his/her current platform to create a library or application, which we
will here call product.

To build 1UP, first install Tecmake. Note that Tecmake defines names for each system. For example:
vc7 (Visual Studio 7) or Linux24g3 (Linux Kernel 2.4 with gcc 3.x.)

When installing Tecmake you will need to set a few environment variables.You should refer to
Tecmake's manual, but here are a few tips on how to install it (tested on Redhat 7.0):

e Set environment variables TCG_HOME and TECMAKE_HOME pointing to where
tecmake.mak is installed,;

o Set variables TEC_UNAME, TEC_SYSNAME, TEC SYSRELEASE. These are well
explained in Tecmake's manual under Platforms.

In IUP's main directory there is a file named make_uname (make_uname.bat in Windows) that calls
Tecmake for each 1UP library. To build IUP for Windows using Visual C 7.0 for example, just
execute make _uname.bat vc7

In order to build IUP on Unix systems, you should have Motif version 2.1 or greater.

Please send any comments or questions to iup@tecgraf.puc-rio.br

Lua Binding

Overview

The Lua Binding is an interface between the Lua language and IUP, a portable user-
interface system. The main purpose of this package is to provide facilities for constructing
IUP dialogs using the Lua language. Abstractions were used to create a programming
environment similar to that of object-oriented languages, even though Lua is not one of
such languages. The concept of event-oriented programming is broadly used here,
because the IUP library is based on this model. Most constructions used in lupLua were
strongly based on the corresponding constructions in LED.

System Control

Before running any function from the Lua Binding, you must run the tuplua_open
function to initialize the toolkit. This function must be run after a call to function
lupOpen. All this is done in C in Lua’s host program.

Example:

int main(void)

{
lupOpen();
lupControlsOpen();

/* Lua 3.2 initialization (could be Lua 4.0 or Lua 5.0) */
lua _open();

lua_iolibopen();

lua_strlibopen();

lua_mathlibopen();

46
iuplua_open(); /* Initialize Binding Lua */
controlslua_open(); /* Inicialize CPIl controls binding Lua */

lupMainLoop();
lupControlsClose();
lupClose();

return O;

}
Generating Applications

To use the Lua Binding, you need to link the program to the lupLua library and to the
Lua library. lupLua is available in Lua 3.2 and Lua 5.0.

Simple Attributes

Each interface element is created as a Lua table, and its attributes are indicated as fields
in this table. Some of these attributes are directly transferred to IUP, so that any changes
made to them immediately reflect on the screen. By means of Lua’s tag method system,
attribute values defined in lupLua can be transferred to IUP, being immediately updated.
However, not all attributes are transferred to IUP. Some are control attributes, such as
handl e, which stores the handle of the IUP element, and parent, which stores the
object immediately above in the class hierarchy. Attributes that receive strings or
numbers as values are immediately transferred to IUP. Other values (such as functions or
objects) are stored in lupLua and might receive special treatment (as will be explained
later).

For instance, a button can be created as follows (defining a title and the background
color):

ok = iupbutton{title = "0k", bgcolor = "0 255 0"}

Font color can be subsequently changed by modifying the value of attribute fgcolor:

ok.fgcolor = "255 0 0"

Note that the attribute names in C and in lupLua are the same, but in lupLua they can be
written in lower case. The names of element creation functions are also in lower case,
since they are actually constructors of Lua tables.

Some parameters are required attributes (such as title in buttons). Their types are
checked when the element is created. The required parameters are exactly the paremeters
that are necessary for the element to be created in C.

Some interface elements contain one or more other elements, as is the case of dialogs,
lists and boxes. In such cases, the object’s element list is put together as a vector, that is,
the elements are placed one after the other, separated by commas. They can be accessed
by indexing the object containing them, as can be seen in this example:

box = iuphbox{btl, bt2, bt3}
box[1]-fgcolor "255 0 O -- changes btl foreground color
box[2].fgcolor = caixa[l].fgcolor -- changes bt2 foreground color

Other Attributes

47
While the attributes receiving numbers or strings are directly transferred to IUP, attributes
receiving other interface objects are not directly transferred, because IUP only accepts
strings as a value. The metamethod that transfers attributes to IUP verifies if the attribute
value is of a “widget” type, that is, if it is an interface element. If the element already
has a name, this name is passed to IUP. If not, a new name is created, associated to the
element and passed to IUP as the value of the attribute being defined.

This policy is very useful for associating two interface elements, because you can abstract
the fact that IUP uses a string to make associations and imagine the interface element
itself is being used.

Callbacks

Some attributes are not directly transferred to IUP. They are either control attributes or
attributes in charge of treating the actions associated to objects. Since the use of actions
requires registering functions in C to be called when the event occurs, there is a
differentiated treatment for such attributes. The lupLua system does not require the
creation and registration of C functions for this purpose.

Callbacks of different types of interface events are registered by the library when they are
initialized. These default callbacks call methods of the object receiving the event. Each
different event calls a different method, which can have a few parameters. The objects are
initialized with none of these methods set, so the programmer is in charge of setting them
when required. They receive the same parameters as callbacks in C, in the same order,
and they can either return a value or not (if no return value is set, the 1TUP_DEFAULT
value is returned). The following example shows the definition of an action for a button.

function ok:action ()
local aux = self.fgcolor
self.fgcolor = self._bgcolor
self._bgcolor = aux

end

Or you can do

function myaction(self)
end

ok.action = myaction

The ITUP API binding

Even though there are sintatic sugars used to handle callbacks and attributes in Lua, most
of the functions defined in C are exported to Lua, such as lupSetAttribute, lupGetBrother
among others.

Exchanging Values between C and Lua
Each binding to a version of Lua uses different features of the language in order to
implement IUP handles (I handle) in Lua. Therefore, functions have been created to
help exchange references between Lua and C.

To push an Ihandle in Lua's stack, use the function:

48
iuplua_pushihandle(lua_State *L, lhandle *n);

In Lua 3.2, the lua_State parameter does not exist.

To receive an Ihandle in a C function called from Lua, just use one of the following
functions according to which Lua you are using: lua_getuserdata (Lua 3.2),
lua_touserdata (Lua 4) or lua_unboxpointer in (Lua 5).

In order to bring IUP handles created in C to Lua, the user can give the IUP handle a
name by means of lupSetHandle and call in Lua the function lupGetFromC,

Ex:

lua_ihandle = lupGetFromC{"element_name'}

where element_name is the name of the element previously defined with
lupSetHandle.

Error Handling

Error handling differ between each Lua version. To keep lupLua’'s APl as compatible as
possible, functions have been created to execute Lua code:

int iuplua_dofile(lua_State *L, char *filename);
int iuplua_dostring(lua_State *L, const char *string, const char *chunk |

If the given functions are used, in every lupLua version the errors will be reported
through the ERRORMESSAGE function. If this function is not defined by the user, IUP
will use its default implementation (shows a dialog with the error message.)

If the user chooses not to use those functions, errors will be handled according to the
version of Lua used.

The Architecture Behind lupLua

The Lua API for the IUP system was based on object classes representing the different
interface elements. A hierarchy was built among these classes, with the main purpose of
reusing code. Code inheritance was implemented precisely as described in the Lua user
guide.

The root of this hierarchy is the WIDGET class. It contains the basic procedures for
construction, parameter type verification, and allocation of structures for controlling
IUP’s interface elements. This class also defines the basic parameters of all classes, such
as handle (which stores the handle of the associated IUP element) and parent (used
to implement the inheritance mechanism).

Even though almost all classes directly descend from the WIDGET class, some other
classes serve as mediators in the tree. This is the case of the COMPOSITION class,
located among the composition element classes: lUPHBOX, TUPVBOX and 1UPZBOX.

Some classes use part of the code from other classes, when they are very similar. This
happens to ITUPITEM and TUPTOGGLE, which reuse the code related to the verification

of parameter types and to the definition of the action callback in the ITUPBUTTON
class. Class TUPMULT ILINE inherits several characteristics from TUPTEXT, such as the

49
definition of the action callback and the verification of parameter types.

The complete class hierarchy can be represented as follows:

WIDGET
IUPBUTTON
IUPITEM
IUPTOGGLE
IUPCANVAS
COMPOSITION
1UPHBOX
1UPVBOX
1UPZBOX
IUPDIALOG
IUPFILL
IUPFRAME
1UPIMAGE
IUPLABEL
IUPLIST
1UPMENU
IUPRADIO
IUPSEPARATOR
1UPSUBMENU
IUPTEXT
IUPMULTILINE

Differences in lupLuab

In lupLua5 we follow the same organization of the Lua libraries using the namespace
before all the definitions.

o All exported functions are accessed only through iup.FunctionName, including
control initialization like iup.label.

o All callbacks in are now access through their exact name in the C API.

o Numeric definitions where kept in upper case by without the IUP_ prefix, like:
iup.DEFAULT.

e String definitions for values are no longer supported, always use "YES", "NO",
"ACENTER", etc.

lupLua3 Examples

MultiList - Creates a matrix that allows selection of each line at a time.
TableTree - Shows a tree given a Lua table.

LabelText - Creates a pair Label-Text.

AllFonts - Allows you to easily select a font from all possible IUP fonts.

lupLua Test Application

The distribution files include two executables, one for Lua 3 and one for Lua 5, that you
can use to test your Lua code. Both applications have support for all the addicional
controls.

CPI

Introduction

50
The 1UP toolkit was originally designed to support a set of well-defined controls existing
in all the destination platforms. With the evolution of native systems (e.g. Windows 95)
and new requests from users, IUP needed to evolve with the purpose of making the
addition of new interface elements to the toolkit easier.

Thus, to support the development of new controls for IUP, a specific AP (Application
Program Interface) was created for this purpose: it was called CPI (Control Program
Interface). This new API is orthogonal to the original IUP API, that is, its use with a
client application does not interfere with the conventional use of IUP. Only a developer
wishing to implement a new IUP control is required study this API.

Control Implementation
To create a new CPI control, follow these steps:

e Initialize the control

o Create control instances

o Implement the CPI methods associated to the control

o Make exported information available to the user (function prototypes, definitions,
etc.)

General Control Initialization

The initialization function is in charge of passing IUP the necessary information so that
the control can be used. Such information is grouped in an Iclass-type structure, which
from now on is to be called the class of the control.

The first step is to create the structure. This is done by calling the
1upCpiCreateNewClass function. To this function, two pieces of information must
be passed: a string identifying the control in a unique way (the "name" of the control), and
a string describing the creation parameters when the control is created via LED. The
pointer returned by TupCpiCreateNewClass must be stored in a static module
variable, as it will be necessary to create new control instances.

Next step is to replace, if necessary, the control's CPI method. This is done through
function 1upCpiSetClassMethod, which receives the control's class as an argument
and the pointer to the new method.

Important: Function iupCpiCreateNewClass fills the class with default methods,
which provide the control a default behavior.

This initialization function must be named TupControlOpen, where Control is the
name of the control.

Example (class creation for a control named Dial):

#include <iup.h>
#include <iupcpi.h>

static Iclass *classe = NULL;

static lhandle *DialCreate(...) /* método de criagdo */

{

}
void lupDialOpen(void)
{
classe = i1upCpiCreateNewClass('dial™,''n");
iupCpiSetClassMethod(classe, ICPI_CREATE, DialCreate);
¥

Creation of Control Instances

The created control must make a function available whose name must be lupControl,
where Control is the control name. This function is to be used by the user to create a
new control instance, and should not receive arguments. If the control is a container, the
the arguments are necessarily its children.

In this creation function, if no parameters are necessary, just call lupCreate with the
control's name. If the control allows children, use lupCreatev to pass them forward to
IUP. This function will create the control's Thandle, by means of the function
registered by ICPI_CREATE.

Examplel:
Ihandle *lupDial()
{ return lupCreate('dial™);
}

Example2:

Ilhandle *lupBox (lhandle * first,...)
{

Ihandle **params = NULL;

Ihandle *elem = NULL;

unsigned int i = 0;

va_list arg;

if(first)

va_start (arg, first);

i =1;

while (va_arg(arg, lhandle *)) i++;
va_end (arg);

params = (lhandle**) malloc (sizeof (lhandle*) * (i+1));

i =0;
va_start (arg, first);
elem = first;
while (elem = NULL)
{
params[i++] = elem;
elem = va_arg(arg, lhandle *);
}
params[i] = NULL;
va_end (arg);

}

elem = lupCreatev(name, params);

51

52
free(params);
return elem;

b
CPI Methods

The Iclass structure fields are mostly pointers to functions to be called by IUP in
certain moments. These pointers to functions play the same parts as objects in languages
such as C++. Following the C++ philosophy, the CPI defines a set of functions which can
be used to provide the controls a default behavior. The Iclass structure stores these
function pointers, which are defined right after the call to tlupCpiCreateNewClass.

In several occasions, the default behavior defined by the CPI is not adequate for the new
control's implementation. In this case, a new function must be set, providing the desired
implementation for such method. If convenient, this new function can call the function
implementing the method's default behavior, either before or after performing the specific
treatment of the new control. Generally, a method that will always be redefined to a new
control is the one in charge of creating instances of this control. To redefine (replace) a
control method, function TupCpiSetClassMethod must be used. It receives as
parameters the values described below:

1upCpiSetClassMethod

parameter

Default method used

Description

ICP1_CREATE

tupCpiDefaultCreate

This method is called by IUP when an instance ft
When this function is called, IUP already has a re
instance (represented by the sel'f parameter). Tl
the required attributes, specified in the call to the

Prototype:
Ihandle *(*create) (Iclass* class

ICP1_DESTROY

iupCpiDefaultDestroy

This method is called by IUP when the lupDest
control or its dialog. If necessary, this method cal
structures maintained by the control.

Prototype:
void (*destroy) (lhandle* self);

ICPI_MAP

tupCpiDefaultMap

This method is called by IUP to map the control |
parameter indicates of which window the control
be a dialog or any other control.)

Prototype:
void (*map) (lhandle* self, Ilhanc

1CP1_UNMAP

This method is called by IUP to "destroy" the cor
without removing the control from the control hit

1upCpiDefaultUnmap

53

Prototype:
void (C*unmap) (lhandle* self);

ICP1_SETNATURALSIZE

iupCpiDefaultSetNaturalSize

This method is called by IUP for the control to sf
function must call functions iupSetNaturalWwidt
implementation might call the function associatec
Iclass structure (to be described further on) to
control. This function must return the same value
associated to the getsize field.

Prototype:
int (*setnaturalsize) (lhandle* <

ICP1_SETCURRENTSIZE

iupCpiDefaultSetCurrentSize

This method is called by IUP for the control to sf
function must call functions iupSetCurrentwids
Parameters w (width in pixels) and h (height in p
values the control dimensions can have.

Prototype:
void (*setcurrentsize) (IThandle*

ICP1_SETPOSITION

iupCpiDefaultSetPosition

This method is called by IUP for the control to de
window. Parameters X and Yy represent the positic
control) the control must have, computed by IUP
method need only be changed if the control has s

Prototype:
void (*setposition) (lhandle* sel

ICP1_SETATTR

1upCpiDefaul tSetAttr

This method is called to provide a new value to a
method is called, the attribute's value is already u
environment. The received parameters mean the -
being changed; value is the new attribute value
value.

Prototype:
void (*setattr) (lhandle* self, c

value);

ICP1_GETATTR

iupCpiDefaultGetAttr

This method is called by IUP to verify the value «
by parameter attr. This method is called before IL
environment. If this method returns nul I, ITUP v
environment. If this check also returns null I, the
getdefaultattr field is called.

Prototype:
char* (*getattr) (lhandle* self,

ICP1_GETDEFAULTATTR

1upCpiDefaul tGetDefaul tAttr

This method is called by IUP when verifying an ¢
to the method related to the getattr field and tt
attribute environment fail (returned null).

54

Prototype:
char* (*getdefaultattr) (Ihandle*

ICP1_GETSIZE

1upCpiDefaul tGetSize

This method is called by IUP when wishing to ve
This function must write to the w and h paramete
respectively. The return value for this function ce

O - The control size does not vary when the dialo
1 - The control width may vary when the dialog \
2 - The control height may vary when the dialog
3 - The control width and height may vary when

Prototype:
int (*getsize) (lhandle *self, ir

ICP1_POPUP

This method is called by IUP when wishing the c
The X and y parameters indicate the position the
method must return 1UP_NOERROR, if no error
occurs.

Prototype:
int (*popup) (Ihandle *self, iInt

Header File

For a IUP application to use the new control, the prototypes of the initialization functions
and the definitions of the new attributes must be made available. This is done by means of
a header file, which must have the same name as the control.

Function Prototypes

The prototypes of all control functions that might be used by the control's
client applications must be provided. Usually there are only two prototypes:
the initialization function and the instance creation function. It is important to
consider that the control might be used in applications both in C and in C++.
Therefore, the prototype declaration should be involved by a "C" extern

block (see example below).

Attribute Definition

To match the IUP standard, macros must be defined to reference the strings
identifying the new attributes used by the control. For example, if a new
control has an attribute named MODE used to identify its operation mode,
then the following macro must be defined:

#define IUP_MODE "*MODE'

Note that the attributes used by the control may have already been defined (in
another control's header, for instance). Thus, it is advisable to check if this
happens to avoid compilation errors. Also refer to section Attribute

Treatment.

Example:

/*

* lupControle.h

*/

#itndet IUPCONTROLE_H
#define IUPCONTROLE_H

#ifdef _ cplusplus /* necessario quando controle é utilizado
em codigo C++ */
extern "C" {

#endi T

void lupControleOpen(void);
lhandle *lupControle(...);

#ifdef _ cplusplus

}
#endi T

/* Novos atributos */

#iftndeft I1UP_MODE
#define IUP_MODE "*MODE™

#endif

#ifndef IUP_LENGTH
#define IUP_LENGTH "LENGTH"

#endi

#endif /* TUPCONTROLE_H */

The Iclass Structure

The Iclass structure stores pointers to the control's methods (described in the table
above) as well as the following fields:

e char* name :

Stores the name given to the control. This name allows the control to be used in

LED.

e char* format:
Format string used to describe the required attributes defined in LED to create a
control instance. If this field is null, then the new control type has no required
attributes. The format string can be any sequence with the following characters:

95

Character

Meaning

n

name of a control instance or an action

S

any string

interface control (Ihandle *)

from this character on, a list of control-instance names or a list of

56
actions will be passed

S from this character on, a list of strings will be passed

C from this character on, a list of interface controls will be passed
*
(Ihandle *)

Attribute Treatment

By default, a control inherits the same attributes defined for IUP's Canvas element.

The developer of a new control can define new attributes. For such, he/she must redefine
the ICP1_SETATTR, ICP1_GETATTR and ICPI_GETDEFATTR methods, if

necessary.
If any attribute-manipulation method is redefined, the standard procedure is:

o identify if the given attribute is part of the set of attributes that must receive any
special treatment by the new control;

o if the attribute is part of this set, then the adequate treatment must be provided;

e if not, the default method must be called to treat the attribute.

Default Methods

In this section, we present the set of functions corresponding to the default behavior of an
interface element's methods. Such functions can either be used to fill an Iclass structure
or be called by a new method to execute the default procedure (either before or after the
specialized treatment of the new control is executed).

Function corresponding to the setnaturalsize method:
int ctrsetnaturalsize (lhandle* self);

Function corresponding to the setcurrentsize method:
void ctrsetcurrentsize (lhandle* self, int w, Int h);

Functions corresponding to the getsize method:
int ctrgetsize (lhandle* self, int* w, Int* h); ou
int ctrgetsizevar (lhandle* self, Iint* w, Int* h);

Note: A control that associates the ctrgetsize function to its getsize method cannot vary in size
when its dialog's size varies. On the other hand, a control that uses function ctrgetsizevar can
vary in size according to the changes made to its dialog size.

Function corresponding to the setposition method:
void ctrsetposition (lhandle* self, int w, int h);

Function corresponding to the create method:
void ctrcreate (lhandle* self, void** array);

Function corresponding to the destroy method:
void ctrdestroy (lhandle* self);

Function corresponding to the map method:

void ctrmap (lhandle* self, lhandle* parent);

Function corresponding to the unmap method:
void ctrunmap (lhandle* self);

Function corresponding to the setattr method:
void ctrsetattr (lhandle* self, char* attr, char* value);

Function corresponding to the getattr method:
char* ctrgetattr (lhandle* self, char* attr);

Function corresponding to the getdefaul tattr method:
char* ctrgetdefaultattr (lhandle* self, char* attr);

Extra Functions

Following we provide a list of extra IUP functions. They can be used by programmers
wishing to create a new control:

Main control-creation functions

Iclass *i1upCpiCreateNewClass(char *name, char *format);
int 1upCpiSetClassMethod(lIclass *ic, char *method, Imethod
func);

Functions that call the method in charge for the given action

int TupmethSetNaturalSize(lhandle* self);

void 1upmethSetCurrentSize(lhandle* self, int w, iIint h);
Iint fupmethGetSize(lhandle* self, int* w, int* h);

void i1upmethSetPosition (lhandle* self, int w, Iint h);
void i1upmethCreate(lhandle* self, void** array);

void iupmethDestroy(lhandle* self);

void itupmethMap(lhandle* self, lhandle* parent);

void tupmethUnmap(lhandle* self);

void iupmethSetAttribute(lhandle* self, char* attr, char*
value);

char* 1upmethGetAttribute(Ihandle* self, char* attr);
char* i1upmethGetDefaultAttr(lhandle* self, char* attr);
char* 1upmethGetClassName(lhandle* self);

Functions in charge of manipulating an element’s size

void 1upSetCurrentWidth(lhandle* self, iInt w);
void i1upSetCurrentHeight(lhandle* self, iInt h);
Iint 1upGetCurrentWidth(lhandle* self);

int 1upGetCurrentHeight(lhandle* self);

int iupHorResizable(lhandle* self);

Iint 1upVertResizable(lhandle* self);

void 1upSetNaturalWidth(lhandle* self, iInt w);
void i1upSetNaturalHeight(lhandle* self, int h);
void i1upGetCharSize(lhandle* n, int *w, Int *h);
Int 1upGetSize(lhandle* e, Int* w, Int *h);

58
void i1upGetTextSize(lhandle* h, char* text, iInt* size);

void i1updrvResizeObjects(lhandle *n);

Example

The best example possible can be taken from IUP distribution. As an advice, please refer to the
iupgauge control.

LED Compiler for C

Description

The LED compiler (ledc) generates a C module from one or more LED files. The C
module exports only one function, which builds the IUP interface described in the LED
files. Running this function is equivalent to calling the lupLoad function over the
original LED files.

One advantage of using the compiler is that it allows the application to be independent
from LED files during its execution. Since the interface description is inside the
executable file, there is no need to worry about locating the configuration files.

Another advantage is that ledc performs a stricter verification than IUP’s internal parser.
This makes error detection in LED files easier.

Finally, running the function generated by the compiler is faster than reading the
corresponding LED file with lupLoad, since the parsing step of the LED file is
transferred from execution to compilation. However, creating the IUP elements described
in LED takes most of the execution time of the lupLoad function, so the gain in
efficiency may not be very significant.

Usage

ledc [-Vv] [-c] [-TF funcname] [-o file] Ffiles

-V shows ledc’s version number

-C does not generate code, just checks for errors in the LED files

_f funcname UYS€s <funcname> as the name of the generated exported function (default:
led_load)

-0 file uses <Fi1le> as the name of the generated file (default: 1ed.c)

Error Messages

Several warnings and error messages might be generated during compilation. Errors abort
the compilation. The messages can be the following:

warning: undeclared control name (argument number)
The name name was used as an argument where a IUP element was expected, but no
element with this name was previously declared.

59

warning: string expected (argument number)
A name (callback?) was passed as a parameter for a string-type argument.

warning: callback expected (argument number)
A string was passed as a parameter for a callback-type argument.

warning: unknown control name used

An unknown element, called name, was used. The compiler assumes the element’s
creation function is called lupName, with name capitalized, and assumes the arguments’
types based on what was passed on LED.

warning: elem declared without a name
An e lem-type element was declared without being associated to any name. This
declaration creates the element, but it will not be accessible, so it cannot be used.

element name already used in line number
The name element was already used in line number. In IUP, the same element cannot
have more than one parent.

too few arguments for name
The name element expects more arguments than those already passed.

too many arguments for name
The name element expects less arguments than those passed.

name i1s not a valid child
The name element cannot be used as a parameter in this case. This happens when trying
to insert an image into a vbox, for instance.

control expected (argument number)
A string was passed as a parameter for an element-type argument.

string expected (argument number)
An element was passed as a parameter for a string-type argument.

number expected (argument number)
An element or a string was passed as a parameter for a number-type argument.

callback expected (argument number)
An element was passed as a parameter for a callback-type argument.

hotkeys not implemented
Even though it is a LED word reserved to an element, it is not implemented.

Functions

The internal IUP functions allow the user to read and set values, set callbacks, destroy
elements, show and hide dialogs, etc., deciding how the library must work.

System Control

Allows initializing the library, controlling the execution order of tasks, and using help

through Netscape.
System Control for Lua

Integrates the library with programs and dialogs written in Lua.
Dialog and Menu Control

Controls the visualization of dialogs and menus, and controls focus, mapping and
destruction.

LED

Allows loading an interface-description file written in LED.
Element Composition

Helps adding and removing elements.
Element Manipulation

Allows creating and reading internal references of elements.
Attribute Manipulation

Creates, modifies and reads attributes of each element or global. Allows the attributes to
return in different formats.

Callback Manipulation
Allows reading and creating references to functions.
Extra Lua Functions
Auxiliary functions in lupLua.
GKS
Auxiliary functions that help integrating GKS and IUP.
lupOpen
Initializes the IUP toolkit. Must be called before any other IUP function.

Parameters/Return

int lupOpen(void); [in C]
[There is no equivalent in Lua]

This function returns TUP_ERROR or 1UP_NOERROR.

Notes

60

61
The lupOpen function in the Windows driver initializes OLE through the function
Olelnitialize; lupClose calls OleUninitialize.

The toolkit's initialization depends on several platform-dependent environment variables.

For a more detailed explanation on the system control, please refer to Guide / System
Control.

Lua Binding

Lua: This function must be called by the host program and before the Binding Lua
initialization function, tuplua_open.

See Also

iuplua open, lupClose, Guide / System Control

lupClose
Ends the 1UP toolkit.

Parameters/Return

void lupClose(void); [in C]
[There is no Lua equivalent]

Notes

The lupOpen function in the Windows driver initializes OLE through the function
Olelnitialize; lupClose calls OleUninitialize.

Lua Binding
This function must be called by the host program.
See Also

lupOpen

lupMainLoop

Executes the user interaction until a callback returns TUP_CLOSE. Must be called before
the lupClose function.

Parameters/Return
int lupMainLoop(void); [in C]

lupMainLoop() -> ret: number [in lupLua3]
iup.MainLoop() -> ret: number [in lupLua5]

Returns TUP_NOERROR or 1UP_ERROR.

62
Notes

If this function is executed at any other moment, it will interrupt the execution until a
callback returns IUP_CLOSE. A second execution of lupMainLoop will have a
platform-dependent behavior.

Presently, the return value can be ignored, as in all platforms it currently returns
1UP_NOERROR.

The message loop will go on only while there is a dialog. At the moment the last dialog is
destroyed or hidden, the loop will be ended and IupMainLoop will return the control to

the application, except if the Idle callback is defined - in this case, the 1dle callback
must return TUP_CLOSE for the application to receive the control back.

Motif Driver

Can be executed several times but a TUP_CLOSE must occur for each execution.

WIin32 Driver

If the function is executed several times, only one TUP_CLOSE will end all executions.

See Also

lupOpen, lupClose, lupLoopStep, Guide/System Control, IDLE_ACTION.

lupLoopStep
Runs an iteration of the message loop.

Parameters/Return

int lupLoopStep(void); [in C]
lupLoopStep() -> ret: number [in lupLua3]
iup.LoopStep() -> ret: number [in lupLua5]

This function returns TUP_CLOSE or IUP_DEFAULT.

Notes

This function is useful for allowing a second message loop to be managed by the
application itself. This means that messages can be intercepted and callbacks can be
processed inside an application loop.

An example of how to use this function is a counter that can be stopped by the user. For
such, the user has to interact with the system, which is possible by calling the function
periodically.

This way, this function also replaces some old mechanisms implemented using the Idle
callback.

Note that this function does not replace lupMainLoop.

See Also

lupOpen, lupClose, lupMainLoop, IDLE ACTION, Guide / System Control

lupFlush

Processes all pending messages in the message queue.

Parameters/Return

void lupFlush(void); [in C]
lupFlush() [in lupLua3]
iup.Flush(Q) [in lupLua5]

Notes

When you change an attribute of a certain element, the change may not take place

immediately. For this update to occur faster than usual, run lupFlush after the attribute
is changed.

Important: A call to this function may cause other callbacks to be processed before its
returns.

lupHelp

Opens the given URL. In UNIX executes Netscape passing the desired URL as a
parameter. In Windows calls the default application that handle URLSs.

In UNIX you can change the used browser setting the environment variable
IUP_HELPAPP. If set it will replace "netscape”.

Parameters/Return

void lupHelp(char* url); [in C]
lupHelp(url: string) [in lupLua3]
iup.Help(url: string) [in lupLua5]

url: may be any kind of address accepted by the Browser, that is, it can include ‘http://,
or be just a file name, etc.

lupSetLanguage
Defines the language used by 1UP.

Parameters/Return

void lupSetLanguage(char *Ing); [in C]
lupSetLanguage(language :string) [in lupLua3]
iup.SetLanguage(language :string) [in lupLua5]

Ing: Language to be used. Can have one of the following values:

63

e "ENGLISH"
e ""PORTUGUESE"

default: ""PORTUGUESE".

Affects
All elements that have predefined texts.

Examplein C

#include <stdio.h>
#include <stdlib._h>
#include <string.h>
#include "iup.h"

void main(void)
{
lupOpen();
lupSetLanguage (""ENGLISH™) ;
lupMessage("1UP Language', lupGetLanguage());
lupClose();
return;

lupGetLanguage
Verifies the language used by 1UP.

Parameters/Return

char* lupGetLanguage(void); [in C]
lupGetLanguage() -> (language: string) [in lupLua3]
iup.GetLanguage() -> (language: string) [in lupLua5]

For a list of all possible return values, see lupSetLanguage.

Affects
All elements with predefined texts.

Examplein C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "iup.h"

void main(void)
{
lupOpen();
lupMessage(""1UP Language', lupGetLanguage());
lupClose();
return;

64

65
lupMapFont

Retrieves the name of a native font, given the name of the IUP font.

Parameters/Return

char* lupMapFont(char *iupfont); [in C]
lupMapFont(iupfont : string) -> (nativefont : string) [in lupLua3]
iup.MapFont(iupfont : string) -> (nativefont : string) [in lupLua5]

This function returns the name of the native font.
See Also

lupUnMapFont, FONT attribute

lupUnMapFont
Retrieves the name of the IUP font, given the native font.

Parameters/Return

char* lupUnMapFont(char *font); [in C]
lupUnMapFont(font :string) -> (iupfont : string) [in lupLua3]
iup.UnMapFont(font :string) -> (iupfont : string) [in lupLua5]

This function returns the name of the IUP font, given the native font. If such font does not
exist, the function will return NULL.

See Also

lupMapFont, IUP FONT

iuplua_open

Initializes the Lua Binding. This function must be called by the host program before
running any Lua functions, but it is important to call it after lupOpen.

Parameters/Return

void ituplua_open(void); [in C]
[There is no equivalent in Lua]

Note

For a more detailed explanation on the system control for the Lua Binding, please refer to
Lua Binding / System Control.

See Also

lupOpen, Guide / System Control

66
iupkey open

Allows IUP keyboard definitions to be used in lupLua. This function must be run by the
host program after ituplua_open. Please refer to the Keyboard Codes table for a list of
possible values.

Parameters/Return

void itupkey_open(void); [in C]
[There is no equivalent in Lua]

See Also

K_ANY callback, KEY attribute

lupDestroy
Destroys an interface element and all of its descendants.

Parameters/Return

void lupDestroy(lhandle *element); [in C]
lupDestroy(element: iuplua_tag) [in lupLua3]
iup.Destroy(element: iuplua_tag) [in lupLua5]
or element:destroy() [in lupLua]

element: Identifier of the interface element to be destroyed.

Notes

This function deletes the names associated to the interface elements being destroyed. It
does not free the memory of attribute values that was allocated by the application.

ATTENTION: The interface elements associated by means of attributes (such as menus
in dialogs and images in buttons) are not destroyed. The application will be in charge of
such task.

lupGetFocus

Verifies the interface element with keyboard focus, that is, the element that receives
keyboard events.

Parameters/Return

Ihandle* lupGetFocus(void); [in C]
lupGetFocus() -> elem: iuplua_tag [in lupLua3]
iup.GetFocus() -> elem: iuplua_tag [in lupLua5]

This function returns the identifier of the interface element which at the moment is
receiving keyboard events.

See Also

67
lupSetFocus.

lupSetFocus

Defines the interface element that will receive the keyboard focus, i.e., the element that
will receive keyboard events.

Parameters/Return

Ihandle *lupSetFocus (lhandle *element); [in C]
lupSetFocus(element: iuplua_tag) -> elem: iuplua_tag [in lupLua3]
iup.SetFocus(element: iuplua_tag) -> elem: iuplua_tag [in lupLua5]

e lement: identifier of the interface element that will receive the keyboard focus.

This function returns the identifier of the interface element that will receive the keyboard
focus.

See Also

lupGetFocus.

lupHide
Hides an interface element. This function has the same effect as attributing value ""NO"* to
the interface element’s VIS IBLE attribute.

Parameters/Return

int lupHide(lhandle *element); [in C]

lupHide(element: iuplua_tag) -> (ret: number) [in lupLua3]
iup.Hide(element: iuplua_tag) -> (ret: number) [in lupLua5]
or element:hide() -> (ret: number) [in lupLua]

element: Identifier of the interface element.

This function returns 1TUP_NOERROR if the element was removed from the screen.

Note

Once a dialog is hidden, either by means of lupHide or by changing the VISIBLE
attribute or by means of a callback returning 1UP_CLOSE, the elements in this dialog are
not destroyed, so that you can show them again. To destroy dialogs, the lupDestroy

function must be called.

See Also
lupShowXY, lupShow, lupPopup, lupDestroy.

68

lupMap
Creates native interface objects corresponding to the given IUP interface elements.

Parameters/Return

int lupMap(lhandle* element); [in C]
lupMap(element: i1uplua-tag) -> ret: number [in lupLua3]
iup-Map(element: ituplua-tag) -> ret: number [in lupLua5]

element: Identifier of an interface element.

Notes
When element is of type dialog, this function creates the native interface element of
a dialog and of each element it contains, but only if the e lement has not been mapped
yet.

When element is not of type dialog, this function will only create the native interface
element if the element is inside an already mapped dialog.

If element was already mapped, nothing happens.

If the WID attribute is NULL, it means the e lement was not already mapped.

This function is automatically called always before a dialog is made visible. This way, it
only makes sense for the application to call it when the value of the WID attribute must be

known before a dialog is made visible.

See Also

lupShowXY, lupShow, lupPopup.

lupPopup

Shows a dialog or menu and restricts user interaction only to the specified element. This
function will only return the control to the application after a callback returns
1UP_CLOSE or when the popup dialog is hidden, for exemple using lupHide.

Parameters/Return

int lupPopup(lhandle *element, Int x, int y); [in C]

lupPopup(element: iuplua_tag, x, y: number) -> (ret: number) [in lupLua3]
iup.Popup(element: ituplua_tag, x, y: number) -> (ret: number) [in lupLua5]
or element:popup(x, y: number) -> (ret: number) [in lupLua]

element: Identifier of a dialog or a menu.
X: x coordinate of the left corner of the interface element. The following macros are valid:

o IUP_LEFT: Positions the element on the left corner of the screen

o IUP_CENTER: Centers the element on the screen
o IUP_RIGHT: Positions the element on the right corner of the screen
o IUP_MOUSEPOS: Positions the element on the mouse cursor

69

y: y coordinate of the upper part of the interface element. The following macros are valid:

o 1UP_TOP: Positions the element on the top of the screen

o IUP_CENTER: Vertically centers the element on the screen

o IUP_BOTTOM: Positions the element on the base of the screen
o 1UP_MOUSEPOS: Positions the element on the mouse cursor

This function returns TUP_ERROR if the element could not be created.

Notes

When a popup dialog is interacting with the user, another dialog can only be opened by
means of the lupPopup function — never with lupShow or lupShowXY.

This function can be executed more than once for the same dialog. In fact, it works just

like functions TupShow and TupShowXY, but it inhibits interaction with other dialogs.

Therefore, it does not destroy the dialog’s elements when it ends. To destroy the
elements, function lupDestroy must be called.

See Also

lupShowXY, lupShow, lupHide.

lupShow

Displays an interface element. This function has the same effect as setting value
IUP_YES to the ITUP_VISIBLE attribute of the interface element.

Parameters/Return

int lupShow(lhandle *element); [in C]

lupShow(element: iuplua_tag) -> (ret: number) [in lupLua3]
iup.-Show(element: iuplua_tag) -> (ret: number) [in lupLua5]
or element:show() -> (ret: number) [in lupLua]

element: identifier of the interface element.

This function returns TUP_NOERROR if the element was displayed.

Notes
An interface element is only visible if the dialog that contains it is also visible.

This function can be executed more than once for the same dialog. This will make the
dialog be placed above all other dialogs in the application.

See Also

70
lupShowXY, lupHide, lupPopup.

lupShowXY

Displays a dialog in a given position on the screen.

Parameters/Return

int lupShowXY(lhandle *element, int x, int y); [in C]

lupShowXY(element: iuplua_tag, x, y: number) -> (ret: number) [in lupLua3]
iup.ShowXY(element: iuplua_tag, x, y: number) -> (ret: number) [in lupLua5]
or element:showxy(x, y: number) -> (ret: number) [in lupLua]

e lement: identifier of the dialog.
X: x coordinate of the dialog’s left corner. The following macros are valid:

o IUP_LEFT: Positions the dialog on the left corner of the screen

o IUP_CENTER: Horizontally centralizes the dialog on the screen

o IUP_RIGHT: Positions the dialog on the right corner of the screen
o IUP_MOUSEPOS: Positions the dialog on the mouse position

y: y coordinate of the dialog’s upper part. The following macros are valid:
o 1UP_TOP: Positions the dialog on the top of the screen
o IUP_CENTER: Vertically centralizes the dialog on the screen
o IUP_BOTTOM: Positions the dialog on the base of the screen
o IUP_MOUSEPOS: Positions the dialog on the mouse position
This function returns TUP_NOERROR if the element was displayed.
Note

This function can be executed more than once for the same dialog. This will make the
dialog be placed above all other dialogs in the application.

See Also

lupShow, lupHide, lupPopup.

lupNextField

Shifts the focus to the next element in a dialog to which the specified element belongs. In
does not depend on the element currently with the focus.

Parameters/Return
Ihandle* lupNextField(lhandle* element); [in C]

lupNextField(element: iuplua_tag) -> (elem: iuplua_tag) [in lupLua3]
iup.NextField(element: iuplua_tag) -> (elem: iuplua_tag) [in lupLua5]

element: An element.

71
This function returns the element that received the focus.

See Also

lupPreviousField.

lupPreviousField

Shifts the focus to the previous element in a dialog to which the specified element
belongs. In does not depend on the element currently with the focus.

Parameters/Return

Ihandle* lupPreviousField(lhandle* element); [in C]
lupPreviousField(element: ituplua_tag) -> (elem: iuplua_tag) [in lupLua3]
iup.PreviousField(element: iuplua_tag) -> (elem: iuplua_tag) [in lupLua5]

element: An element.
This function returns the element that received the focus.
See Also

lupNextField.

lupDetach
Disassociates an interface element from the dialog that contains it.

Parameters/Return

void lupDetach(lhandle *element); [in C]
lupDetach(element: iuplua_tag) [in lupLua3]
iup.Detach(element: tuplua_tag) [in lupLua5]
or element:detach() [in lupLua]

element: Identifier of the interface element to be detached.

Notes

This function does not destroy an interface element, but only removes the dialog that
contains it so that it can be used in another dialog.

ATTENTION: At the moment, this function only works before the element is mapped by

means of functions lupMap, lupShow, lupShowXY or lupPopup. The
following example does not actually work!

Example
Inserts and removes a button box in/from a dialog.

InC

72
#include <stdlib.h> /* NULL */

#include "iup.h"

static lhandle *pc; /* ldentifier of the hbox that contains the button box */
static lhandle *cb; /* ldentifier of the button box */
static int visivel=1; /* =1 if the button box is on the screen, =0 otherwise

/* Function that displays the button box */
static int exibe (void)

{
if (visivel == 0)
{
lupHide(pc);
lupAppend(pc, cb);
lupShow(pc);
visivel = 1;
}
return 1UP_DEFAULT;
}

/* Function that hides the button box */
static int retira (void)
{
if (visivel == 1)
{
lupHide(pc);
lupDetach(cb);
lupShow(pc) ;
visivel=0;

}

return IUP_DEFAULT;
}

void main (void)
Ihandle *d; /* ldentifier of the dialog */

lupOpen(Q);

/* Creates button box */

cb = lupFrame(lupVbox(
lupButton(" Select " , "acao_select"),
lupButton(* Line ", "acao_line™),
lupButton(*'Poligono', "acao poligono™),
lupButton("* Circulo™, "acao_circulo™),
NULL));

/* Creates a box containing a canvas and the buttons */

pc = lupHbox(lupFrame(lupCanvas(*'acao_repaint'™)), cb, NULL);

d = lupDialog (pc); /* criacdo do didlogo */

lupSetAttribute (d, IUP_K F1, "exibe_caixa'™); /* Defines F1 to display the
lupSetAttribute (d, IUP_K F2, "retira_caixa'"); /* Defines F2 to hide the b

/* Associates functions to the actions */
lupSetFunction(Texibe_caixa"™, (Icallback)exibe);
lupSetFunction(*'retira_caixa", (lcallback)retira);

lupShow(d); /* Shows the dialog */
lupMainLoop(); /* Interacts with user */
lupClose();

73
See Also

lupAppend, lupDestroy.

lupAppend

Inserts an interface element at the end of a list in hbox, vbox, zbox or menu.

Parameters/Return

Ihandle* lupAppend(lhandle *box, lhandle *element); [in C]
lupAppend(box, element: iuplua_tag) -> (box: iuplua_tag) [in lupLua3]
iup.Append(box, element: iuplua_tag) -> (box: iuplua_tag) [in lupLua5]

box: Identifier of an hbox, vbox, zbox or menu.
element: Identifier of the element to be inserted in the box.

This function returns box if the interface element was successfully inserted. Otherwise,
NULL (ni 1 in Lua) is returned.

Notes

This function must be used when the interface elements that will compose an hbox,
vbox, zbox or menu are not known a priori (in the program's compilation stage).

If the box where the interface element is being inserted is visible, the lupAppend
function does not update it automatically. For such, the box must be hidden (lupHide)
and made visible (FupShow) again.

ATTENTION: Currently, this function only works before the element is mapped by
means of functions lupMap, lupShow, lupShowXY or lupPopup.

See Also

lupDetach, lupHbox, lupVbox, lupZbox, lupMenu.

lupGetNextChild

Returns the children of the given control based on his brother.

Parameters/Return

Ihandle *lupGetNextChild(lhandle *parent, lhandle *lastchild); [in C]
lupGetNextChild(parent, lastchild: iuplua_tag) -> ret: ifuplua_tag [in lupLua3
iup.GetNextChild(parent, lastchild: iuplua_tag) -> ret: iuplua_tag [in lupLua

parent: Identifier of an interface control.
lastchi ld: Identifier of the last interface control returned by the function.

Note

This function will return the children of the control in the exact same order in which they

were assigned.

Example
/* Lists all children of a lupVbox */

#include <stdio.h>
#include "iup.h"

int main()
Ihandle *dialog, *bt, *Ib, *vbox, *tmp = NULL;
lupOpen();

bt
Ib

lupButton("'Button™, "');
lupLabel (""Label™);

vbox = lupVbox(bt, 1b, NULL);

dialog = lupDialog(vbox);
lupShow(dialog);

while(l)

{
tmp = lupGetNextChild(vbox, tmp);

iT(tmp)

printf("'vbox has a child of type %s\n', lupGetType(tmp));
else

break;

}

lupMainLoop(Q);
lupClose();

return O;

}

See Also

lupGetBrother

lupGetBrother

Returns the brother of a control or NULL if there is none.

Parameters/Return

lhandle* lupGetBrother(lhandle *control); [in C]
lupGetBrother(control: ituplua_tag) -> ret: iuplua_tag [in lupLua3]
iup.GetBrother(control: iuplua_tag) -> ret: iuplua_tag [in lupLua5]

control: Brother of interface control given.

See Also

lupGetNextChild

74

75
lupGetType

Verifies the name of the type of an interface element.

Parameters/Return

char* lupGetType(lhandle* elem); [in C]
lupGetType(elem: iuplua_tag) -> (name: string) [in lupLua3]
iup.GetType(elem: iuplua_tag) -> (name: string) [in lupLua5]

elem: Identifier of the interface element.
This function returns the name of the type of an interface element.

Notes

The following names are predefined:

"unknown""
“color"”
"image"
"button”
canvas"'
"dialog"
“Fill"
"frame"
"hbox"
"item"
"'separator"
"'submenu™
"label™
"list"
"menu"*
“"radio"
"text"
"toggle™
"vbox""
""zbox""
"multiline”
"user"

lupSetHandle
Defines a name for an interface element.

Parameters/Return

Ihandle *lupSetHandle(char *name, lhandle *element); [in C]
lupSetHandle(hame: string, element: iuplua_tag) -> handle: iuplua _tag [in lup
iup.SetHandle(name: string, element: iuplua_tag) -> handle: iuplua_tag [in lu

name: name of the interface element.
element: identifier of the interface element.

This function returns the identifier of the interface element previously associated to the
parameter name.

76
Note

Attention: To delete an element’s name, use
lupSetHandle(""my element name'™, NULL);
See Also

lupGetHandle.

lupGetHandle

Retrieves the identifier of an interface element.

Parameters/Return

Ihandle *lupGetHandle(char *name); [in C]
lupGetHandle(nhame: string) -> handle: iuplua_tag [in lupLua3]
iup.GetHandle(name: string) -> handle: ituplua_tag [in lupLua5]

name: name of an interface element.
This function returns the identifier of the interface element.

Note
This function is used for integrating IUP and LED. To manipulate an interface element
defined in LED, first capture its identifier using function lupGetHandl e, passing the
name of the interface element as parameter, then use this identifier on the calls to IUP

functions — for example, a call to the function that verifies the value of an attribute,
lupGetAttribute.

Attention: in Lua, lupGetHandle is not able to get the Ihandle of a IUP element
created in C. To get an Ihandle created in C, use lupGetFromC{ 'name"}.

See Also

lupSetHandle.

lupGetName
Verifies the name of an interface element.

Parameters/Return

char* lupGetName(lhandle* elem); [in C]
lupGetName(elem: iuplua_tag) -> (name: string) [in lupLua3]
iup.GetName(elem: iuplua_tag) -> (name: string) [in lupLua5]

elem: Identifier of the interface element.

77
This function returns the name of an interface element.

Lua Binding

This name is not associated with the Lua variable name; this was inherited from LED and
is needed for some functions.

See Also

lupSetHandle, lupGetHandle, lupGetAllNames.

lupGetAllNames

Verifies the names of all interface elements defined.

Parameters/Return

int lupGetAlINames(char *names[], int n); [in C]
lupGetAl INames(names: string table, n: numer) -> (num: number) [in lupLua3]
iup.GetAlINames(names: string table, n: numer) -> (num: number) [in lupLua5]

names: table receiving the names
n: maximum number of names the table can receive.

This function returns the number of names loaded to the table.

Lua Binding

This name is not associated to the name of the Lua variable — this was inherited from
LED and is needed for some functions.

See Also
lupSetHandle, lupGetHandle, lupGetName, lupGetAllDialogs.

lupGetDialog

Verifies the identifier of a dialog to which an interface element belongs.

Parameters/Return

Ilhandle* lupGetDialog(lhandle *elem); [in C]
lupGetDialog(elem: iuplua_tag) -> (handle: tuplua_tag) [in lupLua3]
iup.GetDialog(elem: iuplua_tag) -> (handle: iuplua_tag) [in lupLua5]

elem: Identifier of an interface element.

This function returns the identifier of the dialog that contains that interface element.

lupGetAllDialogs

78
Verifies the names of all defined dialogs.

Parameters/Return

int lupGetAllDialogs(char *names[], int n); [in C]
lupGetAlIDialogs(names: string table, n: numer) -> (num: number) [in lupLua3]
iup.GetAllDialogs(names: string table, n: numer) -> (num: number) [in lupLua5

names: table receiving the names
n: maximum number of names the table can receive.

This function returns the number of names loaded to the table.

Lua Binding

This name is not associated to the name of the Lua variable — this was inherited from
LED and is needed for some functions.

See Also

lupSetHandle, lupGetHandle, lupGetName, lupGetAllNames.

lupStoreAttribute

Defines an attribute for an interface element.

Parameters/Return

void lupStoreAttribute(lhandle *element, char *a, char *v); [in C]
lupStoreAttribute(element: iulua_tag, attribute: string, value: string) [in L
iup.StoreAttribute(element: iulua_tag, attribute: string, value: string) [in

element: identifier of the interface element.

a: name of the attribute.

v: value of the attribute. If it equals NULL (ni I in lupLua), the attribute will be removed
from the element.

Note

The value stored in the attribute is duplicated. Usually you will not use this function to
store private attributes of the application.

See Also

lupGetAttribute, lupSetAttribute

lupSetAttribute

Defines an attribute for an interface element.

Parameters/Return

79
void lupSetAttribute(lhandle *element, char *a, char *v); [in C]
lupSetAttribute(element: iulua_tag, attribute: string, value: string) [in lup
iup.SetAttribute(element: iulua_tag, attribute: string, value: string) [in lu

element: Identifier of the interface element.

a: name of the attribute.

v: value of the attribute. If it equals NULL (ni 1 in Lua), the attribute will be removed
from the element.

Notes

The value stored in the attribute is not duplicated. Therefore, you can store your private
attributes, such as a structure with data to be used in a callback.

When you want IUP to store an attribute by duplicating a string passed as a value, use
function lupStoreAttribute.

For further information on memory allocation by lupSetAttribute, see
lupGetAttribute’s notes section.

Example 1

Defines a radio’s initial value.

InC

Ihandle *portrait = lupToggle("Portrait" , "acao portrait');

Ihandle *landscape = lupToggle(""landscape’™ , "acao_landscape'™);

Ihandle *box = lupVbox(portrait, lupFill(),landscape, NULL);

Ihandle *modo = lupRadio(box);

lupSetHandle("'landscape', landscape); /* associates a name to initialize the

lupSetAttribute(modo, "VALUE", "landscape'); /* defines the radio’s initial v
Example 2

Some usages:

InC
1. lupSetAttribute(texto, "VALUE"™, "Olal');
2. lupSetAttribute(indicador, "VALUE™, "ON'™);

3. struct

.
int x;
int y;
} myData;

lupSetAttribute(texto, "myData™, (char*)&myData);

See Also

lupGetAttribute, lupSetAttributes, lupGetAttributes,
lupStoreAttribute

80
lupSetfAttribute

Defines an attribute for an interface element.

Parameters/Return

void lupSetfAttribute(lhandle *element, char *a, char *f, ...); [in C]
[There is no equivalent in Lua]

element: identifier of the interface element.

a: name of the attribute.

T: format that describes the attribute. It follows the same standard as the printf
functionin C .

- - - values of the attribute.

Note
This function is very useful because we usually have integer values and want to pass them

to IUP attributes, but this is done by means of a string. This way, we can commonly use
sprintf to compose that string.

See Also

lupGetAttribute, lupSetAttribute, lupSetAttributes,
lupGetAttributes, lupStoreAttribute

lupGetAttribute

Verifies the name of an interface element attribute.

Parameters/Return

char *lupGetAttribute(lhandle *element, char *a); [in C]
lupGetAttribute(element: iuplua_tag, a: string) -> value: string [in lupLua3]
iup.GetAttribute(element: iuplua_tag, a: string) -> value: string [in lupLua5

element: Identifier of the interface element.
a: name of the attribute.

This function returns attribute’s value. If the attribute does not exist, NULL (ni 1 in
lupLua) is returned.

Notes

This function’s return value is not necessarily the same one used by the application to
define the attribute’s value. The subsequent call to the lupGetAttribute function
may change the contents of the previously returned pointer, as this is an internal IlUP
buffer. The user is in charge of storing the value before calling any other IUP function.

The user has to understand that there is a difference between IUP attributes, such as
VALUE or SIZE, and those stored for the user. The IUP attributes are often dynamically
computed, stored in a temporary buffer and returned for the user to have access to the

81
values. In the case of attributes stored for the user, the pointer returned by
lupGetAttribute will be the same as the stored pointer, allowing the contents to be

changed.

The pointers of internal 1UP attributes returned by lupGetAttribute must never be
freed or changed.

In lupLua, only known internal pointer attributes are returned as user data, all other

attributes are returned as strings. To access attribute data always as user data use
lupGetAttributeData (Lua 3) and iup.GetAttributeData (Lua 5).

Example
See Also

lupSetAttribute, lupGetlnt, lupGetFloat, lupSetAttributes,
lupGetHandle.

lupSetAttributes

Defines a set of attributes for an interface element. This function keeps a copy of the
attributes’ parameters.

Parameters/Return

Ihandle *lupSetAttributes(lhandle *element, char *attributes); [in C]
lupSetAttributes(element: iulua_tag, attributes: string) -> elem: iulua_tag [
iup.SetAttributes(element: iulua_tag, attributes: string) -> elem: iulua_tag

element: Identifier of the interface element.
attributes:inthe formvl=al, v2=a2, ... where Vi isthe name of an attribute
and al is its value.

This function returns e lement if all attributes were defined, or NULL (ni 1 in Lua)
otherwise.

Notes

It is worth noting that, in this function, the names of the attributes recognized by IUP
cannot be defined with the prefix 1UP_.

This function returns the same Thandle it receives. This way, it is a lot easier to create
dialogs in C. For example:

dialog = lupSetAttributes(
lupDialog(
lupVBox(
lupSetAttributes(lupFill(), "SIZE = 5),
lupHBox(
lupSetAttributes(lupFill(), "SIZE = 5"),
canvas = lupSetAttributes(lupCanvas(*'repaind_cb'), "BORDER=NO, R
lupSetAttributes(lupFill(), "SIZE = 5"),
NULL),
lupSetAttributes(lupFill(), "SIZE = 5"),

82
NULL)),
"TITLE = Teste™)

Example

Creates a list with country names and defines Japan as the selected option.

InC
lhandle *lista = lupList ("acao_lista™);
lupSetAttributes(lista, "VALUE=3,1=Brazil,b2=USA,3=Japan,4=France™);

See Also
lupGetAttribute, lupSetAttribute, lupGetAttributes,
lupStoreAttribute

lupGetAttributes
Verifies all attributes of a given element that are in the internal hash table. The known
internal pointers are returned as integers.

Parameters/Return
char* lupGetAttributes (lhandle *element); [in C]
lupGetAttributes(element: itulua_tag) -> (attributes: string) [in lupLua3]
iup.GetAttributes(element: iulua_tag) -> (attributes: string) [in lupLua5]
element: Identifier of the interface element.
attributes: in the form vl=al,v2=a2, ... where VI is the name of an attribute
and al is its value.
This function returns all attributes defined for that element.

See Also

lupGetAttribute, lupSetAttribute, lupSetAttributes,
lupStoreAttribute

lupGetFloat

Verifies the value of an interface element attribute and converts it to a float value.

Parameters/Return

float lupGetFloat(lhandle *element, char *a) [in C]
[There is no equivalent in lupLua]

element: Identifier of the interface element.
a: name of the attribute.

This function returns a float corresponding to the attribute’s value.

83
Note

The call to lupGetFloat cancels IUP’s internal buffer. This means that after the call to
lupGetFloat, the contents previously returned by function lupGetAttribute is
no longer valid.

See Also

lupGetAttribute, lupGetlint.

lupGetint

Verifies the value of an interface element attribute and converts it to int.

Parameters/Return

int lupGetint(lhandle *element, char *a); [in C]
[There is no equivalent in lupLua]

element: Identifier of the interface element.
a: name of the attribute.

This function returns the value of the interface element converted to int.

Notes

If the attribute value is ""YES"'/**"NO"" or ""ON""/""OFF"", the function returns 1 / O,
respectively.

The call to function lupGetInt invalidates IUP’s internal buffer. This means that after
a call to this function the contents previously returned by lupGetAttribute will no
longer be valid.

See Also

lupGetAttribute, lupGetFloat.

lupStoreGlobal
Defines an attribute for the global environment.

Parameters/Return

void lupStoreGlobal(char *a, char *v); [in C]
lupStoreGlobal (attribute: string, value: string) [in lupLua3]
iup.StoreGlobal (attribute: string, value: string) [in lupLua5]

a: name of the attribute.
v: value of the attribute. If it equals NULL (ni 1 in Lua), the attribute will be removed.

Note

84
The value stored in the attribute is duplicated.

See Also

lupSetAttribute, lupGetGlobal, lupSetGlobal

lupSetGlobal

Defines an attribute for the global environment.

Parameters/Return

void lupSetGlobal(char *a, char *v); [in C]
lupSetGlobal (attribute: string, value: string) [in lupLua3]
iup.SetGlobal (attribute: string, value: string) [in lupLua5]

a: name of the attribute.
v: value of the attribute. If it equals NULL (ni I in lupLua), the attribute will be removed.

Notes

The value stored in the attribute is not duplicated. Therefore, you can store your private
attributes, such as a structure of data to be used in a callback.

When you want IUP to store the attribute's value by duplicating the string, use function
lupStoreGlobal.

See Also

lupSetAttribute, lupGetGlobal, lupStoreGlobal

lupGetGlobal

Verifies an attribute’s value in the global environment.

Parameters/Return

char *lupGetGlobal(char *a); [in C]
lupGetGlobal(a: string) -> value: string [in lupLua3]
iup.GetGlobal(a: string) -> value: string [in lupLua5]

a: name of the attribute.

This function returns the attribute’s value. If the attribute does not exist, NULL (ni 1 in
Lua) is returned.

Note

This function’s return value is not necessarily the same one used by the application to
define the attribute’s value.

The subsequent call to the lupGetGlobal function may change the contents of the

previously returned pointer, as this is an internal IUP buffer. The user is in charge of
storing the value before calling lupGetGlobal again. This pointer must not be freed
either.

See Also

lupGetAttribute, lupSetGlobal

lupGetActionName
Returns the name of the action being executed by the application.

Parameters/Return

char* lupGetActionName(void); [in C]
[There is no equivalent in lupLua]

Returns the name of the action.

Note
The programmer often defines an action with a given name, but when associating it to a
function he/she might make a typo, or vice-versa. This kind of mistake is very common,
but IUP cannot detect it automatically. The predefined DEFAULT_ACT ION action

combined with function lupGetActionName can help the programmer detect this
problem. Simply define a default action and check which action name activated it.

See Also

DEFAULT_ACTION

lupGetFunction
Verifies the function associated to an action.

Parameters/Return

Icallback lupGetFunction (char *action); [in C]
[There is no equivalent in luplLua]

action: name of an action.
This function returns the path of the function associated to the action.
See Also

lupSetFunction.

lupSetFunction

85

86
Associates a function to an action.

Parameters/Return

Icallback lupSetFunction (char *action, lcallback function); [in C]
[There is no equivalent in Lua]

action: name of an action.
function: path of a function.

This function returns the address of the previous function associated to the action.

See Also

lupGetFunction, DEFAULT ACTION.

lupLoad
Compiles a LED specification.

Parameters/Return

char *lupLoad(char *name_file); [in C]
lupLoad(name_file: string) -> error: string [in lupLua3]
iup.Load(name_file: string) -> error: string [in lupLua5]

name_TFi le: name of the file containing the LED specification.

This function returns NULL (ni I in Lua) if the file was successfully compiled; otherwise
it returns a pointer to a string containing the error message.

Note
Each time the function loads a LED file, the elements contained in it are created.

Therefore, the same LED file cannot be loaded several times, otherwise the elements will
also be created several times. The same applies for running Lua files several times.

Elements

Elements are basic interface components. They can have different forms:

Predefined Dialogs

Dialogs with a predefined functionality. They are used very frequently, and usually return
useful values for the application.

Dialogs Predefined as Elements

The same idea, but now the dialog’s attributes can be changed before they are shown on
the screen. This provides the predefined dialogs a greater flexibility.

87
Composition Elements

Elements that do not have a visual representation, but they are essential for the
functioning of the abstract-layout mechanism.

Elements

Basic elements with a visual representation. Together with composition elements, they
constitute the dialog’s layout.

Auxiliary Elements

Elements that complement the visual representation of the above elements.
Extra Lua Elements
Controls that help creating groups of elements in Lua.

CPI Controls

Extra controls. They can either be native controls or not. Most of them are not native, and
they are implemented using the CD library to draw the elements.

Others

Extra controls which do not take part in IUP’s distribution. They are distributed
separately.

lupButton

Creates an interface element that is a button. When selected, this element activates a
function in the application. Its visual presentation can contain a text or an image.

Parameters/Return

Ihandle* lupButton(char *title, char *action); [in C]
iupbutton{title = title: string} -> elem: iuplua_tag [in lupLua3]
iup.button{title = title: string} -> elem: iuplua_tag [in lupLua5]
button(title, action) [in LED]

title: Text to be shown to the user.
action: Name of the action generated when the button is selected.

This function returns the identifier of the created button, or NULL (ni I in lupLua) if an
error occurs.

Attributes
BGCOLOR: Background color of the text.

FGCOLOR: Text color.

88
FONT: Character font of the text.

IMAGE: Image of the non-pressed button. The button's title (attribute TITLE) is not
shown when this attribute is defined.

IMPRESS: Image of the pressed button.

IMINACTIVE: Image of the button when the ACT I'VE attribute equals "*"NO™. If it is not
defined but IMAGE is defined then for inactive buttons the non transparent colors will be
replaced by a darker version of the background color creating the disabled effect.

SIZE: Size of the button. Default: smallest size that allows viewing the text or image.

TITLE: Text of the button.

Notes
Buttons with images or texts can not change its behavior after mapped. This is a creation
attribute. But after creation the image can be changed for another image, and the text for
another text.
Text and images are always centered.

Buttons are activated using Enter or Space keys.

When IMPRESS and IMAGE are defined together, IUP does not show the element's
border to provide a 3D effect; the user has to define the border in the image itself.

Callbacks
ACTION: Action generated when the button is selected.

BUTTON_CB: Action generated when any mouse button is pressed or released.

Examples
See Also

luplmage, lupToggle.

lupCanvas

Creates an interface element that is a canvas - a working area for your application.

Parameters/Return

Ihandle* lupCanvas(char *action); [in C]
iupcanvas{} -> (elem: iuplua_tag) [in lupLua3]
iup.canvas{} -> (elem: iuplua_tag) [in lupLua5]
canvas(action) [in LED]

action: Name of the action generated when the canvas needs to be redrawn.

89
This function returns the identifier of the created canvas, or NULL if an error occurs.

Attributes
BGCOLOR: Background color. In Windows the default value is "TRANSPARENT" which
does not means that the canvas is transparent, but it means that the aplication will draw its

contents. This will avoid unnecessary redraws of the canvas. For better results use also
the attribute CLIPCHILDREN=YES in the dialog.

CURSOR: Canvas cursor.

SIZE: Size of the canvas. Default: size of one character.
SCROLLBAR: Associates a horizontal and/or vertical scrollbar to the canvas.
DX: Size of the thumb in the horizontal scrollbar.

DY: Size of the thumb in the vertical scrollbar.

POSX: Position of the thumb in the horizontal scrollbar.
POSY: Position of the thumb in the vertical scrollbar.
XMAX: Maximum value of the horizontal scrollbar.
XMIN: Minimum value of the horizontal scrollbar.
YMIN: Minimum value of the vertical scrollbar.

YMAX: Maximum value of the vertical scrollbar.

BORDER: Shows a border around the canvas. It can only be changed before the element is
mapped. This attribute does not work on Motif.

EXPAND: The default value is YES, filling every possible space.
CONID: Identifier of the canvas for GKS/puc.

DRAWSIZE: The size of the drawing area in pixels. In Motif this is identical to
RASTERSIZE. In Windows it is obtained from the canvas client area since it may
contains a border.

Callbacks

ACTION: Action generated when the canvas needs to be redrawn. Also receives as
parameters the scrollbar position:

int function(lhandle *self, float x, float y); [in C]
elem:action(x, y: number) -> (ret: number) [in lupLua]

X: Thumb position in the horizontal scrollbar.
y: Thumb position in the vertical scrollbar.

This action is also generated right after the dialog is viewed by means of
functions lupShow, lupShowXY or lupPopup.

BUTTON_CB: Action generated when any mouse button is pressed or released.

ENTERWINDOW_CB: Action generated when the mouse enters the canvas.

LEAVEWINDOW_CB: Action generated when the mouse leaves the canvas.

MOTION_CB: Action generated when the mouse is moved.

KEYPRESS_CB: Action generated when a key is pressed or released.

RESI1ZE_CB: Action generated when the canvas' size is changed.
SCROLL_CB: Called when the scrollbar is manipulated.

MAP_CB: Called right after the element is mapped.

WOM_CB: Action generated when an audio device receives an event.
WHEEL _ CB: Action generated when the mouse wheel is rotated.

Note

Note that some keys might remove the focus from the canvas. To avoid this, return
IGNORE in the K_ANY callback.

Examples
lupColor

Creates a color to be used in the color definition of interface elements.

Parameters/Return

lhandle *lupColor(int r, int g, int b); [in C]
[There is no Lua equivalent]
color(r, g, b) [in LED]

r, g, b:intensity [0. . . 255] of red, green and blue, respectively.

This function returns the identifier of the created color, or NULL (ni I in lupLua) if an
error occurs.

Attributes
BLUE: Blue intensity.
GREEN: Green intensity.

RED: Red intensity.

90

91
Integer values from 0 to 255 are accepted.

Notes

Though this function exists to help creating colors, the simplest way to modify a color is
by directly defining values in a string, such as "O O 255" as specified in attributes
FGCOLOR and BGCOLOR.

This function does not exist in lupLua, because the r. ."" . .g.." "..b
concatenation can be used to obtain the same effect.

Examples

lupFrame

Creates a Frame interface element, which draws a frame with a title around an interface
element.

Parameters/Return

Ihandle* lupFrame(lhandle *element); [in C]

iupframe{element: iuplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.frame{element: tuplua_tag} -> (elem: iuplua_tag) [in lupLua5]
frame(element) [in LED]

element: Identifier of an interface element which will receive the frame.

This function returns the identifier of the created frame, or NULL if an error occurs.

Attributes
FGCOLOR: Text color.
SI1ZE: Frame size.
TITLE: Text the user will see at the top of the frame.

MARGIN: Margin of the visible element.

Notes

Though this element has the attribute MARGIN, it does not have the attributes
ALIGNMENT and GAP, because it can contain only one element.

The BGCOLOR attribute has no effect.
Examples
Iup | mage

Creates an image to be shown on a label, button, toggle, or as a cursor.

92
Parameters/Return

Ihandle* luplmage(int width, int height, char *pixels); [in C]
iupimage{pixels: table of numbers, colors: table of colors} -> (elem: iuplua_
iup.image{pixels: table of numbers, colors: table of colors} -> (elem: iuplua
image(width, height, bl, b2, ...) [in LED]

width: Image width in pixels.

height: Image height in pixels.

pixels: Vector containing the color of each pixel.
bl, b2, ...:Colorindex of the pixels.

This function returns the identifier of the created image, or NULL (ni I in lupLua) if an
error occurs.

Attributes

""0" Color in index O.
1" Color in index 1.

e Color in index i.
The indices can range from 0 to 255. The total number of colors is limited to
256 colors. Notice that in Lua the first index in the array is "1", the index "0"
is ignored in lupLua. Be careful when setting colors, since they are attributes
they follow the same storage rules for standard attributes.
The values are integer numbers from 0 to 255, one for each color in the RGB
standard (255 255 255"). If the value of a given index is "'BGCOLOR", the
color used will be the background color of the element on which the image
will be inserted. The ""BGCOLOR"" must be defined with an index less than
16.

HOTSPOT: The hotspot (X -y coordinates) used to define cursors.

HEIGHT: Image height.

WIDTH: Image width.

Notes

An image created with luplmage can be reused for different buttons and labels. But in
Motif the BGCOLOR color index will be calculated only once when it is first used.

The images must be destroyed when they are no longer necessary, by means of the
lupDestroy function. To destroy an image, it cannot be in use. Please observe the
rules for creating cursor images: CURSOR,

The pixels array is duplicated internally so you can discart it after calling luplmage.

If do not set a colors it is used a default color for the 16 first colors. The default color
table is the same for Windows and Motif:

O©CoOoO~NOUTAWNEO

0, 0, O
128, 0, O
0,128, O
128,128, O
0, 0,128
128, 0,128
0,128,128
192,192,192
128,128,128
255, 0, O
0,255, O
255,255, O
0, 0,255
255, 0,255
0,255,255
255,255,255

(black)

(dark red)
(dark green)
(dark yellow)
(dark blue)
(dark magenta)
(dark cian)
(gray)

(dark gray)
(red)

(green)

(yellow)
(blue)

(magenta)
(cian)
(white)

93

For images with more than 16 colors, all the color indices must be defined up to the
maximum number of colors. For example, if the biggest image index is 100, then all the
colors from i=16 up to i=100 must be defined even if some indices are not used. Note that
to use more than 128 colors you must use an "unsigned char*" pointer and simply cast it
to "char*" when calling the luplmage function.

The EdPatt and the IMLAB applications can load and save images in LED format. They
allow operations such as importing GIF images and exporting them as IUP images.
EdPatt allows you to manually edit the images, and also have support for imagens in
lupLua.

You can donwload several IUP images in LED format from iup_images.zip. To view the
images you can use the LED viewer application, see lupView in the applications included
in the distribution.

Application icons are usually 32x32. Toolbar bitmaps are 24x24. Menu bitmaps and small
icons are 16x16.

Examples
See Also

lupLabel, lupButton, lupToggle.
lupLabel

Creates a labell interface element, which displays a text or an image.

Parameters/Return

Ihandle* lupLabel(char *title); [in C]

iuplabel{title = title: string} -> (elem: iuplua_tag) [in lupLua3]
iup.label{title = title: string} -> (elem: iuplua_tag) [in lupLua5]
label(title) [in LED]

title: Text to be shown on the label.

This function returns the identifier of the created label, or NULL (ni I in lupLua) if an
error occurs.

94
Attributes

BGCOLOR: Background color of the text.

FGCOLOR: Text color.

FONT: Character font of the text.

IMAGE: Label image. When this attribute is defined, the text is not shown.
SI1ZE: Label size.

TITLE: Label's text.

ACTIVE: Activates or deactivates the label. The only difference between an active label
and an inactive one is its visual feedback. Possible values:

"YES, "NO".
Default: ""YES™.

AL 1GNMENT: Label's alignment. Possible values:
“"ALEFT', "ARIGHT"™, "ACENTER".
Default: ""ALEFT".

SEPARATOR: Turns the label into a line separator. The EXPAND attribute is updated
accordingly. Possible values:

"HORIZONTAL"™, "VERTICAL",

Notes

Labels with images, texts or line separator can not change its behavior after mapped. This
IS a creation attribute. But after creation the image can be changed for another image, and
the text for another text.

Though this element can have the IMAGE attribute, it does not have attributes
IMINACTIVE and IMPRESS, because it does not interact with the user through the
mouse or keyboard.

The "\n' character is accepted for line change, but the initial size of the element is
computed for one line only. In this case, the EXPAND attribute must be ""YES"" so that the
text can be properly visualized.

Examples
See Also

luplmage, lupButton.

95
lupList

Creates a 1 i1st interface element, which is a list of two-state (on or off) items. An action
is generated when an event changes the state of an item.

Parameters/Return

lhandle* lupList(char *action); [in C]
iuplist{} -> (elem: iuplua_tag) [in lupLua3]
iup.list{} -> (elem: iuplua_tag) [in lupLua5]
list(action) [in LED]

action: String with the name of the action generated when the state of an item is
changed.

This function returns the identifier of the created list, or NULL (ni I in lupLua) if an error
occurs.

Attributes

"1'": First item in the list.
''2'"": Second item in the list.
"'3": Third item in the list.

n: nt item in the list.

The values can be any text. Default: NULL. The first element with a NULL is
considered the end of the list. The string containing the item's number does
not need to be static, because IUP duplicates it internally, but the contents of
each element in the list needs to be either static or stored in IUP by means of
the lupStoreAttribute function.

DROPDOWN: Changes the appearance of the list for the user: only the selected item is
shown beside a button with the image of an arrow pointing down. Creation-only attribute.
Can be "YES" or ""NO"". Default ""NO"".

EDITBOX: Adds an edit box to the list. Creation-only attribute. Can be ""YES™ or "*"NO™".
Default **"NO"*.

VISIBLE ITEMS: Number of items that appear when a DROPDOWN list is activated.

MULTIPLE: Allows selecting several items simultaneously (multiple list).
SIZE: Size of the list. Default: smallest size that allows viewing the list.

VALUE:

List with edit box: Text entered by the user.

Simple list: Integer number representing the selected element in the list
(begins at 1). It can be zero if there is no selected item.

Multiple list: Sequence of '+"and '-' symbols indicating the state of each
item. When setting this value, the user must provide the same amount of '+'

96
and '-' symbols as the amount of items in the list, otherwise the specified
items will be deselected.

APPEND: Inserts a text at the end of the current text. Valid only when ED1 TBOX=YES.
INSERT: Inserts a text in the caret's position. Valid only when EDITBOX=YES.

NC: Maximum number of characters allowed. Valid only when EDITBOX=YES.
CARET: Position of the insertion point. Valid only when EDITBOX=YES.

READONLY: Allows the user only to read the contents, without changing it. Possible
values: YES, NO (default). Valid only when EDITBOX=YES.

SELECTION: Selection interval. Valid only when EDI TBOX=YES.

SELECTEDTEXT: Selection text. Valid only when EDITBOX=YES.

SHOWDROPDOWN: Opens a dropdown list. Windows Only.

Callbacks

ACT I0ON: Action generated when the state of an item in the list is changed. Also provides
information on the changed item:
int function (lhandle *self, char *t, int i, int v); [in C]
elem:action(t: string, i, v: string) -> (ret: number) [in
lupLua]

t: Text of the changed item.
i1: Number of the changed item.
v: Equal to 1 if the option was selected or to O if the option was deselected.

EDIT_CB: Action generated when the text in the text box is manually changed by the
user. Valid only when EDITBOX=YES.

int function(lhandle *self, int c, char *after); [in C]
elem:action(c: number, after: string) -> (ret: number) [in lupLua]

text: Represents the new text value. This is the same callback definition as
for the lupText.

Notes

Text is always left aligned.

Examples

i IupList Example
Best medal———— Competed in
Gold 100m dazh
Silver
Bronze

110m burdlers
Harnmer throw ;I

Prizes wan

=10l x|

97

Lesgz than J5% 1000

— 1

=

m JuplList Example

|Us$ 1000 | R$1000 v | [CharA
.
Drop+Edit Crop Char B =3
Char CCCCC

Char D
CharF >

List+Edit

Murmber 1
Murmber 2
Murmber 3
Murmber 4
Murmber &
Mumber B
Mumber 7

See Also

lupListDialog, luptext

lupMultiLine
Creates an editable field with one or more lines.

Parameters/Return

Ihandle* lupMultiLine(char *action); [in C]

iupmultiline{} -> (elem: iuplua_tag) [in lupLua3]
iup.multiline{} -> (elem: iuplua_tag) [in lupLua5]

multiline(action) [in LED]

action: name of the action generated when the user types something.

This function returns the identifier of the created multiline, or NULL if an error occurs.

Attributes
APPEND: Inserts a text at the end of the multiline.
INSERT: Inserts a text in the caret's position.
BORDER: Shows a frame around the multiline.

CARET: Position of the insertion point in the multiline.

READONLY: Allows the user only to read the contents, without changing it. Possible

values: ""YES", ""NO"" (default).

98
SELECT ION:; Selection interval.

SELECTEDTEXT: Selection's text.

NC: Maximum number of characters.
S1ZE: Multiline size. Default: 5 characters width and 1 character height.
VALUE: Text typed by the user. The "\n' character indicates line change.
Default: NULL.
TABSI1ZE (Windows Only)
Controls the number of characters for a tab stop.
Callbacks

ACTION: Action generated when a keyboard event occurs. The callback also receives the
typed key.

int function(lhandle *self, int ¢, char* after); [in C]
elem:action(c: number, after: string) -> (ret: number) [in lupLua]

c: Identifier of the typed key. Please refer to the Keyboard Codes table for a
list of possible values.

after: Represents the new text value if the key is validated (i.e. the
callback returns TUP_DEFAULT).

If the function returns TUP_IGNORE, the system will ignore the typed
character. If the function returns the code of any other key, IUP will treat this
new key instead of the one typed by the user.
Notes
Text is always left aligned.

tupmultiline has a limitation of about 64,000 characters.

Since all the keys are processed to change focus to the next element press <Ctrl>+<Tab>,
The "DEFAULTENTER" button will not be processed, but the "DEFAULTESC" will.

Examples

i IupMultiLine Advanced Example 3 - 10| x|

Here iz the test in the multiline. ;I
E ach buttan belaw iz related to an attribute.
Select if pouwant to SET or GET an attibute using the dropdown list in the right.

o o

IHere iz the text that will be used as value when a button is preszed ISET j

.-’-'-.ppendl Insertl Bu:uru:lerl Earetl Fead u:unl_l,ll Selectinnl Selected Text| Mumber of u:harau:tersl ‘»-’alue|

lupText
Creates an editable field with one line.

Parameters/Return

Ihandle* lupText(char *action); [in C]
iuptext{} -> (elem: iuplua_tag) [in lupLua3]
iup.text{} -> (elem: iuplua_tag) [in lupLua5]
text(action) [in LED]

action: name of the action generated when the user types something.

This function returns the identifier of the created text, or NULL if an error occurs.
Attributes

APPEND: Inserts a text at the end of the current text.

INSERT: Inserts a text in the caret's position.

BORDER: Shows a border around the text.

NC: Maximum number of characters allowed.

CARET: Position of the insertion point.

READONLY: Allows the user only to read the contents, without changing it. Possible
values: ""YES", ""NO"" (default).

SELECT ION:; Selection interval.

SELECTEDTEXT: Selection text.

SIZE: Text size. Default: 5 characters width and 1 character height.

VALUE: Text entered by the user. If the element is already mapped, the string is directly
copied to the native control (see 1upMap).

100
The value can be any text, including "\n' characters indicating line change.
Default: NULL when the element is not yet mapped; "*** if it is.

Callbacks

ACTION: Action generated when a keyboard event occurs. The callback also receives the
typed key.

int function(lhandle *self, int ¢, char *after); [in C]
elem:action(c: number, after: string) -> (ret: number) [in lupLua]

c: Identifier of the typed key. Please refer to the Keyboard Codes table for a
list of possible values.

after: Represents the new text value in case the key is validated (i.e. the
callback returns TUP_DEFAULT).

If the function returns TUP_IGNORE, the system will ignore the typed
character. If the function returns the code of any other key, IUP will treat this
new key instead of the one typed by the user.

Notes
Text is always left aligned.

On the Windows driver, the action callback is not called for the function keys
(K_F???).

The TupMask control can be used to create a mask and filter the text entered by the user.
Examples

See Also

lupMultilLine

lupTimer
Creates a timer which periodicaly invokes a callback when the time is up.

Parameters/Return

lhandle* lupTimer(); [in C]

iuptimer() -> (elem: iuplua_tag) [in lupLua3]
iup-timer() -> (elem: iuplua_tag) [in lupLua5]
timer() [in LED]

The function returns the identifier of the created handle, or NULL if an error occurs.

Attributes

TIME: The time interval in miliseconds.

RUN: Starts the timer. Possible values: "YES" or "NO".

Callbacks
ACTION_CB: Called when the time is up.

int function(lhandle *self); [in C]
elem:action() -> (ret: number) [in lupLua]

self: Timer handle.

Examples
lupToggle

Creates the toggl e interface element. It is a two-state (on/off) button that, when

selected, generates an action that activates a function in the associated application. Its
visual representation can contain a text or an image.

Parameters/Return

lhandle* lupToggle(char *title, char *action); [in C]
iuptoggle{title = title: string} -> (elem: iuplua_tag) [in lupLua3]
iup.toggle{title = title: string} -> (elem: iuplua_tag) [in lupLua5]
toggle(title, action) [in LED]

title: Text to be shown on the toggle.
action: name of the action generated when the toggle is selected.

This function returns the identifier of the created toggle, or NULL if an error occurs.
Attributes

BGCOLOR: Background color of the text shown on the toggle.

FGCOLOR: Color of the text shown on the toggle.

FONT: Character font of the text shown on the toggle.

IMAGE: Toggle image. When the IMAGE attribute is defined, the TITLE is not shown.

101

This makes the toggle look just like a button with an image, but its behavior remains the

same.

IMPRESS: Image of the pressed toggle.

IMINACTIVE: Image of the inactive toggle. If it is not defined but IMAGE is defined

then for inactive toggles the non transparent colors will be replaced by a darker version of

the background color creating the disabled effect.

VALUE: Toggle's state. Values can be "ON" or "OFF". Default: "OFF".

SIZE: Toggle size.

102
TITLE: Toggle's text.

SELECTCOLOR: (Motif Only) Color of a selected toggle.

Callbacks

ACTION: Action generated when the toggle's state (on/off) changes. The callback also
receives the toggle's state.

int funcion(lhandle *self, int v); [in C]
elem:action(v: number) -> (ret: number) [in lupLua]

v: 1 if the toggle's state was shifted to on; O if it was shifted to off.

Notes

Toggles with images or texts can not change its behavior after mapped. This is a creation
attribute. But after creation the image can be changed for another image, and the text for
another text.

Text is left aligned and image is centered.
Toggles are activated using the Space key.
In Windows, the BGCOLOR attribute is ignored when an IMAGE is specified.

In Windows, for toggles inside a radio the ACTION callback may also be called when a
not selected toggle receive the focus.

Examples
See Also

luplmage, lupButton, lupLabel.

lupUser

Creates a user element in IUP, which is not associated to any interface element. It is

used to map an external element to a IUP element. Its use is restricted and is usually done
by CPI elements.

Parameters/Return

Ihandle* lupUser(void); [in C]
[There is no equivalent in lupLua]
[There is no equivalent in LED]

This function returns the identifier of the created element, or NULL if an error occurs.
lupDialog

Creates a dialog element. It manages user interaction with the interface elements. For any

103
interface element to be shown, it must be encapsulated in a dialog.

Parameters/Return

Ihandle* lupDialog(lhandle *element); [in C]

iupdialog{element: ituplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.dialog{element: iuplua_tag} -> (elem: iuplua_tag) [in lupLua5]
dialog(element) [in LED]

element: Identifier of an interface element.

This function returns the identifier of the created dialog, or NULL if an error occurs.
Attributes

CURSOR: Defines a cursor for the dialog.

I CON: Dialog’s icon.

MAXBOX: Requires a maximize button from the window manager. Creation-only attribute.

MENU: Associates a menu to the dialog.

MENUBOX: Requires a menu box from the window manager. Creation-only attribute.

MINBOX: Requires a minimize button from the window manager. Creation-only attribute.

RESI1ZE: Allows interactively changing the dialog’s size. Creation-only attribute.

SIZE: Dialog’s size. Differently from other interface elements, the following values can
be defined for width and height:

e ""FULL": Defines the dialog’s width (or height) equal to the screen's width (or

height)

o ""HALF'": Defines the dialog’s width (or height) equal to half the screen's width (or
height)

o ""THIRD™: Defines the dialog’s width (or height) equal to 1/3 the screen's width (or
height)

e ""QUARTER"": Defines the dialog’s width (or height) equal to 1/4 of the screen's
width (or height)

e "EIGHTH": Defines the dialog’s width (or height) equal to 1/8 of the screen's
width (or height)

Default: the smallest size that allows viewing the dialog.

The dialog’s size has precedence over the smallest size required by its
children (either if it was specified in its creation or in run-time). Attributing a
NULL value to SIZE or RASTERSIZE (in C) in a dialog will recompute its
size according to its children.

TITLE: Dialog’s title. On Motif, if it is not defined, the dialog will not be properly
displayed.

104
STARTFOCUS: Name of the dialog element that must receive the focus right after the

dialog is opened.

DEFAULTENTER: Name of the button activated when Enter is hit.

DEFAULTESC: Name of the button activated when Esc is hit.
X: Dialog’s horizontal position on the screen, in pixels.

Y: Dialog’s vertical position on the screen, in pixels.

SHRINK: Allows changing the elements’ distribution when the dialog is smaller than the
minimum size.

PARENTDIALOG: Makes the dialog be treated as a child of the specified dialog.

FULLSCREEN

Makes the dialog occupy the whole screen. All dialog details, such as border,
maximize button, etc, are removed. Possible values: YES, NO. Must be set
before mapping to the native system. In Motif you may have to click in the
dialog to set its focus. Use lupPopup for better results.

WIN_SAVEBITS (Windows Only)

This attribute is only consulted when the dialog is mapped. When this
attribute is true (YES), the dialog stores the original image of the desktop
region it occupies (if Windows has enough memory to store the image). In
this case, when the dialog is closed or moved, a redrawing event is not
generated for the windows that were shadowed by it. Its default value is YES.

TOPMOST (Windows Only)

This attribute puts the dialog always in front of all other dialogs in all
applications. Default: NO.

TOOLBOX (Windows Only)

This attribute makes the dialog look like a toolbar. It is only valid if the
PARENTDIALOG attribute is also defined. Default: NO.

CLIPCHILDREN (Windows Only)
Modifies the way the dialog and its children are redrawn.

When option YES is selected, the area occupied by the children in the dialog
is not redrawn, thus preventing the matrix and the canvas from blinking when
a resize is made. Usually this brings better performance, but in some cases it
may bring a performance reduction, as every time the dialog needs to be
redrawn all children are redrawn as well — including lupFrame. For the
attribute to work efficiently, the canvas cannot be inside a lupFrame.
Default: NO.

105
BRINGFRONT (Windows Only)

This attribute makes the dialog the foreground window. Use ""YES™' to
activate it. Useful for multithreaded applications.

NATIVEPARENT (Windows Only)

Makes any window created in the system (even from outside IUP) able to be
parent of a IUP dialog. The value provided should be a valid window handle
(HWND.)

PLACEMENT (Windows Only)
Changes how the dialog will be show. Values: "MAXIMIZED",
"MINIMIZED" and "NORMAL". After lupShow the attribute is set to
"NORMAL" if it was different. "NORMAL" is equivalent of not defining the
attribute.

HELPBUTTON (Windows Only)
Inserts a help button in the same place of the maximize button. It can only be
used for dialogs without the minimize and maximize buttons, and with the
menu box. For the next interaction of the user with a control in the dialog, the
callback HELP_CB will be called instead of the control defined ACTION
callback. Possible values: YES, NO. Default: NO.

TRAY(Windows Only): When set to ""YES"", displays an icon on the system tray.

TRAYICON(Windows Only): System tray icon

TRAYTIP(Windows Only): Tray icon's tooltip text

HIDETASKBAR (Windows Only)

When set to "YES", hides the dialog from the task bar. Must be used with
TRAYICON attribute.

Callbacks

SHOW__CB: Called right after the dialog is opened, minimized or restored from a
minimization.

MAP_CB: Called right after the element is mapped.
CLOSE_CB: Called right before the dialog is closed.

TRAYCLICK_CB: Called right after the mouse button is pressed or released over the tray
icon.

int function(lhandle *n, int but, int pressed, int dclick); [in C]
elem:trayclick(but, pressed, dclick: number) -> (ret: number) [in lupLua
elem:trayclick_cb(but, pressed, dclick: number) -> (ret: number) [in lup

106
but: identifies the activated mouse button.
pressed: indicates the state of the button.
dclick: indicates a double click.

Returning CLOSE closes the dialog.

Notes
Except for the menu, all other elements must be inside a dialog to interact with the user.
Therefore, an interface element will only be visible when its VIS IBLE attribute and that
of the dialog are ""YES™".

A menu that is not associated to a dialog can interact with the user by means of the
lupPopup function.

Values attributed to the S1ZE attribute of a dialog are always accepted, regardless of the
minimum size required by its children. For a dialog to have the minimum necessary size
to fit all elements contained in it, simply define NULL (in C) to S1ZE. In the case of
partial dimensions, a specified dimension is always used, while a non-defined dimension
uses the smallest necessary size for the elements in the corresponding direction.

In Motif the decorations MENUBOX, MINBOX, MAXBOX, RESIZE and BORDER
will work only if the running Window Manager supports the Motif WM hints.

Examples
lupFileDlg

Creates the File Dialog element. It is a predefined dialog for selecting files or a
directory.

Parameters/Return

Ihandle* lupFileDlg (void); [in C]

iupfiledlg() -> (elem: iuplua_tag) [in lupLua3]
iup.filedlg() -> (elem: iuplua_tag) [in lupLua5]
filedlg() [in LED]

This function returns the identifier of the created dialog, or NULL if an error occurs.
Attributes
DIALOGTYPE: Type of dialog (Open, Save or GetDirectory)
Can have values ""OPEN', ""SAVE" or "'DIR". Default: ""OPEN"",
TITLE: Dialog's title.
FI1LE: Name of the file initially shown in the "File Name" field in the dialog.

FILTER: File filter.

107
FILTERINFO: Filter's description.

EXTFILTER: (Windows Only) Defines several file filters. It has priority over FILTER
and FILTERINFO. Must be a text with the format
"Descriptionl]filterl|Description2|filter2;filter3". The amount
of descriptions and of filters is unlimited.

Example: "Text files|*.txt;*._doc]|Image
files|*.gif;*_jpg;*.bmp".

DIRECTORY: Initial directory.

PARENTD IALOG: Makes the dialog be treated as a child of the specified dialog.

ALLOWNEW: Indicates if non-existent file names are accepted. If equals ""NO** and the
user specifies a non-existing file, an alert dialog is shown.

NOCHANGEDIR: Indicates if the initial working directory must be restored after the user
navigation.

FILEEXIST: Indicates if the file defined by the FILE attribute exists or not.
STATUS: Indicates the status of the selection made:

"1": New file.
""0"": Normal, existing file.
"'-1": Operation cancelled.

VALUE: Name of the selected file, or NULL if no file was selected.

NOOVERWRITEPROMPT do not prompt to overwrite an existant file when in "'SAVE"
dialog. Default is ""NO", i.e. prompt before overwrite.

MULT IPLEFILES (Windows Only)

When "YES", this attribute allows the user of lupFi1leDIg in
Ti1leopen mode to select multiple files.

The value returned by VALUE is to be changed the following way: the
directory and the files are passed separately, in this order. The character used
for separating the directory and the files is ']". The file list ends with
character '|' followed by NULL.

When the user selects just one file, the directory and the file are not separated
by ']".

Ex.:
"C:\users\sab]a.txt|b.txt]"or

"C:\users\sab\a. txt" (only one file is selected)

The maximum size allowed by lupFi ledlg for file return is 2000
characters. If the size exceeds 2000 characters, VALUE will return NULL.

108
FILTERUSED (Windows Only)
Ina lupFileDIg, this attribute allows the user to select which

EXTFILTER to use. It is also possible to retrieve the selection made by the
user. Value: a string containing the number of the filter.

SHOWPREV IEW (Windows Only)

A preview area is show inside the File Dialog. Can have values ""YES™ or
""NO". Default: "*NO™. When this attribute is set you must use the
"FILE_CB" callback to retreive the file name and the necessary attributes to
paint the preview area. You must link with the "iup.rc"” resource file so the
preview area can be enabled.

PREVIEWDC, PREVIEWWIDTH and PREVIEWHEIGHT (Windows Only)

Read only attributes that are updated during the "PAINT" status of the
"FILE_CB" callback. Return the Device Context (HDC), the width and the

height of the client rectangle for the preview area.

Callbacks
FILE_CB: (Windows Only) Action generated when a file is selected.
int function(lhandle *self, const char* file _name, const char* status);

elem:file(file_name, status: string) -> (ret: number) [in lupLua3]
elem:file_cb(file name, status: string) -> (ret: number) [in lupLua5]

sel T: identifier of the element that activated the function.
Tile_name: name of the file selected.
status: describes the currect action. Can be:

"INIT" - when the dialog has started. file_name is NULL.

"FINISH" - when the dialog is closed. file_name is NULL.

"SELECT™ - a Ffile has been selected.
"OK'" - the user pressed the OK button. If the callback returns IGNO
"PAINT" - the preview area must be repainted. This is used only whe

Notes

In the Windows driver, the FileDialog is not altered by lupSetLanguage.

To show the dialog, use function TupPopup. In Lua, use the popup function.

Example in C

filedlg = lupFileDIg();
lupPopup(Filedlg, IUP_ANYWHERE, IUP_ANYWHERE);

Example in lupLua 3

filedlg = i1upfiledlg{}
filedlg:popup(1UP_ANYWHERE, 1UP_ANYWHERE)

109
Examples

See Also

lupMessage, lupScanf, lupListDialog, lupAlarm, lupGetFile,
lupPopup

lupAlarm

Shows a dialog containing a message with up to three buttons, and waits for the user to
press one.

Parameters/Return

int lupAlarm(char *t, char *m, char *bil, char *b2, char *b3); [in C]
lupAlarm(t, m, bl, b2, b3: string) -> (button: number) [in lupLua3]
iup.Alarm(t, m, bl, b2, b3: string) -> (button: number) [in lupLua5]

t: Dialog’s title

m: Message

b1: Text of the first button

b2: Text of the second button (optional)
b3: Text of the third button (optional)

This function returns the number (1, 2, 3) of the button selected by the user, or O (ni 1 in
lupLua) if the dialog could not be opened.

Notes

This function shows a dialog centralized on the screen, with the message and the buttons.
The “\n’ character can be added to the message to indicate line change.

A button is not shown if its parameter is NULL. This is valid only for b2 and b3.

Button 1 is set as the "DEFAULTENTER" and "DEFAULTESC". If Button 2 exists it is
set as the "DEFAULTESC". If Button 3 exists it is set as the "DEFAULTESC".

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is

defined.
Examples
IupAlarm Example _
File not saved! Save it now?
e o | cancel
See Also

lupMessage, lupScanf, lupListDialog, lupGetFile.

110

lupGetFile

Shows the dialog of the native interface system, which captures a filename.

Parameters/Return

int lupGetFile(char *file); [in C]
lupGetFile(file: string) -> (file: string, error: number) [in lupLua3]
iup.GetFile(file: string) -> (file: string, error: number) [in lupLua5]

Ti1le: This parameter is used as an input value to define the default filter and directory.
Example: ". . /docs/* . txt". As an output value, it is used to contain the filename

entered by the user.

error: The function returns an error code, whose values can be:

1: The name defined by the user is that of a new file
O: The name defined by the user is that of an already existent file
-1: The operation was cancelled by the user

Note

The lTupGetFi le function does not allocate memory space to store the complete
filename entered by the user. Therefore, the file parameter must be large enough to
contain the directory and file names.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is
defined.

Examples

See Also

lupMessage, lupScanf, lupListDialog, lupAlarm,
lupSetlLanguage.

lupGetText

Shows the dialog to edit a multiline text.

Parameters/Return

int lupGetText(char* title, char *text); [in C]
lupGetText(title, text: string) -> (text: string) [in lupLua3]
iup.-GetText(title, text: string) -> (text: string) [in lupLua5]

text: It contains the initial value of the text and the returned text. It must have room for
the edited string.

The function returns a non zero value if successfull. In Lua if an error occured returns nil.

111
Notes

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is
defined.

See Also

lupMessage, lupScanf, lupListDialog, lupAlarm,
lupSetLanguage.

lupListDialog
This dialog shows a simple or multiple list, and waits for user feedback.

Parameters/Return

int lupListDialog(int type, char *title, int size, char *list[], int option,
lupListDialog(type: number, title: string, size: number, list: table of strin
iup.ListDialog(type: number, title: string, size: number, list: table of stri

type: =1 simple selection; =2 multiple selection

title: Text for the dialog’s title

size: Number of options

1 ist: List of options

option: Initial option, starting at 1 (note that this index is different from the return

value, kept for compability reasons)
max_col: Maximum number of columns in the list

max__ 1 1n: Maximum number of lines in the list
mark: Flag vector, used only when type=2

When type=1, the function returns the number of the selected option (the first option is
0), or -1 if the user cancels the operation.

When type=2, the function returns =1 when the user cancels the operation. If the user
does not cancel the operationthe function returns a non zero value and the mark
parameter will have value 1 for the options selected by the user and value O for non-
selected options.

Comments
In lupLua, the return value depends on used option. In case type is 1 (simple selection),
the return value is a 0-based number of the selected option. If the type is 2 (multiple
selection), the return type is a table with the marked options.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is
defined.

Examples
See Also

lupMessage, lupScanf, lupGetFile, lupAlarm

112
lupMessage

Shows a dialog containing a message and a button, and waits for the user to click the
button.

Parameters/Return

void lupMessage(char *t, char *m); [in C]
lupMessage(t: string, m: string) [in lupLua3]
iup.-Message(t: string, m: string) [in lupLua5]

t: Dialog’s title
m: Message

Note

The lupMessage function shows a dialog centralized on the screen, showing the
message and the “OK” button. The “\n’ character can be added to the message to indicate
line change.

In C there is an utility function to help build the message string, it accepts the same
format as the C sprintf:

void lupMessagef(char *t, char *f, _...); [in C]

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is
defined.

Examples
See Also

lupGetFile, lupScanf, lupListDialog, lupAlarm

lupScanf

Shows a dialog for capturing values with a format similar to the scan¥ function in the C
stdio library.

Parameters/Return

int lupScanf(char *fmt, ...); [in C]
lupScanf(fmt: string, -..) -> (n: number, ...) [in lupLua3]
iup.Scanf(fmt: string, ...) -> (n: number, ...) [in lupLua5]

fmt: Reading format
- - - List of variables

This function returns the number of successfully read fields, or —1 when the user has
canceled the operation.

In Lua, the values are returned by the function in the same order they were passed.

113
Notes

The fmt format must include a title and the descriptions of the variable fields to be read,
using the following syntax:

- First line: Windowv title followed by "\n'
- Following lines: Must be specified for each variable to be read, in the following format:
"text¥ht.vu%f\n", where:

text is a descriptive text, to be placed to the left of the entry

field in a label.

t is the maximum number of characters allowed

Vv is the maximum number of visible characters in the entry field
T is the type (char, float, etc.), in the C format for 1/0
services

All the fields use a text box for input. If you need better control of what characters the
user enters, you should use lupGetParam. This other dialog also has many other

resources not available in lupScanf.

The dialog uses a global attribute called "PARENTDIALOG™" as the parent dialog if it is
defined.

Examples

Captures an integer number, a floating-point value and a character string.

See Also

lupGetFile, lupMessage, lupListDialog, lupAlarm, lupGetParam

lupFill
Creates a Fi 1l interface element, which dynamically occupies empty spaces.

Parameters/Return

Ihandle* lupFill(void); [in C]

iupfill{} -> elem: ituplua_tag [in lupLua3]
iup.Fill{} -> elem: iuplua_tag [in lupLua5]
fillQQ [in LED]

This function returns the identifier of the created Fi I'l, or NULL if an error occurs.

Attributes

SIZE: Defines the width, if the Fi Il is inside a horizontal box, or the height, if it is
inside a vertical box. Default: "0".

EXPAND: The default value is ""YES", which fills every possible space.

114

Note

This element is used to maintain the dialog's layout untouched after the user made size
changes, and to align the interface elements.

Examples
_iol x|
—Left aligned——————
o
— Right aligned
0k
See Also

lupHbox, lupVbox.

lupHbox

Creates an hbox interface element. It is a box that shows the elements it contains,
horizontally and from left to right.

Parameters/Return
Ihandle* lupHbox(lhandle *eleml, lhandle *elem2, ..., NULL); [in C]
iuphbox{eleml, elem2, ...: iuplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.hbox{eleml, elem2, ...: iuplua tag} -> (elem: iuplua_tag) [in lupLua5]
hbox(eleml, elem2, ...) [in LED]
eleml, elem2,...: Listof identifiers that will be placed in the box. NULL defines

the end of the list.

This function returns the identifier of the created hbox.

Attributes
AL IGNMENT: Aligns the elements vertically. Possible values:
"ATOP", "ACENTER"™, "ABOTTOM".
Default: ""ATOP™",

GAP: Defines a space in pixels between the interface elements.

MARGIN: Defines a margin in pixels.

S1ZE: Width of the hbox. Default: the smallest size that contains the children elements.

Note

115
The box can be created with no elements and be dynamic filled using lupAppen.

Examples
p =10] x|
—ﬂLIENMENT-.-’-‘«TEIP FAP= 1III SIZE=200
2 3
— ALIGNMENT=ACENTER, GAP=20——
—ALIGHMENT=ABOTTOM, SIZE=180———
3
2
1
See Also

lupZbox, lupVBox

lupRadio

Creates the radio interface element. Only one of its descendant toggles to be activated
at a time.

Parameters/Return
Ihandle* lupRadio(lhandle *element); [in C]

iupradio{element: iuplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.radio{element: tuplua_tag} -> (elem: iuplua_tag) [in lupLua5]

radio(element) [in LED]

element: Identifier of an interface element. Usually it is a vbox or an hbox containing
the toggles associated to the radio.

This function returns the identifier of the created radio, or NULL (ni I in lupLua) if an
error occurs.

Attributes
VALUE: Identifier of the activated toggle. The identifier is set by means of lupSetHandle.

Examples

116
i IupRadio : il

lupVbox

Creates a Vbox interface element. It is a box that shows the elements it contains,
vertically and from the top down.

Parameters/Return
Ihandle* lupVbox(lhandle *eleml, lhandle *elem2, ..., NULL); [in C]
iupvbox{eleml, elem2, ...: iuplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.vbox{eleml, elem2, ...: iuplua tag} -> (elem: iuplua_tag) [in lupLua5]

vbox(eleml, elem2, ...) [in LED]

eleml, elem2, ...:Listofthe identifiers that will be placed in the box. NULL
defines the end of the list.

This function returns the identifier of the created vbox, or NULL (ni 1 in Lua) if an error
occurs.

Attributes

AL IGNMENT: Horizontally aligns the elements. Possible values:

"ALEFT', "ACENTER", "ARIGHT",

Default; ""ALEFT"™,

GAP: Defines a space, in pixels, between the interface elements.

MARGIN: Defines a margin in pixels.

S1ZE: Height of the vbox. Default: smallest size that contains the children elements.

Note

The box can be created with no elements and be dynamic filled using lupAppen.

Examples

117

pvbox Example— SMSILTE]
—ALIGHNMEMNT = ALEFT, GAP = 10—

B

3

—ALIGHMENT = ACEMTER. MARGIN = 15—
j
j
3

—ALIGMMENT = ARIGHT, 5IZE = 20

1

See Also

lupZbox, lupHbox

lupZbox
Creates a zbox interface element. It is a box that piles up the elements it contains.
Parameters/Return
Ihandle* lupZbox (lhandle *eleml, lhandle *elem2,..., NULL); [in C]
iupzbox{eleml, elem2, ... : iuplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.zbox{eleml, elem2, ... : iuplua tag} -> (elem: i1uplua_tag) [in lupLua5]

zbox(eleml, elem2,...) [in LED]

eleml, elem2, .. .:Listoftheidentifiers that will be placed in the box.
Note that, in C, NULL must be added as the last element, defining the end of the list.

This function returns the identifier of the created zbox, or NULL (ni 1 in Lua) if an error
occurs.

Attributes

118
AL 1GNMENT: Defines the alignment of the visible element. Possible values:

"NORTH", "SOUTH', "WEST'", "EAST",
IINEII, IISEII, IINWII, IISWII,
"ACENTER".

Default: "'"NE".
MARGIN: Defines the margin of the visible element.

VALUE: Defines the visible element. The value passed must be the identifier of one of the
elements contained in the zbox. Default: the first element.

SIZE: Defines the zbox size. Default: the smallest size that fits its largest element.

Note
The box can be created with no elements and be dynamic filled using lupAppen.

Though this element can have attributes ALIGNMENT and MARGIN, it does not have
attribute GAP.

Examples
! TupZbox Example : -0l x|
Select an element
Enter your text here
See Also

lupHbox, lupVBox

lupltem

Creates an item of the menu interface element. When selected, it generates an action.

Parameters/Return

Ihandle* lupltem(char *title, char *action); [in C]
iupitem(title = title: string) -> elem: iuplua_tag [in lupLua3]
iup.item(title = title: string) -> elem: iuplua_tag [in lupLua5]
item(title, action) [in LED]

title: Text to be shown on the item.
action: Name of the action generated when the item is selected.

This function returns the identifier of the created item.

119
Attributes

KEY: Associates a key to the item.

VALUE: Indicates the item's state. When the value is ON, a mark will be displayed to the
left of the item. Default: OFF.

TITLE: Text shown to the user. It is possible to change its value on-the-fly.
IMAGE: (Windows Only) Image of the non-checked menu item.
IMPRESS: (Windows Only) Image of the checked menu item.
Callbacks
ACTION: Action generated when the item is selected.

HIGHLIGHT_CB: Action generated when the item is highlighted.

Notes
The text of the menu item accepts the control character "\t to force text alignment to the
right after this character. This is used to add shortcut keys to the menu, aligned to the
right. Ex.: "Save\tCtr1+S",

Menu items are activated using the Enter key.

Attention: Never use the same menu item in different menus.

Examples
See Also

lupSeparator, lupSubmenu, lupMenu.

lupMenu

Creates a menu element, which groups 3 types of interface elements: 1tem, submenu
and separator. Any other interface element defined inside a menu will be ignored.

Parameters/Return
lhandle* lupMenu(lhandle *eleml, lhandle *elem2, ..., NULL); [in C]
iupmenu{eleml, elem2, -...: i1uplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.menu{eleml, elem2, ...: iuplua_tag} -> (elem: ituplua_tag) [in lupLua5]

menu(eleml, elem2, ...) [in LED]

eleml, elem2, ...:Listofidentifiers that will be grouped by the menu. NULL
defines the end of the list in C.

This function returns the identifier of the created menu, or NULL if an error occurs.

120
Note

A menu can be that of a dialog bar, defined by the dialog's MENU attribute, or a popup
menu. A popup menu is displayed for the user (usually on the mouse position) and

disappears when an item is selected. Its implementation is done by means of a call to the
lupPopup function. lupDestroy should be called only for popup menus.

Lua Binding
Offers a "cleaner” syntax than LED for defining menu, submenu and separator items. The
list of elements in the menu is described as a string, with one element after the other,
separated by commas.
Each element can be:
1) {""<item_name>","'<action>"} - menu item
2) {"'<submenu_name>"","*<menu>""} - submenu

3) {} - separator
4) <interface element> - submenu item

Callbacks
OPEN_CB: Called just before a submenu is opened.

MENUCLOSE_ CB: Called right before the submenu is closed.

Examples
See Also

lupDialog, lupPopup, lupltem, lupSeparator, lupSubmenu

lupSeparator
Creates the separator interface element. It shows a line between two menu items.

Parameters/Return

Ilhandle* lupSeparator(void); [in C]

iupseparator{} -> (elem: i1uplua_tag) [in lupLua3]
iup.separator{} -> (elem: iuplua_tag) [in lupLua5]
separator() [in LED]

This function returns the identifier of the created separator, or NULL if an error occurs.
Note
The separator is ignored when it is part of the definition of the items in a bar menu.

Examples
See Also

121
lupltem, lupSubMenu, lupMenu.

lupSubmenu

Creates a menu item that, when selected, opens another menu.

Parameters/Return

Ihandle* lupSubmenu(char *title, lhandle *menu); [in C]

iupsubmenu{menu: iuplua_tag; title = title: string} -> (elem: ifuplua_tag) [in
iup.submenu{menu: iuplua_tag; title = title: string} -> (elem: iuplua_tag) [i
submenu(title, menu) [in LED]

title: String containing the text to be shown on the item. It is a creation-only attribute

and cannot be changed later.
menu: menu identifier.

This function returns the identifier of the created submenu, or NULL if an error occurs.

Attributes

KEY: Associates a key to the submenu. In Windows, when used will also set an
underscore on the respective letter of the submenu title.

Callbacks
OPEN_CB-: Called just before the submenu is opened.

MENUCLOSE_ CB: Called right before the submenu is closed.

Examples
i IupSubmenu Example _|EI|£|
File | Edit Help
T hiz Copy 0 COMmpose
Paste
Creakte » Lire |
Circle
Equilateral
Isoceles
Scalenus
See Also

lupltem, lupSeparator, lupMenu.

lupColorBrowser

Creates an element for selecting colors from the HLS (Hue Saturation Brightness) model,
which allows the user to interactively choose a color.

122
For a dialog that simply returns the selected color, you can use function lupGetColor.

Parameters/Return
Ihandle* lupColorBrowser(void); [in C]
iupcb{} (elem: iuplua_tag) [in lupLua3]

iup.colorbrowser{} (elem: iuplua_tag) [in lupLua5]
colorbrowser() [in LED]

The function returns the identifier of the created colorbrowser, or NULL if an error occurs.

Attributes
RGB: Contains the color selected in the control, in the “rrr ggg bbb” format; r, g and
b are integers ranging from 0 to 255. This value can both be consulted and modified.
Callbacks

DRAG_CB: called several times while the color is being changed by dragging the mouse
over the control.

int drag(lhandle *self, unsigned char r, unsigned char g, unsigned char |
elem:drag(r: number, g: number, b: number) -> (ret: number) [in lupLua3]
elem:drag_cb(r: number, g: number, b: number) -> (ret: number) [in lupLu

CHANGE_CB: Called when the user releases the left mouse button over the control,
defining the selected color.

int change(lhandle *self, unsigned char r, unsigned char g, unsigned cha
elem:change(r: number, g: number, b: number) -> (ret: number) [in lupLua
elem:change_cb(r: number, g: number, b: number) -> (ret: number) [in lup

Examples
lupDial

Creates a dial for regulating a given angular variable. It inherits from lupCanvas.

Parameters/Return
Ihandle* lupDial(char *type); [in C]
tupdial{type: string} -> (elem: iuplua_tag) [in lupLua3]
iup.dial{type: string} -> (elem: iuplua_tag) [in lupLua5]
dial(type) [in LED]

tipo: dial type. Can be ""HORIZONTAL", "VERTICAL" or "CIRCULAR".
The function returns the identifier of the created dial, or NULL if an error occurs.

Attributes

FGCOLOR: Controls the foreground color. The default value is "64 64 64". The
foreground color is not used for the circular dial.

123
BGCOLOR: Controls the background color. The default value is the parent or the dialog

background color.

DENSITY: Contains average value of the number of lines per pixel in the dial. The

purpose of this attribute is to maintain the control’s appearance when its size changes.
Default is "0.2".

UNIT: Contains the unit of the angle. Can be "DEGREES" or "RADIANS". Default is
"RADIANS".

VALUE: Contains the dial value in a given moment. The value is an angle starting at zero
when the interaction started.

TYPE: Informs whether the dial is "VERTICAL", "HORIZONTAL" or "CIRCULAR".

EXPAND: The default is ""NO"".

SIZE: the default is "16x80", "80x16" or "40x35" according to the dial type.
Callbacks

MOUSEMOVE_CB: Called each time the user moves the dial with the mouse button
pressed. The angle the dial rotated since it was initialized is passed as a parameter.

int function(lhandle *self, double angle); [in C]
elem:mousemove(angle: number) -> (ret: number) [in lupLua3]
elem:-mousemove_cb(angle: number) -> (ret: number) [in lupLua5]

BUTTON_PRESS_CB: Called when the user presses the left mouse button over the dial.
The angle here is always zero, except for the circular dial.

int function(lhandle *self, double angle)
elem:-buttonpress(angle: number) -> (ret: number) [in lupLua3]
elem:buttonpress_cb(angle: number) -> (ret: number) [in lupLua5]

BUTTON_RELEASE_CB: Called when the user releases the left mouse button after
pressing it over the dial.

int function(lhandle *self, double angle)
elem:buttonrelease(angle: number) -> (ret: number) [in lupLua3]
elem:buttonrelease_chb(angle: number) -> (ret: number) [in lupLua5]

Notes

When the keyboard arrows are pressed and released the mouse press and the mouse
release callbacks are called in this order. If you hold the key down a mouse move
callback is also called.

When the wheel is rotated only the mouse move callback is called, and it increments the
last angle the dial was rotated.

In these cases the value is incremented by P1/10 (18 degrees).

Examples

124
Creates several Dials and shows each dial’s value in a Label.

m |upDial =13

=

43
459

L oL
L L
L L
L
(n '\-\ L
L "

L oL

See Also
lupCanvas
lupGauge

Creates a Gauge control. Shows a percent value that can be updated to simulate a
progression. It inherits from lupCanvas.

Parameters/Return

Ihandle* lupGauge(void); [in C]

iupgauge{} -> (elem: iuplua_tag) [in lupLua3]
iup.gauge{} -> (elem: iuplua_tag) [in lupLua5]
gauge() [in LED]

The function returns the identifier of the created Gauge, or NULL if an error occurs.
Attributes

MIN: Contains the minimum valuator value. Default is *'0"".

MAX: Contains the maximum valuator value. Default is "*1"".

VALUE: Contains a number between ""MIN™ and "*MAX", indicating the gauge position.

DASHED: Changes the style of the gauge for a dashed pattern. Default is ""NO™".

125
MARGIN: Changes the distance from the Gauge’s border to its inside. It is only one
number that works in both directions (x and y). Default: 1.
Ex.: lupSetAttribute(mygauge, "MARGIN', ™"'5™);

TEXT: Contains a text to be shown inside the Gauge. If it is NULL, the percentage value
given by VALUE will be shown. If the gauge is dashed the text is never shown.

SHOW_TEXT: Indicates if the text inside the Gauge is to be shown or not. Possible
values:

"YES" or ""NO". Default: ""YES™.
FGCOLOR: Controls the gauge and text color. The default is "64 96 192",
FONT: Character font of the text.
SIZE: The default is "170x17".
EXPAND: The default is ""NO"".

Examples

Creates a Gauge with a control bar.

M [upGauge

See Also

lupCanvas

lupGetColor

Shows the default IUP dialog which allows the user to select a color.

Parameters/Return

int lupGetColor(int x, int y, unsigned char *r, unsigned char *g, unsigned chi
lupGetColor(x, y, r, g, bz number) -> (r, g, b: number) [in lupLua3]
iup.GetColor(x, y, r, g, b: number) -> (r, g, bz number) [in lupLua5]

X, Y:X, Yy valuesof the lupPopup function.
r, g, b: Pointers to variables that will receive the color selected by the user if the OK button is

pressed. The value in the variables at the moment the function is called defines the color being
selected when the dialog is shown. If the OK button is not pressed, the r, g and b values are not

126
changed. These values cannot be NULL.

The function returns 1 if the OK button is pressed, or O otherwise.

Notes

In systems with few colors available (256), this function will show the colors by
automatically performing dithering, providing good results. However, if only a few colors
are available at the system’s palette, strange artifacts may appear.

The dialog uses a global attribute called "PARENTDIALOG" as the parent dialog if it is

defined.
Examples
i Selecdo de cor . ;IEIEI
Werm |EI I atiz |EI
Werde |0 Lum IEI.EI
Azul IEI Sat IEI.EI
0k | Cancelar |
See Also

lupMessage, lupScanf, lupListDialog, lupAlarm, lupGetFile.

lupGetParam

Shows a popup dialog for capturing parameter values using several types of controls.

Parameters/Return

int lupGetParam(const char* title, Iparamcb action, void* user_data, const chi
[Not available in lupLua]

title: dialog title.
action: user callback to be called whenever a parameter value was changed, and when the

user pressed the OK button. It can be NULL.
user_data: user pointer repassed to the user callback.

format: string describing the parameter
... list of variables address with initial values for the parameters. The last variable must be

NULL.

The function returns 1 if the OK button is pressed, O if the user canceled or if an error occurred.
The function will abort if there are errors in the format string as in the number of the expected

parameters.

127
Callback

typedef int (*lparamcb)(lhandle* dialog, iInt param_index, void*
user_data);

dialog: dialog handle

param_index: current parameter being changed. It is -1 if the user pressed the OK
button. It is -2 when the dialog is mapped, just before shown. It is -3 if the user pressed
the Cancel button.

user_data: a user pointer that is passed in the function call.

You can reject the change or the OK action by returning "0" in the callback, otherwise
you must return "1".

You should not programmatically change the current parameter value during the callback.
On the other hand you can freely change the value of other parameters.

Use the dialog attribute "PARAMN" to get the parameter "Ihandle*", but not that this is not
the actual control. Where "n" is the parameter index in the order they are specified
starting at 0, but separators are not counted. Use the parameter attribute "CONTROL" to get
the actual control. For example:

Ilhandle* param2 = (lhandle*)lupGetAttribute(dialog, "PARAM2™);
int value2 = lupGetint(param2, 1UP_VALUE);

Ihandle* param5 = (lhandle*)lupGetAttribute(dialog, ""PARAM5™);
Ilhandle* ctrl5 = (lhandle*)lupGetAttribute(param5, "CONTROL™);

if (value2 == 0)

{
lupSetAttribute(param5, 1UP_VALUE, "New Value');

lupSetAttribute(ctril5, IUP_VALUE, "New Value'™);
}

Since parameters are user controls and not real controls, you must update the control
value and the parameter value.

Be aware that programmatically changes are not filtered. The valuator, when available,
can be retrieved using the parameter attribute "AUXCONTROL". The valuator is not
automatically updated when the text box is changed programmatically. The parameter
label is also available using the parameter attribute "LABEL".

Attributes (inside the callback)

For the dialog:

"PARAMN" - returns an IUP Thandle* representing the nth parameter, indexed
by the declaration order not couting separators.

"OK" - returns an IUP Ihandle*, the main button.

"CANCEL" - returns an IUP IThandle*, the close button.

For a parameter:

"LABEL" - returns an IUP 1handle*, the label associated with the parameter.
"CONTROL" - returns an IUP 1handle*, the real control associated with the

Notes

The format string must have the following format, notice the "\n" at the end

parameter.

"AUXCONTROL" - returns an IUP Ihandle*, the auxiliary control associated

with the parameter (only for Valuators).

"INDEX" - returns an integer value associated with the parameter index.

lupGetint can also be used.

"VALUE" - returns the parameter value as a string, but lupGetFloat and

lupGetInt can also be used.

"textWt[extra]\n", where:

text is a descriptive text, to be placed to the left of the entry

field in a label.

t is the type of the parameter. The valid options are:

b = boolean (shows a True/False toggle, use "int" in
C

i): integer (shows a integer filtered text box, use
"int" in C)

r = real (shows a real filtered text box, use "float™ in
C

a): angle in degrees (shows a real filtered text box
and a dial, use "float" in C)

s = string (shows a text box, use "char*" in C, it
must have room enough for your string)

m = multiline string (shows a multiline text box, use
"char*" in C, it must have room enough for your
string)

I = list (shows a dropdown list box, use "int" in C
for the zero based item index selected)

t = separator (shows a horizontal line separator
label, in this case text can be an empty string)

extra is one or more additional options for type t

[min,max] are optional limits for integer and real
types. The maximum value can be omited. When
both are specified a valuator will also be added to
change the value.

[false, true] are optional strings for boolean
types. The strings can not have commas ', ', nor
brackets '[' or]

mask is an optional mask for the string and
multiline types. The dialog uses the lupMask
internally. In this case we do no use the brackets ‘[
and "]’ to avoid confusion with the specified mask.
|[itemO]iteml]item2, .. .| arethe items of
the list. At least one item must exist. Again the
brackets are not used to increase the possibilities for

128

129
the strings, instead you must use ']". Items index are

zero based start.

The dialog is resizable if it contains a string, a multiline string or a number with a
valuator. All the multiline strings will increase size equally in both directions.

The dialog uses a global attribute called IUP_PARENTDIALOG as the parent dialog if it
is defined.

Examples

Here is an example showing many the possible parameters. We show only one for each
type, but you can have as many parameters of the same type you want.

Integer. |3456

1]

Fieal1: |3.543
sepl
Integer. {192 | =
Real 2: ﬁig________ — | |-
Seps
Angle: |30 (M | 1

String: |svmgten

List: itermn? -

Ik Cance

See Also

lupScanf, lupGetColor, lupMask, lupValuator, lupDial,
lupList.

lupMask
Allows associating a mask to a lupText or a lupMatrix element.

See the Pattern Specification for information on patterns.

Functions

int iupMaskSet(lhandle *h, char *mask, int autofill, int casei) [in C or in L
int iupMaskMatSet(lhandle *h, char *mask, int autofill, int casei, int lin, i

int
int
int

int

int
int
int
int
int
int

int

These functions are responsible for setting the mask to be used.

h: IThandle of lupText or lupMatrix

mask: Mask to be used

autofill: When “1”, turns the auto-fill mode on. In auto-fill mode,
whenever possible, literal characters will be automatically added to the field
caseli: When “1”, uppercase or lowercase characters will be treated
indistinctly

lIin, col: Line and column numbers in the matrix

They return 1 if the mask is set, or O if there is an error (e.g., invalid mask).

130

iupMaskSetiInt(lhandle *h, int autofill, int min, int max); [in C or in lu
iupMaskSetFloat(lhandle *h, int autofill, float min, float max); [in C or
iupMaskMatSetInt(lhandle *h, int autofill, int min, int max, int lin, 0

iupMaskMatSetFloat(lhandle *h, int autofill, float min, float max,

These functions set a mask that defines a limit to the typed number. Works
only for integers and floats. Limitations: since the validation process is
performed key by key, the user cannot type intermediate numbers (even
inside the limit) if they are not following predetermined rules

h: Thandle of lupText or lupMatrix

autofill: When “1”, turns the auto-fill mode on. In auto-fill mode,
whenever possible, literal characters will be automatically added to the field
min: Minimum value accepted in the field

max: Maximum value accepted in the field

lin, col: Lineand column numbers in the matrix

They always return 1.

iupMaskCheck (lhandle *h); [in C or in lupLua]

nt iupMaskMatCheck(lhandle *h, int lin, int col); [in C or in lupLua]

These functions verify if what was typed by the user is valid for the defined
mask.

h: Thandle of lupText or lupMatrix
lin, col: Line and column numbers in the matrix

They return 1 if the text satisfies the mask, or O otherwise.

iupMaskGet(lhandle *h, char **val); [in C]
iupMaskGetFloat(lhandle *h, float *fval); [in C]
iupMaskGetiInt(lhandle *h, int *ival); [in C]
iupMaskMatGet(lhandle *h, char **val, int lin, int col); [in C]

int 1

iupMaskMatGetFloat(lhandle *h, float *fval, int lin, int col); [in C]
iupMaskMatGetDouble(lhandle *h, double *dval, int lin, int col); [in C]

iupMaskMatGetInt(lhandle *h, int *ival, int lin, int col);

These functions check if the mask is complete, and they retrieve the field’s
value in only one call.

h: Thandle of lupText or lupMatrix
val, fval, ival: Pointers used to complete the return value

131
lin, col: Line and column numbers in the matrix.

They return 1 if the text satisfies the mask, or O otherwise.

Notes
User callbacks previously associated to the text-editing field or to the Matrix field (that is,
before the 1upMaskSet function is called) will be called by the library if the pressed

key satisfies the mask. Attention: for the callback to be actually called, the user must call
not only lupSetAttribute, but also lupSetFunction.

To make the use of masks simpler, the following predefined masks were created:
IUPMASK_FLOAT - Float number
IUPMASK_UFLOAT - Float number with no sign
IUPMASK_EFLOAT - Float number with exponential notation

IUPMASK__INT - Integer number
ITUPMASK_UINT - Integer number with no sign

Examples
lupSbox

Creates a split panel control. Allows the provided control to be enclosed in a box
that allows resizing.

Parameters/Return

lhandle* lupSbox(lhandle* elem); [in C]

iupsbox{elem: iuplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.sbox{elem: iuplua_tag} -> (elem: iuplua_tag) [in lupLua5]
sbox(elem) [in LED]

elem: This function receives as parameter the element that will be enclosed in a Sbox.

This function returns the created Sbox’s identifier, or NULL if an error occurs.
Attributes

DIRECTION: Indicates the direction of the resize. Possible values are:

"NORTH", "SOUTH", "EAST", "WEST".

COLOR: Changes the color of the Sbox’s thumb. The value should be given in "R G B"
color style.

Examples

132
=10] x|
‘A Figures luphultiine =
563 2D |

EmEﬂjparallEngram

g ----- & diamond
=i triangle

----- @ trapeze

[}z 3D

Thic & & 1abel

Example 2 image

lupTabs

Creates a Tabs element. Allows a single dialog to have several screens, grouping
options. The grouping is done in a single line of tabs arranged according to the tab type. It
inherits from lupCanvas. It contains a lupZbox to control the groups of controls.

Parameters/Return

Ihandle* lupTabs(lhandle* eleml, lhandle* elem2, ...); [in C]

Ihandle* lupTabsv(lhandle** elems); [in C]

iuptabs{eleml, elem2, ...: ituplua_tag} -> (elem: iuplua_tag) [in lupLua3]
iup.tabs{eleml, elem2, ...: iuplua tag} -> (elem: iuplua_tag) [in lupLua5]
tabs(eleml, elem2, ...) [in LED]

eleml, elem2, ...:Thisfunction receives as parameters the elements that will be
transformed into Tabs. Each of such elements must have a "TABT I TLE" attribute,
specifying the text to be shown in its tab's title. If this attribute is omitted, the Tabs

behavior is undetermined.

This function returns the created Tabs's identifier, or NULL if an error occurs. The
second form in C must end the array with a NULL.

Attributes
AL IGNMENT: Changes the respective attribute in the internal zbox.

TABTITLE: Contains the text to be shown in the tab's title. If this value is NULL, it will
remain empty. This attribute is used only in the elements contained in the tab.

133
TABTYPE: Indicates the type of tab, which can be one of the following:

"TOP™, "BOTTOM"™, "LEFT™ or "RIGHT". Default is "TOP".
FONT: Indicates the font to be used in the internal tab text. Font Table
FONT_ACTIVE: Indicates the font to be used when the tab is selected. Font Table
FONT_INACTIVE: Indicates the font to be used when the tab is inactive. Font Table
TABSIZE: Contains the size of a tab. If this value is NULL, the tab will be shown with
the smallest possible value that fits its title. This size can refer to the whole lupTabs,
thus affecting all tabs, or to a specific tab. If both are defined, the size of a specific tab
will have priority over the global lupTabs size.
VALUE: Contains the name of the currently selected tab. Changing this attribute, adding
the name of a different tab, makes the latter be the active tab. If the provided name does

not correspond to any tab, nothing occurs. To set a name to a tab, use the
lupSetHandl e function on the element to be inserted in the tab.

ACTIVE: Allows or inhibits user interaction with a given tab. When the attribute is
""NO"*, the corresponding tab modifies the text color to show that interaction is inhibited.
Be careful, because a ""REPAINT" may be needed to generate a Tabs repaint.

REPAINT: This attribute immediately generates a Tabs repaint.

Callbacks

TABCHANGE_CB: Callback called when the user shifts the active tab. The parameters
passed are:

Note

int function(lhandle* self, lhandle* new_tab, lhandle* old_tab); [in C]
elem:tabchange(new_tab, old_tab: iuplua_tag) -> (ret: number) [in lupLua
elem:tabchange_cb(new_tab, old _tab: iuplua_tag) -> (ret: number) [in lupl

self: Thandle* of the control
new_tab: Ihandle™ of the tab selected by the user
old_tab: Ihandle* of the previously selected tab

The Tabs elements, differently from a ZBOX, does not need to have associated names.
Those without a name will receive an automatically generated one.

Examples

134
m JupTabs Mi=13

TehA | TebB | TabC
Tab D Inside Tab C

Inside Tak A Bution C |
Button A

See Also

lupCanvas

lupVal

Creates the Valuator control. It allows creating a regulator similar to lupDial, but
with well-defined limits. It inherits from lupCanvas.

Parameters/Return

Ihandle* lupVal(char *type); [in C]

iupval{type: string} -> (elem: iuplua_tag) [in lupLua3]
iup.val{type: string} -> (elem: iuplua_tag) [in lupLua5]
val (type) [in LED]

type: Type of valuator. Can be "VERTICAL" or ""HORIZONTAL"".

The function returns the identifier of the created val, or NULL if an error occurs.

Attributes
MIN: Contains the minimum valuator value. Default is "0".
MAX: Contains the maximum valuator value. Default is "1".
VALUE: Contains a number between MIN and MAX, indicating the valuator position.

TYPE: Informs whether the valuator is "VERT ICAL" or "HORIZONTAL". Vertical
valuators are bottom to up, and horizontal valuators are left to right variations of min to
max.

SHOWT ICKS: Display tick mark along the valuator trail. The attribute controls the
number of ticks. Minimum value is "3". Default is "0", in this case the ticks are not
shown. The precision of the ticks are affected by the raster size of the control.

BGCOLOR: Controls the background color. The default value is the parent or the dialog
background color.

RASTERSIZE: The default is "124x28" or "28x124". We recomend to leave this as the
minimum size.

135
EXPAND: The default is "NO". The thumb will not expand if the valuator is expanded.

Callbacks

MOUSEMOVE_CB: Called each time the user moves the valuator’s thumb keeping the
mouse button pressed. The value of VALUE is passed as parameter.

int function(lhandle *self, double val); [in C]
elem:mousemove(val: number) -> (ret: number) [in lupLua3]
elem:mousemove_cb(val: number) -> (ret: number) [in lupLua5]

BUTTON_PRESS_CB: Called when the user presses the left mouse button over the
valuator. The value of VALUE is passed as parameter. The thumb is always repositioned
to the current mouse position.

int function(lhandle *self, double val); [in C]
elem:buttonpress(val: number) -> (ret: number) [in lupLua3]
elem:buttonpress_cb(val: number) -> (ret: number) [in lupLua5]

BUTTON_RELEASE_CB: Called when the user releases the mouse button, after having
pressed it over the valuator. The value of VALUE is passed as parameter.

int function(lhandle *self, double val); [in C]
elem:buttonrelease(val: number) -> (ret: number) [in lupLua3]
elem:buttonrelease _cbh(val: number) -> (ret: number) [in lupLua5]

Notes
When the keyboard arrows are pressed and released, or the mouse wheel is rotated, the
mouse press and the mouse release callbacks are called, in this order. If you hold the key
down a mouse move callback is also called.

In these cases the value is incremented by 10% of the interval max-min.

Examples
= |upVal B
= WallE=016
- | “ALUE=075
See Also
lupCanvas

lupMatrix

136
Creates a matrix of alphanumeric fields. Therefore, all values of the matrix’s fields are
strings. The matrix is not a grid container like many systems have. It inherits from

lupCanvas.

It has two modes of operation: normal and callback mode. In normal mode string values
are stored in attributes for each cell. In callback mode these attributes are ignored and the
cells are filled with strings returned by the "VALUE_CB" callback. So the existance of this
callback defines the mode the matrix will operate.

Parameters/Return

Ihandle* lupMatrix(char *action); [in C]
iupmatrix{} -> (elem: iuplua_tag) [in lupLua3]
iup.matrix{} -> (elem: ituplua_tag) [in lupLua5]
matrix(action) [in LED]

action: Name of the action generated when the user types something.

Returns the identifier of the created matrix, or NULL if an error occurs.

Attributes
Cell Attributes

L:C
ALIGNMENTn
BGCOLOR
FGCOLOR
FONT
FOCUS_CELL
VALUE

Line and Column Attributes

NUMCOL
NUMCOL_VISIBLE
NUMLIN
NUMLIN_VISIBLE
ORIGIN
WIDTHDEF
WIDTHnN

HEIGHTnN
RESIZEMATRIX

Mark Attributes

AREA
MARK_MODE
MARKED
MULTIPLE

Action Attributes

ADDCOL

137
ADDLIN
DELCOL
DELLIN
EDIT_MODE
REDRAW

General Attributes

CURSOR
FRAMECOLOR
SCROLLBAR
SIZE

CARET
SELECTION
HIDEFOCUS

Callbacks

ACTION - Action generated when a keyboard event occurs.

BGCOLOR_CB - Action generated to retrieve the background color of a cell when it
needs to be redrawn.

CLICK_CB - Action generated when any mouse button is pressed over a cell.
DROP_CB - Action generated to determine if a text field or a dropdown will be shown.
DROPCHECK_CB - Action generated to determine if a dropdown feedback should be
shown.

DROPSELECT_CB - Action generated when an element in the dropdown list is selected.
EDITION_CB - Action generated when the current cell enters or leaves the edition mode.
ENTERITEM_CB - Action generated when a matrix cell is selected, becoming the
current cell.

FGCOLOR_CB - Action generated to retrieve the foreground color of a cell when it
needs to be redrawn.

LEAVEITEM_CB - Action generated when a cell is no longer the current cell.
MOUSEMOVE_CB - Action generated to notify the application that the mouse has
moved over the matrix.

SCROLL_CB - Action generated when the matrix’ visualization surface is changed.
VALUE_CB - Action generated to verify the value of a cell in the matrix when it needs to
be redrawn.

VALUE_EDIT_CB - Action generated to notify the application that the value of a cell
was changed.

Additional Functions in lupLua

elem:setcell(lin, col: number, value: string)

Modifies the text of a cell.

elem:getcell(lin, col: number) -> (cell: string)
Returns the text of a cell.

Notes

The TupMask control can be used to create a mask and filter the text entered by the user
in each cell.

138
In Motif, when start editing a cell using a double click, the user must click again to the
edit control get the focus.

Titles

A matrix might have titles for lines and columns. This must be defined before the matrix
is mapped, and cannot be changed afterwards. A matrix will have line titles if, before it is
mapped, an attribute of the “L -0” type is defined. It will have column titles if, before
being mapped, an attribute of the “0:C” type is defined. The size of a line title is given
by attribute “WIDTHO”, if it is defined. Otherwise, it is given by the size of the largest
title defined when the matrix is mapped.

Titles (for lines or columns) can be generated with more that one text line. For such, the
title value must contain a “\n”. The matrix does not by itself change the line’s height to
fit titles with multiple lines. The user must change the line’s size manually, by using
attribute HEIGHTN. In IUP’s size definition, a line with height 8 will fit one text line, a
line with height 16 will fit two text lines, and so on.

Callback Mode

Very large matrices must use the callback mode to set the values, and not the regular
value attributes of the cells. The idea is the following:

1 - Register the VALUE_CB callback

2 - No longer set the value of the cells. They will be set one by one by the
callback. Note that the values of the cells must now be stored by the user.

3 - If the matrix is editable, set the VALUE _EDIT_CB callback.

4 - When the matrix must be invalidated, use the REDRAW attribute to force
a matrix redraw.

A negative aspect is that, when VALUE_CB is defined, the matrix never verifies
attributes of type “%d :%d”. Therefore, it also does not verify line and column titles
(which must be given by the callback). The result is that, at the moment the matrix is
created, it resorts solely to the existence of attributes WIDTHO and HE1GHTO to find out
if it will have line or column titles. That is, for such matrices to have titles, the WIDTHO
and HEIGHTO attributes must be defined. This problem is not serious, because with
IUP’s definition of S1ZE, HEIGHTO=8 will always produce a column title in the size
desired.

Another important reminder: if VALUE_CB is defined and VALUE_EDIT_CB is not, it
is absolutely necessary that the application does not allow the user to edit any cell. This
must be done by returning TUP_IGNORE in the ITUP_EDITION_CB callback. (In the
future, this will be done inside the matrix.)

Utility Functions

These functions can be used to help set and get attributes from the matrix:

void lupMatSetAttribute (lhandle *n, char* a, int I, int c, char* v);
void lupMatStoreAttribute(lhandle *n, char* a, int I, int c, char* v);
char* lupMatGetAttribute (lhandle *n, char* a, int I, int c);

int lupMatGetint (lhandle *n, char* a, int I, int c);

float lupMatGetFloat (lhandle *n, char* a, int I, int c);

void lupMatSetfAttribute (lhandle *n, char* a, int I, int ¢, char* F,

139
They work just like the respective tradicional set and get functions. But the attribute
string is complemented with the L and C values. For ex:

lupMatSetAttribute (n, "™ , 30, 10, v) = lupSetAttribute(n, "30:10", v)
lupMatSetAttribute (n, "BGCOLOR"™ , 30, 10, v) = lupSetAttribute(n, "BGCO
lupMatSetAttribute (n, "ALIGNMENT" , 10, O, v) = lupSetAttribute(n, "ALI

(*) noticed that in this case the second value will be ignored.

Navigation

Navigating through the matrix cells outside the edition mode is done by using the
following keys:

e Arrows: Shift from the current cell to the next one, according to the arrow’s
direction.

e Page Up and Page Down: Scroll a spreadsheet up or down one page.

e Home: Shifts from the current cell to the fist column in the line.

e Home Home: Shifts from the current cell to the upper left corner of the visible
page.

e Home Home Home: Shifts form the current cell to the upper left corner of the first
page of the matrix.

e End: Shifts from the current cell to the last column in the line.

o End End: Shifts from the current cell to the lower right corner of the visible page.

e End End End: Shifts from the current cell to the lower right corner of the last page
in the matrix.

o Del: Deletes the contents of all selected cells.

Inside the edition mode, the following keys are used for a text field:

e Up and down arrows: Shift the current key, leaving the edition mode.

o Left and right arrows: If they are on the extremes of the text being edited, they
shift the current key, leaving the edition mode.

e Ctrl + Arrows: Shift the current cell, leaving the edition mode.

When the matrix is outside the edition mode, pressing any character key makes the
current key to enter in the edition mode, the old text is replaced by the new one being
typed. If Enter or Space is pressed, the current cell enters the edition mode. If Del is
pressed, the whole contents of the cell will be deleted. Double-clicking a cell also enters
the edition mode.

When the matrix is in the edition mode, to confirm the entered value, press Enter. By
pressing Esc, the previous value is restored. If the cell leaves the edition mode for any
other reason (for instance, the user shifted the current cell, or the user clicked in another
control), the value will be confirmed. After pressing Enter to confirm the value the focus
goes to the cell bellow the current cell, if at the last line then the focus goes to the cell on
the left.

Examples

Creates a simple matrix with the values and layout shown in the image below. There is
also a menu that allows making some changes to the matrix.

140

: TupMatrix 3 =10l x|
alkerar
|nflagEo Janeina 2000 Fewversiro 2000
R emédioz AB 45
Alirnentos 2.2 3.1
Energia 72 34
See Also
lupCanvas
lupMatrix Attributes

Cell Attributes

L - C: Text of the cell located in line L and column C, where L and C are integer numbers.
These are valid only in normal mode.

L:-O: Title of line L.

0:C: Title of column C.

0:0: Title of the area between the line and column titles.

AL 1GNMENTN: Alignment of the cells in column n, where N must be replaced by the
wished column number (n >= 0). Possible values:

"ALEFT", "ACENTER" or "ARIGHT". Default: "ALEFT".

BGCOLOR: Background color of the matrix.

BGCOLORL : C: Background color of the cell in line L and column C.
BGCOLORL :*: Background color of the cells in line L.
BGCOLOR*: C: Background color of the cells in column C.

When more than one of the four types of attributes that define the
background color are defined, or if two of them are in conflict, the color of a
cell will be selected following this priority: BGCOLORL =C,
BGCOLORL:*, BGCOLOR*:C, and last BGCOLOR. (L or C >= 0, but only
the second forms is valid for titles.)

FGCOLOR: Text color.

FGCOLORL : C: Text color of the cell in line L and column C.
FGCOLORL :*: Text color of the cells in line L.
FGCOLOR*: C: Text color of the cells in column C.

When more than one of the four types of attributes that define the text color
are defined, or if two of them are in conflict, the text color of a cell will be
selected following this priority: FGCOLORL:C, FGCOLORL:*,
FGCOLOR*:C, and last FGCOLOR. (L or C >= 0, but only the second forms
is valid for titles.)

FONT: Character font of the text. This attribute must be set before the control is showed.
It affects the calculation of the size of all the matrix cells.

141
FONTL :C: Text font of the cell in line L and column C.
FONT : *: Text font of the cells in line L.
FONT*:C: Text font of the cells in column C.

The cell size is always calculated from the base FONT attribute.
FOCUS_CELL: Defines the currently focused cell.
Two numbers in the “LzC” format, (L and C>=1). Default: "1:1".
VALUE: Allows setting or verifying the value of the current cell. Is the same as using the

“L:C” attribute, L and C corresponding to the current cell’s line and column. (L and
C>=0)

Line and Column Attributes
NUMCOL: Defines the number of columns in the matrix.
Must be an integer number. Default: "0".

NUMCOL_VISIBLE: Defines the minimum number of visible columns in the matrix. The
remaining columns will be accessible only by using the scrollbar.

Must be an integer number. Default: "4".
NUML IN: Defines the number of lines in the matrix.
Must be an integer number. Default: "0".

NUMLIN_VISIBLE: Defines the minimum number of visible lines in the matrix. The
remaining lines will be accessible only by using the scrollbar.

Must be an integer number. Default: "3".
ORIGIN: Allows setting which cell will be placed in the upper left corner of the matrix
by automatically scrolling the visible area. To keep one of the coordinates of the cell in
the upper left corner from being modified, use a value such as “L -*”or “*-C” (L and
C>=1). Possible values:

Two numbers in the “L - C” format.
WIDTHDEF: Default column width.

Must be an integer number. Default: Width corresponding to 20 characters.

WIDTHnN: Width of column n, where n is the number of the wished column (n>=0). If the
width value is O, the column will not be shown on the screen.

Must be an integer number. Default: Width defined in the WIDTHDEF
attribute.

HE1GHTn: Height of column n, where n is the number of the wished column (n>=0). If

142
the height value is O, the column will not be shown on the screen.

RESIZEMATRIX: Defines if the width of a column can be interactively changed. When
this is possible, the user can change the size of a column by dragging the column title’s
upper corner. Possible values:

"YES" or ""NO". Default: ""NO"" (does not allow interactive width change).
Mark Attributes

AREA: Defines if the area to be interactively marked by the user will be continuous or
not. Possible values:

"CONT INUOUS" or "NOT_CONT INUOUS". Default: "CONT INUOUS",

MARK_MODE: Defines the entity that can be marked: none, lines, columns, lines and/or
columns, and cells. Possible values:

"NO", "LIN", "COL", "LINCOL" or "CELL". Default: "NO" (no mark).

MARKED: Vector of “0” or “1” characters, informing which cells are marked (indicated
by value “1”). The NULL value indicates there is no marked cell. The format of this
character vector depends on the value of the MARK_MODE attribute: if its value is CELL,
the vector will have NUMLIN x NUMCOL positions, corresponding to all the cells in the
matrix. If its value is LIN, the vector will begin with letter “L” and will have further
NUMLIN positions, each one corresponding to a line in the matrix. If its value is COL, the
vector will begin with letter “C” and will have further NUMCOL positions, each one
corresponding to a column in the matrix. If its value is LINCOL, the first letter, which can
be either “L” or “C”, will indicate which of the above formats is being used.

The values must be numbers in a vector of characters “0” and “1”. Default:
NULL.

MULT IPLE: Defines if more than one entity defined by MARK_MODE can be marked.
Possible values:

"YES" or "'NO". Default: ""NO,

Action Attributes

ADDCOL.: Adds a new column to the matrix after the number of the specified column. To
insert a column at the top of the spreadsheet, value O must be used. To add more than one
column, use format "C-C", where the first number corresponds to the base column and
the second number corresponds to the number of columns to be added. It is valid only in
normal mode.

The value must be a column number.

ADDL IN: Adds a new line to the matrix after the number of the specified line. To insert a
line at the top of the spreadsheet, value O must be used. To add more than one line, use
format "L-L", where the first number corresponds to the base line and the second number
corresponds to the number of lines to be added. It is valid only in normal mode.

143
The value must be a line number.

DELCOL: Removes the given column from the matrix. To remove more than one column,
use format "C-C", where the first number corresponds to the base column and the second
number corresponds to the number of columns to be removed. It is valid only in normal
mode.

The value must be a column number.

DELL IN: Removes the given line from the matrix. To remove more than one line, use
format "L-L", where the first number corresponds to the base line and the second number
corresponds to the number of lines to be removed. It is valid only in normal mode.

The value must be a line number.

EDIT_MODE: When set to YES, programatically puts the current cell in edition mode,
allowing the user to modify its value. When consulted informs if the the current cell is
being edited. Possible values:

"YES" or ""NO™.

REDRAW: The user can inform the matrix that the data has changed, and it must be
redrawn. Values:

"ALL": Redraws the whole matrix.

"L%d": Redraws the given line (e. g.: “L3” redraws line 3)

"L%d -%d": Redraws the lines in the given region (e.g.: “L2:4" redraws
lines 2, 3 and 4)

"C%d": Redraws the given column (e.g.: “C3” redraws column 3)

"C%d -%d": Redraws the columns in the given region (e.g: “C2:4” redraws
columns 2, 3 and 4)

General Attributes
CURSOR: Default cursor used by the matrix. The default cursor is a symbol that looks like
a cross. If you need to refer to this default cursor, use name
“matrx_img_cur_excel”,

FRAMECOLOR: Sets the color to be used in the matrix's frame lines.

SCROLLBAR: Associates a horizontal and/or vertical scrollbar to the matrix. Is only
effective if defined before the matrix is mapped. Default is YES.

SIZE: Size of the matrix. Default: Minimum size which allows viewing the whole
matrix.

CARET: Allows specifying and verifying the caret’s position when the matrix is in edition
mode.

SELECTION: Allows specifying and verifying selection interval when the matrix is in
edition mode.

144
HIDEFOCUS: do not show the focus mark when drawing the matrix.

lupMatrix Callbacks

ACTION: Action generated when a keyboard event occurs.

int function(lhandle *self, Int ¢, int lin, int col, Int active, char* a
elem:action(c, lin, col, active, after: number) -> (ret: number) [in lup

selT: Identifier of the matrix where the user typed something.

c: Identifier of the typed key. Please refer to the Keyboard Codes table for a
list of possible values.

lin, col: Coordinates of the selected cell.

active: 1 if the cell is in edition mode, and O if it is not.

after: The new value of the text in case the key is validated (see return
values).

Possible return values are: 1UP_DEFAULT validates the key, 1UP__IGNORE
ignores the key, TUP_CONT INUE forwards the key to IUP’s conventional
processing. This function can also return the identifier of the key to be treated
by the matrix.

BGCOLOR_CB - Action generated to retrieve the background color of a cell when it needs
to be redrawn.

int function(lhandle *self, int lin, int col, unsigned int *red, unsigne
elem:bgcolor_cb(lin, col: number) -> (ret, red, green, blue: number) [in

sel T: Identifier of the matrix where the user typed something.
1in, col: Coordinates of the cell.
red, green, blue: the cell background color.

If the function return IUP_IGNORE, the return values are ignored and the
attribute defined background color will be used. If returns IUP_DEFAULT
the returned values will be used as the background color.

CLICK_CB: Action generated when any mouse button is pressed over a cell. This
callback is always called after other callbacks.

int function(lhandle *self, int lin, int col, char *r); [in C]
elem:click(lin, col: number, r:string) -> (ret: number) [in lupLua3]
elem:click_cb(lin, col: number, r:string) -> (ret: number) [in lupLua5]

sel T: Identifier of the matrix interacting with the user.

1in, col: Coordinates of the cell where the mouse button was pressed.
They can be -1 if the user click outside the matrix but inside the canvas that
contains it.

r: Status of the mouse buttons and some keyboard keys at the moment the

event is generated. The following macros must be used for verification:
isshift(r), iscontrol(r), isbuttonl(r), isbutton2

(r), isbutton3(r), isdouble(r). They return 1 if the respective
key or button is pressed, or O otherwise.

145
DROPCHECK _CB: Action generated before the current cell is redrawn to determine if a
dropdown feedback should be shown. If this action is not registered, no feedback will be
shown.

int function(lhandle *self, int lin, int col); [in C]
elem:dropcheck(lin, col: number) -> (ret: number) [in lupLua3]
elem:dropcheck_cb(lin, col: number) -> (ret: number) [in lupLua5]

sel T: Identifier of the matrix interacting with the user.
1in, col: Coordinates of the cell.

This function must return TUP_DEFAULT to show a dropdown field
feedback, or IUP__IGNORE to ignore the dropdown feedback.

DROP_CB: Action generated before the current cell enters edition mode to determine if a
text field or a dropdown will be shown. If this action is not registered, a text field will be
shown. Its return determines what type of element will be used in the edition mode. If the
selected type is a dropdown, the values appearing in the dropdown must be fulfilled in
this callback, just like elements are added to any list (the drop parameter is the handle of
the dropdown list to be shown). You should also set the list’s current value (""VALUE™),
the default is always "1". The previously cell value can be verified from the given drop
Ihandle via the ""PREV IOUSVALUE" attribute.

int function(lhandle *self, lhandle *drop, int lin, int col); [in C]
elem:drop(drop: iuplua_tag, lin, col: number) -> (ret: number) [in lupLui
elem:drop_cb(drop: iuplua_tag, lin, col: number) -> (ret: number) [in lu

sel T: Identifier of the matrix interacting with the user.
drop: ldentifier of the dropdown list which will be shown to the user.
1in, col: Coordinates of the current cell.

This function must return TUP__IGNORE to show a text-edition field, or
1UP_DEFAULT to show a dropdown field.

DROPSELECT _CB: Action generated when an element in the dropdown list is selected.

int function(lhandle *self, int lin, int col, lhandle *drop, char *t, in
elem:dropselect(lin, col: number, drop: iuplua_tag, t: string, i, v: num
elem:dropselect_cb(lin, col: number, drop: iTuplua_tag, t: string, i, v:

sel T: Identifier of the matrix interacting with the user.
1in, col: Coordinates of the current cell.

drop: ldentifier of the dropdown list shown to the user.
t: Text of the item whose state was changed.

i1: Number of the item whose state was changed.

v: Indicates if item was selected or unselected (0 or 1).

EDITION_CB: Action generated when the current cell enters or leaves the edition mode.

int function(lhandle *self, int lin, int col, int modo); [in C]
elem:edition(lin, col, mode: number) -> (ret: number) [in lupLua]

selT: Identifier of the matrix interacting with the user.
11n, col: Coordinates of the current cell.

146
mode: 1 if the cell has entered the edition mode, or O if the cell has left the
edition mode.

The user must return TUP__IGNORE if he/she wants to prevent the field from
being editable, or lUP_DEFAULT otherwise.

ENTERITEM_CB: Action generated when a matrix cell is selected, becoming the current
cell.
int function(lhandle *self, int lin, int col); [in C]

elem:enteritem(lin, col: number) -> (ret: number) [in lupLua3]
elem:enteritem_cb(lin, col: number) -> (ret: number) [in lupLua5]

selT: Identifier of the matrix interacting with the user.
11n, col: Coordinates of the selected cell.

The user must return TUP_DEFAULT.

FGCOLOR_CB - Action generated to retrieve the foreground color of a cell when it needs
to be redrawn.

int function(lhandle *self, int lin, int col, unsigned int *red, unsigne
elem:bgcolor_cb(lin, col: number) -> (ret, red, green, blue: number) [in

sel T: Identifier of the matrix where the user typed something.
lin, col: Coordinates of the cell.
red, green, blue: the cell foreground color.

If the function return IUP_IGNORE, the return values are ignored and the
attribute defined foreground color will be used. If returns IUP_DEFAULT
the returned values will be used as the foreground color.

LEAVEITEM_CB: Action generated when a cell is no longer the current cell.

int function(lhandle *self, int lin, int col); [in C]
elem:leaveitem(lin, col: number) -> (ret: number) [in lupLua3]
elem:leaveitem _cb(lin, col: number) -> (ret: number) [in lupLua5]

sel T: Identifier of the matrix interacting with the user.
1in, col: Coordinates of the cell which is no longer the current cell.

The user must return either TUP_DEFAULT or TUP_IGNORE. Returning
1UP_IGNORE prevents the current cell from changing (this will not work
when the focus is leaving the matrix.)

MOUSEMOVE_CB: Action generated to notify the application that the mouse has moved
over the matrix.
int function(lhandle *self, int lin, int col); [in C]

elem:mousemove(lin, col: number) -> (ret: number) [in lupLua3]
elem:mousemove_cb(lin, col: number) -> (ret: number) [in lupLua5]

selT: Identifier of the matrix interacting with the user.
11n, col: Coordinates of the cell that the mouse cursor is currently on.

147
SCROLL_CB: Action generated when the matrix’ visualization surface is changed. Can
be used together with the ""ORIGIN"" attribute to synchronize the movement of two or
more matrices.

int function(lhandle *self, int lin, int col); [in C]
elem:scroll(lin, col: number) -> (ret: number) [in lupLua3]
elem:scroll_cb(lin, col: number) -> (ret: number) [in lupLua5]

sel T: Identifier of the matrix interacting with the user.
1in, col: Coordinates of the cell currently in the upper left corner of the
matrix.

The user must return TUP_DEFAULT.

VALUE_CB: Action generated to verify the value of a cell in the matrix when it needs to
be redrawn. Called both for common cells and for line and column titles.

char* function(lhandle* self, int lin, int col); [in C]
elem:valuecb(lin, col: number) -> (ret: string) [in lupLua3]
elem:value_cb(lin, col: number) -> (ret: string) [in lupLua5]

sel T: Identifier of the matrix interacting with the user.
1in, col: Coordinates of the cell currently in the upper left corner of the
matrix.

Must return the string to be redrawn. The existance of this callback defines
the callback operation mode of the matrix.

VALUE_EDIT_CB: Action generated to notify the application that the value of a cell was
changed. Since it is a notification, it cannot refuse the value modification (which can be
done by the ""EDITION_CB" callback).

int function(lhandle *self, int lin, int col, char* newval); [in C]
elem:value_edit(lin, col, newval: string) -> (ret: number) [in lupLua3]
elem:value_edit_cb(lin, col, newval: string) -> (ret: number) [in lupLua

selT: Identifier of the matrix interacting with the user.

1in, col: Coordinates of the cell currently in the upper left corner of the
matrix.

newval: String containing the new cell value

The user must return TUP_DEFAULT.

The canvas callbacks ACTION, SCROLL _CB, KEYPRESS CB, GETFOCUS CB,
KILLFOCUS_CB if set will be called before the internal callbacks. The lupGetAttribute
always returns the internal callbacks.

The canvas callbacks MOTION_CB, MAP_CB, RESIZE CB and BUTTON_CB can not be
changed. The other callbacks can be freely changed.

The GETFOCUS/KITLLFOCUS callbacks are always called before other callbacks.

148
See lupCanvas.

lupTree
Creates a tree containing nodes of branches or leaves. It inherits from lupCanvas.

The branches can be expanded or collapsed. When a branch is expanded, its immediate
children are visible, and when it is collapsed they are hidden. The leaves can generate an
executed or renamed action, branches can only generate renamed actions. Both branches
and leaves can have an associated text. The selected node is the node with the focus
rectangle, marked nodes have their background inverted.

Parameters/Return

lhandle* lupTree(void); [in C]

iuptree{} -> (elem: iuplua_tag) [in lupLua3]
iup.tree{} -> (elem: iuplua_tag) [in lupLua5]
tree() [in LED]

This function returns the identifier of the created lupTree, or NULL if an error occurs.

Attributes
General

SCROLLBAR
FONT
ADDEXPANDED

Marks

CTRL
SHIFT
STARTING
VALUE
MARKED

Images

IMAGELEAF
IMAGEBRANCHCOLLAPSED
IMAGEBRANCHEXPANDED
IMAGEid
IMAGEEXPANDED1d

Nodes

NAME
STATE
DEPTH
KIND
PARENT
COLOR

149
Action

ADDLEAF
ADDBRANCH
DELNODE
REDRAW

Callbacks

SELECTION_CB: Action generated when an node is selected or deselected.
BRANCHOPEN_CB: Action generated when a branch is expanded.
BRANCHCLOSE_CB: Action generated when a branch is collapsed.
EXECUTELEAF_CB: Action generated when a leaf is to be executed.
RENAMENODE_ CB: Action generated when a node is to be renamed.
RIGHTCLICK_CB: Action generated when the right mouse button is pressed over a
node.

Notes
Branches may be added in lupLua using a Lua Table (see Example 2).
Hierarchy

Branches can contain other branches or leaves. The tree always has at least one branch,
the root, which will be the parent of all the first level branches and leaves.

Structure

The lupTree is stored as a list, so that each node or branch has an associated
identification number (1d), starting by the root, with 1d=0. However, this number does
not always correspond to the same node as the tree is modified. For example, a node with
id 2 will always refer to the third node in the tree. For that reason, there is also userid,
which allows identifying a specific node. The userid always refers to the same node
(just as the associated text). The user id may contain a user-created structure allowing
the identification of a node.

Each node also contains its depth level, starting by the root, which has depth O. To allow
inserting nodes in any position, sometimes the depth of a node must be explicitly
changed. For instance, if you create a leaf in a child branch of the root, it will be created
with depth 2. To make it become a child of the root, its depth must be set to 1.

Images

lupTree has three types of images: one associated to the leaf, one to the collapsed
branch and the other to the expanded branch. Each image can be changed, both globally
and individually.

The predefined images used in lupTree can be obtained by means of function
lupGetHandle . The names of the predefined images are: IMGLEAF,
IMGCOLLAPSED, IMGEXPANDED, IMGBLANK (blank sheet of paper) and
IMGPAPER (written sheet of paper).

Scrollbar

150
lupTree’s scrollbar is activated by default and works automatically. When a node
leaves the visible area, the scrollbar automatically scrolls so as to make it visible. We
recommend not changing the SCROLLBAR attribute.

Fonts

The fonts used by lupTree are like the ones defined by IUP (see attribute FONT). We
recommend using only IUP-defined fonts.

Manipulation

Node insertion or removal is done by means of attributes. It is allowed to remove nodes
and branches inside callbacks associated to opening or closing branches.

This means that the user may insert nodes and branches only when necessary when the
parent brach is opened, allowing the use of a larger lupTree without too much
overhead. Then when the parent branch is closed the subtree can be removed. A side-
effect of this use is that the expanded or collapsed state of the children branches must be
managed by the user.

When a node is added, removed or renamed the tree is not automatically redrawn. You
must set REDRAW=YES when you finish changing the tree.

Simple Marking

Is the lupTree’s default operation mode. In this mode only one node is marked, and it
matches the selected node.

Multiple Marking

lupTree allows marking several nodes simultaneously using the Shift and Control keys.
To use multiple marking, the user must use attributes SHIFT and CTRL.

When a user keeps the Control key pressed, the individual marking mode is used. This
way, the selected node can be modified without changing the marked node. To reverse a
node marking, the user simply has to press the space bar.

When the user keeps the Shift key pressed, the block marking mode is used. This way, all
nodes between the selected node and the initial node are marked, and all others are
unmarked. The initial node is changed every time a node is marked without the Shift key
being pressed. This happens when any movement is done without Shift or Control being
pressed, or when the space bar is pressed together with Control.

Removing a Node with "'Del"

You can simply implement a K_ANY or KEYPRESS_CB and do:

int k_any(lhandle* self, int c)

{
if (c == K_DEL)

lupSetAttribute(self, "DELNODE", "MARKED") ;
lupSetAttribute(self, "REDRAW", ") ;

+
return 1UP_DEFAULT;

151
}

Navigation
Using the keyboard:

e Arrow Up/Down: Shifts the selected node to the neighbor node, according to the

arrow direction.

Arrow Left/Right: Makes the branch collapse/expand

Home/End: Selects the root/last node.

Page Up/Page Down: Selects the node one page above/below the selected node.

Enter: If the selected node is an expanded branch, it is collapsed; if it is a collapsed

branch, it is expanded; if it is a leaf, it is executed.

e Space: If the Control key is pressed marks or unmarks a node, if not calls the
rename callback.

Using the mouse:

e Clicking a node: Selects the clicked node.

e Clicking a (-/+) box: Makes the branch to the right of the (-/+) box
collapse/expand.

e Clicking an empty region: Unmarks all nodes (including the selected one).

e Double-clicking a node image: If the selected node is an expanded branch, it is
collapsed; if it is a collapsed branch, it is expanded; if it is a leaf, it is executed.

e Double-clicking a node text: Calls the rename callback.

Extra Functions

lupTree has functions that allow associating a pointer (or a user defined id) to a node.
In order to do that, you provide the id of the node and the pointer (userid); even if the
node's id changes later on, the userid will still be associated with the given node. In
lupLua, instead of a pointer the same functions are defined for tables.

int lupTreeSetUserld(lhandle *self, int id, void *userid); [in C]
lupTreeSetUserld(self: handle, id: number, userid: userdata); [in lupLua
iup.TreeSetUserld(self: handle, id: number, userid: userdata); [in lupLu

selT: Identifier of the lupTree interacting with the user.

i1d: Node identifier.

user id: User pointer associated to the node. Use NULL value
to free reference.

Note: This function needs to be called again freeing the node
from the userdata or it will never be garbage collected.

void* lupTreeGetUserld(lhandle *self, int id); [in C]
lupTreeGetUserld(self: handle, id: number) -> (ret: userdata) [in lupLua
iup.TreeGetUserld(self: handle, id: number) -> (ret: userdata) [in lupLu

sel T: Identifier of the lupTree interacting with the user.
1d: Node identifier.
Returns the pointer associated to the node.

int lupTreeGetld(lhandle *self, void *userid); [in C]
lupTreeGetld(self: handle, userid: userdata) -> (ret: number) [in lupLua

152
iup.TreeGetld(self: handle, userid: userdata) -> (ret: number) [in lupLu

sel T: Identifier of the lupTree interacting with the user.
user id: Pointer associated to the node.
Returns the id of the node on success and -1 on failure.

lupTreeSetTableld(self: handle, id: number, table: table) [in lupLua3]
iup.TreeSetTableld(self: handle, id: number, table: table) [in lupLua5]

selT: Identifier of the lupTree interacting with the user.

id: Node identifier.
table: Table that should be associated to the node or leaf. Use

nil value to free reference.

Notes: This function needs to be called again freeing the node
from the table or the table will never be garbage collected. Also,
the user should not use the same table to reference different
nodes (neither in the same nor across different trees.)

iup.TreeGetTableld(self: handle, table: table) -> (ret: number) [in lupL
iup.TreeGetTableld(self: handle, table: table) -> (ret: number) [in lupL

sel T: Identifier of the lupTree interacting with the user.
table: Table that should be associated to the node or leaf.
Returns the id of the node on success and nil otherwise.

iup.TreeGetTable(self: handle, id: number) -> (ret: table) [in lupLua3]
iup.TreeGetTable(self: handle, id: number) -> (ret: table) [in lupLua5]

selT: Identifier of the lupTree interacting with the user.

i1d: Node identifier.
Returns the table of the node on success and nil otherwise.

Examples

Creates a lupTree with the values shown on the images below, and allows the user to
change them dynamically.

TableTree result

B Aninals
==_T

==_]

153

Elﬁ Cruztaceans
o @ Shiimp
“o @ Lobater

See Also

lupCanvas

lupTree Attributes

General

SCROLLBAR: Associates a horizontal and/or vertical scrollbar to the canvas. Default:

IIYESII .

FONT: Character font of the text displayed on the element.

ADDEXPANDED: Defines if branches will be expanded when created. The root node is
always expanded when created. Possible values:

"YES"': The branches will be created expanded
"NO"": The branches will be created collapsed

Default: "*NO™.

Marks

VALUE: The selected node. When changed also marks the node, but only if the Control

and Shift keys are not used. Possible values:
The node identifier to be selected.
When changed also accepts the values:

""ROOT"": the root node
"LAST": the last node

154
""PGUP"": the node one page below
""PGDN"": the node one page above
"NEXT"": the node following the selected node. If the selected

node is the last one, the last one will be used instead
"PREVIOUS"": the previous node of the selected node. If the
selected node is the root, the root will be used instead

The following values are also accepted but they are independent from the
state of the Control and Shift keys, and from the CTRL and SHIFT
attributes. And the selected node is not changed. These values are kept here
for backward compatibility, but they would fit better in the MARKED
attribute.

"INVERT"": Inverts the node's marking. Using the
"INVERT 1d" form, where 1d is the node identifier, it is
possible to invert the marking of any node.

"BLOCK"": Marks all nodes between the selected node and the

initial block-marking node (see Navigation / Multiple Marking)
"CLEARALL": Unmarks all nodes

""MARKALL": Marks all nodes

"INVERTALL": Inverts the marking of all nodes
MARKED: The marking state of the selected node. Using the MARKED i d form, where id
is the node identifier, it is possible to retrieve or change the marking state of any node.
Possible values:

"YES'": The node is marked
""NO"": The node is not marked

Returns NULL if the node's id is invalid.
CTRL: Activates or deactivates the Control key function. Possible values:

"YES": Control key activated; allows marking individual nodes
""NO"": Control key deactivated; does not allow marking individual nodes

Default: ""NO"".
SHIFT: Activates or deactivates the Shift key function. Possible values:

"YES'': Shift key activated; allows marking adjacent nodes
""NO"": Shift key deactivated; does not allow marking adjacent nodes

Default: "*NO™.
STARTING: Defines the initial node for the block marking.

The value must be the node identifier.

Default: root node.

Images

155
IMAGELEAF: Defines the image that will be shown for all leaves. Must be a 16x16
image.

IUP name of the image (see lupImage)

Default: ""IMGLEAF".

IMAGEBRANCHCOLLAPSED: Defines the image that will be shown for all collapsed
branches. Must be a 16x16 image.

IUP name of the image (see lupImage)

Default: ""IMGCOLLAPSED™.

IMAGEBRANCHEXPANDED: Defines the image that will be shown for all expanded
branches. Must be a 16x16 image.

IUP name of the image (see lupImage)

Default: '"IMGEXPANDED" .

IMAGE 1d: Defines the image that will be shown on a specific node. Valid for leaves and
for collapsed branches. This attribute must always be used with the id number. This
attribute can only be set. Ex. "IMAGE2".

IUP name of the image (see lupImage)

Default: NULL.
IMAGEEXPANDED i d: Defines the image that will be shown on a specific node. It has no
effect over leaves and is valid for expanded branches. This attribute must always be used
with the id number. This attribute can only be set. Ex. "IMAGEEXPANDED3".

IUP name of the image (see lupImage)

Default; NULL.

Nodes

NAME: Changes or retrieves the name of the selected node. Using the "NAME1d" form,
where 1d is the node identifier, it is possible to change the name of any node.

The value must be a node name.

STATE: Changes or retrieves the state of the selected branch. Using the "STATE1d"
form, where 1d is the node identifier, it is possible to change the state of any branch. This
attribute only works on branches. If it is used on a leaf, nothing will happen. Possible
values:

"EXPANDED"": Expanded branch state (shows its children)
""COLLAPSED"": Collapsed branch state (hides its children)

156
DEPTH: If set, it defines the node's depth. Does not verify is the resulting tree is valid. If

retrieved, it returns the node's depth. Using the "DEPTHid" form, where 1d is the node
identifier, it is possible to refer to any node.

The value must be the node’s depth

KIND: Returns the kind of the selected node. Using the "KINDid" form, where 1d is the

node identifier, it is possible to retrieve the kind of any node. This attribute can only be
retrieved. Possible values:

"“"LEAF"": The node is a leaf
""BRANCH": The node is a branch

PARENT: Returns the identifier of the selected node's parent. Using the "PARENT 1d"
form, where 1d is the node identifier, it is possible to retrieve the identifier of any node.
This attribute can only be retrieved.

COLOR: Color of the provided node. Using the form "COLOR#d", where 1d is the node
identifier, it is possible to set or retrieve the color of any node. The value should be a
string in the format "R G B" where R, G, B are numbers from 0 to 255.

Action

ADDLEAF: Adds a new leaf after the selected node. The id of the new leaf will be the id
of the selected node + 1. The selected node is marked and all others unmaked. The
selected node position remains the same. Using the "ADDLEAF id" form, where id is the
node identifier, it is possible to insert a leaf after any node. In this case, the id of the
inserted node will be 1d + 1. If the specified node does not exist, nothing happens. This
attribute can only be set.

The value must be a leaf name.

ADDBRANCH: Adds a new branch after the selected node. The id of the new branch will
be the id of the selected node + 1. The selected node is marked and all others unmaked.
The selected node position remains the same. Using the "ADDBRANCH1d" form, where
1d is the node identifier, it is possible to insert a branch after any node. In this case, the id
of the inserted node will be 1d + 1. By default, all branches created are expanded. If the
specified node does not exist, nothing happens. This attribute can only be set.

The value must be a branch name.

DELNODE: Removes the marked node (or its children). Using the "DELNODE 1d" form,
where 1d is the node identifier, it is possible to remove any node. The root cannot be

removed. If the specified node does not exist, nothing happens. This attribute can only be
set. Possible values:

""MARKED"": Deletes all marked nodes (and all their children)
"SELECTED": Deletes only the selected node (and its children)
"CHILDREN": Deletes only the children of the selected node
Returns the identifier of the marked node's parent.

REDRAW: Forces an immediate redraw. It is necessary to force a redraw whenever the

157
user adds or removes a node or a branch. The value is ignored.

lupTree Callbacks

SELECTION_CB: Action generated when an element is selected or deselected. This
action occurs when the user clicks with the mouse or uses the keyboard with the
appropriate combination of keys.

int function(lhandle *self, int id, int status) [in C]
elem:selection(id, status: number) -> (ret: number) [in lupLua3]
elem:selection_cb(id, status: number) -> (ret: number) [in lupLua5]

sel T: Identifier of the lupTree interacting with the user.

id: Node identifier.
status: 1 - node was selected, 0 - node was unselected.

This function must return TUP__1GNORE for the selected node not to be
changed, or TUP_DEFAULT to change it.

BRANCHOPEN_CB: Action generated when a branch is expanded. This action occurs
when the user clicks the "+" sign on the left of the branch, or when double clicks the
branch image, or hits Enter on a collapsed branch.

int function(lhandle *self, int id) [in C]
elem:branchopen(id: number) -> (ret: number) [in lupLua3]
elem:branchopen_cb(id: number) -> (ret: number) [in lupLua5]

selT: Identifier of the lupTree interacting with the user.
1d: Node identifier.

This function must return TUP_IGNORE for the branch not to be opened, or
1UP_DEFAULT for the branch to be opened.

BRANCHCLOSE_CB: Action generated when a branch is collapsed. This action occurs
when the user clicks the "-" sign on the left of the branch, or when double clicks the
branch image, or hits Enter on an expanded branch.

int function(lhandle *self, int id); [in C]
elem:branchclose(id: number) -> (ret: number) [in lupLua3]
elem:branchclose_cb(id: number) -> (ret: number) [in lupLua5]

selT: Identifier of the lupTree interacting with the user.
i1d: Identifier of the clicked node.

This function must return 1UP__1GNORE for the branch not to be closed, or
1UP_DEFAULT for the branch to be closed.

EXECUTELEAF_CB: Action generated when a leaf is to be executed. This action occurs
when the user double clicks the leaf image, or hits Enter on a leaf.

int function(lhandle *self, int id); [in C]
elem:executeleaf(id: number) -> (ret: number) [in lupLua3]
elem:executeleaf _cb(id: number) -> (ret: number) [in lupLua5]

158
selT: Identifier of the lupTree interacting with the user.
id: Identifier of the clicked node.

RENAMENODE _ CB: Action generated when a node is to be renamed. It occurs only when
the user double clicks the text associated to a node (leaf or branch).

int function(lhandle *self, int id, char *name); [in C]
elem:renamenode(id: number, name: string) -> (ret: number) [in lupLua3]
elem:renamenode_cb(id: number, name: string) -> (ret: number) [in lupLua

sel T: Identifier of the lupTree interacting with the user.
id: Identifier of the clicked node.
name: Name of the clicked node.

RIGHTCLICK_CB: Action generated when the right mouse button is pressed over the
lupTree.

int function(lhandle *self, int id); [in C]
elem:rightclick(id: number) -> (ret: number) [in lupLua3]
elem:rightclick _cb(id: number) -> (ret: number) [in lupLua5]

sel T: Identifier of the lupTree interacting with the user.
i1d: Identifier of the clicked node.

The canvas callback K_ANY if set will be called before the internal callback. The
lupGetAttribute always returns the internal callback.

The canvas callbacks ACTION, SCROLL CB, MAP CB, RESIZE CBand
BUTTON_CB can not be changed. The other callbacks can be freely changed.

See lupCanvas.

Others

The following controls and utilities are offered in separate libraries:.

e lupGLCanvas

Creates an OpenGL canvas.

e lupLoadlmage

Creates an image from file using the IM library.
lupGLCanvas
Creates an OpenGL canvas (drawing area for OpenGL). It inherits from lupCanvas.

Initialization and Usage

159
The lTupGLCanvasOpen function must be called after a lupOpen, so that the control

can be used. The 1upgl . h file must also be included in the source code. The program
must be linked to the control’s library (1upgl . 1 1b on Windows and Fibiupgl.aon
Unix), and with the OpenGL library.

To make the control available in Lua, use the initialization function in C, gl lua_open,
after calling tuplua_open. The luagl . h file must also be included in the source
code. The program must be linked to the control’s libraries (luagl - 11b on Windows
and Fibluagl -a on Unix).

You will need also to link with the OpenGL libraries. In Windows add: openg132.1i1b
and optionally glu32.1ib or glaux.l1b. In Motif add before the Motif libraries: -
LGLw -LGLU -LGL (in Linux the GLw library is not available in the system so we include
it inside the Tupgl library).

Parameters/Return

Ihandle* lupGLCanvas(char* action); [in C]
iupglcanvas{} -> (elem: iuplua_tag) [in lupLua3]
iup.glcanvas{} -> (elem: iuplua_tag) [in lupLua5]
glcanvas(action) [in LED]

action: Name of the action generated when the canvas needs to be redrawn.

This function returns the identifier of the created canvas, or NULL if an error occurs.

Attributes

The lupGLCanvas element understands all attributes defined for a conventional canvas,
see lupCanvas.

Apart from these attributes, lupGLCanvas understands specific attributes used to define
the kind of buffer to be instanced. Such attributes must be set before the element is
mapped on the screen. After the mapping, specifying these special attributes has no effect.

The specific lupGLCanvas attributes are:

BUFFER: Indicates if the buffer will be single ""SINGLE" or double "'DOUBLE"". Default
is ""SINGLE".

COLOR: Indicates the color model to be adopted: ""INDEX" or ""RGBA™. Default is
"RGBA"™.

BUFFER_SIZE: Indicates the number of bits for representing the color indices (valid
only for INDEX). Default is “8” (256-color palette).

RED_SIZE, GREEN_SIZE and BLUE_SIZE: Indicate the number of bits for
representing each color component (valid only for RGBA). Default is “8” for each
component (True Color support).

ALPHA_SIZE: Indicates the number of bits for representing each color’s alpha
component (valid only for RGBA and for hardware that store the alpha component).

160
Default is "0".

DEPTH_SIZE: Indicates the number of bits for representing the z coordinate in the z-
buffer. Value “0” means the z-buffer is not necessary.

STENCIL_SIZE: Indicates the number of bits in the stencil buffer. Value “O” means the
stencil buffer is not necessary. Default is “0”.

ACCUM_RED_SIZE, ACCUM_GREEN_SIZE, ACCUM_BLUE_SIZE and
ACCUM_ALPHA_SIZE: Indicate the number of bits for representing the color
components in the accumulation buffer. Value “0” means the accumulation buffer is not
necessary. Default is “0”.

STEREQ: Creates a stereo GL canvas (special glasses are required to visualize it
correctly). Possible values: ""YES" or "'NO"'. Default: ""NO"'.

""ERROR™": If an error is found, returns a string containing a description of it.

"CONTEXT™, "VISUAL™" and ""COLORMAP"" - [Motif Only] Returns "GLXContext",
"XVisuallnfo*" and "Colormap™.

"PRINTINFO": [Motif Only] If "1" during the canvas initialization some information
will be printed on stderr.

Callbacks

The lupGLCanvas element understands all callbacks defined for a conventional canvas,
see lupCanvas.

Addicionally:
RESIZE_CB: By default the resize callback sets:
glViewport(0,0,width,height);
Auxiliary Functions
void lupGLMakeCurrent(lhandle* self);

Activates the “sel ¥ canvas. All subsequent OpenGL commands are
directed to such canvas.

void lupGLSwapBuffers(lhandle* self);

Makes the “BACK” buffer visible. This function is necessary when a double
buffer is used.

void lupGLPalette(lhandle* self, int index, float r, float g, float b);

Defines a color in the color palette. This function is necessary when INDEX
color is used.

Comments

161
An OpenGL canvas when put inside an lupFrame will not work.

Examples
See Also

lupCanvas

lupLoadlmage

A function that creates an luplmage from file using the IM library. The function can load
the formats: BMP, JPEG, GIF, TIFF, PNG, PNM, PCX, ICO and others. For more
information about the IM library see http://www.tecgraf.puc-rio.br/im.

Initialization and Usage
To generate an application that uses this function, the program must be linked to the
function’s library (fupim. I'ib on Windows and Iibiupim.a on Unix). The
tupim.h file must also be included in the source code.
To make the function available in Lua, use the initialization function in C,
iupluaim_open, after calling iuplua_open. The tupluaim.h file must also be

included in the source code. The program must be linked to the functions’s libraries
(fupluaim. lib on Windows and I tbiupluaim.a on Unix).

Parameters/Return

lhandle* lupLoadlmage(const char* file name); [in C]
lupLoadImage{file_name: string} -> (elem: iuplua_tag) [in lupLua3]
iup.Loadlmage{file name: string} -> (elem: iuplua_tag) [in lupLua5]

Tile_name: Name of the file to be loaded.
This function returns the identifier of the created image, or NULL if an error occurs.
See Also

luplmage

Third-party

e lupSpeech

Creates a speech engine that allows speech recognition and speech. Uses Microsoft
Speech SDK 5.1.

e Color Bar (Portuguese)

The extended control Colorbar was developed with the purpose of aiding IUP / CD
applications which need to work with a color palette, allowing a selection of up to two

162
colors.

e Joystick (Portuguese) - OLD
Allows the use use of joystick (Windows only).

e Play Video (Portuguese) - OLD

Allows the user to play videos using ITUP (Windows only).

e Capture Video (Portuguese) - OLD

Allows the user to capture frames from cameras, VCRs and TVs (Windows only).
e lupDB (Portuguese) - DISCONTINUED

Associates controls to database fields.

Attributes

Attributes are used to add or remove characteristics to/from elements. Each element has a
set of attributes that affect it, and each attribute can work differently for each element.
Depending on the element, its attribute's value can be computed or simply verified; it can
be internally stored or not.

If an element does not have a given attribute defined, this attribute will be inherited from
its parent. Only a few attributes are not inherited: TUP_TITLE, 1UP_VALUE,
IUP_ALIGNMENT, 1UP_X, IUP_Y, IUP_RASTERSIZE and 1UP_SIZE.

For further information on attributes, see Guide / Attributes.

ATENTION: Not all attributes are listed here. Some are described only in the
documentation of each control.

All

Attributes that affect all elements, or all of the elements with user interaction, or most of
them.

Image

Attributes that affect element lup Image.
Item/Subltem

Affects menu-composition elements 1'tem and Subltem.
List

Attributes that change the functioning of element lupList.

163
Vbox/Hbox/Zbox/Frame

Attributes that affect dialog-composition elements.

Button/Toggle/Label

Attributes that affect buttons, toggles and labels, which are basic elements for
constructing the dialog.

Text

Attributes that affect element lupText, which allows the user to enter data to the
interface.

Multiline

Attributes that affect the lupMulti I 1ne element, which is actually an extension of
lupText, differing only by the number of lines.

Text/Multiline

Attributes that affect both the lupText and lupMultiline elements.
Dialog/Text/Multi./Canvas
Dialog
Canvas/Dialog
Canvas
Canvas/Scrollbar

Attributes for each of such elements.
Global

Element-independent attributes.
Tables

Value tables accepted by certain special attributes.

ACTIVE

Activates or inhibits user interaction.

Value

"YES" (active), ""NO™* (inactive).

164
Default; ""YES"".

Affects

All.

VISIBLE

Shows or hides the element.
Value

"YES" (visible), "'NO* (hidden).

Default: ""YES"
Note

Returns NULL if the element has not yet been mapped.
Affects

All except lupltemand lupSeparator.

BGCOLOR

Element’s background color.
Value
The RGB components. Values should be between 0 and 255, separated by a blank space.
Default: Depends on the native interface system.
Affects
All.

See Also

FGCOLOR

FGCOLOR

Element’s foreground color. Usually it is the color of the associated text.
Value
The RGB components. Values should be between 0 and 255, separated by a blank space.

Default: Depends on the native interface system.

165
Affects

All.

See Also

BGCOLOR

FONT

Character font of the text shown in the element.

Value

Font name. Please refer to the Character Fonts table for a list of the fonts existing in ITUP
drivers.

Default: Depends on the native interface system.

Affects

All elements with an associated text.

Note

To set a font, the user can use one of the font options provided in the Character Fonts
table, or directly use the name of a native font in the driver. Attention: when consulting
this attribute, the user will always be returned the name of the driver font being used, not
the name of the IUP font. To get the name of the IUP font, the user must use the
lupUnMapFont function.

See Also

TITLE, lupMapFont, lupUnMapFont.

EXPAND

Makes the size of an element dynamic. It expands or retracts, fulfilling empty spaces
inside a dialog.

Value
""YES' (both directions), ""HORIZONTAL", ""VERTICAL" or ""NO",

Default: Depends on the element. When not specified otherwise, the default value is
""NO™,

Affects

All that have a visual representation. Does not apply to radio, zbox, vbox, hbox.

166

X
Control's absolute horizontal position on the screen in pixels (relative to the upper left
corner.) This attribute can only be consulted.
Value
Integer number.
Affects
All controls that have visual representation.
Y
Control's absolute vertical position on the screen in pixels (relative to the upper left
corner.) This attribute can only be consulted.
Value
Integer number.
Affects

All controls that have visual representation.

SIZE

Size of the element in units proportional to the size of a character.

Value

"widthxheight", where width and height are integer values corresponding to the
horizontal and vertical size, respectively, in characters. The element may have only one
dimension which is applicable to be modified - for instance, lupText, which has only
width. In this case, the second parameter is ignored and does not need to be passed. You
can also change only one of the parameters by removing the other one and maintaining
"X". For example: "x40" (height only) or "40x" (width only). The other size will be
chosen by IUP depending on the composition elements and on the EXPAND attribute.

Default: Depends on the element and on the element's EXPAND attribute.

Notes
The size observes the following heuristics:

o Width in 1/4's of the average width of a character.
e Height in 1/8's of the average height of a character.

When this attribute is changed, the RASTERS I ZE attribute is automatically updated.

167
When this attribute is changed by means of a call to function lupSetAttribute or

lupStoreAttribute, the size will be the minimum size for the element. If you wish
to use this size only as an initial size, change this attribute to NULL after viewing the
dialog.

Affects
All.

See Also

EXPAND, RASTERSIZE

WID

Element identifier in the native interface system.
Value

Depends on the platform.
Note

Verification-only attribute.
Affects

All.

TIP

Summarized text, usually just a word, identifying the element’s functionality. The text
will be shown when the mouse lies over the element.

Value

Text.

Default: NULL.
Note

Background and foreground colors, and the font used, are predetermined and depend on
the native system.

Affects

All except label, menu itemand submenu item.

RASTERSIZE

168
Specifies the element’s size in pixels.

Value

"widthxheight", where width and height are integer values corresponding to the
horizontal and vertical size, respectively, in pixels.

Default: Depends on the system and on the EXPAND attribute.
Affects

All.
Note

When this attribute is changed, the S1ZE attribute is automatically updated. Please refer
to the notes on the SIZE attribute for further detail.

See Also

SIZE

TITLE

Element’s title. It is often used to modify some static text of the element (which cannot be
changed by the user).

Value
Text.
Default: "™
Affects
All elements with an associated text.

See Also

FONT

VALUE

Affects several elements differently - that is, its behavior is element dependent. It is often
used to change the control's main value, such as the text of a lupText.

For the lupRadio and lupZbox, elements, which are categorized as composition
elements, this attribute represents the element "selected” among the others in the designed
composition. To change this attribute in such cases, different mechanisms are necessary
according to the programming environment used. When the elements taking part in a
composition were created in C, this attribute's contents is a name that must be defined by

169
the lupSetHandl e function. When the elements were created in Lua, this attribute's
contents is the name of a variable - more precisely, the one receiving the return from the
function that created the element you wish to select. In LED it is not possible to
dynamically change the value of any attribute, so the elements created in this environment
must be identified and manipulated in C by means of their identifying name.

HOTSPOT

Hotspot is the position inside a cursor image indicating the mouse-click spot. Its value is
given by the x and y coordinates inside a cursor image.

Value

"X:y", where X and Y are integers defining the coordinates in pixels.
Default: NULL (no hotspot)

Affects
luplmage

See Also

CURSOR

HEIGHT

Image height in pixels. Verification-only attribute.
Value

Integer number.
Affects

luplmage

WIDTH

Image width in pixels. This attribute can only be consulted.
Value

Integer number.
Affects

luplmage

KEY

170
Associates a key to a menu or submenu item. Such key works as a shortcut when the
menu is open.

Value

String containing a key description. Please refer to the Keyboard Codes table for a list of
the possible values.

Default; NULL

Notes

IUP automatically underlines the first appearance of the chosen menu letter. For such, the
chosen letter must necessarily be a part of the menu text.

In the menu bar, some systems automatically associate the ALT+<letter> combination for
the chosen letter. This is valid for the Windows driver, but not for the Motif driver.

Be careful not to misuse this attribute in relation to K_ANY callback.

Affects

lupltem, lupSubMenu.

DROPDOWN

Changes the appearance of the list for the user: only the selected item is shown beside a
button with an arrow pointing down. To select another option, the user must press this
button, which displays all items in the list.

Value
"YES" or ""NO™.
Default: "*NO"*
Notes
This attribute is ignored for multiple lists (attribute MULTIPLE = "YES").

This attribute is only consulted when the dialog is first mapped (lupMap, lupShow,
lupShowXY or lupPopup). After such, it cannot be changed.

Affects

lupList

MULTIPLE

Allows the simultaneous selection of several items. Otherwise, only one item can be
selected at a time.

171
Value

"YES" or ""NO"",
Default; "*"NO™
Affects

lupList

VISIBLE_ITEMS

Number of items that appear when a DROPDOWN list is activated.
Value

Integer number.

Default: Depends on the native system.
Note

Only makes sense when the DROPDOWN attribute is *"YES™".
Affects

lupList

MARGIN

Defines a margin, in pixels, between an element's border and the elements contained by
that element. Valid only for elements that contain other elements.

Value

"widthxheight", where width and height are integer values corresponding to the
horizontal and vertical margins, respectively.

Default: 0X0 (no margin).
Affects

lupZbox, lupHbox, lupVBox, lupFrame.

ALIGNMENT

Defines the elements' alignment. Values vary according to the elements.

The default value, when it is not specified in an element, is ""ACENTER™.

172
Affects

lupZbox, lupHbox, lupVBox, lupFrame, lupLabel.

GAP

Defines the space, in pixels, between the interface elements.
Value

Any integer number.

Default: "0"

Affects

lupHbox, lupVBox

IMAGE

Bitmap image. Must be created with function lup Image.
Value

Name of an image.

Default: NULL.
Note

The definition after mapping is only assured if the image has the same size as the image it
is replacing.

Affects
lupButton, lupToggle, lupLabel.
See Also

luplmage

IMINACTIVE

Image of the element when the ACT I'VE attribute equals ""NO™*. Must be created using
function lTupImage.

Value

Name of an image.

173
Default; NULL.

Affects
lupButton, lupToggle.
See Also

luplmage

IMPRESS

Image of the element while the user keeps the left mouse button pressed over it. Must be
created with function lupImage.

Value
Name of an image.
Default: NULL.
Note

When IMPRESS and IMAGE are defined, IUP does not show the element's borders to
provide a 3D effect. The user must define the borders on the image.

Affects
lupButton, lupToggle.
See Also

luplmage

NC

Maximum number of characters.
Value
Positive integer number.

Default; 32767

Affects

lupList, lupText, lupMultiline

APPEND

174
Inserts a text at the end of the current text, independently from the caret's position.

In the Multiline, a "\n" character will be automatically inserted.
Value

Any text.
Note

Only works if the element is mapped.

Affects

lupList, lupMultiline, lupText

CARET

Places the insertion point in a text-edition field. The first line and the first column begin
at 1.

Value (Multiline)

String with the "line,column” format, where line and column are integer numbers
corresponding to the caret's position.

Default: "1,1" (first character in the first line).

Value (Text,List)
String in the "pos" format. Pos is an integer number corresponding to the caret's position.
Default: "1" (first character).

Note
When the value set for the line is greater than the number of lines, the caret is placed after
the last line (only multiline). When the value set for the column is greater than the

number of characters in a line, the caret is placed after the last character in the line.

Affects

lupList, lupMultiline, lupText

INSERT

Inserts a text in the caret's position.
Value

Any text, even with "\n' characters indicating line change.

175
Affects

lupList, lupMultiline, lupText

READONLY

Defines whether an element can be entered text or not.

Value

"YES" or ""NO""
Default; "*"NO™
Note

Even though this attribute prevents the user from editing text, it allows the user to use the
navigation keys (right, left, etc.).

Affects

lupList, lupMultiline, lupText

SELECTION

Modifies or returns the selection of a text-edition field.
Value Multiline)

Atextinthe"linl,coll:1in2,col2" format, where Iinl, coll, 1in2 and col2
are integer numbers corresponding to the selection's interval. The first position is "1".

Default: "1,1:1,1"
Value (Text,List)

A text in the "beg:end" format, where beg and end are integer numbers corresponding
to the selection's interval.

Default; "1:-1".
Affects

lupList, lupText, lupMultiline

SELECTEDTEXT

Modifies or consults the selected text.

Value

176
Text.

Note

The text is modified even if the element uses the READONLY attribute.

Affects

lupList, lupText, lupMultiline

BORDER

Shows a border around the element.

Value

“YES" or ""NO"".
Default; ""YES"".

Note

In some elements, such as lupDialog, this attribute is only consulted when the element
is first mapped (LupMap, lupShow, TupShowXY or lupPopup). After this, it cannot
be changed.

Affects

lupDialog, lupText, lupMultiline, lupCanvas.

ICON

Dialog's icon.

Value
Name of a IUP image.

Default; NULL

Note

Icon sizes are usually less than or equal to 32x32. On Windows, names of resources
(.RES) linked to the application are also accepted. On Motif, it only works with some
window managers, like mwm and gnome. Icon colors can have the BGCOLOR values, but
it works better if it is at index 0.

The Windows SDK recomends that cursors and icons should be implemented as resources
rather than created at run time.

Affects

177
lupDialog

MAXBOX

Requests a maximize button from the window manager.
Value
"YES" or "'"NO™.
Default: ""YES"
Note
This attribute is only consulted when the dialog is first mapped (lupMap, lupShow,

lupShowXY or lupPopup). After such, it cannot be changed. On Motif, it only works
if the active window-management system is mwm.

Affects

lupDialog

MINBOX

Requests a minimize button from the window manager.
Value
"YES" or ""NO™.
Default: ""YES"'
Note
This attribute is only consulted when the dialog is first mapped (lupMap, lupShow,

lupShowXY or lupPopup). After such, it cannot be changed. On Motif, it only works
if the active window-management system is mwm.

Affects

lupDialog

MENUBOX

When set, this attribute shows the menu box in a dialog title area.

Value

“YES" or ""NO"".

178
Default; ""YES™

Note

This attribute is only consulted when the dialog is first mapped (lupMap, lupShow,
lupShowXY or lupPopup). After such, it cannot be changed. On Motif, it only works
if the active window-management system is mwm.

Affects

lupDialog

RESIZE

Allows interactively changing the dialog's size.
Value
"YES" or ""NO™.
Default: ""YES"
Note
This attribute is only consulted when the dialog is first mapped (lupMap, lupShow,

lupShowXY or lupPopup). After such, it cannot be changed. On Motif, it only works
if the active window-management system is mwm.

Affects

lupDialog

MENU

Associates a menu to the dialog.
Value

Name of a menu-type interface element.
Affects

lupDialog

STARTFOCUS

Name of the dialog's element that must receive the focus right after the dialog is opened.

Value

179
Name of an element.

Affects

lupDialog

PARENTDIALOG

The dialog that specifies this attribute is treated as the child dialog of the specified value.
Value

Name of a IUP dialog.

Default: NULL.

Note

This behavior is system dependent, but usually what happens is: this dialog does not
move behind its PARENTDIALOG, even if the user clicks the PARENTDIALOG. If the

PARENTDIALOG is minimized, this dialog is automatically hidden.

Affects

lupDialog

DEFAULTENTER

Name of the default button activated when the user hits ENTER on a dialog.
Value

Identifier of a button.

Default: NULL.
Affects

lupDialog

DEFAULTESC

Name of the default button activated when the user hits ESC on a dialog.

Value
Identifier of a button.

Default: NULL.

Affects

180
lupDialog

SHRINK

If this attribute is defined, the elements will try to adjust even when the dialog's size is
smaller than its minimum limit.

Value
“YES" or ""NO"".

Default; ""NO"".

Notes
When the user changes the size of the dialog, the elements are automatically re-
distributed inside the dialog. Some elements even have their size changed if the EXPAND
attribute is active. When this size is smaller than a minimum limit in which all elements
still fit the dialog, the elements' distribution is no longer modified. Actually, the virtual

size of the dialog remains larger than its actual size on the screen, and some elements to
the right are hidden by the borders.

The SHRINK attribute offers an alternative to this behavior. It makes the elements
continue to rearrange, even if they must overlap.

The results of this new rearrangement may vary according to the elements' distribution on
the dialog.

Affects

lupDialog

FILE

Filename initially shown in the dialog's "File Name" field. If the user clicks OK, this
attribute will contain the filename selected by the user.

Value
Any text.
Default: NULL
Affects

lupFileDlg

FILTER

File filter.

181
Value

String containing a list of file filters valid in the native system, separated by '; ' without
spaces.

Default: NULL.
Example
"*_C;*.LED;teste.™"
Affects

lupFileDlg

FILTERINFO

Filter description.
Value

Any text.

Default: NULL.
Affects

lupFileDlg

DIRECTORY

Initial directory.
Value
Any text.
Default: NULL (dialog opens current directory).

Note: on Windows98 and Windows2000, if the current directory does not have files
corresponding to the chosen filter, the directory opened will be "My Documents".

Affects

lupFileDlg

ALLOWNEW

Indicates if inexistent filenames are accepted. If an inexistent filename is chosen, a
message box will be shown.

182
Value

"YES" or ""NO"",

Default: if the dialog is of type ""OPEN"", default is ""NO""; if the dialog is of type
"SAVE", default is ""YES"".

Affects

lupFileDlg

NOCHANGEDIR

Indicates if the initial directory is to be restored after the user has navigated.

Value

"YES™ or "'NO™".
Default; ""YES"".
Affects

lupFileDlg

FILEEXIST

Indicates whether the file defined by the FILE attribute exists or not. It is only valid if the
user has pressed OK in the dialog. Can only be consulted.

Value

"YES" or "'NO™.
Default: ""YES" or "'NO"" if the user presses OK; otherwise NULL.
Affects

lupFileDlg

CURSOR

Defines the element's cursor.
Value

Name of a cursor predefined by IUP:

"NONE"
"ARROW"

183
"BUSY"
"CROSS"
"HAND" (*)
"TUP™ (%)
"MOVE"
"PEN" (*)
"RESIZE_N"
"RESIZE_S"
"RESIZE_W"
"RESIZE_E"
"RESIZE_NE"
"RESIZE_SE"
"RESIZE_NW"
"RESIZE_SW"
"TEXT"

Default; "ARROW"

(*) To use these cursors on Windows, the lup.rc file, provided with IUP, must be added to
the project.

It can receive as a parameter the name of an image, to be used as an application-defined
cursor (the cursor must be a lupImage, but the image is not a regular one. See the notes
below).

Notes

For the image to represent a cursor, it must use attribute HOTSPOT to define its hotspot
(place where the mouse click is actually effective). Only color indices 0, 1 and 2 can be
used in a cursor, where 0 will be transparent. The RGB colors corresponding to indices 1
and 2 are defined just as in regular images. In Windows the cursor can have more than 2
colors. Cursor sizes are usually less than or equal to 32x32.

In the interface system, the cursor will only change when the interface system regains
control.

The Windows SDK recomends that cursors and icons should be implemented as resources
rather than created at run time.

When the cursor image is no longer necessary, it must be destroyed through function
lupDestroy. Attention: the cursor cannot be in use when it is destroyed.

Affects

lupDialog, lupCanvas

See Also

luplmage

CONID

184
Canvas identifier for GKS/puc. This attribute's value must be passed as a connection
identifier when opening a IUP-type workstation. It can only be consulted.

Affects

lupCanvas

SCROLLBAR

Associates a horizontal and/or vertical scrollbar to the canvas.

Value
"VERTICAL"™, "HORIZONTAL", "YES" (both) or **NO"* (none).
Default: ""NO**

Notes

The scrollbar allows you to create a virtual space associated to the canvas. In the image
below, such space is marked in red, as well as the attributes that affect the composition of
this space. In green you can see how these attributes are reflected on the scrollbar.

Hence you can clearly deduce that POSX is limited to XMIN and XMAX-DX, or
XMIN<=POSX<=XMAX-DX.

When the virtual space has the same size as the canvas, DX equals XMAX-XMIN, and at
this moment the scrollbar could be hidden, as it is not useful (this behavior occurs only

for the Win32 driver).
xMmiN POBX px XMAX
4 3
[
Affects
lupCanvas
POSX

Thumbnail position in the horizontal scrollbar in any unit.

Value

Any floating-point value. Must be a value between XMIN and XMAX-DX.

185
Default: "0.0"

Note
When the canvas is visible, a change in POSX generates a redraw in the horizontal
scrollbar on the screen. This attribute does not generate a redraw of the canvas. Shall the
user need this, he/she must call a redraw callback.

Affects
lupCanvas

See Also

SCROLLBAR

POSY

Thumbnail position in the vertical scrollbar in any unit.
Value
Any floating-point value. Must be a value between YMIN and YMAX-DY.
Default: "0.0"
Note
When the canvas is visible, a change in POSY generates a redraw in the vertical scrollbar
on the screen. This attribute does not generate a redraw of the canvas. Shall the user need
this, he/she must call a redraw callback.
Affects
lupCanvas

See Also

SCROLLBAR

DX

Size of the horizontal scrollbar's thumbnail in any unit.
Value

Any floating-point value greater than zero and smaller than the difference between XMAX
and XMIN.

Default:: "0.1".

186
Note

A change in these values will only be effective after attribute POSX or POSY has been
changed.

Affects
lupCanvas

See Also

SCROLLBAR

DY

Size of the vertical scrollbar's thumbnail in any unit.
Value

Any floating-point value greater than zero and smaller than the difference between YMAX
and YMIN.

Default:: "0.1".
Note

A change in these values will only be effective after attribute POSX or POSY has been
changed.

Affects
lupCanvas

See Also

SCROLLBAR

XMAX

Maximum value of the horizontal scrollbar, in any unit.
Value

Any floating-point value.

Default: "1.0"
Note

A change in this value will only be effective after attribute POSX or POSY is changed.

187
Affects

lupCanvas

See Also

SCROLLBAR

XMIN

Minimum value of the horizontal scrollbar, in any unit.
Value

Any floating-point value.

Default: "0.0"
Note

A change in this value will only be effective after attribute POSX or POSY is changed.

Affects
lupCanvas

See Also

SCROLLBAR

YMAX

Maximum value of the vertical scrollbar, in any unit.
Value
Any floating-point value.

Default; "1.0"

Note

A change in this value will only be effective after attribute POSX or POSY is changed.
Affects
lupCanvas

See Also

SCROLLBAR

188
YMIN

Minimum value of the vertical scrollbar, in any unit.

Value
Any floating-point value.

Default; "O0.0"

Note

A change in this value will only be effective after attribute POSX or POSY is changed.

Affects
lupCanvas

See Also

SCROLLBAR

Global Attributes
All the attributes are for verification only.
VERSION
Returns the name of IUP's version.
Value
The value follows the "major.minor.driver" format, major referring
to broader changes, minor referring to smaller changes and corrections, and
driver referring to changes in the respective driver. Ex.: "1.7.2".
COPYRIGHT
Returns the IUP's copyright.
Value
Ex: "Copyright (C) 1994-2004 Tecgraf/PUC-Rio and PETROBRAS S/A™.
DRIVER
Informs the current driver being used.
Value

Two drivers are available now, one for each platform: "MOT I F" and

189
"WIN32",

SYSTEM
Informs the current operating system.

Value

On UNIX, it is equivalent to the command ""'uname -s' (sysname). On
Windows, it identifies if you are on NT, WinXP or 98.

Several values can be provided:

"Linux"
"Sun0Ss"
"Solaris"
"IRIX"
"ALX"
"Win95"
"Win950SR2"
"Win98"
"Win98SE"
"WinMe"
"WinNT"
"Win2K"
"WinXP"

SYSTEMVERSION
Informs the current operating system version.
Value
On UNIX, it is equivalent to the command "‘uname -r" (release).

On Windows, it identifies the system version with build number and service
pack version.

SCREENSIZE
Returns the screen size in pixels. In Windows it excludes the task bar area.
Value
String in the "widthxheight" format.
SCREENDEPTH
Returns the screen depth in bits per pixel.

LOCKLOOP

190
Locks the loop even when an all dialogs have been closed. Possible values: "YES" or
IINOII.

CURSORPOS

This attribute programaticaly changes the cursor position. Accept values in the format
"poshxposv”, example “200x200", in absolute coordinates relative to the upper left corner
of the screen.

COMPUTERNAME

Returns the hostname.
USERNAME

Returns the user logged in.

Keyboard Codes

The table below shows the IUP codification of every key in the keyboard. Each key is
represented by an integer value, defined in the Tupkey . h file, which must be included
in the application.

IUP uses the US default codification this means that if you installed a keyboard specific
for your country the key codes will be different from the real keys for a small group of
keys. For the Brazilian ABNT keyboard the keys ", ', ~¢,1.}.[.{,", , usually will have a
different codification. But this does not affect the lupText and lupMultiline text input.

Notice that somes key combinations are not available, like: Shift+Ins, Shift+Del,
Alt+Space, Alt/Ctrl/Shift+Backspace, Alt/Ctrl/Shift+Pause, Alt/Ctrl/Shift+Esc,
Ctrl/Alt+Enter. When CapsLock is active the Shift+<Key> combination is used, except
for Esc and Backspace that will ignore the combination.

The isxkey(key) macro defined in the iupkey . h file informs whether a given key
is an extended code instead of an alphanumeric key.

In IUP the codification implies that some keys have the same code: K_BS=K_cH,
K_TAB=K_cl and K_CR=K_cM.

Key ACo_de / Key Code / Key Cod
ttribute Attribute Attrik

SPACE K_SP Alt-A K_mA Ctrl-SPACE K_cSP

I K_exclam Alt-B K_mB Ctrl-A K_cA

" K_quotedbl Alt-C K_mC Ctrl-B K _cB

K_numbersign Alt-D K _mD Ctrl-C K cC

$ K _dollar Alt-E K_mE Ctrl-D K _cD

191

% K_percent Alt-F K_mF Ctrl-E K_cE
& K _ampersand Alt-G K_mG Ctrl-F K _cF
' K _quoteright Alt-H K_mH Ctrl-G K _cG
(K _parentleft Alt-1 K_ml Ctrl-H K_cH
) K_parentright Alt-J K _mJ Ctrl-I K _cl
* K _asterisk Alt-K K_mK Ctrl-J K cJ
+ K_plus Alt-L K_mL Ctrl-K K_cK
, K_comma Alt-M K_mM Ctrl-L K _cL
- K_minus Alt-N K_mN Ctrl-M K_cM
K _period Alt-O K_mO Ctrl-N K_cN
/ K_slash Alt-P K_mP Ctrl-O K_cO
0 K_O Alt-Q K_mQ Ctrl-P K_cP
1 K_1 Alt-R K_mR Ctrl-Q K_cQ
2 K_2 Alt-S K_mS Ctrl-R K_cR
3 K_3 Alt-T K_mT Ctrl-S K_cS
4 K_4 Alt-U K_muU Ctrl-T K_cT
5 K_S Alt-V K_mV Ctrl-U K_cU
6 K_6 Alt-wW K_mW Ctrl-v K_cV
7 K_7 Alt-X K_mX Ctrl-w K_cW
8 K_8 Alt-Y K_mY Ctrl-X K_cX
9 K_9 Alt-Z K_mZ Ctrl-Y K_cY
K_colon Alt-1 K_ml Ctrl-Z K_cZ
: K _semicolon Alt-2 K _m2 Ctrl-Tab K_cTAl
< K_less Alt-3 K_m3 Ctrl-Home K_cHO!
= K _equal Alt-4 K _m4 Ctrl-UP K_cUP
> K_greater Alt-5 K_m5 Ctrl-PgUp K_cPGl
? K_question Alt-6 K_m6 Ctrl-LEFT K_CLEI

192

@ K_at Alt-7 K_m7 Ctrl-MIDDLE || K_cMII
A K_A Alt-8 K_m8 Ctrl-RIGHT | K_CRI
B K_B Alt-9 K_m9 Ctrl-END K_CENI
C K_C Alt-0 K_mO Ctrl-DOWN | K_cDO\
D K_D Alt-Tab K_MTAB Ctrl-PgDn K_cPGI
E K_E Alt-Home | K_mHOME Ctrl-Insert K_CIN
F K_F Alt-UP K_mUP Ctrl-Del K_cDEI
G K_G Alt-Pgup | K_mPGUP Ctrl-F1 K_cF1
H K_H AIt-LEFT | K_mMLEFT || ctrl-F2 K_cF2
| K_I Alt-RIGHT | K_mRIGHT || Ctrl-F3 K_cF3
J K_J Alt-END K_mEND Ctrl-F4 K_cF4
K K_K Alt-DOWN | K_mDOWN | | Ctrl-F5 K_cF5
L K_L Alt-PgDn | K_mPGDN Ctrl-F6 K_cF6
M K_M Alt-Insert | K_mINS Ctrl-F7 K_cF7
N K_N Alt-Del K_mDEL Ctrl-F8 K_cF8
0 K_O Alt-F1 K_mF1 Ctrl-F9 K_cF9
P K_P Alt-F2 K_mF2 Ctrl-F10 K_cF1(
Q K_Q Alt-F3 K_mF3 Ctrl-F11 K_CcF1:
R K_R Alt-F4 K_mF4 Ctrl-F12 K_cF1.
S K_S Alt-F5 K_mF5

T K_T Alt-F6 K_mF6

U K_U Alt-F7 K_mF7

\Y} K_V Alt-F8 K_mF8

W K_W Alt-F9 K_mF9

X K_X Alt-F10 K_mF10

Y K_Y Alt-F11 K_mF11

z K_Z Alt-F12 K_mF12

K _bracketleft

K_backslash

K _bracketright

K _circum

K _underscore

K_quoteleft

K_a

K_b

K c

K_d

K_e

K_f

K_g

K_h

K_1

K_J

K_k

K_1

K. m

K n

K o

K_p

K_q

Kr

K s

K_t

K u

193

v K v

W K w

X K X

y Ky

4 K z

{ K_braceleft
| K_bar

} K _braceright
~ K_tilde
ESC K_ESC
Enter K_CR
BackSpace || K_BS
Insert K_INS

Del K_DEL
Tab K_TAB
Home K_HOME
uP K_UP
PgUp K_PGUP
LEFT K_LEFT
MIDDLE | K_MIDDLE
RIGHT K_RIGHT
END K_END
DOWN K_DOWN
PgDN K_PGDN
Pause K_PAUSE
F1 K_F1

F2 K_F2

194

F3 K F3
F4 K_F4
F5 K_F5
F6 K_F6
F7 K_F7
F8 K _F8
F9 K_F9
F10 K_F10
F11 K_F11
F12 K_F12

Character Fonts

195

"HELVETICA_NORMAL_8"

"COURIER_NORMAL_8"

"TIMES_NORMAL_8"

"HELVETICA_ITALIC_8"

"COURIER_ITALIC_8"

"TIMES_ITALIC_8"

"HELVETICA_BOLD_8"

"COURIER_BOLD_8"

"TIMES_BOLD_8"

"HELVETICA_NORMAL_10"

"COURIER_NORMAL_10"

"TIMES_NORMAL_10"

"HELVETICA_ITALIC_10"

"COURIER_ITALIC_10"

"TIMES_ITALIC_10"

"HELVETICA_BOLD_10"

"COURIER_BOLD_10"

"TIMES_BOLD_10"

"HELVETICA_NORMAL_12"

"COURIER_NORMAL_12"

"TIMES_NORMAL_12"

"HELVETICA_ITALIC_12"

"COURIER_ITALIC_12"

"TIMES_ITALIC_12"

"HELVETICA_BOLD_12"

"COURIER_BOLD_12"

"TIMES_BOLD_12"

"HELVETICA_NORMAL_14"

"COURIER_NORMAL_14"

"TIMES_NORMAL_14"

"HELVETICA_ITALIC_14"

"COURIER_ITALIC_14"

"TIMES_ITALIC_14"

"HELVETICA_BOLD_14"

"COURIER_BOLD_14"

"TIMES_BOLD_14"

Events

IUP is a graphic-interface library, so most of the time it waits for an event to occur, such

196
as a button click or a mouse leaving a window. The user can inform IUP that he/she
wishes callbacks to be called, informing that en event has taken place. For further
information on callbacks, see Guide / Events.

Attention: in a callback if one of the parameters is a string, this string may be modified
during the callback if another IUP function (such as lupGetAttribute) is called.

ACTION

Action generated when the element is activated. Affects each element differently.

Callback

int function(lhandle *self); [in C]
elem:action() -> (ret: number) [in lupLua]

sel F: identifier of the element that activated the function.

In some elements, this callback may receive more parameters, apart from sel f. Please
refer to each element's documentation.

Affects

lupButton, lupltem, lupList, lupText, lupCanvas,
lupMultiline, lupToggle

BUTTON_CB

Action generated when a mouse button is pressed or released.

Callback

int function(lhandle* self,int but,int pressed,int x,int y,char* status); [in
elem:button(but, pressed, X, y: number, status: string) -> (ret: number) [in
elem:button_cb(but, pressed, x, y: number, status: string) -> (ret: number) [

sel F: identifies the canvas that activated the function's execution.
but: identifies the activated mouse button:

IUP_BUTTONL1 left mouse button (button 1);
1UP_BUTTONZ2 middle mouse button (button 2);
1UP_BUTTONS right mouse button (button 3).

pressed: indicates the state of the button:

0 mouse button was released;
1 mouse button was pressed.

X, Y:position in the canvas where the event has occurred, in pixels.
status: status of the mouse buttons and some keyboard keys at the moment the event is
generated. The following macros must be used for verification:

197
isshift(status)
iscontrol (status)
isbuttonl(status)
isbutton2(status)
isbutton3(status)
isdouble(status)

They return 1 if the respective key or button is pressed, and O otherwise.

Affects

lupCanvas, lupButton

CLOSE_CB

Called just before a dialog is hidden due to some action over it - for example, double
clicking the system's menu box, usually located to the left in the title bar.

Callback

int function(lhandle *self); [in C]
elem:close() -> (ret: number) [in lupLua3]
elem:close_cb() -> (ret: number) [in lupLua5]

Returning 1UP_IGNORE, it prevents the dialog from being hidden. If you destroy the
dialog in this callback, you must return 1UP_IGNORE.

Affects

lupDialog

DEFAULT_ACTION

Predefined IUP action, generated every time an action has no associated function.

Callback

int function(lhandle *self); [in C]
[There is no Lua equivalent]

sel F: identifier of the element that activated the function.

Note

Often a programmer defines an action with a name and, when associating it to a function,
he/she mistypes the action name, or vice-versa. This kind of mistake is very common, and
IUP is not able to automatically detect it. The predefined 1UP_DEFAULT_ACTION
action, combined with function lupGetActionName, can help the programmer detect
this problem. All you have to do is define a default action and verify which is the name of
the action that activated it.

Affects

198

Global callback.

See Also

lupSetFunction, lupGetActionName.

ENTERWINDOW_CB

Action generated when the mouse enters the canvas.

Callback

int function(lhandle *self); [in C]
elem:enterwindow() -> (ret: number) [in lupLua3]
elem:enterwindow_cb() -> (ret: number) [in lupLua5]

sel T: identifier of the canvas the mouse has entered.

Affects
lupCanvas

GETFOCUS_CB

Action generated when an element is given keyboard focus. This callback is called after
the KILLFOCUS_CB.

Callback

int function(lhandle *self); [in C]
elem:getfocus() -> (ret: number) [in lupLua3]
elem:getfocus_cb() -> (ret: number) [in lupLua5]

sel T: identifier of the element that received keyboard focus.

Affects
All elements with user interaction, except menus.

See Also
KILLFOCUS CB

HELP CB

Action generated when the user press F1 at a control. In Motif is also activated by the
Help button in some workstations keyboard.

Callback

void function(lhandle *self); [in C]
elem:help() -> (ret: number) [in lupLua3]

199
elem:help_cb() -> (ret: number) [in lupLua5]

self: identifier of the element that received keyboard focus.
Affects

All elements with user interaction.

HIGHLIGHT_CB

Callback triggered every time the mouse pointer hovers an lupltem.

Callback

int function(lhandle *self); [in C]
elem:-highlight() -> (ret: number) [in lupLua3]
elem:highlight_cb() -> (ret: number) [in lupLua5]

Comments
This callback should not be used with popup menus.
Affects

lupltem

IUP_IDLE_ACTION

Predefined IUP action, generated when there are no events.
Callback

int function(); [in C]
Note

Often used to perform background operations. For example, a time-consuming drawing
operation may allow the user to take a decision before the operation is over.

Lua Binding
To modify this action, function lupSetldle(myfunction) must be used. Use

iup.Setldle(myfunction) in lupLua5. Using ni 1 as a parameter removes the
association.

Examples
Affects
Global callback.

See Also

200
lupSetFunction.

K_ANY

Action generated when a keyboard event occurs.

Callback

int function(lhandle *self, int c); [in C]
elem:k_any() -> (ret: number) [in lupLua]

sel T: identifier of the element where the user typed something.
c: identifier of typed key. Please refer to the Keyboard Codes table for a list of possible

values.

If the function returns TUP__IGNORE, the system will ignore the typed character. If the
function returns the code of any other key, IUP will treat this new key instead of the one
typed by the user.

If the function returns TUP_CONT INUE, the event will be propagated to the parent of the
element receiving it.

Notes

All defined keys are also callbacks of any element, called when the respective key is
activated. For exemple: "K_cC" is also a callback activated when the user press Ctrl+C. A
shortcut key or hot key can also be associated to any existing callback, either in a menu or
any other element, using this same mechanism. These callbacks do not work in TupLua.

The K_ANY callback is a callback that depends on the keyboard focus and the keyboard
usage of the control with the focus. It is usually only set for dialogs, but if a control set
the K_ANY callback the dialog callback will only be called if the control callback returns
IUP_CONTINUE.

Also some keys may not activate the callback since they are reserved keys, like Enter and
Esc.

Affects

All.

KEYPRESS_CB

Action generated when a key is pressed or released. If the key is pressed and held several
calls will occur.

Callback

int function(lhandle *self, int c, Int press); [in C]
elem:-keypress(c, press: number) -> (ret: number) [in lupLua3]
elem:keypress_chb(c, press: number) -> (ret: number) [in lupLua5]

sel T: identifier of the element.

201
c: identifier of typed key. Please refer to the Keyboard Codes table for a list of possible
values.
press: 1is the user pressed the key or 0 otherwise.

This function may return 1UP_CLOSE.
Affects

lupCanvas.

KILLFOCUS_CB

Action generated when an element loses keyboard focus. This callback is called before
the GETFOCUS_CB.

Callback

int function(lhandle *self); [in C]
elem:killfocus() -> (ret: number) [in lupLua3]
elem:zkillfocus_cb() -> (ret: number) [in lupLua5]

selT: identifier of the element that lost keyboard focus.
Affects
All elements with user interaction, except menus.

See Also

GETFOCUS_CB

LEAVEWINDOW_CB

Action generated when the mouse leaves a canvas.

Callback

int function(lhandle *self); [in C]
elem:leavewindow() -> (ret: number) [in lupLua3]
elem: leavewindow_cb() -> (ret: number) [in lupLua5]

sel T: identifier of the canvas the mouse left
Affects

lupCanvas

MAP CB

Called right after an element is mapped.

Callback

202
int function(lhandle *self); [in C]
elem:mapcb() -> (ret: number) [in lupLua3]
elem:map_cb() -> (ret: number) [in lupLua5]

Affects

lupDialog, lupCanvas

MENUCLOSE_CB

Called just before a submenu is closed.

Callback

int function(lhandle *self); [in C]
elem:menuclose() -> (ret: number) [in lupLua3]
elem:menuclose_cb() -> (ret: number) [in lupLua5]

Comments
Does not work for popup menus.

Affects

lupMenu, lupSubMenu

MOTION_CB

Action generated when the mouse moves.

Callback

int function(lhandle *self, int x, int y, char *r); [in C]
elem:motion(x, y: number, r: string) -> (ret: number) [in lupLua3]
elem:motion_cb(x, y: number, r: string) -> (ret: number) [in lupLua5]

sel T: identifier of the canvas that activated the function's execution.

X, Y: position in the canvas where the event has occurred, in pixels.

r: status of mouse buttons and certain keyboard keys at the moment the event was
generated. The following macros must be used for verification:

isshift(r)
iscontrol(r)
isbuttonl(r)
isbutton2(r)
isbutton3(r)
isdouble(r)

Affects

lupCanvas

203
OPEN_CB

Called just before a submenu is opened.

Callback

int function(lhandle *self); [in C]
elem:open() -> (ret: number) [in lupLua3]
elem:open_cb() -> (ret: number) [in lupLua5]

Comments
Does not work for popup menus.

Affects

lupMenu, lupSubMenu

RESIZE CB

Action generated when the canvas size is changed.

Callback

int function(lhandle *self, int width, int height); [in C]
elem:resize(width, height: number) -> (ret: number) [in lupLua3]
elem:resize_cbh(width, height: number) -> (ret: number) [in lupLua5]

sel T: identifier of the canvas that activated the function's execution.
width: new canvas width, in pixels.
height: new canvas height, in pixels.

Note

This action is also generated right after the dialog is viewed by means of functions
lupShow, lupShowXY or lupPopup.

In Windows, it is also generated after a map and before show.

Affects

lupCanvas
SCROLL_CB

Called when some manipulation is made to the scrollbar. When this attribute is defined,
the ACTION callback is not called in such cases.

Callback

int function(lhandle *self, int op, float posx, float posy); [in C]
elem:scroll(op, posx, posy: number) -> (ret: number) [in lupLua3]

204

elem:scroll_cb(op, posx, posy: number) -> (ret: number) [in lupLua5]

op: indicates the operation performed on the scrollbar.
If the manipulation was made on the vertical scrollbar, it can have the following values:

IUP_SBUP - line up

IUP_SBDN - line down
IUP_SBPGUP - page up
IUP_SBPGDN - page down
IUP_SBPOSV - vertical position
IUP_SBDRAGV - vertical drag

If it was on the horizontal scrollbar, the following values are valid:

IUP_SBLEFT - collumn left
IUP_SBRIGHT - column right
IUP_SBPGLEFT - page left
IUP_SBPGRIGHT - page right
IUP_SBPOSH - horizontal position
IUP_SBDRAGH - horizontal drag

posx, posy: the same as the ACTI0N canvas callback (corresponding to the values of
attributes 1UP_POSX and 1UP_POSY).

Affects

lupCanvas

SHOW CB

Called right after the dialog is opened, minimized or restored from a minimization.

Callback

int function(lhandle *self, int mode); [in C]
elem:showcb(mode: number) -> (ret: number) [in lupLua3]
elem:show_cb(mode: number) -> (ret: number) [in lupLua5]

Parameter mode indicates which of the following situations generated the event:
O - Show, 1 - Restore, 2 - Minimize.
Affects

lupDialog

WHEEL_CB

Action generated when the mouse wheel is rotated. If this callback is not defined the
wheel will automatically scroll the canvas in the vertical direction by some lines, the
SCROLL_CB callback if defined will be called with the IUP_SBDRAGYV operation.

Callback

205

int function(lhandle *self, float delta, int x, int y, char *r); [in C]
elem:wheel(delta, x, y: number, r: string) -> (ret: number) [in lupLua3]

elem:wheel_cb(delta, x, y: number, r: string) -> (ret: number) [in lupLua5]

sel T: identifier of the canvas that activated the function's execution.

delta: the amount the wheel was rotated in notches.

X, Y: position in the canvas where the event has occurred, in pixels.

r: status of mouse buttons and certain keyboard keys at the moment the event was
generated. The following macros must be used for verification:

isshift(r)

iscontrol(r)
isbuttonl(r)
i1sbutton2(r)

i1sbutton3(r)
isdouble(r)

Notes

In Motif delta is always 1or -1. In Windows is some situations delta can reach the value
of two. In the future with more precise wheels this increment can be changed.

The wheel will only work if the focus is at the canvas.
Affects

lupCanvas
WOM_CB

Action generated when an audio device receives an event.

[WINDOWS DRIVER ONLY]

Callback

void function(lhandle *self, int v); [in C]
(not implemented in Lua)

where v is -1, 0, 1 meaning closing, ending and opening respectively.

Affects

lupCanvas

Drivers

IUP’s ability to work in several platforms is due to the existence of individually
implemented drivers for different platforms.

Motif Driver

206
Driver for the X-Windows/Motif environment.

Environment Variables

QUIET

When this variable is set, IUP does not generate the message indicating the
driver’s version when initializing.

DEBUG

This variable’s existence makes the driver operate in synchronous mode with
the X server. This slows down all operations, but allows immediately
detecting errors caused by X.

Exclusive Attributes
MOTIFVERSION (global)
Returns the version of the run time Motif.

TRUECOLORCANVAS (global)

Indicates if the display allows creating TrueColor (> 8bpp) windows, even if
PseudoColor is the default. Returns ""YES™ or ""NO™.

AUTOREPEAT (global)

Turns on/off ("'YES' or **NO'") the autorepeat of keyboard keys in the
whole system - may be used as an optimization in high performance
applications.

XDISPLAY (all)

Returns a Display™, indicating the control’s X display. It is a verification-
only attribute, available after the control is mapped.

XWINDOW (all)

Returns a Window, indicating the control’s X window. It is a verification-
only attribute, available after the control is mapped.

XSCREEN (all)

Returns a Screen™*, indicating the control’s X screen. It is a verification-
only attribute, available after the control is mapped.

MOTIF_FONT (all)

This attribute, as well as FONT, can be used to change a control’s font. Is
should not be used, being specified only to keep compatibility. To change a
control’s font, use FONT,

207
Differentiated Attributes

ENTERWINDOW_CB/ LEAVEWINDOW_CB (all)

The same callback available for CANVAS can be used for other elements.

1CON (DIALOG)

This attribute’s value must be a string containing the name of the ITUP image
to be used as an icon when the dialog is minimized. The current window
manager will determine how, or if, the icon will be displayed.

ID

This attribute returns a Widget which identifies the Intrinsics control. It is a
verification-only attribute, available after the control is mapped.

CURSOR (all menus and submenus)

This attribute can be used in other elements as well as the canvas and dialog.

Window Manager Dependent Attributes

The attributes below can have different behaviors depending on the window manager
controlling the display where the application is being viewed. They are typically
attributes that control dialog visual characteristics, since these are drawn by the window
manager.

MAXBOX (DIALOG)
MINBOX (DIALOG)
MENUBOX (DIALOG)
RES1ZE (DIALOG)
BORDER (DIALOG)
1CON (DIALOG)

Differentiated Functions

lupFlush

Does not always work. If there is an example sent by the X server which is
not yet in the event queue, after a call to lupF lush the queue might not be

empty.
Default VValues — Resource Files

Some default values used by the driver, such as background color, foreground color and
font, can be set by the user by means of a resource file called Tup. It must be in the user’s
home or in a directory pointed to by the XAPPLRESDIR environment variable. Below

you can see an example of this file’s contents:

*background: #Ff0000
*foreground: #aOff00
fontList: -misc-fixed-bold-r-normal--13-*

208
The values used in the example above are the ones used by IUP if these resources are not
defined.

Generating Applications

IUP/Motif is composed by two libraries: tupmot and 1up. They use the Motif (Xm),
Xtoolkit (Xt) and Xlib (X11) libraries. To link an application to IUP, use the following
options in the linker call (in the same order):

-liup -IXm -IXmu -IXt -IX11 -Im

Though these are the minimum requirements, depending on the platform other libraries
might be needed. Typically, they are X extensions (Xext), needed in SunOS, and Xpm,
needed in Linux. They must be listed after Xt and before X11. For instance:

-liup -IXm -IXmu -IXt -IXpm -1Xext -I1X11 -Im
Usually these libraries are placed in default directories, being automatically located by the

linker. When the linker warns you about a missing library, add their location directories
with option -L. In Tecgraf, some machines require such option:

Padrio -L/usr/lib -1/usr/include

Linux -L/usr/X11R6/1ib -1/usr/X11R6/include

IRIX -L/usr/1ib32 -1/usr/include/X11

Solaris -L/usr/openwin/lib -1/usr/openwin/share/include/X11
AlIX -1/usr/include/Motif2.1

In systems that support dynamic libraries, the library name is Fibiup.so. To force a
link with static libraries in these systems, use option —static. In this case, the library
name will be libiup.a.

Following are some makefile suggestions. All of them can be used in SunOS (Sun), IRIX
(Silicon) and AIX (IBM) systems. For Linux, - 1Xpm must be added at the end of the
SYSLIBS variable.

o Simple Makefile
This makefile can be used to generate simple applications which use only 1UP.
o Makefile for IUP with CD
For applications that use the CD graphics system.
o Makefile to generate several versions
This makefile is a base to generate several versions of the application, one for each
platform. Each version is stored in a separate directory, managed by the makefile.

The available IUP binaries and the tests were done in the following systems:

e Linux24 = Red Hat 7.3 (i686) / Kernel 2.4.18-27.7.x / gcc
2.95.3 / Motif 2.1.30

e Linux24g3 = Red Hat Fedora (i686) / Kernel 2.4.22-1.2199 / gcc
3.3.2 / Motif 2.2.2

o AIX43 = IBM AIX 4.3 / gcc 2.95.2 / Motif 2.1.0
e IRIX65 = SGI IRIX 6.5 / gcc 3.0.4 / Motif 2.1.20
e IRIX6465 = SGI IRIX 6.5 (64 bits 0S, but libs are still 32

bits) / gcc 3.0.4 / Motif 1.2.4
e IRIX6465cc = SGI IRIX 6.5 (") / cc MIPSpro 7.30 / Motif 1.2.4

Tips

209
e Sun0S57

e Sun0S58

Sun Solaris 7 (sparc) / gcc 2.95.2 / Motif 2.1.0
Sun Solaris 8 (sparc) /7 gcc 2.95.3 /7 Motif 2.1.0

During linking in the Solaris environment: Can not find libresolv.so.2
This error occurs if the system does not have an applied patch containing this library.

This library is important for all installations of Solaris 2.5 and 2.5.1 (SunOS 5.5 and
5.5.1, respectively). It is a correction of the DNS system, involving security.

The web address to get these patches is SunSolve’s
http://sunsolvel.sun.com/sunsolve/pubpatches/patches.html. Select the Solaris version
you wish (2.5 or 2.5.1 for Sparc) and download the patches 103667-09, 102980-17,
103279-03, 103708-02, or more recent for 2.5 (the number after the *-’ is the patch
version, and the more recent number is the patch), or 103663-12, 103594-14, 103680-02
and 103686-02 for 2.5.1. All of them have a README file explaining installation, and
groups have to be installed together.

TrueColor canvas

Whenever a canvas is created, one tries to create it with a TrueColor resolution Visual.
This is not always possible, since it is subject to many conditions, such as hardware
(graphics board) and the X server’s configuration.

The xdpy info program informs which Visuals are available in the X server where the
display is being made, so that you can see if your X allows creating a canvas with a
TrueColor Visual. In some platforms, however, the X server may not make a TrueColor
Visual available, even though the graphics board is able to display it. In this case, restart
the server with parameters that force this. Below is a table with such parameters to some
systems where the 1UP library has been tested. If the command does not work, or if it is
not possible, then the graphics library really does not support 24 bpp.

System | Execution Command

Linux |startx --bpp 24

AlX (not necessary)

IRIX | (not necessary)

Solaris | (not necessary)

Since color requests are “always” successful in TrueColor/24bpp windows, we have
minimized visualization problems for images that make use of complex color palettes
(when there is a high color demand, not always all colors requested can be obtained). The
IUP applications also coexist more “peacefully”” with other applications and among
themselves, since the colors used by TrueColor/24bpp windows do not use the colormap
cells used by all applications.

XtAddCallback failed

When a warning about XtAddCallback appears during the application inicialization, and
it aborts, this means that you are using a Motif with a different version than the Motif

210
used to build IUP. Reinstall Motif or rebuils IUP using your Motif.

Win32 Driver

This driver was designed for the modern Microsoft Windows in 32 bits (98/2000/XP).
Environment Variables

VERSION

When this variable is set, IUP generates a message indicating the driver's
version when initializing.

Exclusive Attributes
HINSTANCE (global)

This attribute returns a handle (HINSTANCE) that identifies the application
in the native system. It is a verification-only attribute.

SYSTEMLANGUAGE (global)

Return respectively a text with a description of the system language.
WIN_DEFAULTFONT (global)

Stores the name of the default font used in the interface controls.
SHIFTKEY (global)

Returns the state of the Shit keys (left and right). Possible values: "ON" or
"OFF".

CONTROLKEY (global)

Returns the state of the Control keys (left and right). Possible values: "ON"
or "OFF".

WINFONT (all)

This attribute is still used to maintain compatibility with previous versions.
Use attribute FONT.

This attribute's value must be a string with the following format:
"name:attributes:size”

name: The name the user will see (Times New Roman, MS Sans
Serif, etc.).

attributes: Can be empty, or a list separated by commas
with the following names: BOLD 1TALIC UNDERLINE
STRIKEOUT

211
size: Size in pixels

Examples:

"Times New Roman::10"
"Ms Sans Serif:ITALIC:20"
"Courier New:BOLD,STRIKEOUT:15"

Differentiated Attributes

1CON (DIALOG)

This attribute's value must be a string with the name of a lup image or an
icon in a Windows resource file linked to the application. This icon will be
used when the dialog is minimized.

If a lup image with a name associated to this attribute exists, it will be used
to define the dialog's icon. The lup images used as icons must necessarily
have 32x32 points. If there is no lup image whose name was passed to the
attribute, lup will look for a native icon (Windows) linked to the program.

=
O

This attribute returns a handle (HWND) that identifies the window in the

native system. It is a verification-only attribute, only available after the
control is mapped.

Exclusive Callbacks
DROPFILES_CB (DIALOG, CANVAS)

Callback called when a file is "dragged” to the application. When several
files are dragged, the callback is called several times, once for each file. The
callback must return TUP_DEFAULT to be called again for each of the

dragged files. Returning 1UP_IGNORE, the process is interrupted.

int function(lhandle *self, char* filename, int numFile, iInt posx,

sel T: Indicator of the element that received the file drop.

Ti1lename: Name of the dragged file.

numFi le: Number of the dragged file. If several files are dragged,
numFi le counts the number of dragged files up to zero.

posx: X coordinate of the point where the user released the mouse button.
posy: Y coordinate of the point where the user released the mouse button.

Note: The callback must be set before the element is mapped.
Generating Applications

To link applications, libraries tup. 1ib, ole32_11b and comctl32.1ib (the last
two provided with the compilers) must be added.

DLL

212
The 1up . rc resource file must be included in the application's project/makefile so that
HAND, IUP, PEN and SPLI1TH cursors can be used.

To use DLL, it is necessary to link the application with the TUP . Lib and

IUPSTUB. L1b libraries (for technical reasons, these libraries cannot be unified). Note
that ITUP _ 11D is a library specially generated to work with tup.dll, and is usually
distributed in the same directory as 1up -d1 1. the IUP DLL depends on the
MSVCRT.DLL, that it is already installed in Windows.

For the program to work, TUP .d 'l must be inside a PATH directory. Usually the
program does not need to be relinked when the DLL is updated.

Debug Versions

Tips

While using the debug version, two types of fatal errors can occur:

1) Protection errors: "Unhandled exception: access violation"
2) Assertive errors: "Assertion failed!"

In the second type, a dialog is shown with buttons Abort, Retry and Ignore, as well
as a number of information, among which:

+ Name of the font file where the error occurred
+ Line number

The bug-correction process (if it exists) becomes a lot faster when this information is
provided. Therefore, if you receive such error, please send this information along in the e-
mail.

e On Windows a common error occurs: "Cannot find function InitCommonCtrl
()" This error occurs if you forgot to add the comct132. L'ib library to be linked
with the program. This library is not usually in the libraries list for the Visual C++,
you must add it.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /RunLengthEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

