
Functional description of MINTO,

a Mixed INTeger Optimizer

Version 3.1

Martin W.P. Savelsbergh

George L. Nemhauser

Georgia Institute of Technology

School of Industrial and Systems Engineering

Atlanta, GA 30332-0205

USA

Current Maintainer:

Jeff T. Linderoth

Lehigh University

Department of Industrial and Systems Engineering

Bethlehem, PA 18015

USA

martin.savelsbergh@isye.gatech.edu

george.nemhauser@isye.gatech.edu

jtl3@lehigh.edu

(February, 2005)

Contents

1 Introduction 4

2 Using MINTO 6

2.1 Obtaining MINTO . 6

2.2 Building MINTO . 6

2.3 Running MINTO . 6

2.4 Using MINTO Through AMPL . 8

3 System design 8

4 System Functions 12

5 Information Functions 13

5.1 Current formulation . 13

5.1.1 inq form . 14

5.1.2 inq var . 14

5.1.3 inq obj . 16

5.1.4 inq constr . 17

5.2 inq prob . 18

5.3 Active formulation . 19

5.3.1 lp vcnt . 19

5.3.2 lp ccnt . 19

5.3.3 lp slack . 19

5.3.4 lp pi . 19

5.3.5 lp rc . 19

5.3.6 lp base . 20

5.4 Names mode . 20

5.4.1 lp vix . 20

5.4.2 minto vix . 20

5.4.3 lp cix . 20

5.4.4 minto cix . 21

5.5 Process statistics . 21

5.5.1 stat evnds . 21

5.5.2 stat maxnds . 21

5.5.3 stat avnds . 21

5.5.4 stat depth . 21

5.5.5 stat lpcnt . 21

5.5.6 stat gap . 21

5.5.7 stat maxlprows . 21

5.5.8 stat maxlpcols . 21

5.5.9 stat cliquecnt . 21

5.5.10 stat implicationcnt . 22

5.5.11 stat knapcovcnt . 22

5.5.12 stat gubcovcnt . 22

5.5.13 stat sknapcovcnt . 22

5.5.14 stat flowcovcnt . 22

5.5.15 stat time . 22

1

6 Application Functions 22

6.1 minto . 23

6.2 appl mps . 24

6.3 appl init . 27

6.4 appl initlp . 28

6.5 appl preprocessing . 29

6.6 appl node . 31

6.7 appl variables . 32

6.8 appl delvariables . 35

6.9 appl terminatelp . 36

6.10 appl primal . 36

6.11 appl feasible . 38

6.12 appl fathom . 39

6.13 appl bounds . 41

6.14 appl constraints . 43

6.15 appl delconstraints . 45

6.16 appl terminatenode . 47

6.17 appl divide . 48

6.18 appl rank . 52

6.19 appl exit . 54

6.20 appl quit . 55

7 Control Functions 55

7.1 MINTO Algorithm Control Functions . 55

7.1.1 ctrl clique . 55

7.1.2 ctrl implication . 55

7.1.3 ctrl knapcov . 55

7.1.4 ctrl flowcov . 56

7.1.5 ctrl output . 56

7.2 Linear Programming Control Functions . 56

7.3 ctrl lpmethod . 56

7.4 ctrl lppresolve . 56

7.5 ctrl lppricing . 57

7.6 ctrl lppricinglist . 57

7.7 ctrl lpperturbconst . 57

7.8 ctrl lpperturbmethod . 57

7.9 ctrl lprefactorfreq . 57

8 Bypass functions 58

8.1 bypass lp . 58

8.2 bypass fathom . 58

8.3 bypass integral . 58

9 Miscellaneous Functions 59

9.1 wrt prob . 59

10 Calling MINTO recursively 59

2

11 Direct access to the active LP 62

11.1 CPLEX . 62

11.2 OSI . 62

12 Environment variables 62

13 Programming considerations 64

14 Availability and Future Releases 64

3

Functional description of MINTO,

a Mixed INTeger Optimizer

Version 3.1

Martin W.P. Savelsbergh

George L. Nemhauser

Georgia Institute of Technology

School of Industrial and Systems Engineering

Atlanta, GA 30332-0205

USA

Jeff T. Linderoth

Lehigh University

Department of Industrial and Systems Engineering

Bethlehem, PA 18015

USA

Abstract

MINTO is a software system that solves mixed-integer linear programs by a branch-and-bound algo-

rithm with linear programming relaxations. It also provides automatic constraint classification, prepro-

cessing, primal heuristics and constraint generation. Moreover, the user can enrich the basic algorithm

by providing a variety of specialized application routines that can customize MINTO to achieve max-

imum efficiency for a problem class. This user’s manual documents MINTO by specifying what it is

capable of doing and how to use it.

1 Introduction

MINTO (Mixed INTeger Optimizer) is a tool for solving mixed integer linear programming (MIP) prob-

lems of the form:

max
∑

j∈B

cjxj +
∑

j∈I

cjxj +
∑

j∈C

cjxj

∑

j∈B

aijxj +
∑

j∈I

aijxj +
∑

j∈C

aijxj ∼ bi i = 1, . . . ,m

0 ≤ xj ≤ 1 j ∈ B

lxj ≤ xj ≤ uxj j ∈ I ∪ C

xj ∈ Z j ∈ B ∪ I

xj ∈ R j ∈ C

where B is the set of binary variables, I is the set of integer variables, C is the set of continuous variables,

the sense ∼ of a constraint can be ≤, ≥, or =, and the lower and upper bounds may be negative or positive

infinity or any rational number.

4

A great variety of problems of resource allocation, location, distribution, production, scheduling,

reliability and design can be represented by MIP models. One reason for this rich modeling capability is

that various nonlinear and non-convex optimization problems can be posed as MIP problems.

Although MILPs are difficult to solve in general, the past ten years has seen a dramatic increase in both

the quantity and quality of open source and noncommercial software designed to solve MILPs. Noncom-

mercial software tools can provide a viable alternative for users who cannot afford the sometimes costly

commercial offerings. Open source software tools can also be more extensible and easier to customize

than their commercial counterparts.

MINTO is one such framework that can be used to solve large mixed-integer programs efficiently,

without having to develop a full-blown special purpose code in each case. MINTO is an effective gen-

eral purpose mixed integer optimizer that can be customized through the incorporation of application

functions. Its strength is that it allows users to concentrate on problem specific aspects rather than data

structures and implementation details such as linear programming and branch-and-bound.

The heart of MINTO is a linear programming based branch-and-bound algorithm. It can be imple-

mented on top of any LP-solver that provides capabilities to solve and modify linear programs and inter-

pret their solutions. The current version can either be built on top of the CPLEX callable library, version

6.0 and up, or on top of the COIN-OR OsiSolverInterface (see http://www.coin-or.org). Currently,

only the Coin Linear Programming toolkit Clp is implemented through OSI, but in subsequent releases,

more of the 11 different linear programming toolkits that have an OsiSolverInterface will be imple-

mented through MINTO.

To be as effective and efficient as possible when used as a general purpose mixed-integer optimizer,

MINTO attempts to:

• improve the formulation by preprocessing and probing;

• construct feasible solutions;

• generate strong valid inequalities;

• perform variable fixing based on reduced prices;

• control the size of the linear programs by managing active constraints.

To be as flexible and powerful as possible when used to build a special purpose mixed-integer optimizer,

MINTO provides various mechanisms for incorporating problem specific knowledge. Finally, to make

future algorithmic developments easy to incorporate, MINTO’s design is highly modular.

This document focuses on the mechanisms for incorporating problem structure and only contains a

minimal description of the general purpose techniques mentioned above.

The mechanisms for incorporating problem structure and customizing MINTO are discussed in Sec-

tions 5, 6, 7, 8, and 9 under information, application, control, bypass, and miscellaneous functions.

Section 2 explains how to run MINTO and Sections 3 and 4 present the overall system design and a

brief description of the system functions. Section 10 discusses the development of applications that call

MINTO recursively. Sections 11, 12, 13, and 14 discuss environment variables, direct access to the lin-

ear program, programming considerations and computational results. Finally, Section 15 contains some

remarks on availability and future releases.

Release 3.1 of MINTO was prompted by the porting of MINTO to more recent versions of the CPLEX LP

solver, a port to use the COIN-OR OsiSolverInterface, which allows the use of 11 different LP solvers

to be used with MINTO, and of the creation and packaging of an AMPL interface to MINTO.

5

2 Using MINTO

In this section, we describe the process of obtaining and unpacking MINTO, how to build and run an

executable with the MINTO libraries, and how to create a minto solver that will work with the AMPL

modeling language.

2.1 Obtaining MINTO

MINTO libraries, application source files, and AMPL application source files can be downloaded from the

MINTO web site: http://coral.ie.lehigh.edu/minto. In order to access the MINTO repository, we

require that the user provide a valid email address, so that we can better track the community of users.

We will never distribute these email addresses to anyone. The name of the downloaded file contains

the minto version, the computer operating system, and the linear programming software for which the

library is built.1

2.2 Building MINTO

In order to create a minto executable, the user application files in the directory APPL must be compiled

and linked with the minto library libminto.a that comes with the distribution. Prior to linking, the user

application functions can be modified to customize the branch-and-cut or branch-and-price algorithm as

described in Section 3. A Makefile is included in the APPL directory of the distribution for this purpose.

2.3 Running MINTO

The following command should be used to invoke MINTO:

minto -xo<.>m<.>t<.>be<.>E<.>p<.>hcikgfrRB<.>sn<.>a] <name>

where <name> is the name of an MPS-formatted file. It is also possible to generate the mixed integer

program directly within MINTO using the application function appl mps, see Section 6.2. However, even

in that case, MINTO requires a name to be specified on the command line. MINTO always opens a file

(< name > .log) to write out information that may be useful to determine the cause of a premature exit,

in case this occurs. Furthermore, this name will be used as the problem name, which would otherwise

have been specified in the MPS-file.

The run-time behavior of MINTO depends on the command line options. The meanings of the various

command line options are given in Table 1. The command line options allow the user to deactivate

selectively one or more system functions and to specify the amount of output desired.

MINTO assumes that the mixed integer program that has to be solved represents a minimization

problem unless the x command line option is specified, in which case MINTO assumes it represents a

maximization problem.

Regardless of whether MINTO has found an optimal solution or not, it will abort after evaluating

1,000,000 nodes. The m < ... > command line option can be used to change the maximum number of

nodes to be evaluated. Regardless of whether MINTO has found an optimal solution or not, it will abort

after 1,000,000 cpu seconds. The t < ... > command line option can be used to change the maximum

cpu time.

In default mode MINTO produces very little output. The o < 0, 1, 2, 3 > command line option can be

used to change the amount of output generated by MINTO. There are four output levels: no (0), very

little (1), normal (2), and extensive (3).

1Future versions of MINTO will work on divorcing completely any dependence on the LP solver from the MINTO library.

6

option effect

x assume maximization problem

o < 0, 1, 2, 3 > level of output

m < ... > maximum number of nodes to be evaluated

t < ... > maximum cpu time in seconds

b deactivate bound improvement

e < 0, 1, 2, 3, 4, 5 > type of branching

E < 0, 1, 2, 3, 4 > type of node selection

p < 0, 1, 2, 3 > level of preprocessing and probing

h deactivate primal heuristic

c deactivate clique generation

i deactivate implication generation

k deactivate knapsack cover generation

g deactivate GUB cover generation

f deactivate flow cover generation

r deactivate row management

R deactivate restarts

B < 0, 1, 2 > type of forced branching

s deactivate all system functions

n < 1, 2, 3 > activate a names mode

a activate use of advance basis

Table 1: Command line options

In default mode MINTO performs preprocessing and limited probing if the number of binary variables

is not too large. For a description of preprocessing and probing, and all other system functions, see

Section 4. The p < 0, 1, 2, 3 > command line option can be used to change the amount of preprocessing

and probing done by MINTO. There are four levels: no preprocessing and no probing (0), preprocessing

but no probing (1), preprocessing and limited probing (2), and preprocessing and extensive probing (3).

Probing, although potentially very effective, can be time very consuming, especially for problems with

many binary variables. See references [2] and [8] for more details about the types of preprocessing

operations performed in MINTO.

A branching scheme is specified by two rules: a branching variable selection rule and a node selection

rule. In default mode MINTO uses its own adapative variable selection and node selection rules. The

e < 0, 1, 2, 3, 4, 5 > command line option can be used to specify a branching variable selection rule. There

are six variable branching selection rules: maximum infeasibility (0), penalty based (1), strong branching

(2), pseudocost based (3), adaptive (4), and SOS branching (5). The E < 0, 1, 2, 3, 4 > command line

option can be used to specify a node selection rule. There are five node selection rules: best bound

(0), depth first (1), best projection (2), best estimate (3), and adaptive (4). See reference [7] for more

description of these branching and node selection rules.

MINTO attempts to generates cuts to improve the formulation during the evaluation of a node. As

a consequence, there is a risk of ‘tailing-off’. Therefore, MINTO monitors the progress resulting form

cut generation. If the amount of progress does not warrant cut generation anymore, MINTO forces

branching. The B < 0, 1, 2 > command line option can be used to specify a forcing strategy. There are

three strategies: no forcing at all (0), no forcing at the root but forcing at the other nodes (1), and forcing

at all nodes (2).

7

option mintoamp_options ’output=2 preprocessing=0 maxtime=1800’;

option mintoamp_options ’deactivate_all=1’;

Figure 1: Setting MINTO Options Through AMPL

In default mode MINTO does not associate names with variables and constraints. The n < 1, 2, 3 >

command line option can be used to indicate that an application does want to associate names with

variables (1), constraints (2), or with both variables and constraints (3).

In default mode MINTO does not load an advanced basis when it starts evaluating a new node, but

relies on the LP solver to determine a good starting basis. In most cases, this works very well. State-of-

the-art LP solver keep the basis associated with the last solved LP and employ sophisticated techniques

to convert it to a good starting basis for the current LP. Furthermore, loading an advanced basis usually

results in refactorization operations by the LP solver, which may take a substantial amount of time.

Finally, it is not at all obvious what constitutes a good advanced basis if row or column generation

techniques are applied in the solution process. The a command line option can be used to activate the

use of an advance basis. In that case, MINTO will use the basis associated with the last LP solved in the

parent node to create an advanced basis.

2.4 Using MINTO Through AMPL

The directory APPL-AMPL contains source files necessary for building a MINTO solver capable of inter-

facing with the AMPL modeling language [9].2 In order to use this feature, besides libraries for linear

programming, the user must have installed and built the AMPL solver libraries that are available at

ftp://netlib.bell-labs.com/netlib/ampl/. In the APPL-AMPL directory, there is a Makefile that can

be used to build a solver executable mintoamp that can be set as the active solver from within AMPL

using the command option solver mintoamp. Table 2 contains a list of the minto options that can be

set through AMPL. Figure 1 gives two examples of setting various MINTO options through the AMPL

interface.

MINTO Command Line Option MINTO AMPL Option

e branching

s deactivate all

n3 loadnames

m maxnodes

t maxtime

o output

p preprocessing

Table 2: MINTO-AMPL Options

3 System design

It is well known that problem specific knowledge can be used advantageously to increase the performance

of the basic linear programming branch-and-bound algorithm for mixed integer programming. MINTO

2Currently, only the Linux-OsiClp MINTO solver comes with this feature.

8

attempts to use problem specific knowledge on two levels to strengthen the LP-relaxation, to obtain better

feasible solutions and to improve branching.

At the first level, system functions use general structures, and at the second level application func-

tions use problem specific structures. A call to an application function temporarily transfers control to

the application program, which can either accept control or decline control. If control is accepted, the

application program performs the associated task. If control is declined, MINTO performs a default ac-

tion, which in many cases will be “do nothing”. The user can also exercise control at the first level by

selectively deactivating system functions.

Figure 1 and 2 give flow charts of the underlying algorithm and the associated application functions.

To differentiate between actions carried out by the system and those carried out by the application pro-

gram, there are different “boxes”. System actions are in solid line boxes and application program actions

are in dashed line boxes. A solid line box with a dashed line box enclosed is used whenever an action can

be performed by both the system and the application program. Finally, to indicate that an action has to

be performed by either the system or the application program, but not both, a box with one half in solid

lines and the other half in dashed lines is used. If an application program does not carry out an action,

but one is required, the system falls back to a default action. For instance, if an application program does

not provide a division scheme for the branching task, the system will apply the default branching scheme.

Formulations

The concept of a formulation is fundamental in describing and understanding MINTO. MINTO is con-

stantly manipulating formulations: storing a formulation, retrieving a formulation, modifying a formula-

tion, duplicating a formulation, handing a formulation to the LP-solver, providing information about the

formulation to the application program, etc. We will always use the following terms to refer to elements

of a formulation: objective function, constraint, coefficient, sense, right-hand side, variable, lower bound,

and upper bound.

It is beneficial to distinguish four types of formulations. The original formulation is the formulation

specified in the < problemname > .mps file. The initial formulation is the formulation associated with

the root node of the branch-and-bound tree. It may differ from the original formulation as MINTO

automatically tries to improve the initial formulation using various preprocessing techniques, such as

detection of redundant constraints and coefficient reduction. The current formulation is an extension of

the original formulation and contains all the variables and all the global and local constraints associated

with the node that is currently being evaluated. The active formulation is the formulation currently

loaded in the LP-solver. It may be smaller that the current formulation due to management of inactive

constraints.

It is very important that an application programmer realizes that the active formulation does not nec-

essarily coincide with his mental picture of the formulation, since MINTO may have generated additional

constraints, temporarily deactivated constraints, or fixed one or more variables.

Constraints

MINTO distinguishes various constraint classes as defined in Table 2. These constraint classes are mo-

tivated by the constraint generation done by MINTO and the branching scheme adopted by MINTO. To

present these constraint classes, it is convenient to distinguish the binary variables. We do this by using

the symbol y to indicate integer and continuous variables. Each class is an equivalence class with respect

to complementing binary variables, i.e., if a constraint with term ajxj is in a given class then the con-

straint with ajxj replaced by aj(1−xj) is also in the class. For example
∑

j∈B+ xj −
∑

j∈B− xj ≤ 1−|B−|

is in the class BINSUM1UB, where we think of B− as the set of complemented variables.

Besides constraint classes, MINTO also distinguishes two constraint types: global and local. Global

9

GetProblem

Preprocess

Select

Preprocess

LP

DeleteVars

Do PriceVars n

PriceVars

SuccessyAddVars

zlp>zbest
n

Integral y

PrimalHeuristic Feasiblen

Successn PrimalHeuristic

zprim>zbest
n zprim>zbest

n

Update Update

Fathom Fathom

zlp>zbest
n

ModifyBounds

DeleteCons

Do GenerateCons n

GenerateCons Feasiblen

SuccessyAddCons zprim>zbest
n

PrimalHeuristic Update

Success y Fathom

Branch

Figure 2: The underlying algorithm

10

appl_mps

appl_preprocess

appl_rank

appl_preprocess

appl_delvariables

appl_terminatelp n

appl_variables

y

n

y

appl_primal appl_feasiblen

n appl_primal

n n

appl_fathom appl_fathom

n

appl_bounds

appl_delconstraints

appl_terminatenode n

appl_constraints appl_feasiblen

y n

y appl_fathom

appl_divide

Figure 3: The application functions

11

class constraint

MIXUB
∑

j∈B ajxj +
∑

j∈I∪C ajyj ≤ a0

MIXEQ
∑

j∈B ajxj +
∑

j∈I∪C ajyj = a0

NOBINUB
∑

j∈I∪C ajyj ≤ a0

NOBINEQ
∑

j∈I∪C ajyj = a0

ALLBINUB
∑

j∈B ajxj ≤ a0

ALLBINEQ
∑

j∈B ajxj = a0

SUMVARUB
∑

j∈I+∪C+ ajyj − akxk ≤ 0

SUMVAREQ
∑

j∈I+∪C+ ajyj − akxk = 0

VARUB ajyj − akxk ≤ 0

VAREQ ajyj − akxk = 0

VARLB ajyj − akxk ≥ 0

BINSUMVARUB
∑

j∈B\{k} ajxj − akxk ≤ 0

BINSUMVAREQ
∑

j∈B\{k} ajxj − akxk = 0

BINSUM1VARUB
∑

j∈B\{k} xj − akxk ≤ 0

BINSUM1VAREQ
∑

j∈B\{k} xj − akxk = 0

BINSUM1UB
∑

j∈B xj ≤ 1

BINSUM1EQ
∑

j∈B xj = 1

Table 3: Constraint classes

constraint are valid at any node of the branch-and-bound tree, whereas local constraints are only valid in

the subtree rooted at the node where the constraints are generated.

Constraints can be in one of three states: active, inactive, or deleted. Active constraints are part of

the active formulation. Inactive constraints have been deactivated but may be reactivated at a later time.

Deleted constraints have been removed altogether.

Variables

When solving a linear program MINTO allows for column generation. In other words, after a linear

program has been optimized, MINTO asks for the pricing out of variables not in the current formulation.

If any such variables exists and price out favorably they are included in the formulation and the linear

program is reoptimized.

Branching

The unevaluated nodes of the branch-and-bound tree are kept in a list and MINTO always selects the

node at the head of the list for processing. However, there is great flexibility here, since MINTO provides

a mechanism that allows an application program to order the nodes in the list in any way.

4 System Functions

MINTO’s system functions are used to perform preprocessing, probing, constraint generation and reduced

price variable fixing, to enhance branching, and to produce primal feasible solutions. They may be

employed at every node of the branch-and-bound tree. However, their use is optional. A more detailed

description of some of the system functions embedded in MINTO can be found in the papers listed in the

references.

In preprocessing, MINTO attempts to improve the LP-relaxation by identifying redundant constraints,

12

detecting infeasibilities, tightening bounds on variables and fixing variables using optimality and feasibil-

ity considerations. For constraints with only 0-1 variables, it also attempts to improve the LP-relaxation

by coefficient reduction. For example a constraint of the form a1x1 + a2x2 + a3x3 ≤ a0 may be replaced

by a1x1 + a2x2 + (a3 − δ)x3 ≤ a0 − δ for some δ > 0 that preserves the set of feasible solutions.

In probing, MINTO searches for logical implications of the form xi = 1 implies yj = vj and stores these

in an ‘implication’ table. Furthermore, MINTO uses the logical implications between binary variables to

build up a ‘clique’ table, i.e., MINTO tries to extend relations between pairs of binary variables to larger

sets of binary variables.

After a linear program is solved and a fractional solution is obtained, MINTO tries to exclude these

solutions by searching the implication and clique table for violated inequalities, and by searching for

violated lifted knapsack covers, violated lifted GUB covers, and violated lifted simple generalized flow

covers. Lifted knapsack covers are derived from pure 0-1 constraints and are of the form
∑

j∈C1

xj +
∑

j∈C2

γjxj +
∑

j∈B\C

αjxj ≤ |C1| − 1 +
∑

j∈C2

γj ,

where C = C1 ∪ C2 with C1 6= ∅ a minimal set such that
∑

j∈C aj > a0. Lifted GUB cover inequalities

have the same form, but are derived from a structure consisting of a single knapsack constraint and a set

of non-overlapping generalized upper bound constraints. Generalized flow covers are derived from
∑

j∈N+

yj −
∑

j∈N−

yj ≤ a0

yj ≤ ajxj ; j ∈ N+ ∪ N−

and are of the form
∑

j∈C+

[yj + (λ − aj)
+(1 − xj)] ≤ a0 +

∑

j∈C−

aj +
∑

j∈L

λxj +
∑

j∈N−\(L∪C−)

yj ,

with (C+, C−) ⊆ (N+, N−) a minimal set such that
∑

j∈C+ aj−
∑

j∈C− aj−a0 = λ > 0 and L ⊆ N−\C−.

After solving a linear program MINTO searches for non-basic 0-1 variables whose values may be fixed

according to the magnitude of their reduced price. It also tries to find feasible solutions using recursive

rounding of the optimal LP-solution.

MINTO uses a hybrid branching scheme. Under certain conditions it will branch on a clique constraint.

If not, it chooses a variable to branch on based on a priority order it creates.

5 Information Functions

For the sequel, it is assumed that the reader has a working knowledge of the C programming language.

5.1 Current formulation

Information about the current formulation can be obtained through the inquiry functions: inq form,

inq obj, inq constr, and inq var, and their associated global variables info form, info obj, info constr,

and info var.

Each of these inquiry functions updates its associated variable so that the information stored in that

variable reflects the current formulation. The application program can then access the information by

inspecting the fields of the variable.

The rationale behind this approach is that we want to keep memory management fully within MINTO.

(Note that since only nonzero coefficients are stored, the memory required to hold the objective function

and constraints varies.)

13

As it is impossible for the application program to keep track of the indices of the active constraints,

due to constraint generation and constraint management done by MINTO, the only fail-safe method for

accessing constraint related information is to refer to constraints through names rather than indices.

However, in some cases, for instance when an application program only wants to inspect constraints of

the original formulation (which are not affected by constraint generation and constraint management),

using names would be rather cumbersome.

To overcome these difficulties, the following scheme has been adopted for MINTO. All information

access for variables and constraints is done through indices. For variables the valid indices are in the

range 0 up to the number of variables, and for constraints the valid indices are in the range 0 up to the

number of constraints. However, to provide a fail-safe access mechanism, MINTO has, besides the default

no-names operating mode, a names operating mode, in which names are associated with each variable

and each constraint.

5.1.1 inq form

This function retrieves the number of variables and the number of constraints of the current formulation.

A call to inq form() initializes the variable info form that has the following structure:

typedef struct info_form {

int form_vcnt; /* number of variables in the formulation */

int form_ccnt; /* number of constraints in the formulation */

} INFO_FORM;

The following example shows how inq form can be used to print the size of the current formulation.

/*

* E_SIZE.C

*/

#include <stdio.h>

#include "minto.h"

/*

* WriteSize

*/

void

WriteSize ()

{

inq_form ();

printf ("Number of variables: %d\n", info_form.form_vcnt);

printf ("Number of constraints: %d\n", info_form.form_ccnt);

}

5.1.2 inq var

This function retrieves the variable name, variable class, the objective function coefficient, the number of

constraints in which the variable appears with a nonzero coefficient, and for each of these constraints the

index of the constraint and the nonzero coefficient, the status of the variable, the lower and upper bound

14

associated with the variable, additional information on the bounds of the variable, and, if the variable

type is continuous and the variable appears in a variable lower or upper bound constraint, the index of

the associated binary variable and the associated bound.

Variable class is one of: CONTINUOUS, INTEGER, and BINARY. Variable status is one of ACTIVE,

INACTIVE, or DELETED. Variable information is one of: ORIGINAL, MODIFIED BY BRANCHING, MODI-

FIED BY MINTO, and MODIFIED BY APPL. These constants are defined in the header file minto.h, which

is included in the APPL directory of the distribution and mu8st be included in every application source

file.

PARAMETERS

index: An integer containing the index of the variable.

colinfo: A boolean indicating whether the column associated with the variable should be retrieved

or not, i.e., YES or NO.

A call to inq var() initializes the variable info var that has the following structure:

typedef struct info_var {

char *var_name; /* name, if any */

char var_class; /* class: CONTINUOUS, INTEGER, or BINARY */

double var_obj; /* objective function coefficient */

int var_nz; /* number of constraints with nonzero coefficients */

int *var_ind; /* indices of constraints with nonzero coefficients */

double *var_coef; /* actual coefficients */

int var_status; /* ACTIVE, INACTIVE, or DELETED */

double var_lb; /* lower bound */

double var_ub; /* upper bound */

VLB *var_vlb; /* associated variable lower bound */

VUB *var_vub; /* associated variable upper bound */

int var_lb_info; /* ORIGINAL, MODIFIED_BY_MINTO,

MODIFIED_BY_BRANCHING, or MODIFIED_BY_APPL */

int var_ub_info; /* ORIGINAL, MODIFIED_BY_MINTO,

MODIFIED_BY_BRANCHING, or MODIFIED_BY_APPL */

} INFO_VAR;

typedef struct {

int vlb_var; /* index of associated 0-1 variable */

double vlb_val; /* value of associated bound */

} VLB;

typedef struct {

int vub_var; /* index of associated 0-1 variable */

double vub_val; /* value of associated bound */

} VUB;

Due to MINTO’s philosophy to use as few functions as possible from the LP-solver and MINTO’s row

oriented internal data structures, retrieving the column associated with a variable may be very time

consuming. Furthermore, in many cases an application uses inq var only to obtain information on the

bounds or the type of a variable. In such situations, there is no need to retrieve the column associated

with the variable. Therefore, we have introduced the boolean colinfo to indicate whether or not the

column associated with the variable should be retrieved. Setting colinfo to NO may result in an increased

15

performance of an application.

The following example shows how inq var can be used to print the variables that are fixed in the current

formulation.

/*

* E_FIXED.C

*/

#include <stdio.h>

#include "minto.h"

/*

* WriteFixed

*/

void

WriteFixed ()

{

int j;

for (inq_form (), j = 0; j < info_form.form_vcnt; j++) {

inq_var (j, NO);

if (info_var.var_lb > info_var.var_ub - EPS) {

printf ("Variable %d is fixed at %f\n", j, info_var.var_lb);

}

}

}

5.1.3 inq obj

This function retrieves the number of variables that appear in the objective function with a nonzero

coefficient, and for each of these variables the index of the variable and the nonzero coefficient.

The same information can be obtained by successive calls to inq var, however using inq obj is much

more efficient.

A call to inq obj() initializes the variable info obj that has the following structure:

typedef struct {

int obj_nz; /* number of variables with nonzero coefficients */

int *obj_ind; /* indices of variables with nonzero coefficients */

double *obj_coef; /* actual coefficients */

} INFO_OBJ;

The following example shows how inq obj can be used to print the variables with a nonzero objective

coefficient.

/*

* E_OBJ.C

*/

16

#include <stdio.h>

#include "minto.h"

/*

* WriteObj

*/

void

WriteObj ()

{

int j;

inq_obj ();

for (j = 0; j < info_obj.obj_nz; j++) {

printf ("Variable %d has objective coefficient %f\n",

info_obj.obj_ind[j], info_obj.obj_coef[j]);

}

}

5.1.4 inq constr

This function retrieves the constraint name, constraint class, the number of variables that appear in the

constraint with a nonzero coefficient, and for each of these variables the index of the variable and the

nonzero coefficient, the sense of the constraint, the right hand side of the constraint, the status of the

constraint, the type of the constraint, and additional information on the constraint.

Constraint class is one of: MIXUB, MIXEQ, NOBINARYUB, NOBINARYEQ, ALLBINARYUB, ALLBINA-

RYEQ, SUMVARUB, SUMVAREQ, VARUB, VAREQ, VARLB, BINSUMVARUB, BINSUMVAREQ, BINSUM1VARUB,

BINSUM1VAREQ, BINSUM1UB, or BINSUM1EQ. Constraint status is one of: ACTIVE, INACTIVE, or

DELETED. Constraint type is one of: LOCAL or GLOBAL. Constraint information is one of ORIGINAL,

GENERATED BY BRANCHING, GENERATED BY MINTO, and GENERATED BY APPL.

PARAMETERS

index: An integer containing the index of the constraint.

A call to inq constr() initializes the variable info constr that has the following structure:

typedef struct info_constr {

char *constr_name; /* name, if any */

int constr_class; /* classification: ... */

int constr_nz; /* number of variables with nonzero coefficients */

int *constr_ind; /* indices of variables with nonzero coefficients */

double *constr_coef; /* actual coefficients */

char constr_sense; /* sense */

double constr_rhs; /* right hand side */

int constr_status; /* ACTIVE, INACTIVE, or DELETED */

int constr_type; /* LOCAL or GLOBAL */

int constr_info; /* ORIGINAL, GENERATED_BY_MINTO,

GENERATED_BY_BRANCHING, or GENERATED_BY_APPL */

} INFO_CONSTR;

17

The following example shows how inq constr can be used to print the types of the constraints in the

current formulation.

/*

* E_TYPE.C

*/

#include <stdio.h>

#include "minto.h"

/*

* WriteType

*/

void

WriteType ()

{

int i;

for (inq_form (), i = 0; i < info_form.form_ccnt; i++) {

inq_constr (i);

printf ("Constraint %d is of type %s\n",

i, info_constr.constr_type == GLOBAL ? "GLOBAL" : "LOCAL");

}

}

5.2 inq prob

This function retrieves the name of the problem that is being solved, i.e., the name found in the NAME

section of the < problem name > .mps file that was read when MINTO was invoked.

The following example shows how inq prob can be used to print the name of the problem being solved.

/*

* E_NAME.C

*/

#include <stdio.h>

#include "minto.h"

/*

* WriteName

*/

void

WriteName ()

{

printf ("Problem name: %s\n", inq_prob ());

}

18

A more elaborate example showing how the inquiry functions can be used to print everything there is to

know about the current formulation can be found in Appendix A.

5.3 Active formulation

Information about the LP-solution to the active formulation and information about the best primal so-

lution are available to the application, whenever appropriate, through the parameters passed to the

application functions.

Additional information about the active formulation and the LP-solution can be obtained through

the inquiry functions lp vcnt, lp ccnt, lp slack, lp pi, lp rc, and lp base. MINTO gets the required

information directly from the LP-solver. Therefore, the user is referred to the manual of the LP-solver for

a precise definition of the return values. (For example, the manual of the LP-solver defines the meaning

of the values of the dual variables in case the linear program is infeasible.)

5.3.1 lp vcnt

This function returns the number of variables in the active formulation, i.e., the number of variables

currently loaded in the LP-solver.

5.3.2 lp ccnt

This function returns the number of constraints in the active formulation, i.e., the number of constraints

currently loaded in the LP-solver.

5.3.3 lp slack

This function returns the slack or surplus of the constraint. If the index is invalid or the associated con-

straint is inactive, the return value will be INF.

PARAMETERS

index: An integer containing the index of the constraint.

5.3.4 lp pi

This function returns the dual value of the constraint. If the index is invalid or the associated constraint

is inactive, the return value will be INF.

PARAMETERS

index: An integer containing the index of the constraint.

5.3.5 lp rc

This function returns the reduced cost of the variable. If the index is invalid, the return value will be INF.

PARAMETERS

index: An integer containing the index of the variable.

19

5.3.6 lp base

This function retrieves the status of each variable, i.e., BASIC, ATLOWER, ATUPPER, or NONBASIC and

each constraint, i.e., CBASIC, or CNONBASIC.

A call to lp base() initializes the variable info base that has the following structure:

typedef struct info_base {

int *base_vstat; /* array with the status of each variable */

int *base_cstat; /* array with the status of each constraint */

} INFO_BASE;

5.4 Names mode

Applications generating constraints, either in appl constraints or appl divide, may have a difficult time

keeping track of the indices of these constraints. MINTO may generate system inequalities, MINTO may

deactivate or delete global constraints, and MINTO may rearrange global and local constraints.

To provide an easy and fail-safe mechanism for retrieving information about certain constraints,

MINTO provides a names-mode. When MINTO is invoked with names-mode active, each of the con-

straints generated by the application has to be given a (unique) name. Afterwards the index of a con-

straint can be retrieved with one of two utility functions lp cix and minto cix. Both functions require a

name as parameter and return an index. For example, the slack of a constraint with name cname can

be retrieved by lp slack (lp cix (cname)) and information on a constraint with name cname can be

retrieved by inq cons (minto cix (cname)). A similar mechanism is provide for retrieving information

about variables.

5.4.1 lp vix

This function returns the index of the variable with the specified name in the active formulation. If the

name does not exist, the return value will be ERROR; if the variable is inactive the return value will be

DEACTIVATED.

PARAMETERS

vname: A character pointer to the name of the variable.

5.4.2 minto vix

This function returns the index of the variable with the specified name in the current formulation. If the

name does not exist, the return value will be ERROR.

PARAMETERS

vname: A character pointer to the name of the variable.

5.4.3 lp cix

This function returns the index of the constraint with the specified name in the active formulation. If the

name does not exist, the return value will be ERROR.

PARAMETERS

cname: A character pointer to the name of the constraint.

20

5.4.4 minto cix

This function returns the index of the constraint with the specified name in the current formulation. If

the name does not exist, the return value will be ERROR.

PARAMETERS

cname: A character pointer to the name of the constraint.

5.5 Process statistics

When MINTO finishes it writes out some statistics on the solution process, such as the number of evalu-

ated nodes, the number of generated lifted knapsack cover inequalities, and the elapsed cpu time. The

process solution statistics functions allow an application to monitor this information during the execution

of the algorithm.

5.5.1 stat evnds

This function returns the number of evaluated nodes.

5.5.2 stat maxnds

This function returns the maximum number of nodes that has been in the list of unevaluated nodes.

5.5.3 stat avnds

This function returns the average number of nodes that has been in the list of unevaluated nodes.

5.5.4 stat depth

This function returns the maximum depth of the search tree.

5.5.5 stat lpcnt

This function returns the number of linear programs that has been solved.

5.5.6 stat gap

This function returns the integrality gap.

5.5.7 stat maxlprows

This function returns the maximum number of rows that has been in the active linear program.

5.5.8 stat maxlpcols

This function returns the maximum number of columns that has been in the active linear program.

5.5.9 stat cliquecnt

This function returns the number of clique inequalities that has been generated.

21

5.5.10 stat implicationcnt

This function returns the number of implication inequalities that has been generated.

5.5.11 stat knapcovcnt

This function returns the number of lifted knapsack cover inequalities that has been generated.

5.5.12 stat gubcovcnt

This function returns the number of lifted GUB cover inequalities that has been generated.

5.5.13 stat sknapcovcnt

This function returns the number of surrogate lifted knapsack cover inequalities that has been generated.

5.5.14 stat flowcovcnt

This function returns the number of lifted flow cover inequalities that has been generated.

5.5.15 stat time

This function returns the elapsed cpu time.

6 Application Functions

A main program, sometimes called a driver, and a set of application functions (either the default or

any other) has to be compiled and linked with the MINTO library in order to produce an executable

version of MINTO. The application functions give the user the opportunity to incorporate problem specific

knowledge and thereby increase the overall performance. A default set of application functions is part

of the distribution of MINTO. The incorporation of these default functions turns MINTO into a general

purpose mixed integer optimizer.

Internally MINTO always works with a maximization problem! If the original formulation describes

a minimization problem, MINTO will change the signs of all the objective function coefficients. As a

consequence, one has to be careful when interpreting values such as the reduced cost of a variable.

MINTO only stores the nonzero coefficients of variables and constraints. Therefore, a set of variables

can and will always be specified by three arrays: vfirst, vind, vcoef. Vind and vcoef contain the indices and

values of nonzero coefficients respectively. Vfirst[i] indicates the position of the first nonzero coefficient

of the ith variable in the arrays vind, and vcoef; vfirst[i + 1] indicates the first position after the last

nonzero coefficient of the ith variable in the arrays vind and vcoef. Note that this implies that if a set of

k variables is specified vfirst[k] has to be defined. Similarly, a set of constraints can and will always be

specified by three arrays: cfirst, cind, ccoef. Cind and ccoef contain the indices and values of nonzero

coefficients respectively. Cfirst[i] indicates the position of the first nonzero coefficient of the ith constraint

in the arrays cind, and ccoef; cfirst[i + 1] indicates the first position after the last nonzero coefficient of

the ith constraint in the arrays cind and ccoef. Note that this implies that if a set of k constraints is

specified, then cfirst[k] has to be defined.

22

6.1 minto

This function invokes MINTO and takes as arguments the problem name and a string with run-time op-

tions. For a description of the run-time options see Section 2.

PARAMETERS

name: A string containing the problem name.

options: A string containing the run-time options.

When MINTO finishes, it stores the optimal solution in a variable info opt that has the following

structure:

typedef struct info_opt {

int opt_stat; /* exit status: optimal, time or node limit, quit */

double opt_value; /* value of optimal solution */

int opt_nzcnt; /* number of nonzero’s in optimal solution */

int *opt_ix; /* indices of nonzero’s in optimal solution */

double *opt_val; /* values of nonzero’s in optimal solution */

} INFO_OPT;

Similar to the inquiry functions, the calling program can access the optimal solution by inspecting the

fields of the variable.

The following example shows how to call MINTO and print the optimal solution.

/*

* MINTO.C

*/

#include <stdio.h>

#include "minto.h"

/*

* Minto

*/

void

main ()

{

int i;

/*

* Solve the mixed integer program specified in ‘example.mps’, which is

* a maximization problem, and provide ‘extensive’ output.

*/

minto ("example", "-x -o3");

/*

* Write out the optimal solution ourselves

*/

23

printf ("Optimal value: %f\n", info_opt.opt_value);

for (i = 0; i < info_opt.opt_nzcnt; i++) {

printf ("Value[%d] = %f\n", info_opt.opt_ix[i], info_opt.opt_val[i]);

}

}

6.2 appl mps

This function allows the application to initialize the original formulation itself. It has to return either

YES, in which case MINTO assumes that it has to initialize the original formulation by reading an MPS

file and it therefore ignores the parameters, or NO, in which case MINTO assumes that the application

initializes the original formulation itself and that it is available through the parameters vcnt, ccnt, nzcnt,

vobj, vlb, vub, vtype, csense, crhs, vfirst, vind, vcoef, vstorsz, vstore, vname, cstorsz, cstore, and cname.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

vcnt: An integer to hold the number of variables.

ccnt: An integer to hold the number of constraints.

nzcnt: An integer to hold the number of nonzero’s.

vobj: A pointer to hold an array of doubles to hold the objective coefficients of the variables.

vlb: A pointer to hold an array of doubles to hold the lower bounds on the variables.

vub: A pointer to hold an array of doubles to hold the upper bounds on the variables.

vtype: A pointer to hold an array of characters to hold the types of the variables, i.e., ’C’, ’B’, or ’I’.

csense: A pointer to hold an array of characters to hold the senses of the constraints, i.e., ’L’, ’E’, or

’G’.
crhs: A pointer to hold an array of doubles to hold the right hand sides of the constraints.

vfirst: A pointer to hold an array of integers to hold the starting positions of the columns associated

with the variables in the arrays vind, and vcoef.
vind: A pointer to hold an array of integers to hold the indices of the nonzero coefficients.

vcoef: A pointer to hold an array of doubles to hold the nonzero coefficients.

vstorsz: A pointer to hold an integer to hold the total number of characters (including the null

characters) in the names of the variables.
vstore: A pointer to hold an array of characters to hold the names of the variables.

vname: A pointer to hold an array of character pointers to hold the starting positions of the names

of the variables in the array vstore.
cstorsz: An integer to hold the total number of characters (including the null characters) in the

names of the constraints.
cstore: A pointer to hold an array of characters to hold the names of the constraints.

cname: A pointer to hold an array of character pointers to hold the starting positions of the names

of the constraints in the array cstore.

By default, MINTO assumes that it has to initialize the original formulation by reading an MPS file avail-

able in the current working directory. However, for some applications, it is much more convenient to

generate the original formulation directly within MINTO. However, MINTO still requires a problem name

to be specified on the command line. This name will serve as both problem name and filename. MINTO

always opens a logfile (filename.log) to write out information that may be useful to determine the cause

of a premature exit, in case this occurs.

Note that the application has to allocate memory for all the arrays needed to hold the original formulation

(with the standard C memory allocation function calloc), that the coefficient matrix has to be specified

24

column-wise, and that even in the case that an application does not want to use names, the arrays asso-

ciated with variable and constraint names are nonempty. For every name, at least the null character has

to be given.

The following example shows how appl mps can be used to initialize the original formulation; all vari-

ables are binary, all objective coefficients are 1.0, all senses are ≤, all right hand sides are 1.0, the

coefficient matrix is an identity matrix, and neither variables nor constraints have names.

/*

* E_MPS.C

*/

#include <stdio.h>

#include "minto.h"

#define SIZE 10

/*

* appl_mps

*/

unsigned

appl_mps (id, vcnt, ccnt, nzcnt, vobj, vlb, vub, vtype, csense, crhs,

vfirst, vind, vcoef,

vstorsz, vstore, vname, cstorsz, cstore, cname)

int id; /* identification of active minto */

int *vcnt; /* number of variables */

int *ccnt; /* number of constraints */

int *nzcnt; /* number of nonzero’s */

double **vobj; /* objective coefficients of the variables */

double **vlb; /* lower bounds on the variables */

double **vub; /* upper bounds on the variables */

char **vtype; /* types of the variables, i.e., ’C’, ’B’, or ’I’ */

char **csense; /* senses of the constraints, i.e., ’L’, ’E’, or ’G’ */

double **crhs; /* right hand sides of the constraints */

int **vfirst; /* starting positions of the columns of the variables */

int **vind; /* indices of the nonzero coefficients */

double **vcoef; /* nonzero coefficients */

int *vstorsz; /* total number of characters in the names of the variables */

char **vstore; /* names of the variables */

char ***vname; /* starting positions of the names of the variables */

int *cstorsz; /* total number of characters in the names of the constraints */

char **cstore; /* names of the constraints */

char ***cname; /* starting positions of the names of the constraints */

{

int i, j;

double *_vobj;

double *_vlb;

25

double *_vub;

char *_vtype;

char *_csense;

double *_crhs;

int *_vfirst;

int *_vind;

double *_vcoef;

char *_vstore;

char **_vname;

char *_cstore;

char **_cname;

*vcnt = SIZE;

*ccnt = SIZE;

*nzcnt = SIZE;

_vobj = (double *) calloc (*vcnt, sizeof (double));

_vlb = (double *) calloc (*vcnt, sizeof (double));

_vub = (double *) calloc (*vcnt, sizeof (double));

_vtype = (char *) calloc (*vcnt, sizeof (char));

_csense = (char *) calloc (*ccnt, sizeof (char));

_crhs = (double *) calloc (*ccnt, sizeof (double));

_vfirst = (int *) calloc (*vcnt+1, sizeof (int));

_vind = (int *) calloc (*nzcnt, sizeof (int));

_vcoef = (double *) calloc (*nzcnt, sizeof (double));

for (_vfirst[0] = 0, j = 0; j < *vcnt; j++) {

_vobj[j] = 1.0;

_vlb[j] = 0.0;

_vub[j] = 1.0;

_vtype[j] = ’B’;

_vfirst[j+1] = j+1;

_vind[j] = j;

_vcoef[j] = 1.0;

}

for (i = 0; i < *ccnt; i++) {

_csense[i] = ’L’;

_crhs[i] = 1.0;

}

*vstorsz = *vcnt;

*cstorsz = *ccnt;

_vstore = (char *) calloc (*vstorsz, sizeof (char));

_cstore = (char *) calloc (*cstorsz, sizeof (char));

_vname = (char **) calloc (*vcnt, sizeof (char *));

_cname = (char **) calloc (*ccnt, sizeof (char *));

26

for (j = 0; j < *vcnt; j++) {

_vstore[j] = ’\0’;

_vname[j] = &(_vstore[j]);

}

for (i = 0; i < *ccnt; i++) {

_cstore[i] = ’\0’;

_cname[i] = &(_cstore[i]);

}

*vobj = _vobj;

*vlb = _vlb;

*vub = _vub;

*vtype = _vtype;

*csense = _csense;

*crhs = _crhs;

*vfirst = _vfirst;

*vind = _vind;

*vcoef = _vcoef;

*vstore = _vstore;

*vname = _vname;

*cstore = _cstore;

*cname = _cname;

return (NO);

}

6.3 appl init

This function provides the application with an entry point in the program to perform some initial actions.

It has to return either STOP, in which case MINTO aborts, or CONTINUE, in which case MINTO continues.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

The following example shows how appl init can be used to open a log file.

/*

* E_INIT.C

*/

#include <stdio.h>

#include "minto.h"

FILE *fp_log;

/*

27

* appl_init

*/

unsigned

appl_init (id)

int id; /* identification of active minto */

{

if ((fp_log = fopen ("EXAMPLE.LOG", "w")) == NULL) {

fprintf (stderr, "Unable to open EXAMPLE.LOG\n");

return (STOP);

}

fprintf (fp_log, "Solving problem %s with MINTO\n", inq_prob ());

return (CONTINUE);

}

6.4 appl initlp

This function provides the application with an entry point in the program to indicate whether column

generation will be used for the solution of the linear programming relaxations. MINTO ignores the return

value.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

colgen: An integer to indicate whether column generation will be used, i.e., TRUE of FALSE

MINTO solves the initial linear program using a primal simplex method and all subsequent linear pro-

grams using a dual simplex method. One reason for using the dual simplex method is that the dual

simplex method approaches the optimal value of the linear program from above and thus provides a

valid upper bound at every iteration, not only on the linear programming solution, but also on the mixed

integer programming solution. Therefore, the solution of the linear program can be terminated as soon

as this upper bound drops below the current lower bound, because at that point the node can be fath-

omed by bounds. However, if the linear program is solved using column generation, the values no longer

provide valid upper bounds and the solution of the linear program cannot be terminated earlier. It is for

this reason that MINTO needs to know whether the linear programs are solved using column generation

or not.

The following example shows how appl initlp can be used to indicate that column generation will be

used to solve the linear programming relaxations.

/*

* E_INITLP.C

*/

#include <stdio.h>

#include "minto.h"

/*

* appl_initlp

28

*/

unsigned

appl_initlp (id, colgen)

int id; /* identification of active minto */

int *colgen; /* indicator */

{

*colgen = TRUE;

return (CONTINUE);

}

6.5 appl preprocessing

This function provides the application with an entry in the program to perform preprocessing based on the

original formulation. It has to return either STOP, in which case assumes infeasibility has been detected,

or CONTINUE, in which case MINTO continues. The function appl preprocessing is called once after

the original formulation has been read and at each node of the search tree before the evaluation of the

node begins.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

In general, MINTO only stores data in the information variables associated with the inquiry functions and

never looks at them again, i.e., communication between MINTO and the application program is one-way

only. However, in appl preprocessing a set of modification functions can be used by the application

program to turn this one-way communication into a two-way communication. A call to a modification

function signals that the associated variable has been changed by the application and that MINTO should

retrieve the data and update its internal administration.

set var

This function signals that the application program has changed the contents of the info var variable and

that MINTO should get the data of the variable and update its internal administration. MINTO only

accepts changes of the bounds of a variable.

PARAMETERS

index: An integer containing the index of the variable.

set obj

This function signals that the application program has changed the contents of the info obj variable and

that MINTO should get the data of the variable and update its internal administration.

set constr

This function signals that the application program has changed the contents of the info constr variable

and that MINTO should get the data of the variable and update its internal administration. MINTO only

accepts changes of the coefficients and the status. If the status is changed to DELETE, the constraint will

be removed from the original formulation.

PARAMETERS

index: An integer containing the index of the constraint.

29

For internal reasons, the preprocessing at the start of the evaluation of a node of the search tree is limited

to changing bounds on variables.

The following example shows how appl preprocessing can be used to identify and delete redundant

rows from the original formulation.

/*

* E_PREP.C

*/

#include <stdio.h>

#include "minto.h"

/*

* appl_preprocessing

*/

unsigned

appl_preprocessing (id)

int id; /* identification of active minto */

{

int i, j;

double minlhs, maxlhs, coef;

inq_form ();

for (i = 0; i < info_form.form_ccnt; i++) {

minlhs = maxlhs = (double) 0;

inq_constr (i);

for (j = 0; j < info_constr.constr_nz; j++) {

inq_var (info_constr.constr_ind[j], NO);

if ((coef = info_constr.constr_coef[j]) > EPS) {

minlhs += coef * info_var.var_lb;

maxlhs += coef * info_var.var_ub;

}

else {

minlhs += coef * info_var.var_ub;

maxlhs += coef * info_var.var_lb;

}

}

if (info_constr.constr_sense == ’G’ &&

minlhs > info_constr.constr_rhs - EPS) {

info_constr.constr_status = DELETE;

set_constr (i);

}

if (info_constr.constr_sense == ’L’ &&

maxlhs < info_constr.constr_rhs + EPS) {

info_constr.constr_status = DELETE;

set_constr (i);

30

}

}

}

6.6 appl node

This function provides the application with an entry point in the program after MINTO has selected a node

from the set of unevaluated nodes of the branch-and-bound tree and before MINTO starts processing the

node. It has to return either STOP, in which case MINTO aborts, or CONTINUE, in which case MINTO

continues.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

depth: A long containing the depth in the branch-and-bound tree of the node that has been selected

for evaluation.

creation: A long containing the creation number of the node that has been selected for evaluation.

zprimal: A double containing the value of the primal solution.

xprimal: An array of doubles containing the values of the variables associated with the primal solu-

tion.

The following example shows how appl node can be used to implement a simple stopping rule.

/*

* E_NODE.C

*/

#include <stdio.h>

#include "minto.h"

#define GAPSIZE 0.5

extern FILE *fp_log;

/*

* appl_node

*/

unsigned

appl_node (id, depth, creation, zprimal, xprimal)

int id; /* identification of active minto */

int depth; /* node identification: depth */

int creation; /* node identification: creation */

double zprimal; /* value of primal solution */

double *xprimal; /* value of the variables */

{

double gap = stat_gap ();

31

if (gap < GAPSIZE) {

fprintf (fp_log, "Terminated as gap (%f) is smaller than %f\n", gap, GAPSIZE);

return (STOP);

}

else {

fprintf (fp_log, "Evaluating node (%ld,%ld)\n", depth, creation);

return (CONTINUE);

}

}

6.7 appl variables

This function allows the application to generate one or more additional variables. It has to return either

FAILURE, in which case MINTO assumes that no additional variables were found, or no attempt was made

to generate any and it therefore ignores the parameters nzcnt, vcnt, vobj, vlb, vub, vfirst, vind, and vcoef,

or SUCCESS, in which case MINTO assumes that additional variables have been found by the application

and that they are available through the parameters nzcnt, vcnt, vobj, vlb, vub, vfirst, vind, and vcoef.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

xlp: An array of doubles containing the values of the variables.

zprimal: A double containing the value of the primal solution.

xprimal: An array of doubles containing the values of the variables associated with the primal solu-

tion.

nzcnt: An integer to hold the number of nonzero coefficients to be added to the current formulation.

vcnt: An integer to hold the number of variables to be added to the current formulation.

vclass: An array to hold the classification of variables to be added to the current formulation, i.e.,

BINARY, INTEGER, CONTINUOUS.

vobj: An array of doubles to hold the objective function coefficients of the variables to be added.

vlb: An array of doubles to hold the lower bounds on the values of the variables to be added.

vub: An array of doubles to hold the upper bounds on the values of the variables to be added.

vfirst: An array of integers to hold the positions of the first nonzero coefficients of the variables to

be added.

vind: An array of integers to hold the row indices of the nonzero coefficients of the variables to be

added.

vcoef: An array of doubles to hold the values of the nonzero coefficients of the variables to be

added.

vname: An array of character pointers to hold the names of the variables to be added.

sdim: An integer to hold the length of the arrays vobj, varlb, varub, and vfirst.

ldim: An integer to hold the length of the arrays vind and vcoef.

For reasons having to do with memory management, the application has to allocate the memory, using

32

calloc, to hold the name associated with a variable; MINTO will free that memory after it has installed

the name in its internal administration.

The following example shows how appl variables can be used to implement a column generation scheme

for the solution of the linear program.

/*

* E_VARS.C

*/

#include <stdio.h>

#include "minto.h"

/*

* appl_variables

*/

unsigned

appl_variables (id, zlp, xlp, zprimal, xprimal, nzcnt, vcnt, vclass, vobj, varlb,

varub, vfirst, vind, vcoef, vname, sdim, ldim)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

double zprimal; /* value of the primal solution */

double *xprimal; /* values of the variables */

int *nzcnt; /* variable for number of nonzero coefficients */

int *vcnt; /* variable for number of variables */

char *vclass; /* array for classifications of vars added */

double *vobj; /* array for objective coefficients of vars added */

double *varlb; /* array for lower bounds of vars added */

double *varub; /* array for upper bounds of vars added */

int *vfirst; /* array for positions of first nonzero coefficients */

int *vind; /* array for indices of nonzero coefficients */

double *vcoef; /* array for values of nonzero coefficients */

char **vname; /* array for names of vars added */

int sdim; /* length of small arrays */

int ldim; /* length of large arrays */

{

int j;

int col_nz;

int *col_ind;

double *col_coeff;

int col_class;

double col_obj;

double col_lb;

double col_ub;

inq_form ();

33

col_ind = (int *) calloc (info_form.form_ccnt, sizeof (int));

col_coeff = (double *) calloc (info_form.form_ccnt, sizeof (double));

*vcnt = 0;

*nzcnt = 0;

while (get_column (&col_nz, &col_class, col_ind, col_coeff, &col_obj, &col_lb, &col_ub)) {

if (*nzcnt + col_nz > ldim) {

continue;

}

vfirst[*vcnt] = *nzcnt;

vclass[*vcnt] = col_class;

vobj[*vcnt] = col_obj;

varlb[*vcnt] = col_lb;

varub[(*vcnt)++] = col_ub;

for (j = 0; j < col_nz; j++) {

vind[*nzcnt] = col_ind[j];

vcoef[(*nzcnt)++] = col_coeff[j];

}

if (*vcnt == sdim) {

break;

}

}

vfirst[*vcnt] = *nzcnt;

free (col_ind);

free (col_coef);

return (*vcnt > 0 ? SUCCESS : FAILURE);

}

unsigned

get_column (col_nz, col_class, col_ind, col_coeff, col_obj, col_lb, col_ub)

int *col_nz;

int *col_class;

int *col_ind;

double *col_coeff;

double *col_obj;

double *col_lb;

double *col_ub;

{

/*

* This function tries to generate a column. It returns 1 if it

* successful and 0 otherwise

*/

34

}

6.8 appl delvariables

THIS FUNCTION IS NOT IMPLEMENTED IN MINTO V3.1. IF YOU REQUIRE THIS FUNCTIONALITY,

CONTACT THE CODE MAINTAINERS.

This function allows the application to delete one or more of the previously generated variables from

the active formulation, i.e., the formulation currently loaded in the LP-solver. It has to return either

FAILURE, in which case MINTO assumes that no variables have to be deleted and it therefore ignores the

parameters vcnt and vind, or SUCCESS, in which case MINTO assumes that variables have to be deleted

and that these variables are available through the parameters vcnt and vind.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

vcnt: An integer to hold the number of variables to be deleted from the current formulation.

vind: An array of integers to hold the indices of the variables to be deleted from the current

formulation.

Note that variables are deleted from the active formulation. Therefore indices are considered to be rela-

tive to the active formulation. Note also that it is only possible to delete previously generated variables,

either by MINTO or by the application. It is not possible to delete variables from the initial formulation.

The following example shows how appl delvariables can be used to examine all active variables and

delete all variables whose reduced cost is greater than a certain tolerance. MINTO will ignore all indices

referring to variables from the initial formulation.

/*

* E_DELVARS.C

*/

#include <stdio.h>

#include "minto.h"

#define TOLERANCE 100

/*

* appl_delvariables

*/

unsigned

appl_delvariables (id, vcnt, vind)

int id; /* identification of active minto */

int *vcnt; /* variable for number of variables to be deleted */

int *vind; /* array for indices of the variables to be deleted */

{

int j;

*vcnt = 0;

for (j = 0; j < lp_vcnt (); j++) {

35

if (lp_rc (j) > TOLERANCE) {

vind[(*vcnt)++] = j;

}

}

return (SUCCESS);

}

6.9 appl terminatelp

This function allows the application to terminate the solution of the current linear program without hav-

ing reached an optimal solution, i.e., before all variables have been priced out. It has to return either

NO, in which case MINTO assumes that the application wants to continue the solution of the current

linear program and it therefore ignores the parameter zub, or YES, in which case MINTO assumes that

the application wants to terminate the solution of the current linear program and that an alternative

upper bound is provided through the parameter zub. If zub is set to -INF, MINTO assumes that the active

problem is infeasible and that the node can be fathomed.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

xlp: An array of doubles containing the values of the variables.

zub: A double to hold the alternative upper bound.

6.10 appl primal

This function allows the application to provide MINTO with a lower bound and possibly an associated

primal solution. It has to return either FAILURE, in which case MINTO assumes that no lower bound was

found by the application or no attempt was made to find one and it therefore ignores the parameters zp-

new, xpnew, and xpstat, or SUCCESS, in which case MINTO assumes that a lower bound has been found

by the application and that it is available through the parameter zpnew and that an associated primal

solution is available through the parameter xpnew if xpstat is set to TRUE.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

xlp: An array of doubles containing the values of the variables.

intlp: An integer that indicates whether the LP solution is integral, i.e., TRUE or FALSE.

zprimal: A double containing the value of the current primal solution.

xprimal: An array of doubles containing the values of the variables associated with the current primal

solution.

zpnew: A double to hold the value of the new primal solution.

xpnew: An array of doubles to hold the values of the variables associated with the new primal

solution.

xpstat: An integer to indicate the existence of a solution vector, i.e., TRUE or FALSE.

The following example shows how appl primal can be used to provide feasible solutions given a frac-

tional LP solution of a node packing problem.

36

/*

* E_PRIMAL.C

*/

#include <stdio.h>

#include "minto.h"

#define UNDEFINED -1

#define FREE 0

#define FIXED 1

/*

* The graph is represented as a forward star in the arrays adjnodes and

* edges

*/

extern int *adjnodes;

extern int *adjedges;

/*

* appl_primal

*/

unsigned

appl_primal (id, zlp, xlp, intlp, zprimal, xprimal, zpnew, xpnew, xpstat)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

int intlp; /* integrality status of LP solution */

double zprimal; /* value of the primal solution */

double *xprimal; /* values of the variables */

double *zpnew; /* variable for new value of lower bound */

double *xpnew; /* array for new values of the variables */

int *xpstat; /* variable for status of associated solution */

{

register int j, k;

int ix;

int *mark;

double maxxlp;

if (intlp == TRUE) {

return (FALSE);

}

*xpstat = TRUE;

*zpnew = 0.0;

inq_form ();

37

inq_obj ();

mark = (int *) calloc (info_form.form_vcnt, sizeof (int));

for (;;) {

ix = UNDEFINED; maxxlp = 0.0;

for (j = 0; j < info_form.form_vcnt; j++) {

if (mark[j] == FREE) {

if (xlp[j] > maxxlp) {

maxxlp = xlp[j];

ix = j;

}

}

}

if (ix == UNDEFINED) {

break;

}

else {

mark[ix] = FIXED;

xpnew[ix] = 1.0;

*zpnew += info_obj.obj_coef[ix];

for (k = adjnodes[ix]; k < adjnodes[ix+1]; k++) {

mark[adjedges[k]] = FIXED;

xpnew[adjedges[k]] = 0.0;

}

}

}

free (mark);

return (SUCCESS);

}

6.11 appl feasible

This function allows the application to verify that a solution to the active formulation satisfying the

integrality conditions does indeed constitute a feasible solution. It has to return either YES, in which

case MINTO assumes that the solution is feasible and therefore terminates processing this node, or NO,

in which case MINTO assumes that the solution is not feasible and therefore continues processing this

node.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

xlp: An array of doubles containing the values of the variables.

The following example shows how appl feasible can be used to accommodate partial formulations. In

38

the linear ordering problem one usually deals with the 3-cycle inequalities δij + δjk + δki ≤ 2 implicitly,

i.e, they may be generated only when they violate an LP-solution. The following code assumes the set of

variables is δij for i, j = 1, ..., n, i 6= j and verifies whether the given solution is feasible or not.

/*

* E_FEAS.C

*/

#include <stdio.h>

#include "minto.h"

#define INDEX(I,J) \

((I) * (n-1) + (((J) < (I)) ? (J) : (J)-1))

/*

* appl_feasible

*/

unsigned

appl_feasible (id, zlp, xlp)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

{

int i, j, k, n;

double diff;

inq_form (); n = info_form.form_vcnt;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

for (k = 0; k < n; k++) {

if (i != j && i != k && j != k) {

diff = xlp[INDEX(i,j)] + xlp[INDEX(j,k)] + xlp[INDEX(k,i)] - 2;

if (diff > EPS) {

return (NO);

}

}

}

}

}

return (YES);

}

6.12 appl fathom

This function allows the application to provide an optimality tolerance to terminate or prevent the pro-

cessing of a node of the branch-and-bound tree even when the upper bound value associated with the

node is greater than the value of the primal solution. It has to return either FAILURE, in which case

39

MINTO assumes that (further) processing of the node is still required, or SUCCESS, in which case MINTO

assumes that (further) processing of the node is no longer required. For an active node, processing is ter-

minated; for an unevaluated node, MINTO deletes it from the list of nodes to be processed.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

zprimal: A double containing the value of the primal solution.

The following two examples show how the function appl fathom can be used to implement optimality

tolerances. The first example shows how to incorporate the fact that objective coefficients are all inte-

ger. The second example shows how to build a truncated branch-and-bound algorithm that generates a

solution that is within a certain percentage of optimality.

/*

* E_FATHOM.C

*/

#include <stdio.h>

#include "minto.h"

/*

* appl_fathom

*/

unsigned

appl_fathom (id, zlp, zprimal)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double zprimal; /* value of the primal solution */

{

if (zlp - zprimal < 1 - EPS) {

return (SUCCESS);

}

else {

return (FAILURE);

}

}

/*

* E_FATHOM.C

*/

#include <stdio.h>

#include "minto.h"

#define TOLERANCE 1.05

/*

40

* appl_fathom

*/

unsigned

appl_fathom (id, zlp, zprimal)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double zprimal; /* value of the primal solution */

{

if (zlp < TOLERANCE * zprimal - EPS) {

return (SUCCESS);

}

else {

return (FAILURE);

}

}

6.13 appl bounds

This function allows the application to modify the bounds of one or more variables. It has to return either

FAILURE, in which case MINTO assumes that no bounds have to be changed and it therefore ignores

the parameters vcnt, vind, vtype, and vvalue, or SUCCESS, in which case MINTO assumes that there are

variables for which the bounds have to be changed and that the relevant information is available through

the parameters vcnt, vind, vtype, and vvalue.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

xlp: An array of doubles containing the values of the variables.

zprimal: A double containing the value of the primal solution.

xprimal: An array of doubles containing the values of the variables associated with the primal solu-

tion.

vcnt: An integer to hold the number of variables for which bounds have to be modified.

vind: An array of integers to hold the indices of the variables for which bounds have to be modi-

fied.

vtype: An array of characters to hold the types of modification to be performed, i.e., lower bound

’L’ or upper bound ’U’.

vvalue: An array of doubles to hold the new values for the bounds.

bdim: An integer containing the length of the arrays vind, vtype, and vvalue.

The following example shows how appl bounds can be used to implement reduced cost fixing.

/*

* E_BNDS.C

*/

#include <stdio.h>

#include "minto.h"

41

/*

* appl_bounds

*/

unsigned

appl_bounds (id, zlp, xlp, zprimal, xprimal, vcnt, vind, vtype, vvalue, bdim)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

double zprimal; /* value of the primal solution */

double *xprimal; /* values of the variables */

int *vcnt; /* variable for number of variables */

int *vind; /* array for indices of variables */

char *vtype; /* array for type of bounds */

double *vvalue; /* array for value of bounds */

int bdim; /* size of arrays */

{

int j;

double lb, ub;

*vcnt = 0;

/*

* Retrieve basis information

*/

lp_base ();

/*

* Loop through all variables

*/

inq_form ();

for (j = 0; j < info_form.form_vcnt; j++) {

if (info_base.base_vstat[j] != BASIC) {

inq_var (j, NO);

if (info_var.var_class != CONTINUOUS) {

lb = info_var.var_lb;

ub = info_var.var_ub;

if (lb > ub - EPS) {

continue;

}

if (xlp[j] < lb + EPS && zlp + lp_rc (j) < zprimal + EPS) {

vind[*vcnt] = j;

42

vtype[*vcnt] = ’U’;

vvalue[(*vcnt)++] = lb;

}

if (*vcnt == bdim) {

break;

}

if (xlp[j] > ub - EPS && zlp - lp_rc (j) < zprimal + EPS) {

vind[*vcnt] = j;

vtype[*vcnt] = ’L’;

vvalue[(*vcnt)++] = ub;

}

if (*vcnt == bdim) {

break;

}

}

}

}

return (*vcnt > 0 ? SUCCESS : FAILURE);

}

6.14 appl constraints

This function allows the application to generate one or more violated constraints. It has to return either

FAILURE, in which case MINTO assumes that no violated constraints were found, or no attempt was

made to generate any and it therefore ignores the parameters nzcnt, ccnt, cfirst, cind, ccoef, and ctype, or

SUCCESS, in which case MINTO assumes that additional constraints have been found by the application

and that they are available through the parameters nzcnt, ccnt, cfirst, cind, ccoef, and ctype.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

xlp: An array of doubles containing the values of the variables.

zprimal: A double containing the value of the primal solution.

xprimal: An array of doubles containing the values of the variables associated with the primal solu-

tion.

nzcnt: An integer to hold the number of nonzero coefficients to be added to the current formulation.

ccnt: An integer to hold the number of constraints to be added to the current formulation.

cfirst: An array of integers to hold the positions of the first nonzero coefficients of the constraints

to be added.

cind: An array of integers to hold the indices of the nonzero coefficients of the constraints to be

added.

ccoef: An array of doubles to hold the values of the nonzero coefficients of the constraints to be

added.

43

csense: An array of characters to hold the senses of the constraints to be added.

crhs: An array of doubles to hold the right hand sides of the constraints to be added.

ctype: An array of integers to hold the types of the constraints to be added, i.e., GLOBAL or LOCAL.

cname: An array of character pointers to hold the names of the constraints to be added.

sdim: An integer containing the length of the arrays cfirst, csense, crhs, and ctype.

ldim: An integer containing the length of the arrays cind and ccoef.

For reasons having to do with memory management, the application has to allocate the memory, using

calloc, to hold the name associated with a constraint; MINTO will free that memory after it has installed

the name in its internal administration.

The following example shows how appl constraints can be used to develop a branch-and-cut algorithm

based on 3-cycle inequalities for the linear ordering problem.

/*

* E_CONS.C

*/

#include <stdio.h>

#include "minto.h"

#define INDEX(I,J) \

((I) * (n-1) + (((J) < (I)) ? (J) : (J)-1))

/*

* appl_constraints

*/

unsigned

appl_constraints (id, zlp, xlp, zprimal, xprimal, nzcnt, ccnt, cfirst,

cind, ccoef, csense, crhs, ctype, cname, sdim, ldim)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

double zprimal; /* value of the primal solution */

double *xprimal; /* values of the variables */

int *nzcnt; /* variable for number of nonzero coefficients */

int *ccnt; /* variable for number of constraints */

int *cfirst; /* array for positions of first nonzero coefficients */

int *cind; /* array for indices of nonzero coefficients */

double *ccoef; /* array for values of nonzero coefficients */

char *csense; /* array for senses */

double *crhs; /* array for right hand sides */

int *ctype; /* array for the constraint types: LOCAL or GLOBAL */

int **cname; /* array for the names */

int sdim; /* length of small arrays */

int ldim; /* length of large arrays */

{

44

int i, j, k, n;

double diff;

*ccnt = 0;

*nzcnt = 0;

inq_form (); n = info_form.form_vcnt;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

for (k = 0; k < n; k++) {

if (i != j && i != k && j != k) {

diff = xlp[INDEX(i,j)] + xlp[INDEX(j,k)] + xlp[INDEX(k,i)] - 2;

if (diff > EPS) {

cfirst[*ccnt] = *nzcnt;

cind[*nzcnt] = INDEX(i,j);

ccoef[(*nzcnt)++] = 1.0;

cind[*nzcnt] = INDEX(j,k);

ccoef[(*nzcnt)++] = 1.0;

cind[*nzcnt] = INDEX(k,i);

ccoef[(*nzcnt)++] = 1.0;

csense[*ccnt] = ’L’;

crhs[*ccnt] = 2.0;

ctype[(*ccnt)++] = GLOBAL;

if (*ccnt == sdim || *nzcnt > ldim - 3) {

goto EXIT;

}

}

}

}

}

}

EXIT:

cfirst[*ccnt] = *nzcnt;

return (*ccnt > 0 ? SUCCESS : FAILURE);

}

6.15 appl delconstraints

This function allows the application to delete one or more of the previously generated constraints from

the active formulation, i.e., the formulation currently loaded in the LP-solver. It has to return either FAIL-

URE, in which case MINTO assumes that no constraints have to be deleted and it therefore ignores the

parameters ccnt and cind, or SUCCESS, in which case MINTO assumes the constraints have to be deleted

and that these constraints are available through the parameters ccnt and cind.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

45

ccnt: An integer to hold the number of constraints to be deleted from the active formulation.

cind: An array of integers to hold the indices of the constraints to be deleted from the active

formulation.

Note that constraints are deleted from the active formulation. Therefore indices are considered to be

relative to the active formulation. Note also that it is only possible to delete previously generated con-

straints, either by MINTO or by the application. It is not possible to delete constraints from the initial

formulation.

The following example shows how appl delconstraints can be used to examine all active constraints

every tenth iteration and delete all the constraints whose slack is greater than a certain TOLERANCE.

MINTO will ignore all indices referring to constraints from the initial formulation.

/*

* E_DELCONS.C

*/

#include <stdio.h>

#include "minto.h"

#define TOLERANCE 0.1

static int lpcounter = 0;

/*

* appl_delconstraints

*/

unsigned

appl_delconstraints (id, ccnt, cind)

int id; /* identification of active minto */

int *ccnt; /* variable for number of constraints to be deleted */

int *cind; /* array for indices of the constraints to be deleted */

{

int i;

if (++lpcounter % 10 != 0) {

return (FAILURE);

}

else {

*ccnt = 0;

for (i = 0; i < lp_ccnt (); i++) {

if (lp_slack (i) < -TOLERANCE || lp_slack (i) > TOLERANCE) {

cind[(*ccnt)++] = i;

}

}

return (*ccnt > 0 ? SUCCESS : FAILURE);

}

}

46

6.16 appl terminatenode

This function allows the application to take over control of tailing-off detection and set the threshold value

used by MINTO to detect tailing-off. It has to return either NO, in which case MINTO assumes that the

application does not want to replace the default value of the threshold by its own and it therefore ignores

the parameter threshold, or YES, in which case MINTO assumes that the application wants to replace the

default value of the threshold by its own and that this value is available through the parameter threshold.

If threshold is set to -INF, MINTO assumes that the active problem is infeasible and that the node can be

fathomed.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zlp: A double containing the value of the LP solution.

change: A double containing the total change in the value of the LP solution over the last three

iterations.

threshold: A double to hold the threshold to be used to detect tailing-off

When MINTO processes a node, it monitors the changes in the value of the LP solutions from iteration to

iteration. If it detects that the total change in the value of the LP solution in the last three iterations is

less than 0.5 percent, i.e., 0.005 times the value of the current LP solution, it forces MINTO to branch.

The following example shows how appl terminatenode can be used to override MINTO’s default scheme

and continue generating constraints as long as violated constraints are identified

/*

* E_TERMND.C

*/

#include <stdio.h>

#include "minto.h"

/*

* appl_terminatenode

*/

unsigned

appl_terminatenode (id, zlp, change, threshold)

int id;

double zlp;

double change;

double *threshold;

{

*threshold = 0.0;

return (YES);

}

47

6.17 appl divide

This function allows the application to provide a partition of the set of solutions by either specifying

bounds for one or more variables, or generating one or more constraints, or both. It has to return either

FAILURE, in which case MINTO assumes that the application wants to use the default division scheme

and it therefore ignores the parameters, or SUCCESS, in which case MINTO assumes that the application

constructed a partition which is available through the parameters, or INSUFFICIENT, signaling that more

memory, i.e., larger arrays, is required to store the partition, in which case MINTO increases the available

memory and calls the function again.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

depth: A long containing the depth in the tree of the node that has been selected for evaluation.

creation: A long containing the creation number of the node that has been selected for evaluation.

zlp: A double containing the value of the LP solution.

xlp: An array of doubles containing the values of the variables.

zprimal: A double containing the value of the primal solution.

xprimal: An array of doubles containing the values of the variables associated with the primal solu-

tion.

ncnt: An integer to hold the number of nodes in the division.

vcnt: An array of integers to hold the number of variables for which a bound is specified for each

node.

vind: An array of integers to hold the indices of the variables for which a bound is specified.

vtype: An array of characters to hold the types of bounds, i.e., lower bound ’L’ or upper bound ’U’.

vvalue: An array of doubles to hold the values of the bounds.

nzcnt: An integer to hold the total number of nonzero coefficients in the constraints generated for

each node.

ccnt: An array of integers to hold the number of constraints generated for each node.

cfirst: An array of integers to hold the positions of the first nonzero coefficients of the constraints

generated.

cind: An array of integers to hold the indices of the nonzero coefficients of the constraints gener-

ated.

ccoef: An array of doubles to hold the values of the nonzero coefficients of the constraints gener-

ated.

csense: An array of characters to hold the senses of the constraints generated.

crhs: An array of doubles to hold the right hand sides of the constraints generated.

cname: An array of character pointers to hold the names of the constraints to be added.

bdim: An integer containing the length of the arrays vind, vtype, and vvalue.

sdim: An integer containing the length of the arrays ccnt, cfirst, csense, and crhs.

ldim: An integer containing the length of the arrays cind and ccoef.

The default division scheme partitions the set of solutions into two sets by specifying bounds for the

integer variable with fractional part closest to 0.5. In the first set of the partition, the selected variable

is bounded from above by the round down of its value in the current LP-solution. In the second set of

48

the partition the selected variable is bounded from below by the round up of its value in the current LP

solution. Note that if the integer variable is binary, this corresponds to fixing the variable to zero and one

respectively.

Each node of the branch-and-bound tree also receives a (unique) identification. This identification

consists of two numbers: depth and creation. Depth refers to the level of the node in the branch-and-

bound tree. Creation refers to the total number of nodes that have been created in the branch-and-bound

process. The root node receives identification (0,1).

The two following examples show how appl divide can be used to implement the default branching

scheme. In the first example, the variable is fixed by specifying new bounds. In the second example, the

variable is fixed by specifying new constraints.

/*

* E_DIVIDE.C

*/

#include <stdio.h>

#include <math.h>

#include "minto.h"

/*

* appl_divide

*/

unsigned

appl_divide (id, depth, creation, zlp, xlp, zprimal, xprimal,

ncnt, vcnt, vind, vtype, vvalue,

nzcnt, ccnt, cfirst, cind, ccoef, csense, crhs, cname,

bdim, sdim, ldim)

int id; /* identification of active minto */

long depth; /* identification: depth */

long creation; /* identification: creation */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

double zprimal; /* value of the primal solution */

double *xprimal; /* values of the variables */

int *ncnt; /* variable for number of nodes */

int *vcnt; /* array for number of variables */

int *vind; /* array for indices of variables */

char *vtype; /* array for type of bounds */

double *vvalue; /* array for value of bounds */

int *nzcnt; /* variable for number of nonzero coefficients */

int *ccnt; /* array for number of constraints */

int *cfirst; /* array for positions of first nonzero coefficients */

int *cind; /* array for indices of nonzero coefficients */

double *ccoef; /* array for values of nonzero coefficients */

char *csense; /* array for senses */

double *crhs; /* array for right hand sides */

char **cname; /* array for names */

49

int bdim; /* size of bounds arrays */

int sdim; /* size of small arrays */

int ldim; /* size of large arrays */

{

register int i;

register double frac, diff;

int index = -1;

double mindiff = (double) 1;

for (inq_form (), i = 0; i < info_form.form_vcnt; i++) {

if (inq_var (i, NO), info_var.var_class != CONTINUOUS) {

frac = xlp[i] - floor (xlp[i]);

if (frac > EPS && frac < 1 - EPS) {

diff = fabs (frac - 0.5);

if (diff < mindiff) {

mindiff = diff;

index = i;

}

}

}

}

*ncnt = 2;

vcnt[0] = 1;

vcnt[1] = 1;

vind[0] = index;

vtype[0] = ’U’;

vvalue[0] = (double) 0;

vind[1] = index;

vtype[1] = ’L’;

vvalue[1] = (double) 1;

ccnt[0] = 0;

ccnt[1] = 0;

return (SUCCESS);

}

/*

* E_DIVIDE.C

*/

#include <stdio.h>

#include <math.h>

50

#include "minto.h"

/*

* appl_divide

*/

unsigned

appl_divide (id, depth, creation, zlp, xlp, zprimal, xprimal,

ncnt, vcnt, vind, vtype, vvalue,

nzcnt, ccnt, cfirst, cind, ccoef, csense, crhs, cname,

bdim, sdim, ldim)

int id; /* identification of active minto */

long depth; /* identification: depth */

long creation; /* identification: creation */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

double zprimal; /* value of the primal solution */

double *xprimal; /* values of the variables */

int *ncnt; /* variable for number of nodes */

int *vcnt; /* array for number of variables */

int *vind; /* array for indices of variables */

char *vtype; /* array for type of bounds */

double *vvalue; /* array for value of bounds */

int *nzcnt; /* variable for number of nonzero coefficients */

int *ccnt; /* array for number of constraints */

int *cfirst; /* array for positions of first nonzero coefficients */

int *cind; /* array for indices of nonzero coefficients */

double *ccoef; /* array for values of nonzero coefficients */

char *csense; /* array for senses */

double *crhs; /* array for right hand sides */

double **cname; /* array for names */

int bdim; /* size of bounds arrays */

int sdim; /* size of small arrays */

int ldim; /* size of large arrays */

{

register int i;

register double frac, diff;

int index = -1;

double mindiff = (double) 1;

for (inq_form (), i = 0; i < info_form.form_vcnt; i++) {

if (inq_var (i, NO), info_var.var_class != CONTINUOUS) {

frac = xlp[i] - floor (xlp[i]);

if (frac > EPS && frac < 1 - EPS) {

diff = fabs (frac - 0.5);

if (diff < mindiff) {

mindiff = diff;

index = i;

51

}

}

}

}

*ncnt = 2;

vcnt[0] = 0;

vcnt[1] = 0;

*nzcnt = 2;

ccnt[0] = 1;

ccnt[1] = 1;

cfirst[0] = 0;

cind[0] = index;

ccoef[0] = (double) 1;

csense[0] = ’L’;

crhs[0] = (double) 0;

cfirst[1] = 1;

cind[1] = index;

ccoef[1] = (double) 1;

csense[1] = ’G’;

crhs[1] = (double) 1;

cfirst[2] = 2;

return (SUCCESS);

}

6.18 appl rank

This function allows the application to specify the order in which the nodes of the branch-and-bound tree

are evaluated. It has to return either FAILURE, in which case MINTO assumes that the application wants

to use the default rank function and it therefore ignores the parameter rank, or SUCCESS, in which case

MINTO assumes that the rank for the current node is available through the parameter rank, or REORDER,

in which case MINTO assumes that the application has switched to a different rank function. In this case,

MINTO reorders the list of unevaluated nodes. Before reordering, each node receives a new rank by

successive calls to appl rank.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

depth: A long containing the depth in the branch-and-bound tree of the node that has been selected

for evaluation.

creation: A long containing the creation number of the node that has been selected for evaluation.

52

zlp: A double containing the value of the LP solution.

zprimal: A double containing the value of the primal solution.

rank: A double to hold the rank to be associated with the current node.

The unevaluated nodes of the branch-and-bound tree are kept in a list. The nodes in the list are in order

of decreasing rank values. When new nodes are generated either by the default division scheme or the

division scheme specified by the appl divide function, each of them receives a rank value provided either

by the default rank function or by the function provided by the appl rank function. The rank value of

the node is used to insert it at the proper place in the list of unevaluated nodes. When a new node has to

be selected, MINTO will always take the node at the head of the list.

The default rank function takes the LP value associated with the node as rank, which results in a

best-bound search of the branch-and-bound tree.

The following example shows how appl rank can be used to implement the strategy that starts with

depth-first and switches to best-bound as soon as a primal feasible solution has been found.

/*

* E_RANK.C

*/

#include <stdio.h>

#include "minto.h"

static unsigned switched = FALSE;

/*

* appl_rank

*/

unsigned

appl_rank (id, depth, creation, zlp, zprimal, rank)

int id; /* identification of active minto */

long depth; /* node identification: depth */

long creation; /* node identification: creation */

double zlp; /* value of the LP solution */

double zprimal; /* value of the primal solution */

double *rank; /* rank value */

{

if (switched == TRUE) {

*rank = zlp;

return (SUCCESS);

}

else {

if (zprimal < (1.0 - EPS) * -INF) {

*rank = (double) creation;

return (SUCCESS);

}

else {

53

*rank = zlp;

switched = TRUE;

return (REORDER);

}

}

}

6.19 appl exit

This function provides the application with an entry point in the program to perform some final actions.

MINTO ignores the return value.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zopt: A double containing the value of the final solution.

xopt: An array of doubles containing the values of the variables associated with the final solution.

If no solution vector exists the second parameter will be NULL. The following example shows how the

function appl exit can be used to write the optimal solution to a log file and afterwards close the log file.

/*

* E_EXIT.C

*/

#include <stdio.h>

#include "minto.h"

extern FILE *fp_log;

/*

* appl_exit

*/

unsigned

appl_exit (id, zopt, xopt)

int id; /* identification of active minto */

double zopt; /* value of the final solution */

double *xopt; /* values of the variables */

{

int j;

fprintf (fp_log, "OPTIMAL SOLUTION VALUE: %f\n", zopt);

if (xopt) {

fprintf (fp_log, "OPTIMAL SOLUTION:\n");

for (inq_form (), j = 0; j < info_form.form_vcnt; j++) {

fprintf (fp_log, "x[%d] = %f\n", j, xopt[j]);

}

}

54

fclose (fp_log);

return (CONTINUE);

}

6.20 appl quit

This function provides the application with an entry point in the program to perform some final actions

if execution is terminated by a <ctrl>-C signal. MINTO ignores the return value.

PARAMETERS

id: An integer containing the identification of the active MINTO copy.

zopt: A double containing the value of the final solution.

xopt: An array of doubles containing the values of the variables associated with the final solution.

If no solution vector exists the second parameter will be NULL.

7 Control Functions

MINTO provides more detailed control over the run-time behavior of MINTO through a set of control

functions. Each of these control functions can be called any time during the solution process and activates

or deactivates one of the system functions.

7.1 MINTO Algorithm Control Functions

7.1.1 ctrl clique

This function activates or deactivates generation of clique constraints.

PARAMETERS

indicator: An unsigned integer to hold a status indicator that controls the generation of clique con-

straints, i.e., ON or OFF.

7.1.2 ctrl implication

This function activates or deactivates generation of implication constraints.

PARAMETERS

indicator: An unsigned integer to hold a status indicator that controls the generation of implication

constraints, i.e., ON or OFF.

7.1.3 ctrl knapcov

This function activates or deactivates generation of lifted knapsack covers.

PARAMETERS

indicator: An unsigned integer to hold a status indicator that controls the generation of lifted knapsack

covers, i.e., ON or OFF.

55

7.1.4 ctrl flowcov

This function activates or deactivates generation of simple and extended generalized flow covers.

PARAMETERS

indicator: An unsigned integer to hold a status indicator that controls the generation of simple and

extended generalized flow covers, i.e., ON or OFF.

7.1.5 ctrl output

This function sets the output level.

PARAMETERS

indicator: An unsigned integer to hold the level of output to be set, i.e., 0,1, or 2.

7.2 Linear Programming Control Functions

Methods to control the linear programming software directly through MINTO are deprecated. In-

stead, the user is urged to see Section 11 for how to gain direct access to the active linear program-

ming solver, and use the interfaces that the LP solver provides.

MINTO can provide limited control over the run-time behavior of the LP-solver through a set of control

functions3. Each of these control functions can be called any time during the solution process and changes

the parameters of the LP-solver. For a precise definition of the meaning of the parameters, the user is

referred to the manual of the LP-solver.

7.3 ctrl lpmethod

This function selects the type of algorithm that is used to solve the active formulation.

PARAMETERS

selector: An integer specifying the type of simplex algorithm, i.e., PRIMAL, DUAL, BARRIER, BARRI-

ERCROSS, HYBNETWORKPRIMAL, or HYBNETWORKDUAL.

Note that in the default setting MINTO solves the first linear program with the primal simplex method and

all subsequent linear programs with the dual simplex method. The first barrier method (BARRIER) does

not perform a cross-over at the end and therefore does not terminate with a basic solution. The second

barrier method (BARRIERCROSS) does perform a cross-over at the end and therefore terminates with a

basic solution. The hybrid network methods extract an embedded network, call the network optimizer

to obtain an optimal basis to the network, and then optimize the entire linear program using a primal

(HYBNETWORKPRIMAL) or dual (HYBNETWORKDUAL) simplex method.

7.4 ctrl lppresolve

This function indicates whether the presolver embedded in the LP solver should be activated or deacti-

vated.

3These methods are only available for CPLEX-based versions of MINTO.

56

PARAMETERS (CPLEX)

selector: An integer specifying whether to activate or to deactivate the LP presolver, i.e., PRESOLVE

or NOPRESOLVE.

Note that in the default setting of MINTO the presolver embedded in the LP solver is not activated.

7.5 ctrl lppricing

This function selects the pricing algorithm that is used to solve the active formulation.

PARAMETERS (CPLEX)

algorithm: An integer specifying the type of simplex algorithm, i.e., PRIMAL or DUAL.

selector: An integer specifying the pricing algorithm, i.e., for the primal simplex algorithm

REDUCED COST, REDUCED COST DEVEX, DEVEX, STEEPEST EDGE SLACK NORMS, or

FULL and for the dual simplex algorithm AUTO, STANDARD DUAL, STEEPEST EDGE,

STEEPEST EDGE SLACK, or STEEPEST EDGE NORMS.

7.6 ctrl lppricinglist

This function sets the size of the pricing list maintained by the LP-solver.

PARAMETERS (CPLEX)

size: An integer specifying the size of the pricing list.

7.7 ctrl lpperturbconst

This function sets the constant used the LP-solver when it perturbs the active linear program.

PARAMETERS (CPLEX)

value: A double specifying the value of the perturbation constant.

7.8 ctrl lpperturbmethod

This function selects the perturbation method used by the LP-solver.

PARAMETERS (CPLEX)

selector: An integer specifying the perturbation method, i.e., BEGINNING or AUTOMATIC.

7.9 ctrl lprefactorfreq

This function sets the refactorization frequency.

PARAMETERS (CPLEX)

freq: An integer specifying the frequency of refactorization.

57

8 Bypass functions

MINTO provides advanced low level control over the flow of control through a set of bypass functions.

Each of these control functions can be called any time during the solution process and determines whether

or not certain system activities are carried out or not. These functions affect the main flow of control and

should be used very carefully.

8.1 bypass lp

This function allows an application to bypass the solution of the active formulation.

PARAMETERS

indicator: An unsigned integer to hold a status indicator that controls the deactivation of the LP solver,

i.e., ON or OFF.

In branch-and-price algorithms, the initial formulation associated with a node is usually determined only

when the node is selected for processing as opposed to when the node is created. The reason is that many

new variables may have been created between the time the node was created and the time it is selected

for processing and that some of these variables have to be deleted (fixed at zero).

Note that bypassing the solution of the active LP does not mean that there is no current LP solution.

The current LP solution does exist and is equal to the last LP solution, except in the case a new node has

been selected. In the case a new node has been selected the value of the LP solution is equal to the value

of the LP solution associated with the parent node and the LP solution consists of zeroes for all variables.

8.2 bypass fathom

This function allows an application to bypass the test to determine if the processing of the current node

can be terminated.

PARAMETERS

indicator: An unsigned integer to hold a status indicator that controls the deactivation of the fathom

test, i.e., ON or OFF.

If an application program wants to evaluate the effect of some (temporary) modifications to the active for-

mulation on the LP solution, the fathoming tests have to be deactivated to make sure that the application

has the opportunity to undo the temporary modifications.

8.3 bypass integral

This function allows an application to bypass the test to determine if the current LP solution is integral.

PARAMETERS

indicator: An unsigned integer to hold a status indicator that controls the deactivation of the integrality

test, i.e., ON or OFF.

The function appl primal is intended to provide the application an opportunity to take a fractional LP

solution and use it to find an integral solution. Consequently, when MINTO finds that the current LP so-

lution is integral, it does not call appl primal. However, there are also situations in which an application

may want to take an integral LP solution and use it to find an improved integral solution. Note that if the

integrality test is bypassed the integrality test should be incorporated in appl primal.

58

9 Miscellaneous Functions

9.1 wrt prob

This function writes the active formulation, i.e., the formulation currently loaded in the LP-solver to a

specified file in MPS-format.

PARAMETERS

fname: A character string specifying the name of the file to which the active formulation should be

written.

The following example shows how wrt prob can be used to write the active formulation to a file.

/*

* E_WRITE.C

*/

#include <stdio.h>

#include "minto.h"

/*

* WriteActive

*/

void

WriteActive ()

{

wrt_prob ("active.mps");

}

If an error occurs, then the return code of the underlying LP solver that is used to write the MPS file

will be written to the MINTO log file.

10 Calling MINTO recursively

In many branch-and-cut and branch-and-price algorithms the separation and pricing problems are them-

selves difficult mixed integer programs. MINTO supports the development of such algorithms, since it

can be called recursively.

Each time MINTO is called it checks to see if it is called recursively, i.e., from within another running

copy of MINTO. If MINTO has not been called recursively, it assigns itself the identification 0. If on

the other hand it has been called recursively, it assigns itself the next available identification, i.e., the

identification of the calling copy of MINTO plus one. Consequently, MINTO’s identification represents the

depth of the recursion.

The recursion depth gives users the opportunity to develop multiple customized versions of MINTO

at the same time. The first parameter passed to every application function is the identification of the

currently active copy of MINTO. This allows the implementation of application functions that perform

different actions based upon the recursion depth, as the following examples show

/*

* E_INIT.C

59

*/

#include <stdio.h>

#include "minto.h"

/*

* appl_init

*/

unsigned

appl_init (id)

int id;

{

switch (id) {

case ’0’:

printf ("Initializing master problem\n");

break;

case ’1’:

printf ("Initializing subproblem\n");

break;

default:

printf ("ERROR in appl_init (id > 1)\n");

exit (1);

}

return (CONTINUE);

}

/*

* E_CONS.C

*/

#include <stdio.h>

#include "minto.h"

/*

* appl_constraints

*/

unsigned

appl_constraints (id, zlp, xlp, zprimal, xprimal,

nzcnt, ccnt, cfirst, cind, ccoef, csense, crhs, ctype, cname, sdim, ldim)

int id; /* identification of active minto */

double zlp; /* value of the LP solution */

double *xlp; /* values of the variables */

double zprimal; /* value of the primal solution */

double *xprimal; /* values of the variables */

int *nzcnt; /* variable for number of nonzero coefficients */

int *ccnt; /* variable for number of constraints */

int *cfirst; /* array for positions of first nonzero coefficients */

60

int *cind; /* array for indices of nonzero coefficients */

double *ccoef; /* array for values of nonzero coefficients */

char *csense; /* array for senses */

double *crhs; /* array for right hand sides */

int *ctype; /* array for the constraint types: LOCAL or GLOBAL */

char **cname; /* array for names */

int sdim; /* length of small arrays */

int ldim; /* length of large arrays */

{

switch (id) {

case ’0’:

/*

* Invoke MINTO to solve the separation problem. This assumes that

* other application functions, such as appl_mps (), have been set up

* properly to define the separation problem.

*/

minto ("separation", "-s");

/*

* Print the solution

*/

printf ("Optimal value separation problem: %f\n", info_opt.opt_value);

for (i = 0; i < info_opt.opt_nzcnt; i++) {

printf ("Value[%d] = %f\n", info_opt.opt_ix[i], info_opt.opt_val[i]);

}

/*

* The remainder of the code should interpret the solution and, if

* appropriate, convert it to a violated inequality that can then be

* passed back to MINTO.

*/

break;

case ’1’:

break;

default:

printf ("ERROR in appl_constraints (id > 1)\n");

exit (1);

}

return (CONTINUE);

}

61

11 Direct access to the active LP

11.1 CPLEX

When MINTO is used in cooperation with the CPLEX linear optimizer, direct acces to the active LP is

provided through pointers ‘mintoenv’ of type ‘CPXENVptr’ and ‘mintolp’ of type ‘CPXLPptr’. This feature

adds a lot of flexibility, but should be handled with extreme care because direct changes to the CPLEX

database are not reflected in MINTO’s internal administration. If at all possible, the application program-

mer is advised to make changes using the functions provided by MINTO.

The following example shows how to obtain the number of variables and constraints in the active

linear program directly from CPLEX.

/*

* E_LP.C

*/

#include <stdio.h>

#include "minto.h"

#include "cplex.h"

/*

* appl_node

*/

unsigned

appl_node (id, depth, creation, zprimal, xprimal, ecnt, gap)

int id; /* identification of active minto */

int depth; /* node identification: depth */

int creation; /* node identification: creation */

double zprimal; /* value of primal solution */

double *xprimal; /* value of the variables */

int ecnt; /* number of evaluated nodes */

double gap; /* gap between primal and LP solution value */

{

printf ("Number of variables in active lp: %d\n", CPXgetnumcols (mintoenv, mintolp));

printf ("Number of constraints in active lp: %d\n", CPXgetnumrows (mintoenv, mintolp));

return (CONTINUE);

}

11.2 OSI

Direct Access to the OSI LP Solver is not available in Version 3.1. Subsequent versions will be

enabled with this feature.

12 Environment variables

MINTO provides some control over its activities through the use of environment variables. Most of the

environment variables affect memory management and row management activities.

62

MIOSDIM, MIOLDIM, MIOBDIM MINTO tries to keep memory management fully within MINTO. There-

fore, the arrays passed to an application function to hold information to be passed back to MINTO have

a fixed length, either ‘sdim’, ‘ldim’ or ‘bdim’. These lengths can be changed by setting the corresponding

environment variable.

MIOSTORAGE For efficiency MINTO maintains all its data structures in internal memory. Consequently,

MINTO requires a huge amount of internal memory when, for some problem instance, the branch-and-

bound tree gets really big. Setting the environment variable MIOSTORAGE to 1 will direct MINTO to

store part of its data structures externally to free up internal memory. This considerably reduces the max-

imum amount of memory in use at any time, but it also increases the running time (experiments have

indicated a moderate increase of about 3-5 percent).

MIOROWSZ, MIOCOLSZ, MIONZSZ, MIOCHARSZ For efficiency CPLEX requires that the memory nec-

essary to store the active constraint matrix at any moment during the solution process is allocated at the

start of the solution process, i.e., memory for the initial constraint matrix as well as memory for rows

and columns that may be added during the solution process. Once this memory has been allocated, it

cannot be changed. As MINTO supports branch-and-cut and branch-and-price algorithms, it allocates,

besides the memory necessary to store the initial constraint matrix, memory for MIOROWSZ and MIO-

COLSZ extra rows and columns, MIONZSZ extra nonzero coefficients, and MIOCHARSZ extra row and

column name characters. These default sizes can be changed by setting the corresponding environment

variables. For example, if no columns will be generated, then MIOCOLSZ can be set to zero. Do not

set MIOCHARSZ to zero, even if no names are associated with rows and columns because CPLEX always

stores the string termination character ’\0’. Default values are MIOROWSZ: 16184, MIOCOLSZ: 16184,

MIONZSZ 311296, and MIOCHARSZ: 65536.

MIOCUTPOOLSZ, MIOCUTDELBND To control the size of the active formulation MINTO monitors the

dual variables associated with all the global constraints that have been generated during the solution pro-

cess, either by MINTO or by an application (note that MINTO only generates global constraints), and if

the value of a dual variable has been equal to zero, implying the constraint is inactive, for ten consecutive

iterations, MINTO will deactivate the corresponding constraint. Deactivating a constraint means deleting

it from the active formulation and storing it in the cut pool. Every time the active formulation is solved

and a new linear programming solution exists, the constraints in the cut pool will be inspected to see if

any of them are violated by the current solution. If so, these constraints will be reactivated. Reactivating

a constraint means adding it to the active formulation and deleting it from the cut pool. The cut pool has

a fixed size and is maintained on a first-in-first-out basis, i.e., if the pool overflows the constraints that

have been in the pool the longest will be deleted. As soon as a cut is deleted from the cut pool it can never

be reactivated again. The environment variable MIOCUTPOOLSZ sets the size of the pool; default size is

250. The environment variable MIOCUTDELBND sets the the deactivation threshold; default threshold is

50.

MIOCUTFREQ Another issue related to cut generation is the frequency with which an attempt is made to

generate cuts. Obviously, cut generation takes time and it may be beneficial not to perform cut generation

at every node of the search tree. The environment variable MIOCUTFREQ sets the frequency with which

an attempt is made to generate cuts; default frequency is 1, i.e., cut generation at every node.

MIOPRIMALFREQ Determining primal feasible solutions is of crucial importance for the performance

of branch-and-bound algorithms. MINTO uses a diving heuristic to try and find feasible solutions. Obvi-

ously, the diving heuristic takes time and it is therefore impractical to invoke it at every node of the search

63

tree. The environment variable MIOPRIMALFREQ sets the frequency with which the diving heuristic is

invoked. If not set explicity, MINTO will automatically (and dynamically) determine how often to invoke

the diving heuristic based on the gap between the lower and upper bounds on an optimal solution.

MIOMAXLPDIVING This parameter limits the number of linear programs that are solved by the diving

heuristic. The default value is 50.

13 Programming considerations

The include file minto.h is, and should always be, included in all sources of application functions, since it

contains constant definitions, type definitions, external variable declarations, and function prototypes.

The variables and arrays containing information about the LP-solution associated with the active for-

mulation and information about the best primal solution, which are passed as parameters to the applica-

tion functions, are the ones maintained by MINTO for its own use. They should never be modified; they

should only be examined.

MINTO allocates memory dynamically for the arrays that are passed as parameters to an application

function. However, from an application program point of view they are fixed length arrays. When

appropriate, the current lengths of the arrays are also passed as parameters. It is the responsibility of the

application program to ensure that memory is not overrun. MINTO will abort immediately if it detects a

memory violation.

14 Availability and Future Releases

MINTO 3.1 is currently available for the platforms in Table 44. If you would like your Operating System

and LP Solver added to the list, please contact the mantainers.

Operating System Architecture Compiler LP Solver

Debian Linux Intel x86 g++ 3.3.5 CPLEX v8

Debian Linux Intel x86 g++ 3.3.5 OSI-Clp

MS Windows XP Intel x86 MS Visual C++ .NET CPLEX v8

Table 4: Available MINTO Versions

MINTO is an evolutionary system and therefore version 3.1 is not a final product. We see the devel-

opment of MINTO as an evolutionary process, that should lead to a robust and flexible mixed integer

programming solver. It’s modular structure makes it easy to modify and expand, especially with regard

to the addition of new information and application functions. Therefore we encourage the users of this

release to provide us with comments and suggestions for future releases.

Developments in future releases may include parallel implementations, more efficient cut generation

routines, additional classes of cuts, explicit column generation routines, better primal heuristics and

different strategies for getting upper bounds, such as Lagrangian relaxation.

4See the website http://coral.ie.lehigh.edu/minto for the most up-to-date releases

64

References

[1] G.L. NEMHAUSER, M.W.P. SAVELSBERGH, G.C. SIGISMONDI (1994). MINTO, a Mixed INTeger Opti-

mizer. Oper. Res. Letters 15, 48-59.

[2] M.W.P. SAVELSBERGH (1994). Preprocessing and Probing for Mixed Integer Programming Problems.

ORSA J. Comput 6, 445-454.

[3] Z. GU, G.L. NEMHAUSER, M.W.P. SAVELSBERGH (1998). Cover Inequalities for 0-1 Linear Programs:

Computation. INFORMS Journal on Computing 10, 427-437.

[4] Z. GU, G.L. NEMHAUSER, M.W.P. SAVELSBERGH (1996). Cover Inequalities for 0-1 Linear Programs:

Complexity, INFORMS J. Comput., to appear.

[5] Z. GU, G.L. NEMHAUSER, M.W.P. SAVELSBERGH (2000). Sequence Independent Lifting. Journal of

Combinatorial Optimization 4, 109-129.

[6] Z. GU, G.L. NEMHAUSER, M.W.P. SAVELSBERGH (1999). Lifted Flow Cover Inequalities for Mixed

0-1 Integer Programs. Mathematical Programming 85, 439-467.

[7] J. LINDEROTH, M.W.P. SAVELSBERGH (1999). A Computational Study of Search Strategies in Mixed

Integer Programming. INFORMS Journal on Computing 11, 173-187.

[8] A. ATAMTURK, G.L. NEMHAUSER, M.W.P. SAVELSBERGH (1998). Conflict Graphs in Integer Program-

ming. European Journal of Operational Research 121, 40-55.

[9] R. FOURER, D. M. GAY, AND B. W. KERNIGHAN (2000). AMPL: A Modeling Language for Mathematical

Programming. The Scientific Press.

65

Appendix A. Inquiry functions

/*

* E_UTIL.C

*/

#include "minto.h"

#ifdef PROTOTYPING

void WriteFormulation (void);

char * ConvertCClass (int);

char * ConvertCType (int);

char * ConvertCInfo (int);

char * ConvertVClass (int);

char * ConvertVInfo (int);

char * ConvertStatus (int);

#else

void WriteFormulation ();

char * ConvertCClass ();

char * ConvertCType ();

char * ConvertCInfo ();

char * ConvertVClass ();

char * ConvertVInfo ();

char * ConvertStatus ();

#endif

/*

* WriteFormulation

*

* WriteFormulation is an example of the use of the inquiry functions

* provided by MINTO to access the formulation in the current node

* of the branch-and-bound tree.

*/

void

WriteFormulation ()

{

int i, j;

printf ("\n\nCURRENT FORMULATION:\n");

printf ("NAME: %s\n", inq_prob ());

printf ("OBJECTIVE\n");

for (inq_obj (), j = 0; j < info_obj.obj_nz; j++) {

printf (" %f %d\n", info_obj.obj_coef[j], info_obj.obj_ind[j]);

}

printf ("CONSTRAINTS\n");

for (inq_form (), i = 0; i < info_form.form_ccnt; i++) {

66

printf ("%d:\n", i);

inq_constr (i);

if (info_constr.constr_name) {

printf (" NAME : %s\n", info_constr.constr_name);

}

else {

printf (" NAME : no name\n");

}

for (j = 0; j < info_constr.constr_nz; j++) {

printf (" %f %d\n", info_constr.constr_coef[j], info_constr.constr_ind[j]);

}

printf (" SENSE : %c\n", info_constr.constr_sense);

printf (" RHS : %f\n", info_constr.constr_rhs);

printf (" CLASS : %s\n", ConvertCClass (info_constr.constr_class));

printf (" TYPE : %s\n", ConvertCType (info_constr.constr_type));

printf (" STATUS : %s\n", ConvertStatus (info_constr.constr_status));

printf (" INFO : %s\n", ConvertCInfo (info_constr.constr_info));

}

printf ("VARIABLES\n");

for (i = 0; i < info_form.form_vcnt; i++) {

printf ("%d:\n", i);

inq_var (i, TRUE);

if (info_var.var_name) {

printf (" NAME : %s\n", info_var.var_name);

}

else {

printf (" NAME : no name\n");

}

for (j = 0; j < info_var.var_nz; j++) {

printf (" %f %d\n", info_var.var_coef[j], info_var.var_ind[j]);

}

printf (" OBJ : %f\n", info_var.var_obj);

printf (" CLASS : %s\n", ConvertVClass (info_var.var_class));

printf (" STATUS : %s\n", ConvertStatus (info_var.var_status));

printf (" LB : %f\n", info_var.var_lb);

printf (" UB : %f\n", info_var.var_ub);

printf (" INFO LB : %s\n", ConvertVInfo (info_var.var_lb_info));

printf (" INFO UB : %s\n", ConvertVInfo (info_var.var_ub_info));

if (info_var.var_vlb) {

printf (" VLB [%f, %d]\n",

info_var.var_vlb->vlb_val,

info_var.var_vlb->vlb_var);

}

else {

printf (" NO VLB\n");

}

if (info_var.var_vub) {

printf (" VUB [%f, %d]\n",

67

info_var.var_vub->vub_val,

info_var.var_vub->vub_var);

}

else {

printf (" NO VUB\n");

}

}

printf ("\n");

}

static char *bs1u = "BINSUM1UB";

static char *bs1e = "BINSUM1EQ";

static char *bs1vu = "BINSUM1VARUB";

static char *bs1ve = "BINSUM1VAREQ";

static char *bsvu = "BINSUMVARUB";

static char *bsve = "BINSUMVAREQ";

static char *svu = "SUMVARUB";

static char *sve = "SUMVAREQ";

static char *vu = "VARUB";

static char *ve = "VAREQ";

static char *vl = "VARLB";

static char *mixu = "MIXUB";

static char *mixe = "MIXEQ";

static char *nbu = "NOBINUB";

static char *nbe = "NOBINEQ";

static char *abu = "ALLBINUB";

static char *abe = "ALLBINEQ";

/*

* ConvertCClass --

*

* Convert the constraint class into a printable string.

*/

char *

ConvertCClass (class)

int class;

{

switch (class) {

case BINSUM1UB:

return (bs1u);

case BINSUM1EQ:

return (bs1e);

case BINSUM1VARUB:

return (bs1vu);

case BINSUM1VAREQ:

return (bs1ve);

68

case BINSUMVARUB:

return (bsvu);

case BINSUMVAREQ:

return (bsve);

case SUMVARUB:

return (svu);

case SUMVAREQ:

return (sve);

case VARUB:

return (vu);

case VAREQ:

return (ve);

case VARLB:

return (vl);

case MIXUB:

return (mixu);

case MIXEQ:

return (mixe);

case NOBINUB:

return (nbu);

case NOBINEQ:

return (nbe);

case ALLBINUB:

return (abu);

case ALLBINEQ:

return (abe);

}

}

static char *local = "LOCAL";

static char *global = "GLOBAL";

/*

* ConvertCType --

*

* Convert the constraint type into a printable string.

*/

char *

ConvertCType (type)

int type;

{

switch (type) {

case LOCAL:

return (local);

case GLOBAL:

return (global);

}

69

}

static char *original = "ORIGINAL";

static char *genminto = "GENERATED_BY_MINTO";

static char *genbranch = "GENERATED_BY_BRANCHING";

static char *genappl = "GENERATED_BY_APPL";

/*

* ConvertCInfo --

*

* Convert the constraint status into a printable string.

*/

char *

ConvertCInfo (info)

int info;

{

switch (info) {

case ORIGINAL:

return (original);

case GENERATED_BY_MINTO:

return (genminto);

case GENERATED_BY_BRANCHING:

return (genbranch);

case GENERATED_BY_APPL:

return (genappl);

}

}

static char *cont = "CONTINUOUS";

static char *bin = "BINARY";

static char *integ = "INTEGER";

/*

* ConvertVClass --

*

* Convert the variable class into a printable string.

*/

char *

ConvertVClass (class)

int class;

{

switch (class) {

case CONTINUOUS:

return (cont);

case BINARY:

return (bin);

70

case INTEGER:

return (integ);

}

}

static char *modminto = "MODIFIED_BY_MINTO";

static char *modbranch = "MODIFIED_BY_BRANCHING";

static char *modappl = "MODIFIED_BY_APPL";

/*

* ConvertVInfo --

*

* Convert the constraint status into a printable string.

*/

char *

ConvertVInfo (info)

int info;

{

switch (info) {

case ORIGINAL:

return (original);

case MODIFIED_BY_MINTO:

return (modminto);

case MODIFIED_BY_BRANCHING:

return (modbranch);

case MODIFIED_BY_APPL:

return (modappl);

}

}

static char *act = "ACTIVE";

static char *inact = "INACTIVE";

static char *del = "DELETED";

/*

* ConvertStatus --

*

* Convert the constraint status into a printable string.

*/

char *

ConvertStatus (status)

int status;

{

switch (status) {

case ACTIVE:

return (act);

71

case INACTIVE:

return (inact);

case DELETED:

return (del);

}

}

72

