

www.zend.com

Zend Server Community Edition 5.x
Reference Manual
By Zend Technologies

This is the Installation Guide for Zend Server Community Edition, Version 5.0.

The information in this document is subject to change without notice and does not represent a

commitment on the part of Zend Technologies Ltd. No part of this manual may be reproduced or

transmitted in any form or by any means, electronic or mechanical, including photocopying,

recording, or information storage and retrieval systems, for any purpose other than the

purchaser’s personal use, without the written permission of Zend Technologies Ltd.

All trademarks mentioned in this document, belong to their respective owners.

© 1999-2010 Zend Technologies Ltd. All rights reserved.

Zend Server Community Edition Installation Guide, issued February 2010.

DN: ZCE-IG-210210-5.0-001

Table of Contents
Overview .. 7

What is Included in Zend Server: ... 7
Code Tracing: Solve Problems Faster Than Ever! ... 7
Job Queue: Offload Execution of Long-running PHP Scripts .. 7
A Web Application Server for Your Application .. 7
Enhance PHP Application Reliability and Security... 8
Ensure Successful Deployments.. 8
Detect Problems Before the Phone Rings ... 8
Quickly Pinpoint Root Cause of Problem ... 8
Boost Application Performance .. 9

Zend Server Community Edition (CE) ... 9
Boost Performance of your PHP Applications .. 9
Use a Reliable PHP Stack in Development and Production .. 9
Get Up and Running with a Full PHP Stack in Minutes ... 10

About ... 11
Installation Directories .. 11
Password Management ... 12
Support ... 13

Zend Support Center .. 13
Zend Forums .. 13
Zend Support Knowledge Base.. 13
Online Documentation .. 13
Open a Support Ticket (Only Available in Zend Server) .. 13
Zend PHP Email Updates .. 13
Zend Developer Zone Resource Center .. 14
Feedback .. 14

Concepts .. 15
General Layout .. 15
Monitor Tab .. 16

Dashboard .. 16
Server Info .. 17
PHP Info ... 18
Logs .. 19

Setup Tab ... 20
Components ... 20
Extensions .. 22
Directives .. 24
Debugger .. 25

Administration Tab ... 26
Password .. 26

Zend Controller .. 27
Adding the Zend Controller to the Start Menu/System Tray/Taskbar 27

Tasks ... 29
Working with Zend Server Community Edition .. 29
Getting Started with Zend Server Community Edition ... 31

What to do After Installing Zend Server Community Edition .. 31
Run the Administration Interface .. 31
Configure Your Password .. 32
Check Apache .. 32
Check IIS .. 32
Run a Test on Your Web Server .. 33
Configure Debugger Access Control .. 34

iii

Zend Server Community Edition Reference Manual

Configuring Zend Server Community Edition .. 35
Restart PHP Message .. 36

Working with Extensions .. 37
Changing Extension Status .. 37
Restart PHP Message .. 37
Configuring Directives Associated with Extensions ... 38

Working with Logs .. 39
View a Log .. 39
Filter Log Information ... 40
Navigate Inside a Log ... 40
Activate 'Auto refresh' ... 40
Advanced - Add logs to the list of logs in the "Log View" list. .. 41

Working with Components ... 42
Changing Component Status ... 42
Configuring Directives Associated with Components... 42
Actions .. 43
Adding New Components ... 43

Working with Directives .. 44
Working with Optimizer+ .. 45

When Not to use Optimizer+ (Blacklist)? ... 45
Increasing Optimizer+ Resource Allocation ... 46
Blacklisting Files ... 47
Optimizer+ Duplicate Functions Fix ... 47

Working with Zend Guard Loader .. 48
Working with Java Bridge .. 49

Configuration .. 49
Testing the Bridge Connection ... 50
Before using the Java Bridge API .. 51

Debugger ... 52
Working with Local Debugging ... 52
Working with the Debugger .. 53
Wildcards (Net Mask) ... 54
Remote Debugging Through a Firewall? ... 54

Working with Zend Controller ... 55
Initial Setup ... 55
Using the Zend Controller Benchmark Tool ... 56
Understanding Results ... 58

Cache ... 59
Working with Data Cache ... 59
Disk/Shared-Memory Caching ... 59
'namespace' Support .. 61
Setting the cached 'namespace':.. 61
Cache Folder Depth Configuration ... 61

phpMyAdmin .. 62
Working with phpMyAdmin to Manage MySQL .. 62
Working with MySQL Server: Linux ... 63
Working with MySQL Server: Mac OS X .. 65
File Locations ... 65
Working with MySQL Server: Windows ... 67

Reference Information ... 68
Components ... 69

Debugger .. 70
Optimizer+ .. 71
Guard Loader ... 72
Data Cache ... 73
Java Bridge ... 74

iv

Table of Contents

Zend Framework .. 76
Zend Controller ... 78

API Reference .. 79
Zend Debugger - Configuration Directives ... 80
Zend Debugger - PHP API ... 85
Zend Optimizer+ - Configuration Directives ... 86
Zend Optimizer+ - PHP API ... 93
Zend Guard Loader - Configuration Directives .. 94
Zend Guard Loader - PHP API... 96
Zend Data Cache - Configuration Directives .. 104
Zend Data Cache - PHP API .. 107
Zend Java Bridge - Configuration Directives .. 114
Zend Java Bridge - PHP API .. 116
The JavaException Class ... 122
Zend Extension Manager - Configuration Directives ... 123
Zend Utils - Configuration Directives .. 126
Zend Download Server - Configuration Directives ... 128

Adding Extensions ... 132
Adding Extensions for Windows ... 134
Compiling Extensions ... 135
UNIX: Compiling PHP Extensions .. 137
Loading the mod_ssl Module ... 145

Java Bridge Use Cases ... 146
Usage Scenarios .. 146
Activities ... 146

Info Messages .. 150
Error Messages .. 150
Notices .. 150
Success Messages .. 150
Info Messages .. 151

Zend Server Best Practices ... 152
Performance ... 153

Optimizing Zend Server Performance .. 154
Optimizing Monitoring ... 156
Implementing Monitoring .. 157
Configuring for Production or Development ... 158
Fine Tuning Optimizer+ .. 159
Disabling Code Change Auto-Detection .. 159
Decreasing Code Validation Frequency ... 159
Configuring PHP for Performance .. 160

Security .. 165
Configuring Debugger Access Control ... 166
Securing the Administration Interface .. 167
Configuring PHP for Security ... 169
Configuring Debugger Access Control ... 171

Development .. 172
Working with Zend Framework ... 173
Configuring Zend Framework ... 175

Deployment to Production .. 178
Deploying Code with Zend Server ... 179

IIS Best Practices ... 181
IIS Configuration Optimization .. 182
Configuring IIS Timeouts .. 186

Troubleshoot .. 188
Zend Server Exception Caught .. 189
Windows: Zend Server isn't Running Out of The Box .. 190

v

Zend Server Community Edition Reference Manual

vi

Zend Controller Cannot Run Benchmark ... 191
Zend Controller Cannot Login .. 192
Windows: Zend Server not Loading ... 193
Windows: Internet Explorer Blocking Zend Server... 194
Windows: IIS URL Rewrite Setup .. 196
Changing the Component's Log Directory ... 197
Support Tool ... 199
Supported Browsers ... 201
Log File Permissions .. 202

Index .. 202

Overview
Overview Zend Server is a complete, enterprise-ready Web Application Server for running and

managing PHP applications that require a high level of reliability, performance and security.

What is Included in Zend Server:

Business-grade PHP
An up-to-date, tested and supported PHP stack ensures high

reliability, enhances security and increases staff productivity.

Deployment with
confidence

A complete and consistent environment used in development,

testing and production eliminates many of the problems

encountered during deployment.

Rapid response to
problems

Advanced application monitoring and diagnostics enable early

problem detection and quick root cause analysis.

Top application
performance

Built-in optimization and acceleration ensures high performance

and low resource utilization.

Code Tracing: Solve Problems Faster Than Ever!
Finding the root cause of problems, especially when they occur in the production environment, is

a time-sink for developers and system administrators. Zend Server 5.0 applies the concept of a

black box flight recorder to PHP. It can record live application execution in testing or production,

helping you quickly pinpoint bugs and performance bottlenecks in your code.

Job Queue: Offload Execution of Long-running PHP Scripts
Web applications generally follow the synchronous communication paradigm, however some

tasks are better suited to asynchronous execution. Long-running report generation, order

processing, database cleanup, and pulling of RSS feeds are some examples of jobs that can be

executed asynchronously. Zend Server 5.0 incorporates Job Queue, providing full support for

creating, executing and managing jobs to optimize application performance and reduce server

load.

A Web Application Server for Your Application
If you’re developing or running a business-critical PHP application on a couple of servers, Zend

Server is the right solution for you. In cases where your application runs on a large number of

servers, or if you require session clustering or a job queue, Zend Platform Enterprise Solution

could suit your need.

7

Reference Manual

Enhance PHP Application Reliability and Security
Tracking, installing, configuring and testing dozens of PHP libraries and drivers is a time sink for

developers, testers and administrators. The rapid updates and code changes in today’s fast-

paced Web application arena further aggravate the challenges of maintaining reliable and secure

PHP runtime environments.

Zend Server customers have access to Zend’s technical support, and receive online software

updates, hot fixes and security patches, to ensure they run the most reliable, secure, and up-to-

date version of PHP. Read about the Service Level Agreement (SLA) Zend provides to its

customers.

Ensure Successful Deployments
Many of the problems encountered during application deployment or in production occur because

different PHP versions and configurations are used in development, testing and production.

Zend Server enables you to deploy your PHP applications with confidence, ensuring every

member of your team uses the same, highly reliable environment consistently through each stage

of the application life cycle. If you ship your PHP application to a remote customer, Zend Server’s

unattended installer facilitates fast and trouble-free deployments.

Detect Problems Before the Phone Rings
When things go wrong with your application, you want to know about it as soon as possible, and

resolve the problem before end-users are impacted. Zend Server enables you to take a proactive

approach when it comes to ensuring the best user experience by monitoring PHP application

execution and alerting you to critical problems such as:

 Slow PHP script execution

 PHP errors

 Errors in specific function calls

 Excess memory usage

 Errors in called Java code

 And more…

Quickly Pinpoint Root Cause of Problem
Knowing that a problem occurred is an essential first step, yet what really counts is how fast you

can isolate its root cause and deliver a solution. Zend Server slashes root cause analysis time by

capturing application execution data, such as variable values, call stack and environment

information, for every detected incident. Developers can further analyze captured data in Zend

Studio, thereby eliminating the time-consuming task of reproducing production problems in a lab.

8

Zend Server Community Edition

Boost Application Performance
A high-quality user experience is expected from business-critical Web applications, even during

peak loads, yet deploying more hardware to increase performance may prove to be costly. Zend

Server provides multiple capabilities for improving application response times and minimizing

resource utilization.

 Code Acceleration – PHP bytecode caching increases performance with no application

changes

 Full page caching – A URL-based HTML output cache that does not require any

application changes

 Partial page caching – A set of functions that allow developers to cache data in shared

memory or to disk

Zend Server Community Edition (CE)
The community edition of Zend Server is a free, simple PHP Web Application Server environment

that is ideal for running non-critical PHP applications or just for experimenting with PHP.

Zend Server Community Edition is a fast and reliable PHP application stack. It is completely free,

and you can use it in development, testing and production.

Boost Performance of your PHP Applications
Zend Server Community Edition provides multiple capabilities for improving application response

times and minimizing resource utilization:

 PHP bytecode caching (Zend Optimizer+) - increases performance with no application

changes

 Data caching - a set of functions that allow developers to cache data in shared memory

or to disk

Use a Reliable PHP Stack in Development and Production
Zend Server Community Edition is a pre-integrated PHP application stack that’s been tested by

Zend to ensure the highest levels of reliability. You can use it to run your application in

production, during development and testing, ensuring a consistent environment throughout the

application lifecycle.

If at any point you require technical support, software updates, security patches, application

monitoring or extra performance, you can simply upgrade to Zend Server, the commercial version

of Zend Server Community Edition.

9

Reference Manual

Get Up and Running with a Full PHP Stack in Minutes
Eliminate wasted time spent on putting together your PHP stack piece by piece. Zend Server

Community Edition includes everything you need, whether you’re using Windows, Linux or Mac

OS X. The simple, native installers will set you up in minutes with:

 Bytecode accelerator (Optimizer+)

 Zend Data Cache

 A certified PHP distribution

 Zend Framework

 Apache (or IIS integration)

 MySQL (on Windows and Mac OS X)

 Out-of-the-box connectivity to all common databases

 Java code connectivity

 Web-based PHP administrator console

10

Zend Server Community Edition

About
Zend Server Community Edition includes a tested and certified version of PHP and a set of tools

to set up and optimize your environment.

These tools are presented in an improved Administration Interface designed to provide all the

tools and technology necessary to support PHP environments.

Special attention has been given to creating consistency across operating systems to ensure

interoperability and facilitate the needs of diverse environments that use Linux, and Windows and

Mac operating systems.

The PHP versions are PHP 5.2 and PHP 5.3, which have been tested and optimized for

development use. Commonly used extensions and Zend Framework are included with the PHP to

provide a one-stop shop for all the resources that developers need to create PHP Web

applications.

A complementary set of tools is provided with Zend Server Community Edition to optimize and

extend your PHP capabilities. The tools included in Zend Server Community Edition are

described in detail in the Components Section. Instructions on how to work with each component

are provided in the Tasks section, where each possible task is described in detail from start to

end.

To get started with Zend Server Community Edition, click here.

Installation Directories
Not all users decide to install their software in the same location. To reflect this actuality, all paths

in this document have been replaced with the following prefix: <install_path>. This represents the

location of the installed files. If you used the default settings, the location should be as follows:

 Windows: C:\Program Files\Zend\ZendServer

 Windows 64 bit C:\Program Files (x86)\Zend\ZendServer

 DEB/RPM: /usr/local/zend

 Tarball: /usr/local/zend

 Mac: /usr/local/zend

11

Reference Manual

Password Management
After completing the Installation process and opening Zend Server Community Edition, a

password definition page is displayed for first time users. This page only appears once to define

the Administration Interface's login password.

For security reasons, Zend Server Community Edition cannot restore your password for you.

However, you can reset your password if you have access to the application's files and

Administrator privileges.

 The following procedure describes how to reset a lost password from outside the Administration

Interface.

To reset your password:

In Windows:

1. In the Start menu locate the Zend Server Community Edition section and select

Zend | Change Password. Your password is reset.

2. The next time you log in to the Administration Interface, you will be prompted to

set a new password.

Other operating systems:

1. From the command line, run gui_passwd.sh that is located in: <install_path>/bin

2. You will be prompted to enter a new password.

Correct completion of this procedure in Windows: Zend Server Community Edition displays the

password definition page.

Correct completion of this procedure in other operating systems: You can log in with the new

password.

If you are unable to change your password, refer to the Support Center for further information.

The following procedure describes how to change your password from inside the Zend Server

Community Edition Administration Interface.

To change your password from inside the Administration Interface:

1. In the Administration Interface, go to Administration | Password and License.

2. Enter your current password and enter your new password in the next two

fields.

3. Click "Change Password" to apply changes.

Correct completion of this procedure results in Zend Server Community Edition requiring you to

log in with the new password the next time you access the Administration interface.

12

http://www.zend.com/en/support-center/

Zend Server Community Edition

Support
Zend Technologies provides a wide range of resources for obtaining additional information and

support, such as the Zend Support Center, the Zend Newsletter, and the Zend Developer Zone.

Zend Support Center
The Zend Support Center is a portal for information on all Zend Product related issues.

From the Zend Support Center you can access:

Zend Forums
Hosted user forums for the Zend product user community. See what other users have to say and

get answers directly from the Zend Support team. Visit: http://forums.zend.com

Zend Support Knowledge Base
The Zend Knowledge Base contains an extensive range of articles on commonly encountered

problems, troubleshooting, tips and work-arounds.

Search the Knowledge Base for any Zend product related issue at

https://www.zend.com/en/support/knowledgebase.php.

Online Documentation
The Zend Product Online Documentation Center can be easily browsed and searched as a

resource for accessing the most to date information on using all Zend Products. Visit:

http://www.zend.com/en/resources/zend-documentation/

Open a Support Ticket (Only Available in Zend Server)
If you did not find the answer to your question in any of the Support resources, you can open a

ticket with the Zend Support team, who will answer each ticket on an individual basis. This can be

done through https://www.zend.com/en/helpdesk/newticket.php.

In Zend Server CE, the Community Edition, all Support is administered via the Forum.

Zend PHP Email Updates
Sign up for Zend PHP email updates for the hottest updates, special promotions and useful

developer information.

To sign up, log in to your Zend account at https://www.zend.com/en/user/myzend, enter your

email address and click Subscribe.

13

http://www.zend.com/en/support-center
http://forums.zend.com/
https://www.zend.com/en/support/knowledgebase.php
http://www.zend.com/en/resources/zend-documentation/
https://www.zend.com/en/helpdesk/newticket.php
http://forums.zend.com/
https://www.zend.com/en/user/myzend

Reference Manual

Zend Developer Zone Resource Center
The Zend Developer Zone is the leading resource center for PHP developers, where you can

learn about PHP and meet the experts.

The Zend Developer Zone features the following:

 The PHP 5 Info Center

 Articles and Tutorials

 PHP and PEAR News Weeklies

 Worldwide Job Classifieds

Visit: http://devzone.zend.com

Feedback
Send feedback, questions and comments on the Online Help and Documentation to:

documentation@zend.com.

14

http://devzone.zend.com/

Zend Server Community Edition

Concepts
General Layout
Zend Server Community Edition's Administration Interface is the main area for configuring and

managing your development environment.

The Administration Interface is accessed through your browser by entering the link that is

provided at the end of the installation process. Login is done through the Password administration

page that appears when you access the Administration Interface for the first time.

Click here for more about configuring your password.

The Administration Interface is comprised of the following tabs:

 Monitor - The Monitor tab is the main area for system information and it includes

Dashboard | Server Info | PHP Info | Logs

 Setup - The Setup tab is the main area for configuring your PHP and it includes

Components | Extensions | Directives | Debugger

In addition to the main Administration Interface, Zend Server Community Edition comes with a

tray utility called the Zend Controller that provides quick access to:

15

Reference Manual

Monitor Tab

Dashboard
The Dashboard page is accessed from Monitor | Dashboard and is the default page after

logging in to the Administration Interface.

The Dashboard page is a summary of information and quick links. The information in this page is

divided into Recent Events, Tasks and a System Overview.

16

Zend Server Community Edition

Server Info
The Server Info page is accessed from Monitor | Server Info.

The Server Info page displays the details of your environment. The information displayed in this

page is as follows:

 Zend Server - Product version.

 PHP - PHP version and the path to your PHP configuration file (php.ini). This information

can also be accessed from the Administration Interface, on the PHP Info page.

 Web Server - Your Web server's IP, type and the operating system used to run the Web

server.

 Zend Framework - Release version and directory location in your computer.

 Zend Data Cache - Release version and status.

 Zend Debugger - Release version and status.

 Zend Guard Loader - Release version and status.

 Zend Java Bridge - Release version and status.

 Zend Optimizer+ - The status of the Optimizer+ component used for opcode caching

and optimizations.

If your PHP application is business-critical, you probably want to make sure that your

PHP runtime environment is up to date. Zend Server Updater ensures that you have

the latest versions of PHP, Zend Server Components and Extensions. This feature

is available only in the commercial version of Zend Server.

17

Reference Manual

PHP Info
The PHP Info page is accessed from Monitor | PHP Info.

The PHP Info screen is a read-only page that outputs a large amount of information about the

current state of PHP. It is an easily accessible representation of information contained in the

php.ini file, including information about PHP compilation options and extensions, the PHP

version, server information and environment, PHP environment, OS version information, paths,

master and local values of configuration options, HTTP headers and the PHP License.

Note:
The values displayed in the PHP Info page may differ from the system-wide settings displayed

further down the page in the "Local View" column of the Configuration section. To see the

system-wide settings, view information listed in the "Master Value" column.

If your PHP application is business-critical, you probably want to make sure that your

PHP runtime environment is up to date. Zend Server Updater ensures that you have

the latest versions of PHP, Zend Server Components and Extensions. This feature

is available only in the commercial version of Zend Server.

Changing PHP Info

The Administration Interface allows easy changing of PHP info through the Setup tab. Any

changes made in the Extensions, Components and Directives pages will be automatically

updated in your php.ini file and will be reflected in the PHP Info page.

Note:
Configuration changes will only take effect once you PHP has been restarted by clicking

More information about the PHP Info display can be found in the PHP Manual, accessed by going

to "PHP Options and Information" - External Link.

18

http://www.php.net/manual/en/ref.info.php

Zend Server Community Edition

Logs
The Logs page is accessed from Monitor | Logs.

The Logs page is a means for developers to view log information directly from the Administration

Interface. This information can be used to investigate unwanted activity in your environment in

terms of errors and application behavior.

The logs displayed in this page consist of the system logs, as determined by the type of Web

server you use:

 Apache servers include three logs - PHP Error log, Apache Error log and Server Access

log - all of which reference the installation locations (except for the PHP Error log, which

comes from the error_log directive).

 IIS servers include the PHP Error log.

Power users can edit the XML file to include additional logs. For more information on adding logs

to the Logs page, see Working with Logs.

From this page you can:

 View Logs

 Filter Logs

 Navigate inside a log

 Add Logs

19

Reference Manual

Setup Tab

Components
The Components page is accessed from Server Setup | Components.

The Components page provides a convenient way to view and configure the components

installed in your environment.

From this page, when applicable you can for each rule:

 Turn On/Off - See table below for component specific information.

 Clear - Empties cache information.

 Configure Directives - Clicking this link directs you to a pre-filtered view of the directives

(in Server Setup | Directives) that belong to the component.

 View Description - at the end of each row of the table is a small icon that displays a

tooltip that describes the component.

Additional actions for Specific rules:

 Zend Debugger | Allowed Clients - Clicking this link directs you to Server Setup|
Debugger where you can define the IP addresses that can or are prohibited to connect.

 Zend Job Queue | Queue Setup - Clicking this link directs you to Server Setup | Job
Queue where you can define global Job Queue settings.

 Zend Monitor | Monitoring Rules - Clicking this link directs you to Rule Management |
Monitoring where you can define and activate monitor rule settings.

 Zend Page Cache | Caching Rules - Clicking this link directs you to Rule Management
| Caching where you can create and edit cache rules.

Note:
The following message appears when an option was not installed: "This component is not

installed, for instructions see the Installation Guide". For Windows see Windows Installation, for

DEB see DEB Installation and for RPM see RPM Installation.

20

Zend Server Community Edition

The following components can be turned On/Off and configured as follows:

Component Status Comments

Zend Data

Cache

On - Activates the Data Cache: Scripts that

include the Data Cache API can run.
Off - Disables the Data Cache: Scripts that

include the Data Cache API cannot run.

This component stores

information and therefore has

an additional action for

clearing information.

Zend

Optimizer+

On - PHP is optimized.

Off - PHP is not optimized.

This component stores

information and therefore has

an additional action for

clearing information.

Zend Java

Bridge

On - The Java Bridge runs: Scripts

containing the Java Bridge API can run.

Off - The Java Bridge stops running:

 Scripts containing the Java Bridge API

cannot run.

This component can be

restarted.

Zend Debugger On - Activates the Debugger for local and

remote debugging with Zend Studio.

Off - Disables the Debugger and does not

permit debugging from Zend Studio.

The Debugger requires that

you enter a list of IP

addresses to allow, deny or

permit remote debugging

through a firewall. therefore it

has an additional option for

adding "Allowed Clients"

Zend Guard

Loader

On - Scripts encoded with Zend Guard run.

Off - Scripts encoded with Zend Guard

cannot run.

Note:
For more information on adding additional components, see the Installation Guide.

The On/Off Status is used to configure your php.ini according to the components you want to
load. If you intend to use functions related to a component in your code, verify that the extension
is enabled and that the status is set to On.

Hovering the curser over the Information icon displays a brief component description.

If your PHP application is business-critical, you probably want to make sure that your
PHP runtime environment is up to date. Zend Server Updater ensures that you have
the latest versions of PHP, Zend Server Components and Extensions. This feature
is available only in the commercial version of Zend Server.

21

Reference Manual

Extensions
The PHP Extensions page is accessed from Server Setup | Extensions.

The PHP Extensions page provides a convenient way to view and configure extensions.

Use this page to control and configure extensions that are loaded in your environment.

To find out how to add more extensions to this list, see Adding Extensions and UNIX: Compiling

PHP Extensions for Zend Server.

PHP extensions are sets of instructions that add functionality to your PHP. Extensions can also

be employed to recycle frequently used code. You can place a set of functions into one extension

and instruct your projects to utilize the extension. Another use for PHP extensions is to improve

efficiency and/or speed. Some processor intensive functions can be better coded as an

extension, rather than as straight PHP code.

If your PHP application is business-critical, you may wish be alerted to database

access failures. Zend Server can monitor your application in production, alert you to

failures or performance degradation, and provide you with diagnostic information for

rapid root cause determination.

This feature is available only in the commercial version of Zend Server.

The Extensions page is list of the extensions included with the Zend Server Community Edition

installation and extensions added to the php.ini by the user. Use the Extensions page to view the

status of all your extensions and to quickly and easily load and unload extensions.

You can also configure directives associated with certain extensions. Extensions with directives

that can be configured have a Configure link next to them.

Clicking the link opens the PHP Directives page, filtered to the exact directives associated with

the particular extension. Click the All option in the PHP directives page to see a complete list of

directives.

22

Zend Server Community Edition

From this page, when applicable for each extension you can:

 Turn Off - The extension is not running on the machine and code that includes the

Extension's functions works.

 Turn On- The extension is running on the machine.

 Built in- This applies to extensions that have dependencies, or were complied with PHP.

Built-in extensions cannot be removed and thus do not have an On/Off option.

 Directives - Clicking this link directs you to a pre-filtered view of the directives (in Server
Setup | Directives) that belong to the extension.

 View Description - at the end of each row of the table is a small icon that displays a

tooltip that describes the component.

23

Reference Manual

Directives
The PHP Directives Info page is accessed from Server Setup | Directives.

The PHP Directives page allows you to easily edit your PHP configurations from the

Administration Interface. From here, you can view and configure commonly used directives.

The available directives are grouped by category in expandable lists. Clicking the arrow next to

the category name expands the list to expose the different options. Where relevant, input fields

are added, to change a directive's value. The initial display shows the most commonly used

Directives. Click "All" for the full list of directives or use the "Search" component to locate a

specific directive or use ext:<extension_name> to find directives by extension. You can also use

the Popular option to view commonly used directives such as directives that define directories

and languages.

24

Zend Server Community Edition

Debugger
The Debugger page is accessed from Server Setup | Debugger.

The Debugger page is used to enable remote PHP debugging and profiling of Web applications

using the Zend Debugger component.

This component enables developers using the Zend IDE to connect to a remote server to analyze

(debug and profile) and fix code.

Event information collected by the Monitor component can be further diagnosed with Zend Studio,

provided that the machine running Zend Studio is registered as an "allowed host" and it does not

appear in the "denied hosts" list. Special attention to this should be given when specifying IP

ranges to make sure that necessary IPs are not included in that range. By default, your local IP

(127.0.0.1) is registered as an "allowed host" by default.

The Zend Debugger page allows you to configure the hosts for the following debug
options:

 Hosts allowed to initiate debugging and profiling sessions.

 Hosts denied the permission to initiate debugging and profiling sessions.

25

Reference Manual

Administration Tab

Password
The Password page is accessed from Administration | Password.

To change or reset your password follow the instructions in Password Management.

Updating your License

You are not required to enter a license to use Zend Server Community Edition. However, you

must have a valid license to use the complete edition of Zend Server Community Edition.

How do I get a license?

If you do not currently have a valid license, go to the licensing page to find out how to get a

license: http://www.zend.com/en/products/server/license

I already have a license, what do I do?

If you have already purchased a license, you should have received a confirmation e-mail that

includes your Order number and License key.

To enter a License:

1. Go to Administration | Password and License

2. In the "Update License" area, enter the Order number and License key that

were included in your confirmation email.

3. Click to apply the changes.

4. Click .

Zend Server Community Edition will start to run in a fully functional mode.

License Expiration

Before your license expires, a notification is displayed at the bottom of the Administration

Interface, telling you how long you have left until your license expires and where to go to renew

your license.

Once a license expires, Zend Server Community Edition reverts to the Community Edition mode

until a new license is entered. During this time, all the licensed features are unavailable.

However, their settings are kept and will be restored, along with the functionality, when a new

license is entered.

26

http://www.zend.com/en/products/server/license

Zend Server Community Edition

Zend Controller
The Zend Controller is accessed from the system tray by clicking on the Zend Icon , or from

the command line by running <install_path>/bin/zendcontroller.

Windows users can load the Zend Controller by going to <install_path>\bin and clicking Zend

Controller.exe.

The Zend Controller is a system tray utility that provides quick access to frequently performed

tasks and useful information.

Adding the Zend Controller to the Start Menu/System Tray/Taskbar
The Zend Controller resides in the System Tray/Taskbar. The Zend Controller may behave

differently in each environment: In some systems, the Zend Controller may run as soon as the

computer is started and in others, it doesn't. The following instructions are included to let you

define the Controller's behavior according to your preferences:

 GNOME - View the instructions online at: http://www.ubuntugeek.com/howto-add-

entries-in-gnome-menu.html

 KDE - view the KDE online documentation at:

http://docs.kde.org/development/en/kdebase-workspace/kmenuedit/quickstart.html

 Windows Vista and XP and 2008:

1. Right-click Start and select Properties.

2. Click the Start Menu tab and click the radio button next to Classic Start menu.

3. Click the Customize... button and then the Add... button.

4. Click the Browse... button and locate the .exe file. The default location is

<install_dir>\bin\ZendController.exe.

5. Highlight the program and click OK. Then click Next.
6. Highlight the folder in which you want the application to appear or click New

Folder... to create a new folder. Click Next.
7. Select a name for the shortcut and click Finish.

Note: In Windows XP, 2003, Vista and 2008, you may need administrative rights

to make changes to the Start menu, depending on the existing user profiles and

privileges.

 Mac OS X

1. Go into the System Preferences.

2. Click on Accounts, and select your account.

27

http://www.ubuntugeek.com/howto-add-entries-in-gnome-menu.html
http://www.ubuntugeek.com/howto-add-entries-in-gnome-menu.html
http://docs.kde.org/development/en/kdebase-workspace/kmenuedit/quickstart.html

Reference Manual

3. Click on Startup Items.

4. Click the '+' sign next to the Zend Controller file. The next time the system is

restarted, the Zend Controller runs at startup.

28

Zend Server Community Edition

Tasks
Working with Zend Server Community Edition
The following text describes how to work with Zend Server Community Edition . Each of the tasks

in this section describes a different procedure that can be used to facilitate your PHP

development process.

The following table lists the different tasks, their descriptions and the expected outcome of each

task:

Task Description Outcome

Getting Started

Review all the post installation tasks

before working with Zend Server

Community Edition .

Access the Administration

Interface.

Working with
Extensions

How to enable and disable extensions. The environment is customized

to suit your requirements.

Working with Logs How to view and add logs. View and define which logs are

displayed.

Working with
Components

How to enable and disable components

(Debugger, Data Cache Guard Loader,

Java Bridge).

The environment is customized

to suit your requirements.

Working with
Directives

How to enable and disable directives. The environment is customized

to suit your requirements.

Working with
Optimizer+

How to use the Optimizer+. Improve performance by

running the Optimizer+.

Working with Zend
Guard Loader

How to use the Guard Loader

component.

Run code encoded with Zend

Guard.

Working with Java
Bridge

How to use the Java Bridge. Extend your PHP code to reach

out to Java functionality in

runtime.

Working with the
Debugger

How to configure the Debugger to

debug and profile code running with

Zend Server Community Edition.

Use the local and remote

debugging features in Zend

Studio for Eclipse.

29

Reference Manual

Task Description Outcome

Working with
Local Debugging

How to configure the Debugger to

debug and profile code running with

Zend Server Community Edition.

Use the local debugging feature

in Zend Studio for Eclipse.

Working with Data
Cache

How to use the Data Cache API. Implement the Data Cache API

functions into your PHP code.

30

Zend Server Community Edition

Getting Started with Zend Server Community Edition
Zend Server Community Edition is a tool that requires a minimal amount of actual interaction with

the Administration Interface. Once your environment is setup, apart from occasionally logging in

to view your system settings or your php.ini, there are not many day-to-day activities that require

the Administration Interface.

The first point of reference for working with Zend Server Community Edition is what to do after

installation.

What to do After Installing Zend Server Community Edition
The following section describes the tasks that should be performed after installing Zend Server

Community Edition for the first time.

These tasks cover all the different installation types (DEB, RPM,and Windows). Each task is

accompanied by a description of its purpose and the expected results.

Run the Administration Interface
Purpose: To verify the installation and that the Administration Interface is accessible.

Result: the Administration Interface opens in a browser.

The Administration Interface is a Web interface that runs through a browser.

This procedure describes how to view the Administration Interface.

To view the Administration Interface:
1. To run Zend Server Community Edition locally, open a browser and enter the

following URL:

 For Windows: http://localhost/ZendServer;

For Linux/Mac: http://localhost:10081/ZendServer or

https://localhost:10082/ZendServer

If you are using a remote connection, replace localhost with your Host Name or

IP.

2. The Zend Server Community Edition login screen opens and prompts you to set

a password.

This screen only appears once and is not displayed again after your password

is set.

The next time you log in to Zend Server Community Edition, you are prompted for the password

you set the first time you opened Zend Server Community Edition.

31

Reference Manual

Configure Your Password
Purpose: To ensure that you can access the Administration Interface.

Result: Your password is created.

When you first run Zend Server Community Edition, the registration screen is displayed. Define

your Zend Server Community Edition login password in this screen.

To view the different password management options, click Password Management.

Check Apache
Purpose: To verify that Apache is running.

Result: System confirmation.

This procedure describes how to check if the Apache Web server is running.

To check if the Apache server is running:
DEB, RPM : from the command line, run ps -ef | grep -E 'apache2|httpd'.

Windows: In the system tray, hover over the Apache Monitor icon to view the Apache

status. If necessary, click to open a dialog with the Stop, Start and Restart options.

A notification with the Apache server status is displayed.

Note:
Every time the Apache is restarted, the following message is displayed: "httpd: Could not reliably

determine the server's fully qualified domain name, using 127.0.0.1 for ServerName".

To resolve this situation, add a line to the Apache configuration file, as follows:

Open the file <install_path>/apache2/conf/httpd.conf and add the following line, placing your

server's Host name in the brackets: ServerName [server name]

Check IIS
Purpose: To verify that the bundled Apache is installed and running.

Result: System confirmation.

This procedure describes how to check if the IIS server is running.

To check if the IIS server is running:
Use Microsoft: http://support.microsoft.com/kb/314771 [^]

Look for the presence of the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\InetStp

-or-

Issue the following command in cmd :

Iisreset /status

32

Zend Server Community Edition

If the following message is received, then IIS is not running:

“'iisreset' is not recognized as an internal or external command, operable program or batch file.” --

--&61664; not installed

If the following messages are received, then IIS is running:

“Status for Windows Process Activation Service (WAS) : Running"

"Status for World Wide Web Publishing Service (W3SVC) : Running” ---&61664; installed

Run a Test on Your Web Server
Purpose: To verify that the installed Web server is running properly.

Result: The "Hello World" message is displayed in your browser.

This procedure describes how to run a test PHP script.

To run a simple test script:
1. Create a file called hello.php

2. Enter the following code into the file:

<?php
echo "Hello World";
?>

The "Hello World" message is displayed when the code runs in a browser.

1. Save the file in your Apache document root directory. Only files in this directory

are serviced by the Web server. For information about the document root

directory, see Deploying Code with Zend Server.

2. Open a browser and enter the following URL: http://localhost:<port

number>/hello.php.

Replace <port number> with the port you are using. The default values are port

80 for Windows DEB and RPM and port 10088 for the other operating systems

unless you manually changed the port assignment.

Your browser displays the "Hello World" message.

33

Reference Manual

Configure Debugger Access Control
Purpose: To enable PHP debugging using Zend Studio and Zend Server Community Edition.

Result: You are able to debug your PHP code and view the results in Zend Studio.

Before working with the Debugger, configure the allowed hosts in Server Setup | Debugger.

Note:
By default, Zend Server Community Edition comes with a permissive setting that allows all

standard private IP addresses (for example 10.*.*.*) to access the Debugger. For security

reasons, if you do not have an immediate need for permissive access, remove these ranges from

the Allowed Hosts: 10.*.*.* / 192.168.*.* / 172.16.*.*.

Additional setup information can be found in the Installation Guide, in Package Setup and Control

Scripts.

34

Zend Server Community Edition

Configuring Zend Server Community Edition
This section refers to the actual configuration workflow for using Zend Server Community Edition.

Here, we describe the general workflow. Each component also has a separate section describing

how to work with the component in detail.

The Zend Server Community Edition's Administration Interface is the main control center for

configuring your PHP and Zend Server Community Edition components. After installing Zend

Server Community Edition, use the Administration Interface to configure your PHP by performing

the following actions:

1. In Server Setup | Extensions, define the extensions that should be "turned on" or

"turned off". If you are planning to use functions related to an extension in your code,

verify that the extension is turned on. If your extension has additional directives that are

used to configure the extension's behavior, a configure link is included in the Directives

column. Clicking this link leads you to the directives, pre-sorted to display the relevant

directives.

2. The Directives page is accessed by clicking Server Setup | Directives. Here, you find all

the directives relating to the extensions and components loaded in your PHP. If you

cannot find a directive in the directives page, look in Server Setup | Extensions or

Server Setup | Components to check that the extension or component is "turned on".

See Adding Extensions for instructions on how to manually add an extension.

3. In Server Setup | Components, define the Zend Server Community Edition components

that should be "turned on" or "turned off". If you are planning to use functions related to

Zend Server Community Edition components in your code (such as the Optimizer+, Data

Cache, Debugger, Guard Loader or Java Bridge), verify that the extensions are "turned

on". If your Zend Server Community Edition component has additional directives used for

configuring the component's behavior, a configure link is included in the Directives

column. Clicking this link leads you to the relevant directive in the Directives page .

4. In Server Setup | Debugger, define which hosts are allowed to connect to the server to

use the Zend Debugger for debugging and which hosts are not allowed.

35

Reference Manual

Restart PHP Message
The Restart PHP message appears whenever a change is made to settings in your php.ini file. in

order to apply the settings click the "Restart PHP" button. The changes will be applied to php.ini

file on which Zend Server is running.

36

Zend Server Community Edition

Working with Extensions

The Extensions page provides a convenient way to view and configure PHP extensions.

Use this page to control and configure the extensions that are loaded in your environment.

Changing Extension Status

To change an extension's status:
1. Go to Server Setup | Extensions.

2. Select an extension. In the actions column, click Turn off or Turn on:

 Built-in extensions do not have the Turn on or Turn off option.

 After changing an extension's status, a message appears to prompt you to click

the Restart Server button at the bottom of the screen

 You can turn more than one extension on (or off) before you click Restart

Server . All the changes that are made prior to restarting the server are applied

after the restart.

 If you navigate to other tabs, the changes you make are saved and applied

when the server is restarted.

Changes are updated in the Server Info page and in your php.ini file. Changes are also applied

when the server is manually restarted.

Restart PHP Message
The Restart PHP message appears whenever a change is made to settings in your php.ini file. in

order to apply the settings click the "Restart PHP" button. The changes will be applied to php.ini

file on which Zend Server is running.

37

Reference Manual

Configuring Directives Associated with Extensions

To configure a directive associated with an extension:
1. Go to Server Setup | Extensions.

2. If the Extension has directives that can be configured, a link appears in the

directives column.

Clicking the link opens the Directives page, with the relevant directives already

filtered.

3. Configure the directive as required.

You can configure multiple directives before you save and apply your changes.

4. Click the Save Changes button at the top right corner of the

screen to save your changes. To discard changes, navigate away from the screen

without clicking the Save Changes button.

Changes are updated in the Extension Configuration screen and in the php.ini file the next time

the server is restarted.

Note:
Directives of extensions that are turned off can also be configured through the Extensions page.

Added extensions that are not part of the original Zend Server Community Edition list of

extensions cannot be configured on the Extensions page.

38

Zend Server Community Edition

Working with Logs

The Logs page is a log viewer for developers to view log information directly from the

Administration Interface.

From this page you can:

 View a Log

 Filter log information

 Navigate inside a log

 Activate_'Auto_Refresh'

 Advanced

 Log_File_Permissions

Advanced users can also add logs to the list of logs to display in the "Log View" list.

View a Log
This procedure describes how to view a log file.

To view a log file:

1. Go to Monitor | Logs.

2. Select a log from the View Log list.

3. The log information is displayed in the main display area.

Use the Show option (located below the main display) to determine how many

lines to display. To use this option, enter a number between 5 and 200 and click Go to apply the

setting.

39

Reference Manual

Filter Log Information
This procedure describes how to filter a log file to fine tune the information to display specific

results.

To filter a log file:

1. Select a log to display.

2. Go to the Filter area and enter the text to use for the filter: You can use any text.

3. Click Refresh or Find.

The results are displayed in the main display area.

 To run another query, change the text in the Filter area and click Refresh. There is no need to

display the complete log again.

Navigate Inside a Log
This procedure describes the different navigation options available for navigating inside a

selected log file.

Start - displays the first X lines of the log file.

Prev - shows the previous X lines of the log file.

Next - Shows the Next X lines of the log file.

End - displays the last X lines of the log file

'X' represents the number of lines that you specified in the Show option . The

default value is 20.

Activate 'Auto refresh'
The following procedure describes how to activate and deactivate the Auto refresh option. The

Auto refresh option sets the log information to display the most recent log entries in the last lines

of the log that is currently being viewed. Therefore, as the log changes over time, the content in

the view is always current. This feature provides an easy way to view errors in "almost real-time".

(Because the refresh rate is in seconds, there is at least a 3-5 second display lag, which is why

the Auto refresh feature is not considered true real-time logging.)

To activate Auto refresh:

1. Select a log to display.

2. Click the Auto refresh check box to automatically refresh the log information.

As long as the log is displayed, the information is refreshed. Each time you choose another log or

exit the page, the settings are reset.

40

Zend Server Community Edition

Advanced - Add logs to the list of logs in the "Log View" list.
It is possible to add and display other logs that are specific to your environment in the Log Tail

page.

To add these other logs requires that you view and access backend application files which, in

normal circumstances, should not be changed. For this reason, we request that you perform this

task only if you clearly understand the instructions. If for some reason the system does not load

or malfunctions, please re-install Zend Server Community Edition .

Power users may edit the XML file in <install_path>/gui/application/data/logfiles.xml to add as

many logs as they may have.

To add log files to the list:
1. Open the file <install_path>/gui/application/data/logfiles.xml.

2. Add the name and location (full path) of the log files in the same format as the

existing files and save.

3. Restart your PHP.

41

Reference Manual

Working with Components
The Components page provides a convenient way to view and configure the Zend Components
installed in your environment.
Use this page to control and configure components loaded in your environment.

Changing Component Status

To change a component's status:
1. Go to Server Setup | Components.
2. Select a component and click the link in the Actions column to turn the component

on or off.
3. After changing the component's status, a message appears, prompting you to click

the Restart Server button at the bottom of the screen .

 More than one component can be loaded or unloaded before you click Restart
Server . All the changes made prior to restarting the PHP are applied when the
server restarts.

 Even if you navigate to other tabs, the changes are kept and are applied when
the server restarts.

Changes are updated in the Components page and in your php.ini file. Changes are also applied
when you manually restart your Web Server.

Configuring Directives Associated with Components

To configure a directive associated with a component:
1. Go to Server Setup | Components.
2. If the component has directives that can be configured, a link appears in the

directives column.
Clicking the link opens the Directives page with the relevant directives already
filtered.

3. Configure the directive as required.
You can configure multiple directives before you save your changes.

4. Click the Save Changes button to save your changes. To
discard changes, leave the screen without clicking Save Changes.

Changes will be updated in the Components page and in your php.ini file the next time the server
restarts.

Note:
Directives of both loaded and unloaded components can be configured through the Components
page.

42

Zend Server Community Edition

Actions
Actions are additional activities that can be applied to a certain component when necessary.

The actions are as follows:

 Clear - Clears all cached information (Data Caching and Optimizer+ bytecode caching).

 Manage - Directs the user to an additional page inside the Administration Interface to

manage and fine-tune a component. The basic definitions that are defined by directives

are set by clicking Configure.

 Restart - Server-based components can be restarted using this action (for example the

Java Bridge).

Adding New Components
The installation process determines which components are installed in your environment.

Depending on your operating system, you can choose to customize your installation (Windows) or

to work with a basic set of components that you can add to later on (DEB, RPM).

We provide all Zend components with loader binary when ZAMP is installed, however in

examples like php.ini its entry is commented upon and therefore is not loaded.

In this case no additional installation is required but only configuration change.

For installation specific instructions on how to add additional components, see Choosing Which

Distribution to Install and click on your installation type for instructions.

43

Reference Manual

Working with Directives
This tab is accessed from Server Setup| Directives

The initial display shows the most commonly used directives. Click "All" for the full list of

directives or use the "Search" component to locate a specific directive.

Users are also directed to this page from the Extensions and Components pages when they click

"Configure" for an extension or a component that has directives which can be configured.

To configure directives:
1. Expand one of the lists, use the Search/All or the popular options to locate the

relevant directive.

2. Configure the directive as required.

You can configure multiple directives before saving.

3. Click the Save Changes button at the top right corner of the

screen to save all the changes made or leave the page without saving to discard the

changes

4. As soon as changes are made to this page, a prompt to Restart Server is displayed.

5. Click .

The changes are updated in the Directives page and in your php.ini file.

44

Zend Server Community Edition

Working with Optimizer+
The Optimizer+ runs out-of-the-box (by default, after installation). Optimizer+ allows you to gain a

performance boost by reducing code compilation time. When PHP code is compiled for the first

time, it is saved in the server’s memory. Each time the code is called, the pre-compiled version is

used instead of waiting for the code to compile, which causes a delay each time the code is used.

Note:
Using the Optimizer+ should not be confused with caching. The Optimizer+ saves a compiled

script to the server 's memory, while Caching saves the script’s output to the server’s memory.

The general recommendation is to always keep the Optimizer+ set to 'On' to boost Web

application performance.

If your PHP application is business-critical, you may wish be alerted to any

performance slowdowns. Zend Server can monitor your application in production,

alert you to performance issues or errors, and provide you with diagnostic

information for rapid root cause determination.

This feature is available only in the commercial version of Zend Server.

When Not to use Optimizer+ (Blacklist)?
There are some instances where it is preferable not to store PHP byte-code for certain PHP files.

To do so, you can make a list (a blacklist) of file names that you want the Optimizer+ to ignore or

increase the Optimizer+ resource allocation.

Files and directives should be blacklisted under the following conditions:

 Directories that contain files that are larger than the allocated memory defined in:

zend_optimizerplus.memory_consumption or or that contain more files than the allocated

quantity of files, as defined in zend_optimizerplus.max_accelerated_files.

 Large files that have high memory consumption - If you have exhausted all your allocated

memory, select the largest and slowest scripts blacklist them.

 Files that have long execution times (makes the compilation save irrelevant).

 Code that is modified on the fly (e.g., auto-generated template files).

45

Reference Manual

Increasing Optimizer+ Resource Allocation
The following procedure describes how to change Optimizer+ resource allocation. This procedure

is used as an alternative to blacklisting files and should be tried first, before adding a file to a

blacklist (unless the file meets one of the criteria above). Optimizer+ settings can be changed to

increase allocated memory and the maximum quantity of files. This alternative depends on the

amount of memory available to allocate to the Accelerator.

Memory allocation can only be increased when the Optimizer+ is set to 'On'.

To increase the Optimizer+ memory allocation:
1. Go to Server Setup | Components and verify that the "Zend Optimizer+"

component is set to 'On'.

2. Click the "Configure" link in the directives column to display the list of Optimizer+

directives.

3. Locate the directive: zend_optimizerplus.memory_consumption and increase the

value according to your system's memory allocation abilities.

To increase the quantity of files:
1. Go to Server Setup | Components and verify that the "Zend Optimizer+"

component is set to 'On'.

2. Click the "Configure" link in the directives column to display the list of Optimizer+

directives.

3. Locate the directive: zend_optimizerplus.max_accelerated_files and increase the

value according to your system's memory allocation abilities.

If the memory fills up quickly (especially if there are only a few files), increase the memory

allocation or blacklist the file. Files which exceed the allocated memory or file quantity are not

accelerated.

46

Zend Server Community Edition

Blacklisting Files
If none of the alternatives (described above) are suitable, or if the file meets one of the criteria for

blacklisting a file, use the following procedure to create a blacklist file that contains the file names

of the files you do not want to be byte-code cached by Optimizer+.

To create a blacklist file:

1. Create a .txt file using a text editor.

2. Write a list of the file names to blacklist (i.e., ignored by the Optimizer+).

List each file name in a new line.

3. In Server Setup | Components, verify that the "Zend Optimizer+" component is

set to 'On'.

4. Click the "Configure" link in the directives column to display the list of

Optimizer+ directives.

5. Locate the directive: zend_optimizerplus.blacklist_filename and specify the full

path to the file location.

The files in the blacklist are now ignored by Optimizer+.

Optimizer+ Duplicate Functions Fix
In situations where certain functions were (or were not) defined, some PHP code produces

different opcodes, depending on the circumstances. This causes a discrepancy for the

Optimizer+ in the situation where the Optimizer+ caches one version, and a sequence of events

arises that requires a different function. If the discrepancy is not addressed, the script stops

working and raises a "duplicate functions" error.

To maintain proper performance in these and similar situations, activate the

zend_optimizerplus.dups_fix parameter. This parameter shuts down the Optimizer+ duplicate

function check to prevent these errors from occurring.

This parameter can be defined in Server Setup | Directives by searching for

zend_optimizerplus.dups_fix.

47

Reference Manual

Working with Zend Guard Loader
The Zend Guard Loader is a PHP extension that is used to run code that was encoded or

obfuscated using Zend Guard. If you chose to install this component, it is set to run by default,

out-of-the-box.

To locate your installation package and verify if the component was installed by default or needs

to be installed, see the Installation Guide, Choosing Which Distribution to Install.

PHP code that was either encoded or obfuscated using the Zend Guard, or which is license

restricted will only work if the

Zend Guard Loader component is set to 'On'.

The Zend Guard Loader component can be set to 'On' or 'Off" from Server Setup | Components.

Note:
If you do not require the Zend Guard component for optimal performance, either do not install it,

or set this component to 'Off'.

48

Zend Server Community Edition

Working with Java Bridge

The Java Bridge is only active when the Java Bridge component is installed and activated (see

the Installation Guide). The component's status and settings can be viewed and configured in the

Administration Interface, from Server Setup | Components.

Note:
The Java Bridge requires that you have Sun Microsystems JRE 1.4 (or later) or IBM Java 1.4.2

(or later) installed on your computer. During or after installing (depending on the installation type),

you are prompted to direct the installer to the JRE location. Therefore, you should already have

JRE installed. 64-bit JRE is not supported.

More information about JREs and the latest updates can be obtained from the SUN Microsystems

Website.

Configuration
This procedure describes how to configure the target Java runtime environment.

Configuring the runtime environment:
Use the following command to run JavaMW:

java com.zend.javamw.JavaServer

For correct execution, the classpath should include the javamw.jar file in the directory

where JavaMW is installed.

Example:

and Mac <install_dir>/bin/javamw.jar

<install_dir>\bin\javamw.jar

49

http://java.sun.com/
http://java.sun.com/

Reference Manual

Testing the Bridge Connection
The following code sample shows how you can, as an initial step, test the connection between

your PHP and Java environments to ensure that the Java Bridge is defined properly and

communicates with the correct Java. This code demonstrates the interaction between a PHP

application and Java objects that occurs in the Java Bridge implementation.

To test the Java Bridge connection:

Create a new PHP script to create a Java object, as in the example below:

<?php

// create Java object

 $formatter = new Java("java.text.SimpleDateFormat",

 "EEEE, MMMM dd, yyyy 'at' h:mm:ss a
zzzz");

 // Print date through the object

 print $formatter->format(new Java("java.util.Date"))."\n";

 // You can also access Java system classes

 $system = new Java("java.lang.System");

 print $system."\n"; // will use toString in PHP5

 print "Java version=".$system->getProperty("java.version")."

\n";

 print "Java vendor=".$system->getProperty("java.vendor")."
<p>\n\n";

 print "OS=".$system->getProperty("os.name")." ".

 $system->getProperty("os.version")." on ".

 $system->getProperty("os.arch")."
\n"; ?>

If the Java Bridge is correctly installed and running, you should receive the following

response:

Friday, June 13, 2008 at 8:45:57 PM U.S Daylight Time class
java.lang.System Java version=1.6.0_06 Java vendor=Sun
Microsystems Inc.

OS=Linux 2.6.25.3-18.fc9.i686 on i386

This output shows the date, Java version, vendor and operating system and indicates

that the connection is complete.

If you receive an error message instead of the expected output information, one of the

following problems may have occurred:

1. The Java Bridge is not installed

2. The Java Bridge extension is not running (Server Setup | Components)

50

Zend Server Community Edition

3. The Java Bridge Server needs to be restarted (Server Setup | Components)

4. The requested .jar file does not appear in the environment's classpath.

Once the connection is established, you can start using the API to call Java objects from your

PHP.

Before using the Java Bridge API
Before you start incorporating the Java Bridge API in your code, you must be aware that when

you call Java from PHP, you must use Java coding standards to call the correct objects, because

the Java Bridge does not perform dynamic data conversion. You must perform the type

conversion in your PHP code.

For example,

Example:
If you call a Java method that looks like this:

public void doSomething(int i);

Using what you would expect to work in PHP:

$var = "1"

$javaObject->doSomething($var);

The Java Bridge throws an exception. To avoid this, use the following line of code to

convert the parameter from a string to a numeric value before the Java Bridge passes it:

$javaObject->doSomething($var + 0);

For more information, see the API, or Java Bridge Use Cases.

51

Reference Manual

Debugger

Working with Local Debugging
Local debugging occurs when your entire environment (Zend Studio for Eclipse, Debugger and

Zend Server Community Edition) is located on a single machine.

When working with an IDE such as Zend Studio for Eclipse, your project files are, in most cases,

placed in a location that you have defined. To run the files on the Web Server, you must first

move the files to the Web Server's document management directory called "htdocs".

52

Zend Server Community Edition

Working with the Debugger
The Debugger API that is included in Zend Server Community Edition is a remote debugging tool

for developers who work with Zend Studio. If the Debugger Component is not set to "On" in the

Components page, you are not able to run remote debug sessions using Zend Studio. For more

information on turning the Debugger Component to "On", see Working with Components.

From the Zend Server Community Edition perspective, other than defining allowed hosts and

denied hosts, no additional interaction is required.

The following procedure describes how to define allowed hosts for debugging. Users define

allowed hosts to create a list of IP addresses (of computers that run Zend Studio) that have

permission to debug the PHP code that runs on the server.

To define allowed hosts for debugging:

1. In the Administration Interface go to Server Setup | Debugger.
2. In the "Allowed Zend Studio Clients for Debugging" section, enter a valid IP

address or enter a range by entering the beginning of an IP address and adding

'0' instead of the rest of the number. To make sure you are using Wildcards (*)

to specify a range of IPs select the pattern you want from the drop-down list.

3. From the drop-down list, select an option according to the type of IP address

you entered. Click 'Exact IP address only' for a single IP, or one of the other

options to represent a range of hosts.

4. Click to add the Host.

5. The changes are applied after you restart the Server

The IP or range of IPs is allowed to connect to the server to debug PHP code with Zend Studio .

To remove a specific IP from the list, click "Remove".

Important Note:

If your machine has several IP addresses (for example if you are using a wireless network

connection on a laptop) verify that you have defined all the possible IP addresses as "Allowed

Hosts for Debugging" or that the IP you want to use is first in the list of IPs in Zend Studio for

Eclipse. (In Window | Preferences | PHP | Debug | Installed Debuggers, verify that Zend

Debugger is selected and click Configure in the Client Host/IP field.)

The following procedure describes how to define denied hosts for debugging. Users define

denied hosts to create a list of IP addresses (of computers that run Zend Studio) that do not have

permission to debug the PHP code that runs on this server.

53

Reference Manual

To define denied hosts for debugging:

1. In the Administration Interface go to Server Setup | Debugger.
2. In the "Denied Zend Studio Clients for Debugging" section, enter a valid IP

address or use Wildcards (*) to specify a range of IPs.

3. From the drop-down list, select an option according to the type of IP address

you entered. Click 'Exact IP address only' for a single IP, or one of the other

options to represent a range of hosts.

4. Click to add the host.

5. The changes are applied after you restart the Server .

The IP or range of IPs is denied permission to connect to the server to debug PHP code with

Zend Studio.

To remove a specific IP from the list, click "Remove".

Note:
Do not add the same IP address to both the Allowed and Denied host lists. Pay attention when

you specify a range of IP addresses: If you deny a range of addresses that includes an IP that

was specified in the Allowed hosts, the host is not allowed to create a debug session.

Wildcards (Net Mask)
Wildcards use the asterisk (*) to define a string of IP addresses and to specify a range of IPs that

are either allowed or denied hosts. This option makes it possible to specify a range of IPs from 0-

255, according to the selected number of wildcards. For example, if you use the Net Mask option

to deny the IPs 10.1.3. *, all the IP addresses beginning with 10.1.3. are denied access to the

Studio Server (i.e., integration with Studio is not permitted for these IP addresses).

Remote Debugging Through a Firewall?
Remote debugging is the process of creating a connection between two machines: For example,

the machine on which the Debugger (Zend Studio) resides and the machine on which the Zend

Server Community Edition resides. When these machines are on the same local network or there

are no security devices that limit remote connections, no additional action is required. However, if

one or both of the machines are behind a firewall, the communication required to run the debug

process is not allowed. To allow debugging and still maintain a secure environment, you need to

use firewall tunneling. For more information on how to setup firewall tunneling, see Working with

Firewall Tunneling.

54

Zend Server Community Edition

Working with Zend Controller

Initial Setup
The following procedure describes how to configure the Zend Controller's settings to

communicate with Zend Server Community Edition. This procedure should be completed before

using the Zend Controller.

To Set up the Zend Controller:

1. Open the Zend Controller menu (right-click in Windows or Unix, Ctrl-Click in

Mac).

2. In the Zend Controller's menu, click to open the Settings dialog.

3. Make sure the following settings are correct:

 Hostname - unique name or IP number of the server on which Zend Server

Community Edition is running. Can be a remote server on the same LAN.

 Port - The default ports are:
- Windows: 80 for HTTP
- Unix: 10081 for HTTP and 10082 for HTTPS

If you changed the port of the Web server that runs Zend Server Community

Edition during the installation, change this value too.

 Password - The password is automatically configured when you set your

Administration Interface password.

 Connection Scheme - Your preferred method of connecting the Control Panel

with Zend Server Community Edition for communication purposes, where

HTTPS is a secured connection protocol.

55

Reference Manual

Once the Zend Controller is properly configured, you can use it to change the status of the

following components; Data Cache, Debugger, Optimizer+ and Java Bridge. You can also access

the Administration Interface directly by clicking one of the following Zend Controller buttons:

Configure Zend Debugger, Zend Extension Configuration and PHP Info.

Other Zend Controller features include Multi-Source search and Benchmarking.

Using the Zend Controller Benchmark Tool
The Zend Controller Benchmark tool is a simple benchmark that developers can use to run

performance tests on the URLs (Web pages) they develop. The main purpose of this tool is to

identify the performance gain that is achieved when using Zend Server Community Edition's

Optimizer+ and Data Caching components. This can be done by turning the different Zend Server

Community Edition components on and off and running the benchmark.

The Zend Controller Benchmark tool does not replace standard benchmarking utilities. It is

intended to provide a quick and easy way to measure performance without having to run

elaborate and resource-expensive performance tests.

56

Zend Server Community Edition

How it Works

The Benchmark tool checks HTTP request response times and lists them in a bar chart that

displays when the test was started and the average amount of 'requests per second' received for

the duration of the test (user defined, in seconds). These tests can be run once, without one of

the performance-related components (Data Cache and Optimizer+), and then again (with each or

all components turned on) to see the effect each component has on performance.

Before running a test, make sure the URL you enter is the exact URL and does not rely on

redirection: Using a redirecting URL causes the test to fail.

To run a Benchmark:

1. Open the Zend Controller

2. In the Benchmark section, enter a URL.

3. In the Duration section, define the amount of seconds to run the test.

If you are comparing how different Zend Server Community Edition components

affect performance, make sure you run the tests at approximately the same

time, to avoid large fluctuations in traffic volume and ensure that the traffic

conditions are similar for each test.

4. Click Go to start running the test.

Clicking Abort terminates the test without collecting test information.

The results are displayed in a bar chart. The Benchmark tool displays up to five test results. If

there are more than five results, the tool displays the five most recent results.

57

Reference Manual

Understanding Results
Once you have the results, the most important consideration is to determine what constitutes a

good value.

When testing the effect Zend Server Community Edition components have on performance, the

more requests per second, the faster the code.

Another consideration is the size of the page: Large pages take longer to load and should be

checked during both high and low traffic to determine if the page is performing well.

58

Zend Server Community Edition

Cache

Working with Data Cache

The Data Cache API is used the same way as any other API: By inserting the API functions into

your PHP code. The Data Cache component uses an API to cache partial PHP outputs using

memory or disk.

You can further enhance the performance of your application by caching Web pages

that don’t require frequent change.

This feature is available only in the commercial version of Zend Server.

The Data Cache API includes the following functionality:

 Storing variables to the Cache

 Fetching variables from the Cache

 Deleting variables from the Cache

 Clearing the Cache

 Disk/memory (SHM) storage

 Caching using namespaces

 Cache folder depth configuration

Disk/Shared-Memory Caching
This feature provides options to determine where to store cached variables. Memory caching

improves server responsiveness and increases performance - primarily in environments that run

high-traffic applications that can benefit from off loading activity directed toward their hard disk.

Disk caching is more suitable for smaller applications and ensures the cached content is available

after the machine is restarted.

SHM/disk storage is implemented by using the appropriate API functions and configuring the

Data Cache directives.

Note:
Memory option error messages have been created to notify you if the store operation fails or you

run out of allocated memory.

59

Reference Manual

The following example shows the different storage options:

Example:

A simple key with no namespace stored on disk

if (zend_disk_cache_store("hello1", 1) === false){

 echo "error2\n"; exit();

}

Shared memory:

if (zend_shm_cache_store("hello1", 1) === false){

 echo "error2\n"; exit();

}

Store with namespace on disk

if (zend_disk_cache_store("ns1::hello1", 1) === false){

 echo "error2\n"; exit();

}

Shared memory:

if (zend_shm_cache_store("ns1::hello1", 1) === false){

 echo "error2\n"; exit();

}

Store with namespace on disk with limited lifetime (3)

if (zend_disk_cache_store("ns3::test_ttl", 2, 3) === false){

 echo "error12\n"; exit();

}

Shared memory:

if (zend_shm_cache_store("ns3::test_ttl", 2, 3) === false){

 echo "error12\n"; exit();

}

60

Zend Server Community Edition

'namespace' Support
Using namespaces for caching provides the ability to define a key that can serve as an identifier

to delete select items from the cache, rather than unnecessarily removing shared instances.

'namespace' support is intended for environments that run large applications that are separated

into modules. Applying a 'namespace' to each module provides the identification necessary to

pinpoint all the cached items that belong to a given module and remove only those specific items.

This does not mean that you must use the 'namespaces' to clear the cache: The entire cache can

be cleared by using the 'output_cache_remove' function.

Setting the cached 'namespace':
The cache 'namespace' is set by adding it as a prefix to the cache with '::' as the separator.

Example:
This example shows how to manipulate variable caching using a 'namespace'

zend_disk_cache_store("my_namespace::my_key",$data) is fetched with

zend_disk_cache_fetch("my_namespace::my_key");

zend_shm_cache_clear("my_namespace") clears all the keys that start with

"my_namespace::"

Cache Folder Depth Configuration
Defining the Cache folder depth is intended for environments that use a large number of keys. By

definition, cached content is separated into different directories by key, to prevent performance

degradation caused by accessing files that contain large amounts of content. This option is only

available with disk caching. Increase the cache folder depth according to the quantity of content

that requires caching (small amount = 0, large quantities = 2).

Note:

A single directory may include several keys, depending on the quantity of cached content.

The cache folder depth is defined by the directive zend_cache.disk.dir_levels. The value of the

directive configures how the cached files are stored. The accepted values for this directive are 0,

1 or 2, where:

0 = one directory containing all the cache files

1 = a separate directory under the cache directory

2 = an additional sub directory for cached content under the cache directory

61

Reference Manual

phpMyAdmin

Working with phpMyAdmin to Manage MySQL
phpMyAdmin is a tool written in PHP which is intended to handle the administration of MySQL

over the Web. Currently, it can create and drop databases, create/drop/alter tables,

delete/edit/add fields, execute any SQL statement, manage keys on fields, manage privileges,

export data into various formats and is available in 55 languages.

The Zend Server Community Edition Installer includes this component as part of the installation

process in Windows and Zend Server Community Edition. Download the Linux and Mac version

from http://www.phpmyadmin.net: They are available as RPM and DEB packages from your

distribution's repository. See the Installation Guide for additional operating system and Installer-

specific information.

The following types of Installations are available:

 Linux

 Mac OS X

 Windows

62

http://www.phpmyadmin.net/

Zend Server Community Edition

Working with MySQL Server: Linux
This procedure is relevant for users who manually downloaded and installed phpMyAdmin.

This procedure describes how Unix users with root privileges can use the phpMyAdmin tool to set

up their environment to work with a MySQL server.

Before following these instructions, verify that your MySQL server is installed and running. If you

do not have an Internet connection, make sure you have access to the phpAyAdmin installation

package.

To extract and install phpMyAdmin:

1. Download the package from http://www.phpmyadmin.net.

2. Extract the package with the command tar -xzvf phpMyAdmin-2.11.7-all-

languages-utf-8-only.tar.gz .

3. Move the extracted directory to

<install_path>/zend/gui/lighttpd/htdocs/phpMyAdmin with the following

command:

mv <extracted dir> <install_path>/zend/gui/lighttpd/htdocs/phpMyAdmin .

4. Change your directory using the following command: cd

<install_path>/zend/gui/lighttpd/htdocs/phpMyAdmin/

5. Create a directory called config under the phpMyAdmin directory with the

following command: mkdir config .

6. Open the phpMyAdmin Web Interface by following the link:

https://localhost:10082/phpMyAdmin/scripts/setup.php .

If you are using a different port or connecting from a remote server, replace the

port number <10082> with the appropriate port number or replace <localhost>

with the IP address of the remote computer.

7. Once the phpMyAdmin setup page is open, you can start configuring it to

manage your MySQL Server.

To configure phpMyAdmin to work with an existing MySQL server:
1. In the phpMyAdmin setup page, click Add to add a MySQL server.

2. In the Add section, configure the following parameters:

- Server Host Name: localhost for local servers. If you are not using a local

server, enter your machine's IP address.

- Port socket path.

Most users will not have to change any settings.

3. In the Authentication Type drop-down, change the type to http.

63

http://www.phpmyadmin.net/
https://localhost:10082/phpMyAdmin/scripts/setup.php

Reference Manual

4. Click Add to add the new server and fold the display.

A message stating that a new server was added is displayed.

5. Go to Configuration and click Save to create a configuration file.

6. Take the configuration file and move it to <Missing>.

Your server has now been added and can be configured with phpMyAdmin.

Further information on using phpMyAdmin can be found in the online documentation at:

https://localhost:10082/phpMyAdmin/Documentation.html.

Note:
To log in to your phpMyAdmin server, you must use your existing MySQL server user name and

password (usually "root" for administrators).

64

https://localhost:10082/phpMyAdmin/Documentation.html

Zend Server Community Edition

Working with MySQL Server: Mac OS X
The Zend Server Community Edition Mac package includes MySQL and phpMyAdmin. This

enables the files to be installed seamlessly and to ensure a smooth configuration process.

File Locations

 mySQL binaries (such as 'mysql') reside in:

<install_path>/mysql/bin/

 mySQL tables and database reside in:

<install_path>/mysql/data/

 Configuration files, in particular, my.cnf reside at:

<install_path>/mysql/data/

Default Port and Socket

Since, by default the 'Skip-networking' option is enabled, the MySQL server does not listen on a

TCP/IP port at all; All interactions with 'mysqld' must be made via Unix sockets. The socket file

resides at <install_path>/mysql/tmp/mysql.sock.

Starting and Stopping

Generally, zendctl.sh is used to start and stopZend Server Community Edition modules. To start

and stop the MySQL server use:

<install_path>/bin/zendctl.sh stop-mysql

<install_path>/bin/zendctl.sh start-mysql

65

Reference Manual

Password

Default user is: zend, and password is left blank

Change the password, either at the config file 'my.cnf', or using the phpMyAdmin interface. To

access the phpMyAdmin interface go to the Dashboard and follow the 'Open phpMyAdmin' link.

phpMyAdmin Note:
phpMyAdmin access is by default allowed only from the localhost. To open phpMyAdmin

interface to remote user comment out the following lines from

<install_path>/gui/lighttpd/etc/lighttpd.conf:

138 # $HTTP["remoteip"] !~ "127.0.0.1" {

139 # $HTTP["url"] =~ "^/phpmyadmin/" {

140 # url.access-deny = ("")

141 # server.errorfile-prefix = "/usr/local/zend/gui/lighttpd/share/lighttpd-custom-

errors/errorcode-"

142 # }

143 # }

66

Zend Server Community Edition

Working with MySQL Server: Windows

If you already have phpMyAdmin

When you install Zend Server Community Edition , you can use the custom installation type and

choose not to install phpMyAdmin.

If you decide to install phpMyAdmin, a separate version is installed and the existing phpMyAdmin

configurations are retained. The default location is <install_dir>\phpMyAdmin. The default

authentication is user: root; and without a password.

A link to this phpMyAdmin installation is added in the Zend Server Community Edition dashboard.

If you already have MySQL

If you have a local installation of MySQL, it will be automatically detected during the installation

process.

If you want to set phpMyAdmin to a remote MySQL server (running on a separate machine), see

the PHPMyAdmin online documentation.

Apache Note:
When running phpMyAdmin on Apache, the URL is case sensitive.

If you don't have anything (phpMyAdmin or MySQL)

When you install Zend Server Community Edition , you can use the full or custom installation

types to choose to install phpMyAdmin and MySQL.

Both phpMyAdmin and MySQL are installed on your local machine under the default location

<install_dir>\phpMyAdmin

and <install_dir>\MySQL.

A link to this phpMyAdmin installation is added in the Zend Server Community Edition Dashboard.

67

Reference Manual

Reference Information
This section contains reference information for PHP developers. Here you will find information

about using the Java Bridge, the extensions included in this release and other system-related

information.

The list of extensions provides an overview of all the extensions that are included and their status

(On, Off, Disabled). A description of what each status means can be found in the PHP Extension

List.

68

Zend Server Community Edition

Components
Zend Server Community Edition is comprised of several components that each contribute

important functionality to facilitate the development process.

The components are:

 Debugger - The Zend Debugger communicates with the Zend (PHP) Engine to retrieve

runtime information and present it in Zend Studio for root cause analysis.

 Optimizer+ - The Zend Optimizer+ component speeds up PHP execution via opcode

caching and optimization.

 Guard Loader - The Zend Guard Loader is used in order to run PHP scripts that are

encoded with Zend Guard.

 Data Cache - The Zend Data Cache component provides a set of PHP functions to

improve performance, by storing data in the cache.

 Java Bridge - The Zend Java Bridge component makes it possible to use Java classes

and code from within PHP.

 Zend Framework - An open source framework for developing Web applications and Web

services with PHP.

Click on a link to view a full description of the components architecture. To see how to work with a

component, select a topic that begins with "Working with..." from the Tasks section. For a short

description of each component and where it is installed, see the Installed Components section in

the Installation Guide.

69

Reference Manual

Debugger
The Zend Debugger component enables remote debugging of PHP scripts with Zend Studio.

The Zend Debugger communicates with the Zend (PHP) Engine to retrieve runtime information

and present it in Zend Studio for root cause analysis purposes.

Note:
If your machine has multiple IP addresses, make sure you define all the IPs as allowed hosts in

Zend Server Community Edition.

The Zend Debugger API communicates with the Zend (PHP) engine to reveal PHP runtime

information such as variables, call stack and environment information. This information is then

displayed and set up in Zend Studio to enable server side debugging, profiling and code

coverage.

70

Zend Server Community Edition

Optimizer+
The Zend Optimizer+ component speeds up PHP execution through opcode caching and

optimization.

The Zend Optimizer+ improves PHP performance by storing precompiled script bytecode in the

shared memory. This eliminates the stages of reading code from the disk and compiling it on

future access. For further performance improvement, the stored bytecode is optimized for faster

execution. This component works out-of-the-box and therefore does not require any configuration

or changes to your code.

The Zend Optimizer+ speeds up PHP execution and increases server performance, resulting in

better Web application performance.

This component is intended for PHP developers who run complex PHP applications and can

benefit from bytecode caching (which is especially helpful for working with Zend Framework).

Note:
The Optimizer+ works exclusively with Apache or FastCGI environments (no CLI or CGI support).

71

Reference Manual

Guard Loader
The Zend Guard Loader runs PHP scripts that are encoded with Zend Guard.

The Zend Guard Loader is a PHP extension that runs outputs created by Zend Guard, which

provides an easy way to encode, obfuscate and license PHP code via an Eclipse-based interface

or from the command line.

The Guard Loader extension must be installed on each Web server that runs files that were

encoded with, or use, Zend Guard licenses.

Note:
You can also use the Zend Optimizer that also includes the Guard Loader extension for code

written in PHP 5.2. The Zend Optimizer is available as a free download from www.zend.com.

The Zend Guard Loader translates encoded files to a format that can be parsed by the Zend

Engine. This runtime process uses the Zend engine as a trigger to start the Zend Guard Loader

component.

Zend Guard

Zend Guard is a separate product available from Zend that provides an easy way to encode,

obfuscate and license PHP code via an Eclipse-based interface or from the command line.

To view the API, click Zend Guard Loader.

For additional information on using Zend Guard, see the Zend Guard User Guide, available online

from http://files.zend.com/help/Zend-Guard/zend-guard.htm

72

http://www.zend.com/en/products/guard/
http://www.zend.com/en/products/guard/downloads
http://files.zend.com/help/Zend-Guard/zend-guard.htm

Zend Server Community Edition

Data Cache
The Zend Data Cache component provides a set of PHP functions to improve performance by

storing data in the cache.

The Zend Data Cache is used to cache different types of data (e.g., strings, arrays and objects),

as well as script output or script output elements for various durations. Items can be stored in

shared memory (SHM) or to disk. Namespaces are supported, to group cached objects for easy

management.

Data Caching is primarily used when it is impractical or impossible to cache the entire page

output, such as when sections of the script are fully dynamic, or when the conditions for caching

the script are too numerous. An example of this kind of usage is when some of the output is a

form: The data may include credit card numbers, addresses and other kinds of information that

should not be cached, for security reasons. For more information, see Working with the Data

Cache.

The Data Cache API includes the following functionality :

 Storing variables to the cache

 Fetching variables to the cache

 Deleting variables from the cache

 Clearing the cache

 Disk/memory (SHM) storage

 Caching using namespaces

 Cache folder depth configuration

73

Reference Manual

Java Bridge
The Zend Java Bridge provides PHP developers with a way to use existing Java code and build

PHP applications that use Java code.

The Java Bridge integrates Java code in PHP by connecting the PHP object system with the Java

Bridge object system.

Note:
The Java Bridge requires that you have SUN Microsystems JRE 1.4 (or later) or IBM's Java 1.4.2

(or later) installed on your computer.

During (or after) installing, (depending on the installation type, you are prompted to direct the

installer to the JRE location. You should, therefore, already have JRE installed. 64-bit JRE is not

supported.

More information about JRE and the latest updates can be obtained from SUN Microsystems’s

website.

The Java Bridge PHP extension adds functions that allow you to instantiate new Java classes

from inside your PHP script. Once a Java class is instantiated, the Java Bridge gets a message

from the Zend Engine to execute the Java code. The Java Bridge executes the script and returns

the results to the Zend Engine.

Zend Server Community Edition includes the Java Bridge PHP Extension and the ability to restart

the Java Bridge and configure the Java Bridge settings (from Server Setup | Components).

The Java Bridge is an optional component that is installed differently, depending on the operating

system (WIN, UNIX , MAC) and the installation method format (EXE, DEB, RPM , Tarball). Once

the extension is installed and its status is On, PHP code can use the Java Bridge API to call Java

objects.

The process of calling Java objects in PHP is described in the following diagram:

74

http://java.sun.com/
http://java.sun.com/

Zend Server Community Edition

Advantages

The Zend Java Bridge provides the following advantages:

 J2EE application servers can be extended to include the advantages that PHP offers

(relative to other Web-enablement languages), such as reduced development time,

reduced time-to-market, lower TCO (Total Cost of Ownership), etc.

 PHP-centric companies can take advantage of J2EE services that are not present in

scripting languages.

 The PHP/Java Bridge provides the ability to interact with plain Java objects.

 The Java Bridge operates without the overhead of a JVM for each Apache process.

 The Java Bridge consumes a set amount of memory that is disproportionately small

relative to the amount of activity that it handles.

75

Reference Manual

Zend Framework
Zend Framework is a high quality, open source framework for developing Web applications and

Web services with PHP.

Built in the true PHP spirit, the Zend Framework delivers ease-of-use and powerful functionality. It

provides solutions for building modern, robust and secure websites.

Zend Framework Resources

All the developer resources can be found at: http://framework.zend.com/

Why Zend Framework

(Taken from: http://framework.zend.com/whyzf/overview)

Extending the art and spirit of PHP, Zend Framework is based on simplicity: Object-oriented best

practices, corporate friendly licensing and a rigorously tested agile code base. Zend Framework

is focused on building more secure, reliable and modern Web 2.0 applications and Web services,

and consuming widely available APIs from leading vendors like Google, Amazon, Yahoo!, and

Flickr, as well as API providers and cataloguers like StrikeIron and ProgrammableWeb.

Expanding on these core themes, we have implemented Zend Framework to embody extreme

simplicity and productivity, the latest Web 2.0 features, simple corporate-friendly licensing and an

agile, well-tested code base that your enterprise can depend upon.

Extreme Simplicity & Productivity

We designed Zend Framework with simplicity in mind. To provide a lightweight, loosely-coupled

component library simplified to provide 4/5s of the functionality everyone needs and that lets you

customize the other 20% to meet your specific business needs. By focusing on the most

commonly needed functionality, we retain the simplified spirit of PHP programming, while

dramatically lowering the learning curve - and your training costs – so developers get up-to-speed

quickly. We do this with:

Extensible and
well-tested
code base

Flexible
architecture

No
configuration
files necessary
to get going

76

http://framework.zend.com/
http://code.google.com/apis/gdata/
http://www.amazon.com/gp/browse.html?node=3435361
http://developer.yahoo.com/
http://flickr.com/services/
http://www.strikeiron.com/
http://www.programmableweb.com/

Zend Server Community Edition

Frameworks and best practices mean reduced training costs and quicker time-to-market –

important factors in adoption decisions. Built so you can pick and choose just the pieces you

need to turbocharge your web applications – all your developers know where to find their PHP /

Zend Framework code, which speeds new development and reduces maintenance costs.

Latest Web Development Features

AJAX support through JSON – meet the ease-of-use requirements your users have come to

expect

Search – a native PHP edition of the industry-standard Lucene search engine

Syndication – the data formats and easy access to them your Web 2.0 applications need

Web Services – Zend Framework aims to be the premier place to consume and publish web

services

High-quality, object-oriented PHP 5 class library – attention to best practices like design patterns,

unit testing and loose coupling

Friendly & Simple Licensing, Safe for the Enterprise

Based on the simple and safe new BSD license, with Zend Framework's License, you can rest

assured that your code is compliant, unimpeachable and protected as you see fit. We also require

all contributors to the open source Zend Framework to complete and sign a Contributor License

Agreement (CLA) - which is based on the standard open-source Apache license — to protect

your intellectual property (that is, your added-value) built on Zend Framework.

Fully Tested – Extend Safely and Easily

Thoroughly Tested. Enterprise-ready and built with agile methods, Zend Framework has been

unit-tested from the start, with stringent code coverage requirements to ensure that all code

contributed has not only been thoroughly unit-tested, but also remains stable and easy for you to

extend, re-test with your extensions and further maintain.

77

Reference Manual

Zend Controller

The Zend Controller runs parallel to the Administration Interface, to provide easy access to useful

developer tools and information.

The Zend Controller is a small utility that you can use to remotely access the Administration

Interface for tasks such as turning components on and off. The Zend Controller also provides

developer resources, including the Benchmark Tool and a search area that lists sites targeted for

PHP developer use.

78

Zend Server Community Edition

79

API Reference
The API reference includes reference information for working with the API's. Each page includes

a description of the component along with the functions for interacting with the component and

the directives for configuring the component's behavior as follows:

 Zend Debugger Directives

 Zend Debugger API

 Zend Optimizer+ Directives

 Zend Optimizer+ API

 Zend Guard Loader Directives

 Zend Guard Loader API

 Zend Data Cache Directives

 Zend Data Cache API

 Zend Java Bridge Directives

 Zend Java Bridge API

 Zend Java Bridge Class

 Zend Extension Manager

 Zend Utils

Zend Debugger - Configuration Directives

Configuration Directives Summary

Directive Type M e odification Scop Description
zend_debugger.allow_hosts string PH MP_INI_SYSTE Specifies the hosts that are nnect (hostmask list) allowed to co

with Zend Debugger when running a remote debug session
with Zend Studio

zend_debugger.deny_hosts string PHP_INI_SYSTEM tmask Specifies the hosts that are not allowed to connect (hos
list) with the Zend Debugger when running a remote debug
session with Zend Studio

zend_debugger.allow_tunnel string PHP_INI_SYSTEM A list of hosts (hostmask list) that can use the machine on
which Zend Server is installed to create a communication
tunnel for remote debgging with Zend Studio. This is done to
solve firewall connectivity limitations

zend_debugger.max_msg_size integer PHP_INI_SYSTEM The maximum message size accepted by the Zend Debugger
for protocol network messages

zend_debugger.httpd_uid integer PHP_INI_SYSTEM The user ID of the httpd process that runs the Zend Debugger
(only for tunneling)

zend_debugger.tunnel_min_port se. This integer PHP_INI_SYSTEM A range of ports that the communication tunnel can u
defines the minimum value for the range

zend_debugger.tunnel_max_port integer PHP_INI_SYSTEM A range of ports that the communication tunnel can use. This
defines the maximum value for the range

zend_debugger.expose_remotely integer PHP_INI_SYSTEM Define which clients know that the Zend Debugger is
installed:
 0 - Never. The presence of the Zend Debugger is not
detected by other clients
1 - Always. All clients can detect the Zend Debugger
 2 - Allowed Hosts. Only clients listed in
zend_debugger.allow_hosts can detect the Zend Deb
 Any other value makes the Zend Debugger undetectable
(same as "Never")

ugger

zend_debugger.passive_mode_timeout integer PHP_INI_SYSTEM The Debugger's timeout period (in seconds) to wait for a
response from the client (Zend Studio)

zend_debugger.xdebug_compatible_coverage boolean PHP_INI_SYSTEM Directive in order to mock up xdebug coverage

80

Zend Server Community Edition

Directive Type Modification Scope Description
zend_debugger.use_fast_timestamp boolean PHP_INI_ALL Enables fast time sampling which is dependent on CPU

cycles and frequency, otherwise, the directive uses operating
system timing (which may be less accurate)

Configuration Directive Details

d to connect (hostmask list) with Zend Debugger when running a remote debug session with Zend Studio

Type: string

e version 3.6

hosts

owed to connect (hostmask list) with the Zend Debugger when running a remote debug session with Zend

Studio

ce version 3.6

n use the machine on which Zend Server is installed to create a communication tunnel for remote debgging

with Zend Studio. This is done to solve firewall connectivity limitations

zend_debugger.allow_hosts

Specifies the hosts that are allowe

Default Value: 127.0.0.1/32,10.0.0.0/8,192.168.0.0/16,172.16.0.0/12

Available sinc

zend_debugger.deny_

Specifies the hosts that are not all

Type: string

Available sin

zend_debugger.allow_tunnel

A list of hosts (hostmask list) that ca

Type: string

Available since version 3.6

81

Reference Manual

zend_debugger.max_msg_size

The maximum message size accepted by the Zend Debugger for protocol network messages

Type: integer

Default Value: 2097152

Available since version 3.6

zend_debugger.httpd_uid

The user ID of the httpd process that runs the Zend Debugger (only for tunneling)

Type: integer

Default Value: -1

Available since version 3.6

zend_debugger.tunnel_min_port

A range of ports that the communication tunnel can use. This defines the minimum value for the range

Type: integer

Default Value: 1024

Available since version 3.6

zend_debugger.tunnel_max_port

A range of ports that the communication tunnel can use. This defines the maximum value for the range

Type: integer

Default Value: 65535

Available since version 3.6

82

Zend Server Community Edition

zend_debugger.expose_remotely

Define which clients know that the Zend Debugger is installed:

0 - Never. The presence of the Zend Debugger is not detected by other clients

1 - Always. All clients can detect the Zend Debugger

2 - Allowed Hosts. Only clients listed in zend_debugger.allow_hosts can detect the Zend Debugger.

Any other value makes the Zend Debugger undetectable (same as "Never")

Type: integer

Default Value: 2

Available since version 3.6

zend_debugger.passive_mode_timeout

The Debugger's timeout period (in seconds) to wait for a response from the client (Zend Studio)

Type: integer

Units: seconds

Default Value: 20

Available since version 3.6

zend_debugger.xdebug_compatible_coverage

Directive in order to mock up xdebug coverage

Type: boolean

Default Value: 0

Available since version 4.0

83

Reference Manual

zend_debugger.use_fast_timestamp

Enables fast time sampling which is dependent on CPU cycles and frequency, otherwise, the directive uses operating system timing (which may

be less accurate)

Type: boolean

Default Value: 1

Available since version 4.0

84

Zend Server Community Edition

Zend Debugger - PHP API

• Zend Debugger functions

o debugger_start_debug - Triggers a debug session from within a script

o debugger_connect - Initiates a tunnel connection

PHP Functions

debugger_start_debug

Triggers a debug session from within a script

Available since version 3.6

Description

void debugger_start_debug (void)

debugger_connect

Initiates a tunnel connection

Available since version 3.6

Description

boolean debugger_connect (void)

Return Value

TRUE the connection is established or FALSE could not connect

85

Reference Manual

Zend Optimizer+ - Configuration Directives

Configuration Directives Summary

Directive Type Mo e dification Scop Description
zend_optimizerplus.enable boolean PH MP_INI_SYSTE Optimizer+ On/Off switch. en set to Off, code is not Wh

optimized.
zend_optimizerplus.use_cwd boolean PHP_INI_SYSTEM If set to On, use the current directory as a part of the script

key
zend_optimizerplus.validate_timestamps boolean PHP_INI_ALL If enabled, the Optimizer+ checks the file timestamps and

updates the cache accordingly.
zend_optimizerplus.revalidate_freq integer PHP_INI_ALL How often to check file timestamps for changes to the

shared memory storage allocation.
zend_optimizerplus.revalidate_path boolean PHP_INI_ALL Enables or disables file search in include_path optimization
zend_optimizerplus.inherited_hack boolean PHP_INI_SYSTEM Enable this hack as a workaround for "can't redeclare class"

errors
zend_optimizerplus.dups_fix boolean PHP_INI_ALL Enable this hack as a workaround for "duplicate definition"

errors
zend_optimizerplus.log_verbosity_level STEMinteger PHP_INI_SY The verbosity of the Optimizer+ log
zend_optimizerplus.memory_consumption integer PHP_INI_SYSTEM The Optimizer+ shared memory storage size. The amount of

memory for storing precompiled PHP code in Mbytes.
zend_optimizerplus.max_accelerated_files integer PHP_INI_SYSTEM The maximum number of keys (scripts) in the Optimizer+

hash table
zend_optimizerplus.max_wasted_percentage integer PHP_INI_SYSTEM The maximum percentage of "wasted" memory until a restart

is scheduled
zend_optimizerplus.consistency_checks integer PHP_INI_ALL Check the cache checksum each N requests
zend_optimizerplus.force_restart_timeout integer PHP_INI_SYSTEM How long to wait (in seconds) for a scheduled restart to

begin if the cache is not being accessed
zend_optimizerplus.blacklist_filename string PHP_INI_SYSTEM The location of the Optimizer+ blacklist file
zend_optimizerplus.save_comments boolean PHP_INI_SYSTEM If disabled, all PHPDoc comments are dropped from the

code to reduce the size of the optimized code.
zend_optimizerplus.fast_shutdown boolean PHP_INI_SYSTEM If enabled, a fast shutdown sequence is used for the

accelerated code
zend_optimizerplus.optimization_level integer PHP_INI_SYSTEM A bitmask, where each bit enables or disables the

appropriate Optimizer+ passes

86

Zend Server Community Edition

Directive Type Modification Scope Description
zend_optimizerplus.enable_slow_optimizations boolean PHP_INI_SYSTEM Enables or disables the optimization passes that may take

significant time, based on an internal runtime calculation

External Configuration File: Optimizer+ blacklist file

The Optimizer+ blacklist file is a text file that holds the names of files that should not be accelerated. The file format is to add each filename to a

W cache.

pile time evaluation.

Configuration Directive Details

zend_optimizerplus.enable

Optimizer+ On/Off switch. When set to Off, code is not optimized.

1

rsion 4.0

zend_optimizerplus.use_cwd

led, the Optimizer+ appends the current working directory to the script key, thus eliminating possible collisions between

1

new line. The filename may be a full path or just a file prefix (i.e., /var/www/x blacklists all the files and directories in /var/www that start with 'x').

Files are usually triggered by one of the following three reasons:

1) Directories that contain auto generated code, like Smarty or ZF

2) Code that does not work well when accelerated, due to some delayed com

3) Code that triggers an Optimizer+ bug.

Type: boolean

Default Value:
Available since ve

When this directive is enab

files with the same name (basename). Disabling the directive improves performance, but may break existing applications.

Type: boolean

Default Value:

87

Reference Manual

zend_optimizerplus.validate_timestamps

When disabled, you must reset the Optimizer+ manually or restart the webserver for changes to the file system to take effect.

directive "zend_optimizerplus.revalidate_freq"

version 4.0

alidate_freq

How often to check file timestamps for changes to the shared memory storage allocation.

: 2

ersion 4.0

alidate_path

If the file search is disabled and a cached file is found that uses the same include_path, the file is not searched again. Thus, if a file with the same

e_path, it won't be found. Enable this directive if this optimization has an effect on your applications. The

version 4.0

The frequency of the check is controlled by the

Type: boolean

Default Value: 1

Available since

zend_optimizerplus.rev

Type: integer

Units: seconds

Default Value
Available since v

zend_optimizerplus.rev

name appears somewhere else in includ

default for this directive is disabled, which means that optimization is active.

Type: boolean

Default Value: 0

Available since

88

Zend Server Community Edition

zend_optimizerplus.inherited_hack

The Optimizer+ stores the places where DECLARE_CLASS opcodes use inheritance (These are the only opcodes that can be executed by PHP,

but which may not be executed because the parent class is missing due to optimization). When the file is loaded, Optimizer+ tries to bind the

inherited classes by using the current environment. The problem with this scenario is that, while the DECLARE_CLASS opcode may not be

needed for the current script, if the script requires that the opcode at least be defined, it may not run. The default for this directive is disabled,

which means that optimization is active.

Type: boolean

Default Value: 1

Available since version 4.0

zend_optimizerplus.dups_fix

Enable this hack as a workaround for "duplicate definition" errors

Type: boolean

Default Value: 0

Available since version 4.0

zend_optimizerplus.log_verbosity_level

All Optimizer+ errors go to the Web server log.

By default, only fatal errors (level 0) or errors (level 1) are logged. You can also enable warnings (level 2), info messages (level 3) or debug

messesges (level 4).

For "debug" binaries, the default log verbosity level is 4, not 1.

Type: integer

Default Value: 1

89

Reference Manual

zend_optimizerplus.memory_consumption

The Optimizer+ shared memory storage size. The amount of memory for storing precompiled PHP code in Mbytes.

Type: integer

Units: MBytes

Default Value: 64

Available since version 4.0

zend_optimizerplus.max_accelerated_files

The number is actually the first one in the following set of prime numbers that is bigger than the one supplied: { 223, 463, 983, 1979, 3907, 7963,

16229, 32531, 65407, 130987 }. Only numbers between 200 and 100000 are allowed.

Type: integer

Default Value: 2000

Available since version 4.0

zend_optimizerplus.max_wasted_percentage

The maximum percentage of "wasted" memory until a restart is scheduled

Type: integer

Units: %

Default Value: 5

Available since version 4.0

90

Zend Server Community Edition

zend_optimizerplus.consistency_checks

The default value of "0" means that the checks are disabled. Because calculating the checksum impairs performance, this directive should be

enabled only as part of a debugging process.

Type: integer

Default Value: 0

Available since version 4.0

zend_optimizerplus.force_restart_timeout

The Optimizer+ uses this directive to identify a situation where there may be a problem with a process. After this time period has passed, the

Optimizer+ assumes that something has happened and starts killing the processes that still hold the locks that are preventing a restart. If the log

level is 3 or above, a "killed locker" error is recorded in the Apache logs when this happens.

Type: integer

Units: seconds

Default Value: 180

Available since version 4.0

zend_optimizerplus.blacklist_filename

For additional information, see "Extermal Configuration File", above

Type: string

Available since version 4.0

91

Reference Manual

zend_optimizerplus.save_comments

If disabled, all PHPDoc comments are dropped from the code to reduce the size of the optimized code.

Type: boolean

Default Value: 1

Available since version 4.0

zend_optimizerplus.fast_shutdown

The fast shutdown sequence doesn't free each allocated block, but lets the Zend Engine Memory Manager do the work.

Type: boolean

Default Value: 0

Available since version 4.0

zend_optimizerplus.optimization_level

A bitmask, where each bit enables or disables the appropriate Optimizer+ passes

Type: integer

Default Value: 0xfffffbbf

Available since version 4.0

zend_optimizerplus.enable_slow_optimizations

Enables or disables the optimization passes that may take significant time, based on an internal runtime calculation

Type: boolean

Default Value: 1

Available since version 4.0

92

Zend Server Community Edition

Zend Optimizer+ - PHP API

• Zend Optimizer+ functions

o accelerator_reset - Resets the contents of the Optimizer+ shared memory storage.

Note: This is not an immediate action. The shared memory storage is reset when a request arrives while the shared memory

storage is not being used by a script.

PHP Functions

accelerator_reset

Resets the contents of the Optimizer+ shared memory storage.

Note: This is not an immediate action. The shared memory storage is reset when a request arrives while the shared memory storage is not being

used by a script.

Available since version 3.6

Description

boolean accelerator_reset (void)

Return Value

Returns TRUE unless the Optimizer+ is disabled.

93

Reference Manual

Zend Guard Loader - Configuration Directives

Configuration Directives Summary

Directive Type Mo e dification Scop Description
zend_loader.enable boolean PH MP_INI_SYSTE Enables loading encoded script fault value is On s. The de
zend_loader.disable_licensing boolean PHP_INI_SYSTEM Disable license checks (for performance reasons)
zend_loader.obfuscation_level_support integer PHP_INI_SYSTEM The Obfuscation level supported by Zend Guard Loader. The levels

are detailed in the official Zend Guard Documentation.
0 - no obfuscation is enabled

zend_loader.license_path string PHP_INI_SYSTEM ct
e

Path to where licensed Zend products should look for the produ
license. For more information on how to create a license file, see th
Zend Guard User Guide

Configuration Directive Details

zend_loader.enable

If you do not plan to use the Zend Guard Loader to load encoded files, you can slightly improve performance by adding the zend_loader.enable =

s disables the transparent auto-loading mechanism that is built into the Zend Guard Loader

1

rsion 4.0

0.

Thi

Type: boolean

Default Value:
Available since ve

94

Zend Server Community Edition

zend_loader.disable_licensing

If you do not need to use any licensing features, you can disable the Zend Guard Loader license request. Setting this option lowers Guard Loader

memory usage and slightly enhances performance

Type: boolean

Default Value: 0

Available since version 4.0

zend_loader.obfuscation_level_support

The Obfuscation level supported by Zend Guard Loader. The levels are detailed in the official Zend Guard Documentation. 0 - no obfuscation is

enabled

Type: integer

Default Value: 3

Available since version 4.0

zend_loader.license_path

Path to where licensed Zend products should look for the product license. For more information on how to create a license file, see the Zend

Guard User Guide

Type: string

Available since version 4.0

95

Reference Manual

Zend Guard Loader - PHP API

• Zend Guard Loader functions

o zend_loader_enabled - Checks the Zend Optimizer+ configuration to verify that it is configured to load encoded files

o zend_loader_file_encoded - Returns TRUE if the current file was encoded with Zend Guard or FALSE otherwise. If FALSE,

consider disabling the Guard Loader

o zend_loader_file_licensed - Compares the signature of the running file against the signatures of the license files that are loaded

into the License Registry by the php.ini file. If a valid license file exists, the values of the license file are read into an array. If a

valid license does not exist or is not specified in the php.ini, it is not entered in the PHP server's license registry. If a valid license

that matches the product and signature cannot be found in the license directory, an array is not created. For information on the

proper installation of a license file, as well as the php.ini directive, see the Zend Guard User Guide

o zend_loader_current_file - Obtains the full path to the file that is currently running. In other words, the path of the file calling this

API function is evaluated only at run time and not during encoding

o zend_loader_install_license - Dynamically loads a license for applications encoded with Zend Guard.

o zend_obfuscate_function_name - Obfuscate and return the given function name with the internal obfuscation function

o zend_current_obfuscation_level - Returns the current obfuscation level support (set by zend_optimizer.obfuscation_level_support)

to get information on the product that is currently running.

o zend_runtime_obfuscate - Start runtime-obfuscation support to allow limited mixing of obfuscated and un-obfuscated code

o zend_obfuscate_class_name - Obfuscate and return the given class name with the internal obfuscation function

o zend_get_id - Returns an array of Zend (host) IDs in your system. If all_ids is TRUE, then all IDs are returned, otherwise only IDs

considered "primary" are returned

o zend_loader_version - Returns Zend Guard Loader version

96

Zend Server Community Edition

PHP Functions

zend_loader_enabled

Checks the Zend Optimizer+ configuration to verify that it is configured to load encoded files

Available since version 4.0

Description

boolean zend_loader_enabled (void)

Return Value

Returns TRUE if the Guard Loader is configured to load encoded files. Returns FALSE if the Guard Loader is not configured to load encoded files.

zend_loader_file_encoded

Returns TRUE if the current file was encoded with Zend Guard or FALSE otherwise. If FALSE, consider disabling the Guard Loader

Available since version 4.0

Description

boolean zend_loader_file_encoded (void)

Return Value

TRUE if Zend-encoded, FALSE otherwise

97

Reference Manual

zend_loader_file_licensed

Compares the signature of the running file against the signatures of the license files that are loaded into the License Registry by the php.ini file. If

a valid license file exists, the values of the license file are read into an array. If a valid license does not exist or is not specified in the php.ini, it is

not entered in the PHP server's license registry. If a valid license that matches the product and signature cannot be found in the license directory,

an array is not created. For information on the proper installation of a license file, as well as the php.ini directive, see the Zend Guard User Guide

Available since version 4.0

Description

array zend_loader_file_licensed (void)

Return Value

Returns an array or FALSE.

If an array is returned, a valid license for the product exists in the location indicated in the php.ini file.

98

Zend Server Community Edition

zend_loader_current_file

Obtains the full path to the file that is currently running. In other words, the path of the file calling this API function is evaluated only at run time and

not during encoding

Available since version 4.0

Description

string zend_loader_current_file (void)

Return Value

Returns a string containing the full path of the file that is currently running

zend_loader_install_license

Dynamically loads a license for applications encoded with Zend Guard.

Available since version 4.0

Description

boolean zend_loader_install_license (string $license_file [, boolean $overwrite = 0])

Parameters

license_file
Name of the license file

overwrite
Controls if the function overwrites old licenses for the same product
 0=Do not overwrite

99

Reference Manual

1=Overwrite .
The default value is 0

Return Value

TRUE if the license was loaded successfully, FALSE otherwise

zend_obfuscate_function_name

Obfuscate and return the given function name with the internal obfuscation function

Available since version 4.0

Description

string zend_obfuscate_function_name (string $function_name)

Parameters

function_name
Name of the function to obfuscate

Return Value

Returns the obfuscated form of the given string.

100

Zend Server Community Edition

zend_current_obfuscation_level

Returns the current obfuscation level support (set by zend_optimizer.obfuscation_level_support) to get information on the product that is currently

running.

Available since version 4.0

Description

int zend_current_obfuscation_level (void)

Return Value

Current obfuscation level

zend_runtime_obfuscate

Start runtime-obfuscation support to allow limited mixing of obfuscated and un-obfuscated code

Available since version 4.0

Description

boolean zend_runtime_obfuscate (void)

Return Value

TRUE if succeeds, FALSE otherwise

101

Reference Manual

zend_obfuscate_class_name

Obfuscate and return the given class name with the internal obfuscation function

Available since version 4.0

Description

string zend_obfuscate_class_name (string $class_name)

Parameters

class_name
Name of the class to obfuscate

Return Value

Returns the obfuscated form of the given string

zend_get_id

Returns an array of Zend (host) IDs in your system. If all_ids is TRUE, then all IDs are returned, otherwise only IDs considered "primary" are

returned

Available since version 4.0

Description

array zend_get_id ([boolean $all_ids = false])

Parameters

all_ids

102

Zend Server Community Edition

If all_ids is TRUE, returns all IDs, otherwise returns only IDs that are considered "primary". The default value is false

Return Value

Array of host IDs

zend_loader_version

Returns Zend Guard Loader version

Available since version 4.0

Description

string zend_loader_version (void)

Return Value

Zend Guard Loader version

103

Reference Manual

Zend Data Cache - Configuration Directives

Configuration Directives Summary

Directive Type Mo e dification Scop Description
zend_datacac x_segment_sizehe.shm.ma integer PH MP_INI_SYSTE The maximal size of a sha ry segment red memo
zend_datacache.shm.memory_cache_size integer PHP_INI_SYSTEM Amount of shared memory to be used by the cache
zend_datacache.disk.save_path string PHP_INI_SYSTEM The path for storing cached content to the disk
zend_datacache.disk.dir_level integer PHP_INI_SYSTEM Directory depth, for storing keys
zend_datacache.enable boolean PHP_INI_SYSTEM Enables the Data Cache. The Data Cache cannot work without

this directive. The Data Cache can be turned on or off from the
Administration Interface

zend_datacache.apc_compatibility boolean PHP_INI_SYSTEM When enabled, the Data Cache extension registers APC
compatibility methods

Configuration Directive Details

zend_datacache.shm.max_segment_size

:

Available since version 4.0

The maximal size of a shared memory segment

Type: integer

Units: MBytes

Default Values

• Windows, Linux i386, Linux x86-64, Linux AMD64: 32

• Mac OS X, Solaris, FreeBSD i386, FreeBSD x86-64, AIX/PPC: 2

104

Zend Server Community Edition

zend_datacache.shm.memory_cache_size

Amount of shared memory to be used by the cache

Type: integer

Units: MBytes

Default Values:

• Windows, Linux i386, Linux x86-64, Linux AMD64: 32

• Mac OS X, Solaris, FreeBSD i386, FreeBSD x86-64, AIX/PPC: 2

Available since version 4.0

zend_datacache.disk.save_path

The path for storing cached content to the disk

Type: string

Default Value: datacache

Available since version 4.0

zend_datacache.disk.dir_level

Directory depth, for storing keys

Type: integer

Default Value: 2

Available since version 4.0

105

Reference Manual

zend_datacache.enable

Enables the Data Cache. The Data Cache cannot work without this directive. The Data Cache can be turned on or off from the Administration

Interface

Type: boolean

Default Value: 1

Available since version 4.0

zend_datacache.apc_compatibility

When enabled, the Data Cache extension registers APC compatibility methods

Type: boolean

Default Value: 1

Available since version 4.0

106

Zend Server Community Edition

Zend Data Cache - PHP API

• Zend Data Cache functions

o zend_shm_cache_store - Stores a variable identified by key into the cache. If a namespace is provided, the key is stored under

that namespace. Identical keys can exist under different namespaces

o zend_disk_cache_store - Stores a variable identified by a key into the cache. If a namespace is provided, the key is stored under

that namespace. Identical keys can exist under different namespaces

o zend_shm_cache_fetch - Fetches data from the cache. The key can be prefixed with a namespace to indicate searching within

the specified namespace only. If a namespace is not provided, the Data Cache searches for the key in the global namespace

o zend_disk_cache_fetch - Fetches data from the cache. The key can be prefixed with a namespace to indicate searching within the

specified namespace only. If a namespace is not provided, the Data Cache searches for the key in the global namespace

o zend_shm_cache_delete - Finds and deletes an entry from the cache, using a key to identify it. The key can be prefixed with a

namespace to indicate that the key can be deleted within that namespace only. If a namespace is not provided, the Data Cache

searches for the key in the global namespace

o zend_disk_cache_delete - Finds and deletes an entry from the cache, using a key to identify it. The key can be prefixed with a

namespace to indicate that the key can be deleted within that namespace only. If a namespace is not provided, the Data Cache

searches for the key in the global namespace

o zend_shm_cache_clear - Deletes all entries from all namespaces in the cache, if a 'namespace' is provided, only the entries in

that namespace are deleted

o zend_disk_cache_clear - Deletes all entries from all namespaces in the cache, if a 'namespace' is provided, only the entries in

that namespace are deleted

107

Reference Manual

PHP Functions

zend_shm_cache_store

Stores a variable identified by key into the cache. If a namespace is provided, the key is stored under that namespace. Identical keys can exist

under different namespaces

Available since version 4.0

Description

boolean zend_shm_cache_store (string $key, mixed $value [, int $ttl = 0])

Parameters

key
The data's key. Optional: prefix with a [namespace::]

value
Any PHP object that can be serialized

ttl
- Time to live (TTL), in seconds. The Data Cache keeps an object in the cache as long as the TTL is not expired. Once the TTL is expired,
the object is removed from the cache. The default value is 0

Return Value

FALSE if cache storing fails, TRUE otherwise

108

Zend Server Community Edition

zend_disk_cache_store

Stores a variable identified by a key into the cache. If a namespace is provided, the key is stored under that namespace. Identical keys can exist

under different namespaces

Available since version 4.0

Description

boolean zend_disk_cache_store (string $key, mixed $value [, int $ttl = 0])

Parameters

key
The data key. Optional: prefix with a namespace

value
Any PHP object that can be serialized.

ttl
- Time to live, in seconds. The Data Cache keeps objects in the cache as long as the TTL is not expired. Once the TTL is expired, the
object is removed from the cache. The default value is 0

Return Value

FALSE if cache storing fails, TRUE otherwise

109

Reference Manual

zend_shm_cache_fetch

Fetches data from the cache. The key can be prefixed with a namespace to indicate searching within the specified namespace only. If a

namespace is not provided, the Data Cache searches for the key in the global namespace

Available since version 4.0

Description

mixed zend_shm_cache_fetch (mixed $key)

Parameters

key
The data key or an array of data keys. Optional for key's name: prefix with a namespace

Return Value

FALSE if no data that matches the key is found, else it returns the stored data, If an array of keys is given, then an array which its keys are the

original keys and the values are the corresponding stored data values

zend_disk_cache_fetch

Fetches data from the cache. The key can be prefixed with a namespace to indicate searching within the specified namespace only. If a

namespace is not provided, the Data Cache searches for the key in the global namespace

Available since version 4.0

Description

mixed zend_disk_cache_fetch (mixed $key)

110

Zend Server Community Edition

Parameters

key
The data key or an array of data keys. Optional for key's name: prefix with a namespace

Return Value

FALSE if no data that matches the key is found, else it returns the stored data, If an array of keys is given, then an array which its keys are the

original keys and the values are the corresponding stored data values

zend_shm_cache_delete

Finds and deletes an entry from the cache, using a key to identify it. The key can be prefixed with a namespace to indicate that the key can be

deleted within that namespace only. If a namespace is not provided, the Data Cache searches for the key in the global namespace

Available since version 4.0

Description

boolean zend_shm_cache_delete (mixed $key)

Parameters

key
The data key or an array of data keys. Optional for key's name: prefix with a namespace

Return Value

TRUE on success, FALSE on failure.

111

Reference Manual

zend_disk_cache_delete

Finds and deletes an entry from the cache, using a key to identify it. The key can be prefixed with a namespace to indicate that the key can be

deleted within that namespace only. If a namespace is not provided, the Data Cache searches for the key in the global namespace

Available since version 4.0

Description

boolean zend_disk_cache_delete (string $key)

Parameters

key
The data key or an array of data keys. Optional for key's name: prefix with a namespace

Return Value

TRUE on success, FALSE on failure or when entry doesn't exist.

112

Zend Server Community Edition

zend_shm_cache_clear

Deletes all entries from all namespaces in the cache, if a 'namespace' is provided, only the entries in that namespace are deleted
Available since version 4.0

Description

boolean zend_shm_cache_clear (string $namespace)

Parameters

namespace
The data key. Optional: prefix with a namespace

Return Value

If the namespace does not exist or there are no items to clear, the function will return TRUE. The function will return FALSE only in case of error.

zend_disk_cache_clear

Deletes all entries from all namespaces in the cache, if a 'namespace' is provided, only the entries in that namespace are deleted
Available since version 4.0

Description

boolean zend_disk_cache_clear (string $namespace)

Parameters

namespace
The data key. Optional: prefix with a namespace

Return Value

If the namespace does not exist or there are no items to clear, the function will return TRUE. The function will return FALSE only in case of error.

113

Reference Manual

Zend Java Bridge - Configuration Directives

Configuration Directives Summary

Directive Type Mo e dification Scop Description
zend_jbridg r_porte.serve integer PH MP_INI_SYSTE The TCP port on which the server is listening
zend_jbridge.ints_are_longs gers, primarily for 64-bit boolean PHP_INI_ALL Converts PHP integers into java.lang.Long inte

machines
zend_jbridge.encoding string PHP_INI_ALL Sets the encoding type that is passed from PHP to Java
zend_jbridge.use_java_objects n hem to primitives boolea PHP_INI_ALL Uses basic Java objects and does not attempt to convert t

Configuration Directive Details

zend_jbridge.server_port

he same as the server's zend.javamw.port

: 10001

4.0

zend_jbridge.ints_are_longs

Translates PHP integer values to java.lang.Long integers (64-bit) instead of java.lang.Integer integers (32-bit). The default setting is off

0

rsion 4.0

Default is 10001. Must be t

Type: integer

Default Value
Available since version

Type: boolean

Default Value:
Available since ve

114

Zend Server Community Edition

zend_jbridge.encoding

Sets the encoding type that is passed from PHP to Java

Type: string

Default Value: UTF-8

Available since version 4.0

zend_jbridge.use_java_objects

When set to 0, preserves the current implementation (which converts basic Java objects to primitives (e.g., java.long.Short to short).

When set to 1 for the Java Bridge, returns Java objects and does not convert them to primitives

Type: boolean

Default Value: 0

Available since version 4.0

115

Reference Manual

Zend Java Bridge - PHP API

• JavaException - The JavaException class

o JavaException::getCause - Get the Java exception that led to this exception

• Zend Java Bridge functions

o java - Creates a Java object

o java_last_exception_get - Returns a Java exception object for the last exception that occurred in the script: only the last exception

is stored by the Java Bridge

o java_last_exception_clear - Clears the last Java exception object record from the Java Bridge storage

o java_set_ignore_case - Sets the case sensitivity for Java calls when there are mixed cases in your PHP script

o java_throw_exceptions - Controls if exceptions are thrown on Java exception. When an exception is thrown by a Java application,

this function controls if the exception caught by the PHP code will continue to be thrown or not (if not, it is stored in the Java

Bridge's internal memory)

o java_set_encoding - Sets encoding for strings received by Java from the PHP code to verify that the encoding is the same in the

PHP and Java code

o java_require - Includes an additional CLASSPATH/JAR in a PHP script context

o java_reload - Reloads Jar files that were dynamically loaded - on demand

116

Zend Server Community Edition

PHP Functions

java

Creates a Java object

Available since version 3.6

Description

object java (string $class_name [, ...])

Parameters

class_name
Class name to create

...
Additional arguments are treated as constructor parameters

Return Value

The Java object that was created, NULL otherwise

117

Reference Manual

java_last_exception_get

Returns a Java exception object for the last exception that occurred in the script: only the last exception is stored by the Java Bridge

Available since version 3.6

Description

object java_last_exception_get (void)

Return Value

Java exception object, if there was an exception, NULL otherwise

java_last_exception_clear

Clears the last Java exception object record from the Java Bridge storage

Available since version 3.6

Description

void java_last_exception_clear (void)

118

Zend Server Community Edition

java_set_ignore_case

Sets the case sensitivity for Java calls when there are mixed cases in your PHP script

Available since version 3.6

Description

void java_set_ignore_case (boolean $ignore)

Parameters

ignore
If set, the Java attribute and method names are resolved, regardless of case

java_throw_exceptions

Controls if exceptions are thrown on Java exception. When an exception is thrown by a Java application, this function controls if the exception

caught by the PHP code will continue to be thrown or not (if not, it is stored in the Java Bridge's internal memory)

Available since version 3.6

Description

void java_throw_exceptions (int $throw)

Parameters

throw
If true, a PHP exception is thrown when a Java exception happens. If set to FALSE, use java_last_exception_get() to check for exceptions

119

Reference Manual

java_set_encoding

Sets encoding for strings received by Java from the PHP code to verify that the encoding is the same in the PHP and Java code

Available since version 3.6

Description

void java_set_encoding ([string $encoding = UTF-8])

Parameters

encoding
Default encoding type is UTF-8. The default value is UTF-8

120

Zend Server Community Edition

java_require

Includes an additional CLASSPATH/JAR in a PHP script context

Available since version 3.6

Description

void java_require (string $path)

Parameters

path
URL pointing to the location of the Jar file. This function accepts the following protocols:
https://, http://, file://, ftp://
It can also be a local path: E.g., c:\

java_reload

Reloads Jar files that were dynamically loaded - on demand

Available since version 3.6

Description

void java_reload (string $new_jarpath)

Parameters

new_jarpath
The path to the Jar files

121

Reference Manual

The JavaException Class
JavaException is a PHP class that inherits from the default PHP5 class "Exception"

Available since: 3.6

Class Prototype

class JavaException {

/* Methods */

public object getCause (void)

}

Class Methods

JavaException::getCause

Get the Java exception that led to this exception

Available since version 3.6

Description

public object JavaException::getCause (void)

Return Value

A Java exception object, if there was an exception, NULL otherwise

122

Zend Server Community Edition

Zend Extension Manager - Configuration Directives

Configuration Directives Summary

Directive Type Mo e dification Scop Description
zend_extension_manag erbosity_leveler.log_v integer PH M P_INI_SYSTE Log message verbosity level.
zend_extension_manager.load_order_file string PHP_INI_SYSTEM The path to the location of the load file. The load file

 contains the information about the extensions' loading
order

zend_extension_manager.activate_signal_handlers boolean PHP_INI_SYSTEM UNIX only: Activates SIGSEGV and SIGABRT signal
handlers.

zend_extension_manager.wait_for_debugger boolean PHP_INI_SYSTEM UNIX only: Automatically pauses the process received
by SIGSEGV and SIGABRT.

External Configuration File: load order file

ng order. This file contains plain text with a single 'extensionId' per line. The extension IDs are not The load order file specifies the extension loadi

necessarily found in php.ini files. The nonexistent IDs are not considered, but may be reserved for future use (i.e., system upgrade)

This file should not be modified.

123

Reference Manual

Configuration Directive Details

zend_extension_manager.log_verbosity_level

The default level is usually set to 1, which includes very important information messages, errors and warnings.

Switch the level to 2 to see the notices. Higher levels (up to 5) are reserved for debug purposes only.

IMPORTANT: The ZEM is absolutely required to load any Zend extension from the Zend product line. There is other way to load Zend extensions

besides using the ZEM.

Type: integer

Default Value: 1

Available since version 3.6

zend_extension_manager.load_order_file

The file should be in plain text. Each line should list only one extensionId. The order of lines (extensionIds) determines the order of loading the

appropriate extensions. If a particular extensionId is not managed in any INI file, the ID is skipped.

Type: string

Default Value: zem_order

Available since version 3.6

124

Zend Server Community Edition

zend_extension_manager.activate_signal_handlers

If enabled, the stack trace is printed when the signal is received. This directive can be combined with

'zend_extension_manager.wait_for_debugger'.

Type: boolean

Default Value: false

Available since version 3.6

zend_extension_manager.wait_for_debugger

If enabled, the process is paused when the signal is received, so that 'gdb' can be easily attached.

'zend_extension_manager.activate_signal_handlers' must be enabled.

Type: boolean

Default Value: false

Available since version 3.6

125

Reference Manual

Zend Utils - Configuration Directives

Configuration Directives Summary

Directive Type Modification Scope Description
zend_utils.log_verbosity_level integer PHP_INI_SYSTEM Sets the log verbosity level of Zend Utilis logs [0-5]

zend_utils.use_graceful_restart boolean PHP_INI_SYSTEM Restart API uses a graceful restart
zend_utils.aix_restart_cmd string PHP_INI_SYSTEM Command to restart web server on aix

Configuration Directive Details

zend_utils.log_verbosity_level

Verbosity_level for most components that have a log (except Zend Debugger, Zend Guard Loader and Optimizer+):

0-ZERROR (is always be displayed - indicates an error that can't be recovered)

1-ZWARNING (displays a warning - indicates a warning (recoverable error) that the application can still run with)

2-ZNOTICE (displays a notice - indicates that something wrong has happened)

3-ZDBG1 (debug purposes only - high priority messages)

4-ZDBG2 (debug purposes only - medium priority messages)

5-ZDBG3 (debug purposes only - low priority messages)

Type: integer

Default Value: 2

Available since version 4.0

126

Zend Server Community Edition

zend_utils.use_graceful_restart

Restart API uses a graceful restart

Type: boolean

Default Value: 0

Available since version 4.0

zend_utils.aix_restart_cmd

Command to restart web server on aix

Type: string

Default Value: CALL PGM(ZENDSVR/ZCCPHPR001)

Available since version 4.0

127

Reference Manual

Zend Download Server - Configuration Directives

Configuration Directives Summary

Directive Type Mo e dification Scop Description
zend_dserver.enable boolean PH MP_INI_SYSTE Enables or disables the Zend Do Server (ZDS) component. This can wnload

also be done in Zend Server, from Server Setup | Components. When
turned to 'On', the ZDS passes downloads to a dedicated process. When
turned to 'Off', all downloads are handled by the Apache server

zend_dserver.mime_types_file string PHP_INI_SYSTEM The full path to the MIME type file.
zend_dserver.log_file string PHP_INI_SYSTEM The location of the Zend Download Server (ZDS) log file
zend_dserver.log_verbosity integer PHP_INI_SYSTEM Log's Verbosity Level
zend_dserver.min_file_size integer PHP_INI_SYSTEM The minimal file size that can be served via a ZDS process. Smaller files are

served via Apache
zend_dserver.nice integer PHP_INI_SYSTEM The ZDS process priority level. The lower the number, the higher the priority

the process is given.
zend_dserver.disable_byterange boolean PHP_INI_SYSTEM Disables handling byte-range requests. All requests return an entire file
zend_dserver.etag_params string PHP_INI_SYSTEM The file attributes that are taken as part of an etag.
zend_dserver.mmap_chunk integer PHP_INI_SYSTEM The size of the data chunks that are read from the file into the socket.

External Configuration File: mime_types

ions that should be sent through the Zend Download Server.

Configuration Directive Details

zend_dserver.enable

Enables or disables the Zend Download Server (ZDS) component. This can also be done in Zend Server, from Server Setup | Components. When

1

The mime_types file is an external list of file extens

turned to 'On', the ZDS passes downloads to a dedicated process. When turned to 'Off', all downloads are handled by the Apache server

Type: boolean

Default Value:

128

Zend Server Community Edition

zend_dserver.mime_types_file

The full path to the MIME type file.

ni

e version

ownload Server (ZDS) log file

e version

rbosity

l.

out

e)

e version

Type: string

Default Value: zend_mime_types.i

Available sinc

zend_dserver.log_file

The location of the Zend D

Type: string

Default Value: ZDS.log

Available sinc

zend_dserver.log_ve

The extension's log verbosity leve

1 - Fatal errors (ZDS goes down)

2 - Errors (The currect request bails

3 - Warnings (not good, but continu

4 - Notice (important info)

5 - Info (verbosity information)

Type: integer

Default Value: 2

Available sinc

129

Reference Manual

zend_dserver.min_file_size

The minimal file size that can be served via a ZDS process. Smaller files are served via Apache

: 64

version

The ZDS process priority level. The lower the number, the higher the priority the process is given.

e version

_byterange

 All requests return an entire file

version

arams

as part of an etag.

Type: integer

Units: KBytes

Default Value
Available since

zend_dserver.nice

Type: integer

Default Value: 10

Available sinc

zend_dserver.disable

Disables handling byte-range requests.

Type: boolean

Default Value: 0

Available since

zend_dserver.etag_p

The file attributes that are taken

Type: string

Available since version

130

Zend Server Community Edition

131

er.mmap_chunk

ks that are read from the file into the socket.

 version

zend_dserv

The size of the data chun

Type: integer

Units: KBytes

Default Value: 256

Available since

Adding Extensions
Zend Server Community Edition users can benefit from extension management capabilities for

third party extensions as well as for Zend Extensions. This enables users to load and unload all

extensions directly from the Zend Server Community Edition Extensions page.

Important: The newly added extensions will be visible in the Administration Interface's

Extensions page however, the directive configuration option will not be active and directives

belonging to the extension have to be configured directly from the php.ini file.

Disclaimer:
Zend Technologies does not provide support for third party products, including extensions.

Therefore, if an issue for support arises, please remove all third party extensions by commenting

out the reference to them in your php.ini before referring to the Support Center -

http://www.zend.com/en/support-center/.

There are two types of extensions: PHP extensions and Zend extensions. The extension provider

should supply information regarding the extension type (Zend or PHP). Make sure to also check

the provider's documentation for possible compatibility issues, PHP version compatibility and any

other additional configurations that may be required.

To add Zend extensions:
1. Download the extension

Note: - AIX Unix/Linux extensions end with the .so suffix.

2. Place the extension in your extensions directory.

To locate the extensions directory, open the Administration Interface to Monitor |
PHP Info and check the value for the directive extension_dir=.

By default, your extensions directory is located in:

<install_path>/zend/lib/php_extensions

3. Add the following line to your php.ini:

zend_extension=<full_path_to_extension_so_file>

4. Restart your server.

5. To restart your server:

Click Restart Server in the Administration Interface.

Ensure that the extension is properly loaded by checking the output of PHPInfo in

the Administration Interface.

132

http://www.zend.com/en/support-center/

Zend Server Community Edition

Note:
If you try to load a PHP extension as a Zend extension, in Linux you may receive the following

error message in your server's error log: "<extension_name> doesn't appear to be a valid Zend

extension."

If this occurs, remove it and add it as a PHP extension, following the instructions under "To Add

PHP Extensions", below.

To add PHP extensions
1. Download the third party extension. Many third party extensions can be found at

http://pecl.php.net.

Extensions are obtained directly from external web repositories.

2. Place the PHP extension in your extensions directory.

To locate the extensions directory, open your php.ini and check the value for the

directive extension_dir=.

By default, your extensions directory is located in:

<install_path>/lib/php_extensions

3. Add the following line to your php.ini:

extension=<my_extension_name>.so

Ensure that you replace <my_extension_name> with your extension's name.

4. Restart your Web server.

Ensure that the extension is properly loaded by checking the Administration

Interface: See Monitor | PHP Info for the output of PHP Info.

The extensions appear in your Administration Interface under the Extensions tab and you can use

the Administration Interface to load and unload the extension.

133

http://pecl.php.net/

Reference Manual

Adding Extensions for Windows
The following procedure describes how to download compiled extensions for Wndows DLL files.

Windows Note:
When downloading extensions for Windows from PECL, make sure to download the non thread-

safe (NTS) version ONLY.

To download extensions:
1. Go to: http://www.php.net/downloads.php.

2. In the Windows binaries section, select: "PECL <current ZendServer PHP
version> Non-thread-safe Win32 binaries" (64-bit users can use this too).

3. Click the package to start a download process. Follow the download

instructions and extract the ZIP file.

4. Select the .dll you want.

5. To add the extension, go to the extension directory,

<install_path>\ZendServer\lib\phpext, and add the .dll file there.

6. Go to your php.ini file and add the following line:

extension=<extension_name>.dll.

7. To verify that the extension was loaded properly, go to Setup | Extensions and

locate the extension from the list.

When loading new extensions, also examine the log files.

For more information on these extensions, go to http://pecl4win.php.net/ .

Note: The extensions in this site are thread-safe and therefore should not be

downloaded for use with Zend Server Community Edition .

Note:
Some extensions need directives to change the Extension's default configurations. These

directives should be added added to your php.ini file manually. There is no way to predict which

directives extensions may have: For each third party extension you want to add, make sure to go

to the project's source site to check for additional information related to the extension.

134

http://pecl4win.php.net/

Zend Server Community Edition

Compiling Extensions
Under Unix/Linux operating systems you can also create and compile your own extensions using

the phpize command.

Disclaimer:
External extensions are not supported by Zend. If you encounter a problem, remove any

additional extensions before contacting Zend Support.

Building PHP extensions from source requires basic UNIX skills as well as several build tools,

among others:

 An ANSI C compiler

 flex: Version 2.5.4

 bison: Version 1.28 (recommended), 1.35, or 1.75

 Any specific components or libraries required by the extension being built (such as gd,

pdf libs, etc.)

To compile extensions from source:
1. Download and extract the extension's source.

2. Switch to the extension source directory (by default located in

<install_path>/Zend/ZendServer/lib/phpext) and run the following commands:

cd <your_extension_directory>

<install_path>/bin/phpize

Ensure that you replace <your_extension_directory> with your extension

directory's name.

3. Run the ./configure command to prepare the source for compilation. You will need to

include the "php-config" and "enable-shared" flags as follows:

./configure --with-php-config=<install_path>/bin/php-config\

 --enable-shared

Note:
Some extensions will need additional configuration flags. It is therefore advised to

run "./configure --help" and review the possible flags before compiling.

4. Compile and install the extension binaries by running the following commands:

make

make install

Make install should install the new .so extension binary in Zend Server Community

Edition's extension directory.

135

Reference Manual

5. Add the following line to your php.ini to load your new extension:

extension=<my_extension_name>.so

Replace <my_extension_name> with your extension's binary name.

6. Restart your Web server.

7. Ensure that the extension is properly loaded by checking the output of PHP Info.

This can be viewed in the Zend Server Community Edition PHP Info page.

The extension appears in your Administration Interface under the Extensions page and you can

use the Administration Interface to load and unload the extension.

136

Zend Server Community Edition

UNIX: Compiling PHP Extensions
This procedure describes how to compile a PHP extension. Zend Server Community Edition

includes over 77 extensions however there still may be a PHP extension that you want to compile

by yourself.

Requirements:

 PHP Tools:

• PECL (PHP Extension Community Library): PECL is a repository for PHP

extensions, providing a directory of all known extensions and hosting facilities for

download and development of PHP extensions. - It is also a tool supplied in the

form of a small shell script with PHP code behind it to retrieve extensions from

the aforementioned repository.

• phpize: a shell script to generate a configure script for PHP extensions

 Build Tools:

While PHP can be built using many different tool chains, this article will focus on using

the GNU tool chain. The main tools where PHP is concerned are:

• autoconf: automatic configure script builder. This is called by the phpize script.

• automake: a tool for generating GNU Standards-compliant Makefiles

• libtool: Generic library support script. Libtool hides the complexity of generating

special library types (such as shared libraries) behind a consistent (sort of :))

interface.

• GNU make: a GNU tool for controlling the generation of executables and other

non-source files of a program from the program's source files

• GCC: PHP extensions are typically written in C. Hence, in order for them to

compile, you would need a C compiler. While GCC now stands for GNU compiler

Collection and is no longer just a GNU C Compiler, for our purposes we only

need the C part of the collection. GNU's elf-binutils package: The programs in

this package are used to assemble, link and manipulate binary and object files.

137

http://pecl.php.net/
http://www.gnu.org/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/make/
http://gcc.gnu.org/

Reference Manual

Install the following packages:

Users of distributions with package managers (mainly Debian, Ubuntu, RHEL, CentOS and

Fedora Core and many others) should install the following packages from their distribution's

repository: gcc, make, autoconf, automake and libtool. Some of these tools depend on each

other, for instance the libtool package depends on the gcc package, but no damage can be done

from specifying all of them.

Note:
Users who utilize distributions that do not have package managers (Linux from scratch anyone?),

can compile these tools themselves or obtain pre-compiled binaries for them quite easily.

Additionally, you can compile a PHP extension from the main PHP source (as opposed to PECL).

This requires installing a package from the Zend Server Community Edition repository called php-

5.2-source-zend-server or php-5.3-source-zend-server, depending on your Zend Server

Community Edition's major PHP version. This package includes full PHP sources as patched, for

security or optimization concerns, by the Zend development team. This ensures that you are

using the exact same source code we used when building Zend Server Community Edition.

Scenario 1: compile a PECL extension called Newt

Newt is a PHP extension for RedHat's Newt (New Terminal) library, a terminal-based window and

widget library for writing applications with user friendly interfaces.

Being what it is, this extension requires the existence of the Newt library development files. If you

are using Debian or Ubuntu you should install a package called libnewt-dev. On RedHat based

distributions the package name is newt-devel. Make sure these are installed before continuing.

NOTE: Other extensions will have other dependencies. For example, the Mcrypt extension will

require the Mcrypt development package.

NOTE: Since PECL will attempt to write the extension onto /usr/local/zend/lib/php_extensions,

you will have to become a super user to perform this procedure. This is only needed for the actual

make install.

138

http://www.debian.org/
http://www.ubuntu.com/
http://www.redhat.com/rhel/
http://www.centos.org/
http://fedoraproject.org/

Zend Server Community Edition

To compile your own extension:

1. Assuming you have the Newt development package installed, run:

/usr/local/zend/bin/pecl install newt

The truncated output of this command, along with explanations:

PECL retrieves the package from the repository...*/ downloading newt-1.2.1.tgz

Starting to download newt-1.2.1.tgz (24,853 bytes)

.........done: 24,853 bytes

5 source files, building

/*The phpize script is executed...*/

running: phpize

Configuring for:

PHP Api Version: 20041225

Zend Module Api No: 20060613

Zend Extension Api No: 220060519

building in /var/tmp/pear-build-root/newt-1.2.1

Configure comes into play

running: /tmp/pear/download/newt-1.2.1/configure

checking for grep that handles long lines and -e... /bin/grep
checking for egrep... /bin/grep -E checking for a sed that does
not truncate output... /bin/sed checking for gcc... gcc checking
for C compiler default output file name... a.out checking whether
the C compiler works... yes checking whether we are cross
compiling... no checking for suffix of executables...

checking for suffix of object files... o

Next comes libtool.

creating libtool

appending configuration tag "CXX" to libtool

configure: creating ./config.status

config.status: creating config.h

The actual compilation process: calls make which internally triggers GCC and LD.

running: make

/bin/sh /var/tmp/pear-build-root/newt-1.2.1/libtool --
mode=compile gcc -I. -I/tmp/pear/download/newt-1.2.1 -
DPHP_ATOM_INC -I/var/tmp/pear-build-root/newt-1.2.1/include

139

Reference Manual

-I/var/tmp/pear-build-root/newt-1.2.1/main

-I/tmp/pear/download/newt-1.2.1 -I/usr/local/zend/include/php -
I/usr/local/zend/include/php/main -
I/usr/local/zend/include/php/TSRM

-I/usr/local/zend/include/php/Zend -
I/usr/local/zend/include/php/ext -
I/usr/local/zend/include/php/ext/date/lib

-I/usr/local/zend/include/php -DHAVE_CONFIG_H -g -O2 -c

/tmp/pear/download/newt-1.2.1/newt.c -o newt.lo mkdir .libs gcc
-I. -I/tmp/pear/download/newt-1.2.1 -DPHP_ATOM_INC -
I/var/tmp/pear-build-root/newt-1.2.1/include

-I/var/tmp/pear-build-root/newt-1.2.1/main

-I/tmp/pear/download/newt-1.2.1 -I/usr/local/zend/include/php -
I/usr/local/zend/include/php/main -
I/usr/local/zend/include/php/TSRM

-I/usr/local/zend/include/php/Zend -
I/usr/local/zend/include/php/ext -
I/usr/local/zend/include/php/ext/date/lib -
I/usr/local/zend/include/php -DHAVE_CONFIG_H -g -O2 -c
/tmp/pear/download/newt-1.2.1/newt.c -fPIC -DPIC -o .libs/newt.o
/bin/sh /var/tmp/pear-build-root/newt-1.2.1/libtool --
mode=compile gcc -I. -I/tmp/pear/download/newt-1.2.1 -
DPHP_ATOM_INC -I/var/tmp/pear-build-root/newt-1.2.1/include

-I/var/tmp/pear-build-root/newt-1.2.1/main

-I/tmp/pear/download/newt-1.2.1 -I/usr/local/zend/include/php -
I/usr/local/zend/include/php/main -
I/usr/local/zend/include/php/TSRM

-I/usr/local/zend/include/php/Zend -
I/usr/local/zend/include/php/ext -
I/usr/local/zend/include/php/ext/date/lib

-I/usr/local/zend/include/php -DHAVE_CONFIG_H -g -O2 -c

/tmp/pear/download/newt-1.2.1/newt_vcall.c -o newt_vcall.lo gcc
-I. -I/tmp/pear/download/newt-1.2.1 -DPHP_ATOM_INC -
I/var/tmp/pear-build-root/newt-1.2.1/include

-I/var/tmp/pear-build-root/newt-1.2.1/main

-I/tmp/pear/download/newt-1.2.1 -I/usr/local/zend/include/php -
I/usr/local/zend/include/php/main -
I/usr/local/zend/include/php/TSRM

-I/usr/local/zend/include/php/Zend -
I/usr/local/zend/include/php/ext -
I/usr/local/zend/include/php/ext/date/lib -
I/usr/local/zend/include/php -DHAVE_CONFIG_H -g -O2 -c
/tmp/pear/download/newt-1.2.1/newt_vcall.c

-fPIC -DPIC -o .libs/newt_vcall.o

/bin/sh /var/tmp/pear-build-root/newt-1.2.1/libtool --mode=link
gcc -DPHP_ATOM_INC -I/var/tmp/pear-build-root/newt-1.2.1/include

-I/var/tmp/pear-build-root/newt-1.2.1/main

140

Zend Server Community Edition

-I/tmp/pear/download/newt-1.2.1 -I/usr/local/zend/include/php -
I/usr/local/zend/include/php/main -
I/usr/local/zend/include/php/TSRM

-I/usr/local/zend/include/php/Zend -
I/usr/local/zend/include/php/ext -
I/usr/local/zend/include/php/ext/date/lib

-I/usr/local/zend/include/php -DHAVE_CONFIG_H -g -O2 -o
newt.la

-export-dynamic -avoid-version -prefer-pic -module -rpath
/var/tmp/pear-build-root/newt-1.2.1/modules newt.lo
newt_vcall.lo -lnewt gcc -shared .libs/newt.o .libs/newt_vcall.o
 -lnewt -Wl,-soname -Wl,newt.so -o .libs/newt.so creating
newt.la (cd .libs && rm -f newt.la && ln -s ../newt.la newt.la)
/bin/sh /var/tmp/pear-build-root/newt-1.2.1/libtool --
mode=install cp ./newt.la /var/tmp/pear-build-root/newt-
1.2.1/modules

cp ./.libs/newt.so /var/tmp/pear-build-root/newt-
1.2.1/modules/newt.so

cp ./.libs/newt.lai /var/tmp/pear-build-root/newt-
1.2.1/modules/newt.la

PATH="$PATH:/sbin" ldconfig -n /var/tmp/pear-build-root/newt-
1.2.1/modules

Libraries have been installed in:

 /var/tmp/pear-build-root/newt-1.2.1/modules

Build complete.

2. Run 'make test'.

3. Use PECL to put the newly built Newt extension into place.

run: make INSTALL_ROOT="/var/tmp/pear-build-root/install-newt-1.2.1"

4. instal the shared extensions by running:

var/tmp/pear-build-root/install-newt-1.2.1//usr/local/zend/lib/php_extensions/

running: find "/var/tmp/pear-build-root/install-newt-1.2.1" |
xargs ls -dils

574096 4 drwxr-xr-x 3 root root 4096 Mar 30 20:45

/var/tmp/pear-build-root/install-newt-1.2.1

574119 4 drwxr-xr-x 3 root root 4096 Mar 30 20:45

/var/tmp/pear-build-root/install-newt-1.2.1/usr

574120 4 drwxr-xr-x 3 root root 4096 Mar 30 20:45

/var/tmp/pear-build-root/install-newt-1.2.1/usr/local

574121 4 drwxr-xr-x 3 root root 4096 Mar 30 20:45

141

Reference Manual

/var/tmp/pear-build-root/install-newt-1.2.1/usr/local/zend

574122 4 drwxr-xr-x 3 root root 4096 Mar 30 20:45

/var/tmp/pear-build-root/install-newt-1.2.1/usr/local/zend/lib

574123 4 drwxr-xr-x 2 root root 4096 Mar 30 20:45

/var/tmp/pear-build-root/install-newt-
1.2.1/usr/local/zend/lib/php_extensions

574118 244 -rwxr-xr-x 1 root root 241717 Mar 30 20:45
/var/tmp/pear-build-root/install-newt-
1.2.1/usr/local/zend/lib/php_extensions/newt.so

Build process completed successfully

Installing '/usr/local/zend/lib/php_extensions/newt.so'

install ok: channel://pear.php.net/newt-1.2.1

5. The Extension has been successfully compiled using PECL.

6. To load the extension, in the php.ini or in a separate file under the scan dir i

extension=<my_extension_name>.so and replace <my_extension_name> with

your extension's binary name such as "extension=newt.so".

nsert

7. If you're using the DEB and RPM versions of Zend Server Community Edition,

the best practice is to place a file called newt.ini under /usr/local/zend/etc/conf.d.

8. Restart your webserver.

Ensure the extension is properly loaded by checking the output of PHP Info. This can be viewed

in the Zend Server Community Edition PHP Info page.

The extension will now appear in your Administration Interface under Server Setup | Extensions

from which you can also load and unload the extension (for more information see: Working with

Extensions).

142

Zend Server Community Edition

Scenario 2: Compile a PHP extension included in the main PHP source called PSpell

Pspell (Portable Spell Checker Interface Library) provides a generic interface to the system

spelling checking libraries. To compile PSpell first install the php-source-zend-[ce|pe] package for

this procedure. Also, since this extension relies on the portable spell-checking interface (pspell)

library, you will need to install its devel package. Debian and Ubuntu users should install the

libpspell-dev package, on RedHat based distributions, the package name is aspell-devel.

To compile your own extension:

1. CD the extension's source dir (in our example, the PHP version is 5.2.9 as it is

the current stable version Zend Server Community Edition is shipped with):

$ cd /usr/local/zend/share/php-source/php-5.2.9/ext/pspell

2. Run phpize:

$ /usr/local/zend/bin/phpize

The output should be similar to this:

/Configuring for:

PHP Api Version: 20041225

Zend Module Api No: 20060613

Zend Extension Api No: 220060519/

Run the configure script, generated by phpize:

$./configure --with-php-config=/usr/local/zend/bin/php-config

3. Run make:

$ make

4. Become a super user [root] and run:

make install

The output should be:

/Installing shared extensions:
 /usr/local/zend/lib/php_extensions/

5. Insert the "extension=pspell.so" directive either in php.ini or in a separate file

under the scan dir.

6. Restart your webserver.

Ensure the extension is properly loaded by checking the output of PHP Info. This can be viewed

in the Zend Server Community Edition PHP Info page.

143

Reference Manual

The extension will now appear in your Administration Interface under Server Setup | Extensions

from which you can also load and unload the extension (for more information see: Working with

Extensions).

Troubleshooting:

The configure script outputs messages as it goes along and many times you will be able to

understand the problem just by looking at it, however, sometimes, the error doesn't necessarily

reflect the real issue so it is always a good idea to review the config.log. This is a very generic

statement but no other statement can be made as there are many different extensions and issues

one may come across so attempting to list them all will be somewhat futile.

144

Zend Server Community Edition

Loading the mod_ssl Module
The mod_ssl module allows you to enable SSL support on your Apache web server and is

needed to enable Apache for SSL requests (https).

For more information on the mod_ssl module, see the mod_ssl user manual at

http://www.modssl.org/docs/2.8.

The bundled Apache that comes with Zend Server Community Edition includes support for the

ssl_module, but this needs to be loaded in order to activate it. You must have acquired an SSL

certificate from an SSL certificate provider (e.g., http://www.slacksite.com/apache/certificate.html)

or have created your own SSL certificate for the mod_ssl to be loaded.

To load the mod_ssl module:
1. Open your httpd.conf file.

By default, this is located in:

<install_path>/apache2/conf/httpd.conf

2. Un-comment the following line by removing the "#".

Include conf/extra/httpd-ssl.conf

This calls the SSL configuration file.

3. Place your server.crt and server.key certification files in the 'conf' folder.

4. Restart the Apache server for the changes to take effect.

The mod_ssl module is loaded.

145

http://www.modssl.org/docs/2.8
http://www.slacksite.com/apache/certificate.html

Reference Manual

Java Bridge Use Cases
This section describes some of the common uses for the Java Bridge. The usage scenarios and

examples discussed here provide a framework for the Java Bridge’s uses, rather than a complete

picture. Real world experience indicates that companies are finding more and more applications

for the Java Bridge, beyond what was initially anticipated.

Usage Scenarios
There are two usage scenarios that describe the most common applications for the PHP/Java

Bridge:

 Integration with Existing Java Infrastructure - PHP is a fully featured scripting

language engineered to cover virtually all of an enterprise’s requirements. At the same

time, many enterprises have a long history of application development in Java. The Java

Bridge enables enterprises to continue to use their Java infrastructure - applications,

databases, business logic and various Java servers (WebLogic, JBoss, Oracle

Application Server, etc.).

 Accessing Java Language and Architecture - Some enterprises require the full set of

PHP capabilities, yet have a specific need for select Java based applications. SIP

signaling in the communications industry or JDBC for creating connectivity to SQL

databases are two examples of impressive, industry specific products. The Java Bridge

enables enterprises to adopt a PHP standard and to use their preferred Java based

applications.

Activities
This section describes two sample activities that indicate some of what you can do with the

PHP/Java Bridge. In the sample activities, it is important to differentiate between Java and J2EE.

The difference will impact on architecture and in turn, on the script code.

The important differences are:

 Java is a programming language. Java applications created in Java for the enterprise are

not bound to a specific framework. Therefore, it is possible and perhaps preferable for an

enterprise to relocate code libraries to the server that runs Zend Server Community

Edition .

 J2EE is a structured framework for application scripts developed for J2EE. It is preferable

that J2EE servers be left intact.

146

Zend Server Community Edition

Example 1: A Case Study in Java Bridge Performance (Java)

The Forever Times newspaper maintains a PHP-based website - let’s call it ForeverOnline.com.

The newspaper has been searching for a real-time Stock Ticker application to add to their already

successful and heavily visited website. The Forever Times Newspaper feels that real-time

financial information is the one thing their website is lacking.

Forever Times believes they have found exactly the Stock Ticker application they need. The

application provides up-to-date quotations from all the major markets, currency rates, and even

links to some of the local exchanges. However, the application is written in Java and uses

existing Java libraries.

Forever Times realizes that a PHP-based Web implementation that handles Java requests - a

Java Bridge - is their best bet. At the same time, they are concerned that the performance of their

Website remains optimal. To Forever Times’ horror, in testing the new application, they find that

loading the site with user-requests for the Stock Ticker slows down the performance of the whole

website.

The following code example illustrates how the Java Bridge applies to this business scenario and

others like it:

Example:

<?

// create Java object

$stock = new Java("com.ticker.JavaStock");

// call the object

$news = $stock->get_news($_GET['ticker']);

// display results

foreach($news as $news_item) {

print "$news_item
\n";

}

?>

The example code can be understood as follows:

 The code example is written in PHP and forms part of a PHP Web application.
 The PHP code creates the Java object-"com.ticker.JavaStock"-which is the PHP proxy.
 Requests come into the PHP based Website - ForeverOnline.com - which then

references the Stock Ticker application.
 Stock Ticker references a custom object- get_news-in the JVM library. This is all in

native Java.
 The PHP code then outputs the results on the Website.

147

Reference Manual

As opposed to a typical Java Bridge Implementation, the Zend Server Community Edition Java

Bridge implementation addresses performance issues through the Java Bridge architecture.

Implementing the Java Bridge is a way to address scalability issues by using the Java Bridge to

handle all communication in a single JVM instance, instead of in several instances.

Note:
While the single JVM constitutes a single point of failure, the fact is, Zend’s PHP-Java connection

is the most robust on the market. Failures in systems of this type generally tend to occur when

the Java Server is overloaded, rather than as a result of glitches in the applications. Zend Server

Community Edition ’s system architecture insures performance by diminishing overhead.

However, in the event of failure, the Java Bridge supports a restart feature that makes monitoring

the status of the Java Server and restarting quick and simple. One last point: if the failure was

caused by a glitch in the application, the same thing would most likely occur in each of the JVMs

in the non-Zend system!

Example 2: A Case Study in Management Integration (J2EE)

A company called FlowerPwr.com sells flowers over the Internet. They are a successful East

Coast-based firm that has an aggressive management profile. They are currently in the process

of acquiring a West Coast competitor - let’s call it Yourflowers.com - that provides a similar

service.

FlowerPwr.com has its own website: Its various enterprise applications are written in PHP.

Yourflowers.com also has its own Website: However, all its applications are Java-based and were

developed for J2EE. They have their own J2EE application server. FlowerPwr.com needs to

begin operating as an integrated commercial entity as soon as possible, in a way that conceals

the fact that the companies have merged.

Using the Java Bridge, FlowerPwr.com can create a common portal in PHP. The company can

leave Java up and running and take full advantage of their acquisition’s existing Java services.

FlowerPwr.com can do this over an existing portal using PHP.

The following code example illustrates how the Java Bridge can apply to this business scenario

and others like it:

Example:

<?

// EJB configuration for JBoss. Other servers may need other
settings.

// Note that CLASSPATH should contain these classes

$envt = array(

"java.naming.factory.initial" =>

148

Zend Server Community Edition

"org.jnp.interfaces.NamingContextFactory",

"java.naming.factory.url.pkgs" =>
"org.jboss.naming:org.jnp.interfaces",

"java.naming.provider.url" => " jnp://yourflowers.com:1099");

$ctx = new Java("javax.naming.InitialContext", $envt);

// Try to find the object

$obj = $ctx->lookup("YourflowersBean");

// here we find an object - no error handling in this example

$rmi = new Java("javax.rmi.PortableRemoteObject");

$home = $rmi->narrow($obj, new
Java("com.yourflowers.StoreHome"));

$store = $home->create();

// add an order to the bean

$store->place_order($_GET['client_id'], $_GET['item_id']);

print "Order placed.
Current shopping cart:
";

// get shopping cart data from the bean

$cart = $store->get_cart($_GET['client_id']);

foreach($cart as $item) {

print "$item['name']: $item['count'] at $item['price']
\n";

}

// release the object

$store->remove();

?>

The example code can be understood as follows:

1. The code example is written in PHP and forms part of a PHP Web application.
2. The PHP application first initializes an operation with the EJB, located at a specific URL

that has the name:"//yourflowers.com:1099."
3. The code then specifies the bean-YourflowersBean-that the application will look for.
4. Next, the bean object is returned from the EJB server.
5. The application then calls methods-in this case, the Java application includes two

functions:

 place_order receiving two numbers - client ID and the item ID to add to shopping
cart

 get_cart receiving one number - client ID and returning the list of the items
placed in the shopping cart so far.

After script execution, the referenced class may be disposed.

149

Reference Manual

Info Messages
Zend Server Community Edition displays different types of messages that are color coded

according to their level of severity. The following list describes the four different options and what

each color means:

Error Messages
Messages that are Red indicate that some kind of system error has occurred. If you receive a

message like this follow the instructions in the message.

The recommended actions are:

 Follow the instructions in the message.

 If the message appeared after an action was performed - try to redo the last action (such

as to click Save, Add etc.).

 Visit the Support Center - http://www.zend.com/en/support-center/

 Open a Support Ticket - Support

 Reinstall Zend Server Community Edition - Choosing Which Distribution to Install

Notices
Messages that are Yellow indicate that a non-critical error occurred. If you receive a message like

this it will contain information on how to proceed. This type of error includes messages to the user

about usability issues.

Success Messages
Messages that are Green indicate the success of an action. If you receive a message like this it

means that your last action was completed successfully and no additional actions are required

(such as Restart Server).

150

http://www.zend.com/en/support-center/

Zend Server Community Edition

151

Info Messages
Messages that are Blue indicate that there is an important message. If you receive a message

like this, in most cases no action is required apart from reading the information.

For example:
Log file C:\Program Files\Zend\Apache2\logs\error.log does not exist or missing read permissions

When this Server Error Log Info Message is displayed, one of the following has occurred:

 No log files are available

 Files have been moved

 Permissions have been tampered with

Zend Server Best Practices
Welcome to the Zend Server Community Edition Best Practices Guide.

The following content is a collection of knowledge and information based on the experience of

Zend's Development and Product Management team and the PHP community.

In this document, you will find reference information on the following development issues.

 The Performance section describes how to increase performance using Zend Server

Community Edition .

 The Security section lists several additional security precautions you can take to secure

your Zend Server Community Edition installation and Web application.

 The Development section includes instructions and tips for developers.

 The Deployment section describes the different deployment options (to remote servers,

hosting, etc.) and how to go live with your Web application.

 The IIS Best Practices includes instructions and tips for configuring IIS on Windows.

 The Troubleshoot section includes solutions to known issues, possible problems and an

error message reference.

If you have a tip or best practice that you would like to see here, please feel free to send it to

documentation@zend.com.

152

mailto:documentation@zend.com

Zend Server Best Practices

Performance
In the Performance section, you will find information on how to configure and optimize Zend

Server Community Edition and components to increase performance.

This document includes information on the following performance issues:

 Optimizing Zend Server Community Edition Performance - This section provides a

description of each performance component and includes recommendations on when the

component should be installed and for which conditions it should be disabled or removed.

 Optimizing Monitoring - This section provides suggestions on how to implement and

configure the monitoring for production and development environments.

 Fine Tuning Optimizer+ - This section provides advanced settings to further enhance the

performance gains achieved when Optimizer+ run out-of-the-box.

 Configuring PHP for Performance - This section explores the optimal php.ini

configurations and settings to get the best PHP performance optimization.

153

Reference Manual

Optimizing Zend Server Performance
The Zend Server Community Edition components are designed to encompass several different

requirements. However, there is no point in adding or using certain components when they are

not needed. This primarily happens when you install a component that you do not use. For

example, if you do not need to call Java objects from your PHP code, there is no need to have

the Java Bridge running. In addition, it would be better not to install this optional component at all,

especially as you will be prompted to install a Java Runtime Environment that is not required if

you are only running PHP.

In this section, we describe each performance component, including when you should install the

component, when to disable the component and when applicable, when to remove the

component.

Component Description Turn Off Comment

Debugger A remote

debugging tool for

developers

working with Zend

Studio.

Not recommended to turn off

as it is great for development

environments.

In production when not

debugging code

If you are not going to

debug your code with the

Debugger, for example in a

production environment,

disabling this component

may provide a slight

performance gain

Optimizer+ Speeds up PHP

execution through

opcode caching

and optimization.

Disabling has a negative

impact on performance.

Guard
Loader

Loads and runs

encoded PHP

scripts (Encoded

with Zend Guard)

Required only if you are

running PHP code that was

encoded with Zend Guard.

If you are not a Zend

Guard user either remove

this component or do not

install it (it is an optional

component).

Data Cache Cache data items

or output

If you are not using the Data

Cache API in your code for

partial content caching.

Java Bridge Calls Java classes

and code from

PHP

Required only If you call Java

code or objects from your

PHP.

If you are not a Java user

either remove this

component or do not install

it (it is an optional

component).

154

Zend Server Best Practices

Component Description Turn Off Comment

Monitor Identifies

performance

issues

Turn off temporarily, only for

performance testing reasons.

Not recommended to remove

this component however it is

best to configure accordingly

see " Working with

Monitoring"

Page Cache A URL based

HTML output

cache for PHP

scripts

Always

If you are not using URL

based Caching.

If you decide not to use this

component.

ZDS (Zend
Download
Server)

Passing heavy

download

requests to a

dedicated process

to off load Apache

For testing reasons only. Or if

you have a dedicated server

for static content.

If you do not need to off-

load large download traffic

155

Reference Manual

Optimizing Monitoring
Developing and maintaining Web applications is an intricate and highly demanding process. Zend

Server Community Edition facilitates the intricacies of the development process by employing an

efficient problem resolution infrastructure. This infrastructure’s main goal is to help make the most

out of challenging environments and tight schedules and prevent problematic issues from falling

between the cracks.

Using monitoring helps organizations improve communication between the development, testing

and IT teams to streamline the development and deployment processes.

Development and production environments can unify the working environment and ensure

improved information collection and distribution between development teams, testing teams and

IT teams (See illustration below).

Using Zend Server Community Edition in your working environment ensures that pertinent and

focused information reaches the right person at the right time. The enhanced information

exchange results in major improvements in quality of code, time to production and overall

performance and stability. The subsequent benefit is more resources dedicated to activities that

focus on improving and expanding the current application and less time spent on locating the

information that is necessary to recreate and resolve code and performance issues

The Monitor component assists the efforts of the development, testing and IT teams to quickly

pinpoint, analyze, and resolve issues such as: PHP Slow Script Execution, Function Errors,

Database Errors, etc.

156

Zend Server Best Practices

Workflow:

 Implement customized Event Rules to areas prone to problems in your unique

environment - facilitating focused and efficient problem resolution.

 Analyze "Full Problem Context" for a detailed insight of problematic occurrences.

 Integrate with Zend Studio to resolve problems with state-of-the-art development and

debugging tools.

Implementing Monitoring
Implementing Monitoring is a process of defining Events according to acceptable runtime and

performance parameters. When an Event occurs, the Monitor compiles a complete profile of the

Event’s occurrence and its precise details. The Event Details screen includes comprehensive

details to enable developers and testers to recreate the Event in a way that mirrors the conditions

of the original occurrence. This information can then be used to diagnose problems by fine-tuning

Event rules to accommodate normal occurrences or resolve actual run-time problems and errors.

The integration with Zend Studio makes it easy to diagnose problems and errors using the Debug

Event and Profile Event options. In addition, problems in code can be immediately resolved using

the Zend Studio Editor: The Zend Studio Editor makes it possible to both implement and deploy

changes right away, not only to a single server, but also to all the nodes that belong to the same

Group.

Code tracing provides an additional layer for analyzing

Events can be preserved to leave an indicator of these occurrences if necessary.

157

Reference Manual

Configuring for Production or Development
In general, the best practice is the same: tune monitoring rules and thresholds to provide the

information you need, without creating an overflow of events that you are not able to handle. This

means that in development you may want focus on a specific rule type each time or set high

thresholds and gradually modify them. In production it is preferred that you already come with an

estimate of the thresholds that are necessary.

The difference between development and production is that usually in development environments

you have to work very hard in order to have such an "overflow" - development environments are

low traffic, low load systems. Additionally, the performance impact is negligible in development

environment. In production, as a contrast, tuning is very important because of two reasons:

1. High traffic systems tend to generate hundreds and thousands of events per day if not

properly tuned - even with aggregation, this tends to be more than what a development

team can handle.

2. The more events you have, and the broader your thresholds are (for example the more

functions you watch for Slow Function Execution events) the bigger the performance

impact on your system is going to be. While under normal circumstances this impact is

usually negligible, under high stress circumstances it could have an effect.

Given this, the best practice for tuning Zend Monitor thresholds is to start from relatively high

thresholds, and lower them over time as old issues are fixed and the capacity for handling fine-

grained errors grows. This is mostly true in production environments.

158

Zend Server Best Practices

Fine Tuning Optimizer+
The performance improvement gained by letting the Optimizer+ run out-of-the-box can be further

enhanced with fine tuning. These are advanced settings that need to be evaluated based on your

environments usage specifications and performance requirements.

Note:
These are only recommendations, in most cases such fine tuning should not be necessary.

Disabling Code Change Auto-Detection
In the Administration Interface, to view the specific directives for Optimizer+, go to Server Setup |
Components and click on the Directives link next to the Optimizer+.

Look for "zend_optimizerplus.validate_timestamps" and set the value to Off.

This speeds up the server, but also requires that you restart the server

() if you deploy new versions of existing files.

When to change: If your PHP code is rarely updated/changed or if you are capable of manually

restarting your PHP on every code update.

When not to change: If you are in development and you are frequently changing code, or if you

do not have control over the code update process.

Decreasing Code Validation Frequency
In the Administration Interface, to view the specific directives for Optimizer+, go to Server Setup |
Components and click the Directives link next to the Optimizer+.

Look for "zend_optimizerplus.revalidate_freq" and set the value to 30 (seconds).Zend Server

Community Edition is now set to check PHP file changes every 30 seconds.

When to change: If you do not change PHP files often and some delay between file update and

site update is acceptable, you may set it even higher.

When not to change: If you have frequently changing files and you need the changes to take

effect immediately.

159

Reference Manual

Configuring PHP for Performance
You may be able to add an additional performance boost to your PHP applications by properly

configuring your PHP runtime environment settings. You can edit the directives below from the

Administration Interface via Server Setup | Directives.

Warning:
Changing some of these settings may cause certain PHP applications to stop functioning.

Therefore, use discretion when you disable them and test your environment: It is important that

you fully understand the purpose of each directive before you modify it.

Optimal php.ini configurations and settings for maximum performance optimization:

Name Recommended

Value

Z

C ition

D

end Server

ommunity Ed

efault

Description

realpath_cache_size 256K 256K Determines the size of the

realpath cache to be used by

PHP. This value should be

increased on systems where

PHP opens many files, to

reflect the quantity of the file

operations performed.

realpath_cache_ttl 120 120 Duration (in seconds) for

which to cache realpath

information for a given file or

directory. For systems with

rarely changing files, consider

increasing the value.

error_reporting E_ALL &

 ~E_NOTICE

E_ALL The error_reporting() function

sets the error_reporting

directive at runtime. PHP has

many levels of errors: Using

this function sets the error

level for the duration (runtime)

of your script.

160

Zend Server Best Practices

Name Recommended

Value

Zend Server

Community Edition

Default

Description

register_long_arrays Off O

HP

ff Tells PHP whether or not to

register the deprecated long

$HTTP_*_VARS type

predefined variables. When

On (default), long predefined

PHP variables (like

$HTTP_GET_VARS) are

defined. If you're not using

them, it's recommended to

turn them off for performance

reasons. Instead, use the

superglobal arrays (like

$_GET). This directive

became available in PHP

5.0.0 and was dropped in P

6.0.0.

register_argc_argv Off Off Tells PHP whether to declare

the argv and argc variables

(that contain the GET

information).

magic_quotes_gpc The default is: Off

This feature is deprecated as of PHP

6.0.0.

Sets the magic_quotes state

for GPC (Get/Post/Cookie)

operations. When

magic_quotes are On, all '

(single-quote), " (double

quote), \ (backslash) and

NULLs are escaped with a

backslash automatically.

161

Reference Manual

Name Recommended

Value

Zend Server

Community Edition

Default

Description

include_path As short as

possible,

depending on

the application's

needs

".;/path/to/php/pear" Specifies a list of directories

where the require(), include(),

fopen(), file(), readfile() and

file_get_contents() functions

look for files. The format is like

the system's PATH

environment variable: A list of

directories separated with a

colon in Unix or semicolon in

Windows .

162

Zend Server Best Practices

Name Recommended

Value

Zend Server

Community Edition

Default

Description

max_execution_time 30 3

elps

he

alls,

n

0 This sets the maximum time

(in seconds) that a script is

allowed to run before it is

terminated by PHP. This h

prevent poorly written scripts

from tying up the server. T

default setting is 30 s. When

running PHP from the

command line, the default

setting is 0 s.

The maximum execution time

is not affected by system c

stream operations, etc. See

the set_time_limit() functio

for more details.

You cannot change this

setting with ini_set() when

running in safe mode. The

only workaround is to turn off

safe mode or to change the

time limit in the php.ini.

Your Web server may have

other timeout configurations

that can also interrupt PHP

execution. Apache has a

Timeout directive and IIS has

a CGI timeout function. Both

default to 300 seconds. See

your Web server

documentation for specific

details.

163

Reference Manual

Name Recommended

Value

Zend Server

Community Edition

Default

Description

memory_limit 128M 128M Sets the maximum amount of

memory (in bytes) that a script

can allocate. This helps

prevent poorly written scripts

from consuming all the

available memory on a server.

This setting can also be fine

tuned during development to

reach an optimal setting.

When an integer is used, the

value is measured in bytes.

Note: To have no memory

limit, set this directive to -1.

output_buffering 4096 4096

Allows you to buffer the PHP

output instead of having it sent

directly as soon as it is

generated.

164

Zend Server Best Practices

Security
In the Security section, you will find information on how to configure and optimize the Zend Server

Community Edition and components to function more securely.

This document includes information on the following information:

 Allowed Hosts - This section describes the Allowed Hosts lists and offers

recommendations on which hosts to add to the Allowed Hosts list for development and

production environments.

 Securing the Administration Interface - This section provides information on how to set an

IP address-based access control list on the Web server running the Administration

Interface for the Windows, Linux and Mac OS X operating systems .

 Configuring PHP for Security - This section explores how you can add an additional

security boost to your PHP applications by properly configuring your PHP runtime

environment settings.

 Configuring Debugger Access Control - The how, when and why you should limit IP

permissions.

165

Reference Manual

Configuring Debugger Access Control
The allowed hosts list is a list of IP addresses that are permitted to initiate a Debugger session on

the Web server on which Zend Server Community Edition is installed.

The default value for zend_debugger.allow_hosts intentionally covers a wide range of IP

addresses. This is to make the initial installation of Zend Server Community Edition compatible

for a large selection of environments.

However, this also can be a security risk, as you are permitting a wide range of IP addresses

to access your Web server. Therefore, we recommend that you limit accessibility and create a

secure environment by only using specific hosts (full IP address) recognized by you that you are

sure you want to permit to connect.

To change this value in the Administration Interface, go to Server Setup | Debugger, remove all

the IP range settings and set the specific IP's that you permit to connect to Zend Server

Community Edition .

Depending on if you are working on a development or production environment, you may want to

consider different defaults.

In development environments, all the machines that require access to debug should be allowed.

In production environments, it is safer to limit access or even allocate a single machine to allow

access. Not only will this make your environment more secure, it may also help limit and prevent

unnecessary traffic on your production server

166

Zend Server Best Practices

Securing the Administration Interface
Purpose: To provide an additional security layer to the existing password protection – especially

crucial to production environments.

Note:
This solution does not replace the appropriate firewall precautions you should take to deny

access to the Administration Interface from certain IP addresses.

By default, access to the Administration Interface is password protected. If you want to secure

access to the Administration Interface, you can do so by setting an IP address-based access

control list on the Web server running the Administration Interface.

After following this procedure, users that try to access the Administration Interface from not-

allowed (unauthorized) IP addresses are not able to access the Administration Interface.

Linux and Mac OS X:

The administration Interface runs on a dedicated lighttpd Web server. To secure access to the
Administration Interface, edit your lighttpd configuration file in one of the following ways:

1. To only allow access from localhost, replace your lighttpd.conf with the pre-configured file
called lighttpd.conf-localonly that is in the same directory.

2. To limit access to specific IP addresses, open your lighttpd.conf and add the IP
addresses as follows:

$HTTP["remoteip"] !~ "10.1.2.163|10.1.6.46|127.0.0.1" {
$HTTP["url"] =~ "^/ZendServer/" { url.access-deny = ("") } }

This example shows how to allow access from 10.1.2.163, 10.1.6.46 and localhost and
deny the rest.

You can also do:

$HTTP["remoteip"] !~ "10.1.2.163|10.1.6.*|127.0.0.1" {
$HTTP["url"] =~ "^/ZendServer/" { url.access-deny = ("") } }

This means that you allow access from 10.1.2.163, 10.1.6.46, 127.0.0.1 (localhost) and
hosts from 10.1.6.0 and deny the rest.

3. After applying the changes to your configurations, restart the lighttpd server with the
command:
<install_path>/bin/lighttpd.sh restart or alternatively # <install_path>/bin/zendctl.sh
restart-lighttpd

For additional resources and information on Lighttpd, see
https://calomel.org/lighttpd.html .

167

https://calomel.org/lighttpd.html

Reference Manual

Windows:

There are a few precautions you can take in order to secure your connection:

 Be secured using SSL connection - a certificate is needed by 3rd party vendors to enable

encryption between client and server.

All IIS versions (5,6,7) use this surf-safe mode.

 Use https connection which enables encryption.

 Configure your Username and Password using 7-12 alpha-numeric numerals. Set your

Password immediately after first-time installation.

 Protect your connection using Anti-Virus.

 Windows users should update their Microsoft Installation packs with the provided updates

to avoid back-doors and loop-holes.

To limit IP access:
 Enter your Web server's configuration and define the IP addresses that should be

enabled.

Apache users should refer to the Apache documentation -

http://httpd.apache.org/docs/2.2/howto/access.html - Access control by host

 For more information about IIS security-related topics, visit the following Microsoft Web

site:

http://www.microsoft.com/technet/security/prodtech/IIS.mspx

168

http://httpd.apache.org/docs/2.2/howto/access.html
http://www.microsoft.com/technet/security/prodtech/IIS.mspx

Zend Server Best Practices

Configuring PHP for Security
You may be able to add an additional security boost to your PHP applications by properly

configuring your PHP runtime environment settings. You can edit the directives below from the

Administration Interface by going to Server Setup | Directives.

Warning:
Changing some of these settings may cause certain PHP Applications to stop functioning.

Therefore, use discretion while disabling them and test you environment - it is important that you

fully understand the purpose of each directive before modifying it.

Optimal php.ini configurations and settings for maximum security protection from external
threats:

Name Default Optimal

Value

Description

disable_functions T r his directive allows you to disable certain functions fo

s f ecurity reasons. It takes on a comma-delimited list o

f by unction names. disable_functions is not affected

Safe Mode. This directive must be set in the php.ini

file: For example, you cannot set this in httpd.conf.

disable_classes T allows you to disable certain classes for

s

c

a

p

his directive

ecurity reasons. It takes on a comma-delimited list of

lass names. The disable_classes directive is not

ffected by Safe Mode. This directive must be set in

hp.ini: For example, you cannot set this in httpd.conf.

magic_qotes_gpc 0 0 Sets the magic_quotes state for GPC

(Get/Post/Cookie) operations. When magic_quotes are

o), \ (backslash) n, all ' (single-quotes), " (double quotes

and NULLs are escaped with a backslash,

a

allow_url_include 0 0 T n

w s: include(),

i

N e set

t

utomatically.

his option allows the use of URL-aware fope

rappers with the following function

nclude_once(), require(), require_once().

ote: This setting requires that allow_url_fopen b

o On.

169

Reference Manual

Name Default Optimal

Value

Description

expose_php 1 0

Decides whether PHP may expose the fact that it is

installed on the server (e.g., by adding its signature to

the Web server header). It is no security threat in any

w u ay, but it makes it possible to determine whether yo

use PHP on your server or not.

display_errors 1 0 T

t

h

V

s

e

N

a .g.,

s

N

(s

f

d

his determines whether errors should be printed to

he screen as part of the output or if they should be

idden from the user.

alue "stderr" sends the errors to stderr instead of

tdout. The value is available as of PHP 5.2.4. In

arlier versions, this directive was of type boolean.

ote: This is a feature to support your development

nd should never be used on production systems (e

ystems connected to the Internet).

ote: Although display_errors may be set at runtime

with ini_set()), it won't have any affect if the script ha

atal errors. This is because the desired runtime action

oes not get executed.

register_globals 0 0 Whether or not to register the EGPCS (Environment,

GET, POST, Cookie, Server) variables as global

variables.

Relying on this feature is highly discouraged. Please

read the security chapter in the PHP manual on Using

register_globals for related information.

Note: register_globals is affected by the

variables_order directive.

Do you want to learn more about securing your PHP ?

Why don't you take a look at our Security Training.

170

http://www.php.net/manual/en/security.globals.php
http://www.zend.com/en/services/training/course-catalog/php-security

Zend Server Best Practices

Configuring Debugger Access Control
The allowed hosts list is a list of IP addresses that are permitted to initiate a Debugger session on

the Web server on which Zend Server Community Edition is installed.

The default value for zend_debugger.allow_hosts intentionally covers a wide range of IP

addresses. This is to make the initial installation of Zend Server Community Edition compatible

for a large selection of environments.

However, this also can be a security risk, as you are permitting a wide range of IP addresses

to access your Web server. Therefore, we recommend that you limit accessibility and create a

secure environment by only using specific hosts (full IP address) recognized by you that you are

sure you want to permit to connect.

To change this value in the Administration Interface, go to Server Setup | Debugger, remove all

the IP range settings and set the specific IP's that you permit to connect to Zend Server

Community Edition .

Depending on if you are working on a development or production environment, you may want to

consider different defaults.

In development environments, all the machines that require access to debug should be allowed.

In production environments, it is safer to limit access or even allocate a single machine to allow

access. Not only will this make your environment more secure, it may also help limit and prevent

unnecessary traffic on your production server

171

Reference Manual

Development
In the Development section, you will find information on how to use Zend Server Community

Edition and components in development for efficient detection and diagnosis of issues.

This document includes information on the following development issues:

 Working with Zend Framework - This section explores the benefits of the Zend

Framework pre-configured stack that includes all the system components for developing

Web applications with PHP and how to load Zend Framework's classes in your scripts.

 Configuring Zend Framework - This section presents the advantages of port-based

virtual hosts and describes how to configure Zend Server Community Edition to run Zend

Framework projects in a development environment, using port-based virtual hosts.

 Debugging - This section offers suggestions on improving the debugging process.

 Profiling - This section describes how to detect bottlenecks in your application using the

Profiler and Zend Server Community Edition.

 Advanced Diagnostics with Zend Server Community Edition - This section presents

suggestions to help diagnose problems by event rules.

172

Zend Server Best Practices

Working with Zend Framework
Zend Framework users who deploy Zend Server Community Edition will benefit from a pre-

configured stack that includes all the system components for developing Web applications with

PHP.

The Zend Framework files are placed in:

 Windows: <install_path>\share\ZendFramework

 RPM, DEB, Tarball and MAC : <install_path>/share/ZendFramework

Loading Zend Framework Classes

There are two ways to load Zend Framework's classes in your script:

1. Using the Zend Loader:

The Zend Loader utility class checks whether the class already exists within the script. If it does, it

will create the relevant file from the class name using Zend Framework's naming convention (See

http://framework.zend.com/manual/en/coding-standard.naming-conventions.html for more

information on Zend Framework's naming conventions). If the class already exists, this will speed

up performance.

Using the Zend Loader also has the added advantage of loading classes outside of Zend

Framework.

To use the Zend Loader:
1. Load the Zend Loader utility class once in your script:

Require_once 'Zend/Loader.php';

2. From now, load each class using the class name:
Zend_Loader::loadClass('Zend_Class_Name');

3. For example, in order to load the Zend Http Client:
Zend_Loader::loadClass('Zend_Http_Client);

173

http://framework.zend.com/manual/en/coding-standard.naming-conventions.html

Reference Manual

2. Using require / include calls

Classes can also be called using the conventional require or include calls:

To use 'require class':
1. Enter a 'require' command for the relevant file into your script:

Require 'File.php';

2. For example, to require the Zend Http Client Class:
require 'Zend/Http/client.php';

In order to see a full list of Zend Framework's components, including more information on the

functionality and use of the various components, see http://framework.zend.com/manual

174

http://framework.zend.com/manual

Zend Server Best Practices

Configuring Zend Framework

Configuring Zend Server Community Edition to Run a Zend Framework Application

The following procedure describes how to configure Zend Server Community Edition to run Zend

Framework projects in a development environment, using port-based virtual hosts. The

advantage of port-based virtual hosts is in the ease of running several isolated applications on the

same Web server. This overall solution allows developers working on a Zend Framework project

in Zend Studio to immediately test any code changes locally.

The following procedure uses instructions suitable for Zend Studio for Eclipse and the Apache

bundled with Zend Server. A similar procedure with some modifications can apply for other IDEs

and web servers.

To configure Zend Server Community Edition to run a Zend Framework
application:

1. Create a new Zend Framework project.

If you have not already done so, create a new Zend Framework project using

the New Zend Framework Wizard in Zend Studio for Eclipse.

2. Define a virtual host on Zend Server Community Edition that will point to the

new project's public directory:

a. Find the full path to your project's public directory.

In Zend Studio for Eclipse, go to the project browser and right-click on

the public directory from the menu choose Properties. The full path is

listed in the Resource Tab's location field.

b. Open your Apache configuration file (in most cases it will be httpd.conf

and located in your Apache installation directory).

Where is my Apache configuration file?

c. Go to the end of the file and add the following section:

Listen 10089

< VirtualHost *:10089>

 DocumentRoot " DOCUMENT_ROOT"

 <Directory "DOCUMENT_ROOT">

 Order allow,deny

 Allow from all

 AllowOverride all

175

Reference Manual

</Directory>

</VirtualHost>

3. Replace "DOCUMENT_ROOT" with the full path to the public directory,

enclosed in double quotes ("DOCUMENT_ROOT")

Replace the port number with a unique port number dedicated to this Virtual

Host. The port number (10089) has to be the same value for "Listen" and

"VirtualHost".

4. Zend Framework's MVC implementation makes use of the Front Controller

pattern. You must therefore rewrite all incoming requests (except those for static

resources, which your application need not handle) to a single script that will

initialize the FrontController and route the request. If you're using mod_rewrite

for the Apache web server, create the file <Project_Name>/public/.htaccess with

the following contents:

public/.htaccess

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} -s [OR]

RewriteCond %{REQUEST_FILENAME} -l [OR]

RewriteCond %{REQUEST_FILENAME} -d

RewriteRule ^.*$ - [NC,L]

RewriteRule ^.*$ /index.php [NC,L]

Note:
Some web servers may ignore .htaccess files unless otherwise configured. Make sure

that your web server is configured to read the .htaccess file in your public directory.

5. Restart your Web server from the command line (windows user can use the

Apache Monitor tool) .

Your Zend Framework projects will now be accessible from a browser through:

http://localhost:10089/ (the port number 10089 should be replaced with the unique port you

dedicated to this virtual host).

176

Zend Server Best Practices

Where is My Apache Configuration File?

Apache uses a main configuration file for all its settings, typically this file is called httpd.conf or

apache2.conf. The location of this file varies depending on your installation:

 Windows:

<install_dir>\Apache2.2\conf\httpd.conf

If you changed the location of your Zend Server Community Edition installation, your

document root will be located at <installation_directory>\ Apache2.2\conf\httod.conf,

where <installation_directory> is the location of the directory in which Zend Server

Community Edition is installed.

 Linux:

If you installed Zend Server Community Edition from a repository (DEB or RPM

packages), the location of your configuration file is defined by your distribution's Apache

packages, and will vary depending on your distribution and configuration.

Common locations include:

• Debian / Ubuntu - /etc/apache2/apache2.conf

• Fedora Core / RHEL / CentOS - /etc/httpd/httpd.conf

If you installed Zend Server Community Edition using the generic Tarball package -

/usr/local/ zend /apache2/conf/httpd.conf.

If you changed the location of your Zend Server Community Edition installation, your

document root will be located at <installation_directory>/ apache2/conf/httpd.conf, where

<installation_directory> is the location of the directory in which Zend Server Community

Edition is installed.

 Mac:

 /usr/local/zend/apache2/conf/httpd.conf

177

Reference Manual

Deployment to Production
In the Deployment to Production section, you will find information on how to deploy code that runs

on Zend Server Community Edition.

This document includes information on :

 Deploying Code with Zend Server Community Edition - This section presents suggestions

on how to best deploy your PHP code to run with Zend Server Community Edition for

production and development environments.

178

Zend Server Best Practices

Deploying Code with Zend Server
This procedure describes how to deploy your PHP code to run with Zend Server.

Zend Server provides all the components for creating an environment suitable for developing and

deploying PHP applications.

In order for a PHP Application to run you need a Web server. Apache is bundled by default with

Zend Server and is used to run your PHP code. This option may vary depending on your

operating system, for instance, MS Windows also supports an existing IIS installation so you can

choose either Apache or IIS and in Mac, Zend Server uses the distribution's Apache.

The process of writing PHP applications is separated into two distinct sections: Development and

Production.

 Development includes developing and debugging your code. In most cases this is done

on a developers machine or on a remote server with limited or password protected

access.

 Production is when the Web application has reached a level of maturity that allows it to

be exposed to its target audience. The only tasks that should be done are debugging

(remote) and uploading changes. It is against best practices to make changes to code

running on a Production server and the preferred method is to use FTP/SFTP to upload

changes.

Development

In order to run a PHP application, your PHP files must be placed in a specific location that

indicates to the Web server what files to service.

When you are ready to run your PHP code on a Web server, place the files under the following

directory according to your operating system and preferences:

Windows:

 Apache: <install_dir>\Apache2\htdocs

 IIS: C:\inetpub\wwwroot

Mac and Tarball:
 <install_path>/apache2/htdocs

DEB:
 The distribution's default location is: /var/www

RPM:
 The distribution's default location is: /var/www/html

179

Reference Manual

Running the Code/Application

Open a browser and enter the URL: http://localhost: /<yourPHPfile>.php

Replace <port number> with the port you are using. The defaults are port: 80 (for Windows) and

port: 10088 (for the other operating systems), unless you changed the port by preference.

Replace <yourPHPfile>.php with name of the file you want to access/run.

Note:
Remember to use the port name according to the port number you defined.

To find out how to locally debug your code once its deployed in a Web server, see Working

with Local Debugging.

Production

Deploying code to production is different than running your application in a controlled

environment (such as a local server). Production basically means publishing your application to

the internet.

So where do you publish your application?

Depending on the resources available to you, you either have a different server that is dedicated

to servicing the web or a cluster of servers that are managed with a load balancer. In both cases

a firewall or some other protection is necessary.

An additional option is to have your application run from a Web Hosting company.

Once your code is in its dedicated location, you will have to support the code so you will need to

establish a way to upload files for purposes of issuing updates and fixing bugs or security threats.

At this point if you have been locally debugging your code with Zend Studio you can now change

your settings to remote debugging, if there is a firewall between you and your application's files

you will need to use tunneling in order to debug through a firewall. Zend Studio users can also

benefit from Remote Server support for uploading and synchronize your code.

180

Zend Server Best Practices

IIS Best Practices
In the IIS Best Practices section, you will find information on how to configure and optimize IIS

and to increase performance.

This document includes information on the following information:

 IIS Configuration Optimization - Tuning adjustment to optimize the FastCGI configuration

for IIS6 and IIS7.

 Configuring IIS Timeouts

181

Reference Manual

IIS Configuration Optimization

Note:
When moving from Zend Core to Zend Server Community Edition on IIS Microsoft's FastCGI is

used instead of the Zend's FastCGI therfore the settings and configurations are in a different

location. For more information per IIS version see below.

Tuning FastCGI Configuration for IIS6

Note:
These performance enhancements are defined by default when you install Zend Server

Community Edition .

By default, Zend Server Community Edition runs with a maximum of ten concurrent PHP

instances. For high load Web servers, it is recommended to increase this value, based on your

performance requirements and other hardware/software limitations (such as memory, CPU, etc.).

To control the maximum amount of concurrent PHP instances:

1. Go to C:\WINDOWS\system32\inetsrv\fcgiext.ini.

2. Locate the entry for "php" under Types.

3. Locate the section corresponding to this entry (usually under "[PHP]").

4. Append the following line at the end of this section:

MaxInstances=10

This will enable Zend Server Community Edition to run ten PHP instances, for high loads. If you

have lots of memory and high loads, you can increase this value even more.

182

Zend Server Best Practices

To control the amount of requests handled by a single PHP instance before
recycling:

1. Go to C:\WINDOWS\system32\inetsrv\fcgiext.ini.

2. Locate the entry for "php" under Types.

3. Locate the section corresponding to this entry (usually under "[PHP]").

4. Append the following line at the end of this section:

InstanceMaxRequests=10000

This will allow a single PHP instance to handle 10,000 requests, instead of the default 1,000.

If you set this number higher, make sure you increase the value of

 PHP_FCGI_MAX_REQUESTS located in the same file accordingly.

183

Reference Manual

Tuning FastCGI Configuration for IIS7

Note:
These performance enhancements are defined by default when installing Zend Server

Community Edition .

By default, Zend Server Community Edition runs with a maximum of ten concurrent PHP

instances. For high load Web servers, it is recommended to increase this value, based on your

performance requirements and other hardware/software limitations (such as memory, CPU, etc.).

Requirements: IIS7 Resource Kit -

(x86) http://www.iis.net/downloads/default.aspx?tabid=34&i=1682&g=6

(x64) http://www.iis.net/downloads/default.aspx?tabid=34&i=1683&g=6

Once installed, you can administer your FastCGi settings from the Internet Information Services

(IIS) Manager.

From here, you can configure your MaxInstances and InstanceMaxRequests.

To tune FastCGi configuration for IIS7:

1. Go to Start | All Programs | Administrative Tools | Internet Information
Services 7 - Application Server Manager.

2. Select the server to manage from the left tree.

3. Click and select <install_dir>\bin\php-cgi.exe.

4. In the Actions section (on the right), click "Add Application..."

The Add FastCGI Application dialog opens:

184

http://www.iis.net/downloads/default.aspx?tabid=34&i=1682&g=6
http://www.iis.net/downloads/default.aspx?tabid=34&i=1683&g=6

Zend Server Best Practices

.

5. Tweak the variables as necessary.

The recommended Zend default is MaxInstances=10 and

InstanceMaxRequests=10000.

Depending on which settings you change, the Web server's memory and CPU consumption are

adjusted.

185

Reference Manual

Configuring IIS Timeouts

The following instructions are intended for running Zend Server Community Edition with PHP

FastCGI on Windows.

Issue:

The default timeout settings for FastCGI, may cause runtime failures for scripts that run longer

than 30 seconds.

Resolution:

If you know that you have scripts that run more than 30 seconds set your FastCgi and PHP to a

longer script timeout duration.

FastCgi Settings:

This procedure describes how to change your FastCgi timeout settings according to webserver

type and version.

 Apache 32bit:
Open C:\Program Files\Zend\ZendServer\etc and in ZendEnablerConf.xml the defaults

should be changed to <Timeouts connectionTimeout="<Number of Seconds>"

requestTimeout="<Number of Seconds>" />

 Apache 64bit:
Open C:\Program Files (x86)\Zend\ZendServer\etc and in ZendEnablerConf.xml the

defaults should be changed to <Timeouts connectionTimeout="<Number of Seconds>"

requestTimeout="<Number of Seconds>" />

 IIS 7:

In applicationHost.config locate the following:

 <fastCgi>

 <application fullPath="C:\Program Files (x86)\Zend\ZendServer\bin\php-

cgi.exe" maxInstances="10" instanceMaxRequests="10000" >

 <environmentVariables>

 <environmentVariable name="PHPRC" value="C:\Program Files

(x86)\Zend\ZendServer\etc" />

 <environmentVariable name="PHP_FCGI_MAX_REQUESTS"

value="10000" />

 </environmentVariables>

 </application>

186

Zend Server Best Practices

 </fastCgi>

 And change the following values:

activityTimeout="<Number of Seconds>"

requestTimeout="<Number of Seconds>"

PHP Settings

This procedure describes how to configure your PHP's execution time.

To configure your PHP's execution time:

1. In Zend Server Community Edition go to Server Setup | Directives
2. Edit the value of the following directives:
3. Change max_execution_time to <Number of Seconds> and max_input_time

to<Number of Seconds>
4. Restart PHP

Scripts that run more than 30 seconds but less than <Number of Seconds> should now run. See
below for instructions on how to test this.

Testing the Changes

The following procedure shows how to run a short script that checks if the settings have been

properly applied.

To test your settings:

1. Open a text editor and insert the following code:

<?php

sleep(40);

echo "If you see this text the script completed and the defaults
were changed";.

?>

2. Run the script from your docroot, if the script suceeded to run you will see the

following message in your browser "If you see this text the script completed and

the defaults were changed"

If the test failed you will not see a message in your browser. In that case try restarting your
webserver and running the script again.

187

Reference Manual

Troubleshoot
Welcome to the Zend Server Community Edition Troubleshoot section. The following content is a

collection of knowledge and information based on the experience of Zend's Development and

Support teams and the PHP community.

In the Troubleshoot section, you will find solutions to known issues, possible problems and an

error message reference. If you encounter any of these issues while working with Zend Server,

this information can help you resolve the matter quickly to enable you to return to your normal

workflow.

This document includes information on the following issues:

All operating systems

 Zend Server Exception Caught - When the port settings are not configured as expected

Windows only
 Windows: Zend Server isn't Running Out of The Box - You've installed Zend Server

successfully, but an error message is displayed in the browser when you click the short

cut.

 Windows: Zend Server not Loading - Zend Server or a related process causes

unexpected system behavior

 Windows: Internet Explorer Blocking Zend Server - IE7 running on Windows 2008 Server

blocks Zend Server and prompts you to add its URL to the Trusted Zone.

 Windows: IIS URL Rewrite Setup - Recommendations on which URL rewrite engine to

use and where to download from.

Linux and Windows

 Support Tool - Your opportunity to enable the Support team to provide better service by

allowing us to gather server configuration and setup information.

188

Zend Server Best Practices

Zend Server Exception Caught
Installing Zend Server Community Edition with a bundled Apache assumes that the following port

settings are used: The Web server (Apache) is listening on port 10088; and the Zend Server

Community Edition Administration Interface are listening on 10081,10082 . If your environment is

configured differently, when trying to access the Administration Interface you will receive a "Zend
Server Exception Caught" error message.

Note:
DEB and RPM installations do not need to listen to port 10088 because the Apache's distribution

is used.

To fix this, the port settings must be changed.

To set the Administration Interface's settings to listen to a different Web server port:

After changing your Apache's port setting to another port:
1. Change the Administration Interface's port setting as follows:

Go to <install_path>/gui/application/data

2. Open the file zend-server.ini. In the section called "userServer", set the URL to

the new port number.

3. Restart Apache.

The different installation options set different Apache configuration file locations as follows:

 DEB Apache conf file: /etc/apache2/apache2.conf

 RPM Apache conf file: /etc/httpd/conf/httpd.conf

 Tarball Apache conf file: <install_path>/apache2/conf/httpd.conf

 Mac Apache conf file: /usr/local/zend/apache2/conf/httpd.conf

189

Reference Manual

Windows: Zend Server isn't Running Out of The Box
This item refers to Windows OS using IIS (5-7)
After installing Zend Server Community Edition , clicking on the shortcut opens the browser with

an error.

Possible cause: It could be that your Web site is not running

Solution: Turn on your Web site

To turn on your Web site:

1. Go to My Computer

2. Right-click and from the menu select Manage

The management Console is displayed.

3. In the navigation tree locate the node "Internet Information Services"

4. Under this node is a list of Web sites, make sure that the Web site Zend Server

Community Edition is associated with is running.

If it is not running there will be a red indicator on the folder.

5. To set the Web site to run, right-click on the folder and set to start.

Try to run Zend Server Community Edition again.

If this did not solve the problem more information can be found in the Zend Support Center:

http://www.zend.com/en/support-center/.

Supported Web sites:

IIS5 users will only have one Web site. Whereas, IIS6 and IIS7 support multiple Web sites. When

activating a Web site, make sure that you are activating the appropriate Web site (the site that

was selected in the installation process).

190

http://www.zend.com/en/support-center/

Zend Server Best Practices

Zend Controller Cannot Run Benchmark

The following message may appear after you enter a URL into the Zend Controller's benchmark:

"Page redirected to ..."

This means that the URL that you entered is not the "exact" URL or is being redirected for some

reason. In order to run the test, specify an exact URL or use the suggested address and click

Start again.

191

Reference Manual

Zend Controller Cannot Login
After installing Zend Server Community Edition you try to run the Zend Controller and a message

is displayed in the Zend Controller stating that it cannot log in.

Possible causes:

1. You have not yet logged in to Zend Server Community Edition for the first time and

therefore your password has not been defined.

Log in to Zend Server Community Edition and set your password.

2. The password setting is incorrect.

Open the Zend Controller settings menu, right click on and select Settings from the

menu. Reenter your password in the Password field.

3. Your port number is incorrect.

Open the Zend Controller settings menu, right click on and select Settings from the

menu. Make sure the port number is correct (same as in the URL for opening Zend

Server Community Edition .

192

Zend Server Best Practices

Windows: Zend Server not Loading

This Item is only relevant for Windows.

If for any reason, you cannot load Zend Server Community Edition or one of the Zend Server

related process causes a crash or unexpected system behavior, use the installer in Repair mode.

To run the installer in repair mode:

1. Run the installer file or go to Start | Control Panel | Add or Remove Programs |

Zend Server and select Modify to run the installer

2. Click next to complete the repair process and Finish to close the Installer

You should now be able to run Zend Server Community Edition . If you are still encountering

problems, check out our Support Center at: http://www.zend.com/en/support-center

193

http://www.zend.com/en/support-center

Reference Manual

Windows: Internet Explorer Blocking Zend Server

This item is relevant for Internet Explorer 7 running on Windows 2008 Server.

After installing Zend Server Community Edition for the first time, you may encounter an Internet

Explorer system message stating that Zend Server Community Edition was blocked (see image

below).

This is a security message prompting you to add Zend Server Community Edition to the trusted

sites zone.

This procedure describes how to add Zend Server Community Edition to the trusted sites zone in

Internet Explorer 7 running on Windows 2008 Server.

To add a Web site to the Trusted sites zone:

1. Go to Tools | Internet Options.
2. Click to display the Security tab.
3. Select "Trusted Zone" and then Sites.
4. Click Add to include Zend Server Community Edition as a trusted site.
5. Click Close and then OK to save the changes and close the dialog.

Zend Server Community Edition will now be added as a trusted site and the message will not

appear.

Depending on your security settings, you may only see the following message:

194

Zend Server Best Practices

This also indicates that Zend Server Community Edition is not a trusted site. As soon as the site

is added to the trusted zone, this message is no longer displayed.

195

Reference Manual

Windows: IIS URL Rewrite Setup
A rewrite engine does not come standard with IIS. If you haven't done so already, you will have to

download and install one.

There are several online resources that can help you set this up:

 Zend Framework users should see:

http://framework.zend.com/wiki/display/ZFDEV/Configuring+Your+URL+Rewriter

 For Microsoft's URL rewrite module for IIS 7.0 see:

http://learn.iis.net/page.aspx/460/using-url-rewrite-module/.

196

http://framework.zend.com/wiki/display/ZFDEV/Configuring%2bYour%2bURL%2bRewriter
http://learn.iis.net/page.aspx/460/using-url-rewrite-module/

Zend Server Best Practices

Changing the Component's Log Directory

This issue is intended for advanced users who want to change the directory for storing Zend

component Log files.

By default, component logs are written to the directory specified in the directive zend.log_dir in

the ZendGlobalDirectives.ini file located in <install_path>/etc/conf.d/ZendGlobalDirectives.ini .

If you change the path, the following components will write their logs to the new location:

 monitor.log

 monitor_node.log

 monitor_zdo.log

 page_cache.log

Linux

To Change the Log directory in Linux:

1. Create the new logs directory with write permissions in order to be able to write

the logs in the new directory.

2. The new directory has to be owned by the Apache NOBODY user profile and

belong to the file system group zend. To move the directory to the zend group

run the following command as user root:

chown -r [Apache-user]:zend [new directory]

3. Open <install_path>/etc/conf.d/ZendGglobalDdirectives.ini and change the

value of zend.log_dir to the new log directory

4. Run zendctl.sh stop and zendctl.sh start to apply the changes, this script is

located in <install_path>/bin/

Now the log files for the Zend Page Cache and Zend Monitor components will be written to the

new location. This means that some log files such as Apache and PHP, will still be written to the

default directory (<install_path>/var/log)

197

Reference Manual

Windows

To Change the Log directory in Windows:

1. Create the new logs directory

2. Open <install_path>\etc\php.ini and change the value of zend.log_dir to the new

log directory

3. To apply changes manually restart your Web server (Apache or IIS)

Now the log files for the Zend Page Cache and Zend Monitor components will be written to the

new location. This means that some log files such as Apache and PHP, will still be written to the

default directory (<install_path>\logs).

Note
The new directory must have the same permissions as the original logs directory.

198

Zend Server Best Practices

Support Tool
(only)

The Zend Support Tool gathers server configurations and setup information.

The gathered information is used to help Zend's support team to troubleshoot support issues and

provide comprehensive and efficient support.

Collected Information
In general, the information collected is defined in the definition file. If, for security reasons, you do

not want to disclose specific information, you can edit the file to not include that information.

However, the more information the support team can access, the better the chance of quickly

resolving support-related issues.

Linux

To run the support tool:

<install_path>/bin/bugreport.sh

199

Reference Manual

The default location for saving the files is:

$TMPDIR/zend_server_report_bug_$TIMESTAMP.tar.gz

If TMPDIR is not defined, it results to /tmp

The definition file is located in:

<install_path>/share/bugreport/files

This file contains the definitions for which files and directories to collect. Through this file you can

also define the name that will be used to create the archive, in case you do not want to use the

default name.

Example:

/etc/apache2/conf.d apache_conf.d

Means, take the contents of the entire /etc/apache2/conf.d directory and rename it to

apache_conf.d <install_path>/share/bugreport/commands

Defines which commands to run and include in the output.

Once a report is generated, you will see the following output:

Sample Output:

<install_path>/bin/bugreport.sh

The information was collected successfully.

Use free text to describe the issue in your own words.

To submit the information press CONTROL-D

Archive created at /tmp/zend_server_report_bug_123008052721.tar.gz

Windows

The Support Tool software may be found in: <install_path>\bin\SupportTool.exe.

1. Open the Support Tool from Start menu, Zend Server/Support Tool.

2. Select a directory to generate the archive file to (Desktop is default).

3. Click Create.

A Zip file is created on the desktop of the current user. The file is created with a time

stamp including date and time.

200

Zend Server Best Practices

Supported Browsers
For optimal stability and performance, only run Zend Server Community Edition on a supported

browser from the Supported Browser List.

The following table lists the browsers that run Zend Server Community Edition .

Browser Supported Operating Systems

Internet Explorer 7.0 Windows XP and Windows Vista

Firefox 2.x Linux, Windows XP, Windows Vista, OS X

10.4 and OS X 10.5

Firefox 3.x Linux, Windows XP, Windows Vista, OS X

10.4 and OS X 10.5

Safari 2.x OS X 10.4

Safari 3.x OS X 10.4 and OS X 10.5

Note:
Zend Server Community Edition may run on other browsers but with unpredictable behavior.

201

Reference Manual

202

Log File Permissions

When the message "Log file /usr/local/zend/var/log/error.log does not exist or missing read

permissions" appears it means that Zend Server Community Edition does not have permissions

to read the log file, or, the file does not exist. If the file does exist, you will need to provide the

'zend' user permissions to access the directory containing the file, and read the file itself.

One example of enabling Zend Server Community Edition to read the Apache error log on Debian

Linux is provided below:

To enable Zend Server Community Edition to read the Apache error log on Debian
Linux:

1. Open a terminal and switch to root using "su" or "sudo -s".

2. Run the following command:

chmod 644 /usr/local/zend/var/log/error.log

Note
On most Red Hat, Fedora and CentOS systems you will need to allow access to the Apache logs

directory too. This can be done by running the following command as root or using 'sudo': chmod

755 /var/log/httpd

Index
Actions ... 42 allowed hosts list 166

Adding Extensions 132 configuring ... 166

Adding Extensions for Windows 132 default values 166

Adding New Components 42 development environment 166

Administration Interface production environment 166

setting passwords 31 Allowed Zend Studio Clients for Debugging

 .. 53 tabs .. 15

verifying installation 31 Apache server

viewing ... 31 configuring domain name 31

Administration tab 15 restarting ... 31

After installing Zend Server 31 SSL requests 145

allowed hosts ... 166 status ... 31

security settings 166 verifying installation 31

Index

Auto refresh log view 39

Benchmark tool .. 55

benchmarking .. 55

blacklisting, recommendations 45

bytecode

caching ... 71

optimizing ... 71

cache

clearing ... 59

deleting ... 59

deleting variables 59

disk storage .. 59

fetching variables from 59

SHM storage .. 59

storing variables to 59

Cache folder depth 59

configuration ... 59

cached content .. 59

management .. 59

storing .. 59

cached variables .. 59

caching

keys .. 59

large files .. 59

namespace keys 59

namespaces ... 59

calling Java objects in PHP 74

Calling Java objects in PHP

diagram .. 74

Changing Component Status 42

Changing Extension Status 37

Code

changing performance configurations .. 159

configuring change auto-detection 159

configuring validation frequency 159

improving performance 159

recycling ... 22

Community Edition 7

compile time, reducing 45

compiled scripts, saving 45

Compiling Extensions 132

component performance, testing 55

Component recommendations 154

Components .. 20

Actions ... 42

adding .. 42

changing status 42

clearing cached information 42

configuring ... 20

configuring directives 42

descriptions ... 20

loading ... 20

managing ... 42

restarting ... 42

status ... 20

turning on and off 35

Components page..................................... 20

overview .. 20

components, status 16

Configuration files 17

configuration options 18

configuration workflow 35

configuration, values 18

Configure Debugger Access Control 31

Configuring Directives 44

Configuring Directives Associated with

Components .. 42

Configuring Directives Associated with

Extensions ... 37

Configuring PHP for Performance 160

Configuring phpMyAdmin 62

Configuring the runtime environment........ 49

Configuring Zend Server 35

Connections

203

Reference Manual

firewalled .. 25

creating a blacklist file 45

critical events ... 16

Dashboard ... 16

Data Cache .. 73

Data Cache API 59, 73

Data Caching ... 73

when to use .. 73

data conversion ... 49

Debugger ... 25, 70

API ... 53

configuring access 31

overview ... 70

Debugging ... 53

allowed hosts ... 53

denied hosts ... 53

local .. 25

remote .. 25, 53

define passwords 12

Denied Zend Studio Clients for Debugging

 ... 53

directives .. 44

accessing ... 35

configuring 22, 24, 37, 42, 44

data caching ... 59

searching .. 22

viewing ... 24

Directives ... 24

directives, information 18

Directories, installation 11

directory location.. 17

Disk/Shared-Memory Caching 59

Drectives

configuring .. 35

Enterprise Edition .. 7

environment, details 17

error messages .. 150

memory option....................................... 59

Error Messages 150

errors, duplicate functions 45

Event ID .. 16

Events

critical .. 16

generating ... 35

ID ... 16

most recent .. 16

Extension Status 22

Extensions .. 22, 37

added .. 37

adding .. 132

compiling ... 132

downloading .. 132

files, blacklisting .. 45

Fine Tuning Optimizer+ 159

firealls .. 25

firewall tunneling 53

General Layout ... 15

Guard Loader .. 72

Guard Loader API 72

host permissions 35

Hosts

access ... 25

configuring ... 25

permissions ... 25

htdocs ... 52

IDE .. 25

Zend .. 25

IIS

optimizing PHP 182

tuning FastCGI configuration 182

IIS Configuration Optimization 182

Increasing Optimizer+ Resource Allocation

 .. 45

Info messages ... 68

204

Index

Info Messages ... 150

installation directories 11

installation location 11

installation path .. 11

IP addresses

restricting access 31

Java Bridge .. 49, 74

advantages ... 74

applications .. 146

case studies ... 146

configuring .. 74

Java Bridge, API 49

Java bridge, data conversion 49

Java Bridge, expected test output 49

overview ... 74

requirements .. 74

settings ... 74

testing ... 49

troubleshooting....................................... 49

Usage Scenarios 146

Java Bridge Performance 146

Java Bridge PHP extension 74

Java Bridge Use Cases 68, 146

Java Bridge, Java version requirements ... 49

Java runtime environment, configuring 49

loading mod_ssl ... 68

Loading the mod_ssl Module 145

log information ... 19

Log Tail page, adding logs 39

Log view, adding logs 39

Logs ... 19

logs, adding ... 19

logs, Apache Access 19

logs, Apache error 19

logs, Apache server 19

logs, auto refresh 39

logs, filtering ... 39

logs, IIS server .. 19

logs, navigating ... 39

logs, PHP error ... 19

logs, refreshing view 39

logs, searching in 39

logs, viewing ... 39

lost password .. 12

memory caching .. 59

message types .. 150

messages, color coded 150

messages, security 16

mod_ssl ... 145

loading ... 145

Monitor settings ... 35

Monitor tab .. 15

Monitoring

configuring for development 156

configuring for production 156

implementing 156

optimizing .. 156

workflow .. 156

MySQL .. 62

namespace Support 59

namespaces .. 59, 73

Notices .. 150

opcode caching 17, 71

operating system 17

operating systems 18

Optimizer+... 71

advanced settings 159

fine tuning .. 159

improving performance 159

Optimizer+ Duplicate Functions Fix 45

Optimizer+, blacklisting 45

Optimizer+, duplicate functions 45

Optimizer+, file quantities 45

Optimizer+, memory 45

205

Reference Manual

Optimizer+, resource allocation 45

Optimizing Zend Server Performance 154

Overview .. 7

parameters ... 18

password ... 12

Password administration 15

password configuration 31

password definition 12

Password Management 12

password, Windows 12

passwords

configuring .. 31

passwords, changing 12

passwords, clearing 12

passwords, defining 12

passwords, lost .. 12

passwords, managing 12

passwords, other operating systems 12

passwords, resetting 12

passwords, restoring 12

passwords, Windows 12

performance

improving .. 59

performance, boosting 45

performance, testing 55

PHP

accessing Java language and architecture

 .. 146

boosting performance 160

configuring .. 35

debugging .. 31

enabling debugging 31

integration with Java infrastructure 146

Java classes in 74

setting concurrent instances 182

setting recommendations 160

setting request handling 182

PHP code

encoded ... 48

license restricted 48

obfuscated ... 48

PHP configurations 24

PHP debugging

enabling ... 31

PHP execution .. 71

PHP extensions .. 48

adding .. 132

PHP Extensions .. 22

PHP Info .. 17, 18

PHP- Java Bridge 146

PHP optimization 71

diagram ... 71

PHP performance

optimizing .. 71

PHP stack ... 7

PHP version .. 11, 16

PHP, creating a Java object with 49

php.ini ... 18

configuring ... 20

configuring error reporting directive 160

configuring include_path directories.... 160

configuring magic quotes for GPC

operations .. 160

configuring max script execution time . 160

configuring PHP output buffering 160

configuring realpath cache duration 160

configuring realpath cache size 160

configuring script memory allocation limits

 ... 160

declaring argv and argc variables 160

deprecated features 160

registering deprecated long variable

arrays ... 160

php.ini location .. 17

206

Index

PHP-Java Bridge

activities ... 146

phpMyAdmin .. 62

phpMyAdmin, configuring 62

phpMyAdmin, downloading 62

phpMyAdmin, Linux 62

phpMyAdmin, Mac OS X 62

phpMyAdmin, managing MySQL 62

phpMyAdmin, Windows 62

Product version .. 17

profiling .. 25

remote .. 25

QoS .. 7

Quality of Service... 7

quick links .. 16

Recent Events ... 16

Reference Information 68

release version .. 17

Remote debugging 53

enabling .. 53

Remote Debugging Through a Firewall 53

reset passwords... 12

reset your password 12

restore passwords 12

restricting allowed host ranges 31

restricting IP addresses 31

Rule Management tab 15

rules

output caching .. 35

Run a Test on Your Web Server 31

run a test PHP script 31

Run the Administration Interface 31

security messages 16

server configuration 18

Server Info ... 17

Server Setup tab .. 15

shared memory .. 71

SHM/disk storage...................................... 59

specifying a range of IPs 53

SSL certificate ... 145

SSL support .. 145

enabling ... 145

ssl_module .. 145

Status

Zend Data Cache 20

Zend Debugger 20

Zend Download Server 20

Zend Guard Logger 20

Zend Java Bridge 20

Zend Monitor ... 20

Zend Optimizer+ 20

Zend Page Cache 20

Success Messages 150

system information 18

System Overview 16

Tasks .. 16

tasks, descriptions 29

tasks, outcomes .. 29

tasks, overview ... 29

tasks, Zend Server 29

test PHP script .. 31

testing performance 55

Testing the Bridge Connection 49

To create a blacklist file 45

tunneling ... 25

Usage Scenarios..................................... 146

variables

caching .. 59

version information.................................... 18

View a Log .. 39

Web application performance 71

Web server

testing .. 31

Web server IP ... 17

207

Reference Manual

208

Wildcards ... 53

Working with Components 42

Working with Data Cache 59

Working with Directives 44

Working with Java Bridge 49

Working with Local Debugging 52

Working with Logs 39

Working with phpMyAdmin to Manage

MySQL ... 62

Working with the Debugger 53

Working with Zend Controller 55

Working with Zend Guard Loader 48

Working with Zend Server 29

XML, editing ... 19

Zend Components status 16

Zend Controller 15, 27, 78

Zend Controller, accessing 27

Zend Controller, adding 27

Zend Controller, Benchmark tool 55, 78

Zend Controller, configuring 27

Zend Controller, customizing for different

operating systems 27

Zend Controller, developer resources 78

Zend Controller, overview 78

Zend Controller, setup 55

Zend Debugger API 70

Zend engine .. 74

Zend extensions

adding .. 132

Zend Framework 11, 76

Zend Framework version 17

Zend Framework, overview 76

Zend Guard

encoding .. 48

licenses ... 72

obfuscating .. 48

Zend Guard Loader 72

Zend Guard ... 48

Zend Guard User Guide 72

Zend Java Bridge 74

Zend Server

configuring ... 35

performance optimization 154

Zend Server Extensions 68

Zend Server message types 150

Zend Server Overview 11

Zend Server tabs 15

Zend Server, component performance 55

	Overview
	What is Included in Zend Server:
	Code Tracing: Solve Problems Faster Than Ever!
	Job Queue: Offload Execution of Long-running PHP Scripts
	A Web Application Server for Your Application
	Enhance PHP Application Reliability and Security
	Ensure Successful Deployments
	Detect Problems Before the Phone Rings
	Quickly Pinpoint Root Cause of Problem
	Boost Application Performance

	Zend Server Community Edition (CE)
	Boost Performance of your PHP Applications
	Use a Reliable PHP Stack in Development and Production
	Get Up and Running with a Full PHP Stack in Minutes

	About
	Installation Directories
	Password Management
	Support
	Zend Support Center
	Zend Forums
	Zend Support Knowledge Base
	Online Documentation
	Open a Support Ticket (Only Available in Zend Server)
	Zend PHP Email Updates
	Zend Developer Zone Resource Center
	Feedback

	Concepts
	General Layout
	Monitor Tab
	Dashboard
	Server Info
	PHP Info
	Changing PHP Info

	Logs

	Setup Tab
	Components
	Extensions
	Directives
	Debugger

	Administration Tab
	Password
	Updating your License
	How do I get a license?
	I already have a license, what do I do?
	License Expiration

	Zend Controller
	Adding the Zend Controller to the Start Menu/System Tray/Taskbar

	Tasks
	Working with Zend Server Community Edition
	Getting Started with Zend Server Community Edition
	What to do After Installing Zend Server Community Edition
	Run the Administration Interface
	Configure Your Password
	Check Apache
	Check IIS
	Run a Test on Your Web Server
	Configure Debugger Access Control

	Configuring Zend Server Community Edition
	Restart PHP Message

	Working with Extensions
	Changing Extension Status
	Restart PHP Message
	Configuring Directives Associated with Extensions

	Working with Logs
	View a Log
	Filter Log Information
	Navigate Inside a Log
	Activate 'Auto refresh'
	Advanced - Add logs to the list of logs in the "Log View" list.

	Working with Components
	Changing Component Status
	Configuring Directives Associated with Components
	Actions
	Adding New Components

	Working with Directives
	Working with Optimizer+
	When Not to use Optimizer+ (Blacklist)?
	Increasing Optimizer+ Resource Allocation
	Blacklisting Files
	Optimizer+ Duplicate Functions Fix

	Working with Zend Guard Loader
	Working with Java Bridge
	Configuration
	Testing the Bridge Connection
	Before using the Java Bridge API

	Debugger
	Working with Local Debugging
	Working with the Debugger
	Wildcards (Net Mask)
	Remote Debugging Through a Firewall?

	Working with Zend Controller
	Initial Setup
	Using the Zend Controller Benchmark Tool
	How it Works

	Understanding Results

	Cache
	Working with Data Cache
	Disk/Shared-Memory Caching
	'namespace' Support
	Setting the cached 'namespace':
	Cache Folder Depth Configuration

	phpMyAdmin
	Working with phpMyAdmin to Manage MySQL
	Working with MySQL Server: Linux
	Working with MySQL Server: Mac OS X
	File Locations
	Default Port and Socket
	Starting and Stopping
	Password

	Working with MySQL Server: Windows
	If you already have phpMyAdmin
	If you already have MySQL
	If you don't have anything (phpMyAdmin or MySQL)

	Reference Information
	Components
	Debugger
	Optimizer+
	Guard Loader
	Zend Guard

	Data Cache
	Java Bridge
	Advantages

	Zend Framework
	Zend Framework Resources
	Why Zend Framework
	Extreme Simplicity & Productivity
	Latest Web Development Features
	Friendly & Simple Licensing, Safe for the Enterprise
	Fully Tested – Extend Safely and Easily

	Zend Controller

	API Reference
	Zend Debugger - Configuration Directives
	Configuration Directives Summary
	Configuration Directive Details
	zend_debugger.allow_hosts
	zend_debugger.deny_hosts
	zend_debugger.allow_tunnel
	zend_debugger.max_msg_size
	zend_debugger.httpd_uid
	zend_debugger.tunnel_min_port
	zend_debugger.tunnel_max_port
	zend_debugger.expose_remotely
	zend_debugger.passive_mode_timeout
	zend_debugger.xdebug_compatible_coverage
	zend_debugger.use_fast_timestamp

	Zend Debugger - PHP API
	PHP Functions
	debugger_start_debug
	Description

	debugger_connect
	Description
	Return Value

	Zend Optimizer+ - Configuration Directives
	Configuration Directives Summary
	External Configuration File: Optimizer+ blacklist file
	Configuration Directive Details
	zend_optimizerplus.enable
	zend_optimizerplus.use_cwd
	zend_optimizerplus.validate_timestamps
	zend_optimizerplus.revalidate_freq
	zend_optimizerplus.revalidate_path
	zend_optimizerplus.inherited_hack
	zend_optimizerplus.dups_fix
	zend_optimizerplus.log_verbosity_level
	zend_optimizerplus.memory_consumption
	zend_optimizerplus.max_accelerated_files
	zend_optimizerplus.max_wasted_percentage
	zend_optimizerplus.consistency_checks
	zend_optimizerplus.force_restart_timeout
	zend_optimizerplus.blacklist_filename
	zend_optimizerplus.save_comments
	zend_optimizerplus.fast_shutdown
	zend_optimizerplus.optimization_level
	zend_optimizerplus.enable_slow_optimizations

	Zend Optimizer+ - PHP API
	PHP Functions
	accelerator_reset
	Description
	Return Value

	Zend Guard Loader - Configuration Directives
	Configuration Directives Summary
	Configuration Directive Details
	zend_loader.enable
	zend_loader.disable_licensing
	zend_loader.obfuscation_level_support
	zend_loader.license_path

	Zend Guard Loader - PHP API
	PHP Functions
	zend_loader_enabled
	Description
	Return Value

	zend_loader_file_encoded
	Description
	Return Value

	zend_loader_file_licensed
	Description
	Return Value

	zend_loader_current_file
	Description
	Return Value

	zend_loader_install_license
	Description
	Parameters
	Return Value

	zend_obfuscate_function_name
	Description
	Parameters
	Return Value

	zend_current_obfuscation_level
	Description
	Return Value

	zend_runtime_obfuscate
	Description
	Return Value

	zend_obfuscate_class_name
	Description
	Parameters
	Return Value

	zend_get_id
	Description
	Parameters
	Return Value

	zend_loader_version
	Description
	Return Value

	Zend Data Cache - Configuration Directives
	Configuration Directives Summary
	Configuration Directive Details
	zend_datacache.shm.max_segment_size
	zend_datacache.shm.memory_cache_size
	zend_datacache.disk.save_path
	zend_datacache.disk.dir_level
	zend_datacache.enable
	zend_datacache.apc_compatibility

	Zend Data Cache - PHP API
	PHP Functions
	zend_shm_cache_store
	Description
	Parameters
	Return Value

	zend_disk_cache_store
	Description
	Parameters
	Return Value

	zend_shm_cache_fetch
	Description
	Parameters
	Return Value

	zend_disk_cache_fetch
	Description
	Parameters
	Return Value

	zend_shm_cache_delete
	Description
	Parameters
	Return Value

	zend_disk_cache_delete
	Description
	Parameters
	Return Value

	zend_shm_cache_clear
	Description
	Parameters
	Return Value

	zend_disk_cache_clear
	Description
	Parameters
	Return Value

	Zend Java Bridge - Configuration Directives
	Configuration Directives Summary
	Configuration Directive Details
	zend_jbridge.server_port
	zend_jbridge.ints_are_longs
	zend_jbridge.encoding
	zend_jbridge.use_java_objects

	Zend Java Bridge - PHP API
	PHP Functions
	java
	Description
	Parameters
	Return Value

	java_last_exception_get
	Description
	Return Value

	java_last_exception_clear
	Description

	java_set_ignore_case
	Description
	Parameters

	java_throw_exceptions
	Description
	Parameters

	java_set_encoding
	Description
	Parameters

	java_require
	Description
	Parameters

	java_reload
	Description
	Parameters

	The JavaException Class
	Class Prototype
	Class Methods
	JavaException::getCause
	Description
	Return Value

	Zend Extension Manager - Configuration Directives
	Configuration Directives Summary
	External Configuration File: load order file
	Configuration Directive Details
	zend_extension_manager.log_verbosity_level
	zend_extension_manager.load_order_file
	zend_extension_manager.activate_signal_handlers
	zend_extension_manager.wait_for_debugger

	Zend Utils - Configuration Directives
	Configuration Directives Summary
	Configuration Directive Details
	zend_utils.log_verbosity_level
	zend_utils.use_graceful_restart
	zend_utils.aix_restart_cmd

	Zend Download Server - Configuration Directives
	Configuration Directives Summary
	External Configuration File: mime_types
	Configuration Directive Details
	zend_dserver.enable
	zend_dserver.mime_types_file
	zend_dserver.log_file
	zend_dserver.log_verbosity
	zend_dserver.min_file_size
	zend_dserver.nice
	zend_dserver.disable_byterange
	zend_dserver.etag_params
	zend_dserver.mmap_chunk

	Adding Extensions
	Adding Extensions for Windows
	Compiling Extensions
	UNIX: Compiling PHP Extensions
	Requirements:
	Scenario 1: compile a PECL extension called Newt
	Scenario 2: Compile a PHP extension included in the main PHP source called PSpell

	Loading the mod_ssl Module

	Java Bridge Use Cases
	Usage Scenarios
	Activities
	Example 1: A Case Study in Java Bridge Performance (Java)
	Example 2: A Case Study in Management Integration (J2EE)

	Info Messages
	Error Messages
	Notices
	Success Messages
	Info Messages

	Zend Server Best Practices
	Performance
	Optimizing Zend Server Performance
	Optimizing Monitoring
	Implementing Monitoring
	Configuring for Production or Development
	Fine Tuning Optimizer+
	Disabling Code Change Auto-Detection
	Decreasing Code Validation Frequency
	Configuring PHP for Performance

	Security
	Configuring Debugger Access Control
	Securing the Administration Interface
	Configuring PHP for Security
	Configuring Debugger Access Control

	Development
	Working with Zend Framework
	Loading Zend Framework Classes
	1. Using the Zend Loader:
	
	2. Using require / include calls

	Configuring Zend Framework
	Configuring Zend Server Community Edition to Run a Zend Framework Application
	Where is My Apache Configuration File?

	Deployment to Production
	Deploying Code with Zend Server
	Development
	Running the Code/Application
	Production

	IIS Best Practices
	IIS Configuration Optimization
	Tuning FastCGI Configuration for IIS6
	Tuning FastCGI Configuration for IIS7

	Configuring IIS Timeouts
	FastCgi Settings:
	PHP Settings
	Testing the Changes

	Troubleshoot
	Zend Server Exception Caught
	Windows: Zend Server isn't Running Out of The Box
	Zend Controller Cannot Run Benchmark
	Zend Controller Cannot Login
	Windows: Zend Server not Loading
	Windows: Internet Explorer Blocking Zend Server
	Windows: IIS URL Rewrite Setup
	Changing the Component's Log Directory
	Linux
	Windows

	Support Tool
	Linux
	Windows

	Supported Browsers
	Log File Permissions

	Index

