
How To Make an R Package Based on C++
And Manage It With R-Forge:

A Tutorial

José M. Maisog
Medical Numerics, Inc.,

and Georgetown University Medical Center
joe.maisog@medicalnumerics.com

jmm97@georgetown.edu

http://howtomakeanrpackage.pbworks.com

Version 1.14

January 11, 2011

http://howtomakeanrpackage.pbworks.com

Table of Contents

List of Figures 3

1 Introduction 4

2 Software Setup 6
2.1 Software For Making R Packages Based on C++ 6

2.1.1 R (required) . 6
2.1.2 RTools (required) . 6
2.1.3 MiKTeX (optional) . 6
2.1.4 Microsoft HTML Help Workshop (optional) 7
2.1.5 perl (optional) . 7
2.1.6 Set Up Your Windows Path Variable . 7
2.1.7 Dev-C++ or NotePad++ (optional) . 12

2.2 Software for Using R-Forge . 12
2.2.1 TortoiseSVN . 12
2.2.2 PuTTY . 13

3 Example C++ Code: A Simple Matrix Class 14
3.1 RMat.h . 15
3.2 RMat.cc . 16
3.3 testRMat.cc . 20

4 Make a Shared (Dynamically Linked) Library 22
4.1 RInterface.cc . 22
4.2 Run RCMD SHLIB . 24
4.3 Load the DLL into R . 25
4.4 Check that the DLL has been properly loaded 25
4.5 MatrixMult.r . 26
4.6 Test the R Wrapper Function . 27
4.7 Unload the DLL . 28

5 Make An R Package 29
5.1 Create the R Package Folder Structure . 29
5.2 Run RCMD CHECK . 30

1

5.3 The DESCRIPTION and NAMESPACE files . 30
5.4 Add src folder for C++ Code . 31
5.5 Fix the Documentation Files . 31
5.6 Run RCMD BUILD . 33
5.7 Install/Uninstall Your R Package . 33

6 R-Forge: Cross-Platform Builds and Submitting to CRAN 35
6.1 Create Your R-Forge Account . 36
6.2 Register Your Project . 36
6.3 Configure Your Security . 36
6.4 Check Out Files from R-Forge . 36
6.5 Modify Check Out Folder Contents . 47
6.6 Commit Modification To R-Forge . 47
6.7 Submit R Package to CRAN . 49

Bibliography 55

A MinGW gcc: Link Stand-Alone Example C++ Code To R Libraries 56

B Dev-C++: Link Stand-Alone Example C++ Code To R Libraries 58

2

List of Figures

2.1 System Properties. 8
2.2 Environment Variables. 9
2.3 Edit System Variables. 9
2.4 Edit Path in WordPad. 10
2.5 The Run Dialog Box. 11
2.6 DOS prompt. 11

6.1 R-Forge Home Page. 37
6.2 R-Forge, Just After Logging In. 38
6.3 R-Forge Register Project Page. 39
6.4 R-Forge, My Projects. 40
6.5 R-Forge Project Page. 41
6.6 PuTTY Key Generator Start Up. 42
6.7 PuTTY Key Generator, generating keys. 43
6.8 PuTTY Key Generator, keys generated. 44
6.9 R-Forge Account Maintenance Page. 45
6.10 R-Forge Edit Keys Interface. 46
6.11 Pageant System Tray Icon. 47
6.12 Pageant Add Key Dialog Box. 48
6.13 TortoiseSVN Context Menu. 49
6.14 TortoiseSVN Checkout Dialog Box. 50
6.15 TortoiseSVN Context Menu With Commit Option. 51
6.16 TortoiseSVN Commit Dialog Box. 52
6.17 R Packages Page. 54

B.1 Dev-C++ Project Options. 60
B.2 Dev-C++ Parameters. 61
B.3 Dev-C++ Library Directories. 62
B.4 Dev-C++ Include Directories. 63

3

Chapter 1

Introduction

On January 13, 2009, my thesis advisor, George Luta, forwarded me some C++ code pro-
vided by Jianfei Liu, a computer scientist/engineer based in Peking University. Dr. Liu’s
code performs a point containment test : given a closed three-dimensional polyhedron defined
by a triangular mesh, and given a point in three-dimensional space, the code tests whether
the point is inside, outside, or exactly on the polyhedron. Dr. Luta thought that a possible
thesis project for me might be to wrap up Dr. Liu’s C++ code into an R package, and then
write a thesis examining the use of the code on some real data; the idea would be to perform
gating on three-variable flow cytometry data. (See, e.g., Matt Wand’s curvHDR package.)
As it turned out, I did my thesis topic on a completely different different topic, non-negative
matrix factorization. Still, with some encouragement from Dr. Luta, I continued work on
building an R package from Dr. Liu’s C++ code.

It took a while for us to figure out how to do this. Chapter 4 from Chambers’ book [2] was
helpful, as was Rob Hyndman’s tutorial [3]. But the single most important document for my
purposes was Alan Lenarcic’s tutorial [5]; although it doesn’t quite get through the entire
process, this document got me about 95% of the way there. It took me a while to figure out
the remaining 5%, but with lots of help from my classmate, Yuan Wang, I finally created
the C++-based R package ptinpoly.

There was still one problem: on my Windows system, I was able to make builds only for
Windows and Linux, but we also wanted a MacOS build. And it seemed that I needed access
to a Macintosh computer in order to create a build for MacOS, but nobody I knew had a
Macintosh computer that I could use. So, for a while only Linux and Windows builds of the
ptinpoly package were available. (In retrospect, I now think that I could have submitted the
Linux build to CRAN, and CRAN would have generated the MacOS build for me. But I
didn’t think of this at the time.)

Then, during my poster presentation at JSM 2009, Tom Lumley suggested that we try
R-Forge. The way it was described to us, you upload the raw source material for your
R package to R-Forge, and R-Forge automatically makes Linux, Windows, and MacOS
builds for you. Learning how to use R-Forge took me a little longer than it really should

4

http://explore.georgetown.edu/people/gl77/?PageTemplateID=225
http://web5.pku.edu.cn/gongxy//Faculty/facultyD/Mechanics/2333.htm
http://www.pku.edu.cn/
http://cran.r-project.org/web/packages/curvHDR/index.html
http://georgetown.academia.edu/JoseMaisog/Papers/176083/Non-negative_Matrix_Factorization_Assessing_Methods_for_Evaluating_the_Number_of_Components_and_the_Effect_of_Normalization_Thereon
http://georgetown.academia.edu/JoseMaisog/Papers/176083/Non-negative_Matrix_Factorization_Assessing_Methods_for_Evaluating_the_Number_of_Components_and_the_Effect_of_Normalization_Thereon
http://robjhyndman.com/
http://ptinpoly.pbworks.com
http://ptinpoly.pbworks.com
http://www.amstat.org/meetings/jsm/2009/onlineprogram/index.cfm?fuseaction=abstract_details&abstractid=304888
http://faculty.washington.edu/tlumley/

have. Part of the problem was that there seemed to be two other pieces of software that I
had to learn about: Subversion, which is the version control system that R-Forge uses,
and TortoiseSVN, which provides a nice graphical user interface (GUI) to Subversion.
In essence, I had an extra degree of freedom that I was needlessly worrying about. I finally
figured out that I needed to “cone down” only on learning TortoiseSVN, and only on two
basic operations: check out and commit. Once I got TortoiseSVN under my belt, I was
then able to use R-Forge with ease. And once I was able to use R-Forge, I was able to
generate builds of the ptinpoly package for all three platforms, Linux, Windows, and MacOS.
(If you’re interested, the method on which the ptinpoly package is based has been published
as a paper [6].)

Since then, I have found two other tutorials on building R packages that have helped im-
prove my understanding of the process: a tutorial by Schafer [7], in which he describes how
to build an R package based on FORTRAN 95, and a tutorial by Leisch [4], in which he
describes how to build an R package based solely on R scripts (i.e., not based on compiled
languages like FORTRAN or C++).

This document is my attempt to put together in one place the things I’ve learned about
building a C/C++-based R package, and then managing it using R-Forge. In the first
chapter of the tutorial, I step you through the installation of required software. Then in the
second chapter, I introduce you to a small C++ class that we’ll use for the tutorial; in that
chapter, we’ll build a small test program that exercises the class without involving R. In the
third chapter, I first step you through the process of building a dynamically linked library
(DLL) from the C++ code, and then accessing that DLL from within R; then I step you
through the process of building an R package based on the C++ code. In the final chapter,
I show how to use R-Forge to make Linux, Windows, and MacOS builds of your R package,
and how to transmit your R package from R-Forge to CRAN.

Now, this tutorial may already have been rendered obsolete by the recent development of an
interesting R package, Rcpp (URL: http://dirk.eddelbuettel.com/code/rcpp.html),
but for what it’s worth, here’s my take on the matter. I’m running a Windows XP system,
so this tutorial is Windows-centric. Still, I think that many of the procedures should be very
similar under either Linux or MacOS. If you notice any errors in this tutorial, please let me
know.

5

http://ptinpoly.pbworks.com
http://ptinpoly.pbworks.com
http://dirk.eddelbuettel.com/code/rcpp.html

Chapter 2

Software Setup

In this chapter, I discuss the software needed for this tutorial;. It is assumed that you have
root privileges on your computer, so that you can install the software. If not, you’ll need the
system administrator to install the software for you, if you don’t already have the necessary
software installed. In the first section, I go over software for making R packages based on
underlying C++ code, while in the second section I cover the two pieces of software you’ll
need to use R-Forge.

2.1 Software For Making R Packages Based on C++

2.1.1 R (required)

This may be obvious, but you’ll need a copy of R (URL: http://www.r-project.org)
itself to be installed. In the bin subfolder of the R installation, there is (in addition to
R.exe itself) a utility program named Rcmd.exe, which we’ll use to check (section 5.2 and
section 5.5) and build (section 5.6) R packages.

2.1.2 RTools (required)

RTools (URL: http://www.murdoch-sutherland.com/Rtools) is a suite of utilities for R.
It provides a version of the Gnu C/C++ gcc compiler, called MinGW, which we’ll use in
the next chapter.

Recent versions of RTools also include perl, which I believe is required for running the
rcmd utility program that comes packaged with R itself. At least, if I try to run rcmd on
a machine that has R installed but not RTools or perl, I get an error message about perl
not being found.

2.1.3 MiKTeX (optional)

This is optional; it is needed to create .pdf help files. However, it is possible to build a working
R package without .pdf help files [3]. A. Lenarcic’s tutorial seemed to imply that MiKTeX

6

http://www.r-project.org
http://www.murdoch-sutherland.com/Rtools

should be installed before RTools, so I have listed it here first. Go to the MiKTeX
website (URL: http://www.miktex.org/) and download the latest version of MiKTeX.
After you’ve downloaded the MiKTeX installer, run it, perhaps by double-clicking on its
icon or perhaps by selecting “Open” in your downloader.

2.1.4 Microsoft HTML Help Workshop (optional)

As with MikTeX, HTML Help Workshop is optional. It is needed to create .chm help files.
However, it is possible to build a working R package without .chm help files [3]. Download
it from this URL:
http://www.microsoft.com/downloads/details.aspx?FamilyID=00535334-c8a6-452f-9aa0-

d597d16580ccdisplaylang=en; or do a web search for HTMLHelp.exe.

2.1.5 perl (optional)

As mentioned above (subsection 2.1.2), the latest version of RTools should come with perl.
However, if you try to run rcmd check (section 5.2 and section 5.5) and get an error message
that the command perl is not found, it means that you’re missing perl and that you need
to download and install it. If so, you can obtain it from here:
http://www.activestate.com/Products/activeperl

2.1.6 Set Up Your Windows Path Variable

The Path variable is a list of folders that are searched when a program is invoked at the
DOS prompt or from within a script. This like the Path environment variable under Lin-
ux/UNIX, or to the MATLABPATH variable for MATLAB. If the program isn’t found
in any of those folders, and if it isn’t a native DOS command such as CHDIR, MKDIR,
RMDIR, and so on, then an error is generated, even though it may be a program that you
have in fact installed somewhere – you still need to tell DOS where it is.

You need to set up the Path variable so that it contains the folders listed in Table 2.1 [5].
These are the executables that you have installed in the previous subsections. The steps to
modify the Path variable are listed below; this is a somewhat meticulous and tedious step
(A. Lenarcic called it “awkward”), so be careful. If you get any of the folder paths wrong,
the rest of this tutorial will probably not work.

1. On your computer desktop, double-click on the icon labeled My Computer. This
should pop up a window as shown in Figure 2.1.

2. Select the tab labeled Advanced.

3. Click on the button labeled Environment Variables. This should pop up a window
as shown in Figure 2.2.

4. Select System Variables This should pop up a window as shown in Figure 2.3.

5. Click in the entry box labeled Variable value and select the entire contents.

7

http://www.miktex.org/
http://www.microsoft.com/downloads/details.aspx?FamilyID=00535334-c8a6-452f-9aa0- d597d16580ccdisplaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=00535334-c8a6-452f-9aa0- d597d16580ccdisplaylang=en
http://www.google.com/search?sourceid=chrome&ie=UTF-8&q=yuan+wang+site:.edu#sclient=psy&hl=en&q=htmlhelp.exe&aq=f&aqi=&aql=&oq=&gs_rfai=&pbx=1&fp=ca05a7bb65e82229
http://www.activestate.com/Products/activeperl
http://support.microsoft.com/kb/166827
http://support.microsoft.com/kb/166827

Figure 2.1: The System Properties dialog box.

6. Copy and paste the contents into a text editor like WordPad or NotePad++ (see
subsection 2.1.7 below).

7. In the text editor, add the following folders to the beginning of the list of folders, so
that they are searched first. Delimit folders with semicolons, as per the Path variable
convention; see Figure 2.4.

� R bin – this is the folder in which your R executable, R.exe, is kept. On my
system, this is the folder C:\Program Files\R\R-2.10.1\bin; of course, the
exact path name may differ on your own system.

� RTools bin – this is a subfolder of your RTools installation. On my system, this
is the folder C:\Rtools\bin.

� MinGW bin – this is another bin subfolder of your RTools distribution. On
my system, this is the folder C:\Rtools\MinGW\bin

� perl bin – Recent versions of RTools come with perl, kept in a separate bin
folder in the RTools distribution, e.g C:\Rtools\perl\bin.

� MiKTeX – If you have indeed installed it. E.g., C:\Program Files\MiKTeX
2.7\miktex\bin

� HTML Help Workshop – If you have indeed installed it. E.g., C:\Program
Files\HTML Help Workshop

Again as per Alan Lenarcic, we need to run a few commands at a DOS prompt to confirm
that your Path variable has been properly set up [5]. Bring up a new DOS shell by clicking

8

Figure 2.2: The Environment Variables dialog box.

Figure 2.3: The Edit System Variables dialog box.

Software folder Test Command

R R/bin rcmd –help

Gnu Compiler Rtools/bin gcc –help

perl perl/bin perl –help

MiKTeX miktex/bin tex –help

MinGW utilities Rtools/bin grep –help

HTML Help Workshop HTML Help Workshop hhc –help

Table 2.1: Table of folders to list in the Path variable, and commands to confirm.

9

Figure 2.4: Example of editing the Path variable in WordPad.

on the Start button in the lower left corner of your Windows desktop, and select Run...;
this should bring up the Run dialog box, as show in Figure 2.5. Type cmd in the entry
box, and then click on the OK button. This should then pop up a window containing an
old-fashioned DOS prompt; see Figure 2.6. (Alternatively, you can select Start → Programs
→ Accessories → Command Prompt.)

Then, type the following seven commands at the DOS prompt. The first command, ’path’,
simply lists prints out the value of your Path variable. The remaining six commands invoke
various programs that are needed to create an R package.

path

rcmd --help

gcc --help

perl --help

tex --help

grep --help

hhc --help

The latter six commands are listed in Table 2.1. If you run any of these commands and get
an error message like “command not found”, it means either that you haven’t set up the
Windows Path variable properly, or that you haven’t installed the software itself properly.

10

Figure 2.5: The Run dialog box.

Figure 2.6: DOS prompt.

11

2.1.7 Dev-C++ or NotePad++ (optional)

In his tutorial, A. Lenarcic suggested obtaining a general coding text editing program for
C++ code. He suggested the Crimson Editor
(URL: http://crimsoneditor.com/english/download.html), but qualified his suggestion
with the observation that this editor (at least that particular version) didn’t eliminate
CRLF returns to his satisfaction. I believe that the “Convert to UNIX Format” fea-
ture of Notepad++ (URL: http://notepad-plus-plus.org/) may do the trick. Also,
Notepad++ recognizes multiple standard programming languages, including C++, and is
able to show computer code in context-sensitive colors – e.g., comments in green, reserved
symbols in purple, and preprocessor macros in red. For this tutorial, we’ll use gcc, the Gnu
compiler that comes with RTools; this will be fine for the example we’ll be dealing with.

For larger-scale programming efforts, you might consider using a full-fledged integrated de-
velopment environment (IDE) such as Microsoft Visual Studio. For a freely available option,
consider Dev-C++ (URL: http://www.bloodshed.net/dev). Note that Dev-C++ uses
the MinGW port of the Gnu compiler; I think that this means that if you install Dev-
C++, then you’ll have two copies of the MinGW Gnu compiler, one from RTools and one
from Dev-C++. It may be possible to set up Dev-C++ so that it uses the copy of the
MinGW Gnu compiler that came with RTools, but I haven’t looked into that. (Maybe
somebody out there can confirm or refute this idea.)

You can find a tutorial that I wrote on getting started with Dev-C++ at this URL:
http://scs.gmu.edu/~wss/wss0804.shtml#student

2.2 Software for Using R-Forge

If you’d like to use R-Forge to store and maintain your R project (see chapter 6), you’ll
need to install TortoiseSVN and the PuTTY distribution.

2.2.1 TortoiseSVN

Subversion is an open source software for version control. TortoiseSVN provides a nice
graphical user interface (GUI) to Subversion functionality. Download the TortoiseSVN
distribution from this URL: http://tortoisesvn.tigris.org

As an aside, I thought at first that one needed to install both Subversion and Tortoise-
SVN, and that TortoiseSVN would run “on top” of Subversion; i.e., one would have
both a Subversion process and a TortoiseSVN process running simultaneously on the
computer. I mistakenly thought it would be exactly analogous to the relationship between
MiKTeX (which provides LATEX functionality) and TeXnicCenter (which runs “on top”
of MiKTeX and provides a nice GUI). But it turns out that TortoiseSVN itself provides
Subversion functionality, so you don’t need to install Subversion as well.

12

http://crimsoneditor.com/english/download.html
http://notepad-plus-plus.org/
http://www.bloodshed.net/dev
http://scs.gmu.edu/~wss/wss0804.shtml#student
http://tortoisesvn.tigris.org

2.2.2 PuTTY

PuTTY is a free SSH, Telnet and Rlogin client for 32-bit Windows systems. We need the
PuTTY distribution for its public key encryption software, since R-Forge uses this par-
ticular encryption system for security. Download the PuTTY distribution from this URL:
http://www.chiark.greenend.org.uk/~sgtatham/putty. After downloading and unpack-
ing it, you should see a few files, including two named puttygen.exe and pageant.exe; we
will be using these two programs in section 6.3 and section 6.4. For further information on
public key encryption in the context of PuTTY, see
http://tartarus.org/~simon/putty-snapshots/htmldoc/Chapter8.html#pubkey

13

http://www.chiark.greenend.org.uk/~sgtatham/putty
http://tartarus.org/~simon/putty-snapshots/htmldoc/Chapter8.html#pubkey

Chapter 3

Example C++ Code: A Simple
Matrix Class

In the three sections of this chapter, I list the code listing for example C++ code that we’ll
use in this tutorial:

� RMat.h – header file declaring the interface to a simple C++ matrix class named
RMat, which we’ll interface with an R matrix

� RMat.cpp – C++ code defining the member functions of the RMat class. (This
is not the most efficient implementation for a C++ linear algebra library, but it will
suffice for this tutorial. For a discussion of efficient scientific programming in C++,
see, e.g., [10] and [11]; see also Chapter 5 of R. Davies’ documentation for his NewMat
C++ linear algebra library, URL: http://www.robertnz.net/nm11.htm#design.)

� testRMat.cc – C++ code for a driver program defining a main function, which
exercises the member functions of the RMat class to demonstrate that it works.

Cut and paste the source code given in section 3.1 into a plain text file named RMat.h.
Similarly, place the source code given in section 3.2 into a file named RMat.cc, and the
source code given in section 3.3 into a file named testRMat.cc. For your convenience, a
ZIP file file containing this source code is downloadable from this URL:
http:\\howtomakeanrpackage.pbworks.com\f\Code.zip.

At a DOS prompt (see subsection 2.1.6), navigate to the folder containing the three source
code files; use the DOS commands chdir and dir to change and list folders, in exactly the
same way you’d use the cd and ls commands under UNIX. Then use gcc from MinGW to
compile the test program:

gcc -o testRMat testRMat.cpp RMat.cpp -lstdc++

Then invoke the test program:

testRMat

14

http://www.robertnz.net/nm11.htm#design
http://howtomakeanrpackage.pbworks.com/f/Code.zip

If all went well, you should see this output:

vMat1 =

1 3 5

2 4 6

vMat1(2,2) = 4

vMat2 =

3 5 7

4 6 8

vMat3 =

1 3 5

2 4 6

vMat4 =

1 3 5

2 4 6

vMat5 =

1 2

3 4

5 6

vMat6 =

35 44

44 56

Now, vMat6 =

0 0

0 0

Press any key to continue . . .

3.1 RMat.h
#ifndef _RMAT_H

#define _RMAT_H

#define COMPILE_WITH_R 0

class RMat {

public:

//- Constructors and destructor.

//

RMat(); // Constructor #1

RMat(int x, int y); // Constructor #2 for x-by-y matrix.

RMat(double *vElements, int x, int y); // Constructor #3 for R interface

RMat(const RMat &vRhs); // Constructor #4 (copy constructor)

~RMat(); // Destructor

//- Overloaded operators.

//

RMat& operator= (const RMat &vRhs); // Assignment #1

RMat& operator= (double vValue); // Assignment #2

RMat operator* (const RMat &vRhs); // Multiplication

double& operator()(int x, int y) const; // Element access

//- Some utility functions.

//

RMat Transpose(); // Transpose

int NumRows() const; // Returns number of rows.

int NumCols() const; // Returns number of columns.

void Print(); // Print matrix to stdout

void Print(const char *vString); // Print matrix to stdout with string.

#if COMPILE_WITH_R

15

void RPrint(); // Print matrix to R console.

void RPrint(const char *vString); // Print matrix to R console with string.

#endif

//- A function for deallocating memory is made publicly available because

// I want to not only run test this code in a pure C++ test

// program outside of R, testRMat.cc, but I also want to run this code

// from within R. In the latter case, I will let R handle memory

// management. This means that I can’t automatically deallocate memory

// in the destructor, which is the usual thing one might do.

// For symmetry, the function for memory allocation is also made publicly

// available, although it didn’t have to be. (Maybe it should be private!)

//

bool AllocateMemory(int x, int y); // Allocate memory for x-by-y matrix.

void DeallocateMemory(); // Deallocate memory

private:

double *mValues; // Matrix values

int mNumRows, mNumCols; // Matrix dimensions

double mNaN; // Return NaN on bad input

};

#endif // _RMAT_H defined

3.2 RMat.cc
#include "RMat.h" // For RMat class

#include <limits> // For NaN

#include <iostream> // For cout, cerr, endl, and flush

#include <assert.h> // For assert

#if COMPILE_WITH_R

#include "R.h" // For Rprintf

#endif

using std::cout;

using std::cerr;

using std::endl;

using std::flush;

//- Constructor #1

//

RMat::RMat() : mValues(0), mNumRows(0),

mNumCols(0), mNaN(std::numeric_limits<double>::quiet_NaN())

{

}

//- Constructor #2

//

RMat::RMat(int x, int y) : mValues(0), mNumRows(0),

mNumCols(0), mNaN(std::numeric_limits<double>::quiet_NaN())

{

AllocateMemory(x,y);

}

//- Constructor #3

// This constructor will be used to point an RMat object to the memory

// location provided by R, via the ’.C()’ function.

//

RMat::RMat(double *vElements, int x, int y) :

mNaN(std::numeric_limits<double>::quiet_NaN())

{

mValues = vElements;

mNumRows = x;

mNumCols = y;

16

}

//- Constructor #4 (copy constructor)

//

RMat::RMat(const RMat &vRhs) : mValues(0), mNumRows(0),

mNumCols(0), mNaN(std::numeric_limits<double>::quiet_NaN())

{

AllocateMemory(vRhs.NumRows(),vRhs.NumCols());

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=mNumCols; j++)

{

(*this)(i,j) = vRhs(i,j);

}

}

}

//- Destructor

//

RMat::~RMat()

{

DeallocateMemory();

}

//- Assignment operator #1

//

RMat&

RMat::operator= (const RMat &vRhs)

{

DeallocateMemory();

AllocateMemory(vRhs.NumRows(),vRhs.NumCols());

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=mNumCols; j++)

{

(*this)(i,j) = vRhs(i,j);

}

}

return (*this);

}

//- Assignment operator #2

//

RMat&

RMat::operator= (double vValue)

{

for (int i=0; i<mNumRows*mNumCols; i++)

{

mValues[i] = vValue;

}

return (*this);

}

//- Multiplication operator

//

RMat

RMat::operator* (const RMat &vRhs)

{

assert(mNumCols==vRhs.mNumRows);

RMat vProduct(mNumRows,vRhs.NumCols());

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=vRhs.NumCols(); j++)

{

for (int k=1;k<=mNumCols;k++)

{

vProduct(i,j)+=(*this)(i,k)*vRhs(k,j);

}

17

}

}

return vProduct;

}

//- Element access

//

double&

RMat::operator()(int x, int y) const

{

//- Basic range checks.

//

if ((x < 1) || (x > mNumRows)

|| (y < 1) || (y > mNumCols))

{

cerr << "Rmat::operator(): range error!" << endl;

return (double &) mNaN;

}

//- Offset is ((y-1)*mNumRows)+(x-1)

// rather than ((x-1)*mNumCols)+(y-1)

// because we want to organize memory the same

// way as it is in an R matrix. R is column-major.

// Reference:

// http://en.wikipedia.org/wiki/Row-major_order#Column-major_order

//

return mValues[((y-1)*mNumRows)+(x-1)];

}

//- Transpose

//

RMat

RMat::Transpose()

{

RMat vTranspose(mNumCols,mNumRows);

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=mNumCols; j++)

{

vTranspose(j,i) = (*this)(i,j);

}

}

return vTranspose;

}

//- Print #1

//

void

RMat::Print()

{

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=mNumCols; j++)

{

cout << (*this)(i,j) << " ";

}

cout << endl;

}

}

//- Print #2

//

void

RMat::Print(const char *vString)

{

cout << vString;

Print();

18

}

#if COMPILE_WITH_R

//- RPrint #1

//

void

RMat::RPrint()

{

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=mNumCols; j++)

{

Rprintf("%g ",(*this)(i,j));

}

Rprintf("\n");

R_FlushConsole();

R_ProcessEvents();

}

}

//- RPrint #2

//

void

RMat::RPrint(const char *vString)

{

Rprintf("%s",vString);

RPrint();

}

#endif

//- Get number of rows

//

int

RMat::NumRows() const

{

return mNumRows;

}

//- Get number of columns

//

int

RMat::NumCols() const

{

return mNumCols;

}

//- Allocate memory

// Initialize all entries to 0.

//

bool

RMat::AllocateMemory(int x, int y)

{

DeallocateMemory();

try {

mValues = new double [x*y];

}

catch (...) {

cerr << "Rmat::AllocateMemory(): unable to allocate memory for "

<< x << " by " << y << " matrix!" << endl;

return false;

}

mNumRows = x;

mNumCols = y;

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=mNumCols; j++)

{

19

(*this)(i,j) = 0.0;

}

}

return true;

}

//- Deallocate memory

//

void

RMat::DeallocateMemory()

{

if (mValues != 0)

{

delete [] mValues;

mValues = 0;

}

}

3.3 testRMat.cc
#include <cstdlib>

#include <iostream>

#include "RMat.h"

#if COMPILE_WITH_R

#include <Rmath.h>

#endif

using namespace std;

int main(int argc, char *argv[])

{

//- Test element access (set value / get value).

//

RMat vMat1(2,3);

int vCount = 0;

for (int i=1; i<=2; i++)

{

for (int j=1; j<=3; j++)

{

vMat1(i,j) = ++vCount;

}

}

vMat1.Print("vMat1 = \n");

cout << endl << "vMat1(2,2) = " << vMat1(2,2) << endl;

//- Test special constructor for pre-allocated memory.

// We’ll use this when passing data from R to C++.

// vMat2 should be a 2 by 3 matrix containing values between 3 and 8.

//

double *vValues;

vValues = new double [6];

for (int i=0; i<6; i++)

vValues[i] = i+3;

RMat vMat2(vValues,2,3);

vMat2.Print("\nvMat2 = \n");

//- Test assignment.

//

RMat vMat3;

vMat3 = vMat1;

vMat3.Print("\nvMat3 = \n");

//- Test copy constructor.

20

//

RMat vMat4(vMat3);

vMat4.Print("\nvMat4 = \n");

//- Test transpose.

//

RMat vMat5 = vMat4.Transpose();

vMat5.Print("\nvMat5 = \n");

//- Test matrix multiplication.

//

RMat vMat6 = vMat1 * vMat5;

vMat6.Print("\nvMat6 = \n");

//- Test setting all matrix elements to a scalar value.

vMat6 = 0.0;

vMat6.Print("\nNow, vMat6 = \n");

//- Note that we must manually deallocate memory

// with the RMat class, since its destructor doesn’t

// do this. This is in anticipation of using the RMat

// class with R.

//

vMat1.DeallocateMemory();

vMat2.DeallocateMemory();

vMat3.DeallocateMemory();

vMat4.DeallocateMemory();

vMat5.DeallocateMemory();

vMat6.DeallocateMemory();

#if COMPILE_WITH_R

printf("\nUsing R math library to compute R_pow(2,3) = %g\n",R_pow(2,3));

#endif

system("PAUSE");

return EXIT_SUCCESS;

return 0;

}

21

Chapter 4

Make a Shared (Dynamically Linked)
Library

As an intermediate step between building a stand-alone program that exercises the C++
code (chapter 3) and making an R package (chapter 5), I think it’s very useful to first create
a dynamically linked library and debug it, because the Edit-Build-Run debugging cycle is
faster. Once it’s debugged, you can then proceed to make the full-blown R package.

For this chapter and the next, I have drawn heavily on Alan Lenarcic’s tutorial [5].

4.1 RInterface.cc

Below is the code for C/C++ functions that will interface the RMat class with R. Cut and
paste this source code into a plain text file named RInterface.cc. For your convenience,
this source code is included in the ZIP file given previously,
http:\\howtomakeanrpackage.pbworks.com\f\Code.zip.

In the C/C++ interface code below, note the following.

� the C “wrapper”function CWrapper does not contain any instantiations of C++
objects. However, it does make a call to a function CppMultiply that itself instan-
tiates and uses C++ RMat objects. The C++ code is thus “hidden” from R by the
intervening C “wrapper”function, CWrapper.

� The C “wrapper”function CWrapper is enclosed in an extern statement, indicating
that it is a C rather than C++ function.

For some reason, you need to “hide” C++ code from R, presenting R with only a C interface;
my guess is that the part of R that interfaces with C/C++ code was compiled in C, not
C++. Within the C code, however, you can then make calls to functions which themselves
use C++. The C code thus functions as a sort of “wrapper” for the C++ code.

22

http://www.stat.columbia.edu/~gelman/stuff_for_blog/AlanRPackageTutorial.pdf
http://howtomakeanrpackage.pbworks.com/f/Code.zip

#include "RMat.h"

#include "R.h" // R functions

#include "Rmath.h" // Rmath

//---

//- This file defines TWO functions.

//

// The first one is a C++ function named ’CppMultiply’ that directly accesses

// the C++ RMat class.

//

// The second one is a C function named ’CWrapper’, that INdirectly accesses

// the C++ RMat class, via a call to ’CppMultiply’.

//---

//- CppMultiply

//

// C++ function which uses the RMat class defined in RMat.h and RMat.cpp.

// Since it is a C++ function, it cannot be called directly from R,

// but instead will be called through an intermediary C function,

// CppMultiply, defined below.

//

// ’result’ is a raw pointer to the result of matrix multiplication.

// ’numRows’ and ’numCols’ is the number of rows and columns of the first

// matrix; ’numCols2’ is the number of columns of the second matrix.

// The number of rows of the second matrix must be the number of

// columns of the first matrix; this will be checked at the level

// of the R code.

// ’mat1’ and ’mat2’ are raw pointers to the matrix elements of the two

// matrices.

//

void CppMultiply(double *result,

int *numRows, int *numCols, int *numCols2,

double *mat1, double *mat2)

{

RMat vMat1(mat1,*numRows,*numCols);

RMat vMat2(mat2,*numCols,*numCols2);

//- Compute matrix product using overloaded operator,

// just to demonstrate that we get the same answer.

//

RMat vMat3 = vMat1 * vMat2;

vMat3.RPrint("CppMultiply(): way down in the C++ code,\nvMat3 =\n");

//- Use Constructor #3 to point vMat4’s mValues pointer to the memory

// location provided by R. Note that this constructor assumes that

// memory allocation/deallocation will be managed up in the R level,

// not down here in the C++ code.

//

// Then, "manually" compute the matrix product. We couldn’t use the

// overloaded multiplication operator as we did with vMat3 above,

// because the first thing that the overloaded assignment operator ’=’

// does is deallocate memory. This means that the memory location that

// R provided would probably become corrupted or inaccessible.

// (In any case, you’re not supposed to use the regular C++ ’delete’

// statement with memory that was allocated by R.) This is still using

// C++ stuff -- we’re using the overloaded ’()’ operator.

//

RMat vMat4(result,*numRows,*numCols2);

vMat4 = 0.0; // Initialize to zero.

for (int i=1; i<=*numRows; i++)

{

for (int j=1; j<=*numCols2; j++)

{

for (int k=1;k<=*numCols;k++)

{

vMat4(i,j) += vMat1(i,k) * vMat2(k,j);

}

23

}

}

vMat4.RPrint("CppMultiply(): way down in the C++ code,\nvMat4 =\n");

//- When program execution finishes the above three nested FOR loops,

// vMat4 will contain the result of multiplying the two matrices.

// When program execution exits this function vMat4 will go out of scope,

// but the result of multiplication will remain in memory.

// Note that the RMat destructor does NOT deallocate memory; if it did,

// result of multiplication would be lost when vMat4 goes out of scope!

// Not to mention the problem of deallocating memory in vMat1 and vMat2.

}

//---

//- CWrapper

//

// C function that in turn invokes the above C++ function ’CppMultiply’.

// R can access C code but can’t access C++ code directly.

// This C function provides a C interface to the C++ code that R can access.

// See: http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html

// In this C function, you must NOT include class declarations,

// instantiate any C++ objects, or do any oher obvious C++

// things.

// The EXTERN statement tells the C++ compiler that the

// enclosed function ’CWrapper’ is a C function.

// Although apparently we can insert C++ style comments and

// we can even declare variables in the middle of the function,

// which I thought you can’t do in regular C.

//

// ’result’ is a raw pointer to the result of matrix multiplication.

// ’numRows’ and ’numCols’ is the number of rows and columns of the first

// matrix; ’numCols2’ is the number of columns of the second matrix.

// The number of rows of the second matrix must be the number of

// columns of the first matrix; this will be checked at the level

// of the R code.

// ’mat1’ and ’mat2’ are raw pointers to the matrix elements of the two

// matrices.

//

extern "C" {

void CWrapper(double *result,

int *numRows, int *numCols, int *numCols2,

double *mat1, double *mat2)

{

//- Invoke second function which internally can do C++ things.

//

CppMultiply(result,numRows,numCols,numCols2,mat1,mat2);

}

}

4.2 Run RCMD SHLIB

Edit the file RMat.h, and change the line

#define COMPILE_WITH_R 0

to

#define COMPILE_WITH_R 1

This enables some lines of code that use R functions such as Rprint.

24

Examine the newly enabled lines in RMat.cc. There, you’ll see the following function.

void

RMat::RPrint()

{

for (int i=1; i<=mNumRows; i++)

{

for (int j=1; j<=mNumCols; j++)

{

Rprintf("%g ",(*this)(i,j));

}

Rprintf("\n");

R_FlushConsole();

R_ProcessEvents();

}

}

The RMat member function RPrint calls the R function Rprint, which prints charac-
ter strings to the R console. But the invocation of Rprint must be followed by calls to
the two functions, R FlushConsole and R ProcessEvents, otherwise the character out-
put won’t be printed immediately. Apparently, character strings get stored in some buffer
that needs to be manually flushed. For more on the R API, see Chapter 6 of [8] (URL:
http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API). That chapter lists
many of the R functions that you might like to try calling from C/C++ code.

Then, to create a dynamically linked library, run the following command:

rcmd SHLIB RMat.cc RInterface.cc -o multmat.dll

This should create a new DLL file named multmat.dll.

4.3 Load the DLL into R

To load the multmat DLL into R, run the following command at the R prompt:

dyn.load("C:/YourFolder/multmat.dll")

As usual, you’ll need to change the exact path to the multmat.dll file to reflect the actual
folder structure on your own system.

4.4 Check that the DLL has been properly loaded

To confirm that the DLL has been properly loaded, run the following command at the R
prompt:

is.loaded("CWrapper")

It should return TRUE rather than FALSE.

25

http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API

4.5 MatrixMult.r

The R function MatrixMult defined below doesn’t do much beyond calling the C wrapper
function CWrapper (which in turn calls the underlying C++ code). Cut and paste this
code into a plain text file named MatrixMult.r For your convenience, the code is down-
loadable from this URL: http:\\howtomakeanrpackage.pbworks.com\f\MatrixMult.r.

There are two things to note about MatrixMult:

1. First, note that this R function makes a call to the R function .C, which accepts the
name of the C wrapper function, CWrapper, as one of its input arguments. It will
be able to access the C wrapper function if the DLL has been properly loaded, which
we checked in the previous subsection.

2. Also note that this R function makes some basic checks on its input arguments such as
making sure that the input is numeric and of the proper dimensions. Sometimes such
checks can be placed down at the level of the C wrapper function, or perhaps even at
the C++ level. Schafer offers some suggestions for where to place checks [7].

This R function might itself be considered a “wrapper function”. Therefore, it had been
tempting to name it RWrapper, but I thought that it would be better to give it a more
descriptive name, MatrixMult, since this is the function that the user will interact with in
practice.

MatrixMult <-

function(A,B) {

Make sure A and B are numeric.

if ((! is.numeric(A)) || (! is.numeric(B))) {

print("MatrixMult(): input must be numeric!")

return(NaN);

}

Make sure A and B are matrices.

if ((! is.matrix(A)) || (! is.matrix(B))) {

print("MatrixMult(): input must be matrices!")

return(NaN);

}

Check inner dimensions of matrices.

ncolA = ncol(A)

nrowB = nrow(B)

if (ncolA != nrowB) {

print("MatrixMult(): improperly dimensioned matrices!")

return(NaN);

}

Create a matrix of zeros which will hold the result

of multiplication. This step allocates memory that

the C++ code will use.

nrowA = nrow(A)

ncolB = ncol(B)

multResult = matrix(rep(0,nrowA*ncolB),nrow=nrowA)

Invoke C function ’CWrapper’.

The first argument of .C() is the name of the C wrapper function.

The rest of the arguments provide pointers to six R variables, in order:

(1) The matrix ’multResult’, which will contain the result of multiplication

26

http://howtomakeanrpackage.pbworks.com/f/MatrixMult.r

(2) The number of rows in the first matrix.

(3) The number of columns in the first matrix.

(4) The number of columns in the second matrix.

(5) The actual values of the first matrix.

(6) The actual values of the second matrix.

output =.C("CWrapper",

product = as.double(multResult),

nRows = as.integer(nrow(A)),

nCols = as.integer(ncolA),

nCols2 = as.integer(ncol(B)),

matrix1 = as.double(A),

matrix2 = as.double(B)

)

Reshape ’product’ back into an nrowA by ncolB matrix.

Then return the matrix.

multResult = matrix(output$product,nrow=nrowA)

return(multResult)

}

4.6 Test the R Wrapper Function

In an R session, source the file MatrixMult.r, so that the R wrapper function MatrixMult
is defined.
source("C:/Your/Folder/MatrixMult.r")

Then define two matrices A and B, and multiply them in R.
A = matrix(1:6,nrow=2)

B = t(A)

Product1 = A %*% B

print(Product1)

The print function should produce the following output.
> print(Product1)

[,1] [,2]

[1,] 35 44

[2,] 44 56

Then, use the MatrixMult function to perform the matrix multiplication.
Product2 = MatrixMult(A,B)

print(Product2)

You should see the following in the R console:
> Product2 = MatrixMult(A,B)

CppMultiply(): way down in the C++ code,

vMat3 =

35 44

44 56

CppMultiply(): way down in the C++ code,

vMat4 =

35 44

44 56

> print(Product2)

[,1] [,2]

[1,] 35 44

[2,] 44 56

>

This confirms that the R function MatrixMult (which invokes the C wrapper function
CWrapper, which in turn invokes the C++ function CppMultiply, which computes the
matrix product) gets the same answer that R does.

27

4.7 Unload the DLL

When debugging your C++ code and testing it in R, you may need to fix your C++ code
and then re-build the DLL. But you won’t be able to re-build the DLL if you currently have
it loaded in an R session. You must first unload the DLL from R before attempting to
rebuild it.

To unload the DLL, run the dyn.unload command at the R prompt:

dyn.unload("C:/YourFolder/multmat.dll")

Now that you have unloaded the DLL, you can proceed to re-build it using rcmd SHLIB
as in section 4.2, and then re-load it into R as in section 4.3.

28

Chapter 5

Make An R Package

Once you’ve got the DLL and R wrapper function working properly (chapter 4), you can
then proceed to make an R package.

5.1 Create the R Package Folder Structure

Get into an R session if you aren’t already in one. In this R session, define matrices A and
B as well as the R function MatrixMult, as described previously in section 4.6. Then run
the following R commands:

rObjects = c(’A’,’B’,’MatrixMult’)

package.skeleton(name = "multmat",

path = "C:/Your/Example/Folder",

list = rObjects

)

This should create a folder named multmat, which in turn contains three subfolders named
R, data, and man, as well as two plain text files named DESCRIPTION and Read-
and-delete-me. This new multmat folder will be placed in the folder specified by the
path argument in the call to package.skeleton; you should modify this to point to some
appropriate folder on your own system.

The subfolder R should contain an R script named MatrixMult.r, which contains the def-
inition of the function MatrixMult. The subfolder data should contain two R data files,
A.rda and B.rda, which contain the two example matrices. Finally, the subfolder man
should contain four R documentation files, multmat-package.Rd, multmat-package.Rd,
A.Rd, and B.Rd; these files will be further discussed below in section 5.5. You can open
these files in a plain text editor such as WordPad or NotePad++; if you do so, you will
see that the content of these files looks very similar to LATEX.

The path of the package.skeleton command indicates where you’d like to create the R
package folder skeleton. At the end of his tutorial, A. Lenarcic notes that your choice of
where to place this folder can cause problems. I have noticed this myself intermittently,

29

and am not sure where the problem arises. I considered the possibilities that the problem
arises because the folder path is too long (e.g., perhaps not enough memory was allocated
for the folder path), or perhaps the path name should not contain spaces or other “funny”
characters, but these don’t seem to be the problem. If the rcmd check and rcmd build
commands give you error messages about an “unspecified package”, consider moving your
project high up in the folder tree, perhaps to C:\tmp, such that the folder path is very
short and doesn’t contain any “funny” characters.

For details on the structure of R packages, see Section 1.1 of [8]
(URL: http://cran.r-project.org/doc/manuals/R-exts.html#Package-structure).

5.2 Run RCMD CHECK

At this point, it might be instructive to try running the rcmd check command. To do this,
perform the following steps:

1. Bring up a DOS prompt as before (see subsection 2.1.6). Click on the Start button
in the lower left corner of your desktop, and select Start → Programs → Accessories →
Command Prompt. Alternatively, you can select Start → Run..., and in the dialog box
that pops up type cmd, and then click on the OK button. Either way, a DOS prompt
running in a window should pop up (Figure 2.6).

2. At this DOS prompt, navigate to the parent folder containing the multmat folder you
created in section 5.1. (Again, use the DOS commands chdir and dir to change and
list folders, exactly the same way you’d use the cd and ls commands under UNIX.)

3. At the DOS prompt, invoke the dir command. You should see the multmat folder
listed.

4. At the DOS prompt, type the following command:

rcmd check multmat

The last step will perform a check on the multmat folder, to see whether it is ready to be
built into an R package. At this point of the tutorial, the multmat folder is not ready to
be built into an R package, so you should see an error message like informing you that it
cannot be installed. The very last line should indicate the folder path to a plain text log
file with a name like 00install.out that contains details regarding the check failure. Open
this file in a plain text file and examine the contents; it should contain an error message
indicating that no packages were specified. We will remedy this shortly, in section 5.5.

5.3 The DESCRIPTION and NAMESPACE files

Examine the contents of the DESCRIPTION file, using a plain text editor. You’ll note
that it contains basic information on the package, such as the name, a very short title, and

30

http://cran.r-project.org/doc/manuals/R-exts.html#Package-structure

the author. Leave this file unchanged for now. (Although we won’t get into it here, note
that the DESCRIPTION file has a line for the type of license that you want to make your
package available under. See http://www.r-project.org/Licenses/ and Section 1.1.1 in
[8] for more information about licenses.)

Create a plain text file named NAMESPACE in the multmat folder, i.e., in the same
folder as the DESCRIPTION file. Make the contents of the NAMESPACE file the
following two lines:

useDynLib(multmat)

export(MatrixMult)

This tells R that we need to load a shared library named multmat.dll, as well as the R
function MatrixMult, defined in the file MatrixMult.r.

5.4 Add src folder for C++ Code

Create a subfolder named src in the multmat folder. The multmat folder should now have
four subfolders: man, data, R and src. In the new src subfolder, place the files RMat.h,
RMat.cc, and RInterface.cc. Be sure that you have edited the file RMat.h so that the
line

#define COMPILE_WITH_R 0

now reads

#define COMPILE_WITH_R 1

as described in section 4.2.

(You don’t need to include the file testRMat.cc, since this was only a stand-alone program
that tested the C++ class RMat. But I have found that it seems to be okay if you do
include this file.)

5.5 Fix the Documentation Files

Examine the file 00install.out, created by the rcmd check command in section 5.2. You
will see an error message stating:

Warning: ./man/multmat-package.Rd:34: All text must be in a section

Warning: ./man/multmat-package.Rd:35: All text must be in a section

This indicates that the section definition in the file multmat-package.Rd is empty, and
that you should look at lines 34 and 35. Edit the file multmat-package.Rd with a text
editor; you’ll note that the formatting in this file is similar to LATEX. Note that lines 34 and
35 are:

~~ Optionally other standard keywords, one per line, from file KEYWORDS in ~~

~~ the R documentation directory ~~

31

http://www.r-project.org/Licenses/

Remove these lines (or insert percent % signs at the beginning of each line, to comment
them out), and re-run the rcmd check multmat command. It will still generate an error
message. Examine the file 00install.out again. This time, you will see an error message
stating:

Error in Rd_info(db[[i]]) : Rd files must have a non-empty \title.

This indicates that at least one of the .Rd documentation files has an empty title section.
Edit the file MatrixMult.Rd. You’ll see that line 5 contains this text:

%% ~~function to do ... ~~

Recall that in LATEX, a line beginning with a percent sign % is a comment. So, the title
section (lines 4-6 in the file MatrixMult.Rd) is considered empty. Change the title section
in the MatrixMult.Rd so that it now look like this:

\title{

Example function to multiply matrices

}

The title section in the files A.Rd and B.Rd are also empty. Edit both of these files so
that their title sections look like this:

\title{

Sample data matrix.

}

Re-run the rcmd check multmat command. This time, you’ll see this error message:

Error: unexpected symbol in ’’‘~~simple examples’’

So there’s a problem in the examples section of one of the .Rd files. Edit the file multmat-
package.Rd so that the examples section looks like this:

\examples{

data(A)

data(B)

C = MatrixMult(A,B)

}

Re-run the rcmd check multmat command. This time, it should go to completion! Exam-
ine the file 00install.out, just to see what it looks like when rcmd check goes to completion
without error. Admittedly, a few warnings are generated, and ideally you’d modify the pack-
age so that no warnings were generated. But for the purposes of this tutorial, we’ll ignore
the warnings and proceed.

A ZIP file containing a copy of the multmat folder that passes the rcmd check command
can be downloaded from this URL:
http:\\howtomakeanrpackage.pbwiki.com\f\multmat.zip

32

http://howtomakeanrpackage.pbwiki.com/f/multmat.zip

5.6 Run RCMD BUILD

To build a gzipped tarfile package (for Linux):

rcmd build multmat

This should generate a file named multmat.tar.gz. You can use this file to install the
multmat R package on a Linux machine.

To build a ZIP file package (for Windows), run this command instead:

rcmd build -binary multmat

This should generate a file named multmat.zip. You can use this file to install the mult-
mat R package on a Windows machine.

The ZIP files that these commands generated can be downloaded from the following URLs:
http:\\howtomakeanrpackage.pbwiki.com\f\multmat 1.0.zip

http:\\howtomakeanrpackage.pbwiki.com\f\multmat 1.0.tar.gz

5.7 Install/Uninstall Your R Package

To install the multmat package, run this command at an R prompt:

install.packages(repos = NULL, pkgs = ’’C:/My Documents/MultMat.zip’’)

Of course, you’ll need to modify the value of the pkgs argument to point to wherever the
ZIP file for the multmat package is kept. Alternatively, you can select Packages → Install
package(s) from local zip files... from the R menu.

Load the multmat library into R with the usual command:

library(multmat)

Check the documentation for the project by trying these four commands at the R prompt:

?multmat

?MatrixMult

?A

?B

The documentation is extremely minimal, because we made the minimum number of changes
necessary in the .Rd files to get the R package to build. When you get around to mak-
ing a “real” package, you’ll need to flesh out the documentation much better than we
have here. For details on the various sections in the .Rd files, see chapter 2 of [8] (URL:
http:\\cran.r-project.org\doc\manuals\R-exts.html\#Writing-R-documentation-files).
As mentioned earlier, the documentation markup language is very similar to LATEX.

Try running the example from the documentation page for the multmat package by typing
the following commands at the R prompt:

33

http://howtomakeanrpackage.pbwiki.com/f/multmat_1.0.zip
http://howtomakeanrpackage.pbwiki.com/f/multmat_1.0.tar.gz
http://cran.r-project.org/doc/manuals/R-exts.html#Writing-R-documentation-files

data(A)

data(B)

C = MatrixMult(A,B)

You should see the following output:

CppMultiply(): way down in the C++ code,

vMat3 =

35 44

44 56

CppMultiply(): way down in the C++ code,

vMat4 =

35 44

44 56

Also, the matrix C should now be the product of matrices A and B:

> C

[,1] [,2]

[1,] 35 44

[2,] 44 56

You can confirm that we got the right answer by using R itself to compute the matrix
product:

> A %*% B

[,1] [,2]

[1,] 35 44

[2,] 44 56

During the course of developing an R package, you might find it necessary to uninstall an old
version of the package with a new improved version. To uninstall the multmat R package,
run this command at the R prompt:

remove.packages("multmat")

Unfortunately, I have found it necessary to completely exit R before attempting to re-install
a library. Perhaps this isn’t necessary, but I haven’t figured out a way around it. If you
know how to do this, please let me know.

34

Chapter 6

R-Forge: Cross-Platform Builds and
Submitting to CRAN

R-Forge (http://r-forge.project.org; [9] and [1]) provides three pieces of functionality which
we’ll use in this tutorial:

� R-Forge provides a central version-controlled repository for R packages (section 6.4,
section 6.5, and section 6.6). This can be important for large-scale projects which
involve more than one developer. Also, if you discover that you have inadvertently
introduced a bug while you’re developing a package, you can revert your package to a
previous version.

� R-Forge performs nightly builds for R packages on three platforms: Linux, Windows,
and MacOS (see section 6.6). This is convenient, because you might not have access to
all three types of machines; in my case, I didn’t have access to a Macintosh computer,
and so I relied on R-Forge to build the MacOS version of the ptinpoly package.

� Finally, R-Forge provides a facility for you to submit your package from directly R-
Forge to CRAN (section 6.7).

At this point in the tutorial, we have built a example R package named multmat based on
underlying C++ code. Don’t submit this example package to R-Forge!! I don’t think that
the R-Forge team wants you to submit “test” R packages that don’t really do anything.
I think that if you submit a “test” R package to R-Forge, the project won’t be approved,
and you won’t get past section 6.2. Submit only “real” R packages to R-Forge.

(Note that there is a similar website named RForge, located at http://www.rforge.net.
This tutorial doesn’t use that website. In retrospect, I am wondering whether Tom Lumley
had been referring to this RForge rather than the R-Forge that I ultimately used!)

The following sections step you through the basic use of R-Forge.

35

http://r-forge.project.org
http://ptinpoly.pbworks.com
http://www.rforge.net

6.1 Create Your R-Forge Account

Go to R-Forge, http://r-forge.r-project.org. You should see the R-Forge, as shown
in Figure 6.1. Create an R-Forge account, and then log in. After you log in, the web page
should look something like Figure 6.2.

6.2 Register Your Project

After logging in to R-Forge, click on the link Register Project. The resulting web page
should look similar to Figure 6.3. Fill in the information to register your project. (Again,
don’t submit the example multmat package to R-Forge!! Submit only “real” R packages
to R-Forge.) After your project is successfully registered, a link for the project will appear
under the Projects tab; see Figure 6.4. Clicking on that project link will bring you to a
page for the project; see Figure 6.5.

6.3 Configure Your Security

Configure your security with the following steps.

1. Invoke puttygen.exe by double-clicking on its icon; this should pop up the PuTTY
key generator, as shown in Figure 6.6.

2. Leave SSH-2 RSA selected, and click on Generate. See Figure 6.7 and Figure 6.8.
The newly generated public key is the selected text highlighted in blue in Figure 6.8.

3. Go to the Account Maintenance page in R-Forge; see Figure 6.9.

4. At the bottom of the Account Maintenance page, you should see a link labeled
Edit Keys. Click on this link.

5. You should now see a web page that looks like Figure 6.10. Note the large entry
box towards the bottom, labeled Authorized keys. Copy and paste your public key
(Figure 6.8) into the entry field.

6. Then wait for at least an hour.

For more information on using puttygen, see this page. This corresponds to copying and
pasting your public key into R-Forge.

6.4 Check Out Files from R-Forge

To check out files from the R-Forge repository, perform the following steps.

1. Invoke pageant.exe by double-clicking on its icon. pageant.exe will appear as a new
icon in your system tray, usually found in the bottom right corner of your computer
desk top; see Figure 6.11.

36

http://r-forge.r-project.org
http://tartarus.org/~simon/putty-snapshots/htmldoc/Chapter8.html#pubkey-puttygen
http://tartarus.org/~simon/putty-snapshots/htmldoc/Chapter8.html#pubkey-gettingready

Figure 6.1: R-Forge home page.

37

Figure 6.2: R-Forge, just after logging in. Note links Account Maintenance and Regis-
ter Project, button My Page, and tab Projects.

38

Figure 6.3: R-Forge Register Project Page.

39

Figure 6.4: R-Forge, My Projects. After your project is successfully registered, a link for
the project will appear under the Projects tab.

40

Figure 6.5: R-Forge PtInPoly Project Page. Note SCM Repository link in bottom left
corner.

41

Figure 6.6: PuTTY Key Generator Start Up.

2. Right-mouse-button-click on this icon to pop up its context menu, and select Add
Key. This pops up a browser window; see Figure 6.12.

3. Browse to the folder where you saved the .ppk containing your private key from putty-
gen.exe, select the .ppk file, and then click on the Open button. Because the private
key is now loaded into pageant.exe, TortoiseSVN will be allowed to check out your
project from the R-Forge repository.

4. Browse to some folder where you’d like to check out your project from the R-Forge
repository. I’d suggest making a new folder in which to keep ongoing “snap shots” of
the repository, because you may be periodically updating your project over the weeks
and months to come.

5. Right-click in the empty space of the folder to pop up the context menu (see Fig-
ure 6.13) Since you have installed TortoiseSVN, some extra items specific to Tortoise-
SVN appear in this context menu.

6. Select SVN Checkout... from the context menu (alternatively, you could go to your

42

Figure 6.7: PuTTY Key Generator in the process of generating public and private keys.

Windows browser and select File → TortoiseSVN Checkout...). This will pop up the
TortoiseSVN Checkout dialog box, as seen in Figure 6.14. This dialog box will
create a new folder which will contain the checked out files. You must now type in a
name to be given to this “check out” folder.

7. I’d suggest giving the check out folder a name that indicates the project and the current
date and/or some sort of version number, to distinguish it from check outs that you
may do in the future. E.g., if you were checking out a project named multmat for
the second time on the date December 17, 2010, you might name the folder something
like multmat B 121710.

This should create a “check out” folder with the name you indicated. The check out folder’s
icon will look slightly different from the usual folder icon. It will have a small red exclamation
point overlaid on top, which is TortoiseSVN’s way of indicating a “check out” folder that
hasn’t been committed (“checked in”) yet.

43

Figure 6.8: PuTTY Key Generator, showing keys that were generated. The newly generated
public key is the selected text highlighted in blue.

44

Figure 6.9: Bottom of the Account Maintenance Page. Note Edit Keys link at the
bottom, under Shell Account Information.

45

Figure 6.10: R-Forge Edit Keys Interface. Paste your public key into the entry field.

46

Figure 6.11: Pageant System Tray Icon. It looks like a computer monitor wearing a hat.

6.5 Modify Check Out Folder Contents

The check out folder may contain several folders with names like pkg and web. If you see
this set of folders, place the contents of your R package into the pkg folder; i.e., place your
data, man, R, src folders and DESCRIPTION and NAMESPACE files into the pkg
folder. If the check out folder is empty, then place the contents of your R package directly
into it.

6.6 Commit Modification To R-Forge

To check the folder back in to R-Forge, go into the parent folder of the “check out” folder
created in section 6.4. Right-mouse-button-click on the icon for the check out folder, which
should pop up a context menu that include TortoiseSVN options; see Figure 6.15. From the
TortoiseSVN context menu, select SVN Commit.... This should pop up the Tortoise-
SVN Commit dialog box, as seen in Figure 6.16. Click on the OK button to upload the
modified files back to the repository on R-Forge. After checking the files back into the
R-Forge repository, the red exlamation point on the icon of the “check out” folder will be

47

Figure 6.12: Pageant Add Key Dialog Box.

changed to a green check sign; this is TortoiseSVN’s way of indicating that the “check
out” folder has been committed to the respository.

Now you must wait. R-Forge performs nightly builds, and if an error is found a log should
be generated. You can see the schedule for nightly builds by logging in to your R-Forge ac-
count and going to the Contributed R Packages page for your R project; see Figure 6.17.
Note the blurb that states “All packages are built/checked according to this schedule”; this
sentence provides a link to the schedule for the nightly builds.

After the nightly builds are completed, you can check the build logs for problems by going
to the Contributed R Packages page for your R project. In Figure 6.17, note the table
with four columns, two for Linux (32- and 64-bit), and one each for Windows and MacOS.
If you want to see whether there was a problem with, e.g., the Windows build, click on one
of the patched or devel links in the Windows column.

48

Figure 6.13: TortoiseSVN Context Menu.

To install the package directly from R-Forge, type, e.g. (within the R environment):

install.packages("your_R_package", repos="http://R-Forge.R-project.org")

6.7 Submit R Package to CRAN

Submitting your R package to CRAN from R-Forge is trivial. Just go to the Contributed
R Packages page and click on the link “Submit this package to CRAN”, found just below
the table for the Linux, Windows, and MacOS builds; see Figure 6.17.

Now you must wait again. It may take a few days for your R package to show up on CRAN.
Also, don’t be surprised if one build shows up quickly on CRAN whereas another build takes
a few more days to show up; the different builds are apparently managed by different teams,
and at any one time one team may be busier than another. I don’t think that the builds are
automated to the extent that they are on R-Forge.

49

Figure 6.14: TortoiseSVN Checkout Dialog Box.

50

Figure 6.15: TortoiseSVN Context Menu With Commit Option.

51

Figure 6.16: TortoiseSVN Commit Dialog Box.

52

To install directly from CRAN, type, e.g.:

install.packages("your_R_package", repos="http://cran.r-project.org")

Later, if you discover that your R package has a bug, check out the files from R-Forge
as described in section 6.4. This time, the check out folder will contain local copies of the
R package files stored in R-Forge Modify the files in the check out folder to fix the bug;
after making your edits, you might want to update the date and version number in the
DESCRIPTION file. When you’re all finished, commit your modifications to R-Forge as
described in section 6.6. Don’t forget to re-submit the package to CRAN.

53

Figure 6.17: R Packages Page. Note table with four columns, two for Linux (32- and 64-bit),
and one each for Windows and MacOS. Also note the Submit this package to CRAN
link just under the table.

54

Bibliography

[1] R-Forge Administration and Development Team. R-Forge User’s Manual (BETA). Tech-
nical report, The R Project, 2009.

[2] J Chambers. Software for Data Analysis: Programming with R. Springer, New York,
1st edition, 2008.

[3] RJ Hyndman. Building R packages for Windows. Technical report, Monash University,
2008.

[4] F Leisch. Creating R Packages: A Tutorial. Technical report, Ludwig-Maximilians-
Universität München, and R Development Core Team, 2009.

[5] A Lenarcic. R Package Writing Tutorial. Technical report, Harvard University, 2008.

[6] J Liu, YQ Chen, JM Maisog, and G Luta. A new point containment test algorithm based
on preprocessing and determining triangles. Computer-Aided Design, 42(12):1143–50,
2010.

[7] JL Schafer. How to Make an R Package for Windows With Native Routines in Fortran
95. Technical report, Pennsylvania State University, 2008.

[8] The R Development Core Team. Writing R Extensions, v. 2.8.0. Technical report, The
R Project, 2008.

[9] S Theußl and A Zeileis. Collaborative Software Development Using R-Forge. The R
Journal, 1(1):9–14, 2009.

[10] T Veldhuizen. Linear Algebra with C++ Template Metaprograms. Dr. Dobb’s Journal,
21(8):38, 40–42, 44, 1996.

[11] T Veldhuizen. Techniques for Scientific C++. Technical report, Indiana University,
2000.

55

Appendix A

MinGW gcc: Link Stand-Alone
Example C++ Code To R Libraries

Suppose that for some reason you want to compile the stand-alone C++ code given in chap-
ter 3, but with the R libraries linked in as they are in the R package. In this appendix, I
show how this might be done using gcc. This demonstrates the possibility of invoking R
functions (e.g., math functions) outside of R, in a stand-alone C++ program.

Edit the file RMat.h so that the macro

COMPILE_WITH_R

is set to 1 rather than 0 (see section 4.2).

In addition to enabling lines to access the R libraries in the files RMat.h and RMat.cc,
this will also enable a line in the driver program testRMat.cc that calls an R math function.

Then, build the two .o object files RMat.o and testRMat.o with commands that look like
this:

gcc -c RMat.cc -o RMat.o -I"C:/RTools/MinGW/include" -I"C:/Program Files/R/R-2.10.1/include"

gcc -c testRMat.cc -o testRMat.o -I"C:/RTools/MinGW/include" -I"C:/Program Files/R/R-2.10.1/include"

You’ll note that each invocation of gcc has two -I arguments. These two arguments tell the
compiler where to find the include files for standard C++ functions and for the R functions.
Of course, your installation of RTools and for R may differ from mine, so you’ll need to
modify the folder paths accordingly. (The code in RInterface.cc is not involved, since we’re
not accessing the C++ code through R here.)

Then, link the two object files with the R library as follows:

gcc testRMat.o RMat.o -o testRMat.exe -L"C:/RTools/MinGW/lib" -L"C:/Program Files/R/R-2.10.1/bin" -lR -lstdc++

56

Here, the two -L arguments tell the compiler where to find the binary libraries for standard
C++ functions and for the R functions. Again, you’ll need to modify the folder paths ac-
cording to your own computer system.

Then, run the the newly built executable by typing

testRMat.exe

at the DOS prompt. You should see the same output that you saw in chapter 3. But in
addition, you should see this line at the end:

Using R math library to compute R_pow(2,3) = 8

This demonstrates that the C++ code successfully accessed the R math function R pow.
As mentioned earlier, see Chapter 6 of [8] for more on the R API
(URL: http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API); that chap-
ter lists many R functions that you might find useful.

57

http://cran.r-project.org/doc/manuals/R-exts.html#The-R-API

Appendix B

Dev-C++: Link Stand-Alone
Example C++ Code To R Libraries

Here I show how to link the stand-alone example C++ code to the R libraries, but using
Dev-C++ rather than gcc. The process is pretty much the same as for gcc, except that
specifying library and include directories is done through a graphical user interface rather
than on the command line. Again, be sure that the

COMPILE_WITH_R

macro is set to 1 rather than 0 (see section 4.2).

1. In Dev-C++, create a new Console Application project.

2. Add the three files testRMat.cc, RMat.cc, and RMat.h to the project.

3. In Dev-C++, select Project → Project Options. This should bring up the Project
Options dialog box, as shown in Figure B.1.

4. In the Project Options dialog box, click on the Parameters tab. In the white pane
under Linker, type in the text

-lR

(The second character is a small L, not a numeral 1.) This is to tell the linker to link
in the R library at build time. This is illustrated in Figure B.2.

5. In the Project Options dialog box, click on the Directories tab. This should bring
up the Directories sub-dialog box as shown in Figure B.3. The Library Directories
sub-tab should be selected by default. Add the R bin folder by clicking on the little
square button with an icon of a folder tree structure, browsing to the R bin folder,
then clicking on the Add button (you must click on the Add button).

58

6. Still in the Directories sub-dialog box, click on the Include Directories sub-tab.
Add the R include folder by clicking on the little square button with an icon of a
folder tree structure, browsing to the R include folder, then clicking on the Add
button (you must click on the Add button). This is illustrated in Figure B.4.

7. You can now dismiss the Project Options dialog box.

8. Then select Execute → Compile. This should build the stand-alone executable.

9. Then select Execute → Run. This should run the program. You should see the same
output that you saw in chapter 3. But in addition, you should see this line at the end:

Using R math library to compute R_pow(2,3) = 8

This demonstrates that the C++ code successfully accessed the R math function
R pow.

59

Figure B.1: The Dev-C++ Project Options dialog box.

60

Figure B.2: The Dev-C++ Parameters dialog box.

61

Figure B.3: The Dev-C++ Library Directories dialog box.

62

Figure B.4: The Dev-C++ Include Options dialog box.

63

	List of Figures
	Introduction
	Software Setup
	Software For Making R Packages Based on C++
	R (required)
	RTools (required)
	MiKTeX (optional)
	Microsoft HTML Help Workshop (optional)
	perl (optional)
	Set Up Your Windows Path Variable
	Dev-C++ or NotePad++ (optional)

	Software for Using R-Forge
	TortoiseSVN
	PuTTY

	Example C++ Code: A Simple Matrix Class
	RMat.h
	RMat.cc
	testRMat.cc

	Make a Shared (Dynamically Linked) Library
	RInterface.cc
	Run RCMD SHLIB
	Load the DLL into R
	Check that the DLL has been properly loaded
	MatrixMult.r
	Test the R Wrapper Function
	Unload the DLL

	Make An R Package
	Create the R Package Folder Structure
	Run RCMD CHECK
	The DESCRIPTION and NAMESPACE files
	Add src folder for C++ Code
	Fix the Documentation Files
	Run RCMD BUILD
	Install/Uninstall Your R Package

	R-Forge: Cross-Platform Builds and Submitting to CRAN
	Create Your R-Forge Account
	Register Your Project
	Configure Your Security
	Check Out Files from R-Forge
	Modify Check Out Folder Contents
	Commit Modification To R-Forge
	Submit R Package to CRAN

	Bibliography
	MinGW gcc: Link Stand-Alone Example C++ Code To R Libraries
	Dev-C++: Link Stand-Alone Example C++ Code To R Libraries

