
X-Copter Studio
User documentation 

2014-09-03





Table of Contents

Introduction....................................................................................................................4
Terms and abbreviations.........................................................................................4
Typography.............................................................................................................4

Installation......................................................................................................................5
Hardware requirements....................................................................................5
Recommended third party software..................................................................5

Windows.................................................................................................................5
Linux.......................................................................................................................6

Launching......................................................................................................................6
Server.....................................................................................................................6

Windows..........................................................................................................6
Linux................................................................................................................6

Onboard..................................................................................................................6
Windows..........................................................................................................6
Linux................................................................................................................6

Client.......................................................................................................................6
Architecture....................................................................................................................7

Dataflow graph........................................................................................................7
Graphical user interface.................................................................................................8

Main navbar............................................................................................................8
Onboard navbar......................................................................................................9

Dataflow graph.................................................................................................9
Scripting console............................................................................................10
X-copter control..............................................................................................11

Widgets.................................................................................................................12
Raw data........................................................................................................12
Gauge data....................................................................................................12
Progress data.................................................................................................13
Chart data......................................................................................................13
Video..............................................................................................................13

Single-user application..........................................................................................14
Safety....................................................................................................................14

Tutorials.......................................................................................................................16
Play and display logged data................................................................................16
Manual flying with x-copter....................................................................................18

Nodes..........................................................................................................................19
CheckpointMovement...........................................................................................19

Inputs.............................................................................................................19
Outputs..........................................................................................................19
Parameters....................................................................................................19

Control..................................................................................................................20
Inputs.............................................................................................................20
Outputs..........................................................................................................20
Parameters....................................................................................................20

1



Datalogger............................................................................................................20
Inputs.............................................................................................................20
Outputs..........................................................................................................20
Parameters....................................................................................................21

Dataplayer.............................................................................................................21
Outputs..........................................................................................................21
Parameters....................................................................................................21

Executor................................................................................................................21
Inputs.............................................................................................................22
Outputs..........................................................................................................22
Parameters....................................................................................................22

FlyControl..............................................................................................................22
Inputs.............................................................................................................22
Outputs..........................................................................................................23
Parameters....................................................................................................23

FlyControlDual......................................................................................................23
Inputs.............................................................................................................23
Outputs..........................................................................................................23
Parameters....................................................................................................23

FlyControlTriple.....................................................................................................23
Inputs.............................................................................................................23
Outputs..........................................................................................................24
Parameters....................................................................................................24

FlyControlAggregator............................................................................................24
Inputs.............................................................................................................24
Outputs..........................................................................................................25
Parameters....................................................................................................25

Localization...........................................................................................................25
Inputs.............................................................................................................25
Outputs..........................................................................................................26
Parameters....................................................................................................26

PID........................................................................................................................26
Inputs.............................................................................................................26
Outputs..........................................................................................................27
Parameters....................................................................................................27

RedDot..................................................................................................................27
Inputs.............................................................................................................27
Outputs..........................................................................................................27
Parameters....................................................................................................27

SemanticReceiver.................................................................................................27
Outputs..........................................................................................................28
Parameters....................................................................................................28

XciDodo................................................................................................................28
Inputs.............................................................................................................28
Outputs..........................................................................................................29
Configuration parameters...............................................................................29

2



XciParrot...............................................................................................................29
Inputs.............................................................................................................29
Outputs..........................................................................................................30

XciVrep.................................................................................................................31
Inputs.............................................................................................................31
Outputs..........................................................................................................31

Gui (special)..........................................................................................................31
Inputs.............................................................................................................32
Parameters....................................................................................................32

Configuration................................................................................................................33
Onboard................................................................................................................33

Environment...................................................................................................33
Settings files...................................................................................................33
Syntax............................................................................................................33

Server...................................................................................................................33
Extending X-Copter Studio...........................................................................................35

New nodes for DFG..............................................................................................35
Writing own nodes in C++..............................................................................35
Writing own nodes in urbiscript.......................................................................37
Adding own nodes to X-Copter Studio...........................................................38
Nodes with generic inputs..............................................................................38
General notes for node implementers............................................................39

Implementing XCI..................................................................................................39
Sensors..........................................................................................................39
Commands.....................................................................................................39
Configuration..................................................................................................40
Skeleton of XCI implementation.....................................................................40

Appendix......................................................................................................................41
Syntactic and semantic types................................................................................41

Syntactic types...............................................................................................41
Semantic types...............................................................................................43

Directory structure.................................................................................................45
Onboard.........................................................................................................45

3



Introduction
This is user documentation for X-Copter Studio. Its target readers are:

● users who interact almost exclusively with graphical user interface,
● advanced users who modifies behavior via configuration
● and user-programmers who extend X-Copter Studio through provided API.

Terms and abbreviations

Client   with capital letter denotes one of the system component

DFG   dataflow graph

FOF frame of reference

(G)UI   (graphical) user interface

Linux operating system with GNU/Linux kernel, based on Debian distribution

Onboard   with capital letter denotes one of the system component

Server   with capital letter denotes one of the system component

V-REP virtual robot experimentation platform   

XCI XCS interface (unified interface for x-copters)

XCS X-Copter Studio

x-copter pretentious name of quadrocopters et al.

Typography

some label Represents labels (e.g. buttons) in GUI

string values Represents particular string value (e.g. paths, filenames)

4

http://www.coppeliarobotics.com/


Installation
Hardware requirements1

Server
● Optimal 

○ 1 GHz processor
○ 512 MB RAM
○ 100 MB available hard disk space
○ Internet connection during installation

Onboard
● Minimum without video processing

○ 1 GHz processor
○ 512 MB RAM
○ 420 MB available hard disk space

● Optimal 
○ 2.5 GHz dual core processor
○ 4 GB RAM
○ 420 MB available hard disk space 

Client2

○ Intel Pentium 4 or later
○ 512 MB RAM
○ 350 MB available hard disk space

Recommended third party software
● Google Chrome browser
● V-REP robotic simulator

Windows
● Download  from  http://drones.ms.mff.cuni.cz/xcs/wiki/doku.php/download:start

latest version of X-Copter Studio onboard and X-Copter Studio server. 
● Go to the directory where you downloaded setup files and run both.
● During X-Copter Studio onboard installation you can choose whether developer

files  and  documentation  will  be  installed  and during  X-Copter  Studio  server
installation you may disable Node.js installation if you have it already installed. 

1 Hard disk space requirements are valid for Windows version only. Real space consumption on
Linux depends on previously installed dependencies for XCS.

2 Google Chrome browser requirements.

5

http://drones.ms.mff.cuni.cz/xcs/wiki/doku.php/download:start


Linux3

Add following lines to your /etc/apt/sources.list
deb http://drones.ms.mff.cuni.cz/xcs/packages   trusty 

unknown 
deb-src http://drones.ms.mff.cuni.cz/xcs/packages   trusty 

unknown 

Then run following command to install XCS with all supplied components
sudo apt-get update 
sudo apt-get install xcs-server xcs-onboard xcs-nodes-all\ 

xcs-drivers-all 

Packages are not digitally signed so when you will be warned that packages cannot be
authenticated, install them anyway.

Launching

Server

Windows
Click on “X-Copter Studio server” icon on the desktop or run bat script in location
C:\Program Files\X-Copter Studio server\run.bat 

Linux
Just run xcs-server command.

Onboard4

Windows
Click on “X-Copter Studio onboard” icon on the desktop or run bat script in location
C:\Program Files\X-Copter Studio onboard\onboard.bat 

Linux
Run xcs-onboard command (be sure you have the Server running)

Client
Since  Client  was  developed  as  web  application,  launching  Client  is  as  simple  as
entering  Servers’  address  with  a  right  port  into  the  browser  (e.g.
http://192.168.1.10:3000).  In  case  of  default  localhost  installation  it  is
http://localhost:3000. In order for the whole XCS features to work properly it is strongly
recommended to use Google Chrome browser (Chromium should also work).

3 We currently support only Ubuntu distribution, version 14.04.

4 Be sure you have the Server running. It’s important for Onboard to initiate connection with a 
living Server.

6

http://localhost:3000/
http://192.168.1.10:3000/
http://drones.ms.mff.cuni.cz/xcs/packages
http://drones.ms.mff.cuni.cz/xcs/packages


Architecture
X-Copter  Studio  is  not  a  typical  desktop  application  neither  client-server  one.  It
comprises of three components: Onboard, Server and Client, each of which run their
own process, i.e. they can be deployed on different machines.

Dataflow graph
The basic idea is the user defines behavior for the x-copter and it’s executed remotely
at Onboard. The behavior is expressed via dataflow graph (DFG) and custom scripts
that interacts with the DFG. The cornerstone of the DFG are nodes, they are units of
execution that produces new data or react to data changes (hence the dataflow name).

Every node can have multiple outputs as well as inputs and it’s also part of the DFG
how they are interconnected. Every output and input has semantic and syntactic type
and output can be connected with compatible input only (typically semantic as well as
syntactic type names must match).

Lifecycle of the DFG (or its nodes more precisely) is described in the  section about
DFG editor and further details are in the section about scripting.

7



Graphical user interface
Client’s  UI  has  been  designed  with  user  accessibility  in  mind.  Therefore  it  was
developed as a web application and can be run in browser. It was tested in Google
Chrome, so it is strongly recommended to run XCS in this browser (Chromium browser
should also work).
User  interface consists  of  top main  navbar, bottom Onboard navbar  and operating
viewport in the middle.

Main navbar
Right section of main navbar displays connection information. LED indicates following
three states.

RED blinking Server is disconnected. Possible reason for this can be that Server is 
down or the connection was lost due to various network failures.

RED shining Server connected, Onboard disconnected.

GREEN shining Onboard connected – all is good.

When GREEN led is shining, Lag indicator shows. It signals latency between Client’s
browser and Onboard component.
User can also be notified when latency exceeds preset latency threshold. This value
can be set under Settings button on the left.

8



Onboard navbar
This navbar serves to operate directly on Onboard. It consists of dataflow graph panel,
console panel and x-copter control section.

Dataflow graph
By default  only  DFG control  buttons are visible  and DFG editor  can be shown on
demand (DFG button).

DFG toolbox
In the DFG you can use nodes with predefined configurations (see Configuration), the
variety of them is displayed in the toolbox. You add new instances of nodes to DFG by
drag-and-drop.

The toolbox is filled upon pressing  Load nodes (Reload nodes) with nodes that are
available on the connected Onboard. Default  DFG (nothing more than DFG named
“default”) is loaded together with the available nodes.

DFG lifecycle
Suppose you have designed a DFG, this DFG exists only in the Client in the editor.

After  you  press  Create  DFG  the designed  nodes  and  connections  are  created  on
onboard. It only means that nodes do exist, however they don’t produce any data or
react to them – this makes it easier to manipulate the graph.

Start Flow button enables nodes’ operation. The order in which individual nodes are
started is not defined.

Consequently,  Stop Flow disables nodes’ operation. Neglecting internal state of the
nodes (which of course is important), DFG is similar to the situation after creation and
can be started again. Stopping order is not defined neither.

When you finished your task or need to clear the onboard, use Destroy DFG. It stops
the dataflow and destroys the nodes at Onboard. Onboard is then empty and DFG
exists only in the editor.

Other action are collapsed into options button (it has three horizontal lines). When you
want  to  start  from  scratch,  use  Reset  DFG.  It  does  the  same  like  Destroy  DFG.
Moreover, it loads default DFG.

The lifecycle as was described above actually applies to each node separately (state of
a node is indicated by color), thus you can control DFG lifecycle more finely via the
context menu of a node (right click). In this menu there’s also possibility to Delete node
both at Onboard and in the editor.

DFG editor
Basically you design the DFG in the editor. You can connect nodes’ outputs to inputs
(with  respect  to  semantic  and  syntactic  compatibility).  Particular  details  about
connections are described for concerned nodes.

9



Furthermore, you can load stored DFGs (Manage DFG) and save them under custom
names (Save and Save as). This concerns only design of the DFG in the editor, actual
nodes are created via standard lifecycle.

Node instances naming
Node instances’ names are assigned automatically when added to the DFG and are
displayed on the node’s icon. Typically name is concatenation of node configuration
name (first letter is lowercase) and a counter. The counter is unique for each node in
DFG toolbox and is increasing during whole session. Brief example – if you create first
instance of FlyControl node, it will be named flyControl. If you create instance of

FlyControl again, then it will be named flyControl2 and so on until you refresh page

in your browser.

Scripting console
Console allows you to send urbiscript snippets to Onboard and execute them. urbiscript
is  a  prototype  based  language  related  to  JavaScript  and  IO language.  For  further
details about its syntax and concepts see official Urbi SDK documentation5.

The script is executed in its own scope but thanks to urbiscript resolution mechanism
(see official documentation) nodes of the DFG are accessible as local variables.

The  console  cooperates  with  the  Executor  node that  ensures  execution  within  the
proper environment. This means that it’s necessary to have the Executor node instance
in the DFG and it must be connected with Client (all this is already implemented in the
default  DFG).  Unless  this  is  satisfied,  the  console  indicate  this  with  inactive state.

Ready console is in the idle state.

 

Any  code  being  executed  (e.g.  infinite  loops,  sleeps)  can  be  paused  or  (forcibly)
terminated by appropriate buttons – that’s a feature of urbiscript. The execution is also
terminated when the Executor node is stopped.

You can print  to output with urbiscript  echo function – alas, redirecting output from

Onboard to Client is possible only for calls of echo on the top level. It means that echo
function will not work, when you change context – e.g. context is changed inside a

5 We bundled a PDF with documentation into doc directory, see directory structure.

10



pseudoclasses. But it should not be any problem – see two following examples. First
example shows change of context and second shows workaround.

// this will print start 
echo("start"); 

class FooClass{ 
  function foo() { 
    echo("foo"); 
  }; 
}; 

var fooClass = FooClass.new(); 

// this will not print anything 
fooClass.foo(); 

// this will print stop 
echo("stop"); 

var globalEcho = echo; 

// this will print start 
globalEcho("start"); 

class FooClass{ 
  function foo() { 
    globalEcho("foo"); 
  }; 
}; 

var fooClass = FooClass.new(); 

// this will print foo 
fooClass.foo(); 

// this will print stop 
globalEcho("stop"); 

You can load and store your scripts analogously to DFGs.

X-copter control
Control section contains buttons for taking x-copter off and landing as well as switch for
enabling desired controller. By default, controller is turned off. In this version XCS 
supports only keyboard controller. Other controllers may be added in the future.
Note:  Beware of  typing while  keyboard controller  is  enabled (for  example  when in
console).

11



Widgets

Widgets are showed automatically according to DFG composition (see Gui node). They
are  presented  in  viewport  grid  and  can  be  reordered  by  simple  drag-and-drop
operation. In top right corner widget settings can be found for some widgets. All types
of widgets are described below.

Raw data
It  shows  text  data  in  widget  as  it  arrived  from Onboard.  Various  data  like  tuples,
vectors, etc. can be shown in this widget.

  

Gauge data
Gauge widget shows rounded scale for chosen data. Minimum and maximum value for
the scale can be set in widget settings. Data like velocity or float data in general can be
displayed by this widget.

12



 

Progress data
This widget is intended to display progress data in range of 0 to maximum value preset
in widget settings. Data like battery or velocity can be showed by this widget.

 

Chart data
This widget displays continually updated chart according to incoming data. Chart scale
can be set in widget settings. Data like altitude, battery or float data in general can be
showed by this widget.

Video
This widget displays video received from Onboard. When used to display video from a
front-aiming camera, very simple attitude indicator  can be displayed thanks to data
from inertial sensors. For this data of semantic type ROTATION must be sent to Client
(for example to default input port).

13



In widget settings, attitude indication can be turned off as well as set pitch indication
factor (coefficient between pitch angle and vertical shift of the indicator).
 

Single-user application
XCS is prepared just for a single user. If there are more users connecting to same
server at once, access will be granted exclusively to the first of them. Others will be
informed they cannot use XCS at the moment.

Safety
You can control a real x-copter (not just a virtual x-copter) with XCS, therefore XCS
monitors  connection  latency  between  Client’s  browser  and  Onboard  component.  If
there are some problems such as network failure, whether it is on Client-Server side or

14



Onboard-Server side, XCS will destroy DFG (execution of the user urbiscript will be
stopped too).

When you  try  to  leave  Client’s  browser  site,  you  have  to  confirm  this.  It  prevents
unintentional quitting. The question text is dependent on a browser.

 

15



Tutorials

Play and display logged data
1. Launch Server and Onboard.
2. Launch Chrome browser and enter X-Copter Studio Server address.

3. Load nodes from the server by clicking Load nodes button in bottom section on 
the page.

4. Open dataflow graph file manager by clicking Manage DFG button.

16



5. Load specific dataflow graph (dataplayer_sample) .

6. Create dataflow graph by clicking Create DFG button and then start dataflow by
clicking Start Flow button.

 

7. Watch and enjoy replaying data ;)

17



Manual flying with x-copter
1. Follow instructions 1.–4. from tutorial Play and display logged data.
2. Choose one of the following DFGs: dodo_manual, 

parrot_manual_localization, vrep_manual.

3. If you chose vrep_manual, start V-REP simulator and prepare the scene by 

putting Quadricopter model into it (that’s all, default name “Quadricopter” is 
fine).

4. Create and start DFG by clicking Create DFG and Start Flow buttons 
(simulation in V-REP should start).

5. Switch to Keyboard in  x-copter control section.

 
6. Use Take off in case of parrot_manual_localization.

7. You can control the x-copter by cursor keys and A, S, D, W (explanation in 
Keyboard tooltip) and either see real x-copter moving or at least kinematics 
data changing(case of dodo_manual).

18



Nodes
DFG  toolbox  contains  by  default  few  nodes,  which  are  described  in  this  section.
Furthermore, DFG toolbox can contain nodes from other programmers. 

For general information about nodes see Dataflow graph section. 

Onboard  maintainer  can  change  Parameters values  in  X-Copter  Studio  onboard
settings  directory  in  xobjects.xs file.  There  is  no  way  how  to  change  nodes

parameters for common user (it means user which has no access to Onboard) – it is
potentially a dangerous action.

CheckpointMovement
Generates velocity control for x-copter that depends on inserted checkpoints so that x-
copter may reached all checkpoints from internal queue in the same order in which
they  were  placed.  CheckpointMovement  evaluates  checkpoint  as  reached  when x-
copter actual position will be in 10 cm sphere around the checkpoint.

Inputs

checkpoint (CHECKPOINT)
checkpoint structure on the input will be inserted at the end of the checkpoints’ queue

command (COMMAND)
ClearCheckpoint – cancel actual checkpoint flight and remove all checkpoints from 

queue

dronePosition (POSITION_ABS)
actual x-copter position

droneRotation (ROTATION)
actual x-copter rotation

Outputs

reachedCheckpoint (EVENT)
publish true whenever actual checkpoint was reached

velocityControl (VELOCITY_CONTROL_ABS)
velocity control for x-copter in world frame

Parameters
none

19



Control
Receives x-copter desired velocity in all axes and headings. Depending on actual x-
copter velocities and rotation compute and publish xcs::FlyControl command for the x-
copter.

Control use separate PID regulators for reaching desired velocities and heading. User
can change PID regulators values in Control configuration file xcontrol.xs located in xcs
setting directory.

Inputs

desireVelocity (VELOCITY_CONTROL_ABS)
x-copter desire velocity

rotation (ROTATION)
x-copter actual rotation

velocity (VELOCITY_ABS)
x-copter actual velocity

Outputs

flyControl (FLY_CONTROL)
x-copter flight control

Parameters

file
Path to file with settings for xcontrol.

Datalogger
Write all registered inputs’ data to a file in human readable format. Logged file has two
parts – the first is a header with declaration of registered inputs (name, semantic and
syntactic types) and the second contains data from the inputs with timestamp when
they were logged (timestamps are relative to node’s initialization instant).

Inputs

registerXVar(any semantic type)
register input for logging

Outputs
None

20



Parameters

file
Path to file, which will be used for logging. It is recommended to set the same file path
as for Dataplayer. 

Beware of write permissions in default installation, logs cannot be stored in read only
destinations. In order to work properly you have to use another location, e.g. under
your home directory and tell Onboard where it is (see Configuration).

Dataplayer
Playback logged data from file. It plays data with same speed as they were logged.
Dataplayer generates dynamically output ports according to the played file.

If you want to replay logged data, you must “reset” your graph. It means to use Stop
Flow, Destroy DFG and Create DFG again.

Beware when you change played file,  it  may change output  ports therefore always
reload nodes when you do this! In fact reloading nodes will not change your Dataplayer
nodes in DFG editor (it reloads nodes in DFG toolbox only – see DFG toolbox), so you
must take care of it yourself.

Outputs
Outputs are dynamically generated according to the played file.

finished (EVENT)
signals end of played file

Parameters

file
Path to file, which will be used for replay. It is recommended to set the same file path
as for Datalogger.

Executor
Executes urbiscript which was published on input  code.  Scripting console uses this

node for execution.

Execution  is  controlled  by  control input  –  you  can  start,  stop,  pause  and  resume
execution this way. If you want to control execution, you must start flow first (see DFG
lifecycle section). If you stop flow, currently executed urbiscript will be stopped as well.

You can send text from urbiscript to output called output with urbiscript echo function –

alas, redirecting output is possible only for calls of echo on the top level (see more in

Scripting console).

21



 

Inputs

control (CONTROL)
commands controlling urbiscript execution – available commands are in following table

run start urbiscript execution

stop stop urbiscript execution

freeze pause urbiscript execution

unfreeze resume urbiscript execution

code (URBISCRIPT)
urbiscript which will be executed

Outputs

output (EXECUTION_OUTPUT)
text from echo function (see description for this node)

error (EXECUTION_ERROR)
contains error message, which may occur during execution

state (EXECUTION_STATE)
state of executed urbiscript (see semantic type EXECUTION_STATE):

Parameters

lobby
urbiscript will be executed in this lobby (for more information about lobby see official
urbiscript documentation). It is necessary to set to DFG lobby (i.e.  this) for scripting

console functioning.

FlyControl
Switches between inputs and passes data from selected input to the single  output.

After  creation,  it  is  set  on  input1.  When  data  on  higher  input  arrives  node

automatically switches on this input and ignore all data from lower inputs.

Inputs

input1 (FLY_CONTROL)
input data

input2 (FLY_CONTROL)
input data

22



Outputs

output (*)
data from selected input 

Parameters
unsigned int – number of inputs

bool – if data from higher input will cause switch to turn on this input

string – semantic type of the inputs

FlyControlDual
Switch  between  inputs  and  pass  data  only  from  one  input  to  the  output.  After

creation, it is set on input1. User can choose which input will be active by sending

input port number in setInput.

Inputs

input1 (FLY_CONTROL)
input data

input2 (FLY_CONTROL)
input data

chooseInput (CHANNEL)
choose which input data will be passed to the output

Outputs

output (*)
data from selected input

Parameters
unsigned int – number of inputs
bool – if data from higher input will cause switch to turn on this input
string – semantic type of the inputs

FlyControlTriple
Switch  between  inputs  and  pass  data  only  from  one  input  to  the  output.  After

creation, it is set on input1. User can choose which input will be active by sending

input port number in setInput.

Inputs

input1 (FLY_CONTROL)
input data

23



input2 (FLY_CONTROL)
input data

input3 (FLY_CONTROL)
input data

chooseInput (CHANNEL)
choose which input data will be passed in to the output

Outputs

output (*)
data from selected input

Parameters
unsigned int – number of inputs
bool – if data from higher input will cause switch to turn on this input
string – semantic type of the inputs

FlyControlAggregator
FlyControlAggregator is aggregation node (hence the aggregator name). It  converts
separate  data  for  controlling  x-copter  movement  (gaz,  pitch,  roll  and  yaw)  in  one
structure called xcs::FlyControl.

Inputs

gaz (*)
x-copter up down velocity in range <-1,1> 
-1 maximal descendant velocity
 1 maximal rise up velocity of a x-copter)

pitch (*)
x-copter nose tilt in range <-1,1>
-1 maximal nose down tilt
 1 maximal nose up tilt

roll (*)
x-copter left right tilt in range <-1,1>
-1 maximal left tilt
 1 maximal right tilt

yaw (*)
x-copter rotation speed around z axis in range <-1,1>
-1 maximal rotation speed to the left
 1 maximal rotation speed to the right

24



Outputs

flyControl (FLY_CONTROL)
aggregated flight controls

Parameters
none

Localization
Provide x-copter localization in 3D space based on IMU data and video stream. It can
use only IMU data without video for basic localization but this setting is less accurate.
Basic localization needs x-copter velocity, rotation and altitude data from sensors. It
can be extended with video stream from camera on the x-copter.

For working video based localization “init” command has to be send twice. First after
the x-copter takes off and stabilize in the air and the other after the x-copter moves in
one axis (the best is up-down movement) approximately 10 centimeters.

Inputs

control (CONTROL) 
user can send one of the following commands for change in localization behavior 

init take initialization keyframe

keyframe take keyframe

resetPtam reset PTAM (will be uninitialized after this)

resetEkf reset localization and set position to (0, 0, current altitude)

flyControl (FLY_CONTROL)
actual x-copter flight control

flyControlSendTime (TIME)
how long does it take between sending x-copter flight control and executing it in x-
copter 

measuredAltitude (ALTITUDE)
actual x-copter altitude from sensors

measuredRotation (ROTATION)
actual x-copter rotation from gyroscope sensor

measuredVelocity (VELOCITY_LOC)
actual x-copter velocity from accelerometer 

25



ptamEnabled (ENABLED)
disable or enable PTAM video sensor in localization

setPosition (POSITION_ABS)
set localization position

setRotation (ROTATION)
set localization rotation

timeImu (TIME_LOC)
time when actual IMU measurements were taken

video (CAMERA)
video stream from x-copter camera

videoTime (TIME_LOC)
time when actual frame from the video stream was taken

Outputs

position (POSITION_ABS)
computed actual x-copter position

ptamStatus (PTAM_STATUS)
PTAM video localization status (explained in semantic types)

rotation (ROTATION)
computed actual x-copter rotation

velocity (VELOCITY_ABS)
computed actual x-copter velocity

velocityPsi (ROTATION_VELOCITY_ABS)
computed actual x-copter rotation velocity around z axis

Parameters
string – Path to file with settings for xlocalization

PID
PID controller.

Inputs

P (PID_PARAM)
set proportional parameter

I (PID_PARAM)
set integral parameter

D (PID_PARAM)
set derivative parameter

26



actualValue (*)
actual process measured value

desireValue (*)
desire process value

Outputs

control (PID_CONTROL)
computed control value

Parameters
none

RedDot
Finds red circle in input images and provides its position in image from center. 

Inputs

video (CAMERA)
image where RedDot is finding red circle

Outputs

enhencedVideo (CAMERA)
input image with highlighted found circle

errorX (PID_ERROR)
x position of a red circle in the image from center

errorY (PID_ERROR)
y position of a red circle in the image from center

found (DECISION)
if it was detected red circle in actual image

Parameters
none

SemanticReceiver
SemanticReceiver is a node that receives data entered by the user in Client component
and propagates them further into the DFG. The data (channel names) that it should
react to are set in advance and unknown data are not sent into the dataflow. In default
DFG it contains channels sufficient for manual control and scripting.

27



Outputs

execControl (CONTROL)
commands from scripting console

execurbiscript (URBISCRIPT)
urbiscript from script console

command (COMMAND)
commands from fly control panel (e.g. TakeOff)

flyControl (FLY_CONTROL)
fly control values from active controller (when keyboard controller is not active, no data 
are sent)

Parameters

outputs
specifies what  data are transferred,  it  has same format  like list  of  outputs in  node
written in urbiscript

XciDodo
XXci object with xci_dodo driver.

Self-contained XCI implementation useful when physical x-copter neither fine simulator
is available. It has very simple (unrealistic) motion model and can replay a video from
file in a loop.

Inputs

command (COMMAND)
There are command to control playback of the video.

Load opens video file and prepares for playback

Play start playing video

Pause pause playing video

Stop pause playing video and reset to beginning

flyControl (FLY_CONTROL)
fly controls applied to the motion model

setFlyControlPersistence (FLY_CONTROL_PERSISTENCE)
set period how often XCI will be repeating last FlyControl command

28



Outputs

alive (ALIVE)
every ~1 second set to true

altitude (ALTITUDE)
altitude from the motion model

flyControlPersistence (FLY_CONTROL_PERSISTENCE)
period how often XCI will be repeating last FlyControl command

rotation (ROTATION)
tilt angles and orientation from the motion model

velocity (VELOCITY_LOC)
velocity from the motion model

video (CAMERA)
last decoded frame from the video

Configuration parameters
Configuration can be changed by calling setConfiguration(key, value) method of 
appropriate DFG node (e.g. running the code from scripting console).

video:filename filename with video to be played

video:fps playback speed (default value is read from codec)

XciParrot
XXci object with xci_parrot driver.

XCI  implementation  for  Parrot  AR.Drone  2.0  with  auto  reconnection  functionalities.
User  can control  AR.Drone 2.0 flight  parameters through it  and read data from its
sensors. It should be connected to AR.Drone 2.0 Wi-Fi network before this node starts
otherwise it will try to establish connection in regular intervals. 

Inputs

command (COMMAND) 
You may send one of below described command for changing behavior of the 
AR.Drone 2.0.

TakeOff AR.Drone 2.0 going to execute to take off

Land AR.Drone 2.0 going to execute to land

EmergencyStop AR.Drone 2.0 stops all rotors. Use only in very serious situations, it may 
end with damaged AR.Drone 2.0 (AR.Drone 2.0 simply falls down!)

29



Normal AR.Drone 2.0 change emergency mode on normal mode. We do not 
know if AR.Drone 2.0 resumes flight.

flyControl (FLY_CONTROL)
set AR.Drone 2.0 flight parameters (roll,pitch,yaw,gaz)

setFlyControlPersistence (FLY_CONTROL_PERSISTENCE)
set period how often XCI will be repeating last FlyControl command

Outputs

acceleration (ACCELERATION)
output from acceleration sensor 

alive (ALIVE)
indicate if AR.Drone 2.0 is ready 

altitude (ALTITUDE)
aggregated output from altitude sensors (ultrasound and pressure sensor)

altitudeAll (ALTITUDE_ALL)
separate outputs from altitude sensors

altitudeV (ALTITUDE_V)
we do not know (ask questions on Parrot company)

battery (BATTERY)
energy left in the battery

flyControlPersistence (FLY_CONTROL)
period how often XCI will be repeating last FlyControl command

gyro (GYRO_RAW)

internalTimeImu (TIME_LOC)
time when last sensor measurements have been made
when Parrot runs for more than 34 minutes (2048 seconds), sent time representation 
overflow

internalTimeVideo (TIME_LOC)
time when last video frame has been captured

magneto (MAGNETO_RAW)
raw output from magnetometer sensor

rotation (ROTATION)
AR.Drone 2.0 rotation in 3D space

velocity (VELOCITY_LOC)
computed AR.Drone 2.0 velocity in 3D space in its frame

video (CAMERA)
last captured frame from camera

30



wifiQuality (QUALITY)
Wi-Fi connection quality

XciVrep
XXci object with xci_vrep driver.

XCI implementation for robotic simulator V-REP6. Motion model is realistic, however,
control model is emulated via flying onto target.

Alas no video is currently available from V-REP simulator and on Windows fly controls
aren’t executed at all (i.e. XCS can only read data from V-REP).

Inputs

command (COMMAND)
none

flyControl (FLY_CONTROL)
control target object in simulation on which quadricopter flies 

setFlyControlPersistence (FLY_CONTROL_PERSISTENCE)
set period how often XCI will be repeating last FlyControl command

Outputs

flyControlPersistence (FLY_CONTROL_PERSISTENCE)
period how often XCI will be repeating last FlyControl command

position (POSITION_ABS)
quadricopter absolute position in 3D simulated world

rotation (ROTATION)
quadricopter absolute rotation in 3D simulated world

velocity (VELOCITY_ABS)
quadricopter absolute velocity in 3D simulated world

video_bottom (CAMERA)
last video frame from bottom quadricopter camera

video_front (CAMERA)
last video frame from front quadricopter camera

Gui (special)
Gui is a special node that represents data sent to Client’s browser. It has inputs for
widgets and default input for data that are not needed to be displayed but still needed

6 Successfully tested is version 3.1.1. Later versions didn’t cooperate well.

31



in browser. Such data is e.g. rotation for the video widget, which is needed for the
attitude  cross  rendered  on  top  of  video  screen.  Outputs  from  executor  are  other
example, they are needed for console functioning.

For each type of widget there is separate input (i.e. raw data, gauge data, progress
data, chart data, video). For each output of a node in DFG connected to widget input of
a  Gui  node  a  widget  in  grid  will  be  created  upon  the  node  creation.  For  more
information on widget types see Widgets.

Inputs

raw data (*)
Input for raw data widget.

gauge data (*)
Input for gauge data widget.

progress data (*)
Input for progress data widget.

chart data (*)
Input for chart data widget.

video (*)
Input for video widget.

default (*)
Default input for data – for more information see description of this node.

Parameters

adapter 
Adapter  is  object,  which  will  be  used  for  sending  data  to  Client’s  browser.  It  is
recommended not to change this parameter.

json
Json is object, which will be used for converting text to json object and vice versa. It is
recommended not to change this parameter.

refreshFrequency
It is frequency of checking whether there are some data for sending to Client’s browser.

32



Configuration

Onboard

Environment
Behavior of Onboard is affected by following environment variables.

Name Meaning Default value 7 

XCS_SETTINGS_PATH settings directory $PWD/data/settings 

XCS_DFGS_PATH directory with stored DFGs $PWD/data/dfgs 

XCS_USER_SCRIPTS_PAT
H 

directory with scripts (console) $PWD/data/scripts 

XCS_LOGS_PATH directory with logged data $PWD/data/logs 

Settings files
Settings files are by default searched in the settings directory mentioned above.

In default installation settings can be found in
C:\Program Files\X-CopterStudio onboard\data\settings (for Windows)

or in
/usr/share/xcs/settings (for Linux).

onboard.xs Onboard core configuration

xobjects.xs configuration of available nodes for toolbox

xlocalization.xs configuration of Localization node

xcontrol.xs configuration of Control node

Syntax
Boost INFO syntax.

Server
Server configuration can be changed in config.json file that can be found in default 

installation in
C:\Program Files\X-Copter Studio server\config.json (for Windows) or 

in

7 $PWD denotes working directory of Onboard process. 

33

http://www.boost.org/doc/libs/1_56_0/doc/html/boost_propertytree/parsers.html#boost_propertytree.parsers.info_parser


/opt/xcs/server/config.json (for Linux).

34



Extending X-Copter Studio

New nodes for DFG
This  section  expects  understanding  of  basic  concept  of  Urbi  SDK’s  C++ API.  See
official documentation, mainly sections: 4 Quick Start, 5.3 Creating new instances, 5.4
Binding functions and 5.5 Notification of a variable change or access.

Writing own nodes in C++

Urbi SDK extension
Pure Urbi SDK has UObject class like main unit. See official documentation8 for more

details. We created our custom class XObject based on UObject. It is enhanced by

collecting  information  about  its  semantic  and  syntactic  outputs  and  inputs  types.
Furthermore, it provides interface for starting and stopping data flow when acting like a
DFG node.

Pure Urbi SDK implements dataflow communication with a pair of classes InputPort

(for  inputs)  and  UVar (for  outputs  or  any  variable  in  general).  See  official

documentation9 for  more  details.  We  created  our  custom  classes  XInputPort,

SimpleXInputPort,  XVar and SimpleXVar  based  on  InputPort and  UVar.

SimpleXInputPort and  SimpleXVar are enhanced with semantic and syntactic

types, which you can set through constructor parameters. XInputPort and XVar are

template classes inheriting from  SimpleXInputPort and  SimpleXVar – you can

set syntactic type through template and semantic type through constructor parameter.
XInputPort and  XVar are  used  in  most  cases  (in  comparison  to

SimpleXInputPort  and  SimpleXVar),  so  when  we  will  write  something  about

XInputPort or XVar, it will be true for SimpleXInputPort and SimpleXVar too

in most cases.

Pure Urbi  SDK has a  set  of  macros  which bind C++ code to  urbiscript:  UStart,

UBindVar,  UNotifyChange,  UBindFunction, URBI_REGISTER_STRUCT,  (...).

See official documentation10 for more details. We created our custom set of macros:
XStart, XBindVar, XNotifyChange, XBindFunction, (...) which do the same

but with XObject, XInputPort and XVar classes. There is a list of our macros in the

following table.

Macro Description 

8 Sections 5 The UObject API, page 53.

9 Sections 5.6 Data-flow based programming: exchanging UVars and 5.7 Data-flow based 
programming: InputPort, pages 58–60.

10 Sections 4.1.2 Wrapping into UObject, pages 44–46, and 5.5 Notification of a variable 
change or access, page 58, and 5.18.2 Casting simple structures, page 66.

35



XStart (class) It  is an alternative to  UStart for  XObject.  This macro must be
called for each  XObject,  which you want to use in urbiscript  or
DFG, but use it just once (call it in cpp file in global scope). It binds
XObject to urbiscript with default name (it is same like  XObject
class name).

XStartRename 
(class, name) 

It is an alternative to UStartRename for  XObject. It is same like
XStart, but it binds XObject to urbiscript with custom class name.

XBindVar 
(variable) 

It is an alternative to  UBindVar for  XVar and  XInputPort. This
macro must be called for each XVar and XInputPort, but use it
only once (call it in C++ constructor or in init function (see official
documentation11 for  more  details  about  init function)).  It  binds
XVar or XInputPort to urbiscript with default name (it is same like
XVar or XInputPort variable name).

XBindVarRename 
(variable, name) 

It is an alternative to UBindVarRename for XVar and XInputPort. It
is same like XBindVar, but binds XVar and XInputPort to urbiscript
with custom name.

XBindPrivateVar 
(variable) 

It is an alternative to XBindVar. If you want to use some XVar or
XInputPort in your C++ code or directly from urbiscript (e.g. from
Scripting console) but you don’t want to expose XVar or XInputPort
like node output or input, then you can use this macro.

XNotifyChange 
(variable, 
function) 

It  is  an  alternative  to  UNotifyChange  for  XObject.  This  macro
registers a function that will  be called each time when registered
XVar or XInputPort is modified.

XBindFunction 
(class, function) 

It is an alternative to UBindFunction for XObject. This macro binds
your C++ function to urbiscript  (so you can call  it  from  Scripting
console)

XBindVarF 
(variable, 
function) 

This  macro does the same like  XBindVar  and XNotifyChange.  It
binds  XVar  or  XInputPort  to  urbiscript  and  it  registers  function,
which will be called each time when registered XVar or XInputPort is
modified.

XBindPrivateVarF  
(variable, 
function) 

It is an alternative to XBindVarF, but it uses XBindPrivateVar.

X_REGISTER_STRUCT
(struct, ...) 

It  is  an  alternative  to  U_REGISTER_STRUCT  for  use  with
X_GENERATE_STRUCT macro.  When you want to create your own
syntactic type or just use some C++ struct in urbiscript, you must
call  X_REGISTER_STRUCT first. This macro declares the struct to
the cast system. First argument is struct itself and others are the
struct field names which you want to bind. This macro should be
called  immediately  after  struct  declaration  (so  if  the  struct  is

11 Sections 5.3 Creating new instances, page 56.

36



declared in header file, this macro should be called here too). See
Syntactic  type  section  for  more  info  how  to  create  your  own
structure (syntactic type).

X_GENERATE_STRUCT
(struct, ...) 

If you already call X_REGISTER_STRUCT macro, then you will want
to call this macro too in most cases. This macro will create urbiscript
“structure” (there is nothing like structure in urbiscript, so it is just
pseudoclass  with  correctly  set  prototypes)  that  you  can  use  in
urbiscript and convert it to or from your C++ struct. You should use
this macro only once (call it in a cpp file). See Syntactic type section
for more info how to create your own structure (syntactic type).

If you want to create your own node and use its outputs and inputs in DFG, you should
use XObject, XInputPort, XUvar classes and X* macros.

Source code
Basically,  all  you  need  is  to  create  a  class  that  extends  xcs::nodes::XObject
supplied by XCS. You can find example demonstrating necessary includes in
C:\Program Files\X-Copter Studio 

onboard\share\xcs\examples\nodes\pid.xob (on Windows) or in

/usr/share/xcs/examples/pid.xob (on Linux).

Compilation
You must  set  correct  include paths and link with XCS libraries.  If  you have default
installation12, you can use provided  CMakeLists.txt that sets up paths for you. It

can be found in
C:\Program Files\X-Copter Studio 

onboard\share\xcs\examples\nodes\pid.xob (on Windows) or in

/use/share/xcs/examples/pid.xob/CMakeLists.txt (on Linux).

Writing own nodes in urbiscript
It  is  possible  to  write  nodes  purely  in  urbiscript  as  pseudoclasses  extending
pseudoclass XObject.13

DFG interface of the node is specified via variables inputs_ and outputs_. Those

are dictionaries with keys being names of inputs or outputs and values are Pairs. It

has following structure:
● first is urbiscript object representing the syntactic type14.
● second is a string – name of the semantic type, it can be your own or already

existing one.

12 On Windows, you must have Developer files component installed. On Linux, be sure
you have xcs-core-dev package installed.

13 See official Urbi SDK documentation 12.4 Defining Pseudo-Classes (p. 118).

14 String, Float or fully qualified name of vector type, e.g. ‘xcs::FlyControl’ (note the 
necessary quotation marks as it represents an urbiscript class)

37



Node’s state is set inside state_ variable. For correct operation, you have to define

this variable (slot) locally on node instance. State is an integer and possible values are
shown in the table below.

0 freshly created node

1 started node

2 stopped node

It is recommended to use urbiscript at construct to handle state changes.

For example of complete urbiscript node see Executor node source (it’s found among

other urbiscript nodes, information about its path).

Adding own nodes to X-Copter Studio

C++ nodes
Resulting  libraries  of  nodes  must  reside  inside  directory  specified  by
URBI_UOBJECT_PATH environment variable. In default installation it resolves to

C:\Program Files\X-Copter Studio onboard\lib\xcs\xobjects (for 

Windows) and
/usr/lib/xcs/xobjects (for Linux).

urbiscript nodes
urbiscript  nodes are searched by default  in subdirectory  nodes within  URBI_PATH.

After installation this variable is set for Onboard to
C:\Program Files\X-Copter Studio\share\xcs\urbiscript\nodes (for 

Windows) or
/use/share/xcs/urbiscript/onboard/nodes (for Linux).

Creating configuration
In order to have new nodes available in the DFG toolbox, you must add them to the
configuration file xobjects.xs (see Configuration for location of this file). 

Nodes with generic inputs  
Some nodes cannot have their input interface defined in advance (Datalogger or Gui
for  instance).  Such  nodes  should  provide  methods:  registerXVar that  takes

arguments describing dataflow metadata (input name, syntactic and semantic types)
and an XVar that is intended to be connected to the input of such a generic node and a
method unregisterXVar. See API documentation of XDatalogger for details.

Implementation note
It’s not possible to register handler on UVar (or XVar as well) not in constructor or init

method. Furthermore, it’s problem to use a functor as a handler too. That is reason for
workaround when one has to create auxiliary class (descendant of UObject, let’s call it

38

http://en.wikipedia.org/wiki/Function_object


Catcher) and instantiate it for each registered UVar and only in the Catcher::init
method register the UVar.

General notes for node implementers
● When designing the interface (inputs and outputs) of a node, consider whether 

you cannot use already   existing semantic types.
● Possible node states are: created, started, stopped.15

● Be sure your node doesn’t produce any data when it is in the stopped state.
● In destructor correctly dispose all resources (files, threads, etc.) that node has 

used.

Implementing XCI
XCI is unified interface to x-copters. When adding support for a new model of x-copter,
you have to implement this interface.16 Technically, it means implementing descendant
of provided C++ class xcs::xci::Xci.

Individual  methods  of  the  interface  are  described  in  API  documentation.,  here  we
describe only implementation concepts.

Sensors
XCI must declare what sensors it makes available. Sensor information consists of:

● sensor name – alphanumerical string unique within the XCI implementation (it
propagates as an output name on XCI node, beware of collisions with implicitly
existing outputs of XCI node17),

● syntactic type – fully qualified name of C++ type that represents values of this
sensor (e.g. std::string, xcs::CartesianVector, see Syntactic types for

a reference list),
● semantic  type – semantic type of  sensor’s data,  see  Semantic  types for  its

meaning.

In  order  to  pass  data  from  sensors  into  dataflow,  one  uses
xcs::xci::DataReceiver class, whose instance is available to XCI constructor. It

has method notify() that ought to be called upon sensor value updates with data of

the type that was declared for the sensor. 

Commands
(General) control of x-copter is realized via commands. A command is just a string and
XCI implementation should provide a list of existing commands for particular x-copter.

15 This  is  a  subset  of  DFG lifecycle when not-yet-constructed  or  already-destroyed  nodes
cannot hold any state.

16 On Windows, you must have Developer files component installed. On Linux, be sure 
you have xcs-driver-dev package installed.

17 Currently only forbidden name is flyControlPersistence.

39



Configuration
XCI assumes that x-copter’s behavior can be affected by configuration parameters. 
From XCI’s point of view, configuration has simple key-value format, with both keys and
values being strings.

It is important that x-copter configuration has (read-only) parameter 
XCI_PARAM_FP_PERSISTENCE that specifies effective duration in milliseconds of fly 

control command applied via XCI on x-copter. Typical behavior is that for safety 
reasons x-copter keeps the fly control only for limited period of time if not set again.

Skeleton of XCI implementation
Header file:

#include <xcs/xci/xci.hpp> 
class XciFoo : public virtual xcs::xci::Xci { 

/* … */ 
} 

Source file:

using namespace xcs::xci; 
 /* sensorList just returns definition of sensors */ 
SensorList XciFoo::sensorList() { 

SensorList result; 
result.push_back(Sensor("alive", "ALIVE", "int")); 
result.push_back(Sensor("altitude", "ALTITUDE", 

"double")); 
result.push_back(Sensor("rotation", "ROTATION", 

"xcs::EulerianVector")); 
return result; 

} 
/* Implement exported constructor wrapper to allow dynamic 
loading. */ 
extern "C" { 

Xci* CreateXci(DataReceiver& dataReceiver) { 
return new XciFoo(dataReceiver); 

} 
} 

40



Appendix

Syntactic and semantic types
Each  nodes  output  and  input  has  semantic  and  syntactic  type.  Syntactic  type  is
determined by semantic type in many cases, but it  is not a rule. There can be two
values with a same semantic type but with e.g. different precision (integer vs. decimal
number).

Input and output types for connections must be compatible. Typically it means name of
syntactic type and semantic type must match. There is also special wildcard character
* for inputs that accept any type (it can be used both for semantic and syntactic types).

Syntactic types
XCS contains some basic syntactic types derived from C++18:

● std::string or const char * (text),

● int (integer),

● double (decimal number),

● bool (truth value)

● and std::list or std::vector (list of values). 

XCS also contains some structures. The most important of them are in the following 
table.

Syntactic type Structure (C++ syntax) 

xcs::BitmapType const size_t width;
const size_t height;
uint8_t * const data;

xcs::CartesianVector double x;
double y;
double z;

xcs::CartesianVectorChronolo

gic 

double x;
double y;
double z;
Timestamp time; // in milliseconds

xcs::EulerianVector double phi;    // x-axis
double theta; // y-axis
double psi;    // z-axis

xcs::EulerianVectorChronolog

ic 

double phi;    // x-axis
double theta; // y-axis
double psi;    // z-axis

18 More precisely those are types that are supported by Urbi SDK bindings.

41



Timestamp time; // in milliseconds

xcs::FlyControl double roll;
double pitch;
double yaw;
double gaz;

xcs::Checkpoint double x;
double y;
double z;
double xOut;
double yOut;
double zOut;

xcs::VelocityControl double vx;
double vy;
double vz;
double psi;

If  you  want  to  create  your  own  syntactic  type,  use  X_REGISTER_STRUCT and

X_GENERATE_STRUCT macros (for more information about these macros see Writing

own nodes in C++ section). This macros will help you create new syntactic type, but
node output or input with this type will not be usable for Datalogger or Dataplayer. 

See following example for better understanding.

1. Create your structure in C++ (hpp file) and declare it to the cast system.

namespace xcs { 
struct CartesianVector { 
    double x; 
    double y; 
    double z; 
}; 
} 

X_REGISTER_STRUCT(xcs::CartesianVector, x, y, z); 

2. Create your urbiscript structure (cpp file).

#undef X_STRUCT_NAMESPACE 
#define X_STRUCT_NAMESPACE "xcs::" 

X_GENERATE_STRUCT(CartesianVector, x, y, z); 

#undef X_STRUCT_NAMESPACE 

Define X_STRUCT_NAMESPACE is optional. You can use it, if your struct is in a 

namespace.

42



Semantic types
XCS contains many semantic types. There is no need to explain all of them. Many of 
them has self-explaining name (e.g. ALTITUDE is semantic type for altitude).

The most important semantic types are in the following table.

Name Meaning Default 

syntactic 

type 

Note 

POSITION_ABS position in the world xcs::Carte

sianVector 

x (right), y (forward), z (up); all in 

meters

ROTATION pose of the drone xcs::Euler

ianVector 

theta (CW from left view), phi (CW

from rear view), psi (CW from top) 

(applied in this order)

ROTATION_VEL

OCITY_ABS 

velocity vector in 

world FOF

double rad/s

VELOCITY_ABS velocity vector in 

world FOF

xcs::Carte

sianVector 

m/s

VELOCITY_LOC velocity vector in 

drone's FOF

xcs::Carte

sianVector 

m/s

FLY_CONTROL flight control 

parameters

xcs::FlyCo

ntrol 

roll (CW from rear view, tilt), pitch 

(CW from right view, tilt), yaw (CW

top, speed of rotation), gaz (up, 

speed of rise); relative units

VELOCITY_CON

TROL_ABS 

velocity control 

parameters

xcs::Veloc

ityControl 

velocity in all axis x,y,z in m/s and 

absolute yaw angle in radians all 

items in world coordinates

BATTERY available battery 

capacity

double in relative unit [0,1]

CHECKPOINT position in 3D with 

output vector

xcs::Check

point 

meters

COMMAND special command 

from predefined 

subset

std::strin

g 

CAMERA images from 

camera 

(unspecified)

xcs::Bitma

pType 

ALIVE drone is connected int (bool) for Parrot implemented as logic 

43



and able to fly product of appropriate 

CTRL_STATE flags 

(MOTORS_MASK,SOFTWARE_FAUL

T, VBAT_LOW); updated about 

once per second is enough

INTEGER general integer int so far used only for Dataplayer 

seek (I just felt like that)

TIME_LOC drone's local time double timestamp in seconds

PTAM_STATUS status of PTAM 

tracking

int 0 – PTAM is idle

3, 4 – PTAM is tracking

7 – PTAM is disabled

(other values are internal)

ENABLED flag of an enabled 

feature

bool 

CONTROL general string 
control

std::strin

g 

it's different from COMMAND for 
safety reasons

URBISCRIPT urbiscript fragment std::strin

g 

EXECUTION_ST

ATE 

state of executed 

code

std::strin

g 

accessible states are:
- idle: execution is off,

- running: execution is started,

- freezed: execution is paused

EXECUTION_ER

ROR 

last error message, 

which occur during 

urbiscript execution

std::strin

g 

EXECUTION_OU

TPUT 

output of the 

urbiscript code

std::strin

g 

only top-level echo calls are 

processed within Executor node,

others are not possible with 

current setup

EVENT node execution 

event

any 

numeric 

type 

for more details see corresponding

node documentation

CHANNEL choose channel unsigned 

int 

choose which channel will be used

44



Directory structure

Onboard
This describes directory structure under installation prefix (C:\Program Files\X-

Copter Studio onboard on Windows and /usr on Linux).

| -- bin 
| -- data 

| -- dfgs 
| -- logs 
| -- scripts 
| -- settings 

| -- doc 
| -- include 
| -- lib 
| -- share 

| -- xcs 
| -- examples 
| -- urbiscript 

bin – all binaries and dynamic libraries necessary for X-Copter Studio19

data – X-Copter Studio data configuration files20

dfgs – dataflow graphs 

logs – x-copter flight samples 

scripts – user’s urbiscripts

settings – configuration files

doc – documentation files21

include – header files for XCS developers

lib – XCS shared libraries

xcs/xobjects – DFG nodes

share/xcs – X-Copter Studio files

examples – X-Copter Studio node example in C++ 

urbiscript – X-Copter Studio startup urbiscripts

onboard/nodes – DFG nodes

19 Valid for Windows version only. Linux version has only executables here.

20 Linux version has data inside share/xcs directory (part of xcs-onboard-examples 
package).

21 Linux version has doc inside share/xcs directory (part of xcs-doc package).

45


	Introduction
	Terms and abbreviations
	Typography

	Installation
	Hardware requirements
	Server
	Onboard
	Client

	Recommended third party software
	Windows
	Linux

	Launching
	Server
	Windows
	Linux

	Onboard
	Windows
	Linux

	Client

	Architecture
	Dataflow graph

	Graphical user interface
	Main navbar
	Onboard navbar
	Dataflow graph
	DFG toolbox
	DFG lifecycle
	DFG editor
	Node instances naming

	Scripting console
	X-copter control

	Widgets
	Raw data
	Gauge data
	Progress data
	Chart data
	Video

	Single-user application
	Safety

	Tutorials
	Play and display logged data
	Manual flying with x-copter

	Nodes
	CheckpointMovement
	Inputs
	checkpoint (CHECKPOINT)
	command (COMMAND)
	dronePosition (POSITION_ABS)
	droneRotation (ROTATION)

	Outputs
	reachedCheckpoint (EVENT)
	velocityControl (VELOCITY_CONTROL_ABS)

	Parameters

	Control
	Inputs
	desireVelocity (VELOCITY_CONTROL_ABS)
	rotation (ROTATION)
	velocity (VELOCITY_ABS)

	Outputs
	flyControl (FLY_CONTROL)

	Parameters
	file


	Datalogger
	Inputs
	registerXVar(any semantic type)

	Outputs
	Parameters
	file


	Dataplayer
	Outputs
	finished (EVENT)

	Parameters
	file


	Executor
	Inputs
	control (CONTROL)
	code (URBISCRIPT)

	Outputs
	output (EXECUTION_OUTPUT)
	error (EXECUTION_ERROR)
	state (EXECUTION_STATE)

	Parameters
	lobby


	FlyControl
	Inputs
	input1 (FLY_CONTROL)
	input2 (FLY_CONTROL)

	Outputs
	output (*)

	Parameters

	FlyControlDual
	Inputs
	input1 (FLY_CONTROL)
	input2 (FLY_CONTROL)
	chooseInput (CHANNEL)

	Outputs
	output (*)

	Parameters

	FlyControlTriple
	Inputs
	input1 (FLY_CONTROL)
	input2 (FLY_CONTROL)
	input3 (FLY_CONTROL)
	chooseInput (CHANNEL)

	Outputs
	output (*)

	Parameters

	FlyControlAggregator
	Inputs
	gaz (*)
	pitch (*)
	roll (*)
	yaw (*)

	Outputs
	flyControl (FLY_CONTROL)

	Parameters

	Localization
	Inputs
	control (CONTROL)
	flyControl (FLY_CONTROL)
	flyControlSendTime (TIME)
	measuredAltitude (ALTITUDE)
	measuredRotation (ROTATION)
	measuredVelocity (VELOCITY_LOC)
	ptamEnabled (ENABLED)
	setPosition (POSITION_ABS)
	setRotation (ROTATION)
	timeImu (TIME_LOC)
	video (CAMERA)
	videoTime (TIME_LOC)

	Outputs
	position (POSITION_ABS)
	ptamStatus (PTAM_STATUS)
	rotation (ROTATION)
	velocity (VELOCITY_ABS)
	velocityPsi (ROTATION_VELOCITY_ABS)

	Parameters

	PID
	Inputs
	P (PID_PARAM)
	I (PID_PARAM)
	D (PID_PARAM)
	actualValue (*)
	desireValue (*)

	Outputs
	control (PID_CONTROL)

	Parameters

	RedDot
	Inputs
	video (CAMERA)

	Outputs
	enhencedVideo (CAMERA)
	errorX (PID_ERROR)
	errorY (PID_ERROR)
	found (DECISION)

	Parameters

	SemanticReceiver
	Outputs
	execControl (CONTROL)
	execurbiscript (URBISCRIPT)
	command (COMMAND)
	flyControl (FLY_CONTROL)

	Parameters
	outputs


	XciDodo
	Inputs
	command (COMMAND)
	flyControl (FLY_CONTROL)
	setFlyControlPersistence (FLY_CONTROL_PERSISTENCE)

	Outputs
	alive (ALIVE)
	altitude (ALTITUDE)
	flyControlPersistence (FLY_CONTROL_PERSISTENCE)
	rotation (ROTATION)
	velocity (VELOCITY_LOC)
	video (CAMERA)

	Configuration parameters

	XciParrot
	Inputs
	command (COMMAND)
	flyControl (FLY_CONTROL)
	setFlyControlPersistence (FLY_CONTROL_PERSISTENCE)

	Outputs
	acceleration (ACCELERATION)
	alive (ALIVE)
	altitude (ALTITUDE)
	altitudeAll (ALTITUDE_ALL)
	altitudeV (ALTITUDE_V)
	battery (BATTERY)
	flyControlPersistence (FLY_CONTROL)
	gyro (GYRO_RAW)
	internalTimeImu (TIME_LOC)
	internalTimeVideo (TIME_LOC)
	magneto (MAGNETO_RAW)
	rotation (ROTATION)
	velocity (VELOCITY_LOC)
	video (CAMERA)
	wifiQuality (QUALITY)


	XciVrep
	Inputs
	command (COMMAND)
	flyControl (FLY_CONTROL)
	setFlyControlPersistence (FLY_CONTROL_PERSISTENCE)

	Outputs
	flyControlPersistence (FLY_CONTROL_PERSISTENCE)
	position (POSITION_ABS)
	rotation (ROTATION)
	velocity (VELOCITY_ABS)
	video_bottom (CAMERA)
	video_front (CAMERA)


	Gui (special)
	Inputs
	raw data (*)
	gauge data (*)

	progress data (*)
	chart data (*)
	video (*)
	default (*)

	Parameters
	adapter
	json
	refreshFrequency



	Configuration
	Onboard
	Environment
	Settings files
	Syntax

	Server

	Extending X-Copter Studio
	New nodes for DFG
	Writing own nodes in C++
	Urbi SDK extension
	Source code
	Compilation

	Writing own nodes in urbiscript
	Adding own nodes to X-Copter Studio
	C++ nodes
	urbiscript nodes
	Creating configuration

	Nodes with generic inputs
	Implementation note

	General notes for node implementers

	Implementing XCI
	Sensors
	Commands
	Configuration
	Skeleton of XCI implementation


	Appendix
	Syntactic and semantic types
	Syntactic types
	Semantic types

	Directory structure
	Onboard



