
A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

practice, and correction. When the computer gets into the act,
you'll learn twice as fast, with half the effort. It's a smarter way
to learn JavaScript. It's a smarter way to learn anything.

And as long as we're embracing new technology, why not
use all the tech we can get our hands on to optimize the book?
Old technology—i.e. the paper book—has severe limitations
from an instructional point of view. New technology—i.e. the
ebook—is the way to go, for many reasons. Here are a few:

Color is a marvelous information tool. That's why they use
it for traffic lights. But printing color on paper multiplies the
cost. Thanks to killer setup charges, printing this single word
—color—in a print-on-demand book adds thirty dollars to the
retail price. So color is usually out, or else the book is priced as
a luxury item. With an ebook, color is free.

Paper itself is expensive, so there usually isn't room to do
everything the author would like to do. A full discussion of fine
points? Forget it. Extra help for the rough spots? Can't afford it.
Hundreds of examples? Better delete some. But no such
limitation applies to an ebook. What do an extra hundred digital
pages cost? Usually nothing.

When a book is published traditionally, it may take up to
a year for the manuscript to get into print. This means there
isn't time for extensive testing on the target audience, or for the
revisions that testing would inevitably suggest. And once the
book is in print, it's a big, expensive deal to issue revised
editions. Publishers put it off as long as possible. Reader
feedback usually doesn't lead to improvements for years. An
ebook can go from manuscript to book in a day, leaving lots of
time for testing and revision. After it's published, new editions
with improvements based on reader feedback can come out as
often as the author likes, at no cost.

With all this going for them, is there any doubt that all the
best instructional books are going to be ebooks? And would
anyone deny that the most helpful thing an author can do for

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

you, in addition to publishing a good book electronically, is to
take on the whole teaching job, not just part of it, by adding
interactivity to help you with memorization, practice, and
correction?

Here, then, is how I propose to use current technology to
help you learn JavaScript in half the time, with half the effort.

Cognitive portion control. Testing showed me that when
they're doing hard-core learning, even strong-minded
people get tired faster than I would have expected. You may
be able to read a novel for two hours at a stretch, but when
you're studying something new and complicated, it's a
whole different ballgame. My testing revealed that studying
new material for about ten minutes is the limit, before most
learners start to fade. But here's the good news: Even when
you've entered the fatigue zone after ten minutes of
studying, you've still got the mental wherewithal to practice
for up to thirty minutes. Practice that's designed correctly
takes less effort than studying, yet teaches you more.
Reading a little and practicing a lot is the fastest way to
learn.
500 coding examples that cover every aspect of what
you're learning. Examples make concepts easy to grasp and
focus your attention on the key material covered in each
chapter. Color cues embedded in the code help you commit
rules to memory. Did I go overboard and put in more
examples that you need? Well, if things get too easy for you,
just skip some them.
Tested on naive users. The book includes many rounds
of revisions based on feedback from programming
beginners. It includes extra-help discussions to clarify
concepts that proved to be stumbling blocks during testing.
Among the testers: my technophobe wife, who discovered
that, with good instruction, she could code—and was
surprised to find that she enjoyed it. For that matter, I got a

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

few surprises myself. Some things that are simple to me
turned out not to be not so simple to some readers.
Rewriting ensued.
Free interactive coding exercises paired with each
chapter—1,750 of them in all. They're the feature that
testers say helps them the most. No surprise there.
According to the New York Times, psychologists "have
shown that taking a test—say, writing down all you can
remember from a studied prose passage—can deepen the
memory of that passage better than further study." I would
venture that this goes double when you're learning to code.
After reading each chapter, go online and practice
everything you learned. Each chapter ends with a link to its
accompanying online exercises. Find an index of all the
exercises at http://www.ASmarterWayToLearn.com/js/.
Live coding experience. In scripting, the best reward is
seeing your code run flawlessly. Most practice sessions
include live coding exercises that let you see your scripts
execute in the browser.

How to use this book

This isn't a book quite like any you've ever owned before,
so a brief user manual might be helpful.

Study, practice, then rest. If you're intent on mastering
the fundamentals of JavaScript, as opposed to just getting a
feel for the language, work with this book and the online
exercises in a 15-to-30-minute session, then take a break.
Study a chapter for 5 to 10 minutes. Immediately go online
at http://www.ASmarterWayToLearn.com/js and code for
10 to 20 minutes, practicing the lesson until you've coded

http://www.asmarterwaytolearn.com/javascript/
http://www.asmarterwaytolearn.com/js

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

everything correctly. Then go for a walk.
Use the largest, most colorful screen available. This
book can be read on small phone screens and monochrome
readers, but you'll be happier if things appear in color on a
larger screen. I use color as an important teaching tool, so if
you're reading in black-and-white, you're sacrificing some
of the extra teaching value of a full-color ebook. Colored
elements do show up as a lighter shade on some black-and-
white screens, and on those devices the effect isn't entirely
lost, but full color is better. As for reading on a larger screen
— the book includes more than 2,000 lines of example code.
Small screens break long lines of code into awkward,
arbitrary segments, jumbling the formatting. While still
decipherable, the code becomes harder to read. If you don't
have a mobile device that's ideal for this book, consider
installing the free Kindle reading app on your laptop.
If you're reading on a mobile device, go horizontal.
For some reason, I resist doing this on my iPad unless I'm
watching a video. But even I, Vern Vertical, put my tablet
into horizontal mode to proof this book. So please: starting
with Chapter 1, do yourself a favor and rotate your tablet,
reader, or phone to give yourself a longer line of text. It'll
help prevent the unpleasant code jumble mentioned above.
Do the coding exercises on a physical keyboard. A
mobile device can be ideal for reading, but it's no way to
code. Very, very few Web developers would attempt to do
their work on a phone. The same thing goes for learning to
code. Theoretically, most of the interactive exercises could
be done on a mobile device. But the idea seems so perverse
that I've disabled online practice on tablets, readers, and
phones. Read the book on your mobile device if you like.
But practice on your laptop.
If you have an authority problem, try to get over it.
When you start doing the exercises, you'll find that I can be

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

a pain about insisting that you get every little detail right.
For example, if you indent a line one space instead of two
spaces, the program monitoring your work will tell you the
code isn't correct, even though it would still run perfectly.
Do I insist on having everything just so because I'm a
control freak? No, it's because I have to place a limit on
harmless maverick behavior in order to automate the
exercises. If I were to grant you as much freedom as you
might like, creating the algorithms that check your work
would be, for me, a project of driverless-car proportions.
Besides, learning to write code with fastidious precision
helps you learn to pay close attention to details, a
fundamental requirement for coding in any language.
Subscribe, temporarily, to my formatting biases.
Current code formatting is like seventeenth-century
spelling. Everyone does it his own way. There are no
universally accepted standards. But the algorithms that
check your work when you do the interactive exercises need
standards. They can't grant you the latitude that a human
teacher could, because, let's face it, they aren't that bright.
So I've had to settle on certain conventions. All of the
conventions I teach are embraced by a large segment of the
coding community, so you'll be in good company. But that
doesn't mean you'll be married to my formatting biases
forever. When you begin coding projects, you'll soon
develop your own opinions or join an organization that has
a stylebook. Until then, I'll ask you to make your code look
like my code.
Email me with any problems or questions. The book
and exercises have been tested on many learners, but
haven't been tested on you. If you hit a snag, if you're just
curious about something, or if I've found some way to give
you fits, email me at mark@ASmarterWayToLearn.com. I'll
be happy to hear from you. I'll reply promptly. And, with

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

your help, I'll probably learn something that improves the
next edition.

1
Alerts

An alert is a box that pops up to give the user a message.
Here's code for an alert that displays the message "Thanks for
your input!"

alert("Thanks for your input!");

alert is a keyword—that is, a word that has special
meaning for JavaScript. It means, "Display, in an alert box, the
message that follows." Note that alert isn't capitalized. If you
capitalize it, the script will stop.

The parentheses are a special requirement of JavaScript,
one that you'll soon get used to. You'll be typing parens over
and over again, in all kinds of JavaScript statements.

In coding, the quoted text "Thanks for your input!" is
called a text string or simply a string. The name makes sense:
it's a string of characters enclosed in quotes. Outside the coding
world, we'd just call it a quotation.

Note that the opening parenthesis is jammed up against
the keyword, and the opening quotation mark is hugging the
opening parenthesis. Since JavaScript ignores spaces (except in
text strings), you could write...

alert ("Thanks for your input!");

But I want you to know the style conventions of

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

JavaScript, so I'll ask you to always omit spaces before and after
parentheses.

In English, a careful writer ends every declarative
sentence with a period. In scripting, a careful coder ends every
statement with a semicolon. (Sometimes complex, paragraph-
like statements end with a curly bracket instead of a semicolon.
That's something I'll cover in a later chapter.) A semicolon isn't
always necessary, but it's easier to end every statement with a
semicolon, rather than stop to figure out whether you need one.
In this training, I'll ask you to end every statement (that doesn't
end with a curly bracket) with a semicolon.

Some coders write window.alert instead of, simply,
alert. This is a highly formal but perfectly correct way to
write it. Most coders prefer the short form. We'll stick to the
short form in this training.
In the example above, some coders would use single rather
than double quotation marks. This is legal, as long as it's a
matching pair. But in a case like this, I'll ask you to use
double quotation marks.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/js/1.html

2
Variables for Strings

Please memorize the following facts.

My name is Mark.
My nationality is U.S.

http://www.asmarterwaytolearn.com/javascript/1.html

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

Now that you've memorized my name and nationality, I
won't have to repeat them, literally, again. If I say to you, "You
probably know other people who have my name," you'll know
I'm referring to "Mark."

If I ask you whether my nationality is the same as yours, I
won't have to ask, "Is your nationality the same as U.S.?" I'll
ask, "Is your nationality the same as my nationality?" You'll
remember that when I say "my nationality," I'm referring to
"U.S.", and you'll compare your nationality to "U.S.", even
though I haven't said "U.S." explicitly.

In these examples, the terms "my name" and "my
nationality" work the same way JavaScript variables do. My
name is a term that refers to a particular value, "Mark." In the
same way, a variable is a word that refers to a particular value.

A variable is created when you write var (for variable)
followed by the name that you choose to give it. It takes on a
particular value when you assign the value to it. This is a
JavaScript statement that creates the variable name and assigns
the value "Mark" to it.

var name = "Mark";

Now the variable name refers to the text string "Mark".
Note that it was my choice to call it name. I could have

called it myName, xyz, lol, or something else. It's up to me
how to name my variables, within limits.

With the string "Mark" assigned to the variable name, my
JavaScript code doesn't have to specify "Mark" again. Whenever
JavaScript encounters name, JavaScript knows that it's a
variable that refers to "Mark".

For example, if you ask JavaScript to print name, it
remembers the value that name refers to, and prints...

Mark
The value that a variable refers to can change.

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

Let's get back to the original examples, the facts I asked
you to memorize. These facts can change, and if they do, the
terms my name and my nationality will refer to new values.

I could go to court and change my name to Ace. Then my
name is no longer Mark. If I want you to address me correctly,
I'll have to tell you that my name is now Ace. After I tell you
that, you'll know that my name doesn't refer to the value it used
to refer to (Mark), but refers to a new value (Ace).

If I transfer my nationality to U.K., my nationality is no
longer U.S. It's U.K. If I want you to know my nationality, I'll
have to tell you that it is now U.K. After I tell you that, you'll
know that my nationality doesn't refer to the original value,
"U.S.", but now refers to a new value.

JavaScript variables can also change.
If I code...

var name = "Mark";

name refers to "Mark". Then I come along and code the
line...

name = "Ace";

Before I coded the new line, if I asked JavaScript to print
name, it printed...

Mark
But that was then.
Now if I ask JavaScript to print name, it prints...
Ace
A variable can have any number of values, but only one at

a time.
You may be wondering why, in the statement above that

assigns "Ace" to name, the keyword var is missing. It's because
the variable was declared earlier, in the original statement that
assigned "Mark" to it. Remember, var is the keyword that

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

creates a variable—the keyword that declares it. Once a variable
has been declared, you don't have to declare it again. You can
just assign the new value to it.

You can declare a variable in one statement, leaving it
undefined. Then you can assign a value to it in a later
statement, without declaring it again.

var nationality;
nationality = "U.S.";

In the example above, the assignment statement follows
the declaration statement immediately. But any amount of code
can separate the two statements, as long as the declaration
statement comes first. In fact, there's no law that says you have
to ever define a variable that you've declared.

JavaScript variable names have no inherent meaning to
JavaScript.

In English, words have meaning. You can't use just any
word to communicate. I can say, "My name is Mark," but, if I
want to be understood, I can't say, "My floogle is Mark." That's
nonsense.

But with variables, JavaScript is blind to semantics. You
can use just any word (as long as it doesn't break the rules of
variable-naming). From JavaScript's point of view...

var floogle = "Mark";

...is just as good as...

var name = "Mark";

If you write...

var floogle = "Mark";

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

...then ask JavaScript to print floogle, JavaScript
prints...

Mark
Within limits, you can name variables anything you want,

and JavaScript won't care.

var lessonAuthor = "Mark";
var guyWhoKeepsSayingHisOwnName = "Mark";
var x = "Mark";

JavaScript's blindness to meaning notwithstanding, when
it comes to variable names, you'll want to give your variables
meaningful names, because it'll help you and other coders
understand your code.

Again, the syntactic difference between variables and text
strings is that variables are never enclosed in quotes, and text
strings are always enclosed in quotes.

It's always...

var lastName = "Smith";
var cityOfOrigin = "New Orleans";
var aussieGreeting = "g'Day";

If it's an alphabet letter or word, and it isn't enclosed in
quotes, and it isn't a keyword that has special meaning for
JavaScript, like alert, it's a variable.

If it's some characters enclosed in quotes, it's a text string.
If you haven't noticed, let me point out the spaces

between the variable and the equal sign, and between the equal
sign and the value.

var nickname = "Bub";

These spaces are a style choice rather than a legal
requirement. But I'll ask you to include them in your code
throughout the practice exercises.

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

In the last chapter you learned to write...

alert("Thanks for your input!");

When the code executes, a message box displays saying
"Thanks for your input!"

But what if you wrote these two statements instead:

1 var thanx = "Thanks for your input!"
2 alert(thanx);

Instead of placing a text string inside the parentheses of
the alert statement, the code above assigns the text string to a
variable. Then it places the variable, not the string, inside the
parentheses. Because JavaScript always substitutes the value for
the variable, JavaScript displays—not the variable name thanx
but the text to which it refers, "Thanks for your input!" That
same alert, "Thanks for your input!" displays.

Find the interactive coding exercises for this chapter at:
http://www.ASmarterWayToLearn.com/js/2.html

3
Variables for Numbers

A string isn't the only thing you can assign to a variable.
You can also assign a number.

var weight = 150;

Having coded the statement above, whenever you write
weight in your code, JavaScript knows you mean 150. You can

http://www.asmarterwaytolearn.com/javascript/2.html

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

use this variable in math calculations.
If you ask JavaScript to add 25 to weight...

weight + 25

...JavaScript, remembering that weight refers to 150, will
come up with the sum 175.

Unlike a string, a number is not enclosed in quotes. That's
how JavaScript knows it's a number that it can do math on and
not a text string, like a ZIP code, that it handles as text.

But then, since it's not enclosed in quotes, how does
JavaScript know it's not a variable? Well, because a number, or
any combination of characters starting with a number, can't be
used as a variable name. If it's a number, JavaScript rejects it as
a variable. So it must be a number.

If you enclose a number in quotation marks, it's a string.
JavaScript can't do addition on it. It can do addition only on
numbers not enclosed in quotes.

Now look at this code.

1 var originalNum = 23;
2 var newNum = originalNum + 7;

In the second statement in the code above, JavaScript
substitutes the number 23 when it encounters the variable
originalNum. It adds 7 to 23. And it assigns the result, 30, to
the variable newNum.

JavaScript can also handle an expression made up of
nothing but variables. For example...

1 var originalNum = 23;
2 var numToBeAdded = 7;
3 var newNum = originalNum + numToBeAdded;

A variable can be used in calculating its own new value.

A Smarter Way to Learn JavaScript

file:///C|/KindleGen/a-smarter-way-to-learn-javascript-pdf.html[12/14/2013 11:03:47 AM]

1 var originalNum = 90;
2 originalNum = originalNum + 10;

If you enclose a number in quotation marks and add 7...

1 var originalNum = "23";
2 var newNum = originalNum + 7;

...it won't work, because JavaScript can't sum a string and
a number. JavaScript interprets "23" as a word, not a number.
In the second statement, it doesn't add 23 + 7 to total 30. It
does something that might surprise you. I'll tell you about this
in a subsequent chapter. For now, know that a number enclosed
by quotation marks is not a number, but a string, and
JavaScript can't do addition on it.

Note that any particular variable name can be the name of
a number variable or string variable. From JavaScript's point of
view, there's nothing in a name that denotes one kind of
variable or another. In fact, a variable can start out as one type
of variable, then become another type of variable.

Did you notice what's new in...

1 var originalNumber = 23;
2 var newNumber = originalNumber + 7;

The statement assigns to the variable newNumber the
result of a mathematical operation. The result of this
operation, of course, is a number value.

The example mixes a variable and a literal number in a
math expression. But you could also use nothing but numbers
or nothing but variables. It's all the same to JavaScript.

I've told you that you can't begin a variable name with a
number. The statement...

var 1stPresident = "Washington";

	Local Disk
	A Smarter Way to Learn JavaScript

