

University of Detroit Mercy

College of Engineering and Science

Electrical & Computer Engineering Department

Mechanical Engineering Department

Detroit, Michigan

EE Design (EE 401-403)/Prototype ME 493

Date of Submission: August 12, 2005

Electrical Engineers: Mechanical Engineers: Grad Students:
Ryan Davis Chris Collins Bryan Grider
Reta Elias Brian Cook Lei Wang
Ono Okagbare Jean Harris
Chris Scott Edgar Mabson
Leonard Tomaj
Josh Vetter

Faculty Advisors:

Dr. Mohan Krishnan, Professor of Electrical Engineering
Dr. Sandra Yost, Associate Professor of Electrical Engineering
Dr. Nassif Rayess, Assistant Professor of Mechanical Engineering

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

1

2005 – Hephaestus
Final Report Outline

Abstract 5

1.0 Introduction 5
 1.1 Problem Statement 5
 1.2 Project Requirements (IGVC Rules) 6
 1.3 Performance Specification 8

2.0 Design Planning/Team Organization 12
 2.1 2003/2004 Team Development 12
 2.2 2004/2005 Team Development 12

3.0 Vehicle & Subsystems Description 13

3.1 General Vehicle Overview 14
 3.1.1 Vehicle Architecture 15
 3.1.2 Lower Platform 15

 3.1.2.1 Drive Train 16
 3.1.2.2 Wheels 17
 3.1.2.3 Battery Tray Design 18
 3.1.2.4 Motors 18

 3.1.2.4.1 Drive Motor 18
 3.1.2.4.2 Steering Motor 19

3.1.3 Upper Platform 20
 3.1.3.1 Electronics & layout 20
 3.1.4 Mast 22
 3.1.4.1 Communication between platforms 23
 3.1.4.2 Camera tower 23
 3.1.4.3Wireless router tower 23
 3.1.4.4 E-stop LED Mount 24
 3.1.5 Stability 24
 3.1.5.1 Mass of Vehicle 25
3.2 Electrical System 25
 3.2.1 Motion Controller 25

 3.2.1.1 Selection Process 25
 3.2.1.2 Roboteq Capabilities 26
 3.2.1.3 Hephaestus Roboteq Configurations 26
 3.2.1.3.1 Serial Control-Run Utility 27
 3.2.1.3.2 Serial Control-Autonomous 29

3.2.1.3.3 Remote Control 31
3.2.2 Steering & Drive Encoders 32
3.2.3 E-stop 32
 3.2.3.1 Manual E-stop 32
 3.2.3.2 Wireless E-stop 33
 3.2.3.3 Audio E-stop 34

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

2

 3.2.3.3.1 Problems 37
 3.2.3.3.2 Suggestions/Recommendations 38
3.2.4 Electrical Box 38
3.2.5 Power System 42
 3.2.5.1 Lower Power Distribution 43
 3.2.5.2 Upper Power Distribution 44
 3.2.5.3 Battery Life 44
3.2.6 Computers 45
 3.2.6.1 Image Processing Computer 46
 3.2.6.2 Navigation & Control Computer 46

3.3 Sensory System & software 47
 3.3.1 Vision System 47
 3.3.1.1 Camera 47
 3.3.1.2 Image Processing Software 48
 3.3.2 LADAR System 49

 3.3.3 Navigation Strategy – Autonomous Challenge 50
 3.3.3.1 Algorithm Diagram 50

 3.3.4 Obstacle Detection 52
 3.3.5 Speed/Steering Control 53
 3.3.6 Diagnostic software 56
 3.3.6.1 Encoder Readings 57
 3.3.6.2 Current readings 58
 3.3.6.3 Battery Voltage Readings 59
 3.3.7 Data Logging 60
 3.3.8 Turn Counter 61
 3.3.9 Navigation-GPS 62

4.0 Operation & Maintenance 63

4.1 Startup manual 63
 4.1.1 Rs232 Roborun 63
 4.1.2 Matlab (autonomous) 64
 4.1.3 Remote Control 64

 4.2 Maintenance 65
4.2.1 Battery Removal & charging 65

4.2.1.1 Lower Batteries 65
4.2.1.2 Upper Batteries 66

4.2.2 LADAR Swap 66
 4.2.3 Reloading Code 67
 4.2.4 Replacement of Parts 67

4.2.4.1 Encoder Replacement 67
4.2.4.2 Circuit Repair 68
4.2.4.3 Chain, Sprocket, Motors 69

5.0 Critical Evaluation of Design 72

6.0 Component Cost & Info 72

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

3

7.0 Conclusion 72

APPENDICES

Appendix A – Manuals
 1-Roboteq Manual

2-Roboteq Quick Start Manual
3-LADAR Manual

Appendix B – Spec Sheets
 1-DeWalt Drive Motor Spec Sheet
 2-AME Steering Motor Spec Sheet
 3-CUI Optical Encoders Spec Sheet

4-Camera Spec Sheet
5-Wheels

Appendix C – Software
 1-Overall Simulink File

2-Image Processing Algorithm Simulink File
2M-Image Processing Algorithm m files

3-LADAR Simulink File
3M-LADAR m File

4-Navigation Algorithm Simulink file
4M-Navigation Algorithm m files

5-Speed/Steering Control Algorithm Simulink files
5M-Speed/Steering Control Algorithm m files

6-Obstacle detection LED Display Simulink files
6-Obstacle detection LED Display m files

7-Diagnostic Simulink file
7M-Diagnostic m files

8-Data Logging files

9:1-Encoder_Counter m file
9:2- Angle Counter Simulink File
9M-Angle Counter m File

10- Data Link files

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

4

Appendix D – Other
 1-Gantt Chart

 2-Failure Mode Effects Analysis
3-Contact Information

Appendix E – Reports/Presentations

 2004 Hephaestus Report
2005 IGVC Report
2005 IGVC Presentation

Appendix F – Website
Appendix G – Photos
Appendix H– Schematics

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

5

2005 Hephaestus Design Report

ABSTRACT
The following document serves to detail the conceptual, design, and physical work completed on

the University of Detroit Mercy Hephaestus vehicle platform. Hephaestus has served as the

platform for a multi-year, multi-discipline effort to compete in the Intelligent Ground Vehicle

Competition. This vehicle was created in 2004, including initial design and partial construction.

During the past two term of the 2005 school year, the design and construction have been refined

and reworked. Additionally, the control and sensory systems have been implemented. It is

expected that another multi-disciplinary team will continue work on Hephaestus during the 2006

terms. This team shall remedy the issues mentioned in this document, and prepare Hephaestus

for competition in the 2006 Intelligent Ground Vehicle Competition.

Currently all systems of the vehicle are intact; however several are in need of work to allow for

proper operation. Specifically, the greatest downfall of the Hephaestus platform has been the

drive train. It is expected that the 2006 team should redesign the drive and steering mechanisms

to allow for optimal, omni-directional operation.

While Hephaestus was able to perform limited autonomous activity at IGVC, this may no longer

be the case when the 2006 team begins initial work. However; the level of work completed in

2005 should ensure that the following team is able to successful prepare the Hephaestus vehicle

for the 2006 Intelligent Ground Vehicle Competition. Figure 1- The Hephaestus

1.0 Introduction
1.1 Problem Statement

This year marks the second phase of work on the

Hephaestus autonomous vehicle platform shown in

Figure 1. With the chassis designed and built in the

first phase, the goal of this phase is to improve the

reliability of the drivetrain and complete the electrical

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

6

systems. In short, the goal for the second phase is to fully complete the vehicle in preparation for

entry into the 13th Annual Intelligent Ground Vehicle Competition. The Hephaestus team

consists of 12 engineering students, including 2 Masters students. The six EE students are

responsible for all of the electrical systems of the vehicle. One of the EE Masters students leads

the Image Processing effort, and the other, Navigation. The four ME students have the

responsibility of ensuring that the drivetrain functions properly, and that all components are

mounted securely.

1.2 Project Requirements (IGVC Rules)

The Hephaestus vehicle platform and sensory and control systems have been designed to both

comply with the IGVC rules and to produce an advanced autonomous vehicle. As described in

the 2005 IGVC Rules, the vehicles must:

• Vehicles must be fully autonomous during each heat of the competition. The team may

physically, mechanically, or electrically control the vehicle to the starting line; however,

once the signal to begin the heat begins, no member of the team may control the vehicle

in any manner other than to stop the vehicle and end the heat.

• The vehicle must make direct contact with the ground as its means of propulsion. Any

part of the vehicle that makes contact with the ground is defined as the vehicle’s

mechanical footing. Examples include:

o Wheels.

o Tracks.

o Pods.

• The vehicle will be expected to negotiate around an outdoor obstacle course. Figure 2

shows a possible example of a course segment. Obstacles include:

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

7

o Full-size orange and white construction barrels.

o Tall orange construction cones

o Construction A-Frame barricades

o Five-gallon white pails.

o Two-inch deep by two-foot diameter potholes. (These may be driven through

with a considerable point deduction for each occurrence.)

o Boundaries consisting of two three-inch lines painted on the grass and spaced ten

feet apart. These may be either white or yellow, with occasional gaps in the lines.

(Vehicles may cross a line, resulting in a point deduction, so long as some portion

of the vehicle's mechanical footing remains in bounds.)

o

Figure 2 – Image of construction barrel and paint lines (Image by Team Hephaestus)

• The vehicle must be able to negotiate grass, sand, dirt, and a ramp with a maximum 15%

grade. The sand may be two to three inches in depth. These conditions may be dry or

wet.

• The vehicle must travel at a speed of at most 5 mph.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

8

• For safety purposes, the vehicle requires a wireless emergency stop (E-stop) mechanism

and a manual E-stop system. These systems must bring the vehicle to a complete stop

within six feet on inclines up to 15%.

o The wireless must operate at a minimum of 50 feet away.

o The manual must be operated by the depression of a one-inch red button located

at the rear of the vehicle between two and four feet from the ground.

• The vehicle dimensions are as follows:

o Length—between three and nine feet.

o Width—between three and five feet.

o Height—between zero and six feet (this does not include an antenna).

• The vehicle must be capable of negotiating an 5-foot turning radius.

• The vehicle may operate on combustible fuel or electric power. All vehicles must be

safety inspected on a simulation course.

• Each vehicle will be required to carry a 20-pound payload on top. Because this payload

may also contain a camera for the judges, its view should be unobstructed.

• The vehicle must be operational under conditions of light rain.

1.3 Performance Specification

Analysis of vehicles from past IGVC competitions led the team to develop a series of

specifications which would ensure that our vehicle had an appropriate design. By identifying the

key features of successful vehicles, we were able create unique solutions to the many difficulties

of the competition.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

9

1. Sensory — The sensory system of the vehicle is essential for lane and obstacle detection.

As the sensory system’s ability to detect lanes and obstacles increases, the need for

vehicle agility decreases. This relationship exists as a result of being forced to move the

vehicle more quickly if objects are not detected until they are right next to or in front of

the vehicle. Conversely, if obstacles are detected a considerable distance away from the

vehicle, it would be able to react in a slower manner while still avoiding the obstacle.

2. Traction — The vehicle must be able to traverse a variety of terrains (grass, sand, ramp,

dirt—wet or dry).

3. Turning — The vehicle needs to accurately negotiate the path that is determined by the

navigation system. Agility becomes important when sensory systems are less accurate.

4. Stability — The vehicle must be designed with a low center of gravity and a wide

wheelbase in order to avoid becoming unstable under any circumstances that may be

encountered throughout the course. A possible ramp represents the only portion of the

track where the vehicle is not traversing flat ground. There also exists the possibility of

the vehicle partially “missing” the ramp, or falling from the ramp in which case stability

is crucial to ensure there is minimal damage to the vehicle.

5. Reaction Time — The vehicle must be able to process sensory inputs and make

appropriate adjustments in speed and direction rapidly enough so as to ensure safe

navigation through the course at an appropriate speed.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

10

6. Dimensions — The vehicle must have dimensions that allow maneuverability up ramps,

through sandpits, and around all obstacles.

7. Battery Life — There must be enough battery capacity to enable the vehicle to complete

the entire course. Batteries must be accessible enough to be changed within the five-

minute window between heats.

8. Speed — The competition vehicle must be able to travel fast enough to complete the

course within the maximum allotted time. The winner of the competition is the vehicle

that completes the course the fastest. Therefore it is desired to go at the maximum speed

of 5 mph while still maintaining reliable reaction time.

9. Reverse — In the event that the vehicle drives into a trap, as seen in Figure 3, it must be

able to go in reverse if it does not have a 0° turning radius.

Figure 3 – Diagram of possible obstacle traps on IGVC course (Image from IGVC.org)

10. Modularity — In the event of failure or damage at the competition, easy exchange of key

components within the five-minute window between runs will be crucial. The LADAR

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

11

must be shared with other UDM teams. The mounting system must be designed around

this.

11. Mechanical Reliability — Designs that include mechanical systems that are prone to

failure must be avoided.

12. Mechanical Manufacturing — Designs that include mechanical components that will be

difficult and time consuming to manufacture must be avoided.

13. Ease of control — An intuitive and reliable method of controlling speed and direction

should be incorporated in the design of the vehicle.

14. Cost — Due to the fact that this is a budgeted project, the cost of potential designs must

be weighed against their functional advantages.

15. Design Ingenuity — The quality and creativity of the design will determine the success in

the design competition of the IGVC. Therefore, aesthetics of design will be nearly as

important as functionality.

Adherence to the Intelligent Ground Vehicle Competition rules and a strict application of these

performance specifications will ensure not only successful completion of the first phase of the

design, but also in turn will lead to the fulfillment of the goals of this project in its entirety.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

12

2.0 Design Planning/Team Organization
2.1 2003/2004 Team Development

The development of Hephaestus started during the 2003-2004 academic year by a team of

mechanical and electrical engineering seniors. Detailed study of the rules, published competitors

reports, and previous results were analyzed to determine the design attributes of the “winning”

vehicle. This team started the research, and designed and built the mechanical systems, including

the frame and drive train. Unfortunately not much time was left to startup with the electrical

systems or to test or improve upon the Mechanical parts. The 2004 Hephaestus report is

available in Appendix E:1.

2.2 2004/2005 Team Development
The 2005 Hephaestus team is interdisciplinary and composed of senior Electrical & Mechanical

Engineering students, as well as graduate Electrical Engineers. The team has an elected leader

and is advised by three faculty members. The organization chart is displayed in Figure 4 below.

Figure 4- Team Organization Chart

The 2004-2005 Hephaestus teams’ focus has been on improving the mechanical system,

completing the electrical system and software algorithms, and building a competition-ready

vehicle. Each person was given a primary task as well as additional minor tasks. The graduate

students were primarily responsible for the image processing and navigation systems. A Gantt

chart was created and followed in order to maintain a steady schedule and to meet all deadlines.

A copy of the Gantt chart can be found in Appendix D:1.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

13

Many resources were available to aid our team in this design and implementation process. The

same resources as well as new ones will be available to aid the coming senior class as well as

other future students. Mainly the manuals found in the appendices will help as well as product

websites, Matlab and Simulink help menus, books and professors. Also professional engineers

did help such as Stematt, who is a Simulink expert as well as our graduate students. The list

below in Table 1 indicates which student worked in what system along with their email address

incase further help is needed given that the other available resources are not enough.
Table 1-System_Contact Person

Name Major System Task E-Mail
Josh Vetter Computers

Data Logging
joshjv@yahoo.com

Reta Elias Speed/Steering control
Diagnostic Software
Roboteq
Encoders

Rere0282@aol.com

Leonard Tomaj RC Controller
Electric Box
Power System

tomajl@sbcglobal.net

Ryan Davis Roboteq
Encoders

ryan_davis2437@hotmail.com

Chris Scott E-Stop scottc@tacom.army.mil
Ono Okagbara LED software/hardware

Camera
onoerhime@yahoo.com

Brian Grider LADAR
Navigation

bryan.grider@gmail.com

Lei Wang Image Processing ray2005@gmail.com
Chris Collins ME’s – Drivetrain, Motors ps2man32@yahoo.com
Brian Cook ME’s – Catia, Drivetrain, Brianjcook@hotmail.com
Jean Harris ME’s – Platforms, Drivetrain bldypr3@yahoo.com
Levar Mabson ME’s– Battery Tray, Drivetrain var_1097@yahoo.com

3.0 VEHICLE & SUBSYSTEMS DESCRIPTION

3.1 General Vehicle Overview

The main design features of Hephaestus are its two platforms and its three articulating wheel

hubs that turn simultaneously to produce a zero turn radius. In this manner, the vehicle can

translate in any direction allowing for absolute freedom of movement. The design of the wheel

assemblies will be described in detail later, but the important feature is the mechanical coupling

throughout the drive and steering systems. Two gear motors run the driving and steering

functions of the vehicle. As a result, a relatively simple motion controller with two input and

two output channels could be used to effectively control the speed and direction of the vehicle.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

14

Hephaestus uses a single color camera and a laser distance sensor to obtain information about its

environment. Using this information, image analysis and a fuzzy logic-based navigation strategy

are implemented in a Matlab-Simulink environment running on a laptop PC. Using the resultant

navigation output, steering & speed commands are executed via a laptop PC controlling the

dedicated motion controller.

3.1.1 Vehicle Architecture

The chassis of the Hephaestus vehicle shown in Figure 5 is composed of two octagonal shaped

platforms with the lower one supporting the mechanical components (i.e. chain and sprocket

drive system) and the upper supporting the electrical components (i.e. laptops, power and control

boxes). These two platforms are connected via a hollow shaft that also functions as a raceway

for wires, which power most of the electrical systems including the camera. The camera is

mounted on the highest point of the vehicle mast. The vehicle is supported by three pairs of

wheels arranged in a triangular pattern. In each pair of wheels, one is driven by the motor while

the other wheel serves to improve stability of the

vehicle. The electrical platform is slightly smaller

than the mechanical platform. The mechanical

platform has a width of 38 in at the shortest section,

which complies with the dimension criteria set forth

by IGVC. The upper platform, housing most of the

electrical systems, is designed to rotate about the

center shaft synchronously with the wheel assembly.

This allows the vehicle to always face forward, so

that the LADAR and camera can detect obstacles and

determine the best course for the vehicle to drive

through.
Figure 5 – Catia 3D Model

The platforms are constructed using 30mm x 30mm Bosch aluminum extrusions. The “skin” of

the electrical platform was formed out of alumalite. Alumalite is a man-made material

consisting of one corrugated sheet of a polymer plastic sandwiched between two sheets of

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

15

aluminum. This material is much stronger and aesthetically more appealing than the sheets of

aluminum used prior to the 2005 design.

3.1.2 Lower Platform

The drive train components, including the steering and drive motors, are mounted on the lower

platform. This platform is supported by a triangular wheel pattern consisting of three wheel

“pods”.
 Figure 6 – Drive Train Configuration

3.1.2.1 Drive Train

Two motors are used to control this vehicle. A

drive motor controls the speed and a steering

motor controls the angular position of the

wheels. Figure 6 displays an AutoCAD model

of the top view of the lower platform. The drive

chain is shown in blue and the steering chain is

shown in red. Note that the red chain is

wrapped around the center shaft, which causes

the upper platform to rotate with the wheels.

Refer to the 2004 Hephaestus report (P28-30) in Appendix E:1 for more information on the drive

train design.

The idea behind the drive train is relatively simple. The idea is to have a single motor drive three

different shafts, with a two to one ratio. The three shafts will then drive three other shaft,

perpendicular to them, driving the wheels. This is the idea that was used for the setup of the

drive system. However, it did not end up quite this simple. The final drive train setup had the

motor driving a shaft single shaft through chain. This single shaft was connected to the drive

shaft in the three wheel pods via a different chain. There was a two to one ratio between the

drive shaft in the pods and the drive shaft that was connected to the motor. Each shaft in the

pods, was connected by bevel gears to a shaft perpendicular to the drive shafts. The wheels were

then connected to these shafts. There was also a tensioner on the chain in an effort to keep the

drive chain from skipping on the gears under acceleration and to dampen chain harmonics.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

16

The pre-existing design of the chain and sprocket system did not work because it created slack in

the chains and never fully engaged each sprocket. To improve upon this design, an idler was

removed, the chain was rerouted and a chain tensioner was added. A drive shaft was then put

into place to connect the chain to the motor. This drive shaft then drove the chain which drove

the rest of the shafts. The ratio from the motor to the drive shaft was 1:1, and the ratio between

the drive shaft and the other shafts is 2:1. This reduces the speed to make sure the vehicle will

stay within the speed limits required by IGVC officials and also provide more torque to help

move the vehicle.

3.1.2.2 Wheels

It is important to note that the configuration of the wheels chosen by last year’s team was

strongly influenced by the ramp. A plane is defined by three points; therefore, a three-wheeled

vehicle will always travel on a plane, even as it begins to

climb a ramp. It will always have three points of contact,

which keeps it stable at all times. The three wheeled

configuration is illustrated in Figure 7. On the contrary, if

a four-wheeled (diamond configuration) vehicle were to

begin climbing a ramp with only one wheel facing

forward, it would force the vehicle to tip to either its left

or right wheel in order to reestablish a three points of

contact, meaning the vehicle will no longer be stable.
 Figure 7 – Wheel Configuration

In addition to making sure the vehicle is stable by calculating the center of gravity, maximum

acceleration and turning rates. Last year’s team added three extra wheels to increase stability

even more as depicted by the wheel configuration in Figure 7, where each wheel pod consists of

a pair of wheels, one is driven, the other is free-wheeling. As can be seen in Figure 8, the worst-

case scenario distance, d, increases when three extra wheels are added to the three-wheel

configuration. In doing this, however, the problems that can only come from such a

configuration surfaced. Since only three points are required to make a plane the drive wheels

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

17

often were not in contact with the ground surface due to inconsistencies in the surface. In order

to resolve this, the idler wheels were lathed so that approximately 0.75” were removed from the

diameter of the wheels. This allowed for all three of the drive wheels to be in contact with the

ground at all times yet still allowed the idler wheels to provide stability in extreme circumstances

when needed.

Figure 8 - Three Wheels vs. Six Wheels

 Figure 9 –Wheel Pod Schematic

The steering motor rotates the entire wheel pod assemblies.

As seen from Figure 9, the wheel pods have two separate

sprockets connected to two separate chain drives. The top

sprocket connects the drive motor to the vertical drive shaft

which in turn drives the wheel through a bevel gear. The

bottom sprocket connects to the steering motor and in

effect serves to turn the entire wheel pod, thus orienting the

wheels in the direction of motion.

3.1.2.3 Battery Tray Design

The battery tray shown in Figure 10 is designed to hold two 12v car batteries connected in series.

It is also required to be housed below the lower platform in order to help lower the center of

gravity of the vehicle and must be able to be quickly removed and changed. It also must be in

contact with two electrical leads that would allow them to provide power to the vehicle. The

dimensions of the battery tray itself although being

large enough to contain the two batteries, is small

enough to keep the tray from interfering with the

motion of the wheel pods and to ensure that it

remains clear of any protrusions from the ground that

would hinder or possibly stop the vehicle. Figure 10 –Battery Tray

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

18

For quick removal and exchange, drawer sliders were initially used to slide the tray under the

vehicle into contact with the electrical leads. However, there was some question regarding the

strength and durability of such a system so a new one was implemented. Nylon channels were

cut and bolted into the frame of the vehicle to provide tracks for on which the battery tray can

slide unto. These were reinforced by steel in order to ensure the strength of the system. After

this system was perfected it greatly reduced the time required to change battery trays and made

use of the tray and lead system already in place.

A locking mechanism was also required to ensure that the tray would not accidentally slide out

of contact with the electrical leads or fall off of the vehicle. In order to resolve this difficulty,

two holes were drilled into the handle of the battery tray. When the battery tray was properly in

place, these two holes lined up with matching holes on the outer frame of the vehicle. This

allowed for two bolts to be slid into place and wing nuts could be tightened in order to ensure

that they did not move.

3.1.2.4 Motors

The motors were selected based on function (gearing, self-locking, etc.) and performance

(horsepower, stall torque and RPM). Sufficient power ensures that the vehicle is capable of

moving at a speed of 5 mph up the maximum incline of 15%. Stall torque calculations take into

account the motor’s ability to propel the vehicle from a stationary position up the incline. Motor

RPM is used in conjunction with gearing and wheel size to ensure that the vehicle can achieve

the intended speed of 5 mph. Refer to the 2004 Hephaestus report (P21-27) in Appendix E:1 for

more information on the selection process. The spec sheets can be found in Appendix B.

3.1.2.4.1 Drive Motor

Using the vehicle parameters and requirements, the drive motor selected was the Dustin 2, a

modified DeWalt drill motor with the following specifications: 24V, 50.4:1 Gear Ratio, 450

RPM, 0.98 HP and 62.14 Nm Stall Torque.

The drive motor proved to provide enough power to climb over obstacles. However, a few

problems were encountered with the motor. The biggest problem was with the gears inside the

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

19

drive motor. The motor when driven produced a horrible grinding noise and vibration, along

with a very slow rotation. It is not known whether or not the motor came that way from its

manufacturer. When the gearbox for the motor was disassembled, it was discovered that the last

set of planetary gears were not assembled properly. When the gearbox was reassembled

properly, the output shaft spun faster and a lot more smoothly. The next problem that was

encountered with the drive motor was the bending of the output shaft. Measures were taken to

reduce the bending of the shaft as much as possible such extra support for the shaft. Next, the

motor shaft started to rise up. The first attempt to solve this problem was the use of a collar and

roller bearings. This did not completely solve the problem and the shaft still bent. To solve this,

a longer shaft was used so that the upper supports for the platform kept the shaft from moving up

and put a bearing at the top of the shaft to keep it from bending. This solved our motor

problems.

3.1.2.4.2 Steering Motor

The steering motor was selected based on its ability to turn the wheels. After initial

measurements of the necessary torque, a ½ Hp AME 24V right angle motor with a built-in 50:1

worm-gear reducer was chosen. The self-locking feature of the steering motor’s worm gear

allows for a mechanical means to maintain wheel direction. A similar self-locking effect in the

drive motor allows the vehicle to stay stationary when power is lost or shut off. This acts as a

fail-safe mechanism in case of power outage while climbing or descending a ramp.

There were a lot of problems with the steering motor. The first thing that was done with the

motor was changing how it was mounted. The decision was made to mount it on a thick bracket

that is secured on more than one axis unlike the mount from last year. This made sure that the

motor wouldn’t move. The next problem was the steering system had too much resistance. The

resistance was eliminated by making sure that the main rotating parts were supported by bearing

instead of nylon bushings. This helped the whole system turn easier making the steering motor

adequate when the system was handled gently. The chain was the weaker part of the steering

system. It would have been better if the steering motor had more torque, or there was a higher

gear ratio. Something else that would help the steering would be to reduce the amount of weight

on the upper platform for it to turn. There were a lot of problems with the motor shaft because of

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

20

its two components. The two components would come unscrewed from each other. To solve

this, a hole was drilled through both of the components and a screw was then placed through the

holes to hold them in place. This didn’t last very long as the screw was eventually sheared. The

next solution was to make the shaft out of one piece. This worked but, because of the amount of

tension on the steering chain, the motor output shaft started to bend excessively. To counteract

this, a bearing was placed to hold the part of the motor shaft that sticks through the motor

mounting bracket. This kept the shaft from bending. However, the fact that the shaft was bent

for so long caused excessive wear and stress in the shaft giving it a short life, and causing it to

fail at the competition. To make things easier for the steering motor, and to create longer life for

the steering motor, either the gear ratio between the motor and the rest of the system needs to be

changed, or have a stronger steering motor, or reduce the amount of effort needed to turn the

vehicles upper platform and the wheels.

 Figure 11 – Electrical Component Layout

3.1.3 Upper Platform

The upper platform, also known as the electrical

platform, houses all the electrical components

excluding the Roboteq controller. A layout of these

components is displayed in Figure 11. They are:

Vision Computer, Control Computer, Power

Distribution Box, Batteries, Router, LADAR, and the

payload required by the IGVC. This upper platform

has been designed in way that it rotates concurrently with the wheels. This means that the

LADAR and the camera are always facing the direction in which the vehicle is moving.

3.1.3.1 Electronics & Layout

For this year’s group the upper platform was one of the few completely new aspects of the

mechanical portion of the vehicle. It was first designed in Catia. Using Catia was a significant

help in taking the design through several different changes and variations. The team was able to

make sure that it worked and all fit together before actually building it and that saved both time

and material, which were in short supply. The final design of the upper platform was very

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

21

functional and visually appealing. The design included a space for the judges’ camera that was

covered on all sides except the front. This space for the judges’ camera is linked to the space

created for the two computers. The place reserved for the two computers is also covered and

flows seamlessly from the judges’ camera compartment. The computer compartment is one of

the more unique and interesting aspects of the upper platform. It keeps both laptops stored one

above the other. When one wishes to access the computers they each slide out of the

compartment on opposite sides. When you slide them out you can use the computers while they

are still attached to the platform. This feature allows for quick adjustments while running the

vehicle. To keep the vehicle looking forward both the LADAR and the camera are attached to

the upper platform. The last part of the upper platform is the mast. It is a basic feature but it is

important.

The LADAR had to be shared between the two vehicles as it is such an expensive piece of

equipment. It needed to be able to be swapped very quickly as there may not be much time

between runs of the two vehicles. To accomplish this, the LADAR had to be mounted in the

same way on both vehicles. There would not be time to significantly modify how it is attached

between runs. On the LADAR are two brackets that connect to two RexRoth 30mm Aluminum

pieces. These aluminum pieces hang down vertically. The bracket slides down over them and

then they can be fastened in place. This is done with a threaded piece that tightens against the

aluminum in a way similar to a set screw. Both vehicles were able to use this method. A swap

can be made between the vehicles in just a few

seconds. For this vehicle the LADAR had to be

attached to the upper platform to keep it facing

forward at all times. To keep it low enough the

vertical aluminum pieces were hung over the edge of

the top platform. This not only lowers it but keeps it

out of the way of other components on the top

platform. To get a better idea of how the LADAR is

mounted please refer to Figure 12.

Figure 12 – LADAR Mount

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

22

All the electronic components are integrated to one central unit, the electrical box. The electrical

box will be discussed in greater detail later, but here is the electrical box interface which is

shown in Figure 13:

• It allows the user to alter Roboteq configuration by directly connecting to the electrical

box CTRL O DB9 connection

o Through this same connection, the control computer drives both motors.

• All the useable Roboteq controller pins are routed through the central shaft to the

electrical box via Ethernet cable and plugged into the in CTRL I Ethernet slot.

• The camera, router, and manual E-Stop are connected to the electrical box in via the

Ethernet cable labeled CAMERA, ROUTER, E-STOP

• The LADAR is connected to the electrical box through the Ethernet slot labeled LADAR.

• The controller computer is connected to the Parallel port labeled LIGHTS I to control the

obstacle detection lights.

• The DB15 port labeled LIGHTS O connects directly the obstacle light

Figure 13 – LADAR Mount

3.1.4 Mast

The mast is located in the center of the platform. It rises high above the platform so it can get the

best possible view. The mast or shaft of the vehicle not only connects the two platforms

together, but serves as a communication pole, a camera tower, wireless router tower and as an E-

Stop LED mount so that it is noticeable for the audience. It was later modified with the addition

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

23

of a cross member which extends its view over the front portion of the upper platform. A picture

of this can be seen in Figure 14.

3.1.4.1 Communication Between Platforms

The only communication needed between the top and the lower platforms is the connection

between the Roboteq controller and the control computer. This connection is made with a

retractable Ethernet cable. One end of the cable is connected to the LAN port on the control

computer and the other end is spliced and soldered to a 15 pin (db15) serial connector which

interfaces with the Roboteq controller.

3.1.4.2 Camera Tower Figure 14 – Mast

The camera tower is constructed from the same 30mm x

30mm Bosch aluminum extrusions used for the structure of

the upper platform and most of the vehicle. As can been seen

in the picture of the picture of the vehicle, the camera mast is

mounted on the frame of the computer housing. The camera

mast stands between the payload space and the computer

housing with a cross bar on the top just below six feet. The

cross bar is about two feet in length and is centered on the

mast to provide a view free of obstruction from the power box or other components on the upper

platform. The camera is attached to the crossbar using a center plastic holder that is screwed to

the end of the crossbar. The center plastic and the camera enclosure holder are both taken from a

digital camera tripod mount.

3.1.4.3 Wireless Router

The two computers are linked together using Ethernet cables. This setup allows for high speed

transfer of data between the two onboard computers. Both laptops are equipped with wireless

communication capabilities and linked by a linksys 802.11g wireless router, allowing for remote

monitoring of the vehicle’s status using an external computer. The wireless router is mounted on

top of the pay load space by Velcro tape, and enclosed in a plastic box to shield it from the

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

24

elements. The antenna is mounted on the cross bar of the mast so that a better signal is received.

The network setup is described in details later on in this report.

3.1.4.4 E-stop LED Mount

The vehicle is equipped with manual and wireless emergency stop options. A pushbutton plunger

is located to the rear of the vehicle, on the upper platform. When pressed, the plunger connects

the emergency stop pin of the motor controller to ground, cutting power to the motors and

halting the vehicle. The same result is achieved by activating the wireless emergency stop via a

Bosch automotive Remote Keyless Entry transmitter-receiver unit. Pressing the transmitter

causes a relay to connect the same pin to ground. Both the wireless and manual E-stop are

connected to an LED display on top of the power box. When the E-stop is enabled the red LED

is on and off when the E-stop is disabled.

3.1.5 Stability

One of the most important design criteria is to make the vehicle stable. Without stability, the

vehicle has no functional guarantee. In the 2004 design, two major calculations were performed

to assure stability: center of gravity and incline calculations.

The center of gravity was calculated as:
y-axis: 0.00”
x-axis: 0.96”
z-axis: 17.00”

The equation used to solve for these values is:

()() ()()∑= CGIndividualWeightIndividualCGWeightTotal T equation 1.

where total weight refers to the total weight of the vehicle, CGT refers to the center of gravity of

the entire vehicle, individual weight represents the weight of each component on the vehicle and

individual CG refers to the lateral location of the center of gravity of each component. Please

refer to the 2004 Hephaestus report (P18-20) in Appendix E:1 for more information and

calculations.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

25

Note that the main features of the Hephaestus which improve stability is the three wheel

configuration, using two wheels in one wheel pod, and the battery tray being the heaviest item

being in the center of the lowest point of the vehicle.
 Table 2-Weight breakdown
 3.1.5.1 Mass of Vehicle

The 2004 estimated the vehicle weight would

be about 250 lbs; however the final weight of

the vehicle is now estimated to be about 355

lbs. Table 2 below will give a breakdown of

the weight according to the major big parts of

the vehicle. Note that the motors were specked

according to a 250 lb vehicle and therefore

some of the problems that occurred were due to

heavy load.

3.2 Electrical Sub Systems

3.2.1 Roboteq® DC Motor Controller

The Roboteq AX2850 motor controller was chosen to control Hephaestus’s steering and drive

motors. The microcomputer-based, X2850 is highly configurable. It is capable of accepting

speed and position commands via pulse-width signals from a standard Radio Control receiver,

analog voltage commands, or RS-232 commands from a dedicated computer. For more

information or help, refer to the Roboteq manual in Appendix A:1.

3.2.1.1 Selection Process

The 2004 team’s first option was to use a Motorola HS12 microcontroller to control the robots

movement. The problem with using a dedicated microcontroller to control the chosen motors is

that power electronics are still needed to amplify the signal to power the motors. Motion

controllers, which create their own PWM and have onboard power electronic amplification

specific to DC motors, were investigated. After investigating many such controllers, one seemed

Component Weight
Lower Platform 100
Middle Platform 6
Upper Platform 10
Upper Housing 35
Driver Motor /shaft 3.7
Steering motor 3.9
IP Laptop 10
Control Laptop 10
LADAR_LMS-200 10
Camera 1
Miscellaneous electrical components 7
Roboteq controller 4
Upper Batteries (2) 8.5
Lower Batteries (2) 84
Battery Tray 20
Wheels (6) plus drive train 21
Payload 20

Total Weight 354.1

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

26

ideal for our project, the Roboteq AX2850. Although it was more expensive than some other

controllers, it has functionality that allows for complete autonomous operation. Please refer to

the 2004 Hephaestus report (P30-31) in Appendix E:1 for more information on this section.

3.2.1.2 Roboteq Capabilities

The following outline is condensed for the AX2580 user’s manual in Appendix A:1.

• Fully Digital, Microcontroller-based Design

• Multiple Command Modes

• Multiple Advanced Motor Control Modes

• Automatic Joystick Command Corrections

• Special Function Inputs/Outputs

• Optical Encoder Inputs

• Internal Sensors

• Low Power Consumption

• High Efficiency Motor Power Outputs

• Advanced Safety Features

• Data Logging Capabilities

• Sturdy and Compact Mechanical Design

Some of the special features that apply to this design include serial port inputs, independent

motor operation (steering and speed), closed-loop feedback control (in conjunction with optical

encoders), emergency stop capabilities and operation information via RS232 commands.

3.2.1.3 Hephaestus Roboteq Configurations

The AX2850 can be configured to control the motors by means of an analog joystick, RC

joystick, or standard serial commands. It also comes with a PC-based run utility that aids

diagnostics and testing. Hephaestus is used in RC mode when being driven manually, while

serial port control is the mode implemented using the PC-based utility and during autonomous

operation. Please visit the Roboteq website www.roboteq.com to download up to date software

and for technical support.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

27

3.2.1.3.1 Serial Control-Run Utility

Although testing and configuration can be accomplished in Matlab, the PC run utility makes it

much easier to configure and test the controller. Figure 15 displays the main controls screen.

Once the controller is connected to the serial port of the desktop, the controller info should

display valid ID, Rev and

codes. If nothing happens, try

exiting the program and

opening it back again. Note

that if you actually plan on

using this software for

testing, the robot should be

free standing on jack stands

or stools. Note that a regular

RS232 cable should be

connected directly from the

controller to a PC.
 Figure 15-PC Utility: Controls
If testing the controller using this software, make sure the control input is set in RS232 and

motor channel A & B as speed separate. This implies that both motors will keep going until

manually stopped. If the system is run in closed

loop, the encoder feedback is considered. For

safety reasons, start with open loop since many

problems arose when in closed loop due to

problems with the encoder which will be

discussed later. Once configurations are set to

the desired settings, click to “Save to controller”.
 Figure 16-PC Utility: Power Settings
The next tab shown in Figure 16 enables to set power settings. At first, not much change was

done to this configuration, however when testing, we decreased the acceleration at times when

the motors seemed to be running too fast and increased it when going too slow. However at the

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

28

final testing, after many testing trials were analyzed, it was determined that the best suitable

acceleration according to the specified gains discussed later is 2048.
Figure 17-PC Utility: Encoders

Many problems seemed to

arise from the encoders

which will be discussed.

This diagnostic software as

shown in Figure 17 made it

easy to be able to test the

encoder readings as the

motors spin. Note that the

PPR (Pulses per Revolution)

of the encoders need to be

manually put in each time if correct visual readings are desired. The chosen encoders have a

value of 300 PPR. The motor commands can be controlled using the bottom bars. Make sure

that as the command is moved in the positive direction, the encoder reading increases positively

and vice versa as you move toward the negative direction. More info on the encoders can be

found in the Roboteq manual.
Figure 18-PC Utility: Run

To actually run the motors using this

software, go to the Run screen as shown in

Figure 18, and click on “Run” in orders to

start the motor motion. Command 1 will

start the speed motor and command 2 will

control the steering motor. Different data

could be displayed as specified by

checking the desired boxes . Data

logging is possible using this software,

however no attempt was made since data

logging was used in Matlab. If for some reason the commands are stopped, however the motors

are still operating, disconnect the cable or turn off the controller.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

29

3.2.1.3.2 Serial Control-Autonomous

As mentioned earlier, configuration can be done in Matlab, but it is easier to do in the Run

Utility. For configuring the controller for Autonomous use, it is very important that the motor

mode be set “A Speed, B position” since our first motor will be for speed and the second motor

is for steering, so that once a desired angle is reached, the motor will stop. Also, since an E-stop

system will be in use, make sure to enable it as shown in Figure 19. Note again, that the Roboteq

should be in closed loop in order to get the feedback from the encoder module, however because

the vehicle was not

operating properly and due

to the lack of time that was

available for testing, the

final testing was completed

in open loop. Next year’s

term should be able to

solve this problem.

Settings should be saved to

controller.

Figure 19-PC Utility: Autonomous Settings

The closed loop configuration of the proportional gain, integral gain and differential gain shown

in Figure 20 is very critical in enabling the robot to move to the desired position. Basic

knowledge of controls is needed to be able to find the best suitable settings. Based on the

following knowledge, different parameters were configured, tested and observed by moving the

steering motor a full turn:

 Kp gives a fast rise time and when it is too high the system overshoots

 Kd eliminates overshoot

 Ki eliminates steady state error, increases response time and rise time

The best settings which were determined are as follows which resulted in about a 160° turn:

Proportional Gain (Kp) = 0.25 Integral Gain (Ki) = 1.12

Differential gain (Kd) = 7.5 Acceleration = 2048

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

30

% sets up serial interface
global R

R = serial('com1'); %Specify comport used
set(R,'DataBits',7)
set(R,'Parity','even')
set(R,'Terminator','CR')
set(R,'Timeout',1) %Set read Timeout in 1 sec
fopen(R) %Open comport
R %Used to display settings

%fclose(R) %To close Rs232

Figure 20-PC Utility: Closed Loop

Save all settings to the controller

and exit from the Roboteq Utility.

Now to run the Robot using the

control laptop autonomously,

connect the serial port going to the

upper platform to the controller.

Open Matlab and the main

Simulink file in Appendix C:1.

Run the RS232 initialization

commands in Figure 21 and then run the program

Figure 21-RS232 Setup

These commands initialize and open

communication to the RS232 connected to the

controller. It is important that the correct

comport # must be inputted. Note that the PC

utility and Matlab cannot share comports. Only

one application can use the active comport. If

you wish to close the port, then enter the

“fclose(R)” command. (NOTE: Serial communication ports settings must be as follows: 9600

bps, 7-bit data, 1 Start bit, 1 Stop bit, Even Parity)

Table 3 lists of commands used for autonomous operation via RS232 communication. Most

commands were used in the software which will be discussed in a later section.

Table 3- Roboteq Commands
!Mnn Set speed or position, where M=motor channel and direction
!M Toggle available digital output lines on/off
?v or ?V Query power applied to motors
?a or ?A Query amps consumed by motor
?p or ?P Query analog inputs
?e or ?E Query battery voltages
?i or ?I Query digital inputs

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

31

^mm Read parameter settings, where mm= parameter number
^mm nn Modify parameter, where nn=desired parameter value
^FF Apply parameter changes
%rrrrrr Reset controller
NOTE: Consult Roboteq User Manual in Appendix A:1 for more detailed descriptions of

commands and reply messages.

3.2.1.3.3 Remote Control

A radio (Remote) controller (R/C) is used to navigate the vehicle unto the course. The R/C used

is an FM Futaba ID#AZPT4VF-72. This controller has 6 channels of communication although

the Roboteq controller is cable of handling only three. Since only two channels are required with

our vehicle, this R/C controller is more than sufficient for Hephaestus applications. The Roboteq

controller has five command control curves for the R/C. They are Logarithmic Strong,

Logarithmic Week, Linear, Exponential Week, and Exponential Strong. Figure 22 shows a

graph of all the control curves. The linear command curve is a proportional control the control

curve chosen for Hephaestus. This proved to be a desired speed increase and decease for the

remote control. If the remote control was too sensitive that a slight movement of the toggle stick

would cause rapid speed increases then the exponential strong command would be used.

 Figure 22-Control Curves from Roboteq AX2580 User Manual

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

32

The R/C must be conFigured to the Roboteq controller before it is able to operate in that mode.

There are two ways to conFigure the R/D to the Roboteq controller, manually with the push

buttons on the controller or using the Roborun software. Details on configuring the controller

are provided in the Roboteq manual as well the Hephaestus quick start guide located in

Appendix A.

3.2.2 Steering & Drive Encoders

The 2004 team chose two optical encoders with quadrature outputs to measure speed and

position. Their selection process was based on amperage and pulses per revolution. The

Roboteq actually recommends the 200 PPR however the team had a hard time finding the right

amperage so as a result two MEH-17 series hollow shaft micro encoders from Microtech

Laboratory Inc. were chosen and are connected to the shafts of the steering and drive motors.

They provide accurate speed and direction feedback to the controller. These controllers draw

30mA each and have a resolution of 300 pulses per revolution. Refer to the Roboteq manual in

Appendix A as well as the spec sheet in Appendix B:3 for any Encoder questions/reference.

3.2.3 E-stop

Safety is a major issue in the IGVC competition. There is a chance that vehicles will go off track

and possibly hurt someone. The safety features that must be implemented are the manual

emergency stop and the wireless emergency stop. On the Hephaestus vehicle, both of these

safety features are present.

3.2.3.1 Manual E-stop

The controller that is being used on the vehicle has a built in emergency stop pin. When that pin

is driven low, then the emergency stop is activated. For the manual e-stop team Hephaestus uses

a push-button that acts as a normally open switch. When this button is pressed, pin 15, which is

the emergency stop pin on the controller, goes low and the e-stop is activated. The manual

configuration is actually connected using an Ethernet connection. This helped us to transmit the

data that the e-stop was being pressed to the power box.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

33

Once the manual e-stop box is opened, it can be seen that the switch has four leads. There are

two leads at the top, and two leads at the bottom. The top leads are for a normally closed

configuration. The Lower leads are for a normally open switch configuration, which is the

configuration that is used in the vehicle. The wires from the Ethernet data cable that were used

for e-stop were blue and green stripped. Connecting those wires to the bottom leads of the push

button switch allowed for e-stop data to be sent to the power box. A picture of this device is

shown in Figure 23 & 24 below.

Figure 23-Manual E-Stop Internal Figure 24- Manual E-Stop External

3.2.3.2 Wireless E-Stop

As for the wireless E-stop, the team went with a standard Bosch Key fob transmitter and receiver

which powers up with a 12 volt source. The wireless e-stop operates at a frequency of 433

MHZ, and has a range of 150 feet. When the lock button on the key fob is pressed, 12 volts is

supplied to the receiver which in turn activates the e-stop. To reset the e-stop the lock button is

pressed a second time and the controller must be reset. The controller already has a built in pull

up resistor configuration, so one did not have to be constructed for the emergency stop to work

properly. The proper pin connections for the receiver that were used on the Hephaestus vehicle

are in Table 4 below:

Pin Connection/Wire Color Function
A-14/Black Wire Ground
B-1,B-3/Red Wire +12 V power supply
C-7/Yellow Wire Activate E-stop

Table 4 – E-Stop wiring

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

34

B-1, and B-3 have to be jumped together, with one lead then going to the +12 V power, as seen

in Figure 25 below, which is the back panel of the receiver component.

Figure 25- RF E-stop pin connections

3.2.3.3 Audio E-stop

In previous years there was a threat of the RF e-stop not working because of electromagnetic

interference. With this in mind the idea of building an audio emergency stop was thought of.

The audio e-stop has 7 blocks, which include an audio amplifier with microphone, a bandpass

filter, a full-wave rectifier, an integrator, a comparator, and a latching relay. The sound source

that was used is an athletic whistle with a 3.0 kHz frequency. When the sound source is

activated, it will go through its various blocks of the whistle stop circuit.

The first block of the whistle stop circuit is the audio amplifier. This year the audio amplifier

configuration that was used is the Jameco Super Snoop big Ear. This audio amplifier uses

various resistor capacitor configurations, a 9V battery, and 2 integrated circuits to provide its

functionality. The two integrated circuits that are used are the LM1458, and the LM386N-1.

The LM1458 is a general purpose dual operational amplifier, and the Lm386N-1 is a low voltage

audio power amplifier. Please refer to the data sheets in Appendix D for more information on

these components. The circuit for the audio amplifier is shown in Figure 26.

Figure 26-Audio Amplifier

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

35

The output from the audio amplifier goes into the input of the bandpass filter which is the next

stage of the audio e-stop circuit. The band pass filter design that was used was the Delyiannis-

Friend band pass filter circuit. The bandpass filter only allows for the frequency of the sound

source used to come through. The other frequencies are not allowed to get through. In order to

make the design better in the circuit it is better to +/- .1 kHz from FC to get the upper and lower

frequencies. The sound source being used contained a center frequency of 3 kHz. The

calculations used to design the bandpass filter are as follows.

FC = 3.0 kHz

FH = 3.0 kHz+.1kHz = 3.1 kHz

FL = 3.0 kHz - .1 kHz = 3.0-.1kHz = 2.9 kHz

Bandwidth (B) = FH – FL = 3.1 kHz – 2.9 kHz = .2 kHz kHz

Quality Factor (Q) = ==
kHz
kHz

B
Fc

2.
0.3 15

The resistor values were then calculated using C = 4.7 nF

Ω≈Ω=== kk
nFkHzCFc

QR 3308.338
)7.4*0.3*14.3(

15
**

3
π

 equation 2.

Ω≈Ω=
Ω

== kkk
Ho
RR 160165

1*2
330

2
31 equation 3.

Ω=
−
Ω

=
−
Ω

=
−

= 367
2900

330
2)15(4

330
24

32 22

kk
HoQ

RR equation 4.

 Figure 27-Bandpass Filter
The circuit of the bandpass is in Figure 27.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

36

Figure 28 Full Wave Rectifier

The next step in the circuit was

the full wave rectifier. The full

wave rectifier is used to invert

all the negative voltage outputs

coming from the bandpass

filter into positive voltage

values. Figure 28 shows the

circuit schematic of the full

wave rectifier.

The integrator circuit comes

after the full wave rectifier. The integrator integrates the rectified sinusoid, building up output

voltage as long as the applied input voltage is positive. The stronger the input signal, the faster

the output voltage will build up,

helping to block out ambient

noise of the same frequency. A

potentiometer should be used in

this circuit to vary the sensitivity

of the integrator.

Figure 29- Integrator Circuit

The equation

vo
ARC

RC
Avo =∴= was used to find values for R and C. The schematic of the circuit is shown

in Figure 29.

The final circuit to trigger the relay is the comparator circuit is the comparator circuit. Once the

integrator is built up to the correct voltage, the output of the comparator will enable the relay

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

37

circuit, which will make the vehicle stop. The

reference voltage can be varied using a

potentiometer. A voltage divider circuit will

have to be set up in order to input the required

voltage into the circuit, which in the case of

this specific design was 10,3 V, which is

shown in Figure 30. Figure 30- Comparator Circuit

Figure 25- Relay Circuit

The relay latches the circuit which in turn stops

the vehicle, when the sound source has been

presented. The relay that was used in this design

was the Omron G6H Low Signal Latching relay.

The relay is shown in Figure 31.

3.2.3.3.1 Problems

There were problems presented in this design as there will be within any design. The key is to

troubleshoot the problem and come up with a

solution that will help to rectify the situation.

One problem was that there was a loading effect

and negative output from the integrator circuit.

This was fixed by designing an inverter circuit,

shown in Figure 32.

Figure 32- Inverter Circuit for loading and negative output

With one solution solved by making an inverter circuit, another problem was presented, which

was a loading effect due to 1K input impedance on the actual inverter circuit. This particular

problem was solved by using a unity gain buffer at the input of the inverter circuit, shown in

Figure 33.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

38

Figure 33- Unity buffer as input on inverter circuit

3.2.3.3.2 Suggestions/Recommendations

The audio e-stop design presented in this documentation is a model for the whistle stop that will

be built for next year’s competition. It is a roadmap that the team can use for future whistle stop

projects. All of the blocks used here will be used in the whistle stop design, but the components

value will vary, and there may be extra things that next year’s team would like to add in order to

make the audio e-stop better. A suggestion that was not able to be implemented with this year’s

team is getting a DTMF generator for the sound source. This will help to cut out other

frequencies better, because there are two distinct frequencies. With this suggestion, there will

have to be a dual channel bandpass filter that will have to be designed.

3.2.4 Electrical Box

The electric box (power box) controls power to the LADAR, camera, and router. Just as an

important feature is that it also integrates all the electrical components to one central unit

providing LEDs to indicate system power-up and communication. In simple terms, the electrical

box does the following:

• Allows the control computer to plug directly into the electrical box via serial data cable

o This means that the control computer can directly drive both motors form this

connection

• It transfers the signal to the Roboteq controller as well as providing an LED to indicate

serial data communication.

• It provides power for the RC receiver

• It provides power for the LADAR

• It provides power for the Camera

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

39

• It provides power and connection for the E-Stop

o Includes manual and wireless

• Provides power for the Wireless router

• Interfaces the obstacle light indicators through both a parallel port and a DB15 port

Figure 34 below shows a diagram layout of the interior components of the electrical box.
Figure 34-Power Box

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

40

Figure 35-R/C Receiver

Figure 35 below shows a schematic of the R/C receiver. The

R/C receiver is connected to part label 24 and 25 on Figure

34.

Figure 36 shows the wiring diagram for both the manual &

wireless E-stop system.

 Figure 36-E-Stop: Manual and wireless

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

41

Figure 37 and Table 5 show the Roboteq controller pins which are converted to an Ethernet

connection. These pins are routed through the central shaft via a spiral Ethernet cable and

connected to the electrical box. This is done for two reasons. First, the control computer must

send signals to the Roboteq controller which is located in the lower

platform. The spiral Ethernet cable is used to avoid the cable being

stretched and snapped during the upper platform being rotated. They

are color coded to match the Ethernet cable. Figure 37 shows the

colors of all wires in Ethernet cable. Table 5 shows to what pins or

control lines each wire is connected to.

Figure 37 – Ethernet Pins

Table 5-Ethernet Connections

DB15 to Ethernet converter
Pin

Input /
Output Signal Description

Ethernet
pins Wire Color

1 Output Output C 2A Accessory Output
R/C: RS232 data RS232 Data Logging Output
RS232: Data out Rs232 Data Out 2 Output
Analog: RS232 out Rs232 Data Logging Output

7

R/C: Ch 1
RS232: Data in R/C radio Channel 1 Pulses 3 Input
Analog: Unused RS232 in (from PC)

6

R/C: Ch 2 R/C radio Channel 2 pulses 4 input
Ana/RS232:Input F Digital Input F in RS232 mode

5

5 Pwr Out Ground Controller ground (-)
6 Pwr In Ground Connect to pin 5 **

1

7 Pwr In +V5 Connect to pin 14 ** 8
8 Input R/C: Ch 3 R/C radio Channel 3 pulses
9 Output Output C 2A Accessory Output

10
Analog
In

RC/RS232: Ana In
1 Ch 1 speed or position 3

11
Analog
In

RC/RS232: Ana In
2 Ch 2 speed or position 2

12 Output Output D
Low Current Accessory
Output D

13 Pwr Out Ground Controller ground (-)
14 Pwr Out +5V +5V Pwr Output (100ma max)

15 Input Input E-Stop/Inv
Emergency stop or Invert
Switch Input 4

Pin Wire Color
1
2
3
4
5
6
7
8

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

42

Figure 38 illustrates the diagrams of all four ether net jacks that connect to the electrical box.

Figure 38-Ethernet jacks on Electric Box

3.2.5 Power Systems

Hephaestus is composed of two completely independent power systems. The first provides

power to the motors and controller and is located on the lower platform. The Second provides

power to the electronics located on the upper platform. Figure 39 is a schematic for all the

component power routing.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

43

Figure 39– Controller Power Distribution

3.2.5.1 Lower Platform

The current draw in the lower platform is more significant, with the two 24V motors drawing a

combined 46A during normal operation and a stall current of 120A. The Roboteq power scheme

used to route this power to the motors is displayed in Figure 40 (courtesy of www.roboteq.com).

To provide the needed voltage and power, two 12V, 55Amp-hour lead acid batteries are

connected in series, and are fused and stowed

inside the battery tray attached to the bottom of

the lower platform. A conservative estimate of

the lower platform’s battery life is approximately

1.2 hours as shown in Table 6.

 Figure 40 – Roboteq Power Distribution

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

44

Lower Platform (Mechanical)
Current
(A)

Voltage
(V)

Power
(W)

Drive Motor Dustin 2 30.46 24 731.04
Steering Motor AME 15.5 24 372
Controller 0.1 12 1.2
Encoders 1 (directly from
controller 0.03 5 0.15
Encoders 2 (directly from
controller 0.03 5 0.15
R/C Receiver 0.013 5 0.065
Total 46.133 75 1104.605

Table 6-Lower Platform Power Estimation

3.2.5.2 Upper Power Distribution

With the laptop computers using their internal power sources, the upper platform batteries need

only to supply power to the LADAR, camera, and RF receiver. Two 12V, 5 amp-hour batteries

are used to provide the estimated maximum power draw of 2.3A and the 24V needed for the

LADAR. The upper platform has over 2 hours of run-time battery life as shown in Table 7.

Upper Platform
(Electrical)

Current
(A)

Voltage
(V)

Power
(W)

Lap top1 6.5 18.5 120.25
Lap top2 4.5 18.5 83.25
LADAR 1.8 24 43.2
Camera 0.085 12 1.02
RF E-Stop 0.1 12 1.2
Total (Upper Platform) 12.985 85 248.92
TOTAL POWER 248.985

Table 7-Upper Platform Power Estimation

3.2.5.3 Battery Life

As seen in Table 6 and Table 7, the total worst-case power consumption of Hephaestus is 1357W

most of which is due to the drive and steering motors. The motors themselves consume 1103W.

The rest of the electrical subsystems (2 computers, LADAR, camera, emergency-stop, encoders)

consume a total of 254W. Two 12 volt, 55 amp-hour lead acid battery packs are used for the

lower platform (mainly the drive and steering motors) to provide a minimum of 71 minutes of

run time. In the upper platform, two 12V 5A-hr lead acid batteries are used to power all the

electrical subsystems except for the two laptop computers, which will be powered by their own

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

45

independent battery sources. The minimum run time in the upper platform is expected to be 136

minutes.

3.2.6 Computers

The Hephaestus control system relies on two laptop computers to insure optimal processing

speed. Image Processing, the system bottleneck, runs on a dedicated machine, while all other

control algorithms operate on a separate computer. Since the flow of data from the IP computer

to the Control computer is of the utmost priority, it operates via a TCP link over a LAN

connection. Both computers are physically connected to an onboard router to make the physical

connection. Two Simulink models are used to pass the data, and each model has an associated

.dll file. These files are included in Appendix C:10, with the following filenames:

 TCPServer.mdl
 matser.dll
 TCPClient.mdl
 matcli.dll

Shown below in Figure 41 are the two models, conFigured to pass the Image Processing angle

from the IP computer to the Control Computer.

Figure 41- Data Passing

TCPClient.mdl operates on the IP Computer, and the IP ANGLE block should be connected to

the output of the IP system. Within the matcli block, the IP address for the destination computer

can be set. In the TCPServer model, the matser block should be set with the port corresponding

to that of matcli. The Display block will show the current angle, and the output block should be

linked to the Navigation system.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

46

3.2.6.1 Image Processing Computer

The Image Processing computer is an HP zx5180us. This has a 2.4 GHz Intel processor, and

1GB of RAM. This laptop also has integrated LAN and WLAN hardware; however, does not

include any RS232 ports. To function as the IP computer, these are not needed; however, the

Quatech QSP100 PCMCIA Serial Adapter does work with this laptop to provide serial ports. The

HP laptop was donated to the Hephaestus Team by Best Buy of Novi, MI. For this reason, all

Best Buy logos on the laptop must remain.

This laptop also operates Windows XP Professional. From earlier testing, an installation of

Linux does remain. The Linux distribution is Red Hat Enterprise v9. Red Hat is available

through a prompt during the boot process. While Linux is preferred for its stability and

processor priorities, it may not be appropriate for this purpose. There is some evidence available

which indicates Matlab is better optimized under Windows, thus negating those advantages.

3.2.6.2 Navigation & Control Computer

The Control computer is an IBM ThinkPad A30, with a 2 GHz Intel processor. This system has

768 MB of RAM. This laptop includes integrated LAN and WLAN hardware. Onboard is one

single RS232 port, which is insufficient alone for the vehicle communications. A Quatech

QSP100 PCMCIA Serial Port Adaptor provides an additional 4 RS232 ports through the IBM's

PCMCIA interface.

The IBM laptop was passed down to Hephaestus from Dr. Paulik. During the 2005 IGVC

Competition, this laptop suffered a fatal error, and required to be restored to factory defaults.

The factory default operating system is Windows XP Professional. All work that was done to

optimize processes on it were subsequently lost. Because of this problem, it is advisable for hard

drive images to be made and stored externally when major changes are made to the computers.

Optimization steps include manually setting process priorities, eliminating unused programs, and

closing unneeded processes. Much information about Windows XP optimization can be found

on the internet.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

47

3.3 Sensory System & software

The Hephaestus sensory system hardware consists of a notebook that interfaces with the

navigation sensors via a serial adapter. The serial adapter is a PCMCIA card that provides

multiple serial ports to enable the notebook to interface with multiple sensors including the

LADAR and motor controller. Hephaestus’ vision algorithm runs on its own dedicated laptop

connected to a fire-wire camera. The sensory system on the vehicle is completely housed on the

electrical platform. The sensory and vision systems configuration is depicted in Figure 42. All

software was completed using a combination of MATLAB® and Simulink® operating under an

optimized Windows® operating system.

Figure 42– Sensor and Vision System Integration

3.3.1 Vision System

3.3.1.1 Camera Figure 43 – Camera

The camera chosen for the Hephaestus is the Uni-brain Fire-I

board camera. This camera was selected for its low cost, low

power consumption, and performance. The Uni-Brain® Fire-I

Board Camera shown in Figure 43 (courtesy of

www.unibrain.com) captures the images used for lane and

obstacle detection. This camera is a single board, fully operational

Fire Wire color camera, capable of 400Mbps data transmission,

with a native resolution of 640x480 pixels and 80.95° horizontal view angle for uncompressed

VGA picture acquisition at 30 frames per second. The latest 1394 Texas Instruments® chipsets

and Sony® CCD sensor provides a high quality subassembly for image capturing. The camera

provides sufficient image clarity and resolution and connects easily to a laptop via the fire wire

Fire-wire Camera

Roboteq Controller
PCMCIA

Ethernet Interface

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

48

port provided eliminating the need and extra cost of a frame grabber. A plastic weatherproof box

was constructed to encase the camera.

3.3.1.2 Image Processing Strategy

The image processing strategy determines which obstacles, potholes and lines are present in the

camera’s field of view. A preliminary direction is determined by examining an image and

establishing a preliminary direction between the lane boundaries. In order to determine this

preliminary direction, the captured image is processed in a Matlab® environment. The algorithm,

broken down into separate tasks, is outlined in Figure 44.

 Figure 44 – Flowchart of Image Processing Algorithm

First, the image is acquired from the Fire-I camera with YUV color space. Then the color space

is transformed to RGB space. After that, adaptive threshold techniques are applied to all three

planes and are accompanied by region-based color segmentation. The image in Figure 45b shows

the changes made to the image in Figure 45a during the initial color filtering. The binary image

in Figure 45b coupled with a Hough transform-based technique detects the existence of the

painted lines in the image field. The white pothole is considered a distinct region in the binary

image and is detected by an area threshold. As a result, a pothole flag is triggered if the area of

the distinct region is bigger than the area threshold.

Figure 45a-Course Image before IP Figure 45b-Course Image after IP

The purpose of heuristics is to aid in the preliminary direction setting. The strategy is designed

with the number of the edges detected and their pixel positions as its main decision-making

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

49

factors. To deal with dashed lane boundaries, the program determines the optimal direction by

comparing the current image to the most immediate archived image in which the solid lane line

appears, and extrapolates the expected lane from this previous image. Based on heuristics logic,

this preliminary direction is set and passed to the navigation software.

There are two main programs used to control and interface the image processing procedure

which can be found in Appendix C:2.

 IP_FW.m

 framePocess.m

The first IP_FW.m is responsible for communicating with the camera. The code initializes the

camera by telling it when to capture an image. It also defines an object where the images are

buffered before being processed. Once the buffer has images in it, the latest image is passed to

the program called framePocess.m. This program begins by choosing the most recent image

from the buffer defined in IP_FW.m. Once through the procedure described above,

frameProcess.m generates the desired angle of destination. This angle is then passed back to

IP_FW.m. IP_FW.m then passes the angle to a global variable accessible by the navigation

algorithm. It is worthwhile to mention that the interaction between the image processing and

navigation algorithms is asynchronous. When the angle is passed to the global variable by IP,

there is no flag telling the navigation that there is a new angle. The navigation has no way of

determining the age of the angle within the variable.

3.3.2 LADAR System

The LADAR system used is the SICK® LMS 200. The laser scans horizontally through a 180-

degree range at 0.5° resolution, for a distance up to about 80m. Refer to the LADAR manual in

Appendix A:3 for more information. The measurement information is transmitted via serial

communication to the navigation computer. The LMS200Setup.m file sets up the LADAR which

can be found in Appendix C:3. For this application, the LADAR is configured so that the

farthest distance is approximately 8 m. Using this laser scanner, the width of obstacles and their

distance away from the front of the vehicle are determined.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

50

3.3.3 Navigation Strategy – Autonomous Challenge

The purpose of the navigation algorithm is to merge the preliminary direction angle provided by

the image-processing algorithm with the obstacle avoidance information obtained from the

LADAR system to generate a final direction for the vehicle. The algorithm is implemented in

Simulink® using fuzzy inference techniques as shown in Figure 46. Refer to Appendix C:4 for

the Navigation controller software. Note that the Navigation is almost identical to that of the

Warrior Team since the same person worked on it.

Figure 46 – Navigation Algorithm Flow

The direction provided by the image-processing computer is the input to a Fuzzy Inference

system, whose output is a fuzzy membership function of possible steering directions. The

LADAR output, which is a 180º map of obstacle locations in front of the vehicle, is converted to

an equivalent fuzzy membership representation. The two sets of membership functions are then

fused to produce an overall fuzzy membership function of possible steering directions. This

membership function is then “defuzzified” to produce a final steering direction, which is the

input to the steering control algorithm.

3.3.3.1 Algorithm Diagram

The overall Navigation System Diagram is shown in Figure 47. This System consists of the

Image Processing unit, LADAR unit, Navigation Controller, Drive system and light indicators.

Each system is broken up into subsystems which will be explained.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

51

Figure 47: Overall Control Simulink Model

Figure 48 is the Navigation Controller Algorithm. The Image Processing input is ran through a

saturation block, where it imposes upper and lower bounds of the input. This is then rounded and

fuzzified to get possible angles as a direction for the vehicle to drive.

Figure 48: Overall Navigation Simulink Model

Obstacle Avoidance is implemented using the LADAR to locate obstacle positions. The obstacle

avoidance system generates a database of distance values referring to obstacle location ahead of

the vehicle. Figure 49, below is the critical remap block of the LADAR data. The minimum

input from the LADAR is found and compared to 2000. If the minimum is less than this value

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

52

then the minimum value is subtracted from the original LADAR data. If the value is greater than

2000 then the LADAR data is used as is, with no remapping.

Figure 49: Navigation-Critical Remap

To create the final angle of travel of the vehicle, the goal following information was combined

with the obstacle avoidance information as shown in Figure 48. The two data sets are fused

together using the minimum function to produce an overall fuzzy membership function of

possible steering directions . This data is then defuzzified using the COLA method. The COLA

method finds the largest area of the output membership function and calculates its center. With

this method, the center corresponds to the best solution for that system. The defuzzified angle

is a crisp angle of travel that is the final angle of travel used by the vehicle.
Figure 50- Light switch circuit

3.3.4 Obstacle Detection

Obstacle detection is primarily handled by the

LADAR range finder. The location of the

LADAR mount enables it to pickup a variety of

obstacle height.

The Hephaestus is equipped with lights to indicate

when and where an obstacle has been detected.

The lights are placed on the front and sides of the

vehicle, and a light is also mounted on the back of

the vehicle to mimic the front lights for spectators

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

53

behind the vehicle. The light indicator is setup with a simple switch circuit using two mosfet

switches and a 555 timer. The timer circuit is set up with a resistor ratio to produce 3.5Hz

frequency. The 555 timer enables the lights to blink at a continuous frequency whenever a light

is turned on. Making the lights blink at a controlled frequency make them easily observable.

The circuit setup for the lights is illustrated in the following Figure 50. The Simulink program

that controls the light is made up of a few Matlab function, switching and logic blocks. The file

is then merged into the navigation program and is fed as an input whenever the LADAR

transmits information. Please see Appendix C:6 for the software files.

3.3.5 Speed/Steering Control Figure 51 – Steering/Speed Control Flow Chart

The purpose of the control software is

to be able to command the Roboteq

controller to steer the desired angle and

to slow down where necessary. The

navigation angle is the input for the

steering and speed system as shown in

Appendix C:1. The flowchart of how

the control system operates is shown in

Figure 51. The speed control is based

on a two-speed strategy. If it is

determined by the navigation algorithm

that the vehicle is to be turned, the

Roboteq controller is commanded to operate in a low-speed mode. High-speed mode is initiated

when no turns are required. Note that the Roboteq controller has built-in speed and position

control capability, so the steering and speed system have only to generate the appropriate

command signals. When an angle is given by the navigation, it is important to now if this angle

is a positive or a negative to know what command should be outputted. The following is an

example of the commands according to direction:

!a will drive the speed motor to drive backwards

!A will drive the speed motor to drive frontward

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

54

!b will drive the steering motor to turn to the left direction

!B will drive the steering motor to turn to the right direction

Note that channel A is connected to the speed motor and since our vehicle is omni directional

there is no need for backward speed motion. However the steering motor, channel B is critical

and should only move right when given a positive angle.

3.3.5.1 Simulink Block

The Simulink block in Figure 52 acts exactly as the discussed flow chart. There are 3 switches

to determine if the angle is zero, less than zero or greater than zero. Note that originally this was

done using if then blocks which performed ok when running with constant input value. However

when connected to the Navigation as the input, it did not work and therefore switches were used

instead. If there is no angle (0 value), the vehicle will just drive straight at a high speed, if the

angle is positive, slow the vehicle and turn right. If the angle is negative, take absolute value of

angle since Matlab cannot handle hex to dec negative conversions, slow the vehicle and turn left.

The following is the three m files used:

 Rs232Read_Speed.m

 Rs232Read_Speed_Pos.m

 Rs232Read_Speed_Neg.m
Figure 52 – Steering/Speed Control Simulink Block

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

55

function x = Rs232Read_Steer_Pos(u);
%Slows down vehicle and turns in the right direction according to input angle
global R

% Convert numerical representation of Low speed to hex character and send via
%serial port to Roboteq Controller along with the specified motor character.
 wordA = '!A' %Specifies channel A (Speed Motor +)
 spdA= 30 %# needs to be positive integer
 if spdA < 16 %Convert dec value to hex
 speedA = cat(2,'0',dec2hex(spdA))
 else speedA = dec2hex(spdA)
 end
 command= cat(2,wordA,speedA) %roboteq character format(motorA,speed)

 if(R.BytesAvailable>0) %Clear unnecessary data from Rs232
 xx=fread(R,R.BytesAvailable);
 end
 fprintf(R,command) %Send the character out using Rs232

%Convert steering angle to position representation of (0-127) and then to
%hex character. send via serial port to Roboteq Controller along with the
%specified positive steering motor character.

 wordB = '!B' %Specifies channel B (Steering Motor +)
 fprintf(R,'!Q1') %Reset Steering Encoder Counter 2
 PDeg=0.8; %300pulses/360 degrees
 dirBPulse=u*PDeg %Angle * PDeg=desired position (0-127)
 dirB = round(dirBPulse) %get as integer value
 if dirB < 16 %Convert to hex
 SteerB = cat(2,'0',dec2hex(dirB))
 else SteerB = dec2hex(dirB)
 end
 command = cat(2,wordB,SteerB) %roboteq character format(motorB,speed)

 if(R.BytesAvailable>0) %Clear unnecessary data from Rs232
 xx=fread(R,R.BytesAvailable);
 end

 fprintf(R,command) %Send the character out using Rs232

 x = [dirB]

The actual input from navigation represents an angle in degrees. However, the Roboteq

controller only understands pulse values ranging from 0-127. The following equation helps us

achieve the actual value.

Degrees * 300 pulses/360 degrees = pulses equation 5

As for the speed, we are only dealing with 2 different speeds, a high speed and a low speed.

Remember that the maximum speed allowed for the IGVC competition is 5 mph. The speed can

be converted using equations

according to the gear ratios and tire

diameter, however we ended up

using values that gave us the

approximate speed. A speed of 30

gave us a low speed.

All the software consists of a

Simulink file and m files for the

control algorithm which can be

found in Appendix C:5. Note that

the code is very well commented.

3.3.5.2 Control m Files

The code in Figure 53 is

commented very well and all three

m files are very similar. Only one

m file will be clearly explained, the

Rs232Read_Steer_Pos.m file.

When the Navigation angle outputs

a positive non zero, this block is

simulated. The “u” is the input of

this Matlab function which is the angle, Figure 53 –M-File: Rs232Read_Steer_Pos

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

56

and “x” is the output, mainly only used for the display. Since the RS232 is throughout, specify

this is a global parameter, “R”. Specify which motor/command is addressed. “!A” specifies the

speed motor in the positive direction. Convert the desired speed to a hexadecimal value. For

this example 30 will be 1E.

command=cat(2,wordA,speedA) basically puts the values together as !A1E.

The next part of the code basically reads any flawless unnecessary data from the RS232 so that is

doesn’t interfere with the messages sent. This part of the code is used throughout all the

programs and should be executed before sending the message to the controller via the fprintf

command.
if(R.BytesAvailable>0)

xx=fread(R,R.BytesAvailable);
end

Now that the speed has been setup, execute the steering commands. “!B” specifies the steering

motor in the positive direction. fprintf(R,'!Q1') resets the steering encoder. This was added at

the competition in order for the steering to work appropriately and it might interfere with the

encoder counter code which will be discussed at a later section. Equation 5 was broken down

in order to put the angle in terms of values from 0-127. The rest of the code is a repetition, but

this time to get the steering command out to the controller.

3.3.6 Diagnostic software Figure 54 – Diagnostic Simulink Blocks

The Roboteq controller commands

make it very easy to be able to read

data. The Roboteq manual refers to

many commands that can be sent for

query purposes. Three main data that

we are interested in knowing while the

software is running are the battery

voltage readings, encoder readings, and

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

57

function [StrngEncdr,SpdEncdr] = Rs232Read_Encoder(u)
global R
%This mfile sends a question to the encoder module to find out what the
%speed reading is. The module will return 3 characters. The question,
%encoder 1 reading, & Encoder 2 Reading. The values are signed Hexadecimal
%numbers ranging from -127 to +127.

x='?k'
if(R.BytesAvailable>0) %Clear unnecesary data from Rs232 ifany
 xx=fread(R,R.BytesAvailable);
end

fprintf(R,x) %Send Encoder reading Question command
test=0
while(test==0)
 ReadValue=fscanf(R) %Read 1st sent character (same as sent)
 [n m]=size(ReadValue)

 if (m>2) %If there is garbage infron, clear it
 xx=strcat(ReadValue(1,m-2:m-1))
 if(min(x==xx)) %If cleared, read next characters
 ReadValue2=fscanf(R) %Read 2nd Character(Encoder Speed)
 ReadValue3=fscanf(R) %Read 3nd Character(Encoder position)
 test=1 %Get out of loop
 end
 end
end

%Speed encoder value reading (-127 to +127)
A=cellstr(ReadValue2) %Make Character array cell array
SpdEncdr = hex2dec(A) %Convert Hex value to dec

%Steering encoder value reading (-127 to +127)
B=cellstr(ReadValue3) %Make Character array cell array
StrngEncdr = hex2dec(B) %Convert Hex value to dec

pass(1) = [StrngEncdr]
pass(2)= [SpdEncdr]

current readings. The m files that correspond to the Simulink file shown in Figure 54 are as

follows:
 Rs232Read_Current.m

 Rs232Read_Current.m
 Rs232Read_Voltage.m

This is possible by sending a question command to the Roboteq and then reading back what the

controller sends back. Note that all the m files discussed are exactly the same aside from the

question command and maybe a conversion equation. Please refer to the Simulink file and the

commented code in Appendix C:7 for more details on this section.
Figure 55- M-File: Rs232Read_Encoder

3.3.6.1 Encoder Readings

The M-file for the encoder

reading is shown in Figure 55. It

is very important to read the

speed and position computed by

the encoder module. Sending the

command ‘?K’ to the controller

will ask the question and then 3

characters will be sent back. The

first ‘fscanf(R)’ will return the

question, the second ‘fscanf(R)’

will return the hexadecimal

number speed reading for the first

encoder, and the third ‘fscanf(R)’

will return the hexadecimal

number position reading for the

second encoder. Note that the

while loop is there to make sure

that all three data points are

received and there is no error.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

58

function [StrMotCur,SpdMotCur] = Rs232Read_Current(u)
global R
%This query will cause the controller to return the actual number of Amps
%being consumedby each motor. The number is an unsigned Hexadecimal %number
ranging from 0 to 256 (0to FF in Hexadecimal).

if(R.BytesAvailable>0) %Clear unnecesary data from Rs232
 xx=fread(R,R.BytesAvailable);
end

fprintf(R,'?A') %Send current reading Question command
test=0
while(test==0)
 ReadValue=fscanf(R) %Read 1st sent character (same as sent)
 [n m]=size(ReadValue)
 if (m>2) %If there is garbage infron, clear it
 xx=strcat(ReadValue(1,m-2:m-1))
 if(min(x==xx)) %If cleared, read next characters
 ReadValue2=fscanf(R) %Read 2nd Character(Speed Mtr Current)
 ReadValue3=fscanf(R) %Read 3nd Character(Steer Mtr Current)
 test=1 %Get out of loop
 end
 end
end

%Speed motor current reading
A=cellstr(ReadValue2) %Make Character array cell array
StrMotCur = hex2Dec(A) %Convert Hex value to dec

%Steering motor current reading
B=cellstr(ReadValue3) %Make Character array cell array
SpdMotCur = hex2Dec(B) %Convert Hex value to dec

pass(1) = [StrMotCur]
pass(2) = [SpdMotCur]

Matlab doesn’t allow to change the values directly to decimal format. Each character must be

converted to a cell array by using the “cellstr” command. Then the character can be converted

from hexadecimal to decimal which will give decimal values. Equations maybe added to the m

file to convert this value to actual readings. Please refer to the Simulink file and the commented

code in Appendix C:7 for more details on this section.

3.3.6.2 Current Readings Figure 56- M-File: Rs232Read_Current

To inquiry the controller to

return the actual number of

Amps being consumed by

each motor, the M-file

shown in Figure 56 is

simulated. The command

question is ‘?A’ The

number returned is an

unsigned Hexadecimal

number ranging from 0 to

256 (0to FF in

Hexadecimal). Note that

everything in this program

aside from different variable

names and the command

question is the same as the

previous diagnostic file in

such that three characters

are returned, where the first

is the questions sent and the

last two are the speed motor

current and the steering motor current respectively

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

59

function [MainBattV,InternalVolt] = Rs232Read_Voltage(u)
%This codes sends a character to the Roboteq controller to read the main 24v
%voltage reading as well as the internal 12v.

global R

if(R.BytesAvailable>0) %Clear unnecesary data from Rs232 if
 xx=fread(R,R.BytesAvailable);
end
x='?e'
fprintf(R,x) %Send Voltage Question command

test=0
while(test==0)
 ReadValue=fscanf(R) %Read 1st sent character (same as sent)
 [n m]=size(ReadValue)

 if (m>2) %If there is garbage in front, clear it
 xx=strcat(ReadValue(1,m-2:m-1))
 if(min(x==xx)) %If cleared, read next characters
 ReadValue2=fscanf(R) %Read 2nd Character(Main Voltage)
 ReadValue3=fscanf(R) %Read 3nd Character(Internal Voltage)
 test=1 %Get out of loop
 end
 end
end

%Main Battery Voltage-Should be about 24 V
A=cellstr(ReadValue2) %Make Character array cell array
 %to able conversion
MBattV = hex2dec(A) %Convert Hex value to dec
MainBattV = (55*MBattV)/256 %Convert dec value to voltage value

%Internal Battery Voltage-Should be about 12 V
B=cellstr(ReadValue3) %Create Cell array to able conversion
IBattV = hex2dec(B) %Convert Hex value to dec
InternalVolt =(28.5*IBattV)/256 %Convert dec value to voltage value

pass(1) = [MainBattV]
pass(2)= [InternalVolt]

3.3.6.3 Voltage Readings

This ‘?e’ query M-File shown in Figure 57 will cause the controller to return values based on

two internally measured

voltages. Just as before, the

controller will send back 3

characters, the first is the sent

question, and the next two are

voltages. The first voltage is the

Main Battery voltage present at

the thick red and black wires.

The second voltage is the

internal 12V supply needed for

the controller’s microcomputer

and MOSFET drivers. The

values are unsigned

Hexadecimal numbers ranging

from 0 to 255. To convertthese

numbers into a voltage Figure,

formulas described in “Internal

Voltage MonitoringSensors” on

page 62 of the Roboteq manual

were used.

Figure 57- M-File: Rs232Read_Voltage

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

60

3.3.7 Data Logging

The Hephaestus vehicle platform makes use of the onboard wireless router to provide external

monitoring and data logging. This is accomplished with the use of two Simulink models shown

in Figure 58, and an associated .dll file. This method transmits the data using a User Datagram

Protocol (UDP), which is not as reliable as TCP; however, it requires less processor time. The

Transmission file operates within the Control computer, and the Receive file runs on the external

computer. The files are included in Appendix C:8, under the following names:

 DataLogTransmit.mdl

 DataLogRecieve.mdl

 sfun_time.dll

These blocks are highly configurable, and can support any number or type of data streams. To

add more channels, simply modify the Input and Output Data Types within the Pack and Unpack

blocks. By configuring the UDP Send, and UDP Receive blocks, the data stream can be

designated for a single computer, or broadcast to many PCs or laptops.

It should be noted, that using the UDP transmission method, and a wireless connection, there will

be some amount of lost or corrupted data. The only way to avoid this, is to either use a TCP

connection, or a wired connection. TCP is not recommended for this, as it will slow the

processing on the control computer.

Figure 58-Data Logging Simulink Files

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

61

3.3.8 Turn Counter Figure 59 – Angle Counter

Since the spiral cord in the shaft between the two

platforms will loosen and tighten as the vehicle

turns, it is critical to keep track of the number of full

turns so that pressure is not put on the wiring. This

is being taken care of by code in two different ways.

Only choose one.

At first, a block was added to the Simulink file as

shown in Figure 59 where a cumulative sum block

keeps track of the angle inputted from Navigation and a Matlab function file will rewind the cord

by turning the vehicle once it’s limits have been reached. It is not for sure, but it is believed that

this is not valid because the summation box might keep reading the input from navigation before

it gets a chance to refresh.

Figure 60 – Steering Encoder Counter

With that in mind another block was

created which calls an m function directly

as shown in Figure 60. This Matlab file

will be reading the steering encoder

counter instead and making judgments on

that. Once the encoder counter reaches its

specified limits, the vehicle stops and

rotates and then the encoder counter is

reset. The only problem with this is to

make sure that the encoder is not reset

anywhere else in the program. It is

believed that at the IGVC competition,

the encoder was reset each time so that

proper actions were taken.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

62

+

+

+
Kalman

filter
Error

Modeling

GPS

INS

3.3.9 Navigation-GPS

It was intended for the Hephaestus to compete in the navigation challenge in the 2005 IGVC.

The electronic hardware that was slated for use for this purpose on the Hephaestus are shown in

Figure 61.

Figure 61-From Left to right: Accelerometer, compass and GPS unit

 A Race tech AC-22 accelerometer for measuring linear movement (acceleration) applied to the

vehicles inertial frame. A PNI micromag xx compass used to pinpoint the vehicles location and

a Rikaline GPS6010 Global Position System unit to provide waypoint locations on the

navigation course. The integration of the sensors mentioned above make up the inertial

navigation system. Together they can tell the system, the location of the vehicle, measure the

change of position (distance), and provide direction. The network of the system is

susceptible to small errors from all sensors which

can add up to make the system unreliable. To

compensate for the errors a Kalman filter is added. Kalman filter

uses estimates from previous time steps to predict

the current state (position and velocity), and used

measurements of current state to refine prediction of new states. A

diagram illustrating the use of the Kalman filter

within the navigational system is depicted in Figure

62.
Figure 62: A depiction of the Navigational system

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

63

4.0 Operation & Maintenance
This section of the report is very critical in that proper steps are taken in order to initialize the

vehicle and have a safe maintenance procedure. Note that safety is most critical and

students/faculties should be careful.

4.1 Startup Manual

As mentioned earlier, there are three ways to operate Hephaestus. The first is with the Roborun

software, the second would be with the speed control software with the programming computer,

the third and final way to move Hephaestus is with a remote controller. Note incase of an

emergency, the best way to stop the vehicle is to E-Stop it, however in situations where E-Stop is

not active turn off the controller.

4.1.1 RS232 Roborun Utility

In the PC utility, many of the Roboteq configurations can be set. This program is very useful in

configuring, testing and diagnostics. The following are detailed steps in operating the Roboteq

controller using its own software run utility.

1. The robot should be free standing on jack stands or tools for this type of testing.

2. Connect the 55A fuse located on the end of the battery tray.

3. Slide the battery tray in the vehicle (located on the lower platform)

4. Connect the Roboteq controller directly to a PC via RS232 serial cable.

5. Launch Roborun software.

6. Turn on the controller

7. Make sure the correct comport is active

8. Once the controller is connected to the active port of the desktop, the controller info

should display valid ID, Rev and codes. If nothing happens, try exiting the program and

opening it back again.

9. ConFigure the setting to RS232.

10. Setup the motor controller to the desired settings as described in section 3.2.1.3.1.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

64

NOTE THAT THE E_STOP IS NOT ACTIVE IN THIS COMMUNICATION SETUP

SINCE THE ELECTRIC BOX IS NOT CONNECTED TO THE CONTROLLER.

4.1.2 Matlab (autonomous)

Note that testing can be done from a desktop PC just as mentioned in the last section where the

controller is connected to the PC, but running in Matlab rather than the Roboteq utility.

However, in this section, the autonomous startup manual will be discussed where the onboard

laptop is doing the controlling. These steps assume that configuration settings mentioned in

section 3.2.1.3.2 are all set.

1. Connect all connection to the power box located on the upper platform

2. Connect the 55A fuse located on the end of the battery tray.

3. Slide the battery tray in the vehicle (located on the lower platform)

4. Connect the control computer to the electrical box via RS232 serial cable

5. Turn on the electrical box

6. Turn on the Roboteq Controller

7. Open Matlab and launch the main Simulink file in Appendix C:1.

8. Run the Rs232 initialization commands

9. Run the Main Simulink program

10. To stop this program, either hit the pause, stop button in Matlab, or E-stop the vehicle.

4.1.3 Remote Control

The following are instructions to start and operate the vehicle in R/C mode: Fore more

information on configuration for this type of operating mode, please refer to section 3.2.1.3.3.

1. Connect all connection to the power box located on the upper platform

2. Connect the 55A fuse located on the end of the battery tray.

3. Slide the battery tray in the vehicle (located on the lower platform)

4. Connect the control computer to the electrical box via RS232 serial cable

5. Turn on the electrical box

6. Turn on the R/C

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

65

7. Launch Roborun software.

8. Verify that the setting is set for RC rather than RS232 and that the E-stop is active.

9. Disconnect the RS232 cable from the electrical box

10. Hold program as you turn the controller on until the seven segment display on the back

begins to blink (about 5-10 seconds)

11. You are now in programming mode. Pressing the set button will change the

configuration on the program, while pressing program will save the configuration of that

program and advance to the next program.

12. Press program until a J appears on the seven segment display. This stats for programming

mode. At this point, J appears and then a 0 appears sequentially.

13. Press the set button. Now you have entered programming mode for R/C

14. Take the R/C and first move the joystick from one extreme to the next a few times

15. Now, move the other joystick from one extreme to the next a few times.

16. Now, leave the both joysticks in their dead band positions and press the program button.

17. Restart the controller. RC MODE IS NOW ON. Move the joysticks to move the vehicle.

4.2 Maintenance

Like any vehicle maintenance has to be considered to maximize the vehicles performance and

longevity. This section lists the maintenance information for various part of the vehicle.

4.2.1 Batter Removal and Charging

Two main battery sources are provided for Hephaestus, one in the lower platform and the other

in the upper platform.

4.2.1.1 Lower Batteries

The one in the lower platform is the bulk of the two. It is two 12V 55AHr batteries connected in

series to provide 25V 55AHrs to drive both motors and power the Roboteq controller. This

battery tray is very heavy and is recommended that two people install it. Removing is little

easier. Figure 63 displays an image of the sliding tray.
Figure 63-Battery Tray Removal

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

66

1. Locate the bolts that hold the tray in

place.

2. Remove the wing nuts from the bottom

of the bolts and then pull the bolts

upward to remove them.

3. Carefully pull the tray away from the

vehicle completely in a straight line.

4. If not planning to use the batteries for a

while, it is recommended that the fuse be removed in case the terminals get accidentally

shorted.

5. To charge the batteries, the fuse must be connected.

6. Place the battery tray on the ground to charge it. Use the Schumacher 24V charger.

Since these batteries are in series and are now 24 volts rather than 12, this charger must

be used

7. To replace in the vehicle follow the same procedure in reverse order.

CAUTION: The battery tray is heavy. It is recommended that two people perform this

4.2.1.2 Upper Batteries

Upper platform batteries are much smaller and much easier to replace or charge. Remove the top

off the electrical box and remove the two 12V 5AHr batteries. These batteries are also

connected in series and produce a total of 24V 5AHrs. There are two ways to charge these

batteries.

1. Once can connect each battery to a 12V charger and charge each individually.

2. The other method would be similar to the lower platform batteries. Connect the two

batteries in series and use the 24V Schumacher charger.

4.2.2 LADAR Swap

As mentioned, the LADAR had to be shared between the two vehicles as it is such an expensive

piece of equipment and therefore it needed to be able to be swapped between teams.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

67

Removal:

1) Locate and loosen side clips that connect the LADAR to the mounting frame.

2) Lift LADAR off mounting frame.

Replacement:

1) Slide LADAR onto mounting frame.

2) Locate and tighten down the side clips that connect the LADAR to the mounting

frame.

4.2.3 Reloading Code

A number of saved electronic copies of the code is critical to have. One important thing to know

is that all the files must be in the same directory and that the MATLAB directory should be

specified to that specific folder. Much effort is needed to enable a better and easier way to

initialize the RS232 setup program.

4.2.4 Replacement of Parts

Some parts are replaced more often than others, or maybe just taken off and put back on more

frequently than some of the other components. This section will illustrate a detailed description

on how to replace parts.

4.2.4.1 Encoder Replacement

As mentioned earlier in the report, the encoder connection terminals are very delicate. The

Ethernet terminal connected to the controller has the following connections shown in Table 8.

Note that the wire colors are a bit different from what is mentioned in the Roboteq manual.
Table 8-Ethernet Pin Connections

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

68

The encoders that are being used for the Hephaestus has 5 input lines as shown in Figure 64,

however channel Z is not used. Encoder 1 is for the speed and encoder 2 is for the steering. Note

that this is the bottom view of the encoder. Table 9 & 10 illustrates the connections going to the

encoder.

Figure 64-Encoder Schematics

Table 9-Speed_Encoder Connections
Enc
Pin

Name Color Ethernet Pin
(Table 1)

1 +5V Brown 8
2 Channel B Blue/White 5
3 Z
4 0V Red/White 7
5 Channel A Orange 6

Table 10-Steering_Encoder Connections
Enc
Pin

Name Color Ethernet Pin
(Table 1)

1 +5V Blue 4
2 Channel B White 1
3 Z
4 0V Orange/White 3
5 Channel A Green 2

1. Make sure that the encoders are damaged by testing them

2. Figure out which encoder is being replaced.

3. If speed encoder use table 9, if steering encoder use table 10.

4. Make sure to note these connections are according to bottom view of the encoder.

5. Get the encoder and solder according to the respective table.

6. Note that these terminals are very delicate and it’s possible to break them.

7. Make sure to use shrink tubes.

8. Test the encoders to see if they are working properly.

4.2.4.2 Circuit Repair

Circuit repair is a delicate process. One must make sure that all connections are correct not to

destroy the new part or other parts already connected to the circuit board. All circuits of

Hephaestus reside in the electrical box. Before a component or a part can be repaired, it must be

identified. A digital multi meter and or and oscilloscope will do the trick. Once the problem has

been discovered, view all schematics provided and carefully replace the part.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

69

4.2.4.3 Chain, Sprocket & Motors

To Remove:

1) Remove upper platform and all unnecessary obstructions for access to motor area.

2) Undo all necessary electrical connections

3) Remove chain

-find and remove clip on the master link with a pair of pliers.

4) Remove Sprocket

-loosen setscrews that attach it to the motor’s output shaft.

-Remove key from the motor shaft’s keyway.

-use the correct size gear puller to remove the sprocket from off the shaft.

-repeat this procedure for any sprocket in the drive or steering systems.

5) Remove all components used to mount the motor in place.

6) If desired, replace the motor’s output shaft.

To Replace:

1) Re-mount the motor to its previous location by affixing it to the platform with all the

mounting components that were removed.

2) Re-mount the sprocket to the motor shaft.

-make sure the key has been inserted into the shaft’s keyway.

-when the sprocket is at the desired height on the shaft, tighten down the setscrews

enough to secure the sprocket on the shaft.

-repeat this procedure for any sprocket in the drive and steering systems.

3) Place the chain on the sprocket.

-Make sure the chain is fully engaged by or wrapped around the sprocket.

-Attached both loose ends of the chain to the master link by clamping down on the master

link’s clip with a pair of pliers.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

70

5.0 Critical Evaluation of Design
While the theory behind the Hephaestus vehicle is solid, there are several problems that need to

be addressed in the current design. The vehicle did enter the IGVC competition; however it did

not even try to qualify because of major issues with the mechanical system which will be

discussed shortly. The vehicle actually did perform autonomously inside a made up course

inside the tent on sold ground for about 5 minutes. Once, it got on the grass, the steering motor

was destroyed due to the excessive torque.

The first and the most critical of these is the chain and sprocket system. Too much time was

wasted on this aspect of the vehicle without a satisfactory solution. A critical factor that dictates

the success of most chain and sprocket systems is whether or not the sprockets in the system are

level with each other. If the sprockets are not leveled then the chain is less likely to be properly

tensioned. The chain, not being able to fully engage the teeth on the sprocket, will become

misaligned and slip off the sprocket. Rather than eyeball the height at which each sprocket is set

on the shaft, a sufficient leveler could be used to level the sprockets or spacers machined with

identical dimensions could be mounted in between each sprocket on the shaft to ensure that chain

will not be misaligned. To remedy the problem of the chain not being able to fully engage on the

sprocket, the chain was tightened. Tightening the chain was not a practical solution. It was

perhaps tightened too much. While the vehicle was operating on the field, the steering motor

was partially destroyed. The chains took up too much torque and the steering motor’s soul drifted

out in smoke.

A second issue, which would also assist with the previously stated problem, is the large amount

of mass on the upper rotating platform. The high masses that are accumulated on the top lead to

a greater moment of inertia. This, in turn, causes higher efforts of the motor and greater stresses

placed on the chain and sprockets. This can be resolved by moving several things to a lower

level. The control laptops, as well as the other control boxes that are placed on top could be

moved to another stationary platform between the current lower platform and the upper rotating

platform. This would leave the LADAR mount and the payload on the top to rotate. The

payload could be moved back to counter the weight of the LADAR hanging off of the front of

the vehicle.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

71

A third issue is the camera mount. The last second modification was hideous but functional.

This could have easily been remedied by adding a 45o joint on the top of the mast that would

allow the top to lean forward and the camera to face down over the front of the vehicle. A

solution to this could have easily been implemented this year had it been known before the

middle of the competition that the camera could not see over the front of the vehicle.

If the vehicle were to be used next year there are two other issues that I believe should be

addressed. The lower platform is still made out of Aluminum and is bending severely in several

places. This would have to be replaced for any future competitions. Also, it is our belief that the

chain could be replaced. If the chain were to be replaced it could be replaced with a larger chain

which would also allow for larger gears. This would also help the chain slipping issue and could

even possibly allow for the current chain and sprocket set up to remain, with larger gears to

match the new chain of course.

After seeing the course, the size of the vehicle must be reduced by at least a third. We learned

we need to put the camera to the front of the vehicle as opposed the center of the vehicle. Do not

use chain excessively. When designing the vehicle, remember that the vehicle will probably be

heavier than you plan and will encounter non-ideal conditions. Motors should be over specified.

The frame should also be very strong. Remember that you will have to work on this thing and

that easy access is important. We had a very tight and cluttered chain set up that is difficult to

work with in a timely manner.

The availability of tools and supply of materials (i.e. bolts, screws, structural materials) was

lacking and almost seemed to be as big as any electrical or mechanical problem associated with

this project. With the time constraints that may be involved in next year’s project it should be a

priority to have 24-7 access to vehicle lab and machine shop along with access to tools and a

constant, sufficient supply of materials to limit the possibility of exhausting that supply.

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

72

6.0 Component Cost & Info
Table 11 provides a detailed retail cost and team cost of the components. Incase more parts are

needed or supplier needs to be contacted, info is available in the table for the majority of the

parts. Table 11-Steering_Encoder Connections

7. Conclusion
Hephaestus is a very unique design. It has unique features such as the integrated controller,

which simplifies wiring and troubleshooting. Unfortunately the main mechanical components

were not originally designed very well, and that is where most of our problems were. Next

year’s team needs to make major mechanical changes, because minor ones will not improve the

design. All the software and electronics were completed, however there was almost no testing

done in terms of running autonomous at all due to the time constraints and things breaking apart.

For future teams, give the Electrical Engineers plenty of opportunity to test. Even if the vehicle is

not complete there are many ways to test its components. Set aggressive goals and make sure

everyone has an assignment with a clear deadline. The sooner you break the machine the sooner

Component
Retail
Cost

Team_
cost Supplier Part # Supplier

Driver Motor $352 $329 Robot combat: Dustin DCWD-D01 www.robotmarketplace.com/
Motor Shaft $23 $23 Robot combat: Dustin DCW-SH01-8 www.robotmarketplace.com/
Steering Motor $91 $91 Robot combat: AME AME-242-1002 www.robotmarketplace.com/
Encoders $140 $140 Micro Laboratories MEH17-300-2 www.cui.com
IP Laptop $1,200 $0 HP www.hp.com
Control Laptop $2,500 $2,000 IBM www.ibm.com
LADAR_LMS-200 $5,740 $4,305 SICK LMS 200-30106 www.sickusa.com
Cable-LADAR $39 $35 SICK PS-1250 www.sickusa.com
Mounting Bracket #1 $97 $87 SICK PS-1255 www.sickusa.com
Mounting Bracket #2 $170 $153 SICK DMR-202 www.sickusa.com
Upper Batteries(2) $51 $51 Panasonic PS-1250 www.ragebattery.com
Lower Batteries(2) $187 $187 PowerSonic PS-1255 www.ragebattery.com
Camera $100 $100 Unibrain www.unibrain.com
Miscellaneous elect. $300 $100 Various
Roboteq controller $632 $632 Roboteq AX2850 www.roboteq.com
Remote control $101 $101 Futaba DMR-202
E-Stop control (RF) $60 $0 Bosch
Structural material $1,300 $680 Bosch
Wheels (6) + drive train $900 $900 Various
Miscellaneous mech. $300 $200 Various

Total Cost $14,260 $10,114

University of Detroit Mercy Hephaestus 2005

Copyright 2005 University of Detroit Mercy Hephaestus

73

you can fix it, testing is absolutely critical. Make sure everyone can operate the vehicle, not just

the Electrical Engineering students.

