

TIMTER[™] T3 Multi-mode Digital Telemetry Transmitter

Installation and Operation Manual

Quasonix, Inc. 6025 Schumacher Park Dr. West Chester, OH 45069 20 October 2015

Revision 3.2.7

Specifications subject to change without notice.

Approved for Public Release 15-S-2138

No part of the document may be circulated, quoted, or reproduced for distribution without prior written approval from Quasonix, Inc.

Table of Contents

Introd	uction	1
1.1	Description	1
1.2	Nomenclature	1
1.3	Part Number Field Codes	3
1.3.1	Frequency Bands	3
1.3.2	Clock and Data Interface	5
1.3.3	Serial Control Interface	6
1.3.4	ARTM Tier 0 (PCM/FM)	6
1.3.5	ARTM Tier I (SOQPSK-TG)	6
1.3.6	ARTM Tier II (Multi-h CPM)	6
1.3.7	Legacy	7
1.3.8	RF Output Power	7
1.3.9	Packages	7
1.3.10	Automatic Carrier Wave Output Option - AC	8
1.3.11	Auxiliary Input Option – AI	8
1.3.12	2 Adapter Plate – AP	9
1.3.13	Baud Rate Option – BRx	9
1.3.14	CP07 Control Protocol Option – C7	9
1.3.15	Convolutional Encoder Option – K7 (formerly CE option)	9
1.3.16	Clock-free Baseband Interface Option – CF	10
1.3.17	Clock Generator Output Option – CG	11
1.3.18	B Dual Power Option – DP	11
1.3.19	Ethernet Payload Capability – EN	11
1.3.20	Analog Frequency Modulation – FM	11
1.3.	20.1 Using True Analog FM	11
1.3.21	Frequency Offset – FO	12
1.3.22	2 GPS Notch Option – GN	12
1.3.23	B High Bit Rate Option – HR	12
1.3.24	Internal Clock and Data Option – ID	12
1.3.25	Limited Current Option - LC	12
1.3.26	Forward Error Correction / Low Density Parity Check (LDPC) Option – LD	13
1.3.27	Low Bit Rate Option – LR	13
1.3.28	Randomizer Control Option – MK	13
1.3.29	Modulation Scaling Option – MS	13
1.3.30	MDM-9 Accessory Board – P9	13

	1.3.31	Parallel Port Frequency Programming Option – PF	13
	1.3.32	Parallel Port Mode Selection Option – PM	13
	1.3.33	Hardware Preset Option – PS (PS2, PS4, PS8, or PS16)	13
	1.3.34	Recall Holdoff Option – RH	.13
	1.3.35	Randomizer Output Option – RN	14
	1.3.36	Spacecraft Tracking and Data Network Option – STDN	14
	1.3.37	Switch Box Option – SWBX	.14
	1.3.38	S Variable FIFO Depth Option – VF	14
	1.3.39	Variable Power Option – VP	.14
	1.3.40) Wide Input Voltage Range Option – WV	14
2	Acces	sories	15
	2.1	Fan-cooled Heat Sink	15
	2.2	Transmitter-powered Heat Sink	16
	2.3	Adapter Plate	18
	2.4	Pre-wired MDM-15 for RS-422 Units	18
	2.5	Pre-wired MDM-15 for TTL Units	19
	2.6	MDM-15 Wiring Harness for RS-422 Units	19
	2.7	MDM-15 Wiring Harness for TTL Units	20
	2.8	Ruggedized Handheld Programmer	20
	2.9	USB to Serial Converter Cable	21
	2.10	Switch Box	22
3	Install	ation Instructions	23
	3.1	Mechanical	23
	3.2	Thermal	25
	3.3	Electrical	25
4	Opera	ating Instructions	28
	4.1	Power-on Operation	28
	4.1.1	Dual Power via Hardware Control	28
	4.2	TIMTER™ Serial Control Protocol	28
	4.2.1	Command Set: Standard and Optional Commands	29
	4.2.	1.1 Additional Command Set Details	49
		4.2.1.1.1 Input Source Selection Command - IS	49
		4.2.1.1.2 System Status Command – SY	52
5	RF O	utput Notes	54
	5.1	Troubleshooting the RF on a Quasonix Transmitter	54
6	Perfo	mance Specifications	57
	6.1	RF Output	57
_			

(5.2	Electrical Current	57			
(6.3	Environmental Specifications	57			
(6.4	Carrier Frequency Tuning	58			
(6.5	Carrier Frequency Error	59			
(6.6	Bit Error Rate	59			
(6.7	Modulated RF Power Spectrum	60			
(6.8	Phase Noise Power Spectrum	62			
(6.9	Baseplate Temperature	63			
(5.10	Vibration and Shock	63			
	6.10.1	Vibration Testing	65			
	6.10.2	2 Shock Testing	68			
7	Maint	enance Instructions	72			
8	Produ	ct Warranty	73			
9	Techr	nical Support and RMA Requests	74			
10	App	pendix A – Preset Option	75			
11	App	pendix B – Acronym List	76			
		List of Figures				
		Quasonix Part Number Construction Description				
		FPCM Signal on Oscilloscope				
		CCSDS 131.0-B-1 Rendering of Basic Convolutional Encoder Diagram				
		Fan-cooled Heat Sink and Power Supply				
		an-cooled Heat Sink with 6 cubic inch TIMTER™				
		ransmitter-powered Heat Sink and Pigtail Cable				
		ransmitter-powered Heat Sink Mounted on an 04AB Package				
		ransmitter-powered Heat Sink Mounted on a 07AE Package				
		Close-up Using Female MDM-15 Connector				
		Close-up Using Male MDM-15 Connector				
		Adapter Plate				
		Pre-wired MDM-15 with 36" Pigtails for RS-422				
	igure 13: Pre-wired MDM-15 with 36" Pigtails for TTL					
		MDM-15 Cable Harness for RS-422				
		MDM-15 Cable Harness for TTL				

Figure 18: Switch Box with 36" MDM-9 to MDM-9 Cable Harness 22 Figure 19: 4.2 in³ TIMTER™ 23 Figure 20: Outline Drawing, TIMTER™ 04AB Telemetry Transmitter. 24 Figure 21: MDM-15 Female Pin Numbering, RS-422 Interface – 04AB Package 26 Figure 22: MDM-15 Male Pin Numbering, TTL Interface – 04AD Package 26 Figure 23: Baseband Signal Timing. 27 Figure 24: TIMTER™ Welcome Message 29 Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask 61 Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for Y-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Wibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 67 Figure 37: Shock Pulse, Z-axis Negative 69 Figure 38: Shock Pulse, Y-axis Negative 69 Figure 41: Shock Pulse, X-axis Negative 70 Figure 42: Sh	Figure 17: USB to Serial Converter Cable	21
Figure 20: Outline Drawing, TIMTER™ 04AB Telemetry Transmitter 24 Figure 21: MDM-15 Female Pin Numbering, RS-422 Interface – 04AB Package 26 Figure 22: MDM-15 Male Pin Numbering, TTL Interface – 04AD Package 26 Figure 23: Baseband Signal Timing 27 Figure 24: TIMTER™ Welcome Message 29 Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask 61 Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask 61 Figure 26: SOQPSK-TG (Tier II) Power Spectral Density with Mask 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for Y-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Negative 69 Figure 38: Shock Pulse, Z-axis Negative 70 Figure 41: Shock Pulse, X-axis Negative 70 Figure 42: Shock Pulse, X-axis Negative 71	Figure 18: Switch Box with 36" MDM-9 to MDM-9 Cable Harness	22
Figure 21: MDM-15 Female Pin Numbering, RS-422 Interface – 04AB Package 26 Figure 22: MDM-15 Male Pin Numbering, TTL Interface – 04AD Package 26 Figure 23: Baseband Signal Timing 27 Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask 61 Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask 61 Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for Y-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 39: Shock Pulse, Z-axis Positive 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, X-axis Positive 70 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-a	Figure 19: 4.2 in ³ TIMTER™	23
Figure 22: MDM-15 Male Pin Numbering, TTL Interface – 04AD Package. 26 Figure 23: Baseband Signal Timing. 27 Figure 24: TIMTER™ Welcome Message. 29 Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask. 61 Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask. 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask. 62 Figure 28: Phase Noise Limit Curve. 63 Figure 29: Vibration / Shock Testing System. 64 Figure 30: TIMTER™ Mounted for Z-axis Testing. 64 Figure 30: TIMTER™ Mounted for Y-axis Testing. 65 Figure 32: TIMTER™ Mounted for Y-axis Testing. 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum. 67 Figure 35: Y-axis Vibration Spectrum. 67 Figure 36: X-axis Vibration Spectrum. 68 Figure 37: Shock Pulse, Z-axis Negative. 69 Figure 38: Shock Pulse, Y-axis Negative. 69 Figure 40: Shock Pulse, Y-axis Negative. 70 Figure 41: Shock Pulse, X-axis Negative. 71 Figure 42: Shock Pulse, X-axis Negative. 71 Figure 42: Shock Pulse, X-axis Negative. 71	Figure 20: Outline Drawing, TIMTER™ 04AB Telemetry Transmitter	24
Figure 23: Baseband Signal Timing 27 Figure 24: TIMTER™ Welcome Message 29 Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask 61 Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 30: TIMTER™ Mounted for X-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: Timter 10 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Y-axis Negative 69 Figure 39: Shock Pulse, Y-axis Negative 70 Figure 40: Shock Pulse, X-axis Positive 70 Figure 41: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis N	Figure 21: MDM-15 Female Pin Numbering, RS-422 Interface – 04AB Package	26
Figure 24: TIMTER™ Welcome Message 29 Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask 61 Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for X-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Wounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 70 Figure 40: Shock Pulse, Y-axis Positive 70 Figure 41: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure	Figure 22: MDM-15 Male Pin Numbering, TTL Interface – 04AD Package	26
Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask 61 Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for Y-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Negative 71 Figure 42:	Figure 23: Baseband Signal Timing	27
Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask 61 Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for Y-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Wibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X	Figure 24: TIMTER™ Welcome Message	29
Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask 62 Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for Y-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Wibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative	Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask	61
Figure 28: Phase Noise Limit Curve 63 Figure 29: Vibration / Shock Testing System 64 Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for X-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 68 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Positive 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask	61
Figure 29: Vibration / Shock Testing System. 64 Figure 30: TIMTER™ Mounted for Z-axis Testing. 64 Figure 31: TIMTER™ Mounted for X-axis Testing. 65 Figure 32: TIMTER™ Mounted for Y-axis Testing. 65 Figure 33: TIMTER™ Vibration Profile. 66 Figure 34: Z-axis Vibration Spectrum. 67 Figure 35: Y-axis Vibration Spectrum. 68 Figure 36: X-axis Vibration Spectrum. 68 Figure 37: Shock Pulse, Z-axis Positive. 69 Figure 38: Shock Pulse, Z-axis Negative. 69 Figure 39: Shock Pulse, Y-axis Positive. 70 Figure 40: Shock Pulse, Y-axis Negative. 70 Figure 41: Shock Pulse, X-axis Positive. 71 Figure 42: Shock Pulse, X-axis Negative. 71 Figure 42: Shock Pulse, X-axis Negative. 71 List of Tables	Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask	62
Figure 30: TIMTER™ Mounted for Z-axis Testing 64 Figure 31: TIMTER™ Mounted for X-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 68 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Y-axis Negative 69 Figure 39: Shock Pulse, Y-axis Negative 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6 Table 5: ARTM Tier 0 Codes 6 Table 5: ARTM Tier 0 Codes 7 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 7 Table 4: Serial Control Interface Codes 8 Table 5: ARTM Tier 0 Codes 8 Table 5: ARTM Tier 0 Codes 8 Table 5: ARTM Tier 0 Codes 8 Table 4: Serial Control Interface Codes 8 Table 5: ARTM Tier 0 Codes 8	Figure 28: Phase Noise Limit Curve	63
Figure 31: TIMTER™ Mounted for X-axis Testing 65 Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Y-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 29: Vibration / Shock Testing System	64
Figure 32: TIMTER™ Mounted for Y-axis Testing 65 Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 68 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 Figure 42: Shock Pulse, X-axis Negative 71 Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 30: TIMTER™ Mounted for Z-axis Testing	64
Figure 33: TIMTER™ Vibration Profile 66 Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 68 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 31: TIMTER™ Mounted for X-axis Testing	65
Figure 34: Z-axis Vibration Spectrum 67 Figure 35: Y-axis Vibration Spectrum 68 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 32: TIMTER™ Mounted for Y-axis Testing	65
Figure 35: Y-axis Vibration Spectrum 67 Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 33: TIMTER™ Vibration Profile	66
Figure 36: X-axis Vibration Spectrum 68 Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 71 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 34: Z-axis Vibration Spectrum	67
Figure 37: Shock Pulse, Z-axis Positive 69 Figure 38: Shock Pulse, Z-axis Negative 69 Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 35: Y-axis Vibration Spectrum	67
Figure 38: Shock Pulse, Z-axis Negative	Figure 36: X-axis Vibration Spectrum	68
Figure 39: Shock Pulse, Y-axis Positive 70 Figure 40: Shock Pulse, Y-axis Negative 70 Figure 41: Shock Pulse, X-axis Positive 71 Figure 42: Shock Pulse, X-axis Negative 71 List of Tables Table 1: Model Configuration Example 3 Table 2: Frequency Band Codes 3 Table 3: Clock and Data Interface Codes 5 Table 4: Serial Control Interface Codes 6 Table 5: ARTM Tier 0 Codes 6	Figure 37: Shock Pulse, Z-axis Positive	69
Figure 40: Shock Pulse, Y-axis Negative	Figure 38: Shock Pulse, Z-axis Negative	69
Figure 41: Shock Pulse, X-axis Positive	Figure 39: Shock Pulse, Y-axis Positive	70
Table 1: Model Configuration Example	Figure 40: Shock Pulse, Y-axis Negative	70
List of Tables Table 1: Model Configuration Example	Figure 41: Shock Pulse, X-axis Positive	71
Table 1: Model Configuration Example	Figure 42: Shock Pulse, X-axis Negative	71
Table 2: Frequency Band Codes	List of Tables	
Table 3: Clock and Data Interface Codes	Table 1: Model Configuration Example	3
Table 4: Serial Control Interface Codes	Table 2: Frequency Band Codes	3
Table 5: ARTM Tier 0 Codes6	Table 3: Clock and Data Interface Codes	5
	Table 4: Serial Control Interface Codes	6
Table 6: ARTM Tier I Codes	Table 5: ARTM Tier 0 Codes	6
	Table 6: ARTM Tier I Codes	6

Table 7: ARTM Tier II Codes	7
Table 8: Legacy Codes	7
Table 9: RF Output Power Codes	7
Table 10: Package Codes	8
Table 11: Standard Bit Rates Compared to Low/High Rate Options	12
Table 12: Standard and Optional User Commands	30
Table 13: DC Input Current at Standard Input Voltage	57
Table 14: TIMTER™ Environmental Specifications	58
Table 15: Carrier Frequencies (MHz)	58
Table 16: Transmitter BER Specifications with Quasonix Demodulator	60
Table 17: K and m Values per Waveform	60
Table 18: Random Vibration Spectrum	66

1 Introduction

1.1 Description

This document describes the Installation and Operation of Quasonix' TIMTERTM T3 Multi- mode Digital Telemetry Transmitters. The transmitters are designed to transmit airborne telemetry data from a test article to ground stations. The transmitters are developed, manufactured, and supported by:

Quasonix, Inc. 6025 Schumacher Park Drive West Chester, OH 45069 CAGE code: 3CJA9

1.2 Nomenclature

The earliest models of these transmitters were referred to as Tier I Missile Test Transmitters (TIMTERTM) because they were intended for missiles and offered only ARTM Tier I (SOQPSK) modulation. Although the model line now includes much more than ARTM Tier I, and they are in widespread use on many platforms besides missiles, the "TIMTER" name remains. Now in its third generation and commonly referred to as TIMTERTM 3, the transmitter is available in a number of variations, depending on the options specified at the time of order. The type of features and modes installed in each unit are identified in the model number, as depicted in Figure 1. Package field codes are listed in Table 10. For questions about specific packages, please contact Quasonix.

04AB —SOQPSK-TG Standard Options, separated ARTM CPM Prefix by hyphens (example clock Frequency Band Code free) (refer to page 2 for list) Package Code (refer to page 3) Clock and Data Mode: Pinout Code Interface code 1= Fnabled (Contact (refer to page 4 0=Not enabled Quasonix) for list) Power Code Serial Control Interface (refer to table 2 = RS-232this page) T = TTI

Transmitter Part Numbering Example

Figure 1: Quasonix Part Number Construction Description

In this manual, the words Terminal Control and Serial Control have the same meaning and are used synonymously throughout this manual. Serial control originates from configuring the transmitter from a computer's legacy RS-232/422 serial communications (COM) port. Terminal Control reflects the more generic case where the transmitter could be controlled by other standard computer interfaces such as Ethernet.

The nanoTX transmitter models are covered in a separate user manual, available for download from the company website: www.quasonix.com.

The available TIMTERTM software and hardware options are listed below. Refer to section 1.3 for detailed descriptions of each option.

•	AC	Automatic carrier wave output
•	AI	Auxiliary Input for digital data that is already premod filtered
•	AP	Adapter plate for 2.5"x 3.5" footprint – Include this hardware accessory with order
•	BRx	Request non standard baud rate for serial control
•	C7	IRIG 106 Appendix N serial control protocol
•	CF	Clock-free baseband interface
•	CG	Clock generator output to baseband connector
•	DP	Dual power (Ability to set a low and a high setting, hardware controlled*)
•	EN	Ethernet Payload Capability
•	FM	Allows the TIMTER TM to function as an analog FM transmitter
•	FO	Frequency Offset
•	GN	GPS notch filters to meet 115 dBm in 3 kHz band at L1 and L2 (S band only) – Include this hardware option with order
•	HR	Increases max bit rate up to 46 Mbps (23 Mbps for PCM/FM) (20 Mbps max for Clock Free mode) $$
•	ID	Internal Clock and Data can be saved as a power-up default
•	K7	Convolutional encoder (includes NRZ-M encoding) (k=7 rate 1/2)
•	LC	Low current in the RF Off state, 10 mA (hardware option)
•	LD	LDPC forward error correction encoding
•	LR	Decreases min bit rate to 50 kbps (25 kbps for PCM/FM) (50 kbps min for Clock Free mode)
•	MK	Randomizer hardware control – Include this hardware option with order
•	MS	Modulation scaling
•	P9	MDM-9 Accessory board (use with switch box part QSX-AC-SWBX-P9-3B-3M)
•	PF	Parallel port frequency programming
•	PM	Parallel port mode selection
•	PS	Enable hardware presets (specify 2, 4, 8, or 16 – PS2, PS4, PS8, PS16)
•	RH	Recall Holdoff
•	RN	Randomizer output to baseband connector
•	STDN	Supports Spacecraft Tracking and Data Network (PM/BPSK) mode
•	SWBX	Includes switch box and 36" MDM-9 to MDM-9 cable harness (For use with P9 option)
•	VF	Variable FIFO Depth, controls transmitter latency

- VP Variable power (31 settings, spanning 24 dB), software controlled*
- WV Wide input voltage range

Refer to Table 12 in section 4.2.1 for detailed descriptions of each option. Due to input connector pin count limitations, certain combinations of options are not available. Please contact Quasonix for support in ordering TIMTERTM options or for information regarding upgrades to TIMTERTM units that you may already own.

The model number identifies the configuration of the unit. For example, model number QSX-VSTT-1100-10-04-04AB-CF defines a unit configured as shown in Table 1.

Description Identifiers QSX Quasonix product ٧ Variable bit rate S S band code Т TTL clock and data interface code 2 RS-232 serial control interface: baud rate 57,600 1100 Tier 0 present, Tier I present, Tier II absent, Legacy absent 10 10 Watt RF output 04 Pinout code 04 04AB Package code CF Clock-free baseband interface option

Table 1: Model Configuration Example

1.3 Part Number Field Codes

1.3.1 Frequency Bands

Frequency band codes are listed in Table 2.

Table 2: Frequency Band Codes

Band ID Code	Band	Minimum Freq	Maximum Freq	Default Freq	Tuning Steps	Max Power
А	Lower S	2200.5 MHz	2300.5 MHz	2250.5 MHz	0.5 MHz	25 W
В	Euro Mid C	5091.0 MHz	5250.0 MHz		0.5 MHz	20 W
С	C "Low"	4400.0 MHz	4950.0 MHz	4620.0 MHz	0.5 MHz	20 W

Band ID Code	Band	Minimum Freq	Maximum Freq	Default Freq	Tuning Steps	Max Power
D	C (with Mid C)	4400.0 MHz and 5091.0 MHz	4950.0 MHz and 5150.0 MHz	5120.0 MHz	0.5 MHz	20 W
E	L, S, C, and Euro Mid C	1435.5 MHz 1750.0 MHz 2200.5 MHz 4400.0 MHz 5091.0 MHz	1534.5 MHz 1855.0 MHz 2394.5 MHz 4950.0 MHz 5150.0 MHz 5250.0 MHz	1450.5 MHz	0.5 MHz	10 mW
F	S and C	2200.5 MHz and 4400.0 MHz	2394.5 MHz and 4950.0 MHz	2370.5 MHz	0.5 MHz	20 W
Н	L and C	1435.5 MHz and 4400.0 MHz	1534.5 MHz and 4950.0 MHz	1450.5 MHz	0.5 MHz	10 W
J	C and Euro Mid C	4400.0 MHz and 5091.0 MHz	4950.0 MHz and 5250.0 MHz		0.5 MHz	20 W
К	S and C (with Euro Mid C)	2200.5 MHz 4400.0 MHz and 5091.0 MHz	2394.5 MHz 4950.0 MHz and 5250.0 MHz	2370.5 MHz	0.5 MHz	20/18 W
L	Lower L	1435.5 MHz	1534.5 MHz	1450.5 MHz	0.5 MHz	20 W
М	Lower L, Upper L, and S (Tri-band)	1435.5 MHz 1750.0 MHz and 2200.5 MHz	1534.5 MHz 1855.0 MHz and 2394.5 MHz	1450.5 MHz	0.5 MHz	20 W
N	Upper S	2300.5 MHz	2394.5 MHz		0.5 MHz	25 W
Q	L, S, and C	1435.5 MHz 1750.0 MHz 2200.5 MHz 4400.0 MHz 5091.0 MHz	1534.5 MHz 1855.0 MHz 2394.5 MHz 4950.0 MHz 5150.0 MHz	1450.5 MHz	0.5 MHz	10 W
S	S	2200.5 MHz	2394.5 MHz	2370.5 MHz	0.5 MHz	25 W

Band ID Code	Band	Minimum Freq	Maximum Freq	Default Freq	Tuning Steps	Max Power
Т	Lower L and C	1435.5 MHz 4400.0 MHz 5091.0 MHz 5091.0 MHz	1534.5 MHz 4950.0 MHz 5150.0 MHz 5250.0 MHz	1450.5 MHz	0.5 MHz	10 W
U	Upper L	1750.0 MHz	1855.0 MHz	1800.5 MHz	0.5 MHz	20 W
V	S and C (with Mid C)	2200.5 MHz 4400.0 MHz and 5091.0 MHz	2394.5 MHz 4950.0 MHz and 5150.0 MHz	2370.5 MHz	0.5 MHz	20 W
W	S and C (with Euro Mid C)	2200.5 MHz 4400.0 MHz and 5091.0 MHz	2394.5 MHz 4950.0 MHz and 5250.0 MHz	2370.5 MHz	0.5 MHz	20 W

1.3.2 Clock and Data Interface

Clock and data interface codes are listed in Table 3.

Table 3: Clock and Data Interface Codes

Clock and Data Interface Code	Baseband Clock and Data Interface
А	TTL; Selectable between 75 ohms to ground and 10k ohms to ground
В	RS-422 (120 ohms differential, even when unit is powered off)
D	Dual-mode; Selectable between TTL (terminated 75 ohms to ground) and RS-422 (terminated 120 ohms differential)
Н	TTL (10k ohms to ground)
L	LVDS (Low Voltage Differential Signal)
М	Dual-mode; Selectable between TTL (terminated 10 ohms to ground) and RS-422 (terminated 120 ohms differential)
R	RS-422 (120 ohms differential)
S	Tri-mode; Selectable between TTL (terminated 75 ohms to ground), TTL (terminated 10k ohms to ground), and RS-422 (terminated 120 ohms differential)
Т	TTL (75 ohms to ground)

1.3.3 Serial Control Interface

Serial control interface codes are listed in Table 3.

Table 4: Serial Control Interface Codes

Serial Control Interface Code	Serial Control Interface
1	LVTTL; 57,600 baud rate
2	RS-232; 57,600 baud rate
Т	TTL; 57,600 baud rate
4	RS-422; 57,600 baud rate
D	Dual-mode, software selectable between RS-232 or RS-422; 57,600 baud rate

1.3.4 ARTM Tier 0 (PCM/FM)

ARTM Tier 0 codes are listed in Table 5.

Table 5: ARTM Tier 0 Codes

Part Number Code	PCM/FM (ARTM Tier 0)
0	Absent
1	Present

1.3.5 ARTM Tier I (SOQPSK-TG)

ARTM Tier I codes are listed in Table 6.

Table 6: ARTM Tier I Codes

Part Number Code	SOQPSK-TG (ARTM Tier I)		
0	Absent		
1	Present		

1.3.6 ARTM Tier II (Multi-h CPM)

ARTM Tier II codes are listed in Table 7.

Table 7: ARTM Tier II Codes

Part Number Code	Multi-h CPM (ARTM Tier II)		
0	Absent		
1	Present		

1.3.7 Legacy

Legacy modes include BPSK, QPSK, and OQPSK. Legacy codes are listed in Table 7.

Table 8: Legacy Codes

Part Number Code	Legacy Modes		
0	Absent		
1	Present		

1.3.8 RF Output Power

RF output power codes are listed in Table 9.

Table 9: RF Output Power Codes

Part Number Code	RF Output Power
00	10 mW (+10 dBm), ±1 dB for single band 20 mW (+13 dBm), ±1 dB for tri band Requires DC input of 6.5 V, unless "WV" option is specified
01	1 watt (+30 dBm), minimum
02	2 watt (+33 dBm), minimum
05	5 watts (+37 dBm), minimum
10	10 watts (+40 dBm), minimum
20	20 watts (+43 dBm), minimum
25	25 watts (+44 dBm), minimum

1.3.9 Packages

Package field codes are listed in Table 10. Detailed information for packages other than 04AB is located in the TIMTERTM Transmitter Packages document, available at the Quasonix web site. For questions about specific packages, please contact Quasonix.

TIMTER™ Package	Volume	Width	Length	Height
02XX	1.992 in ³	2.000"	3.000"	0.332"
04XX	4.200 in ³	2.000"	3.000"	0.700"
05XX	4.800 in ³	2.000"	3.000"	0.800"
06XX	6.072 in ³	2.000"	3.000"	1.012"
07XX	6.546 in ³	2.000"	3.000"	1.091"
	6.672 in ³	2.000"	3.000"	1.112"
08XX	7.590 in ³	2.200"	3.450"	1.000"
	8.418 in ³	2.000"	3.450"	1.403"
14XX	14.105 in ³	2.500"	3.500"	1.612"
17XX, with heat sink	18.760 in ³	2.500"	3.500"	2.144"

Table 10: Package Codes

Transmitter weight may vary depending on packages and applications. For information about the weight of a particular transmitter, please contact Quasonix.

1.3.10 Automatic Carrier Wave Output Option - AC

This option allows the TIMTER to transmit a carrier wave when the clock input is absent, which would normally cause the RF output to be turned off.

1.3.11 Auxiliary Input Option - Al

The AI option provides an auxiliary input that allows the TIMTER TM to transmit Filtered PCM (FPCM) data. FPCM is a binary data waveform that has been filtered such that the data transitions are slowed down. The FPCM signal at the TIMTER, viewed on an oscilloscope, might look something like the following figure.

Figure 2: FPCM Signal on Oscilloscope

The AI option allows the TIMTERTM to replace a legacy analog transmitter, but only for use in transmitting a digital data stream. **Refer to the FM option in section 1.3.21 for configuring the TIMTER**TM **to transmit a true analog signal, such as NTSC video.** The AI option is frequently used to interface the TIMTERTM to legacy encryption

^{*}Package dimensions do not include connectors

devices, which often include filtering on their outputs, including a DC blocking capacitor. By default, the Auxiliary Input is configured to accept an AC-coupled input. The AIR command may be used to select between a zero and a non-zero DC bias.

The auxiliary input converts the FPCM input back to an unfiltered bit stream, locks an internal bit sync to that bit stream (refer to the CF option), and then modulates the transmitter based on that digital bit stream, in which case the deviation and the internal premod filter bandwidth are set by the bit rate, and are independent of the analog voltage levels presented to the transmitter.

Use of the auxiliary input requires the –AI option. The command for controlling auxiliary input is AI, which enables/disables the auxiliary input (when disabled, the normal digital input is used). Since there is no clock input, the Clock Free option (CF) is required. (Refer to section 1.3.15 for more information about Clock Free.)

To configure the TIMTERTM for use with the Auxiliary Input, issue the following commands:

AI = 1 (get data stream from Auxiliary Input)

CF = 0 (operate clock free)

BR xxx, where xxx = data rate in Mbps, or BR A for automatic data rate

AIR x, where x = 0 for zero DC bias and x = 1 for 1.65V DC bias

1.3.12 Adapter Plate - AP

Use this option to include the 2.5" x 3.5" adapter plate (hardware accessory) with the order.

1.3.13 Baud Rate Option - BRx

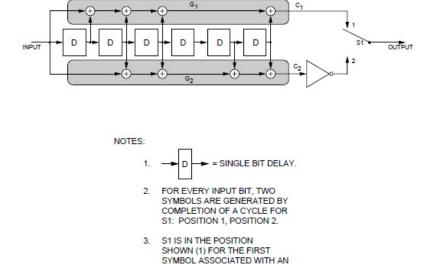
The BR option changes the serial communications default baud rate on the transmitter to the one selected. A number from 0-7 follows the BR option request. Corresponding values are as follows: 0 = 57600; 1 = 4800; 2 = 9600; 3 = 19200; 4 = 38400; 5 = 56000; 6 = 57600; 7 = 115200.

1.3.14 CP07 Control Protocol Option - C7

The IRIG 106-07 serial control protocol (CP07), Appendix N "provides standards for commands, queries, and status information when communicating with telemetry transmitters configured with communication ports." The Basic command set contains the minimum (required) commands for transmitter control, query, and status. The Extended command set contains optional commands that may or may not be implemented at the manufacturer's discretion. CP07 is enabled when the C7 option is requested.

The default baud rate for CP07 transmitters is 9600.

1.3.15 Convolutional Encoder Option – K7 (formerly CE option)


The K7 option enables convolutional encoding and NRZ-M conversion. This encoding adds redundant information to the transmitted data stream to help detect and correct bit errors that may occur, particularly due to predominantly Gaussian noise. Use of convolutional encoding requires a matching Viterbi decoder in the receiver to extract the source data. The encoded data rate will be twice the source data rate, and the occupied bandwidth will also be doubled.

For example, the transmitter has two encoders, one for in-phase ("I") data and one for quadrature ("Q") data. Call the input symbol stream I0/Q0, I1/Q1, Each encoder outputs 2 bits for every input bit, so call the output bit stream from the first convolutional encoder I0(1), I0(2), I1(1), I1(2), ... , and call the output bit stream from the second convolutional encoder Q0(1), Q0(2), Q1(1), Q1(2), Combining the outputs of the two encoders, then, the output symbol stream is I0(1)/Q0(1), I0(2)/Q0(2), I1(1)/Q1(1), I1(2)/Q1(2),

For modes that do not employ Quadrature modulation, such as PCM/FM, Multi-h CPM, and BPSK, only a single encoder is used.

A single encoder is implemented exactly as described in the "Consultative Committee for Space Data Systems, Recommendation for Space Data System Standards, TM Synchronization and Channel Coding, CCSDS 131.0-B-1, Blue Book, September 2003, Section 3."

A basic convolutional encoder block diagram, as illustrated in CCSDS 131.0-B1, is shown in Figure 3.

(+) = MODULO-2 ADDER.

INCOMING BIT.

5. → → = INVERTER.

Figure 3-1: Basic Convolutional Encoder Block Diagram

"Consultative Committee for Space Data Systems, Recommendation for Space Data System Standards, TM Synchronization and Channel Coding, CCSDS 131.0-B-1, Blue Book, September, 2003," page 3-2.

Figure 3: CCSDS 131.0-B-1 Rendering of Basic Convolutional Encoder Diagram

1.3.16 Clock-free Baseband Interface Option - CF

Clock-free is an optional mode that transmits user data, but uses an internal bit sync to take the place of the normal external clock. The standard TIMTER requires external clock and data inputs. With the CF option, no external clock is required. The clock is generated directly from the data and a user-specified bit rate.

Because the internal bit sync's clock takes the place of the normal external clock in clock-free mode, the selected clock source must be external for clock-free just like it is for normal clock/data. This mode is most often use to retrofit older analog transmitters in TM systems where the crypto does not deliver a clock to the transmitter.

The commanded clock-free rate can be saved, and it will be restored at power-on. When the CF option is used, the bit rate range is 0.1 to 35 Mbps for all waveform modes. It is limited by the bit rate achievable for the current mode. (Refer also to the HR and LR options for extended bit rates, and the ID option for Internal Clock and Data.)

Do not confuse the **CF option** with CS/DS **commands**.

Internal clock (CS 1 Command) is used when the transmitter is to be a test source only. The unit transmits the selected internal data pattern (DS 1 command) at the bit rate set by the user via the IC command. The internal clock is not used to transmit actual payload data.

External clock (CS 0 Command) is the normal mode: the user supplies clock and data. Refer to Table 12 for user commands.

1.3.17 Clock Generator Output Option - CG

The standard TIMTER includes internal clock and data generators, generally used for system test. The CG option brings this internal clock out of the unit on the primary MDM-15 connector. The assignment of output pins depends on the other features selected. Consult Quasonix to order the CG option.

1.3.18 Dual Power Option - DP

The standard TIMTER operates at its full rated RF output power. The DP option provides two software-programmed, hardware-actuated settings, designated by the user as "high power" and "low power". There are 32 choices for "high power" and 32 choices for "low power". The low power setting can provide as much as 24 dB of attenuation from the high power setting.

1.3.19 Ethernet Payload Capability - EN

The -EN option gives the transmitter the ability to send Ethernet data via direct connection to a standard Ethernet network. Operating in Ethernet mode, the user sets the desired transmission rate through the transmitter control interface. As Ethernet data are presented to the TIMTER, they are loaded into a large transmit buffer. If the presented Ethernet traffic does not keep the buffer filled, bit stuffing is used to attain the programmed transmit rate. If the presented traffic overflows the buffer, Ethernet data are discarded.

The Ethernet interface is supported via an MDM-9 connector, and is compatible with 10Base-T and 100Base-TX Ethernet physical layers. The maximum transmission rate is 46 Mbps. Use of a transmitter with the -EN option requires a Quasonix RDMSTM receiver to reconstruct the Ethernet data at the receive end.

1.3.20 Analog Frequency Modulation - FM

This option allows the TIMTERTM to function as an analog FM transmitter. In this mode, the analog input voltage is converted to frequency offset, relative to the carrier, based on a settable deviation scale factor. No filtering or other signal processing is performed, and commands and functions related to digital clock/data do not affect the modulated output. This mode of operation is designed for use with a true analog signal, such as NTSC video. By default, the analog FM input is AC coupled, with a low frequency cutoff of less than 15 Hz. Contact Quasonix if you need a DC coupled analog input.

FM mode is not optimal for sending digital data; refer to the AI option in section 1.3.11 for that configuration. However, if your TIMTERTM has only the FM option, and not the AI option, you can still use it to transmit digital data, but you will not have the greatest benefit of the AI option: the internal bit sync is not available to set the internal premod filter and deviation automatically. When using the FM mode to send digital data, the premod filtering must be performed externally, and the deviation is set using the AFMS command (refer to section 1.3.20.1).

1.3.20.1 Using True Analog FM

Analog FM provides the capability of frequency modulating the RF carrier based on an analog input signal voltage, making the Quasonix digital transmitter behave virtually identically to an analog PCM/FM transmitter (but with improved phase noise, more precise deviation control, etc.). Analog FM requires the –FM option. The two commands for controlling analog FM are MO and AFMS. MO 12 enables the analog FM input, and AFMS sets the sets the deviation in MHz per Volt. (Refer to the Command Set section 4.2.1, for specific information about each command.)

In order to use TRUE analog FM:

QUASONIX

TIMTER™ Multi-mode Digital Telemetry Transmitter

- The -FM option must be in the part number
- Mode must be set to MO 12
- Use AFMS xx command to set the deviation sensitivity to xx MHz / volt; for example AFMS 1.0

Refer also to the Auxiliary Input option, section 1.3.11.

1.3.21 Frequency Offset - FO

This option is used to set frequencies that are NOT aligned to the synthesizer step size for their units, typically 500 kHz, and it enables the FO user command.

1.3.22 GPS Notch Option - GN

Use this option to specify GPS notch filters to meet 115 dBm in 3 kHz band at L1 and L2 (hardware note). Available for S band only. Consult Quasonix for pricing and availability.

1.3.23 High Bit Rate Option - HR

The standard TIMTER supports bit rates from 0.1 to 28 Mbps in SOQPSK-TG and MULTI-h CPM modes, 0.05 to 14 Mbps in PCM/FM (Tier 0) mode and in all legacy modes. The HR option increases the bit rate to a maximum of 46 Mbps (23 Mbps for PCM/FM). (The maximum bit rate with a Clock Free transmitter is 35 Mbps for SOQPSK-TG and MULTI-h CPM modes; 23 Mbps for PCM/FM and all legacy modes.) Refer to the CF option for information about the Clock Free option. Refer to Table 11 for bit rate comparisons by mode.

	Standard Bit Rate	With Low Rate Option -LR	With High Rate Option -HR
ARTM Tier 0 Modulation (PCM/FM)	0.05 -14 Mbps	Down to 0.025 Mbps	Up to 23 Mbps
ARTM Tier I Modulation (SOQPSK-TG)	01 - 28 Mbps	Down to 0.050 Mbps	Up to 46 Mbps
ARTM Tier II Modulation (Multi-h CPM)	01 - 28 Mbps	Down to 0.050 Mbps	Up to 36 Mbps
Legacy Modulation (BPSK)	0.05 - 10 Mbps	N/A	N/A
Legacy (QPSK, OQPSK)	0.05 - 20 Mbps	N/A	N/A

Table 11: Standard Bit Rates Compared to Low/High Rate Options

1.3.24 Internal Clock and Data Option - ID

The ID option allows the CS and DS user settings to be reloaded on power up or on a manual recall of a setup. Without the ID option, CS and DS are both forced to 0. Refer to the CF option for information about the Clock Free option.

1.3.25 Limited Current Option - LC

This option is used to specify low current in the RF Off state. Current draw is less than 10 mA when the transmitter is Off. This is a hardware option.

1.3.26 Forward Error Correction / Low Density Parity Check (LDPC) Option - LD

This option provides the Low Density Parity Check (LDPC) encoding, which is being considered for use on the iNET program. LDPC has been adopted by the Range Commander's Council, IRIG 106-15, Appendix R.

1.3.27 Low Bit Rate Option – LR

The standard TIMTERTM supports bit rates from 0.1 to 28 Mbps in SOQPSK-TG and MULTI-h CPM modes, 0.05 to 14 Mbps in PCM/FM (Tier 0) mode and in all legacy modes. The LR option decreases the bit rate to a minimum of 50 kbps (25 kbps for PCM/FM). (The minimum bit rate with a Clock Free transmitter is 50 kbps for all modes.) Refer to the CF option for information about the Clock Free option. Refer to Table 11 for bit rate comparisons by mode.

1.3.28 Randomizer Control Option – MK

The standard TIMTERTM provides a user command (RA) that reports or sets the randomizer state. This option enables ON/OFF control of the randomizer with a hardware pin. Use this option to specify the Randomizer Control (hardware configuration) with the order.

1.3.29 Modulation Scaling Option - MS

This option enables the MS and MJ commands which allow a user to set the modulation scaling factor and scale the modulation index of the transmitted signal. For additional information, refer to Table 12, or contact Quasonix.

1.3.30 MDM-9 Accessory Board - P9

Use this option to include the MDM-9 Accessory Board (sometimes referred to as a "tophat board") (hardware accessory), for use with switch box part number QSX-AC-SWBX-P9-3B-3M, with the order.

1.3.31 Parallel Port Frequency Programming Option - PF

This option adds a parallel port in the form of an MDM-15 connector for manual frequency tuning. The PF option requires the addition of a Quasonix MDM-9 Accessory Board. Consult Quasonix to order the PF option.

1.3.32 Parallel Port Mode Selection Option – PM

This option adds a parallel port in the form of an MDM-15 connector for manual mode selection. The PM option requires the addition of a Quasonix MDM-9 Accessory Board. Consult Quasonix to order the PM option.

1.3.33 Hardware Preset Option – PS (PS2, PS4, PS8, or PS16)

The TIMTERTM supports one or more hardware presets. A single preset defines the complete state of the transmitter, including carrier frequency, modulation mode, data polarity, randomizer state, etc. Without the PS option, the TIMTERTM supports only one hardware preset, which it reverts to at power-up. The PS in the option string specifies that the unit supports multiple hardware presets (2, 4, 8, or 16). Presets are engaged by grounding various combinations of pins on the terminal/parallel control selection. The number of presets available and which pins engage the presets depend on the other features specified. Due to the limited number of pins available, the PS option may require the elimination of the RF On/Off pin. Due to firmware part number parsing requirements, the hardware preset option code must be at the very end of the part number to be valid. On units which use the standard MDM-15 connector, the ZY command displays the connector pinout showing preset pin locations.

1.3.34 Recall Holdoff Option - RH

If the RF On/Off pin is grounded on power up, then the RF command is set to RF 0 (OFF) regardless of how the command was saved. The user must send the RF On/Off command via serial port to enable RF output. Otherwise, if RF 1 (ON), and the RF On/Off pin is active (based on the RZ command setting), and the unit has a clock (non clock free, non AC unit), then the RF output is set to ON.

1.3.35 Randomizer Output Option - RN

The standard TIMER includes the IRIG-106 randomizer for the RF output. The IRIG-106 randomizer is controlled through the serial interface. The RN option brings the randomized data out on the primary MDM-15 connector. The assignment of output pins depends on the other features selected. Consult Quasonix for details.

1.3.36 Spacecraft Tracking and Data Network Option - STDN

This option supports the PM/BPSK mode (Spacecraft Tracking and Data Network mode).

1.3.37 Switch Box Option - SWBX

The TIMTERTM provides a standard configuration interface that is easily accessible via a computer terminal. Some users prefer configuration via an external switchbox. Use this option to include a switch box and 36" MDM-9 to MDM-9 cable harness (hardware accessory option) with the order. (For use with the P9 option)

1.3.38 Variable FIFO Depth Option - VF

This option enables the VF command which allows the user to set the FIFO depth on the transmitter for controlling latency time between bits in and bits out. The range is 0 to 255 with 128 being the default. If no value is entered, the current value displays.

1.3.39 Variable Power Option - VP

The standard TIMTERTM operates at its full rated RF output power. The software-based VP option provides 32 discrete power level settings, spanning a range of as much as 24 dB. The steps are non-uniform, but steps are typically no larger than 1.1 dB.

1.3.40 Wide Input Voltage Range Option - WV

The standard TIMTERTM operates from $+28 \pm 4$ VDC. The WV option extends operating input voltage range as shown in following table.

Voltage Ranges with WV Option			
+6.5 to +34 VDC for 10 mWatt version			
+6.5 to +34 VDC for 1 Watt version			
+6.5 to +34 VDC for 2 Watt version			
+12 to +34 VDC for 5 Watt version			
+21 to +34 VDC for 10 Watt version			
+21 to +34 VDC for 20 Watt version			
+21 to +34 VDC for 25 Watt version			

Note: The WV option is not supported on 25 W S-band and 20 W S/C-band transmitters.

2 Accessories

Quasonix offers a number of optional accessories for TIMTERTM, including a fan-cooled heat sink, a 2.5" x 3.5" adapter plate, pre-wired mating MDM-15 connectors, complete MDM-15 cable assemblies, a ruggedized handheld programmer, and a USB to serial converter cable. Contact Quasonix for pricing and availability of TIMTERTM accessories.

2.1 Fan-cooled Heat Sink

Part Number: QSX-AC-32-HS-12V

The heat sink assembly includes an integral +12 VDC fan and a power supply transformer, shown in Figure 4. The heat sink is shown with a mounted 6 cubic inch TIMTERTM in Figure 5.

Figure 4: Fan-cooled Heat Sink and Power Supply

Figure 5: Fan-cooled Heat Sink with 6 cubic inch TIMTER $^{\mathrm{TM}}$

2.2 Transmitter-powered Heat Sink

Part Number: (QSX-AC-32-HS-28V-SP)

The heat sink assembly includes an integral +12 VDC fan, power supply, and temperature-controlled power on at +35°C. Two MDM-15 connectors and a provided pigtail cable, shown in Figure 6, allow the heat sink to draw power directly from a TIMTERTM transmitter eliminating the need for a separate external power supply. The heat sink is shown mounted on a standard 04AB TIMTERTM in Figure 7 and mounted on a larger 07AE TIMTERTM in Figure 8. The pigtail cable connects to any TIMTERTM, regardless of MDM-15 gender, by plugging the pigtail into either the male or female connector, as shown in Figure 9 and Figure 10.

Figure 6: Transmitter-powered Heat Sink and Pigtail Cable

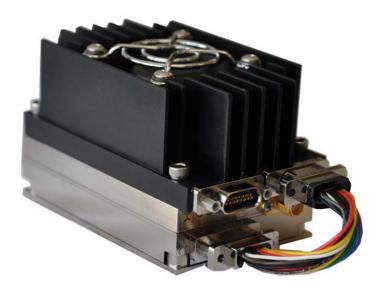


Figure 7: Transmitter-powered Heat Sink Mounted on an 04AB Package

Figure 8: Transmitter-powered Heat Sink Mounted on a 07AE Package

Figure 9: Close-up Using Female MDM-15 Connector

Figure 10: Close-up Using Male MDM-15 Connector

2.3 Adapter Plate

Part Number: QSX-AC-AP-96

The adapter plate, shown in Figure 11, allows for the standard 2" x 3" footprint TIMTERTM to be mounted to the larger 2.5" x 3.5" mounting surface occupied by other industry transmitters.

Figure 11: Adapter Plate

2.4 Pre-wired MDM-15 for RS-422 Units

Part Number: QSX-AC-MDM15-36-PIN

An MDM-15 connector with 36" color-coded pigtail cables for connecting to transmitters with the RS-422 clock and data baseband interface is shown in Figure 12.

Figure 12: Pre-wired MDM-15 with 36" Pigtails for RS-422

2.5 Pre-wired MDM-15 for TTL Units

Part Number: QSX-AC-MDM15-36-SOCK

Quasonix offers an MDM-15 connector with 36" color-coded pigtail cables for connecting to transmitters with the TTL clock and data baseband interface.

Figure 13: Pre-wired MDM-15 with 36" Pigtails for TTL

2.6 MDM-15 Wiring Harness for RS-422 Units

Part Number: QSX-AC-MDM15-HARNESS-PIN

An MDM-15 wiring harness for connecting to transmitters with RS-422 clock and data baseband interface is shown in Figure 14. It includes banana plugs for power and ground, BNC connectors for clock and data, and a DB-9 connector for serial control.

Figure 14: MDM-15 Cable Harness for RS-422

2.7 MDM-15 Wiring Harness for TTL Units

Part Number: QSX-AC-MDM15-HARNESS-SOCK

Quasonix offers an MDM-15 wiring harness for connecting to transmitters with TTL clock and data baseband interface. It includes banana plugs for power and ground, BNC connectors for clock and data, and a DB-9 connector for serial control.

Figure 15: MDM-15 Cable Harness for TTL

2.8 Ruggedized Handheld Programmer

Part Number: QSX-AC-HHPROG-800N-Y

The handheld programmer is an ultra-rugged Pocket PC with custom Quasonix software that allows the user to configure transmitters through its serial interface directly in the field. The programmer is shown in Figure 16.

Figure 16: Ruggedized Handheld Programmer

2.9 USB to Serial Converter Cable

Part Number: QSX-AC-USBSER-CONV

The USB to serial converter cable allows for configuration of the transmitter with a computer that does not have a serial port. The cable is pictured in Figure 17.

Figure 17: USB to Serial Converter Cable

2.10 Switch Box

Part Number: QSX-AC-SWBX-P9-3B-3M

This accessory enables configuration of a TIMTERTM via an external switch box. Included with the switch box is a 36" MDM-9 to MDM-9 cable harness. The switch box and cable harness is pictured in Figure 18.

Figure 18: Switch Box with 36" MDM-9 to MDM-9 Cable Harness

3 Installation Instructions

3.1 Mechanical

The standard 4.2 cubic inch TIMTERTM (04AB package) is designed to be mounted by four (4) 6-32 screws through the holes in the four corners, as depicted in Figure 20. Photos and drawings of additional TIMTERTM packages are located in the document "TIMTERTM Transmitter Packages" on the Quasonix web site.

Figure 19: 4.2 in³ TIMTER™

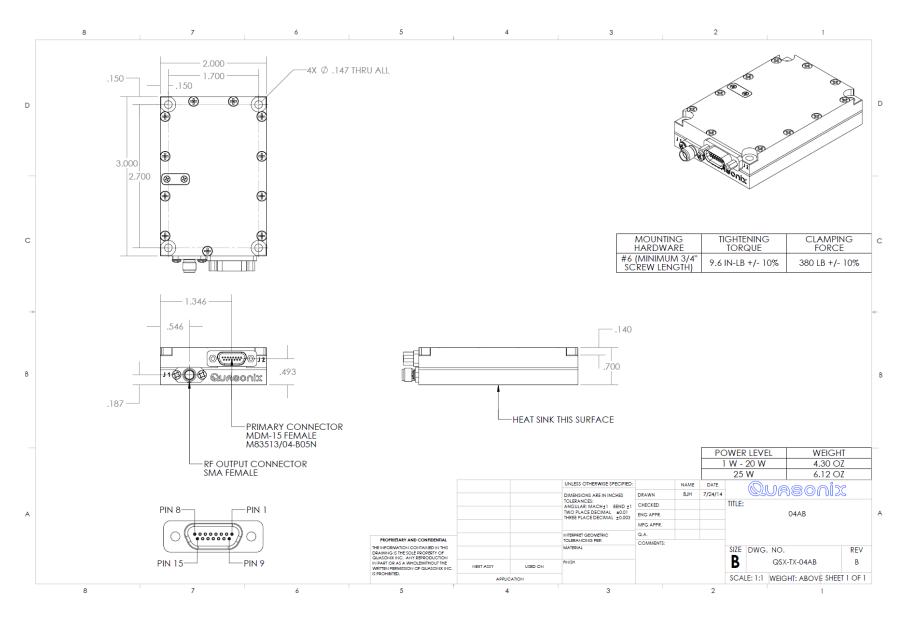


Figure 20: Outline Drawing, TIMTER™ 04AB Telemetry Transmitter

3.2 Thermal

It is important that the bottom surface (on the face opposite the product label) be securely attached to a baseplate capable of dissipating the power produced by the transmitter model in use. This mounting baseplate must be flat, smooth, and clean. Contact Quasonix for the heat sink power dissipation required for your transmitter model.

ATTENTION: Do not operate the transmitter without a proper heat sink. Failure to do so may lead to permanent damage to the unit and will void the warranty. Overheating can occur in a matter of seconds when a transmitter is not properly heat-sinked. In absolutely no case should any type of stickers or labels be applied to the bottom surface of the transmitter.

The heat sink required for a particular transmitter depends heavily on the installation. Factors such as altitude, air temperature, air flow, and mass of the mounting surface all have a substantial impact on the flow of heat away from the transmitter. Quasonix offers several types of integrated and add-on heat sinks (refer to Section 2). Please contact Quasonix for heat sink recommendations for your particular TIMTERTM transmitter.

Regardless of the heat sink, Quasonix strongly suggests using a thermal pad, such as Tpcm[™] 583 from Laird Technologies.

3.3 Electrical

The standard TIMTERTM has two external connectors, an MDM-15 type connector known as the primary, and an SMA female for the RF output connection. A second MDM-15 connector of opposite gender, labeled "parallel control," is included when either PF or PM options are ordered.

The pin numbering and wiring for the MDM-15 female connector used on the 04AB package (RS-422 interface) are shown in Figure 11. To illustrate the difference in the TTL interface, the pin numbering and wiring for the MDM-15 male connector on the 04AD package are shown in Figure 22.

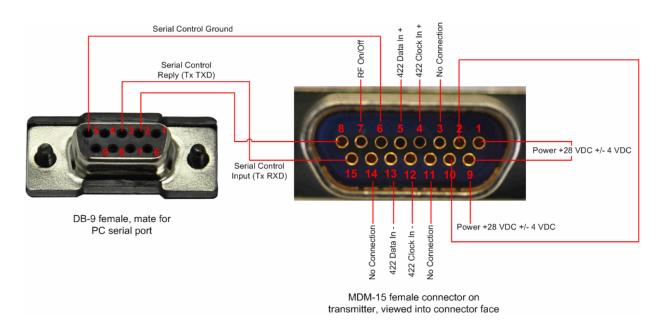


Figure 21: MDM-15 Female Pin Numbering, RS-422 Interface - 04AB Package

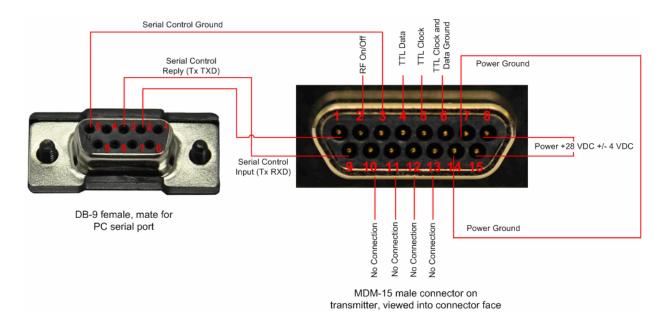


Figure 22: MDM-15 Male Pin Numbering, TTL Interface - 04AD Package

The pin assignments can change, depending on the options selected. A variety of pinouts are available with the 04AD package. Consult Quasonix for details.

The data is sampled on the falling edge of the clock, as shown in Figure 23.

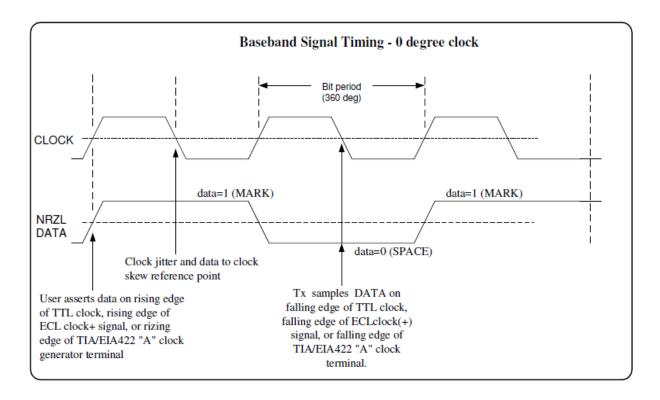


Figure 23: Baseband Signal Timing

4 Operating Instructions

4.1 Power-on Operation

Upon power up, the transmitter loads any stored parameters present in its nonvolatile memory. If parameters have not been stored previously, the transmitter initializes default parameters and then stores them in the first preset slot, 0. There are a total of 16 available software-based presets (0 through 15) for saving multiple parameters at once for future use.

PF / PM OPTION NOTE: Stored parameters are loaded based on the state of the startup configuration (SC) setting. The SC setting allows the user to choose the priority between the parameters stored in nonvolatile memory and the frequency and/or mode settings designated by pins on the external parallel control connector. For other variations, contact Quasonix.

4.1.1 Dual Power via Hardware Control

When the dual power option (DP) is specified, the transmitter uses the hardware pin to switch between the low power setting and the high power setting.

When the pin is left floating or pulled high (logical 1), the transmitter enters the high power mode. When the pin is grounded (logical 0), the transmitter enters the low power mode.

4.2 TIMTER™ Serial Control Protocol

When in Serial Control (Terminal) mode, the TIMTERTM is controlled via a simple three-wire serial interface (transmit, receive, and ground). The serial port configuration is as follows:

- 57600 baud rate (changeable depending on the configuration option)
- 8 bits
- No parity
- 1 stop bit
- No flow control

For setup and configuration via a standard Windows-based PC, you may use HyperTerminal. For a more flexible, full-featured control interface, we recommend Terminal, available for download from the Quasonix website: http://www.quasonix.com/uploads/terminal_v1-9b.zip.

If the terminal program is active when power is applied to the transmitter, the following welcome message displays, as shown in Figure 24. At this point, you can verify that your serial connection is active in both directions by issuing any standard command, such as "FR" to learn the frequency.

Quasonix Multi-Mode Digital Transmitter

Customer Part # = QSX-xxx-xx-xx...

Customer Name = Quasonix Customer

Contract # = 999999-9

TX Serial # = 99999999

Hardware Rev: B

PA Rev: No PA

IRIG 106-09

6025 Schumacher Park Drive

West Chester, OH 45069

(513) 942-1287

www.Quasonix.com

CAGE CODE: 3CJA9

FPGA version: 0x07110004

Firmware version: V2.116 5/22/2009

Figure 24: TIMTER™ Welcome Message

4.2.1 Command Set: Standard and Optional Commands

All standard and optional user commands in Table 12 consist of one or two alphabetic characters, followed by 0, 1, or 2 arguments. If the command is issued with arguments, there must be a space after the alphabetic characters. The commands are not case sensitive. A carriage return is required to initiate each command except for the single key commands described at the beginning of the table.

Most parameters set by these commands are stored in the unit's nonvolatile flash memory (CS and DS are the exception). On power-up, ALL settings are restored from preset 0, which is the default power on configuration. If the parallel interface is active, then any applicable configuration settings are read from the parallel port and updated accordingly after the initial power on sequence is completed. Refer to the Startup Configuration command (SC) for exceptions.

All settings can be changed via the serial control port; however, parallel port settings will in general override the serial port settings. However, configurations can only be saved from the serial control port. Changes made by the user via either method are NOT saved unless the Save command (SV) is issued from the serial control port before powering down.

*SV Note: Users may save internal clock and data in presets for bench debug use BUT on a power up or when a *hardware* preset is restored, **CS** and **DS** will be forced to **0** (external clock and data). This action prevents a transmitter from powering up or changing hardware presets and being set to internal clock and/or data. The ONLY way to restore CS and/or **DS** as **1** from a saved configuration is by executing the **RC** command.

Note: All user commands do not apply to all transmitters. Command availability varies depending on the options ordered and any project specific customization applied. Questions? Please call Quasonix for assistance.

Table 12: Standard and Optional User Commands

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
]	Frequency Step Down	Left square bracket key retunes the transmitter to the next lower frequency, as determined by the frequency step (FS) parameter	Standard	N/A	N/A
		Reply to the control window is the new frequency, in MHz			
		No Enter key required			
]	Frequency Step Up	Right square bracket key retunes the transmitter to the next higher frequency, as determined by the frequency step (FS) parameter	Standard	N/A	N/A
		Reply to the control window is the new frequency, in MHz			
		No Enter key required			
?	Help	Displays abbreviated list of available commands	Standard	N/A	N/A
		No Enter key required			
<	Step Down Power	Incrementally steps down the output power level, from 31 down to 0	VP	N/A	N/A
		One step per key press			
		No Enter key required			
>	Step Up Power	Incrementally steps up the output power level, from 0 up to 31	VP	N/A	N/A
		One step per key press			
		No Enter key required			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
AC	Automatic Carrier Output	Report or set automatic carrier output state	AC	Y	AC 1
		With automatic carrier ON (AC 1), the unit will output an unmodulated, on-frequency carrier if there is no clock present. When automatic carrier is OFF (AC 0), the RF output will be muted in the absence of clock. Note that the AI, CF, and CS commands can create a clock, even when one is not externally applied. Examples: AC Report the automatic carrier state AC 0 Set automatic carrier OFF			
		AC 1 Set automatic carrier ON			
AFMS	Analog FM	Set analog FM mode Examples: AFMS 1.0 Set analog FM deviation in units of MHz per volt	FM	Y	AFMS 0
Al	Aux Input Select	Enable, disable, or show the current state of the auxiliary input With the auxiliary input active, the unit automatically switches to clock-free operation (CF 0). Examples:	Al	Y	AI 0
		Al Report the current value			
		of Al			
		Al 1 Enable the aux input			
		Al 0 Disable the aux input			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
AIR	Analog Input Reference Select	Select the reference level for the analog input Examples: AIR Report the current value of AIR AIR 1 Select 1.65V AIR 0 Select 0V Refer to section 4.2.1.1.1 for related IS command detail	AI (also Rev J or newer T3D board)	Y	AIR 0
BR	Bit Rate	Used when the Clock Free (CF) option is specified and internal transmitter clock is in use Report or set the bit rate of the bit sync that is locking to the externally applied data Not to be confused with "IC", which sets the rate of the internally generated clock Bit rate range is 0.1 to 35 Mbps for all waveform modes Examples: BR Report the bit rate BR 5 Set the bit rate to 5 Mbps BR A Set the bit rate automatically	CF	Y	BR 5
ВТ	Baseband Interface Type	Report or set the clock and data input reference levels Clock and data interfaces are set to either TTL or RS-422. Clock interface and data interface are always the same type. Examples: BT Report the ref level BT 1 Set the baseband type to TTL BT 3 Set the baseband type to RS-422	Clock and Data Interface selection D or M required	Y	BT 3

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
CC	Convolutional Encoder	Enables or disables the convolutional encoder	CE	Y	CC 0
		Examples			
		CC Report convolutional encoder state			
		CC 0 Set the convolutional encoder to Disabled			
		CC 1 Set the convolutional encoder to Enabled			
CF	Clock Free	Report or set the clock free state	CF	Y	CF 1
		Examples:			
		CF Report the clock free state			
		CF 0 Unit uses its internal bit sync (internally synthesized)			
		CF 1 Unit uses its externally applied clock			
СР	Clock Polarity	Report or set clock polarity	Standard	Y	CP A
		Examples:			
		CP Display the current clock polarity			
		CP 0 Set clock polarity to NOT inverted			
		CP 1 Set clock polarity to inverted			
		CP A Set clock polarity to auto; Automatically selects the most reliable clock edge			
CR	Current Preset Read	Reports the currently selected software preset being used by the transmitter	Standard	N/A	N/A

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
CS	Clock Source	Report or set the clock source	Standard	N	CS 0
		Unit always reverts to CS 0 (external) at power-up			
		Examples:			
		CS Display the current clock source			
		CS 0 Set clock source to external			
		CS 1 Set clock source to internal			
		When set to internal clock source, the data source must also be set to internal via the DS command in order to have synchronous, usable data.			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
DD	Debounce Delay	Report or set the time, in milliseconds (ms), that the unit will idle after a change is detected on the parallel interface before executing the change	PM or PF	Y	DD 500
		This command provides the user with the ability to either slow down changes to prevent accidental, and potentially illegal, frequency or mode alterations, or to reduce the time the transmitter takes to update after a hardware switch is altered.			
		Valid entries are 500 – 9000 rounded to nearest 500 ms.			
		Examples:			
		DD Report the debounce delay			
		DD 500 Set the debounce delay to 500 ms			
DE	Differential Encoding	Report or set differential encoding for the SOQPSK-TG mode	Standard	Y	DE 0
		Examples:			
		DE Report the differential encoding setting			
		DE 0 Set differential encoding OFF			
		DE 1 Set differential encoding ON			
DP	Data Polarity	Report or set data polarity	Standard	Y	DP 0
		Examples:			
		DP Display the current data polarity			
		DP 0 Set data polarity to NOT inverted (OFF)			
		DP 1 Set data polarity to inverted (ON)			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
DS	Data Source	Report or set data source state Unit always reverts to DS 0 (external) at power-up	Standard	N	DS 0
		Examples: DS Display current data source DS 0 Set data source to external DS 1 Set data source to internal (value of internal source is set by ID command)			
FO	Frequency Offset	Offsets the synthesizer +X MHz and the FPGA -X MHz Example: FO 0.0055 offsets 5.5 kHz	FO	Y	FO 0
FP	Read Frequency Plugs	Report the transmit frequency designated by the parallel port	PF or PM	N/A	N/A

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
FR	Frequency	If no argument is passed, it reports the frequency. If an argument is passed, it sets the frequency. The argument specifies the frequency in MHz. If the command is entered with a '?', then the allowed frequency ranges for this unit display. This command rounds the frequency to the nearest 0.5 MHz. If the rounded frequency is within one of the transmitter's allowed bands, the transmitter will tune that frequency and confirm the change for the user. If the frequency is outside of the allowed range for the unit, the transmitter will NOT retune but will report an error to the user. Examples: FR Display the current frequency FR? Display allowed frequency ranges FR 1436.5 Set frequency to	Standard	Y	FR 1436.5
		1436.5 MHz			
FS	Frequency Step	If no argument is passed, it reports the current frequency step. If an argument is passed, it sets the frequency step size, which is activated by the left and right square bracket keys. The argument specifies the frequency step in MHz, with 0.5 MHz being the smallest available step. Examples: FS Display the current frequency step FS 1 Frequency step = 1 MHz	Standard	Y	FS 1

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
H or HE	Help	Displays a list of available commands	Standard	N/A	N/A
		Commands require a carriage return at the end of the line and may also accept parameters			
		Some commands may not be enabled depending on required options			
HP	High Power	Report or set high power level	DP	Υ	HP 31
		Valid range is 0 to 31			
		Examples: HP Report the present high			
		HP Report the present high power level			
		HP 31 Set high power to 31			
		HP Max Set high power to the highest allowable value for the unit			
		HP Min Set high power to the minimum allowable value for the unit			
HX	eXtended Help	Displays a full list of available commands	Standard	N/A	N/A

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
IC	Internal Clock Rate	Report or set the internal clock rate	Standard	Y	IC 5
		This rate is used if the clock source is set to internal (CS 1) and the data source is set to internal (DS 1). It should not be confused with "BR", which sets the rate of the internal bit sync, which phase locks to the externally applied data.			
		If no argument is passed, the unit reports the clock frequency. If a valid frequency is given, the internal clock frequency is set. The frequency is in Mbps.			
		Examples:			
		IC Display current internal clock rate			
		IC 4.95 Set internal clock rate to 4.95 MHz			
		Valid range is 0.002 MHz – 28.0 MHz			
		Observes same bit rate limits as HR/LR cmds (PCM/FM half)			

Mnemonic Command	Name	De	scription	Option (s) Required	Setting Saved?	Factory Default
ID	Internal Data Gen	Report or set the internal data pattern This setting is used if the Data Source is set to internal (DS 1) and the Clock Source is set to internal (CS 1).		Standard	Y	ID PN15
			st be "PN6" (or 1", "PN15", or alid 4 digit			
		Examples: ID Repor pattern ID PN15	t the internal data Set internal data			
		ID AA55	pattern to PN15 Set internal data pattern to 0xAA55			
		In SOQPSK m AAAA will rest unmodulated on nominal carrie	carrier, at the			
		not include the	put argument does e "PN" and a value requires the eading "x", as shown			
		CP07 Example	-			
		ID Repor	t the internal data			
		ID 15	Set internal data pattern to PN15			
		ID xAA55	Set internal data pattern to 0xAA55			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
IS	Input Source Selection	Selects the clock and data source (and user pattern and clock rate, where applicable) using a single command IS PN15 4.5 Sets unit to internal clock/data with a PN15 pattern at 4.5 Mbps IS AT AUTO Sets unit to use the auxiliary TTL input in clock free mode with auto bit rate enabled IS EN 10 Sets unit to use the Ethernet interface for both clock and data and to set the desired bit rate to 10 Mbps Refer to section 4.2.1.1.1 for additional IS command detail	Standard on all T3 units version 2.409 or greater	N/A	N/A
LC	List Configurations	Lists the stored configurations on the unit If a configuration number is supplied, then the saved parameters for that configuration are displayed. Examples: LC List all internal saved configurations LC 7 Show configuration 7 details	Standard	N/A	N/A
LD	LDPC Encoding Enable	Enable, disable, or show the current state of the Forward Error Correction (FEC) / Low Density Parity Check (LDPC) encoder Examples: LD Show the current encoder state LD 1 Enable the LDPC encoder LD 0 Disable the LDPC encoder	LD	Y	LD 0

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
LP	Low Power	Report or set low power level Valid range is 0 to 31	DP	Y	LP 0
		Examples: LP Report the present low power level LP 3 Set low power to 3 LP Max Set low power to the highest allowable value for the unit LP Min Set low power to the minimum allowable value for the unit			
MA	Modes Allowed	Reports the modes enabled on the transmitter, as determined by the part number	Standard	N/A	N/A
MJ	Modulation Scaling Step Size	Sets the current modulation scaling factor used when the single key Power Step Up and Power Step Down functions are used Valid range is .0009 to 10.01	MS	Y	MJ 1.5

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
MO	Modulation	Report or set modulation setting Mode 6, Carrier only, is present on every transmitter Examples: (depending on modes ordered) MO Report the modulation setting MO 0 Set modulation to PCM/FM MO 1 Set modulation to SOQPSK-TG MO 2 Set modulation to MULTI- h CPM MO 3 Set modulation to BPSK MO 4 Set modulation to QPSK MO 6 Carrier only, no modulation MO 7 Set modulation to OQPSK MO 8 Set modulation to UQPSK MO 10 Set modulation to STDN MO 11 Set modulation to SQPN MO 12 Set modulation to Analog_FM	MO 12 requires FM option All other mode availability dependent on modes ordered	Y	MO 0 or the first one the customer has installed on the unit Example: MO 1 if no PCM/FM installed; MO 2 if only CPM installed
MS	Modulation Scaling	Scales the deviation (modulation index) of the transmitted signal relative to the standard default deviation Example: For PCM/FM – if the standard modulation index is 0.7, setting MS to 2.0 scales a modulation index of 1.4 Value range is .09 to 10.01	MS	Y	MS 1

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
OC	Overtemperature Control Enable	Enables or disables overtemperature control OC 0 Disable Overtemperature Control OC 1 Enable Overtemperature Control If the transmitter temperature goes above the set limit stored on the device and the current power level is over 25, the transmitter automatically starts to back off power in 2 dB steps to a maximum of 6 dB.	Standard	Y	OC 1
PL	Power Level	PL reports or sets the current power level setting for the dual power feature. If the user enters 1, the power level is set to current "high" power level (refer to HP command). If the user enters 0, then power is set to the current "low" power level (refer to LP command). Examples: PL Report the current power level state PL 0 Set the current power level to "low" PL 1 Set the current power level to "high" Disabled in Parallel Mode	DP	Y	PL 0
PR or RE	Restore Defaults	Restores factory default parameters for the unit Default is currently the lowest number modulation supported by the transmitter with the selected band and frequency limits Default power level is Full power	Standard	N/A	N/A
QA	Query All	Displays common device settings in one compact display Display is a subset of SS or ST	Standard	N/A	N/A
QT or TE	Query Temperature	Report the temperature in degrees Celsius	Standard	N/A	N/A

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
RA or RN	Randomizer	Report or set IRIG-106 randomizer output state	Standard	Y	RA 0
		Examples: RA Report the randomizer state RA 0 Set randomizer OFF RA 1 Set randomizer ON			
RC (or PP or RL)	Recall Configuration	Load a saved configuration into the active configuration if the configuration number entered is valid If the selected configuration has no valid data or the command is issued without a configuration number, the transmitter is initialized with the default data and saved. Example: RC Load configuration 0 (default setup) RC 3 Load configuration 3	Standard	N/A	N/A
RF	RF Output	Report or set RF output control state Note that there may be no RF output, even if the software control is set to ON. This can happen if there is no valid clock in use, or if the RF On/Off hardware pin is in the OFF state. Examples: RF Report the RF output state RF 0 Set RF output OFF RF 1 Set RF output ON	Standard	Y	RF 1 (if option CP07, default is RF 0)

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
RZ	RF On/Off Pin Polarity	Set or show the polarity of the RF On/Off pin, which is pulled high internally to 3.3 VDC		Y	RZ 1
		RZ 0 means the RF is ON when the RF On/Off pin is low			
		RZ 1 means the RF is ON when the RF On/Off pin is high (floating)			
		Examples:			
		RZ Show the current RF On/Off polarity			
		RZ 0 Set RF On/Off polarity to "pin low = on"			
		RZ 1 Set RF On/Off polarity to "pin high = on"			
SB	Cycles per Bit	Report or set cycles per bit	STDN	Υ	SB 0
		(The subcarrier frequency is cycles per bit times bit rate.)			
		SB Report cycles per bit			
		SB x Set cycles per bit			
SC	Startup Configuration	Report or set startup configuration priority between nonvolatile settings and parallel port settings	PM or PF	Y	SC 1
		Examples:			
		SC Report startup configuration priority			
		SC 0 Prioritize stored parameters			
		SC 1 Prioritize parallel port settings			
		SC 2 Always ignore parallel port settings			
		SC 3 Always ignore serial frequency or mode command			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
SM	Modulation Sweep	Sweeps the transmitter modulation between the provided limits with the provided step size at a fixed rate	MS	N	SM Disabled
		Examples:			
		SM Toggle sweep ON/OFF with current values			
		SM ? Displays current sweep state			
		SM start stop step msec			
		start = low index			
		stop = high index			
		step = index step size msec = milliseconds between			
		steps			
SN	Serial/Part Number	Report the serial number and part number for the unit	Standard	N/A	N/A
SS	Show Settings	Displays most of the common device settings in one compact display	Standard	N/A	N/A
SV or SA (or PS or PW)	Save Configuration	Saves the current transmitter configuration to a user-selected preset number, from 0 to 15 where 0 is the power-on default unless hardware presets are enabled	Standard	N/A	N/A
		The SV command also allows the user to assign an alias to the desired preset.			
		Examples:			
		SV 1 Save current configuration to preset 1			
		SV 7 xyz Save current configuration to preset 7 and assign alias name "xyz"			
		*Refer to SV Note below for exception			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
SY	System Status	Displays the system status of the transmitter	Standard	N/A	N/A
		The first argument specifies the period, in milliseconds, between status updates. Zero (0) disables continuous monitoring.			
		The second argument specifies the number of status lines between header outputs.			
		Examples:			
		SY Displays current status report settings			
		SY 5 Sets status output period to 5 milliseconds			
		SY 5 100 Sets status header output once every 100 status updates			
		Refer to section 4.2.1.1.2 for additional SY command detail			
VE (or RV)	Version (Revision Information)	Report the current Firmware (software) version information for the transmitter	Standard	N/A	N/A
VF	Variable FIFO Depth	Sets the FIFO depth for controlling latency time between bits in and bits out	VF	Y	VF 128
		Valid range is 0 to 255			
		Example: VF 120 (120 = Variable Power)			
VP	Variable Power	Report or set variable power level	VP	Υ	VP 0
		Valid range is 0-31			
		Examples:			
		VP Report the variable power level			
		VP 31 Set variable power to 31			
		VP 5 Set variable power to 5			
		VP Max Set variable power to the highest allowable value for the unit			
		VP Min Set variable power to the minimum allowable value for the unit			

Mnemonic Command	Name	Description	Option (s) Required	Setting Saved?	Factory Default
ZX	Show Preset Inputs	Displays the current preset inputs on the parallel connector	Standard	N/A	N/A
		Available presets depend on the number specified for the unit			
		Values are PS2, PS4, PS8, or PS16			
ZY	Show Connector	Displays the transmitter's baseband connector pinout with proper gender, numbering, and signal labeling	Standard	N/A	N/A
		Valid only with standard 15-pin transmitters			
ZZ	Show Options	Displays the current hardware configuration and options on the transmitter	Standard	N/A	N/A

All commands generate a response of one or more lines, which indicate successful completion of the command or an error.

After a command's response, the transmitter displays the mode name followed by the character ">" as a prompt, which may be interpreted as meaning the radio is ready to accept new characters. If the CP07 option is enabled, only the character ">" displays as a prompt.

*SV Note: Users may save internal clock and data in presets for bench debug use BUT on a power up or when a *hardware* preset is restored, **CS** and **DS** will be forced to **0** (external clock and data). This action prevents a transmitter from powering up or changing hardware presets and being set to internal clock and/or data. The ONLY way to restore CS and/or **DS** as **1** from a saved configuration is by executing the **RC** command.

4.2.1.1 Additional Command Set Details

4.2.1.1.1 Input Source Selection Command - IS

The IS command is used to select the clock and data source (and the user pattern and clock rate where applicable) for the transmitter with one command. This command can conceivably replace CS, DS, ID, IC, BR, BT, AIR, CF, and EN. *This command is standard on all T3 units version 2.409 or greater.*

Syntax: IS [ds/?/pnxx/XXXX [cs/AUTO/rate]]

where **ds** is data source which can be:

ET - external TTL data (if QSX-VxT or -VR enabled)
ER - external RS422 data (if QSX-VxR or -VR enabled)
EL - external LVDS data (if QSX-VxL or -VR enabled)

Quasonix

TIMTER™ Multi-mode Digital Telemetry Transmitter

I - internal with currently selected data pattern

PNxx - internal with specified PN sequence

XXXX - internal with specified fixed 4 digit hex pattern

AB - auxilliary input bipolar data (if -CF and -AI enabled)
AT - auxilliary input TTL data (if -CF and -AI enabled)

EN - Ethernet (if -EN enabled)

If ds = ET, then cs MAY be:

- Nothing (defaults to ET for an external ttl clock)
- ET for an external TTL clock

Actions: ds 0, cs 0, bt 1 (if needed), cf 1 (if needed)

• X for clock free with current BR (if -CF enabled)

Actions: ds 0, cs 0, (bt 1 if needed), cf 0

• AUTO for clock free with BR = auto

Actions: ds 0, cs 0, cf 0, br a (bt 1, ai 0, and en 0 if needed)

• XX.xxx for clock free with BR = XX.xxx

Actions: ds 0, cs 0, cf 0, br XX.xxx (bt 1, ai 0, and en 0 if needed)

If ds = ER or EL, then cs MAY be:

- Nothing (defaults to ER for an external RS422 clock)
- ER for an external RS422 clock
- EL for an external LVDS clock

Actions: ds 0, cs 0, bt 3 (if needed), cf 1 (if needed)

• X for clock free with current BR (if -CF enabled)

Actions: ds 0, cs 0, (bt 3 if needed), cf 0

• AUTO for clock free with BR = auto

Actions: ds 0, cs 0, cf 0, br a (bt 3, ai 0, and en 0 if needed)

• XX.xxx for clock free with BR = XX.xxx

Actions: ds 0, cs 0, cf 0, br XX.xxx (bt 3, ai 0, and en 0 if needed)

If ds = I, then cs MAY be:

- Nothing (defaults to internal clock at current IC rate) (displayed)
- I for an internal clock at current IC rate (displayed)

Actions: ds 1, cs 1, ic

• XX.xxx for internal clock with ic = XX.xxx

Actions: ds 1, cs 1, ic XX.xxx

If ds = PNxx, then cs MAY be:

- Nothing (defaults to internal clock at current IC rate) (displayed)
- I for an internal clock at current IC rate (displayed)

Actions: ds 1, cs 1, id pnxx, ic

• XX.xxx for internal clock with ic = XX.xxx

Actions: ds 1, cs 1, id pnxx, ic XX.xxx

If ds = XXXX, then cs MAY be:

- Nothing (defaults to internal clock at current IC rate) (displayed)
- I for an internal clock at current IC rate (displayed)

Actions: ds 1, cs 1, id XXXX, ic

• XX.xxx for internal clock with ic = XX.xxx

Actions: ds 1, cs 1, id XXXX, ic XX.xxx

If ds = AB, then cs MAY be:

• Nothing (defaults to clock free at current BR) (displayed)

Actions: ds 0, cs 0, ai 1, cf 0 AIR 0 br

(en 0 if needed)

• X for clock free with current BR

Actions: ds 0, cs 0, ai 1, cf 0 AIR 0 br

(en 0 if needed)

• AUTO for clock free with BR = auto

Actions: ds 0, cs 0, ai 1, cf 0 AIR 0 br a

(en 0 if needed)

• XX.xxx for clock free with BR = XX.xxx

Actions: ds 0, cs 0, ai 1, cf 0 AIR 0 br XX.xxx

(en 0 if needed)

If ds = AT, then cs MAY be:

• Nothing (defaults to clock free at current BR) (displayed)

Actions: ds 0, cs 0, ai 1, cf 0 AIR 1 br

(en 0 if needed)

• X for clock free with current BR

Actions: ds 0, cs 0, ai 1, cf 0 AIR 1 br

(en 0 if needed)

• AUTO for clock free with BR = auto

Actions: ds 0, cs 0, ai 1, cf 0 AIR 1 br a

(en 0 if needed)

• XX.xxx for clock free with BR = XX.xxx

Actions: ds 0, cs 0, ai 1, cf 0 AIR 1 br XX.xxx

(en 0 if needed)

If ds = EN, then cs MAY be:

• Nothing (defaults to Ethernet clock at current IC rate) (displayed)

Actions: ds 0, cs 0, en 1 (cf 1 if needed) (ai 0 if needed)

• EN for Ethernet clock at current IC rate) (displayed)

Actions:: ds 0, cs 0, en 1 (cf 1 if needed) (ai 0 if needed)

• XX.xxx for Ethernet clock with ic = XX.xxx

: ds 0, cs 0, en 1 ic XX.xxx (cf 1 if needed) (ai 0 if needed)

Notes:

- 1. Numbers need only as many significant digits as necessary. For example, to specify 10 Mbps (for either BR or IC) you can enter 10, 10.0, 10.000, etc.
- 2. Some command versions require the unit to have specific options and will not work without those options. For instance, you cannot specify EN for Ethernet unless the unit has the -EN option in the part number.
- 3. While this command incorporates the functionality of nine (9) or more commands, those commands are still usable. For example, if the unit has the -VR option then the BT command can still be used by itself to switch between TTL and RS-422 inputs for clock and data.

Examples:

IS ET	Sets unit to 'normal' mode expecting external TTL clock and data to be applied to the unit inputs
IS PN15 4.5	Sets unit to internal clock/data with a PN15 pattern at 4.5 Mbps
IS AT AUTO	Sets unit to use the auxiliary TTL input in clock free mode with auto bit rate enabled
IS EN 10	Sets unit to use the Ethernet interface for both clock and data and to set the desired bit rate to 10 Mbps

4.2.1.1.2 System Status Command - SY

The SY command is defined as follows.

Mode	CF Rate	Freq	Tmp	CRate
	(b/s)	(Hz)	(C)	(b/s)
0	10001252	2255000000	27.0	19999948

Mode - Current mode number (such as 0 = PCM/FM)

CF Rate - Clock free estimated data rate. This rate is based on the external data input (TTL or RS-422) even if internal data is presently in use (CS = 1).

Freq - Tuned frequency

Tmp - Current temperature

CRate - Clock filter clock rate. This is the actual over the air bit rate, regardless of the selected data source, and including any increases due to encoding (LDPC or convolutional). IN clock free automatic mode, it may differ from CF Rate because it will track the bit sync rate (exact, if locked) rather than the clock free estimated rate (approximate).

5 RF Output Notes

There are three methods of muting the RF output. If you do not have RF output, check these conditions:

- 1. RF On / Off command From the control terminal, type **RF** to query the current state of the RF On/Off variable. If it is 0, type **RF 1** to turn the output back ON.
- 2. External clock removal If the unit is configured to use the external clock (CS = 0), that clock's presence is detected. If it is not present, the RF output automatically shuts OFF. When the data clock comes back, the RF output automatically turns ON. The lag from data clock state change to RF output change is about 0.1 seconds.
- 3. RF On / Off pin Pin 2 on the TTL interface or pin 7 on the RS-422 interface is a hardware RF On/Off control. If this pin is grounded, the RF is turned OFF. This hardware control overrides the RF On/Off serial command.

5.1 Troubleshooting the RF on a Quasonix Transmitter

The following is a quick, three-part test to verify that the RF output on the transmitter is working correctly. This procedure should work for most transmitters with no modifications, however the sheer number of extra options and variations means that some units will need some special instructions or may work slightly differently. Examples are auto-carrier (-AC option), clock free (-CF option) and recall-holdoff (-RH option). If the procedure below does not demonstrate the working RF output on the transmitter, please contact Quasonix technical support for further help in resolving the issue.

The three sections below demonstrate RF output functionality one step at a time: first a carrier, then a waveform based on internal clock and data, and finally the waveform using the user supplied external clock and data. Part one demonstrates a simple carrier output at the desired frequency. Part two demonstrates proper waveform modulation using internal clock and data generated by the transmitter itself. Part three switches to the user supplied external clock and data for normal operation. If the first two parts work correctly, then the only missing piece is the external clock and data, so resolving any final issues becomes easier.

Part 1: Checking for carrier power output on frequency

- 1. Turn on power to the transmitter.
- 2. Set the mode to 6 (carrier only) using command **MO** 6.
- 3. Set transmitter to the desired frequency using the **FR** command. For example, **FR 2200.5**.
 - To see the allowed frequencies on your unit, type **FR**?.
- 4. Turn the soft RF control on with **RF 1**.
- 5. Use a Spectrum Analyzer to determine whether there is a stick at the desired frequency. If there is, go on to Part 2.
- 6. If there is no output, check the state of the RF On/Off pin.
 - If the pin appears to be in the correct state to enable the output, check the RF On/Off pin polarity using the RZ command.
 - If the polarity is incorrect, change it.
 - **RZ 1** sets the transmitter output to turn ON when the RF On/Off pin is high (3.3 VDC).
 - **RZ 0** sets the transmitter output to turn ON when the RF On/Off pin is low.

Quasonix

TIMTER™ Multi-mode Digital Telemetry Transmitter

7. Is the output present now? If so, go on to Part 2 below. If not, call Quasonix for technical support.

Part 2: Verifying modulation output on frequency with internal data

- 1. Turn on the transmitter.
- 2. Set the mode to one of the available modes on your unit. For example, **MO 0** for PCM/FM, **MO 1** for SOQPSK, etc.
- 3. Set transmitter to the desired frequency using the FR command. For example, FR 2200.5.
 - To see the allowed frequencies on your unit, type **FR**?.
- 4. Turn the soft RF control ON with **RF 1**.
- 5. Enable the internal clock source with **CS 1**.
- 6. Enable the internal data source with **DS 1**.
- 7. Set the internal clock rate to 5 Mbps with **IC 5**.
- 8. Set the internal data pattern to PN15 with **ID PN15**.
- 9. Use a spectrum analyzer to verify the desired waveform on the RF output at the desired frequency.
- 10. If the waveform is NOT present, check the state of the RF On/Off pin. Use the **RZ** command to check the current polarity of the RF On/Off pin.
 - **RZ 1** sets the transmitter output to turn ON when the RF On/Off pin is high (3.3 VDC).
 - **RZ 0** sets the transmitter output to turn ON when the RF On/Off pin is low.
- 11. Change either the RF On/Off pin or the polarity to turn the RF output ON.
- 12. Check for the RF output on the spectrum analyzer.
 - Is the output present now? If so, go on to Part 3.
 - If not, call Quasonix for technical support.

Part 3: Verifying modulation output on frequency with user data

- 1. Turn on the transmitter.
- Set the mode to one of the available modes on your unit. For example, MO 0 for PCM/FM, MO 1 for SOQPSK, etc.
- 3. Set transmitter to the desired frequency using the FR command. For example, FR 2200.5.
 - To see the allowed frequencies on your unit, type **FR**?.
- 4. Turn the soft RF control on using **RF 1**.
- 5. Disable the internal clock source with **CS 0**. This is the normal state on power up for most units.
- 6. Disable the internal data source with **DS 0**. This is the normal state on power up for most units.
- 7. Be sure that a clock source is connected to the correct pins of the transmitter input connector with the correct type (TTL or RS-422) of signal and in the case of RS-422, the correct polarity.
- 8. Be sure that the clock source is ON and that the clock rate is within the allowed range for the mode selected. Typically this is 100 kbps to 28 Mbps for Tier 1 and 2 waveforms and 50 kbps to 14 Mbps for Tier 0.

Quasonix

TIMTER™ Multi-mode Digital Telemetry Transmitter

- 9. Be sure that a data source is connected to the correct pins, with the correct type (TTL or RS-422) and polarity as above.
- 10. Use a spectrum analyzer to verify the desired waveform on the RF output at the desired frequency.
- 11. If the waveform is NOT present, check the state of the RF On/Off pin. Use the **RZ** command to check the current polarity of the RF On/Off pin.
 - **RZ 1** sets the transmitter output to turn ON when the RF On/Off pin is high (3.3 VDC).
 - **RZ 0** sets the transmitter output to turn ON when the RF On/Off pin is low.
- 12. Change either the RF On/Off pin or the polarity to turn the RF output ON.

You may issue the RF command and observe the status which is returned. This status indicates whether the transmitter believes the RF output is actually ON or not.

The **SY** command may be issued to check the actual clock rate that the transmitter sees if no RF output is detected. One of the most common problems is a clock rate that is too high or too low (or missing) for the desired modulation.

Finally, if you have a full RF loop running with a BERT and are having trouble achieving a zero bit error rate or lock, try the loop using internal data with the standard PN15 bit pattern. Be sure the BERT pattern is set to match the selected data pattern (**ID** command) on the transmitter. Assuming the internal data syncs and produces a zero bit error rate, you can switch back to the external clock and data. In this case, you can also check (and change) the clock polarity (**CP**) the data polarity (**DP**), the randomizer (**RA**), and the differential encoder (**DE** - normally on for SOQPSK and off for other waveforms) to resolve the sync and bit error rate issues.

If you are still having difficulties at this point, then contact Quasonix technical support.

Quasonix Technical Support (1-513-942-1287) or email (support@quasonix.com)

When calling technical support, it will speed things up if you have the following information handy:

- Model number (obtained with the ZZ command) ***Note that this is different from the customer part number.***
- Serial number (obtained with the SN command)
- Software Version (obtained with the **VE** command)

It is also helpful if you can call from a phone in your lab so our tech support people can actually walk you through setting, checking, and controlling your transmitter).

6 Performance Specifications

6.1 RF Output

The minimum RF output power is one of the following: 10 mW, 5 W, 10 W, 20 W, or 25 W with the RF load VSWR < 2:1 at all phase angles from 0 to 360 degrees.

6.2 Electrical Current

The electrical current drain for TIMTERTM transmitters is provided in Table 13.

Table 13: DC Input Current at Standard Input Voltage

Band Type	Wattage	Maximum Current	Typical Current @ 28 VDC
Single band (L or S)	10 mWatt	0.3 amps	0.25 amps
Single band (L or S)	5 Watt	0.8 amps	0.7 amps
Single band (L or S)	10 Watt (2in³ packages)	1.4 amps	1.1 amps
Single band (L or S)	10 Watt (>2in³ packages)	1.6 amps	1.3 amps
Single band (L or S)	20 Watt	2.8 amps	2.5 amps
Tri-band	5 Watt	1.2 amps	1.0 amps
Tri-band	10 Watt	2.0 amps	1.5 amps
Tri-band	20 Watt	3.0 amps	2.7 amps
S band	25 Watt	3.2 amps	2.9 amps
C band	10 mWatt	0.3 amps	0.25 amps
C band	5 Watt	1.3 amps	1.1 amps
C band	10 Watt	2.4 amps	1.9 amps
C-band	20 Watt	3.4 amps	3.0 amps
L/C band and S/C band	10 mWatt	0.3 amps	0.25 amps
L/C band and S/C band	10 Watt	2.0 amps	1.8 amps
S and C band	20 Watt	3.5 amps	3.2 amps

6.3 Environmental Specifications

 $TIMTER^{TM}$ transmitters meet the environmental requirements shown in Table 14.

^{*}S/C-band transmitters are limited to 20 W.

Table 14: TIMTERTM Environmental Specifications

Environmental Specifications	Description
Operating temperature (10 mW, 1 W, 5 W, 10 W models)	-40°C to +85°C
Operating temperature (20 W and 25 W models)	-40°C to +70°C
Non-operating temperature (all models)	-55°C to +100°C
Operating humidity	0 to 95% (non-condensing)
Altitude	Up to 100,000 ft.

6.4 Carrier Frequency Tuning

The carrier frequency is selectable in 0.5~MHz steps. Frequencies supported by TIMTER TM transmitters are listed in Table 15.

Table 15: Carrier Frequencies (MHz)

Band ID Code	Band	Minimum Freq	Maximum Freq	Default Freq	Tuning Steps
А	Lower S	2200.5 MHz	2300.5 MHz	2250.5 MHz	0.5 MHz
В	Euro Mid C	5091.0 MHz	5250.0 MHz		0.5 MHz
С	C "Low"	4400.0 MHz	4950.0 MHz	4620.0 MHz	0.5 MHz
D	C (with Mid C)	4400.0 MHz and 5091.0 MHz	4950.0 MHz and 5150.0 MHz	5120.0 MHz	0.5 MHz
Е	L, S, C, and Euro Mid C	1435.5 MHz 1750.0 MHz 2200.5 MHz 4400.0 MHz 5091.0 MHz	1534.5 MHz 1855.0 MHz 2394.5 MHz 4950.0 MHz 5151.0 MHz 5250.0 MHz	1450.5 MHz	0.5 MHz
F	S and C	2200.5 MHz and 4400.0 MHz	2394.5 MHz and 4950.0 MHz	2370.5 MHz	0.5 MHz
Н	L and C	1435.5 MHz and 4400.0 MHz	1534.5 MHz and 4950.0 MHz	1450.5 MHz	0.5 MHz
J	C and Euro Mid C	4400.0 MHz and 5091.0 MHz	4950.0 MHz and 5250.0 MHz		0.5 MHz

Band ID Code	Band	Minimum Freq	Maximum Freq	Default Freq	Tuning Steps
К	S and C (with Euro Mid C)	2200.5 MHz 4400.0 MHz and	2394.5 MHz 4950.0 MHz and	2370.5 MHz	0.5 MHz
		5091.0 MHz	5250.0 MHz		
L	Lower L	1435.5 MHz	1534.5 MHz	1450.5 MHz	0.5 MHz
М	Lower L, Upper L, and S (Tri-band)	1435.5 MHz 1750.0 MHz and	1534.5 MHz 1855.0 MHz and	1450.5 MHz	0.5 MHz
		2200.5 MHz	2394.5 MHz		
N	Upper S	2300.5 MHz	2394.5 MHz		0.5 MHz
Q	L, S, and C	1435.5 MHz 1750.0 MHz 2200.5 MHz 4400.0 MHz 5091.0 MHz	1534.5 MHz 1855.0 MHz 2394.5 MHz 4950.0 MHz 5150.0 MHz	1450.5 MHz	0.5 MHz
S	S	2200.5 MHz	2394.5 MHz	2370.5 MHz	0.5 MHz
Т	Lower L and C	1435.5 MHz 4400.0 MHz 5091.0 MHz 5091.0 MHz	1534.5 MHz 4950.0 MHz 5150.0 MHz 5250.0 MHz	1450.5 MHz	0.5 MHz
U	Upper L	1750.0 MHz	1855.0 MHz	1800.5 MHz	0.5 MHz
V	S and C (with Mid C)	2200.5 MHz 4400.0 MHz and 5091.0 MHz	2394.5 MHz 4950.0 MHz and 5150.0 MHz	2370.5 MHz	0.5 MHz
W	S and C (with Euro Mid C)	2200.5 MHz 4400.0 MHz and 5091.0 MHz	2394.5 MHz 4950.0 MHz and 5250.0 MHz	2370.5 MHz	0.5 MHz

6.5 Carrier Frequency Error

The frequency error is less than ± 20 ppm over all combinations of temperature, voltage, and aging (up to five years).

6.6 Bit Error Rate

The transmitter meets the following BER limits when tested with the Quasonix' multi-mode, multi-symbol trellis demodulator.

BER Maximum Eb/N0 (dB) PCM/FM, Tier 0 SOQPSK-TG, Tier I MULTI-h CPM, Tier II 10-3 7.0 9.0 11.8 10-4 8.5 11.0 13.3 10-5 9.5 12.5 14.3 10-6 10.5 14.0 15.3

Table 16: Transmitter BER Specifications with Quasonix Demodulator

6.7 Modulated RF Power Spectrum

The transmitter's modulated spectrum complies with the IRIG-106 PSD mask:

M (dBc) = Max ({K - 100 log |f - f_c | + 90 log (R)}, {-(55 + 10 log (P))}), |f - f_c | \geq R/m where

M = power relative to unmodulated carrier (i.e., units of dBc) at frequency f (MHz)

f = frequency in MHz

f_c = the carrier frequency in MHz

R = the bit rate in Mb/s

P = the rated power output of the UUT, in Watts

and the values of K and m are as tabulated in Table 17.

Table 17: K and m Values per Waveform

	K	m
PCM/FM, Tier 0	-28	2
SOQPSK TG, Tier I	-61	4
MULTI-h CPM, Tier II	-73	4

As noted in the equation above, the mask has a floor at $-(55 + 10 \log(P))$ dBc, and the mask imposes no limit on the spectrum for frequency offsets less than R/m. Representative examples of the transmitted spectrum, with the appropriate mask, are shown in Figure 25, Figure 26, and Figure 27.

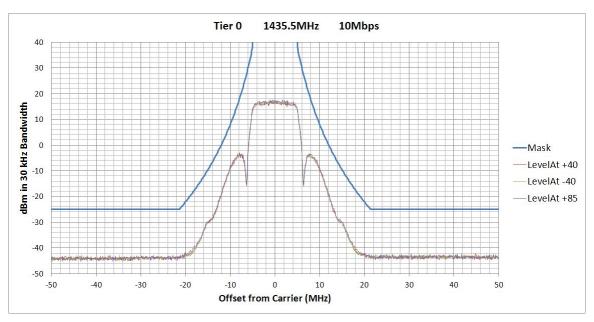


Figure 25: PCM/FM (Tier 0) Power Spectral Density with Mask

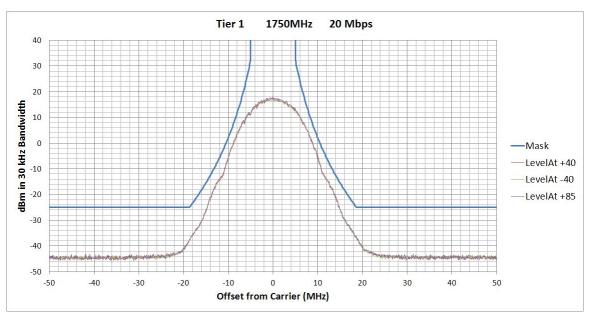


Figure 26: SOQPSK-TG (Tier I) Power Spectral Density with Mask

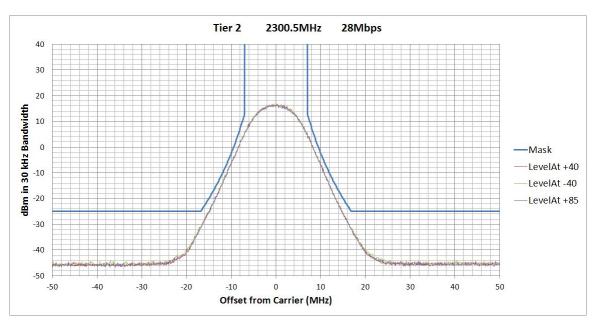


Figure 27: MULTI-h CPM (Tier II) Power Spectral Density with Mask

6.8 Phase Noise Power Spectrum

TIMTERTM phase noise limits are shown in Figure 28.

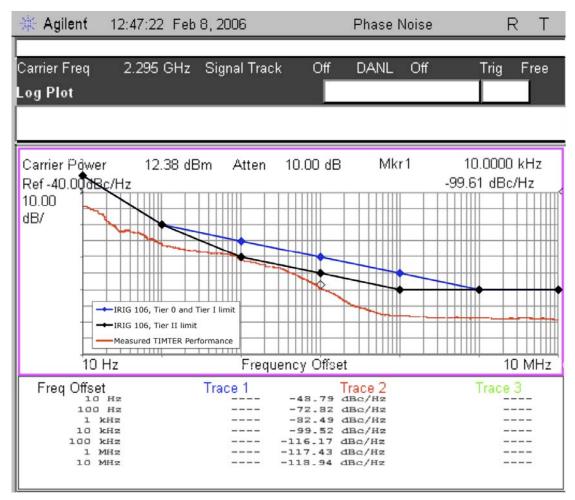


Figure 28: Phase Noise Limit Curve

6.9 Baseplate Temperature

TIMTERTM is designed for efficient heat transfer between internal heat producing sources and the baseplate. The 10 mW (20 mW for tri band), 5 W, and 10 W TIMTERTM versions are rated for operation with baseplate temperatures ranging from -40°C to +85 °C, while the 20W version is rated from -40°C to +70 °C.

6.10 Vibration and Shock

The transmitter is designed and tested to operate normally when subjected to random vibration and shock. The shock and vibe test setup employed by Quasonix is shown in the following figures.

Figure 29: Vibration / Shock Testing System

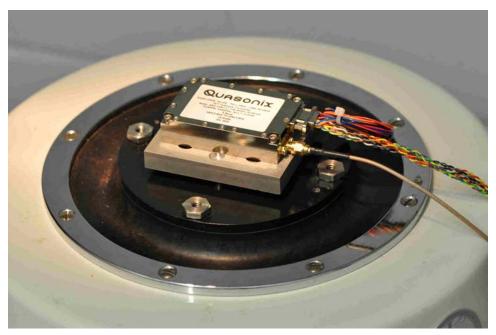


Figure 30: TIMTER $^{\rm TM}$ Mounted for Z-axis Testing

Figure 31: TIMTERTM Mounted for X-axis Testing

Figure 32: TIMTERTM Mounted for Y-axis Testing

6.10.1 Vibration Testing

Each transmitter is subjected to the random vibration spectrum depicted in Figure 33 and Table 18 prior to shipment.

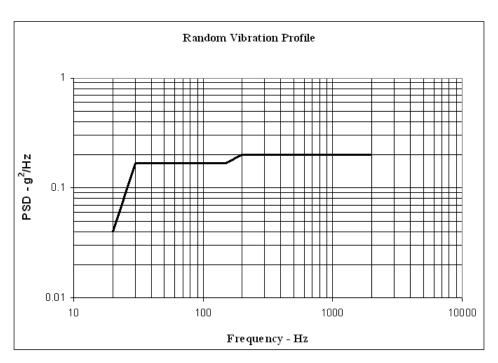


Figure 33: TIMTERTM Vibration Profile

Table 18: Random Vibration Spectrum

Breakpoints				
Frequency (Hz)	PSD (g2/Hz)			
20	0.04			
30	0.17			
150	0.17			
200	0.2			
2000	0.2			
G (RMS) = 19.6				

During flight-qualification testing, the unit under test (UUT) was shaken for 30 minutes in each axis. The results are shown in Figure 34, Figure 35, and Figure 36.

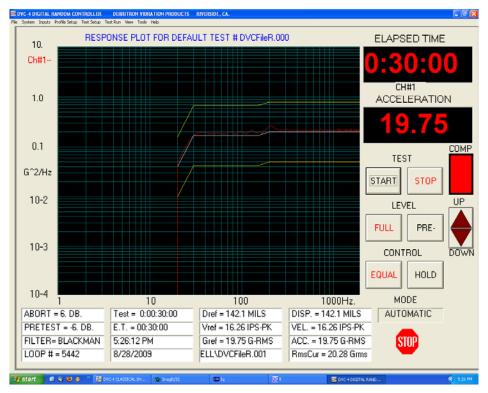


Figure 34: Z-axis Vibration Spectrum

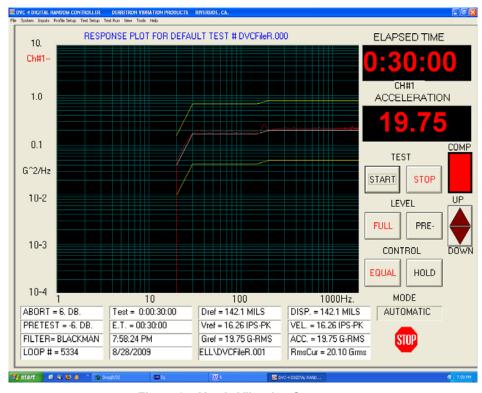


Figure 35: Y-axis Vibration Spectrum

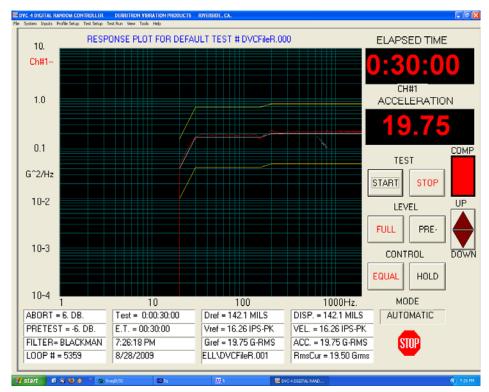


Figure 36: X-axis Vibration Spectrum

6.10.2 Shock Testing

In addition to vibration testing, the UUT was subjected to shock pulses, as follows:

• Type: Half-sine

• Level: 60 g

• Duration: 5 milliseconds

Application: Three (3) shocks in each direction of the three (3) orthogonal axes both positive and negative, for 18 shocks total

The plots of the positive and negative pulses in each of the three axes are shown in the following figures:

Figure 37: Shock Pulse, Z-axis Positive

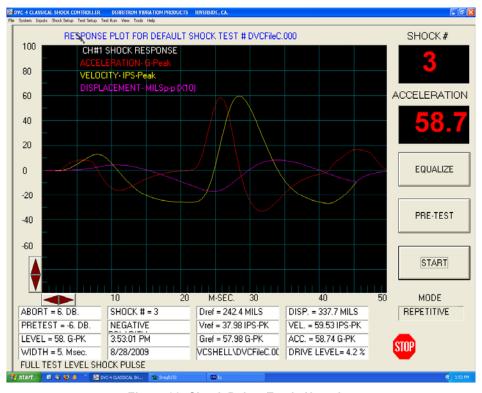


Figure 38: Shock Pulse, Z-axis Negative

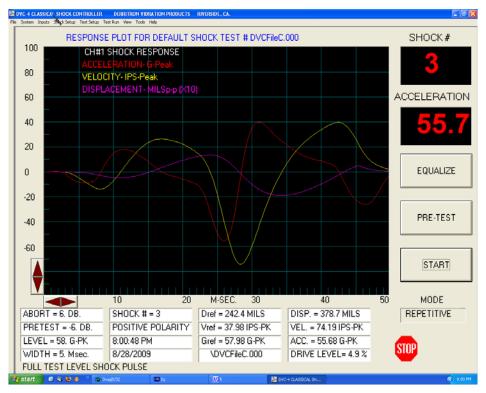


Figure 39: Shock Pulse, Y-axis Positive

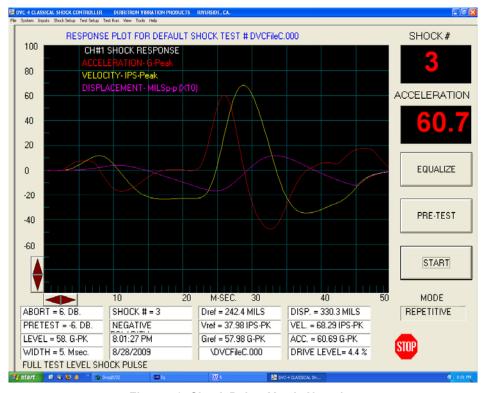


Figure 40: Shock Pulse, Y-axis Negative

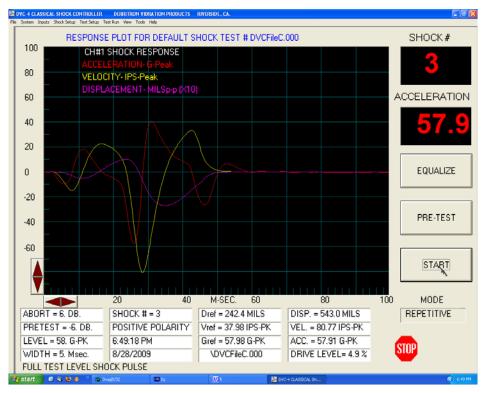


Figure 41: Shock Pulse, X-axis Positive

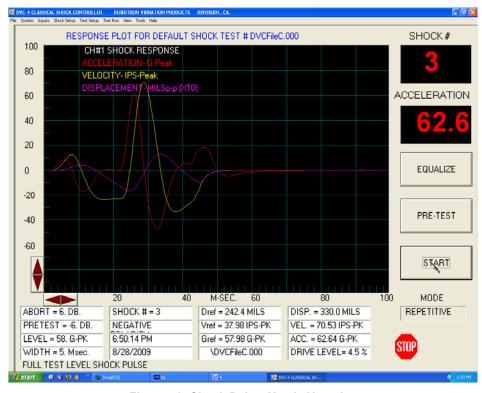


Figure 42: Shock Pulse, X-axis Negative

7 Maintenance Instructions

The TIMTERTM requires no regular maintenance, and there are no user-serviceable parts inside.

8 Product Warranty

The TIMTERTM carries a standard parts and labor warranty of one (1) year from the date of delivery.

9 Technical Support and RMA Requests

In the event of a product issue, customers should contact Quasonix via phone (1-513-942-1287) or email (support@quasonix.com) to seek technical support. If the Quasonix representative determines that the product issue must be addressed at Quasonix, a returned materials authorization (RMA) number will be provided for return shipment.

Authorized return shipments must be addressed in the following manner:

Quasonix, Inc. ATTN: Repair, RMA # 6025 Schumacher Park Drive West Chester, OH 45069

To ensure that your shipment is processed most efficiently, please include the following information with your product return:

- Ship To Company name, address, zip code, and internal mail-drop, if applicable
- Attention/Contact person Name, Title, Department, Phone number, email address
- Purchase Order Number If applicable
- RMA Number provided by the Quasonix representative

Please note that Quasonix reserves the right to refuse shipments that arrive without RMA numbers.

10 Appendix A - Preset Option

The preset feature operates similar to the stored presets in a car radio. The presence of this option is designated by the characters "PS" and a number (2, 4, 8 or 16) appended to the standard model number. Transmitters with the preset option operate as follows:

- 1. The potential preset selection pins are pins 2, 6, 10, 11, 12 and 13 on the male MDM-15 connector, or pins 3, 7, 11, 12, 13 and 14 on the female MDM-15 connector. Of these pins, up to four may be used for presets depending on the device options. To see which pins are used for presets and which bits they represent, use the ZY command on the transmitter or refer to the documentation that came with your transmitter.
- 2. Left floating, (the pins are pulled up to 3.3 VDC internally), a pin represents a "0", grounded is a "1".
- 3. The 0000 state (all pins floating) provides normal operation.
- 4. The (up to) 15 other states (one or more pins grounded) select one of the presets.
- Each preset stores a carrier frequency, modulation type, and various configuration values like randomizer, data inversion, differential encoding, etc. These settings can be viewed with the LC (list configurations) command from a terminal.
- 6. The preset pins are read only at power up. Changing the preset pins after power-on has no effect.
- 7. The presets are set (in your lab) from the 0000 state, using the "PS" or "SV" command. Storing a preset is done by configuring the device as you wish it to operate, then saving the setup to a particular preset. The save is performed by typing the following command:

SV x [name]

where x is the preset number (1-15 depending on the options) and name is an optional setup name stored with the setup. Alternatively, issue the "PS" command with a single-digit parameter (1 thru 15). So, "PS 5", for example will store the current frequency and modulation setting in preset 5. "PS", with no numeric value after it, reports the state of all presets. The LC command displays names for all setups or, if a setup number is entered, all the settings for that particular configuration.

8. Electrical connection note: The preset pins are connected directly to the FPGA in the unit, so it is important that the voltage on those pins never get outside the range of zero to 3.3 VDC. Voltages outside this range can cause permanent damage. Also, the internal pull-up is through a 25k Ohm resistor inside the FPGA, so it is important that the pins have a high impedance to ground (> 1 M Ohm) when the pins are floating. A true switch closure is ideal, although a transistor switch can be used as long as its "Off" impedance is sufficiently high.

11 Appendix B – Acronym List

Acronym	Description
А	Amperes (amps)
AC	Automatic Carrier Wave option
AM	Amplitude Modulation
AQPSK	Variant of Quadrature Phase Shift Keying
ARTM	Advanced Range Telemetry
AUQPSK	Variant of Quadrature Phase Shift Keying
BER	Bit Error Rate
BNC	Bayonet Neill-Concelman Connector (RF Connector)
BPSK	Binary Phase Shift Keying
CF	Clock Free option
CG	Clock Generator option
СРМ	Continuous Phase Modulation
DB	Data Bias Level option
DB-9	D-subminiature 9 pin Serial Connector
DD	Debounce Delay
DE	Differential Encoding
DDS	Direct Digital Synthesizer
DP	Data Polarity option
DP	Dual Power
DS	Data Source option
FPGA	Field Programmable Gate Array
FS	Frequency Step
HR	High Bit Rate
ID	Internal Data
kbps	Kilobits per second
KHz	Kilohertz
LC	List Configurations option

Acronym	Description
LR	Low Bit Rate
LS	Lower S-band
MA	Modulations Allowed option
mbps	Megabits per second
МНСРМ	multi-h Continuous Phase Modulation
MHz	Megahertz
МО	Modulation
mwatt	Megawatt
N	(connector type) Threaded RF connector
OQPSK	Offset Quadrature Phase Shift Keying
PCMFM	Pulse Code Modulation/Frequency Modulation
PF	Parallel Port Frequency
PL	Power Level
PM	Parallel Port Mode
PM	Phase Modulation
PSK	Phase Shift Keying
PW	Parameter Write option
QPSK	Quadrature Phase Shift Keying
QT	Query Temperature option
RC	Recall Configuration option
RF	Radio Frequency
RG	Reverse Gender option
RJ-45	Ethernet Connection Jack
RN	Randomizer option
RS-232	Recommended Standard 232 (Serial Communications)
SC	Startup Configuration option
SN	Serial Number
SOQPSK	Shaped Offset Quadrature Phase Shift Keying
SOQPSK-TG	Shaped Offset Quadrature Phase Shift Keying –Telemetry Group

Acronym	Description
SV or PS	Preset Save option
TIMTER	Tier I Missile Test Transmitter
TRL	Tracking Loop
TTL	Transistor Transistor Logic
UDP	User Datagram Protocol
UQPSK	Unbalanced Quadrature Phase Shift Keying
US	Upper S-band
USB	Universal Serial Bus
UUT	Unit Under Test
VAC	Voltage Alternating Current
VDC	Voltage Direct Current
VP	Variable Power option
VR	Variable Reference Level
VSWR	Voltage Standing Wave Ratio
W	Watt
WAN	Wide Area Network
WV	Wide Input Voltage Range option