
Extended Indexicals: User Manual

Jean-Noël Monette

Version 1, 4th October 2012

Chapter 1

Introduction

This document describes how to use the compiler for extended indexicals. Indexicals have been introduced in [5] to de-
scribe constraint propagators. Extended indexicals aim at representing propagation of global constraints in a high-level
and solver-independent way, yet being compilable into real and efficient propagators. This extension has been published
first in [2]. If you want to refer to the compiler, please refer to that article [2] in priority over the present document.

The language and the compiler are research tools, and are currently subject to potential major modifications. Any-
way, we think it is important to make it available to get feedback from potential users. So if you (try to) use the
indexical compiler, we would be grateful to hear your feedback, be it positive (this is encouraging) or negative (this
is useful for future improvements). We try to keep the documentation up to date with the program. If this is not
the case, please inform us as well. Some functionality may even not be documented at all. You can contact the main
author at jean-noel.monette@it.uu.se.

The program is distributed under a BSD-style license (see the file LICENSE in the jar). The compiler is mainly
written in Java, and uses Antlr and StringTemplate.

The main features of our compiler in its current state are:

• Compilation of stateless, non-incremental propagators, to Gecode [1], Comet [4], and OscaR.1

• Syntactic verification of monotonicity and correctness of propagators.
• Simple transformations of propagators.
• Deductive synthesis of propagators from checkers (not yet documented).
• Generation of an extended Gecode/FlatZinc interpreter (not yet documented).

The remainder of this document is structured as follows:

• Chapter 2 describes in details the indexical language.
• Chapter 3 shows how to use the compiler, and the generated code.
• Chapter 4 gives a complete example of the use of the compiler in an interactive fashion.

1.1 Getting Started

1.1.1 Installation

The compiler is distributed as a Java jar file. You can download it from http://user.it.uu.se/~jeamo371/
indexicals/. You need a Java Runtime Environment (JRE) SE 6 (available from http://www.oracle.com/technetwork/
java/javase/downloads/index.html, versions 5 and 7 should work as well but have not been tested), and a copy of
Antlr 3.4 (available at http://www.antlr.org/download/antlr-3.4-complete.jar) to be put in the same folder as
indexicals.jar.

1.1.2 Executing the compiler

The compiler is run at the command line and accepts a set of options detailed in Section 3.1. To execute the compiler,
type java -jar indexicals.jar [options]. As an example, java -jar indexicals.jar -f
/examples/mzn/flatzinc.idx --genProp -c FZN int eq -t gecode -o int eq will read the content of one of the
files provided with the distribution, and look for the constraint named FZN int eq. The compiler will then generate
the propagator from the checker, and compile it to Gecode in the files named int eq.hh and int eq.cpp.

1.1.3 Examples

The compiler comes with various examples of constraint descriptions. They can be found in the example directory of
the jar file. The subdirectory mzn contains examples (of checkers) related to FlatZinc and MiniZinc [3], the subdirectory
CP2012 contains the code that has been use to produce the figures in [2].

Acknowledgements

This work is supported by grant 2011-6133 of the Swedish Research Council (VR). I thank the anonymous reviewers
and Christian Schulte for their useful comments for the original paper, as well as Mats Carlsson for encouraging us to
write it. Many thanks to H̊akan Kjellerstrand for the early and valuable feedback on the compiler. Finally, I would
like to thank my colleagues Pierre Flener and Justin Pearson for the good collaboration and their many advices.

1https://bitbucket.org/oscarlib/oscar
1

jean-noel.monette@it.uu.se
http://user.it.uu.se/~jeamo371/indexicals/
http://user.it.uu.se/~jeamo371/indexicals/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.antlr.org/download/antlr-3.4-complete.jar

Chapter 2

The Language

This chapter presents the language used to describe the indexicals. It first describes the syntax of the language and
then gives the semantics of the various constructs. Parts of this chapter are taken from [2].

2.1 Syntax

Comments Comments can appear in the source file at any place. They are C++/Java style, i.e. they are enclosed
by “/*” and “*/”, or are started by “//” and end at the end of the current line. Currently comments are simply
discarded by the compiler, and are not transferred to the compiled file.

Types The language is strongly typed and has six basic types: integers (int), Booleans (bool), sets of integers (set),
integer decision variables (vint), and constraints (cstr and cstr*). The two types for constraints are discussed later.
The compiler supports arrays of any basic type (but currently not arrays of arrays). Identifiers of (arrays of) decision
variables and constraints start with an uppercase letter. Identifiers of constants denoting integers, Booleans, sets, and
arrays thereof start with a lowercase letter.

Grammar Figure 2.1 presents the (slightly simplified) grammar of our language. The main rule (CSTR) defines a
constraint. A constraint is defined by its name and list of arguments. Constraint name overloading is allowed as long
as the concerned constraints have different arguments (in type or in number). A constraint definition contains the
description of zero, one or more propagators and zero, one or more checkers. A propagator is a procedure that reduces
the domains of the variable in order to remove values that cannot participate in a solution of the constraint given the
current domains. A checker is a logical formula that decides whether an assignment satisfies the constraint.

There are four accessors to the domain of a decision variable: dom(x), min(x), max(x), and val(x) denote respec-
tively the domain of decision variable x, its minimum value, its maximum value, and its unique value. As val(x) is
only determined when the decision variable x is ground, the compiler adds guards to ensure a correct treatment when
x is not ground.

The instruction post invokes the propagator of another constraint. The functions entailed, satisfiable, and
check query the status of another constraint. Let S be the current store: entailed(c) and satisfiable(c) decide
whether the constraint c is entailed respectively satisfiable in S; if S is an assignment, then the function check(c) can
be called and decides whether S satisfies the constraint c.

A new feature of our language is what we call a meta-constraint, which is a constraint that takes other constraint(s)
as argument(s). We distinguish between constraints on actual arguments (cstr) and constraints on formal arguments
(cstr*). Meta-constraints allow one to write more concise propagators by encapsulating common functionalities. See
the file “examples/meta.idx” for some examples.

2

<FILE> ::= <CSTRorINC>* .
<CSTRorINC> ::= <CSTR> | <INCLUDE> .
<INCLUDE> ::= include "<FILENAME>" ; .
<CSTR> ::= def <CNAME>(<args>){ <PROPAG>* <CHECKER>*)} .
<PROPAG> ::= propagator(<NAME>?){ <INSTRS> } .
<CHECKER> ::= checker(<NAME>?){ <BOOL> } .
<INSTRS> ::= <INSTR>* .
<INSTR> ::= <VAR> in <SET> ; | post(<CINVOKE>,PNAME?); | fail; |

<BOOL> -> <INSTR> | once(<BOOL>) <INSTR> |
forall(<ID> in <SET>) <INSTR> | { <INSTRS> }
<DEF> .

<SET> ::= U | emptyset | <ID> |
<INT>..<INT> | rng(<ID>) | dom(<VAR>) |
<NarySetOp>(<ID> in <SET>)(<SET>) | -<SET> |
<SET> <BinSetOp> <SET> |
{<INT>+} | {<ID> in <SET>:<BOOL>} .

<INT> ::= inf | sup | <NUM> | <ID> |
card(<SET>)| min(<SET>) | max(<SET>) |
min(<VAR>) | max(<VAR>) | val(<VAR>) |
b2i(<BOOL>)| - <INT> | <INT> <BinIntOp> <INT> |
<NaryIntOp>(<ID> in <SET>)(<INT>) .

<BOOL> ::= true | false | <ID> |
<INT> <BoolIntOp> <INT> | <INT> memberof <SET> |
<SET> <BoolSetOp> <SET> | not <BOOL> |
<BOOL> <BinBoolOp> <BOOL> |
<NaryBoolOp>(<ID> in <SET>)(<BOOL>) |
entailed(<CINVOKE>) | satisfiable(<CINVOKE>) |
check(<CINVOKE>) .

<DEF> ::= <type> <ID> := <...> |
<type>[] <ID> := all(<ID> in <SET>)(<...>)|
cstr* <CNAME>(args) := <...> .

<BinIntOp> ::= + | − | ∗ | / | mod .
<NaryIntOp> ::= sum | min | max .
<BinSetOp> ::= union | inter | minus | <BinIntOp> .
<NarySetOp> ::= union |inter | sum .
<BoolIntOp> ::= == | ! = | <= | < | >= | > .
<BoolSetOp> ::= == | seteq | subseteq .
<BinBoolOp> ::= <NaryBoolOp> | < − > | andThen | orElse .
<NaryBoolOp> ::= and | or .
<NUM> ::= 1 | 2 | −12 | ...
<CINVOKE> ::= <CNAME> | <CNAME>(<args>) .

Figure 2.1: BNF-like notation for a simplified definition of the language.

2.2 Semantics

The following table gives the semantics of each construct of the language.

Table 2.1: Semantics of the language

Construction Example(s) Type Semantics
Structures
include "<FILENAME>"; include "basis"; Includes the content of the given file into

the current file. The file name is appended
“.idx” if necessary, and the file is looked for
both in the directory of the including file,
and the calling directory of the application.

def <CNAME>(<args>){...} def INC(vint[] X){...} Creates a constraint with the given name
and parameters. It is possible to overload
constraints with different arguments. The
body of the definition is made of zero,
one or more propagators and checkers.
A constraint name must start with a
upper-case letter.

def
<CNAME>(<args>)<ANNOTS>{...}

def INC::FZN(vint[] X){} Same as above, but with annotations
attached to the constraint.

propagator{<INSTRS>} Defines a propagator. The body is a list
of instructions. Note: prop can be used as
a shortcut for propagator.

3

Table 2.1: (Continued)

Construction Example(s) Type Semantics
propagator(<NAME>){<INSTRS} Same as above, but with a name by which

the propagator can be referred to.
propagator<ANNOTS>{<INSTRS} Same as above, but with annotations

attached to the propagator. The used
annotations for propagators are BR, DR,
VR, Default. They are used in the Gecode
code generation. We refer to Section 3.3.2
for their meaning.

propagator(<NAME>)<ANNOTS>{<INSTRS} Same as above, with both name and
annotation.

checker{<BOOL>} Defines a checker. The body is a Boolean
formula.

checker(<NAME>){<BOOL>} Same as above with a name. Checker
names are not yet used.

checker::<ANNOT>{<BOOL>} Same as above with an annotation.
checker(<NAME>)::<ANNOT>{<BOOL>} Same as above, with both name and

annotation.
Instructions VOID
<VAR> in <SET>; X in dom(Y); VOID Updates the domain of <VAR> to be the

intersection of its current domain and the
set <SET>.

post(<CINVOKE>,<PNAME>?); post(PLUS(X,Y,10),FC); VOID Calls a propagator of the constraint given
in first argument. In the current compiler,
the effect is to expand the call, replacing it
by the actual propagator where the formal
arguments have substituted for the actual
ones. If PNAME is present, then calls the
propagator with that name (if any).

fail; fail; VOID Fails the current store.
once(<BOOL>) <INSTR> once(1 < 2) fail; VOID Executes the instruction INSTR once

the Boolean condition is verified. The
condition should be monotonic, i.e., if it
is true in some store, it should be true in
any stronger store. The compiler may use
this fact when transforming the code to
some targets.

<BOOL> -> <INSTR> true -> fail; VOID Syntactic sugar for the above.
forall(<ID> in <SET>)
<INSTR>

forall(i in rng(X)) x[i]
in 0..1;

VOID Executes the instruction for all values in
the set. ID takes the value of the current el-
ement, and can be used in the instruction.

forall(<ID> in
<SET>:<BOOL>) <INSTR>

forall(i in rng(X):i !=
0) x[i] in 0..1;

VOID Same as above but the instruction is
executed only for the elements that satisfy
the Boolean condition.

{INSTRS} {X in dom(Y); Y in
dom(X)}

VOID Used to group several instructions in one,
to define the body of the once and forall
instructions.

<TYPE> <ID> := <...> ; int a := 1; VOID Defines a new (program) variable. In
the current compiler, the left hand side
is really a shortcut for the expression on
the right hand side. The types of both
sides must coincide. Such variables are
immutable and cannot be redefined. The
type can be int, set and bool.

<TYPE>[] <ID>
:= all(<ID> in
<SET>)(<...>);

bool[] b := all(i in
rng(X))(true);

VOID Same as above for arrays.

cstr* <CNAME>(<args>) :=
<...>;

cstr* EQ0(vint X) :=
EQ(X,0);

VOID Defines a new constraint template, i.e. a
constraint that can take some argument.
The right hand side is some constraint
invocation that can use the formal
parameters of the template.

cstr <CNAME> := <...>; cstr OK :=
PLUS(X[i],Y,Z);

VOID Defines a new constraint instance.

vint <VAR> := <...>; vint Z0 := Z[0]; VOID Defines an alias for a variable.
vint <VAR> := freshvint; vint W := freshvint; VOID Defines a fresh local decision variable.

4

Table 2.1: (Continued)

Construction Example(s) Type Semantics
Various Expressions ANY
<VAR> X, X[i] VAR Represents a variable. Variable (and

variables arrays) names must start with
an uppercase letter. They can contain
letters, numbers and underscores.

<ID> i,a1 ANY Represents a value (integer, set, Boolean
or array thereof). Their names start
with a lowercase letter. They can contain
letters, numbers and underscores.

<NAME> 1, d, D - This is the name of a propagator or
checker. It can be any name (composed of
letters, numbers and underscores) which
is not a reserved keyword. It can also be
a number.

<CNAME> SUM, Sum - The name of a constraint. It must start
with an uppercase letter. It can contain
letters, numbers, and underscore.

<args> int[] x, vint X Arguments are comma separated. Each
formal argument is composed of a type
and a name. The name must follow the
capitalisation rules defined above. The
name may be followed by some annota-
tions. In particular ::Bool tells that the
integer variable represents a 0-1 variable.

<CINVOKE> PLUS(X,Y,10) - The invocation of a constraint, which
is used in post, check, entailed,
satisfiable, and local cstr* definitions.
The name of the constraint is followed by
the actual arguments in parenthesis and
comma separated. It can also be a local
constraint instance.

<ANNOTS> ::BR - Defines annotations. Several annotations
can be attached to the same element by
separating them by “::”.

Sets SET
dom(<VAR>) dom(X) SET The domain of variable <VAR> in the

current store.
<SET> <BinSetOp> <SET> dom(X) inter dom(Y) SET The result of the binary set operator

(union, inter, minus).
<SET> <BinIntOp> <SET> dom(X) + dom(Y) SET The result of the binary operator (+, -,

*, /, mod) on the two operands. Those
integer operators are applied pointwise.

U U SET The universe set.
emptyset emptyset SET The empty set.
<ID> s SET The set represent by this identifier.
<INT>..<INT> 1..10 SET The range of integer between the two

given integers included.
rng(<ID>) rng(X) SET The range of values on which the array is

defined. ID must be the identifier of some
array.

<NarySetOp>(<ID> in
<SET>)(<SET>)

inter(i in
rng(X))(dom(X[i]))

SET The result of applying the operator
(inter, union or sum) on the all the sets
constructed from all the values in the
range set.

- <SET> - dom(X) SET The set where all values have been
replaced by their opposite.

{ <INT>+ } {1,3,5} SET A set given in extension.
{<ID> in <SET>:<BOOL>} {i in dom(X): i>min(X)} SET The subset of SET retaining only the

values that satisfy the BOOL predicate.
<ID>[<INT>] s[i] SET Accesses an element of an array of sets.
Integers INT
min(<VAR>) min(X) INT The minimum of the domain of variable

<VAR> in the current store.
max(<VAR>) max(X) INT The maximum of the domain of variable

<VAR> in the current store.

5

Table 2.1: (Continued)

Construction Example(s) Type Semantics
val(<VAR>) val(X) INT The unique value in the domain of variable

<VAR>. Is not evaluated until <VAR> is
indeed bound to a single value.

<INT> <BinIntOp> <INT> i + 3 INT The result of the binary operator on the
two operands. The operators are +, -,
*, /, mod with their usual meaning.

inf inf INT The negative infinity (infimum).
sup sup INT The positive infinity (supremum).
<NUM> 0, 1, 13, 999 INT A natural number. Negative integers are

obtained by applying the unary minus
operator below.

<ID> x INT The integer represented by this identifier.
card(<SET>) card(rng(X)) INT The cardinality (size) of the given set.
min(<SET>) min(1..2) INT The smallest value in the given set.
max(<SET>) max(dom(X)) INT The largest value in the given set.
b2i(<BOOL> b2i(true) INT The reified value of the given Boolean. 1

stands for true, and 0 for false.
- <INT> -5 INT The opposite of the given integer.
<NaryIntOp>(<ID> in
<SET>)(<INT>)

min(i in
rng(X))(min(X[i]))

INT The result of applying the operator (sum,
min, or max) on all the integers constructed
from all the values in the set.

<ID>[<INT>] a[i] INT Accesses an element of an array of integers.
Booleans BOOL
true true BOOL The “true” Boolean literal.
false false BOOL The “false” Boolean literal.
<ID> b BOOL The Boolean represented by this identifier.
<ID>[<INT>] b[i] BOOL Accesses an element of an array of

Booleans.
<INT> <BoolIntOp> <INT> 3 < 8 BOOL The result of testing the predicate on the

two integers. The operator can be <, >,
<=, >=, ==, !=.

<INT> memberof <SET> 3 memberof dom(X) BOOL true if the integer is a member of the set.
false otherwise.

<SET> <BoolSetOp> <SET> dom(X) subseteq dom(Y) BOOL The result of testing the predicate on the
two sets. The operator can be seteq or
subseteq.

not <BOOL> not true BOOL The negation of the Boolean.
<BOOL> <BinBoolOp>
<BOOL>

b1 and b2 BOOL The result of applying the binary operator
(and, or, <->, andThen, orElse) on the
two operands. The two last operators
(andThen, orElse) are lazy in that they
should never consult the second operand
if the result can be determined from the
first operand alone.

<NaryBoolOp>(<ID> in
<SET>)(<BOOL>)

or(i in
rng(X))(check(C(X[i])))

BOOL The result of applying the operator (and
and or) on all the Booleans constructed
from all the values in the set.

entailed(<CINVOKE>) entailed(SUM(X,Z)) BOOL Tests if the constraint is entailed in the
current store.

satisfiable(<CINVOKE>) satisfiable(C) BOOL Tests if the constraint is satisfiable in the
current store.

check(<CINVOKE>) check(REIFY(SUM(X,Z),B)) BOOL Tests if the constraint is verified in the cur-
rent store, where the variables appearing
in the constraint are ground.

6

Chapter 3

Using the Compiler

3.1 From the command line

The compiler is run at the command line and accepts a set of options detailed hereafter. To execute the compiler, you
type:
java -jar indexicals.jar [options]
The first option is to set the input file, using -f [filename]. The file name can be given relative to the working

directory or with an absolute path. The file name must end with “.idx”. If the file name does not end with the
right extension, “.idx” is appended to the file name. If the file is not found in the file system, it is also searched for
in the jar file, which contains some predefined constraints in the examples subdirectory. For instance, java -jar
indexicals.jar -f /examples/mzn/flatzinc.idx reads the file that contains the definition of all the FlatZinc
built-in constraints supported by our compiler (i.e. without set or float variables).

If no more option is given, the compiler just parses the file, performs a normalisation of the code, prints some statis-
tics, and outputs the resulting code to standard output. The normalisations that are performed are straightforward
simplifications of formulas, expansion of calls to other constraints, and removal of local program variables.

It is possible to change the output file with the -o [filename] option. The file name can be relative or absolute.
It is also possible to change the type of the output, to compile toward some solver. The option -t [target] changes
the target of the compiler. The following values of [target] are allowed:

• idxs: Prints indexical code. This is the same as not specifying a target.
• gecode: Compiles to Gecode propagators. Two files are written, the header and source files, by appending respec-

tively “.hh” and “.cpp” to the given output file name.
• comet: Compiles to Comet propagators.
• oscar: Compiles to OscaR propagators. The given output file name is interpreted as the directory where the Java

files are to be written.
• gecode/fzn: Creates the Gecode/FlatZinc interpreter binding for the Gecode propagator (created with gecode).
• list: Prints the list of constraints, and for each the list of propagators and checkers.
• none: Does not print anything. Useful if one wants to output only some stats (option -s).

The input file can contain several constraints. It is possible to specify to use only one of them, by giving its name
to the option -c [constraintname].

Before outputting the code, several transformations can be applied. They are activated with the following flags:

• --genReif [suffix]: Generates a reified version of the constraints, by adding the suffix to the constraint name,
and adding an indicator variable as last parameter. The constraints whose name already end with the suffix, or for
which there exists already another constraint with the same name and the suffix, are not treated. Currently, only
the checkers of the reified constraints are generated (as we don’t have a general way to transform the propagator).
• --genProp: Generates a propagator for each checker of the constraints. Constraints that already have a propagator

are not concerned.
• --genPropForce: Generates a propagator for each checker of the constraints. This is done even if the constraint

already has some propagator.
• --dom2bnd: Replaces all appearances of the dom(X) accessor by the range min(X)..max(X), for any variable X.

The transformations are applied in the order given above. The order in which options are given at the command
line does not matter.

Two more options exist:

• -h prints a short help message summarising the available options (and quit).
• -s prints some statistics on the constraints to the standard output.

3.2 Debugging

The purpose of this section is to help debug code in case the compiler complains. Indeed, in the current version, the
error messages can be very unhelpful. We are working on improving this. Notice that some errors might be due to errors
in the compiler. Do not hesitate to report problems you have. You might save time, as well as the one of other users.

Usual sources of errors

• Confusion in identifier syntax. Decision variable names (vint) and constraint identifiers start with an upper-case
letter. Integer, set, and Boolean identifiers start with with a lower-case letter.
• Trying to use a decision variable as an integer. Even in a checker, if you want to access the value of a variable, you

must use the val(.) accessor (or one of the other accessors).
• Calling a constraint without enclosing it in a function. Even in a checker, you must enclose a call to another

constraint in one of the following functions:

– post, to post a propagator of the constraint. Used in another constraint’s propagator as an instruction.
7

– check, to test if the constraint is satisfied (on a ground instance). Typically used in a checker.
– entailed, to test if the constraint is entailed. Typically used in a propagator in a Boolean context.
– satisfiable, to test if the constraint is satisfiable. Typically used in a propagator in a Boolean context.

Understanding the error outputs

• mismatched input ’C’ expecting ID means that you probably used an upper-case letter (C in this case) for an
identifier of something that is not a variable or a constraint.
• Exception in thread "main" java.lang.IllegalArgumentException: Can’t find template ite.st; group
hierarchy is [ToGecode] is a problem inside the compiler, please report it so that we can fix it.
• line 34:13 no viable alternative at input ’Alldiff’ means that you probably used a constraint without

enclosing it into a post or check function.

3.3 Using the produced code

This section describes the structure of the produced code for the different targets and how to interface with it.

3.3.1 Comet

A propagator generated for Comet is defined in a class that extends MyUserConstraint<CP>. This last class is defined
in the file propsupport.co that you can find in the jar file in the runtime/comet directory. You need to extract this
file and place it along the generated files (or in any place that the Comet compiler knows).

In addition to the classes for the propagators, two functions are defined for each constraint. These functions are
used to post the constraint, and their name is exactly the one defined in the indexical file. The first function takes
as argument the set of arguments of the constraint, in the order defined in the indexical. The types are translated as
would be expected. In particular, a vint becomes a var<CP>{int}.

The second function adds an argument to choose which propagator to use. The type of this last argument is an
enumeration corresponding to the propagators. If using the first function, the first propagator of the constraint is ar-
bitrarily chosen. These functions return an object of type UserConstraint<CP>. To use the newly defined constraints
in your constraint program, it suffices to include the generated file, and call the corresponding function as argument
of a post method.

As an example, if you defined a constraint by indexicals as def ACSTR(vint[] X, vint Z)..., an example Comet
program that uses it could be:

i n c lude ‘ ‘ g e n e r a t e d f i l e . co ’ ’ ;

So lver<CP> cp () ;
var<CP>{int} x [1 . . 1 0] (cp , 2 . . 8) ;
var<CP>{int} y (cp , −10 . . 10) ;
so lve<cp>{

cp . post (ACSTR(x , y)) ;
}
[. . .]

3.3.2 Gecode

A propagator generated for Gecode is defined as a class extending Propagator. In addition, two functions are defined to
post the constraint. Their name is exactly the name defined in the indexical file. The first function follows the Gecode
convention, that is the first argument is the Home in which to post the constraint, the next arguments are the actual
arguments of the constraint, and the (optional) last argument is the consistency level (IntConLevel). Note that this
last argument makes sense only if you defined several propagators and annotate them. The correspondence is as follows:

Annotation Meaning IntConLevel
DR Domain Reasoning ICL DOM
BR Bounds Reasoning ICL BND
VR Value Reasoning ICL VAL
Default Default Propagator ICL DEF

If more than one propagator has the same annotation, one is chosen arbitrarily. A propagator is also chosen
arbitrarily as the default if no default is given.

The arguments of the posting functions are in the order specified in the source. The types are translated as follows:

Indexicals Gecode
vint IntVar
vint[] IntVarArgs
vint (::Bool) BoolVar
vint[] (::Bool) BoolVarArgs
int int
int[] IntArgs
bool bool
bool[] IntArgs
set IntSet
set[] IntSetArgs

8

Notice that the “::Bool” annotation put after a vint argument (e.g. vint X::Bool) makes it compiled into a Gecode
Boolean variable.

The second defined function replaces the IntConLevel by an enumeration letting one choose among all the defined
propagators of the constraint. The enumeration is defined in the header file just before the function prototypes.

As an example, if you defined a constraint by indexicals as def ACSTR(vint[] X, vint Z)..., an example program
that uses it could be:

#include <gecode / d r i v e r . hh>
#include <gecode / int . hh>
#include ” g e n e r a t e d f i l e . hh” ;
using namespace Gecode ;

class TestCSTR : public S c r i p t {
private :

IntVarArray X;
IntVar Z ;

public :
TestCSTR () : X(∗ this , 1 0 , 2 , 8) , Z(∗ this ,−10 ,10) {

ACSTR(∗ this , X, Z) ;
[. . .]

}
[. . .]
}

3.3.3 Oscar

TOCOME

3.3.4 Gecode/FlatZinc

TOCOME

9

Chapter 4

Example

This section presents an example use of the compiler in an interactive fashion. For the details of the syntax, see
Chapter 2. Our case is the development of a propagator in Gecode that constraints the number of variables that
are larger than some given value. We call this constraint exactly geq. We start by writing the signature of this
constraint, and a checker for it in a text file (called here “cstr.idx”):

1 def Exactly_geq(vint[] X, vint N, int v){
2 checker{
3 val(N) == sum(i in rng(X))(b2i(v <= val(X[i])))
4 }
5 }

Calling the compiler as java -jar indexicals.jar -f cstr.idx, prints the very same code to the standard
output (this assures us that we have not made any syntax error):

1 def Exactly_geq(vint[] X, vint N, int v){
2 checker{
3 val(N) == sum(i in rng(X))(b2i(v <= val(X[i])))
4 }
5 }

Then, we ask the compiler to generate a corresponding propagator, adding the --genProp option. The result is:

1 def Exactly_geq(vint[] X, vint N, int v){
2 checker{
3 val(N) == sum(i in rng(X))(b2i(v <= val(X[i])))
4 }
5 propagator(genbnd){
6 N in sum(i in rng(X))(b2i(v <= min(X[i]))) .. sup;
7 N in inf .. sum(i in rng(X))(b2i(v <= max(X[i])));
8 forall(i in rng(X)){
9 (1 <= (min(N) + sum(ii0 in {ii0 in

rng(X):i != ii0})((b2i(max(X[ii0]) < v) + -1))) and (max(N) + sum(ii0 in {ii0
in rng(X):i != ii0})((b2i(min(X[ii0]) < v) + -1))) <= 1) -> X[i] in v .. sup;

10 (0 <= (min(N) + sum(ii0 in {ii0 in rng(X):i !=
ii0})((b2i(max(X[ii0]) < v) + -1))) and (max(N) + sum(ii0 in {ii0 in rng(X):i
!= ii0})((b2i(min(X[ii0]) < v) + -1))) <= 0) -> X[i] in inf .. (v + -1);

11 }
12 }
13 }

This seems a bit heavy, so we decide to save this code in the file “cstr.idx” (overwriting the previous content), to
manually modify it. We replace all the loop indices “ii0” by “j”, and we rewrite slightly the inequations:

1 def Exactly_geq(vint[] X, vint N, int v){
2 checker{
3 val(N) == sum(i in rng(X))(b2i(v <= val(X[i])))
4 }
5 propagator(genbnd){
6 N in sum(i in rng(X))(b2i(v <= min(X[i]))) .. sup;
7 N in inf .. sum(i in rng(X))(b2i(v <= max(X[i])));
8 forall(i in rng(X)){
9 (min(N) - 1 >= (- sum(j

in {j in rng(X):i != j})((b2i(max(X[j]) < v) + -1))) and (- sum(j in {j in
rng(X):i != j})((b2i(min(X[j]) < v) + -1))) >= max(N) - 1) -> X[i] in v .. sup;

10 (min(N) >= (- sum(j in {j
in rng(X):i != j})((b2i(max(X[j]) < v) + -1))) and (- sum(j in {j in rng(X):i
!= j})((b2i(min(X[j]) < v) + -1))) >= max(N)) -> X[i] in inf .. (v + -1);

11 }
12 }
13 }

Feeding it to the compiler again results in a bit simpler code, which we save again in “cstr.idx”:
10

1 def Exactly_geq(vint[] X, vint N, int v){
2 checker{
3 val(N) == sum(i in rng(X))(b2i(v <= val(X[i])))
4 }
5 propagator(genbnd){
6 N in sum(i in rng(X))(b2i(v <= min(X[i]))) .. sup;
7 N in inf .. sum(i in rng(X))(b2i(v <= max(X[i])));
8 forall(i in rng(X)){
9 (sum(j in {j in rng(X):i != j})(b2i(v <= max(X[j]))) <= (min(N) + -1) and (max(N) +

-1) <= sum(j in {j in rng(X):i != j})(b2i(v <= min(X[j])))) -> X[i] in v .. sup;
10 (sum(j in {j in rng(X):i != j})(b2i(v <= max(X[j]))) <= min(N) and max(N) <=

sum(j in {j in rng(X):i != j})(b2i(v <= min(X[j])))) -> X[i] in inf .. (v + -1);
11 }
12 }
13 }

Now, we will make use of our human knowledge to remove some parts of the conditions in the forall. Indeed some
parts are always true, thanks to the indexicals that restrict N. Further, we know that the remaining of the condition
can only be true when N is fixed, so we will replace the min(N) and max(N) by val(N). This results in:

1 def Exactly_geq(vint[] X, vint N, int v){
2 checker{
3 val(N) == sum(i in rng(X))(b2i(v <= val(X[i])))
4 }
5 propagator(genbnd){
6 N in sum(i in rng(X))(b2i(v <= min(X[i]))) .. sup;
7 N in inf .. sum(i in rng(X))(b2i(v <= max(X[i])));
8 forall(i in rng(X)){
9 sum(j in {j in rng(X):i != j})(b2i(v <= max(X[j]))) <= (val(N) + -1) -> X[i] in v .. sup;

10 val(N) <= sum(j in {j in rng(X):i != j})(b2i(v <= min(X[j]))) -> X[i] in inf .. (v + -1);
11 }
12 }
13 }

Now that we are satisfied with our propagator, we will generate Gecode code from it, using the options -o
exactly geq -t gecode, to create the files exactly geq.hh and exactly geq.cpp. We report here only the code of
the propagator:

ExecStatus propagate (Space& home , const Gecode : : ModEventDelta& med) {
bool nafp = true ;
while (nafp) {

nafp = fa l se ;
int naryvar6 = 0 ;
int l o c a l v a r 4 1 = (X. s i z e () + −1) ;
for (int i =0; i<=l o c a l v a r 4 1 ; i++){

naryvar6 = (((v <= X[i] . min ())) + naryvar6) ;
}
GECODE ME CHECK MODIFIED(nafp ,N. gq (home , naryvar6)) ;
int naryvar7 = 0 ;
for (int i =0; i<=l o c a l v a r 4 1 ; i++){

naryvar7 = (((v <= X[i] . max())) + naryvar7) ;
}
GECODE ME CHECK MODIFIED(nafp ,N. lq (home , naryvar7)) ;
bool boolvar12 = N. as s i gned () ;
i f (boolvar12) {

int naryvar8 = 0 ;
for (int j =0; j<=l o c a l v a r 4 1 ; j++){

naryvar8 = (((v <= X[j] . max())) + naryvar8) ;
}
int naryvar9 = 0 ;
for (int j =0; j<=l o c a l v a r 4 1 ; j++){

naryvar9 = (((v <= X[j] . min ())) + naryvar9) ;
}
for (int i =0; i<=l o c a l v a r 4 1 ; i++){

int l o c a l v a r 3 4 = N. va l () ;
i f ((((((X[i] . max() < v)) + −1) + naryvar8) <= (l o c a l v a r 3 4 + −1))) {

GECODE ME CHECK MODIFIED(nafp ,X[i] . gq (home , v)) ;
}
i f ((l o c a l v a r 3 4 <= ((((X[i] . min () < v)) + −1) + naryvar9))) {

GECODE ME CHECK MODIFIED(nafp ,X[i] . l q (home , (v + −1))) ;
}

11

}
}
i f (boolvar12) {

int l o c a l v a r 3 8 = N. va l () ;
i f ((naryvar7 <= l o c a l v a r 3 8)) {

i f ((l o c a l v a r 3 8 <= naryvar6)) {
return home .ES SUBSUMED(∗ this) ;

}
}

}
}
i f (X. a s s i gned ()&&N. as s i gned ()&&true) return home .ES SUBSUMED(∗ this) ;
return ES FIX ;

}
This code can be further simplified as the variables naryvar8 and naryvar7 compute the same value, and the same

thing happens with naryvar9 and naryvar6. In addition, the while loop and the last if statement can be removed,
as they are not necessary here. Indeed, one can show that this propagator is idempotent, without the need to repeat
it. Finally, variables can also be renamed to more meaningful names:

ExecStatus propagate (Space& home , const Gecode : : ModEventDelta& med) {
int s i z e = X. s i z e () ;
int lbound = 0 ;
for (int i =0; i<s i z e ; i++){

lbound = (v <= X[i] . min ()) + lbound ;
}
GECODE ME CHECK(N. gq (home , lbound)) ;
int ubound = 0 ;
for (int i =0; i<s i z e ; i++){

ubound = (v <= X[i] . max()) + ubound ;
}
GECODE ME CHECK(N. lq (home , ubound)) ;
i f (N. a s s i gned ()) {

int valN = N. va l () ;
for (int i =0; i<s i z e ; i++){

i f ((X[i] . max() < v) + ubound <= valN) {
GECODE ME CHECK(X[i] . gq (home , v)) ;

}
i f (valN <= (X[i] . min () < v) − 1 + lbound) {

GECODE ME CHECK(X[i] . l q (home , (v + −1))) ;
}

}
i f (ubound <= valN && valN <= lbound)) {

return home .ES SUBSUMED(∗ this) ;
}

}
return ES FIX ;

}
Notice that this last step (at the C++ level) is not strictly necessary, and even so, would only take a few minutes

to perform. The resulting propagator has a linear temporal complexity in the number of variables, while the indexical
formulation might seem quadratic (because of the n-ary operators in the loop). Notice that this optimisation is not
always possible.

12

Bibliography

[1] Gecode Team. Gecode: A generic constraint development environment, 2006. Available from http://www.gecode.org/.
[2] Jean-Noël Monette, Pierre Flener, and Justin Pearson. Towards solver-independent propagators. In Michela Milano, editor,

CP 2012, volume 7514 of LNCS, pages 544–560. Springer, 2012.
[3] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and Guido Tack. MiniZinc:

Towards a standard CP modelling language. In Proceedings of CP’07, volume 4741 of LNCS, pages 529–543, 2007.
[4] Pascal Van Hentenryck and Laurent Michel. Control abstractions for local search. In Francesca Rossi, editor, CP 2003,

volume 2833 of LNCS, pages 65–80. Springer, 2003.
[5] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation, and evaluation of the constraint

language cc(FD). Technical Report CS-93-02, Brown University, Providence, USA, January 1993. Revised version in Journal
of Logic Programming 37(1–3):293–316, 1998. Based on the unpublished manuscript Constraint Processing in cc(FD), 1991.

13

http://www.gecode.org/

	Introduction
	Getting Started
	Installation
	Executing the compiler
	Examples

	The Language
	Syntax
	Semantics

	Using the Compiler
	From the command line
	Debugging
	Using the produced code
	Comet
	Gecode
	Oscar
	Gecode/FlatZinc

	Example

