PAM-ISA Opc Server

User Manual

Ordering Number: 006.8036 Rev. May 22, 2000

This version replaces all previous versions of this document. Atlas Copco Controls has made every effort to insure this document is complete and accurate at the time of printing. In accordance with our policy of continuing product improvement, all data in this document is subject to change or correction without prior notice.

Atlas Copco Controls SA Zone industrielle La Rippe CH-1303 Penthaz Switzerland

Ordering No. 006.8036 Rev. May 22, 2000

© 2000 by Atlas Copco Controls SA All rights reserved

Table of Contents

Table of Contents	3
Introduction	5
Purpose	5
Scope	5
References	5
Documents	5
Glossary	6
OPC	7
Overview	7
Structure	7
Interface	8
PAM-ISA OPC Server	11
Introduction	11
System architecture	11
Description	12
PAM-ISA Opc Demo	15
Introduction	15
System Requirements	15
Installation	16
Hardware Configuration	16
Promotion Installation	17
Demo Installation and Setup	17
PAM-ISA software configuration	18
Excel Sheet application	18
Connection	18
Description	19
PAM application	20
Using the OPC automation interface with Visual Basic	21
I ype conversion with Visual Basic	23
Appendix A	

 \mathbf{T}

Status and Error Codes	25
Driver/Status2	25
Driver/Error	25
System/State	26

Introduction

The PAM-ISA Opc Server is a common interface developed by Atlas Copco Controls to access the PAM-ISA device from Microsoft WindowsTM applications. Its implementation is based on the OPC standard defined by the OPC Foundation.

Version 1.0.xx of the PAM-ISA Opc Server handles data exchange between the PAM-ISA device and Windows applications. Future releases will enable more complex functionalities such as software download and upload.

Purpose

This document presents an overview of how the PAM-ISA device is accessed via the OPC server data access mechanism using the PAM-ISA Opc Server Version 1.0.xx. A short introduction to the OPC concept at the beginning of this document will give the necessary background to understand how the OPC is used.

A demo application is provided in the last chapter to illustrate how the OPC mechanism can be used in practice. A simple Excel sheet demonstrates the data access to PAM-ISA information with the automation interface using Visual Basic.

Scope

Prior knowledge about OPC is not required to read this document. However, this document gives a short overview of the OPC specification. For detailed information about OPC please refer to the references listed below.

To understand the implementation part of the Excel demonstration sheet, some programming experiences with languages like Visual Basic will be needed. It is also necessary to have some basic knowledge on the COM architecture to access OPC objects.

References

Documents

- [1] OPC Data Access Custom Specification 2.0, OPC Foundation, 1998 http:://www.opcfoundation.org
- [2] OPC Data Access Automation Specification 2.0, OPC Foundation, 1998
- [3] Data sheet PAM-ISA (006.8035), Atlas Copco Controls, 1999
- [4] Inside COM, Dale Rogerson, Microsoft Press, 1997
- [5] PAM Can Bus Interface, User's Manual (006.8029.B), Atlas Copco Controls, 1997
- [6] PAM-ISA Technical manual 006.8037

Glossary

(D)COM	(Distributed) Common Object Model
OLE	Object Linking and Embedding
OPC	OLE for Process Control

Overview

OPC which stands for OLE for Process Control, was introduced by a group of industrial companies to define a common way for exchanging data between devices, PLCs and Windows applications. OPC is only a specification that defines the interfaces used to access the device data. The first version of the OPC specification was released in august 1996. It consists of three parts: DataAccess, Alarm&Event Handling and Historical DataAccess. The DataAccess specification has undergone several revisions. The latest release, Version 2.0, has been available since late 1998.

i

Alarm&Event Handling as well as the Historical DataAccess is not yet implemented for the PAM-ISA device and will not be discussed in this document.

OPC is based on the COM/DCOM architecture widely used on Microsoft platforms as a communication standard. This allows PC-applications to access device information from different platforms and even remotely over network connections.

Since OPC is a common standard, it greatly simplifies the writing of client applications. If hardware manufacturers support the OPC interface to their devices, it is not necessary to write separate device drivers. The OPC interface can be accessed from any programming language like C++ and even script languages like Visual Basic or Java Script. The OPC interface also allows multiple users access to the same device simultaneously.

Structure

The implementation of the OPC interface specification is called the OPC Server. Applications that use OPC servers are called OPC Clients. An OPC Client can access multiple OPC Servers at the same time.

Figure 1: OPC Client/Server Relationship

An OPC Server represents an image of a physical device. This is transparent for the OPC Clients and they work with the OPC Server as if they were communicating with the device directly.

The OPC DataAccess is composed of three categories of objects: the server itself, the group and the item.

An **item** represents a physical I/O or variable and is associated with attributes like Name, Value, Quality and TimeStamp. Items are created by the OPC server and can be accessed and changed by the OPC clients using read and write operations. The OPC server maintains a cache of all the items of a device, which is kept up to date automatically. The client usually accesses the cached item data in order to optimize the communication load.

Groups are used to organize the items that an OPC Client wants to access. Items are generally assigned to groups based on the update rate needed. Items are updated and can be accessed only if they exist in at least one group.

Figure 2: Group/Item Relationship

An OPC server usually has multiple groups of two kinds: private and public groups. Private groups are visible to only one client, whereas public groups can be used by all clients.

Interface

Referring to the OPC server objects mentioned in the section above, there is a well defined interface that can be used to access the server objects. This section provides a short overview of the interfaces provided by the OPC DataAccess specification. For detailed information on these interfaces, please refer to [2].

Since the OPC specification is based on the COM architecture, the interfaces defined for the OPC server objects represents interfaces to COM components. Like any COM component, OPC server objects also provide the IUnknown interface. Beside this interface, the following interfaces are defined:

Object	Interfaces
Server	IOPCCommon
	IOPCServer
	[IOPCServerPublicGroups]
	[IOPCServerBrowseServerAddressSpace]
	[IPersistFile]
	[IConnectionPointContainer]
	IOPCServerDisp
	[IOPCServerPublicGroupsDisp]
	[IOPCServerBrowseServerAddressSpaceDisp]
Group	IOPCItemMgt
	IOPCGroupStateMgt
	[IOPCPublicGroupStateMgt]
	IOPCSynclO
	IOPCASyncIO2
	IConnectionPointContainer
	IOPCItemMgtDisp
	IOPCGroupStateMgtDisp
	[IOPCPublicGroupStateMgtDisp]
	IOPCSynclODisp
	IOPCAsynclODisp
Item	IOPCItemDisp

1

Interfaces written in brackets are defined to be optional, i.e. they don't have to be implemented to meet the OPC standard. However, the PAM-ISA Opc Server supports all interfaces excepted the ones written in italic style.

There are two kinds of interfaces: custom interfaces and the automation interfaces. Whereas the custom interfaces are used with programming languages like Visual C++ and Java, the automation or dispatch interfaces (with ending ...Disp) are designed for script languages like Visual Basic or Java Script. These two kinds of interfaces usually provide the same functionally and differ only in the way to use them.

OPC INTERFACE

Introduction

In this section the PAM-ISA Opc Server provided by Atlas Copco Controls is described in more detail. Information concerning the PAM-ISA device can be found in the document [3].

System architecture

The PAM-ISA Opc Server provides a common interface to the PAM device for OPC clients using the COM technology. OPC clients interact only with PAM-ISA Opc Server objects and never communicate directly with the PAM device. The fact that the OPC Server uses a Windows driver to communicate with the PAM device is completely hidden from the client.

Figure 3 shows the components used to access the PAM-ISA device via the PAM-ISA Opc Server.

Figure 3: PAM-ISA Opc Server Architecture

The PAM-ISA Opc Server is an "out-of-process" COM component that is started when the first OPC client tries to connect to the PAM-ISA Opc Server. During startup, the PAM-ISA Opc Server scans the PAM device for all available variables using the appropriate interface of the PAM Windows driver. For each variable a corresponding item is created and stored in the cache. This is done only once in the lifetime of the PAM-ISA Opc Server.

If the number of variables in the PAM changes (e.g. after downloading a new application), the OPC Server must be terminated (i.e. all OPC clients must disconnect from the OPC Server) in order to reload the variables during the next startup.

Updating of item values is event driven. If a variable changes, the PAM informs the PAM-ISA Opc Server which in turn updates the corresponding item. The update rate defined by the OPC client is not considered in this case because PAM-ISA's event driven concept keeps the item values always up to date.

The PAM-ISA Opc Server 1.0.xx does not support software download to the PAM device. Software downloads are done via the serial port using the PAM Tools application.

Description

The PAM-ISA Opc Server is a COM component that appears in the Windows registry with the name **ACC.PAMISA_OpcServer.20**. Version 1.0.xx of the PAM-ISA Opc Server supports only the DataAccess interface defined by the OPC specification.

The PAM-ISA Opc Server can be connected to only one PAM device. During startup, the PAM-ISA Opc Server is initialized and creates an OPC item object for each variable available on the connected PAM. A variable of the PAM-ISA device is identified by its name, which is stored in the item object. There are two kinds of variables: SystemInfo and UserVariables. The SystemInfo variables are common to all PAM's. UserVariables are the variables used in PAM applications and declared as Channel Variables.

The PAM-ISA Opc Server provides the following items:

Name	Description
User variables	
/CommId/ <var id=""></var>	One item for each Channel variable.
(See Table 5: SEQARABE)	<var id=""> is a hex number to identify the user variable. This id is defined with the COMM_ID attribute of the CHANNEL_REFERENCE declaration. (for programming details see [5])</var>
	Channel variables declared as OUTPUT are read only, channel variables declared as INPUT are write only.
SystemInfo variables	
/System/Reset	Used to reset the PAM. The PAM will be reset each time a value not equal to zero is written. Write only variable.
/System/State	State of the PAM device. Read only variable. Please refer to appendix A for details.
/System/NodeCount	Number of SAM's connected to the PAM. Read only variable.
/System/Bootware/Date	PAM bootware date of creation. Read only variable.
/System/Bootware/Version	PAM boot ware version. Read only variable.
/System/Bootware/CRC	PAM boot ware CRC. Read only variable.
/System/Firmware/Date	PAM firmware date of creation. Read only variable.
/System/Firmware/Version	PAM firm ware version. Read only variable.
/System/Firmware/CRC	PAM firm ware CRC. Read only variable.
/System/Application/Name	PAM application name. Read only variable.
/System/Application/Date	PAM application date of creation. Read only variable.

/System/Application/Time	PAM application time of creation. Read only variable.	
/System/Application/Version	PAM application version. Read only variable.	
/System/Application/CRC	PAM application CRC. Read only variable.	
/Driver/Version	Version of the PAM-ISA windows driver.	
/Driver/Status	Status of the PAM-ISA windows driver. Please refer to appendix A for details.	
/Driver/Error	Error code of the PAM-ISA windows driver. Please refer to appendix A for details.	
SystemInfo variables for SAM <n> connected to PAM (<n>: hex SAM address)</n></n>		
.Sam <n>/Bootware/Version</n>	SAM boot ware version. Read only variable.	
.Sam <n>/Bootware/CRC</n>	SAM boot ware CRC. Read only variable.	
.Sam <n>/Firmware/Version</n>	SAM firm ware version. Read only variable.	
.Sam <n>/Firmware/CRC</n>	SAM firm ware CRC. Read only variable.	
.Sam <n>/Application/Version</n>	SAM application version. Read only variable.	
.Sam <n>/Application/CRC</n>	SAM application CRC. Read only variable.	
.Sam <n>/Parameters/Version</n>	SAM parameters version. Read only variable.	
.Sam <n>/ Parameters /CRC</n>	SAM parameters CRC. Read only variable.	

Table 1:SEQARABE PAM-ISA Opc Server Items

Introduction

Atlas Copco Controls has prepared a demonstration that illustrates how the PAM-ISA Opc Server is used in practice. This demonstration utilizes the PAM-ISA Opc Server Version 1.0.xx together with an OPC client sample application realized using Excel.

This section describes how the demo application must be installed in order to run the demonstration. The key parts of the Excel application are discussed in more detail and use of the OPC automation interface with Visual Basic is explained.

System Requirements

The following system configuration is necessary to install and run the demo application:

Hardware:	Pentium, 48 Mbyte RAM
	PAM-ISA [p/n 9032 011 899]
	PAM to PC Communications Cable [p/n 9032 011 929]
OS:	Microsoft Windows NT, Windows 98 or 2000
Software:	Microsoft Office 97
	Atlas Copco Controls ProMotion V201-1

There's no need to connect any SAM Drives to the PAM-ISA device in order to run the demo application. But the optical ring must be closed by a single fibber

Installation

Hardware Configuration

Before installing the PAM-ISA card in your PC, you must insure that the port address assigned to the PAM-ISA does not conflict with the port address of any other device on the ISA bus. If necessary, the PAM-ISA port address can be reconfigured as shown in Table 3:SEQARABE. After installing the PAM-ISA, connect the PAM to PC Communications Cable between the PAM-ISA service connector (see Figure 4) and designated PC COM connector.

Port Address	Address Ju	umpers
300 H – 307 H *	1 == 2	3 == 4
308 H – 30F H	1 == 2	3 4
310 H – 317 H	1 2	3 == 4
318 H – 31F H	1 2	3 4
notes :	* factory defa	ult
	== short circuit	

Table 3:SEQARABE PAM-ISA Port Address Configuration Settings

Pah018_a.cdr

Figure 4 PAM ISA Connectors, Indicators and Address Jumpers

Be sure the power is switched off before installing or removing the PAM-ISA card from your PC!

After installing the PAM-ISA card, insert the ProMotion Collection 1999-04 CD ROM or newest collection, in your CD ROM Drive. ProMotion V201 or higher contains all software necessary to install and run the demo as well as PAM Tools software required to download the demo application program to the PAM.

Promotion Installation

From master-setup select Official versions and install ProMotion V201. Then install the service pack 201-1 or higher

Demo Installation and Setup

The PAM-ISA Opc Demo can be installed on your hard disk using the master-setup program included with the ProMotion CD. To run the setup program, insert the CD into your CD drive and from the Evaluation versions menu page, select PAM-ISA Opc Server. Setup will guide you through the installation and all files and registry entries necessary to run the demo will be automatically installed on you PC.

Setup will install the following components on your machine:

- PAM-ISA Opc Server
- PAM-ISA Opc Demo Excel Sheet
- Demo PAM application (must be downloaded to PAM_ISA using PAM Tools)
- PAM-ISA windows driver

After installation, you will find in the ACC ProMotion folder of the Windows Start menu the folder **PAM-ISA Opc Server** containing the following entries:

Demo	Link to the Excel Sheet Demo application to start the demo
Uninstall PAM-ISA Opc Server	Remove complete installation of PAM- ISA Opc Demo
User Manual	User Manual in PDF-format

PAM-ISA software configuration

Using PAM Tools, first check if you need to upgrade PAM bootware and firmware. Check if tools displayed version is corresponding to the indicated version into installed promotion readme.

The delivered demo application (D_pamisa.agl), located under ACC\pam-isa, must be first compiled

After compilation, download D_pamisa.pai to the PAM-ISA using PAM Tools.

Then start the PAM, and check if the application is able to run. (The optical ring must be closed by a single fiber)

Typical log messages when application is correctly synchronized with the PAM-ISA Opc Server.

```
[0B80M105]Start Synchronisation[0B80M106]Synchronisation is done[0B80M10C]Channel Bootware version D1=gesdp1013[0B80M10D]Channel Firmware version D1=gesdp1013[0B80M10B]Channel protocol D1=gesdpPC based channel[0B80M107]Valid ApplicationPC
```

Excel Sheet application

The Excel sheet demo application (D_pamisa.xls) illustrates how the PAM-ISA Opc Server can be accessed in order to collect information from the PAM-ISA device. Because Visual Basic is used to access the automation interface of the PAM-ISA Opc Server, the Excel sheet must be opened with **Macros enabled**!

Connection

The Excel sheet must be connected to the PAM-ISA Opc Server, before the PAM data can be accessed.

On the first line is listed the name of the PAM-ISA Opc Server which is set to **ACC.PAMISA_OpcServer.20** by default. To work with the PAM-ISA Opc Server this name doesn't have to be changed. But this could be the name of any OPC server installed on your machine.

Press the button **Connect** to open the connection. If the connection is established, the server name will be grayed and the button changes to **Disconnect**. The status changes to **'Ready'**.

To change the server name in order to connect to a different OPC server, the Excel sheet has to be disconnected first. Press Disconnect and wait until the status changes to 'Initialized'.

Description

After the Excel sheet is connected to the OPC server, the items can be accessed and displayed. The demo sheet contains three parts to do so:

- Item list
- Refresh mode
- Chart

Item list

The item list displays up to eight items. For each item the name and the value of the corresponding PAM variable is shown. The item can be selected from the combo box, which displays a list of all items currently available.

The current item value is displayed in the second column. This value can be changed if the item is writable. To do so, select the corresponding text field, enter the new value and deselect the text field by selecting any cell in the excel sheet. If the access permission is read only, the value will be grayed and cannot be changed.

If the item value is an array of multiple values (e.g. array of 8 bytes), only one element of the array will be displayed. The element to display can be selected with the spin box displayed next to the value. Values of arrays cannot be changed although the access rights for the item would allow it.

Refresh mode

There are three refresh modes possible: Manual, Automatic or Record.

If the **Manual** refresh mode is selected, the **Refresh** button is activated. Each time the **Refresh** button is pressed, all items displayed in the item list are read from the OPC server and the corresponding values are updated.

In the **Automatic** mode, the OPC server informs the Excel sheet when a value has been changed and the items are kept up to date automatically.

The **Record** mode enables periodic recording of the item values displayed in the item list. By selecting this option, the Record chart is displayed and the **Record** button is activated. Press this button to open a dialog for choosing the sample rate and to start the recording.

Chart

The chart provides a graphical representation of values displayed in the item list. Only values of the type number can be shown correctly. There are two kinds of charts:

In the Manual and Automatic refresh mode, a **Column Chart** is displayed. This chart shows a vertical bar for each value where height corresponds to the item value.

In the Record refresh mode, a **Line Chart** is displayed. This chart contains a graph of each value displayed in the item list, which shows the historical values of the item. There are 100 samples recorded for each value. The first sample always contains the latest value of an item. The time base depends on the sample rate selected in the record dialog.

PAM application

The PAM demo application provided with the PAM-ISA Opc Server has eight channel variables. If the demo application has been downloaded, eight items appear in the drop down lists of the item list in the Excel spreadsheet. The item names are as follows:

Variable Name	Item Name	Description
LRI_StartStop	CommId/0x010	Start/Stop demo application (Default: 0)
LRI_Offset	CommId/0x020	Phase offset in degrees added to the SinShiftValue. (Default: 0)
LRI_Limit	CommId/0x030	Max value for RampValue. (Default: 0 -> not active)
LRI_ChangeRate	CommId/0x040	Change cycle in milliseconds. (Default: 10)
LRI_IncrementSize	CommId/0x050	Value with which the RampValue is incremented each cycle. (Default: 0.1)
LRO_RampValue	CommId/0x100	incremented value. (Default: 0)
LRO_SinValue	CommId/0x110	sinus value. (Default: 0)
LRO_SinShiftValue	CommId/0x120	sinus value shifted by offset. (Default: 0)

Table 5: SEQARABEChannel Variables Created by PAM Application

This PAM application is a simple application, which can be started and stopped with the variable LRI_StartStop. When running, the variable LRO_RampValue is incremented periodically then reset to zero when the limit LRI_Limit is reached. For the LRO_SinValue, a sine signal is generated. The same signal shifted by the value LRI_Offest is generated for LRO_SinShiftValue.

Before starting the application, the PAM should be reset. To do this, select the Reset item (see SEQARABE) and change its value to 1. All variables are now reset to their default values.

To start the application, change the value of the item CommId/0x010 to a value not equal to zero (e.g. 1). To stop the application set it back to zero.

Using the OPC automation interface with Visual Basic

In this section the Excel sheet demo application, which is realized with the scripts language Visual Basic, is discussed in more detail. The aim of this section is to highlight some key points concerning the OPC automation interface. Further documentation of the demo application can be found in the source code. Detailed information concerning the OPC automation interface can be found in [2].

In this example, the automation interface version 1.0 of the OPC DataAccess specification is used. This specification has changed significantly in version 2.0 and the procedure for accessing an item differs from the procedure described in this section.

General

Before the OPC DataAccess automation interface can be used with Visual Basic, make sure, that the type library **OCSTK 1.0 Type Library** is selected in the reference list.

Connect

To connect to the OPC server, an appropriate COM object must be created using the function **CreateObject**. The name passed to this function corresponds to the name under which the OPC server is registered in the windows registry. This function creates a new OPC server object or connects to an existing OPC server and returns the pointer to the corresponding interface.

```
Dim gOpcServer As IOPCServerDisp
Set gOpcServer = CreateObject(" ACC.PAMISA_OpcServer.20")
...
...
Set gOpcServer = Nothing
```

When the OPC server is no longer to be used, the OPC server object must be released properly. Setting the interface gOpcServer to Nothing terminates the OPC server provided that no OPC clients are connected.

Create Group

To access the items, a group must first be created using the method **AddGroup** of the OPC server interface. A group is defined as a set of items and is identified by a

unique name. There are additional parameters passed to AddGroup like the activity flag and the update rate. AddGroup returns (on success) an interface to the new created group object.

Add Items

Items can be added to the group using the method **AddItems** of the group interface. A list of all item names is passed to this method, indicating the items, which should be added to the group. As a result, a list of all item objects successfully added will be returned.

Read/Write item value

To read or write the values of an item, the item objects returned by the method AddItems can be used.

```
Dim opcItem As OCSItem
Dim value
```

```
Set opcItem = itemObjects(0)

if Not opcItem Is Nothing Then
   value = opcItem.value ` read item value
   ...
   ...
   opcItem.value = value ` write item value
End If
```

Callback registration

If the OPC client wants to be informed, if a value of an item changes, a callback can be registered in the OPC server. This is done by the method **AddCallbackReference** of the IOPCAsyncIODisp interface. A context id as well as a callback object has to be passed to this method. The callback object must provide a method 'OnDataChange' which is called in case a item value changes.

If the OPC client doesn't want to be informed any more of a data change, the callback reference can be removed with the method **DropCallbackReference**.

The interface IOPCAsynclODisp can be optioned from the group interface.

```
Dim gConnection As Long
Dim aio As IOPCAsyncIODisp
Set aio = gOpcGroup
gConnection = aio.AddCallbackReference(1, Sheet1)
...
aio.DropCallbackReference gConnection
gConnection = 0
```

Type conversion with Visual Basic

The values provided by the PAM-ISA Opc Server are limited to the data types Real, Integer and Boolean. But in some cases (e.g. the pam status), the value needs to be interpreted byte wise. Whereas this conversion can easy be done with Integers and Booleans, Visual Basic does not provide an interface to do this with Real values.

Therefore within the setup of the PAM-ISA Opc Server an ActiveX Control is included, which allows the conversion of Real values to Byte arrays and vice versa.

To access this ActiveX Control, select the **AccVBConv 1.0 Type Library** in the Visual Basic reference list. The following example illustrates how this interface has to be used.

```
Dim vBConv As AccVBConv
Dim dval As Double
Dim arrayRes As Variant
Dim realRes As Variant
' Create the AccVBConv interface first
Set vBConv = CreateObject("ACCVBConv.AccVBConv")
dval = 123.567
' Convert dval to an 8 byte array
arrayRes = VBConv.ByteArrayFromReal(dval)
' arreyRes = {63, 53, 94, 186, 73, 228, 94, 64}
' Now convert the byte array back to a Real
realRes = VBConv.RealFromByteArray(arrayRes)
' realRes = 123.567
```

Status and Error Codes

Driver/Status

Status Code	Description
0xFFFFFFFF	Error State
0x01	Uninitialized state: running device driver internal initialization
0x02	Waiting for synchronization from PAM
0x04	Initialization state: Download new application, Pam gets some
	information from the driver
0x08	Watchdog is running and Messages are flowing through the dual port
0x10	Device driver is waiting for a reset command from the PAM
0x20	Special state indicating an access to the Jtag interface of the PAM
	(PAM's FPGA and FLASH programmation)

Table 9: ..Driver Status Codes

Driver/Error

	0.
Error Code	Description
0	ОК
0x0D03001	Unknown error
0x0D03002	Not enough memory
0x0D03003	No device found on specified IO port
0x0D03004	Problem mapping the dual port memory
0x0D03005	Problem initializing the dual port memory
0x0D03006	Internal error: Unable to initialize the JTAG manager
0x0D03007	Internal error: Unable to initialize the command interpreter
0x0D03008	Internal error: Unable to initialize the state manager
0x0D03009	Internal error: Problem starting the message thread
0x0D0300A	Internal error: Problem starting the watchdog thread
0x0D0300B	Win32 client requesting an unknown variable
0x0D0300C	Variable size mismatch
0x0D0300D	Unable to access JTAG because of still active sessions
0x0D0300E	JTAG is already being accessed
0x0D0300F	JTAG access is not initialized
0x0D03010	Unable to initalize PAM application structures
0x0D03011	Internal error: GetData failed
0x0D03012	Internal error: Command interpreter: Unknown command
0x0D03013	Internal error: CHNL_CMD_DWNLOADBEG: Type not supported
0x0D03014	Internal error: Problem downloading data
0x0D03015	Pam->PC: Unknown DPID
0x0D03016	Internal error: Unable to initialize the session manager
0x0D03017	Internal error: Unable to initialize the session fifos
0x0D03018	Internal error: Unable to go to the specified state
0x0D03019	PC->Pam Dualport fifo full
0x0D0301A	Pam->PC Windows fifo full

0x0D03100	PC->Pam Windows fifo full
0x0D03101	Internal error: Not enough memory
0x0D03102	New application detected. Variables list mismatch. Restart the OPC server.
0x0D03103	Unable to initialize communicate with the Pam ISA device driver
0x0D03104	Internal error: Unable to create events
0x0D03105	Internal error: Unable to communicate with the Pam ISA device driver
0x0D03106	Unable to get information about application variables
0x0D03107	Internal error: Unable to initialize application variables
0x0D03108	Internal error: Unable to initialize Pam iSA common variables
0x0D03109	Number of SAM declared by the application does not correspond with
	the actual hardware
0x0D0310A	Internal error: Unable to start internal thread
0x0D0310B	Unable to write variable. No active session
0x0D0310C	Internal error: Uninitialized session manager has received a start cmd
0x0D0310D	Internal error: Unable to initialize ORB
0x0D0310E	Internal error: Unable to initialize ORB DPLink

Table 10 : ..Driver Error Codes

System/State

Status Code	Description
0x01	Booting State (stopped)
0x02	Running State
0x03	Fatal Error State
0x04	Busy (state transition)

Table 11: .. Pam Status Codes