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2005 Hephaestus Design Report 

ABSTRACT 
The following document serves to detail the conceptual, design, and physical work completed on 

the University of Detroit Mercy Hephaestus vehicle platform.  Hephaestus has served as the 

platform for a multi-year, multi-discipline effort to compete in the Intelligent Ground Vehicle 

Competition.  This vehicle was created in 2004, including initial design and partial construction.  

During the past two term of the 2005 school year, the design and construction have been refined 

and reworked.  Additionally, the control and sensory systems have been implemented.  It is 

expected that another multi-disciplinary team will continue work on Hephaestus during the 2006 

terms.  This team shall remedy the issues mentioned in this document, and prepare Hephaestus 

for competition in the 2006 Intelligent Ground Vehicle Competition. 

 

Currently all systems of the vehicle are intact; however several are in need of work to allow for 

proper operation.  Specifically, the greatest downfall of the Hephaestus platform has been the 

drive train.  It is expected that the 2006 team should redesign the drive and steering mechanisms 

to allow for optimal, omni-directional operation. 

 

While Hephaestus was able to perform limited autonomous activity at IGVC, this may no longer 

be the case when the 2006 team begins initial work.  However; the level of work completed in 

2005 should ensure that the following team is able to successful prepare the Hephaestus vehicle 

for the 2006 Intelligent Ground Vehicle Competition.          Figure 1- The Hephaestus 

 

1.0  Introduction 
1.1 Problem Statement 

This year marks the second phase of work on the 

Hephaestus autonomous vehicle platform shown in 

Figure 1.  With the chassis designed and built in the 

first phase, the goal of this phase is to improve the 

reliability of the drivetrain and complete the electrical 
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systems.  In short, the goal for the second phase is to fully complete the vehicle in preparation for 

entry into the 13th Annual Intelligent Ground Vehicle Competition.  The Hephaestus team 

consists of 12 engineering students, including 2 Masters students.  The six EE students are 

responsible for all of the electrical systems of the vehicle.  One of the EE Masters students leads 

the Image Processing effort, and the other, Navigation.  The four ME students have the 

responsibility of ensuring that the drivetrain functions properly, and that all components are 

mounted securely.   

1.2 Project Requirements (IGVC Rules) 

The Hephaestus vehicle platform and sensory and control systems have been designed to both 

comply with the IGVC rules and to produce an advanced autonomous vehicle. As described in 

the 2005 IGVC Rules, the vehicles must: 

 
• Vehicles must be fully autonomous during each heat of the competition.  The team may 

physically, mechanically, or electrically control the vehicle to the starting line; however, 

once the signal to begin the heat begins, no member of the team may control the vehicle 

in any manner other than to stop the vehicle and end the heat. 

• The vehicle must make direct contact with the ground as its means of propulsion.  Any 

part of the vehicle that makes contact with the ground is defined as the vehicle’s 

mechanical footing.  Examples include: 

o Wheels. 

o Tracks. 

o Pods. 

• The vehicle will be expected to negotiate around an outdoor obstacle course.  Figure 2 

shows a possible example of a course segment.  Obstacles include: 
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o Full-size orange and white construction barrels. 

o Tall orange construction cones 

o Construction A-Frame barricades 

o Five-gallon white pails. 

o Two-inch deep by two-foot diameter potholes.  (These may be driven through 

with a considerable point deduction for each occurrence.) 

o Boundaries consisting of two three-inch lines painted on the grass and spaced ten 

feet apart.  These may be either white or yellow, with occasional gaps in the lines.  

(Vehicles may cross a line, resulting in a point deduction, so long as some portion 

of the vehicle's mechanical footing remains in bounds.) 

o  

Figure 2 – Image of construction barrel and paint lines (Image by Team Hephaestus) 

• The vehicle must be able to negotiate grass, sand, dirt, and a ramp with a maximum 15% 

grade.  The sand may be two to three inches in depth.  These conditions may be dry or 

wet. 

• The vehicle must travel at a speed of at most 5 mph. 
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• For safety purposes, the vehicle requires a wireless emergency stop (E-stop) mechanism 

and a manual E-stop system.  These systems must bring the vehicle to a complete stop 

within six feet on inclines up to 15%. 

o The wireless must operate at a minimum of 50 feet away. 

o The manual must be operated by the depression of a one-inch red button located 

at the rear of the vehicle between two and four feet from the ground. 

• The vehicle dimensions are as follows: 

o Length—between three and nine feet. 

o Width—between three and five feet. 

o Height—between zero and six feet (this does not include an antenna). 

• The vehicle must be capable of negotiating an 5-foot turning radius. 

• The vehicle may operate on combustible fuel or electric power.  All vehicles must be 

safety inspected on a simulation course. 

• Each vehicle will be required to carry a 20-pound payload on top.  Because this payload 

may also contain a camera for the judges, its view should be unobstructed. 

• The vehicle must be operational under conditions of light rain. 

 

1.3 Performance Specification 

Analysis of vehicles from past IGVC competitions led the team to develop a series of 

specifications which would ensure that our vehicle had an appropriate design.  By identifying the 

key features of successful vehicles, we were able create unique solutions to the many difficulties 

of the competition. 
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1. Sensory — The sensory system of the vehicle is essential for lane and obstacle detection. 

As the sensory system’s ability to detect lanes and obstacles increases, the need for 

vehicle agility decreases.  This relationship exists as a result of being forced to move the 

vehicle more quickly if objects are not detected until they are right next to or in front of 

the vehicle.  Conversely, if obstacles are detected a considerable distance away from the 

vehicle, it would be able to react in a slower manner while still avoiding the obstacle. 

 

2. Traction — The vehicle must be able to traverse a variety of terrains (grass, sand, ramp, 

dirt—wet or dry).   

 

3. Turning — The vehicle needs to accurately negotiate the path that is determined by the 

navigation system.  Agility becomes important when sensory systems are less accurate. 

 

4. Stability — The vehicle must be designed with a low center of gravity and a wide 

wheelbase in order to avoid becoming unstable under any circumstances that may be 

encountered throughout the course.  A possible ramp represents the only portion of the 

track where the vehicle is not traversing flat ground.  There also exists the possibility of 

the vehicle partially “missing” the ramp, or falling from the ramp in which case stability 

is crucial to ensure there is minimal damage to the vehicle. 

 

5. Reaction Time — The vehicle must be able to process sensory inputs and make 

appropriate adjustments in speed and direction rapidly enough so as to ensure safe 

navigation through the course at an appropriate speed. 
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6. Dimensions — The vehicle must have dimensions that allow maneuverability up ramps, 

through sandpits, and around all obstacles.   

 

7. Battery Life — There must be enough battery capacity to enable the vehicle to complete 

the entire course.  Batteries must be accessible enough to be changed within the five-

minute window between heats.  

 

8. Speed — The competition vehicle must be able to travel fast enough to complete the 

course within the maximum allotted time.  The winner of the competition is the vehicle 

that completes the course the fastest.  Therefore it is desired to go at the maximum speed 

of 5 mph while still maintaining reliable reaction time. 

 

9. Reverse — In the event that the vehicle drives into a trap, as seen in Figure 3, it must be 

able to go in reverse if it does not have a 0° turning radius. 

 
Figure 3 – Diagram of possible obstacle traps on IGVC course (Image from IGVC.org) 

 

10. Modularity — In the event of failure or damage at the competition, easy exchange of key 

components within the five-minute window between runs will be crucial.  The LADAR 
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must be shared with other UDM teams.  The mounting system must be designed around 

this. 

 

11. Mechanical Reliability — Designs that include mechanical systems that are prone to 

failure must be avoided. 

 

12. Mechanical Manufacturing — Designs that include mechanical components that will be 

difficult and time consuming to manufacture must be avoided. 

 

13. Ease of control — An intuitive and reliable method of controlling speed and direction 

should be incorporated in the design of the vehicle. 

 

14. Cost — Due to the fact that this is a budgeted project, the cost of potential designs must 

be weighed against their functional advantages. 

 

15. Design Ingenuity — The quality and creativity of the design will determine the success in 

the design competition of the IGVC.  Therefore, aesthetics of design will be nearly as 

important as functionality. 

 

Adherence to the Intelligent Ground Vehicle Competition rules and a strict application of these 

performance specifications will ensure not only successful completion of the first phase of the 

design, but also in turn will lead to the fulfillment of the goals of this project in its entirety.  
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2.0 Design Planning/Team Organization  
2.1 2003/2004 Team Development 

The development of Hephaestus started during the 2003-2004 academic year by a team of 

mechanical and electrical engineering seniors. Detailed study of the rules, published competitors 

reports, and previous results were analyzed to determine the design attributes of the “winning” 

vehicle. This team started the research, and designed and built the mechanical systems, including 

the frame and drive train.  Unfortunately not much time was left to startup with the electrical 

systems or to test or improve upon the Mechanical parts. The 2004 Hephaestus report is 

available in Appendix E:1. 

 
2.2 2004/2005 Team Development 
The 2005 Hephaestus team is interdisciplinary and composed of senior Electrical & Mechanical 

Engineering students, as well as graduate Electrical Engineers.  The team has an elected leader 

and is advised by three faculty members.  The organization chart is displayed in Figure 4 below. 

 

 

 

 

 

 
Figure 4- Team Organization Chart 

 
The 2004-2005 Hephaestus teams’ focus has been on improving the mechanical system, 

completing the electrical system and software algorithms, and building a competition-ready 

vehicle.  Each person was given a primary task as well as additional minor tasks.  The graduate 

students were primarily responsible for the image processing and navigation systems.  A Gantt 

chart was created and followed in order to maintain a steady schedule and to meet all deadlines.  

A copy of the Gantt chart can be found in Appendix D:1.  
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Many resources were available to aid our team in this design and implementation process. The 

same resources as well as new ones will be available to aid the coming senior class as well as 

other future students. Mainly the manuals found in the appendices will help as well as product 

websites, Matlab and Simulink help menus, books and professors. Also professional engineers 

did help such as Stematt, who is a Simulink expert as well as our graduate students.  The list 

below in Table 1 indicates which student worked in what system along with their email address 

incase further help is needed given that the other available resources are not enough. 
Table 1-System_Contact Person 

Name Major System Task E-Mail 
Josh Vetter Computers 

Data Logging 
joshjv@yahoo.com 

Reta Elias Speed/Steering control 
Diagnostic Software 
Roboteq 
Encoders 

Rere0282@aol.com 

Leonard Tomaj RC Controller 
Electric Box 
Power System 

tomajl@sbcglobal.net 

Ryan Davis Roboteq 
Encoders 

ryan_davis2437@hotmail.com 

Chris Scott E-Stop scottc@tacom.army.mil 
Ono Okagbara LED software/hardware 

Camera 
onoerhime@yahoo.com 

Brian Grider LADAR 
Navigation 

bryan.grider@gmail.com 

Lei Wang Image Processing ray2005@gmail.com 
Chris Collins ME’s – Drivetrain, Motors ps2man32@yahoo.com 
Brian Cook ME’s – Catia, Drivetrain, Brianjcook@hotmail.com 
Jean Harris ME’s – Platforms, Drivetrain bldypr3@yahoo.com 
Levar Mabson ME’s– Battery Tray, Drivetrain var_1097@yahoo.com 

 

3.0 VEHICLE & SUBSYSTEMS DESCRIPTION  

3.1 General Vehicle Overview  

The main design features of Hephaestus are its two platforms and its three articulating wheel 

hubs that turn simultaneously to produce a zero turn radius.  In this manner, the vehicle can 

translate in any direction allowing for absolute freedom of movement.  The design of the wheel 

assemblies will be described in detail later, but the important feature is the mechanical coupling 

throughout the drive and steering systems.  Two gear motors run the driving and steering 

functions of the vehicle.  As a result, a relatively simple motion controller with two input and 

two output channels could be used to effectively control the speed and direction of the vehicle. 
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Hephaestus uses a single color camera and a laser distance sensor to obtain information about its 

environment.  Using this information, image analysis and a fuzzy logic-based navigation strategy 

are implemented in a Matlab-Simulink environment running on a laptop PC.  Using the resultant 

navigation output, steering & speed commands are executed via a laptop PC controlling the 

dedicated motion controller. 

 

3.1.1 Vehicle Architecture  

The chassis of the Hephaestus vehicle shown in Figure 5 is composed of two octagonal shaped 

platforms with the lower one supporting the mechanical components (i.e. chain and sprocket 

drive system) and the upper supporting the electrical components (i.e. laptops, power and control 

boxes).  These two platforms are connected via a hollow shaft that also functions as a raceway 

for wires, which power most of the electrical systems including the camera. The camera is 

mounted on the highest point of the vehicle mast. The vehicle is supported by three pairs of 

wheels arranged in a triangular pattern.   In each pair of wheels, one is driven by the motor while 

the other wheel serves to improve stability of the 

vehicle.  The electrical platform is slightly smaller 

than the mechanical platform. The mechanical 

platform has a width of 38 in at the shortest section, 

which complies with the dimension criteria set forth 

by IGVC. The upper platform, housing most of the 

electrical systems, is designed to rotate about the 

center shaft synchronously with the wheel assembly.  

This allows the vehicle to always face forward, so 

that the LADAR and camera can detect obstacles and 

determine the best course for the vehicle to drive 

through.   
Figure 5 – Catia 3D Model 

 

The platforms are constructed using 30mm x 30mm Bosch aluminum extrusions. The “skin” of 

the electrical platform was formed out of alumalite.  Alumalite is a man-made material 

consisting of one corrugated sheet of a polymer plastic sandwiched between two sheets of 
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aluminum.  This material is much stronger and aesthetically more appealing than the sheets of 

aluminum used prior to the 2005 design. 

 

3.1.2 Lower Platform  

The drive train components, including the steering and drive motors, are mounted on the lower 

platform.  This platform is supported by a triangular wheel pattern consisting of three wheel 

“pods”. 
 Figure 6 – Drive Train Configuration 

3.1.2.1 Drive Train            

Two motors are used to control this vehicle. A 

drive motor controls the speed and a steering 

motor controls the angular position of the 

wheels.  Figure 6 displays an AutoCAD model 

of the top view of the lower platform.  The drive 

chain is shown in blue and the steering chain is 

shown in red.  Note that the red chain is 

wrapped around the center shaft, which causes 

the upper platform to rotate with the wheels.  

Refer to the 2004 Hephaestus report (P28-30) in Appendix E:1 for more information on the drive 

train design. 

 

The idea behind the drive train is relatively simple.  The idea is to have a single motor drive three 

different shafts, with a two to one ratio.  The three shafts will then drive three other shaft, 

perpendicular to them, driving the wheels.  This is the idea that was used for the setup of the 

drive system.  However, it did not end up quite this simple.  The final drive train setup had the 

motor driving a shaft single shaft through chain.  This single shaft was connected to the drive 

shaft in the three wheel pods via a different chain.  There was a two to one ratio between the 

drive shaft in the pods and the drive shaft that was connected to the motor.  Each shaft in the 

pods, was connected by bevel gears to a shaft perpendicular to the drive shafts.  The wheels were 

then connected to these shafts.  There was also a tensioner on the chain in an effort to keep the 

drive chain from skipping on the gears under acceleration and to dampen chain harmonics. 
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The pre-existing design of the chain and sprocket system did not work because it created slack in 

the chains and never fully engaged each sprocket.  To improve upon this design, an idler was 

removed, the chain was rerouted and a chain tensioner was added. A drive shaft was then put 

into place to connect the chain to the motor.  This drive shaft then drove the chain which drove 

the rest of the shafts.  The ratio from the motor to the drive shaft was 1:1, and the ratio between 

the drive shaft and the other shafts is 2:1.  This reduces the speed to make sure the vehicle will 

stay within the speed limits required by IGVC officials and also provide more torque to help 

move the vehicle. 

 

3.1.2.2 Wheels  

It is important to note that the configuration of the wheels chosen by last year’s team was 

strongly influenced by the ramp.  A plane is defined by three points; therefore, a three-wheeled 

vehicle will always travel on a plane, even as it begins to 

climb a ramp.  It will always have three points of contact, 

which keeps it stable at all times. The three wheeled 

configuration is illustrated in Figure 7. On the contrary, if 

a four-wheeled (diamond configuration) vehicle were to 

begin climbing a ramp with only one wheel facing 

forward, it would force the vehicle to tip to either its left 

or right wheel in order to reestablish a three points of 

contact, meaning the vehicle will no longer be stable.       
         Figure 7 – Wheel Configuration 

 

In addition to making sure the vehicle is stable by calculating the center of gravity, maximum 

acceleration and turning rates. Last year’s team added three extra wheels to increase stability 

even more as depicted by the wheel configuration in Figure 7, where each wheel pod consists of 

a pair of wheels, one is driven, the other is free-wheeling.  As can be seen in Figure 8, the worst-

case scenario distance, d, increases when three extra wheels are added to the three-wheel 

configuration.  In doing this, however, the problems that can only come from such a 

configuration surfaced.  Since only three points are required to make a plane the drive wheels 
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often were not in contact with the ground surface due to inconsistencies in the surface.  In order 

to resolve this, the idler wheels were lathed so that approximately 0.75” were removed from the 

diameter of the wheels.  This allowed for all three of the drive wheels to be in contact with the 

ground at all times yet still allowed the idler wheels to provide stability in extreme circumstances 

when needed. 

 
Figure 8 - Three Wheels vs. Six Wheels 

    Figure 9 –Wheel Pod Schematic 

The steering motor rotates the entire wheel pod assemblies.  

As seen from Figure 9, the wheel pods have two separate 

sprockets connected to two separate chain drives.  The top 

sprocket connects the drive motor to the vertical drive shaft 

which in turn drives the wheel through a bevel gear.  The 

bottom sprocket connects to the steering motor and in 

effect serves to turn the entire wheel pod, thus orienting the 

wheels in the direction of motion. 

 

3.1.2.3 Battery Tray Design  

The battery tray shown in Figure 10 is designed to hold two 12v car batteries connected in series.  

It is also required to be housed below the lower platform in order to help lower the center of 

gravity of the vehicle and must be able to be quickly removed and changed.  It also must be in 

contact with two electrical leads that would allow them to provide power to the vehicle. The 

dimensions of the battery tray itself although being 

large enough to contain the two batteries, is small 

enough to keep the tray from interfering with the 

motion of the wheel pods and to ensure that it 

remains clear of any protrusions from the ground that 

would hinder or possibly stop the vehicle.           Figure 10 –Battery Tray 
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For quick removal and exchange, drawer sliders were initially used to slide the tray under the 

vehicle into contact with the electrical leads.  However, there was some question regarding the 

strength and durability of such a system so a new one was implemented.  Nylon channels were 

cut and bolted into the frame of the vehicle to provide tracks for on which the battery tray can 

slide unto.  These were reinforced by steel in order to ensure the strength of the system.  After 

this system was perfected it greatly reduced the time required to change battery trays and made 

use of the tray and lead system already in place.  

 

A locking mechanism was also required to ensure that the tray would not accidentally slide out 

of contact with the electrical leads or fall off of the vehicle.  In order to resolve this difficulty, 

two holes were drilled into the handle of the battery tray.  When the battery tray was properly in 

place, these two holes lined up with matching holes on the outer frame of the vehicle.  This 

allowed for two bolts to be slid into place and wing nuts could be tightened in order to ensure 

that they did not move. 

 

3.1.2.4 Motors  

The motors were selected based on function (gearing, self-locking, etc.) and performance 

(horsepower, stall torque and RPM).  Sufficient power ensures that the vehicle is capable of 

moving at a speed of 5 mph up the maximum incline of 15%.  Stall torque calculations take into 

account the motor’s ability to propel the vehicle from a stationary position up the incline.  Motor 

RPM is used in conjunction with gearing and wheel size to ensure that the vehicle can achieve 

the intended speed of 5 mph.  Refer to the 2004 Hephaestus report (P21-27) in Appendix E:1 for 

more information on the selection process.  The spec sheets can be found in Appendix B. 

 

3.1.2.4.1 Drive Motor 

Using the vehicle parameters and requirements, the drive motor selected was the Dustin 2, a 

modified DeWalt drill motor with the following specifications: 24V, 50.4:1 Gear Ratio, 450 

RPM, 0.98 HP and 62.14 Nm Stall Torque.   

 

The drive motor proved to provide enough power to climb over obstacles.  However, a few 

problems were encountered with the motor.  The biggest problem was with the gears inside the 
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drive motor.  The motor when driven produced a horrible grinding noise and vibration, along 

with a very slow rotation. It is not known whether or not the motor came that way from its 

manufacturer.  When the gearbox for the motor was disassembled, it was discovered that the last 

set of planetary gears were not assembled properly.  When the gearbox was reassembled 

properly, the output shaft spun faster and a lot more smoothly.  The next problem that was 

encountered with the drive motor was the bending of the output shaft.  Measures were taken to 

reduce the bending of the shaft as much as possible such extra support for the shaft.  Next, the 

motor shaft started to rise up. The first attempt to solve this problem was the use of a collar and 

roller bearings.  This did not completely solve the problem and the shaft still bent.  To solve this, 

a longer shaft was used so that the upper supports for the platform kept the shaft from moving up 

and put a bearing at the top of the shaft to keep it from bending.  This solved our motor 

problems. 

 

3.1.2.4.2 Steering Motor 

The steering motor was selected based on its ability to turn the wheels.  After initial 

measurements of the necessary torque, a ½ Hp AME 24V right angle motor with a built-in 50:1 

worm-gear reducer was chosen.  The self-locking feature of the steering motor’s worm gear 

allows for a mechanical means to maintain wheel direction.  A similar self-locking effect in the 

drive motor allows the vehicle to stay stationary when power is lost or shut off.  This acts as a 

fail-safe mechanism in case of power outage while climbing or descending a ramp. 

 

There were a lot of problems with the steering motor.  The first thing that was done with the 

motor was changing how it was mounted.  The decision was made to mount it on a thick bracket 

that is secured on more than one axis unlike the mount from last year.  This made sure that the 

motor wouldn’t move.  The next problem was the steering system had too much resistance.  The 

resistance was eliminated by making sure that the main rotating parts were supported by bearing 

instead of nylon bushings.  This helped the whole system turn easier making the steering motor 

adequate when the system was handled gently.  The chain was the weaker part of the steering 

system.  It would have been better if the steering motor had more torque, or there was a higher 

gear ratio.  Something else that would help the steering would be to reduce the amount of weight 

on the upper platform for it to turn.  There were a lot of problems with the motor shaft because of 
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its two components. The two components would come unscrewed from each other.  To solve 

this, a hole was drilled through both of the components and a screw was then placed through the 

holes to hold them in place. This didn’t last very long as the screw was eventually sheared.  The 

next solution was to make the shaft out of one piece.  This worked but, because of the amount of 

tension on the steering chain, the motor output shaft started to bend excessively.  To counteract 

this, a bearing was placed to hold the part of the motor shaft that sticks through the motor 

mounting bracket.  This kept the shaft from bending.  However, the fact that the shaft was bent 

for so long caused excessive wear and stress in the shaft giving it a short life, and causing it to 

fail at the competition.  To make things easier for the steering motor, and to create longer life for 

the steering motor, either the gear ratio between the motor and the rest of the system needs to be 

changed, or have a stronger steering motor, or reduce the amount of effort needed to turn the 

vehicles upper platform and the wheels. 

         
        Figure 11 – Electrical Component Layout 

3.1.3 Upper Platform  

The upper platform, also known as the electrical 

platform, houses all the electrical components 

excluding the Roboteq controller.  A layout of these 

components is displayed in Figure 11. They are: 

Vision Computer, Control Computer, Power 

Distribution Box, Batteries, Router, LADAR, and the 

payload required by the IGVC.  This upper platform 

has been designed in way that it rotates concurrently with the wheels.  This means that the 

LADAR and the camera are always facing the direction in which the vehicle is moving.  

 

3.1.3.1 Electronics & Layout 

For this year’s group the upper platform was one of the few completely new aspects of the 

mechanical portion of the vehicle.  It was first designed in Catia.  Using Catia was a significant 

help in taking the design through several different changes and variations.  The team was able to 

make sure that it worked and all fit together before actually building it and that saved both time 

and material, which were in short supply.    The final design of the upper platform was very 
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functional and visually appealing.  The design included a space for the judges’ camera that was 

covered on all sides except the front.  This space for the judges’ camera is linked to the space 

created for the two computers.  The place reserved for the two computers is also covered and 

flows seamlessly from the judges’ camera compartment.  The computer compartment is one of 

the more unique and interesting aspects of the upper platform.  It keeps both laptops stored one 

above the other.  When one wishes to access the computers they each slide out of the 

compartment on opposite sides.  When you slide them out you can use the computers while they 

are still attached to the platform.  This feature allows for quick adjustments while running the 

vehicle.  To keep the vehicle looking forward both the LADAR and the camera are attached to 

the upper platform. The last part of the upper platform is the mast.  It is a basic feature but it is 

important.   

 

The LADAR had to be shared between the two vehicles as it is such an expensive piece of 

equipment.  It needed to be able to be swapped very quickly as there may not be much time 

between runs of the two vehicles.  To accomplish this, the LADAR had to be mounted in the 

same way on both vehicles.  There would not be time to significantly modify how it is attached 

between runs.  On the LADAR are two brackets that connect to two RexRoth 30mm Aluminum 

pieces.  These aluminum pieces hang down vertically.  The bracket slides down over them and 

then they can be fastened in place.  This is done with a threaded piece that tightens against the 

aluminum in a way similar to a set screw.  Both vehicles were able to use this method.  A swap 

can be made between the vehicles in just a few 

seconds.  For this vehicle the LADAR had to be 

attached to the upper platform to keep it facing 

forward at all times.  To keep it low enough the 

vertical aluminum pieces were hung over the edge of 

the top platform.  This not only lowers it but keeps it 

out of the way of other components on the top 

platform.  To get a better idea of how the LADAR is 

mounted please refer to Figure 12. 

 
Figure 12 – LADAR Mount 
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All the electronic components are integrated to one central unit, the electrical box. The electrical 

box will be discussed in greater detail later, but here is the electrical box interface which is 

shown in Figure 13:   

• It allows the user to alter Roboteq configuration by directly connecting to the electrical 

box CTRL O DB9 connection 

o Through this same connection, the control computer drives both motors. 

• All the useable Roboteq controller pins are routed through the central shaft to the 

electrical box via Ethernet cable and plugged into the in CTRL I Ethernet slot. 

• The camera, router, and manual E-Stop are connected to the electrical box in via  the 

Ethernet cable labeled CAMERA, ROUTER, E-STOP 

• The LADAR is connected to the electrical box through the Ethernet slot labeled LADAR. 

• The controller computer is connected to the Parallel port labeled LIGHTS I to control the 

obstacle detection lights. 

• The DB15 port labeled LIGHTS O connects directly the obstacle light  

 
Figure 13 – LADAR Mount 

 

3.1.4 Mast  

The mast is located in the center of the platform.  It rises high above the platform so it can get the 

best possible view.  The mast or shaft of the vehicle not only connects the two platforms 

together, but serves as a communication pole, a camera tower, wireless router tower and as an E-

Stop LED mount so that it is noticeable for the audience.  It was later modified with the addition 
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of a cross member which extends its view over the front portion of the upper platform.  A picture 

of this can be seen in Figure 14. 

                               

3.1.4.1 Communication Between Platforms   

The only communication needed between the top and the lower platforms is the connection 

between the Roboteq controller and the control computer.  This connection is made with a 

retractable Ethernet cable.  One end of the cable is connected to the LAN port on the control 

computer and the other end is spliced and soldered to a 15 pin (db15) serial connector which 

interfaces with the Roboteq controller. 

                   

3.1.4.2 Camera Tower                          Figure 14 – Mast 

The camera tower is constructed from the same 30mm x 

30mm Bosch aluminum extrusions used for the structure of 

the upper platform and most of the vehicle.  As can been seen 

in the picture of the picture of the vehicle, the camera mast is 

mounted on the frame of the computer housing.  The camera 

mast stands between the payload space and the computer 

housing with a cross bar on the top just below six feet.  The 

cross bar is about two feet in length and is centered on the 

mast to provide a view free of obstruction from the power box or other components on the upper 

platform.  The camera is attached to the crossbar using a center plastic holder that is screwed to 

the end of the crossbar.  The center plastic and the camera enclosure holder are both taken from a 

digital camera tripod mount.   

 

3.1.4.3 Wireless Router 

The two computers are linked together using Ethernet cables. This setup allows for high speed 

transfer of data between the two onboard computers. Both laptops are equipped with wireless 

communication capabilities and linked by a linksys 802.11g wireless router, allowing for remote 

monitoring of the vehicle’s status using an external computer. The wireless router is mounted on 

top of the pay load space by Velcro tape, and enclosed in a plastic box to shield it from the 
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elements.  The antenna is mounted on the cross bar of the mast so that a better signal is received.  

The network setup is described in details later on in this report.  

 

3.1.4.4 E-stop LED Mount 

The vehicle is equipped with manual and wireless emergency stop options. A pushbutton plunger 

is located to the rear of the vehicle, on the upper platform. When pressed, the plunger connects 

the emergency stop pin of the motor controller to ground, cutting power to the motors and 

halting the vehicle. The same result is achieved by activating the wireless emergency stop via a 

Bosch automotive Remote Keyless Entry transmitter-receiver unit. Pressing the transmitter 

causes a relay to connect the same pin to ground. Both the wireless and manual E-stop are 

connected to an LED display on top of the power box.  When the E-stop is enabled the red LED 

is on and off when the E-stop is disabled. 

 

3.1.5 Stability  

One of the most important design criteria is to make the vehicle stable.  Without stability, the 

vehicle has no functional guarantee.  In the 2004 design, two major calculations were performed 

to assure stability: center of gravity and incline calculations.   

The center of gravity was calculated as: 
y-axis: 0.00” 
x-axis: 0.96” 
z-axis: 17.00” 
 
The equation used to solve for these values is: 

( )( ) ( )( )∑= CGIndividualWeightIndividualCGWeightTotal T   equation 1. 

 

where total weight refers to the total weight of the vehicle, CGT refers to the center of gravity of 

the entire vehicle, individual weight represents the weight of each component on the vehicle and 

individual CG refers to the lateral location of the center of gravity of each component.  Please 

refer to the 2004 Hephaestus report (P18-20) in Appendix E:1 for more information and 

calculations.  
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Note that the main features of the Hephaestus which improve stability is the three wheel 

configuration, using two wheels in one wheel pod, and the battery tray being the heaviest item 

being in the center of the lowest point of the vehicle. 
       Table 2-Weight breakdown 
 3.1.5.1 Mass of Vehicle   

The 2004 estimated the vehicle weight would 

be about 250 lbs; however the final weight of 

the vehicle is now estimated to be about 355 

lbs.  Table 2 below will give a breakdown of 

the weight according to the major big parts of 

the vehicle.  Note that the motors were specked 

according to a 250 lb vehicle and therefore 

some of the problems that occurred were due to 

heavy load.  

 
                 

 
3.2 Electrical Sub Systems 

3.2.1 Roboteq® DC Motor Controller 

The Roboteq AX2850 motor controller was chosen to control Hephaestus’s steering and drive 

motors.  The microcomputer-based, X2850 is highly configurable.  It is capable of accepting 

speed and position commands via pulse-width signals from a standard Radio Control receiver, 

analog voltage commands, or RS-232 commands from a dedicated computer.  For more 

information or help, refer to the Roboteq manual in Appendix A:1. 

 

3.2.1.1 Selection Process 

The 2004 team’s first option was to use a Motorola HS12 microcontroller to control the robots 

movement.  The problem with using a dedicated microcontroller to control the chosen motors is 

that power electronics are still needed to amplify the signal to power the motors.  Motion 

controllers, which create their own PWM and have onboard power electronic amplification 

specific to DC motors, were investigated.  After investigating many such controllers, one seemed 

Component Weight 
Lower Platform 100
Middle Platform 6
Upper Platform 10
Upper Housing 35
Driver Motor /shaft 3.7
Steering motor 3.9
IP Laptop 10
Control Laptop 10
LADAR_LMS-200  10
Camera 1
Miscellaneous electrical components 7
Roboteq controller 4
Upper Batteries (2) 8.5
Lower Batteries (2) 84
Battery Tray 20
Wheels (6) plus drive train 21
Payload 20

Total Weight 354.1
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ideal for our project, the Roboteq AX2850.  Although it was more expensive than some other 

controllers, it has functionality that allows for complete autonomous operation.  Please refer to 

the 2004 Hephaestus report (P30-31) in Appendix E:1 for more information on this section. 

 

3.2.1.2 Roboteq Capabilities 

The following outline is condensed for the AX2580 user’s manual in Appendix A:1. 

• Fully Digital, Microcontroller-based Design 

• Multiple Command Modes 

• Multiple Advanced Motor Control Modes 

• Automatic Joystick Command Corrections 

• Special Function Inputs/Outputs 

• Optical Encoder Inputs 

• Internal Sensors 

• Low Power Consumption 

• High Efficiency Motor Power Outputs 

• Advanced Safety Features 

• Data Logging Capabilities 

• Sturdy and Compact Mechanical Design 

 

Some of the special features that apply to this design include serial port inputs, independent 

motor operation (steering and speed), closed-loop feedback control (in conjunction with optical 

encoders), emergency stop capabilities and operation information via RS232 commands. 

 

3.2.1.3 Hephaestus Roboteq Configurations 

The AX2850 can be configured to control the motors by means of an analog joystick, RC 

joystick, or standard serial commands.  It also comes with a PC-based run utility that aids 

diagnostics and testing.  Hephaestus is used in RC mode when being driven manually, while 

serial port control is the mode implemented using the PC-based utility and during autonomous 

operation.  Please visit the Roboteq website www.roboteq.com to download up to date software 

and for technical support. 
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3.2.1.3.1 Serial Control-Run Utility    

Although testing and configuration can be accomplished in Matlab, the PC run utility makes it 

much easier to configure and test the controller.  Figure 15 displays the main controls screen.  

Once the controller is connected to the serial port of the desktop, the controller info should 

display valid ID, Rev and 

codes. If nothing happens, try 

exiting the program and 

opening it back again.  Note 

that if you actually plan on 

using this software for 

testing, the robot should be 

free standing on jack stands 

or stools.  Note that a regular 

RS232 cable should be 

connected directly from the 

controller to a PC. 
     Figure 15-PC Utility: Controls 
If testing the controller using this software, make sure the control input is set in RS232 and 

motor channel A & B as speed separate.  This implies that both motors will keep going until 

manually stopped.  If the system is run in closed 

loop, the encoder feedback is considered.  For 

safety reasons, start with open loop since many 

problems arose when in closed loop due to 

problems with the encoder which will be 

discussed later. Once configurations are set to 

the desired settings, click to “Save to controller”. 
       Figure 16-PC Utility: Power Settings 
The next tab shown in Figure 16 enables to set power settings.  At first, not much change was 

done to this configuration, however when testing, we decreased the acceleration at times when 

the motors seemed to be running too fast and increased it when going too slow.  However at the 
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final testing, after many testing trials were analyzed, it was determined that the best suitable 

acceleration according to the specified gains discussed later is 2048. 
Figure 17-PC Utility: Encoders 

Many problems seemed to 

arise from the encoders 

which will be discussed.  

This diagnostic software as 

shown in Figure 17 made it 

easy to be able to test the 

encoder readings as the 

motors spin.  Note that the 

PPR (Pulses per Revolution) 

of the encoders need to be 

manually put in each time if correct visual readings are desired.  The chosen encoders have a 

value of 300 PPR. The motor commands can be controlled using the bottom bars.  Make sure 

that as the command is moved in the positive direction, the encoder reading increases positively 

and vice versa as you move toward the negative direction.  More info on the encoders can be 

found in the Roboteq manual.   
Figure 18-PC Utility: Run    

To actually run the motors using this 

software, go to the Run screen as shown in 

Figure 18, and click on “Run” in orders to 

start the motor motion.  Command 1 will 

start the speed motor and command 2 will 

control the steering motor.  Different data 

could be displayed as specified by 

checking the desired boxes .  Data 

logging is possible using this software, 

however no attempt was made since data 

logging was used in Matlab. If for some reason the commands are stopped, however the motors 

are still operating, disconnect the cable or turn off the controller.  
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3.2.1.3.2 Serial Control-Autonomous 

As mentioned earlier, configuration can be done in Matlab, but it is easier to do in the Run 

Utility.  For configuring the controller for Autonomous use, it is very important that the motor 

mode be set “A Speed, B position” since our first motor will be for speed and the second motor 

is for steering, so that once a desired angle is reached, the motor will stop.  Also, since an E-stop 

system will be in use, make sure to enable it as shown in Figure 19.  Note again, that the Roboteq 

should be in closed loop in order to get the feedback from the encoder module, however because 

the vehicle was not 

operating properly and due 

to the lack of time that was 

available for testing, the 

final testing was completed 

in open loop. Next year’s 

term should be able to 

solve this problem.  

Settings should be saved to 

controller. 

Figure 19-PC Utility: Autonomous Settings 

The closed loop configuration of the proportional gain, integral gain and differential gain shown 

in Figure 20 is very critical in enabling the robot to move to the desired position.  Basic 

knowledge of controls is needed to be able to find the best suitable settings.  Based on the 

following knowledge, different parameters were configured, tested and observed by moving the 

steering motor a full turn: 

 Kp gives a fast rise time and when it is too high the system overshoots 

 Kd eliminates overshoot 

 Ki eliminates steady state error, increases response time and rise time 

 

The best settings which were determined are as follows which resulted in about a 160° turn:   

Proportional Gain (Kp) = 0.25  Integral Gain (Ki) = 1.12  

Differential gain (Kd) = 7.5   Acceleration = 2048 
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% sets up serial interface 
global R 
  
R = serial('com1');              %Specify comport used 
set(R,'DataBits',7) 
set(R,'Parity','even') 
set(R,'Terminator','CR') 
set(R,'Timeout',1)               %Set read Timeout in 1 sec 
fopen(R)   %Open comport 
R                                %Used to display settings 
  
%fclose(R)                       %To close Rs232 
 

Figure 20-PC Utility: Closed Loop 

Save all settings to the controller 

and exit from the Roboteq Utility.  

Now to run the Robot using the 

control laptop autonomously, 

connect the serial port going to the 

upper platform to the controller.  

Open Matlab and the main 

Simulink file in Appendix C:1. 

Run the RS232 initialization 

commands in Figure 21 and then run the program 

 
Figure 21-RS232 Setup 

These commands initialize and open 

communication to the RS232 connected to the 

controller.  It is important that the correct 

comport # must be inputted.  Note that the PC 

utility and Matlab cannot share comports.  Only 

one application can use the active comport.  If 

you wish to close the port, then enter the 

“fclose(R)” command. (NOTE:  Serial communication ports settings must be as follows: 9600 

bps, 7-bit data, 1 Start bit, 1 Stop bit, Even Parity)  

 

Table 3 lists of commands used for autonomous operation via RS232 communication. Most 

commands were used in the software which will be discussed in a later section. 
 

Table 3- Roboteq Commands 
!Mnn Set speed or position, where M=motor channel and direction 
!M Toggle available digital output lines on/off 
?v or ?V Query power applied to motors 
?a or ?A Query amps consumed by motor 
?p or ?P Query analog inputs 
?e or ?E Query battery voltages 
?i or ?I Query digital inputs 
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^mm Read parameter settings, where mm= parameter number 
^mm nn Modify parameter, where nn=desired parameter value 
^FF Apply parameter changes 
%rrrrrr Reset controller 
NOTE: Consult Roboteq User Manual in Appendix A:1 for more detailed descriptions of 

commands and reply messages. 

 

3.2.1.3.3 Remote Control 

A radio (Remote) controller (R/C) is used to navigate the vehicle unto the course.  The R/C used 

is an FM Futaba ID#AZPT4VF-72.  This controller has 6 channels of communication although 

the Roboteq controller is cable of handling only three.  Since only two channels are required with 

our vehicle, this R/C controller is more than sufficient for Hephaestus applications.  The Roboteq 

controller has five command control curves for the R/C.  They are Logarithmic Strong, 

Logarithmic Week, Linear, Exponential Week, and Exponential Strong.  Figure 22 shows a 

graph of all the control curves.  The linear command curve is a proportional control the control 

curve chosen for Hephaestus.  This proved to be a desired speed increase and decease for the 

remote control.  If the remote control was too sensitive that a slight movement of the toggle stick 

would cause rapid speed increases then the exponential strong command would be used. 

 
 Figure 22-Control Curves from Roboteq AX2580 User Manual 
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The R/C must be conFigured to the Roboteq controller before it is able to operate in that mode.  

There are two ways to conFigure the R/D to the Roboteq controller, manually with the push 

buttons on the controller or using the Roborun software.  Details on configuring the controller 

are provided in the Roboteq manual as well the Hephaestus quick start guide located in 

Appendix A. 

 

3.2.2 Steering & Drive Encoders  

The 2004 team chose two optical encoders with quadrature outputs to measure speed and 

position.  Their selection process was based on amperage and pulses per revolution.  The 

Roboteq actually recommends the 200 PPR however the team had a hard time finding the right 

amperage so as a result two MEH-17 series hollow shaft micro encoders from Microtech 

Laboratory Inc. were chosen and are connected to the shafts of the steering and drive motors.  

They provide accurate speed and direction feedback to the controller.  These controllers draw 

30mA each and have a resolution of 300 pulses per revolution.  Refer to the Roboteq manual in 

Appendix A as well as the spec sheet in Appendix B:3 for any Encoder questions/reference. 

 

3.2.3 E-stop  

Safety is a major issue in the IGVC competition.  There is a chance that vehicles will go off track 

and possibly hurt someone.  The safety features that must be implemented are the manual 

emergency stop and the wireless emergency stop.  On the Hephaestus vehicle, both of these 

safety features are present.  

 

3.2.3.1 Manual E-stop 

The controller that is being used on the vehicle has a built in emergency stop pin.  When that pin 

is driven low, then the emergency stop is activated.  For the manual e-stop team Hephaestus uses 

a push-button that acts as a normally open switch.  When this button is pressed, pin 15, which is 

the emergency stop pin on the controller, goes low and the e-stop is activated.  The manual 

configuration is actually connected using an Ethernet connection.  This helped us to transmit the 

data that the e-stop was being pressed to the power box.   
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Once the manual e-stop box is opened, it can be seen that the switch has four leads.  There are 

two leads at the top, and two leads at the bottom.  The top leads are for a normally closed 

configuration.  The Lower leads are for a normally open switch configuration, which is the 

configuration that is used in the vehicle.  The wires from the Ethernet data cable that were used 

for e-stop were blue and green stripped.  Connecting those wires to the bottom leads of the push 

button switch allowed for e-stop data to be sent to the power box. A picture of this device is 

shown in Figure 23 & 24 below. 

 

      

Figure 23-Manual E-Stop Internal  Figure 24-    Manual E-Stop  External 

 

3.2.3.2 Wireless E-Stop 

As for the wireless E-stop, the team went with a standard Bosch Key fob transmitter and receiver 

which powers up with a 12 volt source.  The wireless e-stop operates at a frequency of 433 

MHZ, and has a range of 150 feet.  When the lock button on the key fob is pressed, 12 volts is 

supplied to the receiver which in turn activates the e-stop.  To reset the e-stop the lock button is 

pressed a second time and the controller must be reset.  The controller already has a built in pull 

up resistor configuration, so one did not have to be constructed for the emergency stop to work 

properly.  The proper pin connections for the receiver that were used on the Hephaestus vehicle 

are in Table 4 below: 

 
Pin Connection/Wire Color Function 
A-14/Black Wire Ground 
B-1,B-3/Red Wire +12 V power supply 
C-7/Yellow Wire Activate E-stop 

Table 4 – E-Stop wiring 
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B-1, and B-3 have to be jumped together, with one lead then going to the +12 V power, as seen 

in Figure 25 below, which is the back panel of the receiver component.   

 
Figure 25- RF E-stop pin connections 

3.2.3.3 Audio E-stop 

In previous years there was a threat of the RF e-stop not working because of electromagnetic 

interference.  With this in mind the idea of building an audio emergency stop was thought of.  

The audio e-stop has 7 blocks, which include an audio amplifier with microphone, a bandpass 

filter, a full-wave rectifier, an integrator, a comparator, and a latching relay.  The sound source 

that was used is an athletic whistle with a 3.0 kHz frequency.  When the sound source is 

activated, it will go through its various blocks of the whistle stop circuit.   

 

The first block of the whistle stop circuit is the audio amplifier.  This year the audio amplifier 

configuration that was used is the Jameco Super Snoop big Ear.  This audio amplifier uses 

various resistor capacitor configurations, a 9V battery, and 2 integrated circuits to provide its 

functionality.  The two integrated circuits that are used are the LM1458, and the LM386N-1.  

The LM1458 is a general purpose dual operational amplifier, and the Lm386N-1 is a low voltage 

audio power amplifier.  Please refer to the data sheets in Appendix D for more information on 

these components.  The circuit for the audio amplifier is shown in Figure 26. 

 

 

Figure 26-Audio Amplifier 
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The output from the audio amplifier goes into the input of the bandpass filter which is the next 

stage of the audio e-stop circuit.  The band pass filter design that was used was the Delyiannis-

Friend band pass filter circuit.  The bandpass filter only allows for the frequency of the sound 

source used to come through.  The other frequencies are not allowed to get through.  In order to 

make the design better in the circuit it is better to +/- .1 kHz from FC to get the upper and lower 

frequencies.  The sound source being used contained a center frequency of 3 kHz. The 

calculations used to design the bandpass filter are as follows.   

FC = 3.0 kHz 

FH = 3.0 kHz+.1kHz = 3.1 kHz 

FL = 3.0 kHz - .1 kHz = 3.0-.1kHz = 2.9 kHz 

 

Bandwidth (B) = FH – FL = 3.1 kHz – 2.9 kHz = .2 kHz kHz 

Quality Factor (Q) = ==
kHz
kHz

B
Fc

2.
0.3  15 

The resistor values were then calculated using C = 4.7 nF 
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       Figure 27-Bandpass Filter 
The circuit of the bandpass is in Figure 27. 
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Figure 28 Full Wave Rectifier 

The next step in the circuit was 

the full wave rectifier.  The full 

wave rectifier is used to invert 

all the negative voltage outputs 

coming from the bandpass 

filter into positive voltage 

values.  Figure 28 shows the 

circuit schematic of the full 

wave rectifier. 

 

The integrator circuit comes 

after the full wave rectifier.  The integrator integrates the rectified sinusoid, building up output 

voltage as long as the applied input voltage is positive.  The stronger the input signal, the faster 

the output voltage will build up, 

helping to block out ambient 

noise of the same frequency.  A 

potentiometer should be used in 

this circuit to vary the sensitivity 

of the integrator.   

 

Figure 29- Integrator Circuit 

The equation  

vo
ARC

RC
Avo =∴=  was used to find values for R and C. The schematic of the circuit is shown 

in Figure 29. 

 

The final circuit to trigger the relay is the comparator circuit is the comparator circuit.  Once the 

integrator is built up to the correct voltage, the output of the comparator will enable the relay 
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circuit, which will make the vehicle stop. The 

reference voltage can be varied using a 

potentiometer.  A voltage divider circuit will 

have to be set up in order to input the required 

voltage into the circuit, which in the case of 

this specific design was 10,3 V, which is 

shown in Figure 30.        Figure 30- Comparator Circuit 

Figure 25- Relay Circuit        

The relay latches the circuit which in turn stops 

the vehicle, when the sound source has been 

presented.  The relay that was used in this design 

was the Omron G6H Low Signal Latching relay.  

The relay is shown in Figure 31. 

 

 

 

3.2.3.3.1 Problems 

There were problems presented in this design as there will be within any design.  The key is to 

troubleshoot the problem and come up with a 

solution that will help to rectify the situation.  

One problem was that there was a loading effect 

and negative output from the integrator circuit.  

This was fixed by designing an inverter circuit, 

shown in Figure 32.  

Figure 32- Inverter Circuit for loading and negative output 

With one solution solved by making an inverter circuit, another problem was presented, which 

was a loading effect due to 1K input impedance on the actual inverter circuit.  This particular 

problem was solved by using a unity gain buffer at the input of the inverter circuit, shown in 

Figure 33. 
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Figure 33- Unity buffer as input on inverter circuit 

 

3.2.3.3.2 Suggestions/Recommendations 

The audio e-stop design presented in this documentation is a model for the whistle stop that will 

be built for next year’s competition.  It is a roadmap that the team can use for future whistle stop 

projects.  All of the blocks used here will be used in the whistle stop design, but the components 

value will vary, and there may be extra things that next year’s team would like to add in order to 

make the audio e-stop better.  A suggestion that was not able to be implemented with this year’s 

team is getting a DTMF generator for the sound source.  This will help to cut out other 

frequencies better, because there are two distinct frequencies.  With this suggestion, there will 

have to be a dual channel bandpass filter that will have to be designed.   

 
3.2.4 Electrical Box  

The electric box (power box) controls power to the LADAR, camera, and router.  Just as an 

important feature is that it also integrates all the electrical components to one central unit 

providing LEDs to indicate system power-up and communication.  In simple terms, the electrical 

box does the following:   

• Allows the control computer to plug directly into the electrical box via serial data cable 

o This means that the control computer can directly drive both motors form this 

connection  

• It transfers the signal to the Roboteq controller as well as providing an LED to indicate 

serial data communication.   

• It provides power for the RC receiver 

• It provides power for the LADAR 

• It provides power for the Camera 
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• It provides power and connection for the E-Stop 

o Includes manual and wireless 

• Provides power for the Wireless router 

• Interfaces the obstacle light indicators through both a parallel port and a DB15 port 

 

Figure 34 below shows a diagram layout of the interior components of the electrical box. 
Figure 34-Power Box 
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Figure 35-R/C Receiver 

Figure 35 below shows a schematic of the R/C receiver.  The 

R/C receiver is connected to part label 24 and 25 on Figure 

34. 

 

 

 

 

 

Figure 36 shows the wiring diagram for both the manual & 

wireless E-stop system.   

 
 
 Figure 36-E-Stop: Manual and wireless 
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Figure 37 and Table 5 show the Roboteq controller pins which are converted to an Ethernet 

connection.  These pins are routed through the central shaft via a spiral Ethernet cable and 

connected to the electrical box.   This is done for two reasons.  First, the control computer must 

send signals to the Roboteq controller which is located in the lower 

platform.  The spiral Ethernet cable is used to avoid the cable being 

stretched and snapped during the upper platform being rotated.  They 

are color coded to match the Ethernet cable.  Figure 37 shows the 

colors of all wires in Ethernet cable.  Table 5 shows to what pins or 

control lines each wire is connected to. 
            
Figure 37 – Ethernet Pins 
 

Table 5-Ethernet Connections 
 

DB15 to Ethernet converter        
Pin 
# 

Input / 
Output Signal Description 

Ethernet 
pins Wire Color 

1 Output Output C 2A Accessory Output       
R/C: RS232 data RS232 Data Logging Output           
RS232: Data out Rs232 Data Out           2 Output 
Analog: RS232 out Rs232 Data Logging Output 

7 
          

R/C: Ch 1             
RS232: Data in R/C radio Channel 1 Pulses         3 Input  
Analog: Unused RS232 in (from PC) 

6 
          

R/C: Ch 2 R/C radio Channel 2 pulses           4 input 
Ana/RS232:Input F Digital Input F in RS232 mode 

5 
          

5 Pwr Out Ground Controller ground (-)           
6 Pwr In Ground Connect to pin 5 ** 

1 
          

7 Pwr In +V5 Connect to pin 14 ** 8           
8 Input R/C: Ch 3 R/C radio Channel 3 pulses       
9 Output Output C 2A Accessory Output       

10 
Analog 
In 

RC/RS232: Ana In 
1 Ch 1 speed or position 3           

11 
Analog 
In 

RC/RS232: Ana In 
2 Ch 2 speed or position 2           

12 Output Output D 
Low Current Accessory 
Output D       

13 Pwr Out Ground Controller ground (-)             
14 Pwr Out +5V +5V Pwr Output (100ma max)          

15 Input Input E-Stop/Inv 
Emergency stop or Invert 
Switch Input 4           

 

Pin Wire Color 
1             
2             
3             
4             
5             
6             
7             
8             
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Figure 38 illustrates the diagrams of all four ether net jacks that connect to the electrical box. 
  
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 38-Ethernet jacks on Electric Box 

 
 
 
 

3.2.5 Power Systems 

Hephaestus is composed of two completely independent power systems. The first provides 

power to the motors and controller and is located on the lower platform. The Second provides 

power to the electronics located on the upper platform. Figure 39 is a schematic for all the 

component power routing. 
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Figure 39– Controller Power Distribution 
 
3.2.5.1 Lower Platform 

The current draw in the lower platform is more significant, with the two 24V motors drawing a 

combined 46A during normal operation and a stall current of 120A. The Roboteq power scheme 

used to route this power to the motors is displayed in Figure 40 (courtesy of www.roboteq.com). 

To provide the needed voltage and power, two 12V, 55Amp-hour lead acid batteries are 

connected in series, and are fused and stowed 

inside the battery tray attached to the bottom of 

the lower platform. A conservative estimate of 

the lower platform’s battery life is approximately 

1.2 hours as shown in Table 6.   

 
       Figure 40 – Roboteq Power Distribution   
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Lower Platform (Mechanical) 
Current 
(A) 

Voltage 
(V) 

Power 
(W) 

Drive Motor Dustin 2 30.46 24 731.04 
Steering Motor AME 15.5 24 372 
Controller 0.1 12 1.2 
Encoders 1 (directly from 
controller 0.03 5 0.15 
Encoders 2 (directly from 
controller 0.03 5 0.15 
R/C Receiver 0.013 5 0.065 
Total 46.133 75 1104.605 

Table 6-Lower Platform Power Estimation 
 
 
3.2.5.2 Upper Power Distribution 

With the laptop computers using their internal power sources, the upper platform batteries need 

only to supply power to the LADAR, camera, and RF receiver. Two 12V, 5 amp-hour batteries 

are used to provide the estimated maximum power draw of 2.3A and the 24V needed for the 

LADAR. The upper platform has over 2 hours of run-time battery life as shown in Table 7.   

Upper Platform 
(Electrical) 

Current 
(A) 

Voltage 
(V) 

Power 
(W) 

Lap top1 6.5 18.5 120.25 
Lap top2 4.5 18.5 83.25 
LADAR 1.8 24 43.2 
Camera 0.085 12 1.02 
RF E-Stop 0.1 12 1.2 
Total (Upper Platform) 12.985 85 248.92 
TOTAL POWER 248.985   

Table 7-Upper Platform Power Estimation  
 

 
 
3.2.5.3 Battery Life 

As seen in Table 6 and Table 7, the total worst-case power consumption of Hephaestus is 1357W 

most of which is due to the drive and steering motors. The motors themselves consume 1103W. 

The rest of the electrical subsystems (2 computers, LADAR, camera, emergency-stop, encoders) 

consume a total of 254W. Two 12 volt, 55 amp-hour lead acid battery packs are used for the 

lower platform (mainly the drive and steering motors) to provide a minimum of 71 minutes of 

run time. In the upper platform, two 12V 5A-hr lead acid batteries are used to power all the 

electrical subsystems except for the two laptop computers, which will be powered by their own 
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independent battery sources. The minimum run time in the upper platform is expected to be 136 

minutes. 

 

3.2.6 Computers  

The Hephaestus control system relies on two laptop computers to insure optimal processing 

speed.  Image Processing, the system bottleneck, runs on a dedicated machine, while all other 

control algorithms operate on a separate computer.  Since the flow of data from the IP computer 

to the Control computer is of the utmost priority, it operates via a TCP link over a LAN 

connection.  Both computers are physically connected to an onboard router to make the physical 

connection.  Two Simulink models are used to pass the data, and each model has an associated 

.dll file.  These files are included in Appendix C:10, with the following filenames: 

 TCPServer.mdl 
 matser.dll 
 TCPClient.mdl 
 matcli.dll 

Shown below in Figure 41 are the two models, conFigured to pass the Image Processing angle 

from the IP computer to the Control Computer. 

Figure 41- Data Passing 

 
TCPClient.mdl operates on the IP Computer, and the IP ANGLE block should be connected to 

the output of the IP system.  Within the matcli block, the IP address for the destination computer 

can be set.  In the TCPServer model, the matser block should be set with the port corresponding 

to that of matcli.  The Display block will show the current angle, and the output block should be 

linked to the Navigation system. 
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3.2.6.1 Image Processing Computer 

The Image Processing computer is an HP zx5180us.  This has a 2.4 GHz Intel processor, and 

1GB of RAM.  This laptop also has integrated LAN and WLAN hardware; however, does not 

include any RS232 ports.  To function as the IP computer, these are not needed; however, the 

Quatech QSP100 PCMCIA Serial Adapter does work with this laptop to provide serial ports. The 

HP laptop was donated to the Hephaestus Team by Best Buy of Novi, MI.  For this reason, all 

Best Buy logos on the laptop must remain. 

 

This laptop also operates Windows XP Professional.  From earlier testing, an installation of 

Linux does remain.  The Linux distribution is Red Hat Enterprise v9.  Red Hat is available 

through a prompt during the boot process.  While Linux is preferred for its stability and 

processor priorities, it may not be appropriate for this purpose.  There is some evidence available 

which indicates Matlab is better optimized under Windows, thus negating those advantages. 

 

3.2.6.2 Navigation & Control Computer 

The Control computer is an IBM ThinkPad A30, with a 2 GHz Intel processor.  This system has 

768 MB of RAM.  This laptop includes integrated LAN and WLAN hardware.  Onboard is one 

single RS232 port, which is insufficient alone for the vehicle communications.  A Quatech 

QSP100 PCMCIA Serial Port Adaptor provides an additional 4 RS232 ports through the IBM's 

PCMCIA interface. 

 

The IBM laptop was passed down to Hephaestus from Dr. Paulik.  During the 2005 IGVC 

Competition, this laptop suffered a fatal error, and required to be restored to factory defaults.  

The factory default operating system is Windows XP Professional.  All work that was done to 

optimize processes on it were subsequently lost.  Because of this problem, it is advisable for hard 

drive images to be made and stored externally when major changes are made to the computers.  

Optimization steps include manually setting process priorities, eliminating unused programs, and 

closing unneeded processes.  Much information about Windows XP optimization can be found 

on the internet. 
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3.3 Sensory System & software 

The Hephaestus sensory system hardware consists of a notebook that interfaces with the 

navigation sensors via a serial adapter. The serial adapter is a PCMCIA card that provides 

multiple serial ports to enable the notebook to interface with multiple sensors including the 

LADAR and motor controller. Hephaestus’ vision algorithm runs on its own dedicated laptop 

connected to a fire-wire camera. The sensory system on the vehicle is completely housed on the 

electrical platform.   The sensory and vision systems configuration is depicted in Figure 42. All 

software was completed using a combination of MATLAB® and Simulink® operating under an 

optimized Windows® operating system. 

 
Figure 42– Sensor and Vision System Integration 

3.3.1 Vision System  

3.3.1.1 Camera            Figure 43 – Camera 

The camera chosen for the Hephaestus is the Uni-brain Fire-I 

board camera.  This camera was selected for its low cost, low 

power consumption, and performance.   The Uni-Brain® Fire-I 

Board Camera shown in Figure 43 (courtesy of 

www.unibrain.com) captures the images used for lane and 

obstacle detection. This camera is a single board, fully operational 

Fire Wire color camera, capable of 400Mbps data transmission, 

with a native resolution of 640x480 pixels and 80.95° horizontal view angle for uncompressed 

VGA picture acquisition at 30 frames per second. The latest 1394 Texas Instruments® chipsets 

and Sony® CCD sensor provides a high quality subassembly for image capturing.  The camera 

provides sufficient image clarity and resolution and connects easily to a laptop via the fire wire 

 

 
Fire-wire Camera 

Roboteq Controller 
PCMCIA 

Ethernet Interface 
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port provided eliminating the need and extra cost of a frame grabber.  A plastic weatherproof box 

was constructed to encase the camera.   

 

3.3.1.2 Image Processing Strategy 

The image processing strategy determines which obstacles, potholes and lines are present in the 

camera’s field of view. A preliminary direction is determined by examining an image and 

establishing a preliminary direction between the lane boundaries. In order to determine this 

preliminary direction, the captured image is processed in a Matlab® environment. The algorithm, 

broken down into separate tasks, is outlined in Figure 44. 

 
  Figure 44 – Flowchart of Image Processing Algorithm 

 

First, the image is acquired from the Fire-I camera with YUV color space. Then the color space 

is transformed to RGB space. After that, adaptive threshold techniques are applied to all three 

planes and are accompanied by region-based color segmentation. The image in Figure 45b shows 

the changes made to the image in Figure 45a during the initial color filtering. The binary image 

in Figure 45b coupled with a Hough transform-based technique detects the existence of the 

painted lines in the image field. The white pothole is considered a distinct region in the binary 

image and is detected by an area threshold. As a result, a pothole flag is triggered if the area of 

the distinct region is bigger than the area threshold. 

 

    

 

 

 

 
Figure 45a-Course Image before IP    Figure 45b-Course Image after IP 

 

The purpose of heuristics is to aid in the preliminary direction setting. The strategy is designed 

with the number of the edges detected and their pixel positions as its main decision-making 
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factors. To deal with dashed lane boundaries, the program determines the optimal direction by 

comparing the current image to the most immediate archived image in which the solid lane line 

appears, and extrapolates the expected lane from this previous image. Based on heuristics logic, 

this preliminary direction is set and passed to the navigation software. 

 

There are two main programs used to control and interface the image processing procedure 

which can be found in Appendix C:2.   

 IP_FW.m 

 framePocess.m 

 

The first IP_FW.m is responsible for communicating with the camera.  The code initializes the 

camera by telling it when to capture an image.  It also defines an object where the images are 

buffered before being processed.  Once the buffer has images in it, the latest image is passed to 

the program called framePocess.m.  This program begins by choosing the most recent image 

from the buffer defined in IP_FW.m.  Once through the procedure described above, 

frameProcess.m generates the desired angle of destination.  This angle is then passed back to 

IP_FW.m.  IP_FW.m then passes the angle to a global variable accessible by the navigation 

algorithm.  It is worthwhile to mention that the interaction between the image processing and 

navigation algorithms is asynchronous.  When the angle is passed to the global variable by IP, 

there is no flag telling the navigation that there is a new angle.  The navigation has no way of 

determining the age of the angle within the variable. 

 

3.3.2 LADAR System  

The LADAR system used is the SICK® LMS 200. The laser scans horizontally through a 180- 

degree range at 0.5° resolution, for a distance up to about 80m. Refer to the LADAR manual in 

Appendix A:3 for more information.  The measurement information is transmitted via serial 

communication to the navigation computer. The LMS200Setup.m file sets up the LADAR which 

can be found in Appendix C:3.  For this application, the LADAR is configured so that the 

farthest distance is approximately 8 m. Using this laser scanner, the width of obstacles and their 

distance away from the front of the vehicle are determined. 
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3.3.3 Navigation Strategy – Autonomous Challenge 

The purpose of the navigation algorithm is to merge the preliminary direction angle provided by 

the image-processing algorithm with the obstacle avoidance information obtained from the 

LADAR system to generate a final direction for the vehicle. The algorithm is implemented in 

Simulink® using fuzzy inference techniques as shown in Figure 46.  Refer to Appendix C:4 for 

the Navigation controller software.  Note that the Navigation is almost identical to that of the 

Warrior Team since the same person worked on it. 

 

Figure 46 – Navigation Algorithm Flow 

 

The direction provided by the image-processing computer is the input to a Fuzzy Inference 

system, whose output is a fuzzy membership function of possible steering directions. The 

LADAR output, which is a 180º map of obstacle locations in front of the vehicle, is converted to 

an equivalent fuzzy membership representation. The two sets of membership functions are then 

fused to produce an overall fuzzy membership function of possible steering directions. This 

membership function is then “defuzzified” to produce a final steering direction, which is the 

input to the steering control algorithm. 

 

3.3.3.1 Algorithm Diagram 

The overall Navigation System Diagram is shown in Figure 47.  This System consists of the 

Image Processing unit, LADAR unit, Navigation Controller, Drive system and light indicators.  

Each system is broken up into subsystems which will be explained. 
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Figure 47: Overall Control Simulink Model 

 

Figure 48 is the Navigation Controller Algorithm.  The Image Processing input is ran through a 

saturation block, where it imposes upper and lower bounds of the input. This is then rounded and 

fuzzified to get possible angles as a direction for the vehicle to drive.   
 

 

Figure 48: Overall Navigation Simulink Model 
 

Obstacle Avoidance is implemented using the LADAR to locate obstacle positions.  The obstacle 

avoidance system generates a database of distance values referring to obstacle location ahead of 

the vehicle.  Figure 49, below is the critical remap block of the LADAR data.  The minimum 

input from the LADAR is found and compared to 2000.  If the minimum is less than this value 
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then the minimum value is subtracted from the original LADAR data.  If the value is greater than 

2000 then the LADAR data is used as is, with no remapping. 

 
Figure 49: Navigation-Critical Remap 

 

To create the final angle of travel of the vehicle, the goal following information was combined 

with the obstacle avoidance information as shown in Figure 48.    The two data sets are fused 

together using the minimum function to produce an overall fuzzy membership function of 

possible steering directions .  This data is then defuzzified using the COLA method.  The COLA 

method finds the largest area of the output membership function and calculates its center.  With 

this method, the center corresponds to the best solution for that system.    The defuzzified angle 

is a crisp angle of travel that is the final angle of travel used by the vehicle.    
Figure 50- Light switch circuit  

3.3.4 Obstacle Detection   

Obstacle detection is primarily handled by the 

LADAR range finder.  The location of the 

LADAR mount enables it to pickup a variety of 

obstacle height.  

 

The Hephaestus is equipped with lights to indicate 

when and where an obstacle has been detected.  

The lights are placed on the front and sides of the 

vehicle, and a light is also mounted on the back of 

the vehicle to mimic the front lights for spectators 
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behind the vehicle.  The light indicator is setup with a simple switch circuit using two mosfet 

switches and a 555 timer.  The timer circuit is set up with a resistor ratio to produce 3.5Hz 

frequency.  The 555 timer enables the lights to blink at a continuous frequency whenever a light 

is turned on.  Making the lights blink at a controlled frequency make them easily observable.  

The circuit setup for the lights is illustrated in the following Figure 50. The Simulink program 

that controls the light is made up of a few Matlab function, switching and logic blocks. The file 

is then merged into the navigation program and is fed as an input whenever the LADAR 

transmits information.  Please see Appendix C:6 for the software files. 

 

3.3.5 Speed/Steering Control   Figure 51 – Steering/Speed Control Flow Chart 

The purpose of the control software is 

to be able to command the Roboteq 

controller to steer the desired angle and 

to slow down where necessary.  The 

navigation angle is the input for the 

steering and speed system as shown in 

Appendix C:1.  The flowchart of how 

the control system operates is shown in 

Figure 51.  The speed control is based 

on a two-speed strategy.  If it is 

determined by the navigation algorithm 

that the vehicle is to be turned, the 

Roboteq controller is commanded to operate in a low-speed mode.  High-speed mode is initiated 

when no turns are required.  Note that the Roboteq controller has built-in speed and position 

control capability, so the steering and speed system have only to generate the appropriate 

command signals.  When an angle is given by the navigation, it is important to now if this angle 

is a positive or a negative to know what command should be outputted.  The following is an 

example of the commands according to direction: 

 

!a  will drive the speed motor to drive backwards 

!A  will drive the speed motor to drive frontward  
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!b  will drive the steering motor to turn to the left direction 

!B  will drive the steering motor to turn to the right direction 

 

Note that channel A is connected to the speed motor and since our vehicle is omni directional 

there is no need for backward speed motion. However the steering motor, channel B is critical 

and should only move right when given a positive angle.  

 

3.3.5.1 Simulink Block 

The Simulink block in Figure 52 acts exactly as the discussed flow chart.  There are 3 switches 

to determine if the angle is zero, less than zero or greater than zero.  Note that originally this was 

done using if then blocks which performed ok when running with constant input value.  However 

when connected to the Navigation as the input, it did not work and therefore switches were used 

instead.  If there is no angle (0 value), the vehicle will just drive straight at a high speed, if the 

angle is positive, slow the vehicle and turn right.  If the angle is negative, take absolute value of 

angle since Matlab cannot handle hex to dec negative conversions, slow the vehicle and turn left.  

The following is the three m files used: 

 Rs232Read_Speed.m 

 Rs232Read_Speed_Pos.m 

 Rs232Read_Speed_Neg.m 
Figure 52 – Steering/Speed Control Simulink Block 
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function x = Rs232Read_Steer_Pos(u); 
%Slows down vehicle and turns in the right direction according to input angle 
global R 
  
% Convert numerical representation of Low speed to hex character and send via 
%serial port to Roboteq Controller along with the specified motor character. 
    wordA = '!A'                      %Specifies channel A (Speed Motor +) 
    spdA= 30                          %# needs to be positive integer 
    if spdA < 16                      %Convert dec value to hex 
        speedA = cat(2,'0',dec2hex(spdA)) 
    else speedA = dec2hex(spdA) 
    end 
    command= cat(2,wordA,speedA)     %roboteq character format(motorA,speed) 
  
    if(R.BytesAvailable>0)           %Clear unnecessary data from Rs232  
        xx=fread(R,R.BytesAvailable); 
    end 
    fprintf(R,command)               %Send the character out using Rs232 
 
%Convert steering angle to position representation of (0-127) and then to 
%hex character. send via serial port to Roboteq Controller along with the  
%specified positive steering motor character. 
  
     wordB = '!B'                      %Specifies channel B (Steering Motor +) 
    fprintf(R,'!Q1')                  %Reset Steering Encoder Counter 2 
    PDeg=0.8;                         %300pulses/360 degrees 
    dirBPulse=u*PDeg                 %Angle * PDeg=desired position (0-127) 
    dirB = round(dirBPulse)          %get as integer value 
    if dirB < 16                    %Convert to hex 
        SteerB = cat(2,'0',dec2hex(dirB)) 
    else SteerB = dec2hex(dirB) 
    end 
    command = cat(2,wordB,SteerB)    %roboteq character format(motorB,speed) 
     
    if(R.BytesAvailable>0)           %Clear unnecessary data from Rs232  
        xx=fread(R,R.BytesAvailable); 
    end 
 
    fprintf(R,command)              %Send the character out using Rs232 
    
   x = [dirB] 

 

The actual input from navigation represents an angle in degrees.  However, the Roboteq 

controller only understands pulse values ranging from 0-127.  The following equation helps us 

achieve the actual value. 

Degrees * 300 pulses/360 degrees = pulses   equation 5 

 

As for the speed, we are only dealing with 2 different speeds, a high speed and a low speed.  

Remember that the maximum speed allowed for the IGVC competition is 5 mph.  The speed can 

be converted using equations 

according to the gear ratios and tire 

diameter, however we ended up 

using values that gave us the 

approximate speed.  A speed of 30 

gave us a low speed. 

 

All the software consists of a 

Simulink file and m files for the 

control algorithm which can be 

found in Appendix C:5.  Note that 

the code is very well commented. 

 

3.3.5.2 Control m Files  

The code in Figure 53 is 

commented very well and all three 

m files are very similar.  Only one 

m file will be clearly explained, the 

Rs232Read_Steer_Pos.m file. 

When the Navigation angle outputs 

a positive non zero, this block is 

simulated.  The “u” is the input of 

this Matlab function which is the angle,               Figure 53 –M-File: Rs232Read_Steer_Pos 
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and “x” is the output, mainly only used for the display.  Since the RS232 is throughout, specify 

this is a global parameter, “R”.  Specify which motor/command is addressed.  “!A” specifies the 

speed motor in the positive direction.  Convert the desired speed to a hexadecimal value.  For 

this example 30 will be 1E. 

 

command=cat(2,wordA,speedA)    basically puts the values together as !A1E. 

 

The next part of the code basically reads any flawless unnecessary data from the RS232 so that is 

doesn’t interfere with the messages sent.  This part of the code is used throughout all the 

programs and should be executed before sending the message to the controller via the fprintf 

command. 
if(R.BytesAvailable>0)                     

xx=fread(R,R.BytesAvailable); 
end 
 

Now that the speed has been setup, execute the steering commands. “!B” specifies the steering 

motor in the positive direction.  fprintf(R,'!Q1')      resets the steering encoder.  This was added at 

the competition in order for the steering to work appropriately and it might interfere with the 

encoder counter code which will be discussed at a later section.    Equation 5 was broken down 

in order to put the angle in terms of values from 0-127.  The rest of the code is a repetition, but 

this time to get the steering command out to the controller. 

 

3.3.6 Diagnostic software    Figure 54 – Diagnostic Simulink Blocks 

The Roboteq controller commands 

make it very easy to be able to read 

data.  The Roboteq manual refers to 

many commands that can be sent for 

query purposes. Three main data that 

we are interested in knowing while the 

software is running are the battery 

voltage readings, encoder readings, and 
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function [StrngEncdr,SpdEncdr] = Rs232Read_Encoder(u) 
global R 
%This mfile sends a question to the encoder module to find out what the 
%speed reading is.  The module will return 3 characters.  The question, 
%encoder 1 reading, & Encoder 2 Reading.  The values are signed Hexadecimal  
%numbers ranging from -127 to +127.  
  
x='?k' 
if(R.BytesAvailable>0)              %Clear unnecesary data from Rs232 ifany 
    xx=fread(R,R.BytesAvailable); 
end 
  
fprintf(R,x)                                 %Send Encoder reading Question command 
test=0 
while(test==0) 
    ReadValue=fscanf(R)             %Read 1st sent character (same as sent) 
    [n m]=size(ReadValue)            
  
    if (m>2)                             %If there is garbage infron, clear it 
        xx=strcat(ReadValue(1,m-2:m-1)) 
        if(min(x==xx))                  %If cleared, read next characters 
            ReadValue2=fscanf(R)    %Read 2nd Character(Encoder Speed) 
            ReadValue3=fscanf(R)    %Read 3nd Character(Encoder position) 
            test=1                        %Get out of loop 
        end 
    end 
end 
  
%Speed encoder value reading (-127 to +127) 
A=cellstr(ReadValue2)                %Make Character array cell array 
SpdEncdr  = hex2dec(A)              %Convert Hex value to dec 
  
  
%Steering encoder value reading (-127 to +127) 
B=cellstr(ReadValue3)                %Make Character array cell array 
StrngEncdr = hex2dec(B)             %Convert Hex value to dec 
                        
  
pass(1) = [StrngEncdr] 
pass(2)= [SpdEncdr] 

current readings.  The m files that correspond to the Simulink file shown in Figure 54 are as 

follows:     
 Rs232Read_Current.m 

 Rs232Read_Current.m 
 Rs232Read_Voltage.m 

 

This is possible by sending a question command to the Roboteq and then reading back what the 

controller sends back.  Note that all the m files discussed are exactly the same aside from the 

question command and maybe a conversion equation. Please refer to the Simulink file and the 

commented code in Appendix C:7 for more details on this section. 
Figure 55- M-File: Rs232Read_Encoder 

3.3.6.1 Encoder Readings  

The M-file for the encoder 

reading is shown in Figure 55.  It 

is very important to read the 

speed and position computed by 

the encoder module.  Sending the 

command ‘?K’ to the controller 

will ask the question and then 3 

characters will be sent back.  The 

first ‘fscanf(R)’ will return the 

question, the second ‘fscanf(R)’ 

will return the hexadecimal 

number speed reading for the first 

encoder, and the third ‘fscanf(R)’ 

will return the hexadecimal 

number position reading for the 

second encoder.  Note that the 

while loop is there to make sure 

that all three data points are 

received and there is no error. 
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function [StrMotCur,SpdMotCur] = Rs232Read_Current(u) 
global R 
%This query will cause the controller to return the actual number of Amps  
%being consumedby each motor. The number is an unsigned Hexadecimal %number 
ranging from 0 to 256 (0to FF in Hexadecimal). 
  
  
if(R.BytesAvailable>0)              %Clear unnecesary data from Rs232 
    xx=fread(R,R.BytesAvailable); 
end 
  
fprintf(R,'?A')                          %Send current reading Question command 
test=0 
while(test==0) 
    ReadValue=fscanf(R)             %Read 1st sent character (same as sent) 
    [n m]=size(ReadValue) 
    if (m>2)                             %If there is garbage infron, clear it 
        xx=strcat(ReadValue(1,m-2:m-1)) 
        if(min(x==xx))                    %If cleared, read next characters 
            ReadValue2=fscanf(R)    %Read 2nd Character(Speed Mtr Current) 
            ReadValue3=fscanf(R)    %Read 3nd Character(Steer Mtr Current) 
            test=1                               %Get out of loop 
        end 
    end 
end 
  
%Speed motor current reading  
A=cellstr(ReadValue2)                %Make Character array cell array 
StrMotCur = hex2Dec(A)            %Convert Hex value to dec 
  
  
%Steering motor current reading  
B=cellstr(ReadValue3)                 %Make Character array cell array 
SpdMotCur = hex2Dec(B)           %Convert Hex value to dec               
  
                        
pass(1) = [StrMotCur] 
pass(2) = [SpdMotCur] 
  

 

Matlab doesn’t allow to change the values directly to decimal format. Each character must be 

converted to a cell array by using the “cellstr” command.  Then the character can be converted 

from hexadecimal to decimal which will give decimal values. Equations maybe added to the m 

file to convert this value to actual readings. Please refer to the Simulink file and the commented 

code in Appendix C:7 for more details on this section. 

       

3.3.6.2 Current Readings  Figure 56- M-File: Rs232Read_Current  

To inquiry the controller to 

return the actual number of 

Amps being consumed by 

each motor, the M-file 

shown in Figure 56 is 

simulated.  The command 

question is ‘?A’  The 

number returned is an 

unsigned Hexadecimal 

number ranging from 0 to 

256 (0to FF in 

Hexadecimal).  Note that 

everything in this program 

aside from different variable 

names and the command 

question is the same as the 

previous diagnostic file in 

such that three characters 

are returned, where the first 

is the questions sent and the 

last two are the speed motor 

current and the steering motor current respectively 
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function [MainBattV,InternalVolt] = Rs232Read_Voltage(u) 
%This codes sends a character to the Roboteq controller to read the main 24v 
%voltage reading as well as the internal 12v. 
  
global R 
  
if(R.BytesAvailable>0)               %Clear unnecesary data from Rs232 if 
    xx=fread(R,R.BytesAvailable); 
end 
x='?e' 
fprintf(R,x)                          %Send Voltage Question command 
  
test=0 
while(test==0) 
    ReadValue=fscanf(R)              %Read 1st sent character (same as sent) 
    [n m]=size(ReadValue)            
  
    if (m>2)                          %If there is garbage in front, clear it 
        xx=strcat(ReadValue(1,m-2:m-1)) 
        if(min(x==xx))               %If cleared, read next characters 
            ReadValue2=fscanf(R)     %Read 2nd Character(Main Voltage) 
            ReadValue3=fscanf(R)     %Read 3nd Character(Internal Voltage) 
            test=1                    %Get out of loop 
        end 
    end 
end 
  
%Main Battery Voltage-Should be about 24 V 
A=cellstr(ReadValue2)                %Make Character array cell array 
                                      %to able conversion 
MBattV  = hex2dec(A)                 %Convert Hex value to dec 
MainBattV = (55*MBattV)/256          %Convert dec value to voltage value 
  
%Internal Battery Voltage-Should be about 12 V 
B=cellstr(ReadValue3)                %Create Cell array to able conversion 
IBattV  = hex2dec(B)                 %Convert Hex value to dec 
InternalVolt =(28.5*IBattV)/256      %Convert dec value to voltage value          
  
pass(1) = [MainBattV] 
pass(2)= [InternalVolt] 

3.3.6.3 Voltage Readings  

This ‘?e’ query M-File  shown in Figure 57 will cause the controller to return values based on 

two internally measured 

voltages.  Just as before, the 

controller will send back 3 

characters, the first is the sent 

question, and the next two are 

voltages. The first voltage is the 

Main Battery voltage present at 

the thick red and black wires. 

The second voltage is the 

internal 12V supply needed for 

the controller’s microcomputer 

and MOSFET drivers. The 

values are unsigned 

Hexadecimal numbers ranging 

from 0 to 255. To convertthese 

numbers into a voltage Figure, 

formulas described in “Internal 

Voltage MonitoringSensors” on 

page 62 of the Roboteq manual 

were used. 

 
Figure 57- M-File: Rs232Read_Voltage 

 

 

 

 

 

 

 



University of Detroit Mercy  Hephaestus 2005 
  

 
Copyright 2005 University of Detroit Mercy Hephaestus 

60

3.3.7 Data Logging 

The Hephaestus vehicle platform makes use of the onboard wireless router to provide external 

monitoring and data logging.  This is accomplished with the use of two Simulink models shown 

in Figure 58, and an associated .dll file.  This method transmits the data using a User Datagram 

Protocol (UDP), which is not as reliable as TCP; however, it requires less processor time.  The 

Transmission file operates within the Control computer, and the Receive file runs on the external 

computer.  The files are included in Appendix C:8, under the following names: 

 DataLogTransmit.mdl 

 DataLogRecieve.mdl 

 sfun_time.dll 

These blocks are highly configurable, and can support any number or type of data streams.  To 

add more channels, simply modify the Input and Output Data Types within the Pack and Unpack 

blocks.  By configuring the UDP Send, and UDP Receive blocks, the data stream can be 

designated for a single computer, or broadcast to many PCs or laptops. 

It should be noted, that using the UDP transmission method, and a wireless connection, there will 

be some amount of lost or corrupted data.  The only way to avoid this, is to either use a TCP 

connection, or a wired connection.  TCP is not recommended for this, as it will slow the 

processing on the control computer. 

 
Figure 58-Data Logging Simulink Files 
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3.3.8 Turn Counter       Figure 59 – Angle Counter 

Since the spiral cord in the shaft between the two 

platforms will loosen and tighten as the vehicle 

turns, it is critical to keep track of the number of full 

turns so that pressure is not put on the wiring.  This 

is being taken care of by code in two different ways.  

Only choose one. 

 

At first, a block was added to the Simulink file as 

shown in Figure 59 where a cumulative sum block 

keeps track of the angle inputted from Navigation and a Matlab function file will rewind the cord 

by turning the vehicle once it’s limits have been reached.  It is not for sure, but it is believed that 

this is not valid because the summation box might keep reading the input from navigation before 

it gets a chance to refresh.    

    
Figure 60 – Steering Encoder Counter 

With that in mind another block was 

created which calls an m function directly 

as shown in Figure 60.  This Matlab file 

will be reading the steering encoder 

counter instead and making judgments on 

that.  Once the encoder counter reaches its 

specified limits, the vehicle stops and 

rotates and then the encoder counter is 

reset.  The only problem with this is to 

make sure that the encoder is not reset 

anywhere else in the program.  It is 

believed that at the IGVC competition, 

the encoder was reset each time so that 

proper actions were taken. 
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3.3.9 Navigation-GPS   

It was intended for the Hephaestus to compete in the navigation challenge in the 2005 IGVC.  

The electronic hardware that was slated for use for this purpose on the Hephaestus are shown in 

Figure 61.   

 
Figure 61-From Left to right: Accelerometer, compass and GPS unit 

     

   

   

   

    

 A Race tech AC-22 accelerometer for measuring linear movement (acceleration) applied to the 

vehicles inertial frame.  A PNI micromag xx compass used to pinpoint the vehicles location and 

a Rikaline GPS6010 Global Position System unit to provide waypoint locations on the 

navigation course.  The integration of the sensors mentioned above make up the inertial 

navigation system.  Together they can tell the system, the location of the vehicle, measure the 

change of position (distance), and provide direction.  The network of the system is 

susceptible to small errors from all sensors which 

can add up to make the system unreliable.  To 

compensate for the errors a Kalman filter is added.  Kalman filter 

uses estimates from previous time steps to predict 

the current state (position and velocity), and used 

measurements of current state to refine prediction of new states.  A 

diagram illustrating the use of the Kalman filter 

within the navigational system is depicted in Figure 

62. 
Figure 62:  A depiction of the Navigational system 
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4.0 Operation & Maintenance 
This section of the report is very critical in that proper steps are taken in order to initialize the 

vehicle and have a safe maintenance procedure.  Note that safety is most critical and 

students/faculties should be careful.   

 

4.1 Startup Manual  

As mentioned earlier, there are three ways to operate Hephaestus.  The first is with the Roborun 

software, the second would be with the speed control software with the programming computer, 

the third and final way to move Hephaestus is with a remote controller.  Note incase of an 

emergency, the best way to stop the vehicle is to E-Stop it, however in situations where E-Stop is 

not active turn off the controller. 

 

4.1.1 RS232 Roborun Utility 

In the PC utility, many of the Roboteq configurations can be set.  This program is very useful in 

configuring, testing and diagnostics.  The following are detailed steps in operating the Roboteq 

controller using its own software run utility. 

 

1. The robot should be free standing on jack stands or tools for this type of testing.  

2. Connect the 55A fuse located on the end of the battery tray. 

3. Slide the battery tray in the vehicle (located on the lower platform) 

4. Connect the Roboteq controller directly to a PC via RS232 serial cable. 

5. Launch Roborun software. 

6. Turn on the controller 

7. Make sure the correct comport is active 

8. Once the controller is connected to the active port of the desktop, the controller info 

should display valid ID, Rev and codes. If nothing happens, try exiting the program and 

opening it back again.   

9. ConFigure the setting to RS232. 

10. Setup the motor controller to the desired settings as described in section 3.2.1.3.1. 
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NOTE THAT THE E_STOP IS NOT ACTIVE IN THIS COMMUNICATION SETUP 

SINCE THE ELECTRIC BOX IS NOT CONNECTED TO THE CONTROLLER. 

 

4.1.2 Matlab (autonomous) 

Note that testing can be done from a desktop PC just as mentioned in the last section where the 

controller is connected to the PC, but running in Matlab rather than the Roboteq utility.  

However, in this section, the autonomous startup manual will be discussed where the onboard 

laptop is doing the controlling.  These steps assume that configuration settings mentioned in 

section 3.2.1.3.2 are all set. 

 

1. Connect all connection to the power box located on the upper platform 

2. Connect the 55A fuse located on the end of the battery tray. 

3. Slide the battery tray in the vehicle (located on the lower platform) 

4. Connect the control computer to the electrical box via RS232 serial cable 

5. Turn on the electrical box 

6. Turn on the Roboteq Controller 

7. Open Matlab and launch the main Simulink file in Appendix C:1.  

8. Run the Rs232 initialization commands  

9. Run the Main Simulink program 

10. To stop this program, either hit the pause, stop button in Matlab, or E-stop the vehicle. 

 

4.1.3 Remote Control 

The following are instructions to start and operate the vehicle in R/C mode:  Fore more 

information on configuration for this type of operating mode, please refer to section 3.2.1.3.3. 

 

1. Connect all connection to the power box located on the upper platform 

2. Connect the 55A fuse located on the end of the battery tray. 

3. Slide the battery tray in the vehicle (located on the lower platform) 

4. Connect the control computer to the electrical box via RS232 serial cable 

5. Turn on the electrical box 

6. Turn on the R/C  
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7. Launch Roborun software. 

8. Verify that the setting is set for RC rather than RS232 and that the E-stop is active. 

9. Disconnect the RS232 cable from the electrical box 

10. Hold program as you turn the controller on until the seven segment display on the back 

begins to blink ( about 5-10 seconds) 

11. You are now in programming mode.  Pressing the set button will change the 

configuration on the program, while pressing program will save the configuration of that 

program and advance to the next program. 

12. Press program until a J appears on the seven segment display. This stats for programming 

mode. At this point, J appears and then a 0 appears sequentially.   

13. Press the set button.  Now you have entered programming mode for R/C 

14. Take the R/C and first move the joystick from one extreme to the next a few times 

15. Now, move the other joystick from one extreme to the next a few times. 

16. Now, leave the both joysticks in their dead band positions and press the program button. 

17. Restart the controller. RC MODE IS NOW ON.   Move the joysticks to move the vehicle.  

 

4.2 Maintenance  

Like any vehicle maintenance has to be considered to maximize the vehicles performance and 

longevity.  This section lists the maintenance information for various part of the vehicle. 

 

4.2.1 Batter Removal and Charging 

Two main battery sources are provided for Hephaestus, one in the lower platform and the other 

in the upper platform.   

 

4.2.1.1 Lower Batteries  

The one in the lower platform is the bulk of the two.  It is two 12V 55AHr batteries connected in 

series to provide 25V 55AHrs to drive both motors and power the Roboteq controller.  This 

battery tray is very heavy and is recommended that two people install it.  Removing is little 

easier.  Figure 63 displays an image of the sliding tray. 
Figure 63-Battery Tray Removal 
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1. Locate the bolts that hold the tray in 

place. 

2. Remove the wing nuts from the bottom 

of the bolts and then pull the bolts 

upward to remove them. 

3. Carefully pull the tray away from the 

vehicle completely in a straight line. 

4. If not planning to use the batteries for a 

while, it is recommended that the fuse be removed in case the terminals get accidentally 

shorted. 

5. To charge the batteries, the fuse must be connected. 

6. Place the battery tray on the ground to charge it.  Use the Schumacher 24V charger.  

Since these batteries are in series and are now 24 volts rather than 12, this charger must 

be used 

7. To replace in the vehicle follow the same procedure in reverse order.  

 

CAUTION: The battery tray is heavy.  It is recommended that two people perform this 

 

4.2.1.2 Upper Batteries  

Upper platform batteries are much smaller and much easier to replace or charge.  Remove the top 

off the electrical box and remove the two 12V 5AHr batteries.  These batteries are also 

connected in series and produce a total of 24V 5AHrs.  There are two ways to charge these 

batteries.   

1. Once can connect each battery to a 12V charger and charge each individually.   

2. The other method would be similar to the lower platform batteries.  Connect the two 

batteries in series and use the 24V Schumacher charger. 

 

4.2.2 LADAR Swap  

As mentioned, the LADAR had to be shared between the two vehicles as it is such an expensive 

piece of equipment and therefore it needed to be able to be swapped between teams. 
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Removal: 

1) Locate and loosen side clips that connect the LADAR to the mounting frame. 

2) Lift LADAR off mounting frame. 

Replacement: 

1) Slide LADAR onto mounting frame. 

2) Locate and tighten down the side clips that connect the LADAR to the mounting 

frame.   

 

4.2.3 Reloading Code 

A number of saved electronic copies of the code is critical to have.  One important thing to know 

is that all the files must be in the same directory and that the MATLAB directory should be 

specified to that specific folder.  Much effort is needed to enable a better and easier way to 

initialize the RS232 setup program. 

 

4.2.4 Replacement of Parts  

Some parts are replaced more often than others, or maybe just taken off and put back on more 

frequently than some of the other components.  This section will illustrate a detailed description 

on how to replace parts. 

 

4.2.4.1 Encoder Replacement 

As mentioned earlier in the report, the encoder connection terminals are very delicate.  The 

Ethernet terminal connected to the controller has the following connections shown in Table 8.  

Note that the wire colors are a bit different from what is mentioned in the Roboteq manual. 
Table 8-Ethernet Pin Connections 
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The encoders that are being used for the Hephaestus has 5 input lines as shown in Figure 64, 

however channel Z is not used.  Encoder 1 is for the speed and encoder 2 is for the steering. Note 

that this is the bottom view of the encoder.  Table 9 & 10 illustrates the connections going to the 

encoder. 
 
Figure 64-Encoder Schematics  

Table 9-Speed_Encoder Connections 
Enc 
Pin 

Name Color Ethernet Pin 
(Table 1) 

1 +5V Brown 8 
2 Channel B Blue/White 5 
3 Z   
4 0V Red/White 7 
5 Channel A Orange 6 
 
Table 10-Steering_Encoder Connections 
Enc 
Pin 

Name Color Ethernet Pin 
(Table 1) 

1 +5V Blue 4 
2 Channel B White 1 
3 Z   
4 0V Orange/White 3 
5 Channel A Green 2 
 

1. Make sure that the encoders are damaged by testing them 

2. Figure out which encoder is being replaced. 

3. If speed encoder use table 9, if steering encoder use table 10. 

4. Make sure to note these connections are according to bottom view of the encoder. 

5. Get the encoder and solder according to the respective table. 

6. Note that these terminals are very delicate and it’s possible to break them. 

7. Make sure to use shrink tubes. 

8. Test the encoders to see if they are working properly. 

 

4.2.4.2 Circuit Repair  

Circuit repair is a delicate process.  One must make sure that all connections are correct not to 

destroy the new part or other parts already connected to the circuit board.   All circuits of 

Hephaestus reside in the electrical box.  Before a component or a part can be repaired, it must be 

identified.  A digital multi meter and or and oscilloscope will do the trick.  Once the problem has 

been discovered, view all schematics provided and carefully replace the part. 
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4.2.4.3 Chain, Sprocket & Motors 

To Remove: 

1) Remove upper platform and all unnecessary obstructions for access to motor area. 

2) Undo all necessary electrical connections 

3) Remove chain 

-find and remove clip on the master link with a pair of pliers. 

4) Remove Sprocket  

-loosen setscrews that attach it to the motor’s output shaft. 

-Remove key from the motor shaft’s keyway. 

-use the correct size gear puller to remove the sprocket from off the shaft. 

-repeat this procedure for any sprocket in the drive or steering systems.  

5) Remove all components used to mount the motor in place. 

6) If desired, replace the motor’s output shaft. 

 

To Replace: 

1) Re-mount the motor to its previous location by affixing it to the platform with all the 

mounting components that were removed. 

2) Re-mount the sprocket to the motor shaft. 

-make sure the key has been inserted into the shaft’s keyway. 

-when the sprocket is at the desired height on the shaft, tighten down the setscrews 

enough to secure the sprocket on the shaft. 

-repeat this procedure for any sprocket in the drive and steering systems. 

3) Place the chain on the sprocket. 

-Make sure the chain is fully engaged by or wrapped around the sprocket. 

-Attached both loose ends of the chain to the master link by clamping down on the master 

link’s clip with a pair of pliers. 
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5.0 Critical Evaluation of Design 
While the theory behind the Hephaestus vehicle is solid, there are several problems that need to 

be addressed in the current design.  The vehicle did enter the IGVC competition; however it did 

not even try to qualify because of major issues with the mechanical system which will be 

discussed shortly.  The vehicle actually did perform autonomously inside a made up course 

inside the tent on sold ground for about 5 minutes.  Once, it got on the grass, the steering motor 

was destroyed due to the excessive torque.  

 

The first and the most critical of these is the chain and sprocket system.  Too much time was 

wasted on this aspect of the vehicle without a satisfactory solution.  A critical factor that dictates 

the success of most chain and sprocket systems is whether or not the sprockets in the system are 

level with each other. If the sprockets are not leveled then the chain is less likely to be properly 

tensioned.   The chain, not being able to fully engage the teeth on the sprocket, will become 

misaligned and slip off the sprocket.  Rather than eyeball the height at which each sprocket is set 

on the shaft, a sufficient leveler could be used to level the sprockets or spacers machined with 

identical dimensions could be mounted in between each sprocket on the shaft to ensure that chain 

will not be misaligned.  To remedy the problem of the chain not being able to fully engage on the 

sprocket, the chain was tightened.  Tightening the chain was not a practical solution.  It was 

perhaps tightened too much.  While the vehicle was operating on the field, the steering motor 

was partially destroyed. The chains took up too much torque and the steering motor’s soul drifted 

out in smoke. 

 

A second issue, which would also assist with the previously stated problem, is the large amount 

of mass on the upper rotating platform.  The high masses that are accumulated on the top lead to 

a greater moment of inertia.  This, in turn, causes higher efforts of the motor and greater stresses 

placed on the chain and sprockets.  This can be resolved by moving several things to a lower 

level.  The control laptops, as well as the other control boxes that are placed on top could be 

moved to another stationary platform between the current lower platform and the upper rotating 

platform.  This would leave the LADAR mount and the payload on the top to rotate.  The 

payload could be moved back to counter the weight of the LADAR hanging off of the front of 

the vehicle. 
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A third issue is the camera mount.  The last second modification was hideous but functional.  

This could have easily been remedied by adding a 45o joint on the top of the mast that would 

allow the top to lean forward and the camera to face down over the front of the vehicle.  A 

solution to this could have easily been implemented this year had it been known before the 

middle of the competition that the camera could not see over the front of the vehicle. 

 

If the vehicle were to be used next year there are two other issues that I believe should be 

addressed.  The lower platform is still made out of Aluminum and is bending severely in several 

places.  This would have to be replaced for any future competitions.  Also, it is our belief that the 

chain could be replaced.  If the chain were to be replaced it could be replaced with a larger chain 

which would also allow for larger gears.  This would also help the chain slipping issue and could 

even possibly allow for the current chain and sprocket set up to remain, with larger gears to 

match the new chain of course. 

 

After seeing the course, the size of the vehicle must be reduced by at least a third.  We learned 

we need to put the camera to the front of the vehicle as opposed the center of the vehicle.  Do not 

use chain excessively.  When designing the vehicle, remember that the vehicle will probably be 

heavier than you plan and will encounter non-ideal conditions. Motors should be over specified.  

The frame should also be very strong. Remember that you will have to work on this thing and 

that easy access is important.  We had a very tight and cluttered chain set up that is difficult to 

work with in a timely manner.   

 

The availability of tools and supply of materials (i.e. bolts, screws, structural materials) was 

lacking and almost seemed to be as big as any electrical or mechanical problem associated with 

this project.  With the time constraints that may be involved in next year’s project it should be a 

priority to have 24-7 access to vehicle lab and machine shop along with access to tools and a 

constant, sufficient supply of materials to limit the possibility of exhausting that supply.  
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6.0 Component Cost & Info 
Table 11 provides a detailed retail cost and team cost of the components.  Incase more parts are 

needed or supplier needs to be contacted, info is available in the table for the majority of the 

parts.    Table 11-Steering_Encoder Connections 

 

7. Conclusion 
Hephaestus is a very unique design. It has unique features such as the integrated controller, 

which simplifies wiring and troubleshooting.  Unfortunately the main mechanical components 

were not originally designed very well, and that is where most of our problems were.  Next 

year’s team needs to make major mechanical changes, because minor ones will not improve the 

design.  All the software and electronics were completed, however there was almost no testing 

done in terms of running autonomous at all due to the time constraints and things breaking apart. 

For future teams, give the Electrical Engineers plenty of opportunity to test. Even if the vehicle is 

not complete there are many ways to test its components.  Set aggressive goals and make sure 

everyone has an assignment with a clear deadline.   The sooner you break the machine the sooner 

Component 
Retail 
Cost 

Team_ 
cost Supplier Part # Supplier 

Driver Motor  $352  $329  Robot combat: Dustin DCWD-D01 www.robotmarketplace.com/ 
Motor Shaft $23  $23  Robot combat: Dustin DCW-SH01-8 www.robotmarketplace.com/ 
Steering Motor $91  $91  Robot combat: AME AME-242-1002 www.robotmarketplace.com/ 
Encoders $140  $140  Micro Laboratories MEH17-300-2 www.cui.com 
IP Laptop $1,200  $0  HP   www.hp.com 
Control Laptop $2,500  $2,000  IBM   www.ibm.com 
LADAR_LMS-200  $5,740 $4,305 SICK LMS 200-30106 www.sickusa.com 
Cable-LADAR $39 $35 SICK PS-1250 www.sickusa.com 
Mounting Bracket #1 $97 $87 SICK PS-1255 www.sickusa.com 
Mounting Bracket #2 $170 $153 SICK DMR-202 www.sickusa.com 
Upper Batteries(2) $51  $51  Panasonic PS-1250 www.ragebattery.com 
Lower Batteries(2) $187  $187  PowerSonic PS-1255 www.ragebattery.com 
Camera $100  $100  Unibrain   www.unibrain.com 
Miscellaneous elect.  $300  $100  Various      
Roboteq controller $632  $632  Roboteq AX2850 www.roboteq.com 
Remote control $101  $101  Futaba DMR-202   
E-Stop control (RF) $60  $0  Bosch     
Structural material $1,300  $680  Bosch     
Wheels (6) + drive train $900  $900  Various     
Miscellaneous mech.  $300  $200  Various     

Total Cost $14,260  $10,114        
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you can fix it, testing is absolutely critical. Make sure everyone can operate the vehicle, not just 

the Electrical Engineering students. 

 

 

 

 

 


