

Release 2.1

User Manual

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 2 of 57

1 CONTENTS

2 INTRODUCTION .. 4

3 USER INTERFACE ... 5

3.1 Application Controls ... 6

3.1.1 Main Menu .. 6

3.1.2 Main Toolbar ... 9

3.2 Tree Nodes ... 10

3.2.1 Hawk Environment Node ... 13

3.2.2 Cluster Node.. 15

3.2.3 Agent Node ... 16

3.2.4 Rulebase Engine Node ... 16

3.2.5 Schedules Node ... 16

3.2.6 Rulebase Node ... 16

3.2.7 Microagent Group Node .. 18

3.2.8 Microagent Node ... 18

3.2.9 Microagent Method Group Node .. 19

3.2.10 Microagent Method Node .. 20

3.2.11 Mirador Agent ... 37

3.3 Alert Table Panel... 38

4 CONFIGURATION AND PERSISTENCY .. 40

4.1 Application Properties .. 40

4.1.1 Hawk Environments .. 41

4.1.2 Formats ... 44

4.1.3 Alerts .. 44

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 3 of 57

4.1.4 Microagents ... 44

4.2 Saving Work Settings .. 45

4.2.1 Hawk Environment Configuration .. 45

4.2.2 Microagent Method Subscriptions .. 47

5 AGENT COLLECTION MICROAGENTS ... 49

6 ENHANCED VIEWS .. 51

6.1 BusinessWorks Monitoring ... 51

6.1.1 Process Engines Group Node ... 52

6.1.2 Process Engine Node ... 53

6.1.3 Process Definitions Node ... 54

7 REPORT GENERATION .. 57

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 4 of 57

2 INTRODUCTION

The Mirador program lets you monitor computer systems in a distributed environment. It offers easy

to use and convenient functionality to directly invoke remote methods and to show the result in

different views such as tables, forms and charts. The program enables you to subscribe to events that

may occur at any place within different networks. Mirador uses TIBCO Hawk® application

programming interfaces.

In order to understand the Mirador program and the way it interacts with the TIBCO Hawk® system, it

is recommended to be familiarized with the concepts of TIBCO Hawk®.

It is not advisable to use the Mirador program as the sole monitoring and alerting console in a

production environment. The robust Tibco Hawk® standard applications should primarily be used. The

Mirador program is a complementary tool that adds great benefit in terms of visualization, debugging

and testing of the overall monitoring solution.

The Mirador program cannot be used for creating new Hawk rulebases and schedules or editing

existing ones.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 5 of 57

3 USER INTERFACE

The Mirador program offers a customary structured user interface that has a menu and a toolbar

located on its top. On the left-hand side a navigation tree appears that represents the structure of the

monitored Hawk environment. Right of that tree you see the detail view of the current selected tree

node. Some detail views can be pinned in separate dialogs.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 6 of 57

3.1 APPLICATION CONTROLS

3.1.1 MAIN MENU

The main menu is composed by sub menus and menu items as described below.

Submenu / Menu Item Description

File

 Show Application Properties… Displays the dialog with the application properties that lets
the user customize the Mirador program.

 Document Agents… Displays the “Document Agents” dialog that lets the user
document the Hawk agents (supported output formats are
PDF, XLS and HTML).

 Save…

Saves the current state of the Mirador session (not its view
and microagent method subscriptions) to the mirador.hmo
file located in the ".mirador/bin" folder located in the
user home directory. The previous version of the
mirador.hmo file gets copied to the ".mirador
/backup" folder with a name of the format
<yyyyMMddHHmmss>-mirador.hmo.

The save button has to be pressed each time you change the
application properties, otherwise these changes will be lost
when you exit the Mirador program.

 Exit Stops running the Mirador program. Prior to closing the main
window, you are asked whether you want to save the current
configuration. If you confirm by pressing the “Yes” button, the
same function gets performed as if you had selected the
menu item File > Save…

View

 Go To Previous Selection Moves to the previous node from the node selection history.

 Go To Next Selection Moves to the next node from the node selection history. This
button is enabled only in case the “Previous” button was
pressed before. As soon as the user actively selects a new
node, it gets added to the selection history and the “Next”
button gets disabled.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 7 of 57

Submenu / Menu Item Description

 Save Current View… Allows the user to save the current view to a file for later use.
The user can determine the location and the name of the file.
The program by default proposes to store the view file in the
".mirador/export/views" folder located in the user

home directory. The default file extension is ".mvw".

When the current view is saved to a file, the Mirador program
collects the items (listed below) and writes them in XML
format to the chosen file.

 All agent collection microagents

 Current active subscriptions

 All pinned dialogs

Such a persistent view definition can be reloaded during the
same session or during any other Mirador session later on
(see menu item “Load View…” below).

 Load View… Allows you to choose a view definition file and it’s reloaded.
Such a view file must have been saved at some previous point
through the menu item “Save Current View…” described
above.

The view definition file should have been saved from within
the same Hawk environment; otherwise the microagent
method subscriptions and pinned dialogs cannot be re-
created.

Environment

The “Environment” sub menu shows all Hawk environments
configured within the Mirador program.

 <Environment 1>

 <Environment 2>

 <Environment n>

New environments can be added and existing ones can be
changed in the application properties dialog (“Hawk
Environments” panel). The current selected environment is
marked by the symbol ‘’. The environment can be switched
only if monitoring is not running.

Monitoring

 Run Starts monitoring the current selected Hawk environment

 Stop Stops monitoring the current selected Hawk environment

 Enable Discovering New Agents Enables discovering of new Hawk agents. As long as no agents
appear in the Hawk environment tree, discovering new
agents is automatically enabled.

Enabling discovering new agents does not actively try to
discover running agents. Ratherit would only discover agents
that start running from this moment on.

 Disable Discovering New Agents Disables discovering of new Hawk agents. This would still
discover Hawk agents that appear in the navigation tree but
were not yet discovered in the current session.

Subscriptions The “Subscriptions” sub menu contains menu items related to
Hawk microagent method subscriptions.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 8 of 57

Submenu / Menu Item Description

 <Microagent method path 1>

 <Microagent method path 2>

 <Microagent method path n>

This is a dynamic list of tree paths to microagent methods
that have an active subscription. If a microagent has more
than one active subscription, it only appears once in the list.
The unix type of tree paths start with the name of the cluster
followed by the agent and every dependent node name,
down to the final microagent method name, each of these
names are separated by a slash (‘/’). An example of such a
tree path could be:

 “TEST-CLUSTER/tst0034/Microagents/Self/getUpTime”.

If the current selected tree node is a microagent method
node with that has one or several subscriptions, its path
within the list is marked by the symbol ‘’.

 Save Subscriptions… Saves all microagent method subscriptions from one agent to
a file. The user has to select the agent of his choice from a
dialog and he can freely choose the name of the target file.
The program by default proposes to store the subscription
definition file in the
".mirador/export/subscriptions" folder located
in the user home directory. The default file extension is
".sub".

Saved subscription definitions can easily be loaded to the
same agent or any other agent during the same Mirador
session or during subsequent sessions (see menu item “Load
Subscriptions …” below).

 Load Subscriptions… Loads microagent method subscriptions from a file on to one
or several agents and starts them. The user can choose the
target agents from within a dialog. The subscriptions on these
agents will be created only if the corresponding microagent
method can be found there.

 Stop All Subscriptions Stops all active microagent method subscriptions

Tool

 Clean Up GUI Resources Cleans up GUI resources that are currently not visible and are
no longeractive. This may significantly free up memory. Result
charts and tables, as well as specific node settings, will be
lost.

 Pin In Independent Dialog Pins the current detail view or part of it (i.e. a tabbed panel)
in an independent dialog that remains open even if another
node gets selected in the Hawk environment tree. This
function is available for the agent overview of the cluster
nodes and for the subscription panels of microagent method
nodes.

Help

 Mirador Help… This shows the Mirador user manual in a browser window.

 Show System Properties… Shows an independent dialog and displays the current system
properties

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 9 of 57

Submenu / Menu Item Description

 About Mirador Displays the “About” dialog of the Mirador program.

3.1.2 MAIN TOOLBAR

The main toolbar contains a number of buttons that are basically shortcuts to menu items; they are

explained in the table below

Button Shortcut to Menu Item

 File > Save…

 View > Go To Previous Selection

 View > Go To Next Selection

 Monitoring > Run

 Monitoring > Stop

 Monitoring > Enable Discovering New Agents

 Monitoring > Enable Discovering New Agents

 Tool > Pin In Independent Dialog

 Tool > Show System Properties…

 File > Document Agents…

 Help > Mirador Help

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 10 of 57

3.2 TREE NODES

This section explains the different tree nodes in detail. The following table gives an overview of the

icons that get used in the left located navigation tree to represent single nodes.

Icon Description

 Hawk Environment This is a top level node that corresponds to the Hawk environment

that’s being monitored. The node appears red colored () if there
are non-dismissed console warnings present in its detail view.

Icon Annotations

 One or several agents within the monitored Hawk
environment have at least one open (not cleared)
notification.

 One or several agents within the monitored Hawk
environment have at least one open warning. There may
also be open notifications.

 One or several agents within the monitored Hawk
environment have at least one open error. There may also
be open warnings and/or notifications.

 Agent Collection This node contains structured agent collection microagents. Such
microagents are inbuilt components that invoke multiple identical
microagents on different Hawk agents and present all results within
a single table. The “Agent Collector” node only appears if at least
one agent collection microagent has been defined by the user.

 Cluster Node Cluster nodes are containers that group a series of agent nodes. The
cluster name can be configured on each Hawk agent (please consult
the Hawk documentation). The cluster node shows a number to the
right of its name, enclosed in parentheses. This figure reports the
number of agent nodes that are contained within that cluster node.

Icon Annotations

 One or several agents within the cluster have at least one
open (not cleared) notification.

 One or several agents within the cluster have at least one
open warning. There may also be open notifications.

 One or several agents within the cluster have at least one
open error. There may also be open warnings and/or
notifications.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 11 of 57

Icon Description

 Agent Node (inactive) This node represents a non-detected or inactive Hawk agent.

Icon Annotations

 The agent is recognised by the Mirador software because it
was detected when the Hawk environment was monitored
in a previous session. Currently the status of the agent is
unknown; it may not yet have been detected or it may not
be running at all.

 The agent was detected during the current monitoring
session but was reported as expired.

 Agent Node (active) This node represents a detected and active Hawk agent.

Icon Annotations

 One or several agents within the cluster have open (non-
cleared) notifications.

 One or several agents within the cluster have open warnings
and maybe notifications.

 One or several agents within the cluster have open errors
and maybe warnings and/or notifications.

 Rulebase Engine The rulebase engine contains all schedules and rulebases deployed
on the agent to which it belongs.

 Schedules
Shows the schedules that can be used for determining if a rulebase
or part of the rulebase should be 'in-schedule' or 'out-of-schedule' at
a given time.

 Rulebase A single rulebase is shown through this icon

Icon Annotations

 There exist open (not yet cleared) notifications issued by the
rulebase.

 There exist open warnings and maybe notifications issued by
the rulebase.

 There exist open errors and maybe warnings and/or
notifications issued by the rulebase

 Microagent Group Microagents are placed in a group node that is named
“Microagents” by default. Depending on the application options and
the name of the microagent, it gets placed inside a different group
node that is created on the fly.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 12 of 57

Icon Description

 Microagent Each agent has a set of microagents that are represented like this

and placed within a group node () or a branch of group nodes.
Microagents can also appear underneath the inbuilt Mirador pseudo
agent if they are successfully loaded from the Mirador plugin
directory.

The user can also define agent collection microagents that are based
on existing microagents found on any remote agent. Such

microagents are placed within the “Agent Collection” node ()
that appears as soon as the first agent collection microagents is
defined.

Icon Annotations

 The microagent description could not be retrieved from the
agent

 Method Group Microagent method nodes are placed directly below the owning
microagent node. Depending on the application options and the
name of the method, it may be placed inside a method group node
that is created on the fly.

 Read Method This icon stands for a read-only microagent method

Icon Annotation

 There is at least one subscription active on that method

 Write Method This icon stands for a write microagent method, a method that has
an impact agent’s side.

Icon Annotation

 There is at least one subscription active on that method

 Read/Write Method Read-write microagent methods are represented by this icon.

Icon Annotation

 There is at least one subscription active on that method

 Mirador Agent
This top level node represents the internal Mirador agent that acts
like a pseudo Hawk agent in the way that it is able to load Hawk
microagents present in the directory named “plugin”. If no
microagent is present or if none can be loaded, this node does not
appear in the tree.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 13 of 57

The following nodes are related to BusinessWorks process engine monitoring. They will appear only in

case BusinessWorks process engine microagents are present on one or several Hawk agent within the

monitored environment.

Icon Description

 BusinessWorks Engines This folder node contains one or several BusinessWorks (BW)
process engine nods. Mirador offers a specialized view on BW
engines and allows user-friendly access of their data.

 BusinessWorks Engine This node represents a single BW process engine. The node name
corresponds to the deployment name. BW process engine nodes

appear directly underneath the folder node.

 Process Definition Folder This folder node is used to hierarchically structure the process
definitions contained in a BW process engine.

 Starter Process Definition This node represents a process definition that is directly linked to a
process starter

 Process Definition This node represents a process definition

3.2.1 HAWK ENVIRONMENT NODE

 The top most tree node represents the Hawk environment that is going to be or is already being

monitored by the Mirador program. The environment can be changed by selecting a different item

from within the Environment menu. That menu shows all the environments that were defined in the

application properties dialog. Changing the environment is only possible if the monitoring session is

not running.

The Hawk environment node is responsible for the communication with the Hawk system against

which it maintains event listeners. It delegates detected events to depending nodes (i.e. agent node),

which in turn change their appearance to show the new state.

The detail view of the environment node contains two tabs named “All Alerts” and “Console

Warnings” respectively.

3.2.1.1 ALL ALERTS

The “All Alerts” tab shows a table that contains the whole set of alerts reported by all agents of the

current monitored Hawk environment. The details of an alert are shown within a panel below the

table as soon as an alert row gets selected by the user. A detailed description of this panel can be

found in the chapter titled “Alert Table Panel”.

.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 14 of 57

3.2.1.2 CONSOLE WARNINGS

The “Console Warnings” has a table that contains warnings issued by the underlying Hawk console.

Such warnings report some unexpected events that happened while monitoring a Hawk environment.

Such a warning would appear if you unplug the network cable from the computer that is running the

Mirador program. Warnings remain in the table until they get actively dismissed by pressing the

button located top right of the table. The top level Hawk environment node in the navigation tree is

shown with red color () if the table contains non-dismissed console warnings.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 15 of 57

3.2.2 CLUSTER NODE

 Cluster nodes are containers that group a series of agent nodes. Every Hawk agent belongs to a

cluster whose name can freely be configured (please consult the Hawk documentation). The default

cluster name of an agent is the IP subnet address in which its host computer is located. All agents with

the same cluster name are shown within the same cluster node. New cluster nodes get created upon

agent detection if no other agent with the same cluster name was previously detected. Cluster nodes

disappear if their last agent node is removed by the user.

The detail view of the cluster node represents all contained agents in form of an icon representing a

computer. These icons are of different style and color depending on the status of the agent they

represent. If a mouse click occurs on one of these icons, the corresponding agent node gets selected

in the project tree and the agent detail view will show up.

The detail view can be detached from its default

location and be shown in an independent dialog

(see example on the right) by selecting the menu

item Tool > Pin Detail View In Independent

Dialog. The same action can be triggered by

pressing the button in the main toolbar. This

convenient feature lets you quickly move to the

detail view of different agents or it can be placed

outside the Mirador main window to constantly

show the health status of the whole cluster.

The following table lists the different types of icons with which an agent can be identified:

Icon Status Description

Unknown The Mirador program has not yet detected any event from this agent, its
status is unknown. This icon gets used if the represented structure of a
monitored Hawk environment was built during the previous monitoring
session or it was loaded from a previously stored session.

OK The agent is alive and there is no open notification, warning or error

Notice The agent is alive but it reports at least one open notification (no warnings
nor errors)

Warning The agent is alive but it reports at least one open warning but no errors.
There may also be open notifications.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 16 of 57

Icon Status Description

Error The agent is alive but it reports at least one open error. There may also be
open notifications and warnings.

Expired The agent doesn’t send heartbeats anymore. The agent is no longer
running or there is a problem with the network connection.

3.2.3 AGENT NODE

 Agent nodes in the tree are represented by an electric bulb. If the bulb looks like being switched

on, the Mirador program still receives heartbeat messages that indicate that the agent is alive. If the

bulb is switched off (), the agent state is unknown because heartbeat messages are no longer being

received. The agent or even its host computer may not be running anymore or there may be a

problem with the network connection.

The detail view of the agent node shows a table with notifications and alerts issued by the agent.

3.2.4 RULEBASE ENGINE NODE

 This node contains all rulebases deployed on the agent to which it belongs. When an agent is

newly detected, its rulebases are not known immediately but their existence gets announced through

notification events. Therefore the rulebase repository node only gets dependent rulebase nodes

added shortly after agent discovery. Some agents do not have any rulebases installed, hence the

rulebase repository node will not contain any rulebases.

3.2.5 SCHEDULES NODE

 Schedules can be used for determining if a rulebase or part of the rulebase should be 'in-schedule'

or 'out-of-schedule' at a given time. If a schedule is not specified in a rulebase, then the rulebase is

always in-schedule.

3.2.6 RULEBASE NODE

 Every rulebase installed on an agent gets represented by such a node, optionally decorated with a

small icon that represents the status of the rulebase. The detail view of a selected rulebase node

shows a detailed description of it. You cannot create new rulebases or change existing ones through

the Mirador program.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 17 of 57

The example below shows the detail view of the Hawk standard rulebase HawkWindowsEventLog.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 18 of 57

3.2.7 MICROAGENT GROUP NODE

 This tree node groups microagents depending on their display name. The name of the default

group node is “Microagents”. By default, the Mirador program checks for colons, commas, dots and

slashes in the microagent display name and uses them as separators to build up a group node

hierarchy. Therefore certain microagents are not placed in the “Microagents” group but in a specific

node or branch. If the generated group names are of the “<name>=<value>” format, only the value

part is shown by default.

The microagent with the display name “Sample:env=test,release=3.2.6,name=Cleaner” for example

would be represented as follows:

Keep in mind that the group node provides a structured view on non-structured entities. All

microagents directly depend on an agent node; hence logically they are all on the same hierarchy

level.

The separators to be used to split microagent names into group names and the decision to partially

blank out the group name, can be changed in the “Microagents” panel of the application properties

dialog. To display the dialog, select the menu item File > Show Application Properties….

3.2.8 MICROAGENT NODE

 The microagent node contains a logical group of methods each shown as individual nodes.

The detail view of the microagent node shows a tabbed pane with a description panel that contains

the name and description of the microagent. For some microagents the detail view contains an

additional tab named “Attributes” that lets you view and edit attributes in a quick mode.A closer look

shows that microagents do not know about a concept of attributes but they expose methods that

may be used for reading and writing an attributes value, the attribute accessor methods. This concept

is based on the properties accessor methods described in the JavaBeans API specification (see

http://java.sun.com/products/javabeans/docs/spec.html). Mirador analyses all methods of a

microagent and provides a field on the “Attributes” panel in case a method is considered to be an

attribute getter method. If for that same attribute there is also a setter method, the field is made

editable and its background color is changed to white. Methods with a name that start with _get or

_set can also be accessor methods, the underscore is used by Tibco to mark attribute accessor

methods in certain products that extend Hawk standard functionality.

The values on the “Attribute” panel get retrieved from the corresponding microagent methods when

the microagent node is selected the first time and each time the node is re-selected. If you want to

refresh the values while the node selection remains unchanged, you have to press the refresh button

 located top right on the panel.

http://java.sun.com/products/javabeans/docs/spec.html

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 19 of 57

The following figure shows a sample “Attribute” panel that contains fields for three attributes, two of

them (‘Description’ and ‘Name’) are editable. The background color of the ‘Description’ attribute field

is gray because it contains multi line text that cannot be edited in the single line field directly but must

be edited in a dialog that pops up if a mouse click occurs on the field or the edit button that

appears right of it.

3.2.9 MICROAGENT METHOD GR OUP NODE

 This tree node optionally groups microagent methods depending on their name. The Mirador

program does not do any method structuring by default. Depending on the user preferences the

program checks for certain characters in the method name and uses them as separators to build a

group node hierarchy. Therefore certain microagent methods are not placed directly beneath the

owning microagent node but within a group node or even a branch of group nodes.

The microagent method with the name “mgmt/mib-2/interfaces/getIfTable” for example would be

represented as follows:

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 20 of 57

Keep in mind that the group node provides a structured view on non-structured entities. All

microagent methods depend directly on a microagent node; hence logically they are all on the same

hierarchy level.

The separators used to split microagent method names into group names can be changed in the

“Microagents” panel of the application properties dialog. To display the dialog, select the menu item

File > Show Application Properties….

3.2.10 MICROAGENT METHOD NODE

Micoragent methods may expect arguments (parameters) provided by the user and may return data

as the result of the method invocation. Methods are named synchronous if they can directly be

invoked through the Mirador program. Asynchronous methods on the other hand are invoked by the

Hawk environment if a certain event occurs. To have asynchronous methods interact with the

Mirador program, the user must subscribe to them. You can also subscribe to synchronous methods

by providing a time interval, this instructs the Hawk environment to invoke and re-invoke that

method as long as the subscription exists.

There are special types of microagents where the Mirador program itself orchestrates synchronous

subscriptions. Such microagents are the ones that get loaded locally on to the inbuilt pseudo agent

but also the so-called agent collection microagents that are used to collect data from microagents

found on different remote agents.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 21 of 57

The microagent method nodes are represented by different icons depending on their impact.

Icon - Impact Description

 Synchronous Info This is a synchronous “read only” method that only provides information
without provoking any action or changing any data.

Icon Annotations

 This annotation indicates that there exist one or several active
subscriptions on this method.

 Asynchronous Info This is an asynchronous method that provides information when a
certain event occurs.

Icon Annotations

 This annotation indicates that there exist one or several active
subscriptions on this method.

 Action This method type does not return any data but provokes an action on
the target agent. Such actions can be the execution of a script,
modification of some data etc.

Icon Annotations

 This annotation indicates that there exist one or several active
subscriptions on this method.

 Action-Info This method type provokes an action on the target agent and returns
some data related to that action.

Icon Annotations

 This annotation indicates that there exist one or several active
subscriptions on this method.

The microagent detail view by default contains the two tabbed panels “Invocation” and “Description”.

Additional tabbed “Subscription” panels are added each time you subscribe to a method within the

“Invocation” panel.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 22 of 57

The “Description” panel shows a detailed description of the method, from its arguments and from the

expected result.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 23 of 57

The “Invocation” panel represents the main user interface to interact with the Hawk agents on

remote hosts.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 24 of 57

Both “Invocation” and “Subscription” panels have the same toolbar appearing in the top right corner.

The individual buttons are described in the following table.

Button Description

 Show Result in Form Shows the current and future result data within the same panel in
a form. This button only appears if the result is of composite data
structure.

 Show Result as HTML Table Shows the current and future result data within the same panel as
an HTML formatted table. This button appears only if the result
data is of composite data that by default gets displayed in form.

 Create Agent Collection
Microagent Method

Creates a collection microagent that is based on the current
selected microagent method. The collection microagent is a
Mirador software component that appears as a tree node within

the “Agent Collection” node (). The “Agent Collection” node
itself becomes visible only as soon as the first collection
microagent has been defined.

 Invoke Invokes the microagent method with the argument values (if any)
entered by the user and displays the result, unless the method
impact is of type “Action”.

 Subscribe
Subscribes to the microagent
method. In case of a synchronous
method, the user has to enter the
method invocation interval within
the pop up dialog as seen in the
example. Such an interval should
be at least 5 seconds; Hawk
agents usually can’t cope with
smaller intervals. However, if the subscription is created on a
microagent method from within the Mirador agent, also small
intervals (i.e. 1 second) will be applied correctly.

In order to free up the “Invocation” panel for other method
invocations or additional subscriptions, an independent
“Subscription” panel gets added to the detail view of the
microagent method as soon as the subscription is created.

When an agent expires, all subscriptions to its microagent
methods are terminated. When an expired agent is discovered
again during the same monitoring session, Mirador automatically
tries to re-create all the subscriptions that were active when the
agent expired.

 Unsubscribe
Unsubscribes from a microagent method. The “Subscription”
panel remains in place after you unsubscribe from a method. On
that same panel you can subscribe to the method again at any
time in the future. If the “Subscription” panel is no longer used,
you can remove it by selecting the appropriate menu item from
the pop up menu that appears when you right click on the tab.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 25 of 57

Button Description

 Clear Historic Restult Table Removes all rows from the historic result table. This button
appears only if the historic view can be selected in the context of
the current panel. Clearing the historic view is useful when you
have an active method subscription and all previous results from
that subscription are no longer of any interest.

 Hide Result Controls
Hides the result control box that appears right on the “Invocation”
panel. This frees up space for showing the method result.

 Show Result Controls
Displays the result control box right on the “Invocation” panel and
lets you change the result view.

3.2.10.1 RESULT VIEW

Depending on the method, the “Invocation” as with the “Subscription” panel let you enter method

arguments and they both display the results from synchronous method invocations and/or

asynchronous event notifications. The default look of the result view can be changed within the result

control box that appears right on the “Invocation” and the “Subscription” panel. The following result

views can be selected from a combo box within the result control box.

Result View Description

Default Depending on whether the method returns individual fields or tabular data, this
view shows the result in a form or a table according to the following examples
made with the standard microagent “Process”.

Example Method Process.getInstanceCount: This method expects one
argument and returns two fields. If a result field contains multiple line text data, a
mouse click on the editor icon behind the field lets you pop up a dialog where you
can display the data in its full mode.

Example Method Process.getProcess: This also expects one argument
but returns a table where each row represents a process running on the related
host. The rows can be sorted by any column by clicking on the corresponding
column header. Selecting the check box appearing top right of the table will adjust
its width to the enclosing panel.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 26 of 57

Result View Description

In order to display the data of a single row in a well-structured format on the
bottom of the panel, select it. Double click a row to show the row data in a pop up
dialog that looks similar to the one shown below.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 27 of 57

Result View Description
historic Other than the default view, the historic view does not overwrite previous results

each time a method is invoked. Up to a certain number of results from different
method invocations are kept and displayed in a table together with a timestamp.
The maximum number of retained results can be configured within the
“Microagents” panel of the application properties dialog (menu item File > Show
Application Properties…).

The historic view table can be sorted by the “Result Timestamp” column only.
The historic view is not available for methods that return tabular data by default.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 28 of 57

Result View Description

line chart The line chart is available for methods that
return tabular data where at least one of
the columns contains numeric data. Within
the result control box, one of the table
columns has to be chosen to become the
label column. The label column makes the
distinction between categories of data and
must contain unique values over all table
rows. If the value of the chosen label
column is not unique, the label can be
extended and made unique by the value of
a second row (“Label Column 2”). One or
several columns representing numeric data can be selected to be used as the
value columns..

The lower bound field can be used to explicitly define the lower bound of the
chart’s vertical value axis.

The label orientation can be changed through a slider control. This is useful where
long labels would otherwise be overlaid.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 29 of 57

Result View Description
line chart 3D The behavior and configuration of this view is the same as the one of the simple

line chart described above. The lines however appear in 3D mode.

bar chart The bar chart has same characteristics and restrictions as the line chart. The
different types of values are shown in bars with different values. Between
categories, the data of the same type are shown in bars with the same color.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 30 of 57

Result View Description
bar chart 3D The behavior and configuration of this view is the same as the one of the simple

bar chart described above. The bars however appear in 3D mode.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 31 of 57

Result View Description

pie chart The pie chart is used to visualize the data
proportionately representing a total of 100%.
Therefore the result control box lets you choose
a single value column with numeric data.

One of the table columns has to be chosen as
the label column. The label column defines the
name of individual pie segments and must
contain unique values over all table rows. If the
value of the chosen label column is not unique,
the label can be extended and made unique by
the value of a second row (“Label Column 2”).

The pie can be easily rotated by using the slider control. The section labels can be
shown or hidden by changing the selection of the related checkbox.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 32 of 57

Result View Description
pie chart 3D The behavior and configuration of this view is the same as the one of the simple

pie chart described above. The pie however appears in 3D mode.

As with the simple 2D pie, you can rotate the pie and show or hide the section
labels. An additional slider from the result control box lets you change the depth
of the 3D pie.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 33 of 57

Result View Description

multiple pie
chart

This view shows several pies, one for each row
from the result table data. Every single pie
proportionally shows data from different type in
relation to a total of 100%.

One of the table columns has to be chosen as
the label column. The label column defines the
name of individual pies and must contain unique
values over all table rows. If the value of the
chosen label column is not unique, the label can
be extended and made unique by the value of a
second row (“Label Column 2”).

As with the simple pie chart, you can rotate the pies and show or hide their
section labels.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 34 of 57

Result View Description
multiple
pie chart 3D

This view is identical to the multiple pie chart described above except that the pies
appear in 3D mode.

You can also rotate the pies and show or hide their section labels. An additional
slider from the result control box lets you change the depth of the 3D pies.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 35 of 57

Result View Description

time chart The time chart is very similar to a line
chart, except that the values on the
domain axis are dates rather than
numbers. Through a time chart you
can visualize the evolution of
microagent method result data from
multiple invocations, over a certain
period of time. A time chart is fed by
a method subscription that
repeatedly provides the data as long
as it’s active.

The lower bound field can be used to
explicitly define the lower bound of
the chart’s vertical value axis.

The value in the duration field
determines the time period covered
by the chart’s data. When new data is
added to the chart, old data that exceeds the defined number of minutes are
automatically removed from the chart.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 36 of 57

Result View Description
Errors

When a microagent method invocation results in an error (exception), the error
message gets shown with the stack trace. This is helpful for failure tracking when
debugging custom microagents or AMI enabled programs.

As explained above, the result of a method invocation or a method subscription can be shown in

different chart types. All these charts are displayed together with a legend that may look like the

example below.

If you move the mouse pointer over a

legend and you observe that it turns into a

hand cursor, you can further adapt your

chart. Simply click on a legend item (i.e.

CPU Time) in order to open the “Series

Properties” dialog shown right.

This dialog lets you change the color of the

series represented by the legend item.

When working with line charts and time

charts, you can also adapt the width of a

line that represents a specific series.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 37 of 57

3.2.11 MIRADOR AGENT

Mirador acts as a pseudo Hawk agent in a way that it can load user defined Hawk microagents from a

plug-in directory. At program start-up, Mirador automatically scans the plugin folder located in its

installation directory and tries to load the microagents defined by the .hma files (service microagents

are not loaded). Successfully loaded microagents appear as dependants of the top level node

“Mirador Agent” (). The Mirador Agent node appears below the Hawk environment node in the

navigation tree.

Microagents of the Mirador Agent are presented the same way as those belonging to Hawk agents.

The interaction with microagents managed by the Mirador Agent works exactly the same as the

interaction with microagents managed by any Hawk agent. You can invoke methods or subscribe to

them.

The Mirador Agent is meant to be used during development and testing of custom microagents, it

provides a straightforward way to check the correct behavior of these software components. Unlike

Hawk agents, the Mirador Agent does not contain rulebases and it does not provide an interface to

applications using the Hawk Application Management Interface (AMI).

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 38 of 57

3.3 ALERT TABLE PANEL

The alert table panel shows alerts and notifications that are generated by the rulebases installed on

the Hawk agents of the monitored environment. Such a panel appears in the detail view of each

individual agent node; it contains alerts and notifications that were issued by this particular agent.

The detail view of the top level Hawk environment node also contains an alert table panel (see below)

that shows alerts and notifications from all monitored agents.

The alert table panel initially just shows the table with the alerts and notification, each of them in a

separate row. As soon as a row gets selected by the user, its details are displayed in a section below

the table within the fields “Alert Text”, “Cleared Info” and “Alert Context”. These details can also be

shown in a separate dialog by double clicking on a row. The background color of each table row

corresponds to the alert severity (level) according to the following list.

Notification

Low Level Alert

Medium Level Alert

gh Level Alert

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 39 of 57

The individual alert table columns are explained below:

Column Name Description

Read Indicates whether the alert has already been read by the user. An alert is
marked as read if the user clicks inside the “Read” cell or if he displays the
alert data in the alert detail dialog. The alert detail dialog gets shown if you
double click on an alert row.

Cleared Indicates whether the alert is already cleared. You cannot clear an alert
yourself through the Mirador program, this is an event issued by the
corresponding Hawk agent.

Level The level is also known as the alert severity. The following values can appear:
Notification, Low, Medium and High. As stated above, the level is also
represented by the background color of the table row.

Time The time the alert was generated

Rulebase The rulebase that generated the alert

Alert Text The generated alert text

A small toolbar appears right top of the alert table. It contains the following buttons

Button Description

 Export to Excel Exports the alerts from the alert table to an excel file defined by the user

 Suspend Pops up the dialog shown below and lets the user suspend the selected alert
for a number of minutes,depending on his choice. The default reason “got
suspended by user” may be overwritten in order to clearly state why a
particular alert got suspended.

 Mark All Cleared
As Read

Marks all currently cleared alerts from the table as being read by the user.

 Mark All As Read Marks all alerts from the table as being read by the user.

Depending on the Hawk environment being monitored, a high number of alerts may be generated.

These alerts remain buffered in the Mirador program until they expire. Alerts expire a certain time

after they were cleared and read by the user, this time period can be changed in the application

properties dialog within the Alert panel.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 40 of 57

To avoid high memory consumption due to a huge number of buffered, hence non-expired alerts,

Mirador also lets you configure the time after which cleared, but not yet read, alerts get removed

from the tables. This time period is important and needs to be defined shorter when the Mirador is

not being watched permanently and cleared alerts are not marked as being read on a regular basis.

Otherwise the Mirador program may run out of memory or it may no longer properly react to

monitoring events.

4 CONFIGURATION AND PERSISTENCY

4.1 APPLICATION PROPERTIES

The basic behavior of Mirador can be customized through the application properties dialog that is

invoked by selecting the menu item File > Show Application Properties… from the main menu. The

same dialog is also shown if you press the button from the main toolbar. Here you can easily

define: Hawk environments you want to monitor, date and time patterns to be shown in the display,

settings used to structure microagents etc.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 41 of 57

4.1.1 HAWK ENVIRONMENTS

The “Hawk Environments“page lets you define the Hawk environments you want to monitor. Through

the button and the button you can add or remove single environment definitions. The

environment definition cannot be removed if it corresponds to the one that is currently selected for

monitoring. The buttons and let you change the position of environment definitions by moving

them up or down. The details from the selected table row (environment) appear on the bottom of the

page according to the following description.

Option Description

Definition Name Every definition must have a distinct name that gets freely assigned by
the user. Please note that the name cannot be changed if the
environment definition corresponds to the one that is currently selected
for monitoring.

Hawk Domain Hawk domains are used if you wish to isolate groups of Hawk agents into
independent monitoring sets.

Communication Channel This lets you select the communication channel Mirador uses to gather
information from the monitored Hawk agents and to remotely invoke
microagent methods. Depending on the options you chose when
installing the Mirador program, you have the choice between the
communication channels “Rendezvous” and “Enterprise Message
Service”.

Communication Channel “Rendezvous”

Option Description

Rendezvous Service The Rendezvous parameters are required by Mirador to create a session
in order to connect to a Rendezvous daemon

Rendezvous Network see above

Rendezvous Daemon see above

Communication Channel “Enterprise Message Service”

Option Description

Server URL This parameter is required by Mirador to create a session on the EMS
server

User The user is an optional parameter if the EMS session requires
authentication

Password The password is an optional parameter if the EMS session requires
authentication

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 42 of 57

4.1.1.1 ADVANCED OPTIONS

Advanced Hawk Environment options can be defined in a separate dialog that pops up if you press the

“Advanced…” button right to the common option fields. The individual advanced options are

explained in the table that follows.

Option Description

Security Class Name of the Java class that implements the Hawk Security Policy

When defining a standard security class, please make sure the <HAWK-
HOME>/bin directory is in the variable path. This is required because Hawk
needs an additional DLL (HawkTrustedUserID.dll), which is located in that
directory.

Character Encoding Character encoding used by the TIBCO Rendezvous daemon

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 43 of 57

Option Description

Method Invocation
Customizer Class

Name of the Java class that adds simple customized functionality for
microagent method invocations within the Mirador program. You can
automatically set initial argument values, disable individual input fields or
show them as password fields where the entered characters are replaced by
a placeholder character. The entered class must implement the Java
interface MethodInvocationCustomizer from the package
com.centeractive.mirador.custom and it must have a public
accessible parameter-less constructor, its documentation can be found in
javadoc format at the following location:

 <MIRADOR_HOME>\help\html\javadoc\index.html

Mirador provides a convenient class that’s ready to be used. It is set by
default when a new Hawk environment definition is created. The full class
name is
com.centeractive.mirador.agent.microagent.DefaultMe

thodInvocationCustomizer and it acts as follows:

 In case the name of an argument is “user” or “user name” (not case
sensitive), its initial value is set to the same value as the system
property named “user.name”.

 In case the name of an argument is “password” (not case sensitive);
its edit field will not show the entered text but only substitution
characters.

 After each successful method invocation or creation of a
subscription, the class caches the entered attribute values and sets
them as initial value to identically named arguments where
method invocation panels are visited for the first time.

 Where the microagent method descriptor specifies itself a default
value for an argument, above specified cases are overruled and the
default value is set initially instead.

Alert Description File Full path of the XML file that contains further description of alerts issued by
Hawk rules. The format of such a file has to comply with the XML schema
defined in the file HawkAlertDescription.xsd, which is located in the
resource folder within the Mirador installation directory.

Maintaining and using such a file considerably improves the usefulness of
Mirador as it immediately provides the user with information about alerts,
their context and possible solutions. A detailed description and measures
(actions to be taken) can be defined for any alert. The alert defined in Hawk
rulebases and corresponding entry from the XML file are linked by an alert
ID. If this ID, prefixed by a ‘$’, appears at the beginning of the alert text,
Mirador retrieves the description (if any) from the XML file and shows it to

the user upon request. Simply press on the button that appears on the
alert detail panel, right of the alert title.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 44 of 57

4.1.2 FORMATS

Within this panel, you can change the way certain data gets formatted and represented in the GUI.

4.1.2.1 DATE FORMATS

This box lets you define date and time formats that are used throughout the Mirador program. The

entered patterns must conform to the specifications valid for the Java class SimpleDateFormat

(see http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html)

Option Description

Date Format Pattern that specifies a date, without the time. The default value is
“yyyy.MM.dd”.

Date/Time Format Pattern that specifies a date together with the time. The default value
is “yyyy.MM.dd HH:mm:ss”.

Date/Time + ms Format Pattern that specifies a date together with the time and should include
milliseconds. The default value is “yyyy.MM.dd HH:mm:ss SSS”.

4.1.3 ALERTS

This panel relates to alerts issued by the monitored Hawk agents.

Option Description

Remove cleared and read
alerts after…

This option defines after how much time in seconds cleared alerts shall
be removed from the alert tables when these alerts have been read by
the user.

An internal worker process repeatedly goes through all buffered alerts
and checks whether the defined number of seconds has expired since
an alert reached its “read & cleared” state. Each time the worker
process has checked all alerts, it waits a few seconds before it starts
checking them again.

Remove cleared only alerts
after…

This option defines after how much time in minutes cleared alerts shall
be removed from the alert tables regardless of whether the alerts are
already marked as being read by the user.

An internal worker process repeatedly goes through all buffered alerts
and checks whether the defined number of minutes has expired since
an alert was cleared. Each time the worker process has checked all
alerts, it waits a few seconds before it starts checking them again.

4.1.4 MICROAGENTS

This panel lets you customize both the structure of microagent nodes within the Hawk environment

tree andhow certain microagent method results are displayed.

4.1.4.1 MICROAGENT STRUCTURING

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 45 of 57

This box lets you define the way microagents get structured in the Hawk environment tree. A detailed

description of how microagents get structured and represented by the Mirador program can be found

in the section 3.2.7 Microagent Group Node.

Option Description

Hierarchically structure
microagents

If this checkbox is selected, the microagents get hierarchically
structured according to the settings in the other fields within this box.
If the checkbox is not structured, all microagents appear on a same
hierarchy level within the default microagent group node.

Separator Characters Characters that get used to split the microagent display names into
tokens from which the hierarchy structure is derived.

Omit “name” part… This checkbox indicates how individual microagent group names and
microagent names (display name tokens) are represented. If the
checkbox is selected and a name token represents a name/value pair
with the format <name>=<value>, the name part together with the
equals sign get removed from the token.

Microagents to be
excluded…

A list of microagents that should not be structured but simply be
contained in the default group node named “Microagents”. When
adding new entries to the list, please be sure to enter the name of
the microagent and not its display name. To find out about the name
of a microagent, simply select the corresponding node in the
navigation tree and select the description tab in its detail view; the
name appears there in the first line.

Excluding single microagents from being structured can make sense
in a case where an otherwise widely useful separator character is
contained in the microagent display name and that splitting that
name would produce an undesired result. The slash (‘/’) separator
character for example makes sense to be used for a microagent with
the display name “TIBCO/RepositoryServer ca_domain”
but its use doesn’t make sense for the microagent with the display
name “JMS_controller (tcp://localhost:7222)”.

4.1.4.2 METHOD INVOCATION

This box lets you define options related to microagent method invocations.

Option Description

Result history size This option defines how many rows shall be retained (shown) in the result
table when the historic view gets chosen within the result control box of a
microagent method invocation panel.

4.2 SAVING WORK SETTINGS

Beside the settings available in the application properties dialog described in the previous chapter,

Mirador lets you save different aspects from your current defined workspace to files for further use.

4.2.1 HAWK ENVIRONMENT CONFIGURATION

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 46 of 57

The current Hawk environment state with all clusters and agents visible in the navigation tree is saved

to the mirador.hmo file located in the ".mirador/bin" folder located in the user home

directory. This happens each time you press the save button () or when you select the menu item

File File > Save…. The cluster and agent nodes (in unknown state) of the selected Hawk environment

are re-established as soon as you re-launch the Mirador program or when you switch to another

environment through the Environment menu. Prior to start actively monitor your environment, you’ll

already know what agents were there when you saved the environment last time. The stored Hawk

environment configuration can be considered to be a reference composition.

When saving the state of the hawk environment, the previous version of the mirador.hmo file

initially gets copied to the ".mirador/bin/backup" folder with a name of the format

<yyyyMMddHHmmss>-mirador.hmo. If you unintentionally overwrite the mirador.hma file,

you can easily replace it with a file from within the ".mirador/bin/backup" folder.

Saving the monitored Hawk environments is especially useful should you want to make sure all

current displayed agents also get detected during a subsequent Mirador session. If one of the agents

would not be detected then, it would still be shown as being unknown.

The save button has to be pressed each time you change the application properties, otherwise these

changes will be lost should your Mirador program unexpectedly terminate. When you close the

Mirador application through the menu item File

> Exit, the program also asks you, if you want to

save the current Hawk environment state (see figure

beside). Press the “Yes” button only in case you’re

sure the current state shall be used as the reference

state in further Mirador sessions.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 47 of 57

4.2.2 MICROAGENT METHOD SUBSCRIPTIONS

All microagent method subscriptions from any agent (including the Mirador pseudo agent) can be

saved and easily loaded to one or several agents at any time in the future. This feature is commonly

used if an identical set of microagent method subscriptions need to be present simultaneously on

different agents. You would then first define all subscriptions on a single agent and carefully configure

the individual method result views. Once the set has been successfully tested, simply save the

subscriptions from that host to a file and reload them to the other agents of your choice.

Saving microagent method subscriptions is initiated by

selecting the menu item Subscriptions > Save

Subscriptions…. This opens a dialog that contains a list with

all current detected Hawk agents. The list also contains the

Mirador agent should one or several microagents have been

loaded from the local Mirador plugin directory. The user

now has to select an agent that shall ensure all its method

subscriptions are saved to a file. The agents that do not have

any active subscriptions are grayed out and cannot be

selected. When the “OK” button gets pressed, another

dialog appears where the user can freely choose the name

of the target file. The program, by default, proposes to store

subscription definition files in the

".mirador/export/subscriptions" folder. The

default file extension is ".sub". If the user chooses to

overwrite an already exiting subscription definition file, its

previous version gets copied to the ".mirador/export/subscriptions/backup" folder

with a name of the format <yyyyMMddHHmmss>-<previous filename>.

Saved subscription definitions can easily be loaded through the menu item Subscriptions > Load

Subscriptions…, either to the same agent or to any other agent during the same Mirador session or

during subsequent sessions. Microagent method subscriptions can also be loaded simultaneously to

multiple agents.

The Mirador program can load subscriptions only if the chosen target agent contains a microagent

method that is identical with the one the subscription was running on when it was saved to the file.

When microagent method subscriptions are successfully loaded, the Mirador program also tries to

start them. After the loading process, you can easily switch to the different microagent method

subscription panels by selecting the entries from the Subscriptions menu.

If you load the same microagent method subscriptions on an agent that already has the same

subscriptions loaded,these subscriptions will not be overwritten. The Mirador program will always try

to create new subscriptions. This is not a problem for standard microagent method nodes but may

not be possible when the target node does not directly represent a remote microagent (i.e.

BusinessWorks monitoring nodes). Views

The Mirador program lets the user save the current view by selecting the menu item View > Save

Current View…. When the current view is saved to a file, the Mirador program collects the items,

listed below,and writes them in XML format to a file.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 48 of 57

 All agent collection microagents

 Current active subscriptions

 All pinned dialogs

The user can determine the location and the name of the view file. The program, by default, proposes

to store them in the folder ".mirador/export/views" folder located in the user home

directory, the default file extension is ".mvw". If the user chooses to overwrite an already exiting

view definition file, its previous version gets copied to the

".mirador/export/views/backup" folder with a name of the format

<yyyyMMddHHmmss>-<previous filename>.

Persistent view definition can be reloaded during the same session or during any other Mirador

session later on through the menu item View > Load View…. When reloading a view, the Mirador

program will first do the following clean-up activities, if the user confirms the related question.

 Cancel all active microagent method subscriptions

 Remove all agent collection microagents

 Close all pinned dialogs

The user will then have to choose the file that contains the view definition; you may also select a file

from within the ".mirador/export/views/backup" folder. The view definition file however

should have been saved from within the same Hawk environment; otherwise the microagent method

subscriptions and pinned dialogs cannot be re-created.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 49 of 57

5 AGENT COLLECTION MICROAGENTS

With agent collection microagents you can invoke identical microagent methods on a series of remote

Hawk agents within the monitored environment and present the return data in a compact form

depending on your needs. You interact with the agent collection microagent methods just as you

would with any other microagent method. That way you can create subscriptions that suit your whole

network and present result data in form of tables and charts. A typical use case would be to display

the resource usage (CPU time and/or memory consumption) of a number of servers within a single

time chart.

The agent collection microagent is a Mirador software component that gets defined (added) by the

user through a simple mouse click within the detail view of a mircroagent method node. If such a

node references a microagent method on a remote node, you will see the button that adds a new

agent collection microagent to the Mirador program or simply a new method on an already existing

one. Agent collection microagents appear underneath the “Agent Collection” node () that

becomes visible only when the first agent collection microagent gets defined.

Every method of an agent collection microagent is based on the microagent method from where the

 button was activated. The name and display name of the agent collection microagent and its

methods remain identical to the ones of the base microagent and methods. The descriptions are the

same as the ones from the base microagent plus some text that gives further information about the

collection related behavior. The real apparent differences are the following:

 The agent collection microagent most often contains only a subset of the methods found on

the base microagent.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 50 of 57

 Two elements are added to the method arguments. The new arguments are named “Cluster

Names” and “Agent Names” and they let you specify the remote agents that shall have their

corresponding microagent method invoked.

 When an agent collection microagent method is invoked, the method invocation is

forwarded to all remote agents if their settings match the values from the attributes “Cluster

Names” and “Agent Names”. If those remote methods return data, this data is first collected

and then passed to the Mirador presentation layer.

 When a subscription is created on a synchronous agent collection microagent method,

Mirador orchestrates the subscription and invokes the agent collection microagent method

repeatedly by observing the specified interval. The requests get forwarded to the

corresponding microagent method on all active agents where the settings match the values

from the attributes “Cluster Names” and “Agent Names” at the time of every individual

method invocation .

 When a subscription is created on an asynchronous agent collection microagent method, a

corresponding remote subscription is created on all agents if their settings match the values

from the attributes “Cluster Names” and “Agent Names”. Results from asynchronous

methods that arrive in form of notification events will always contain data from the

originating agent only. When a remote agent expires, its subscriptions are cancelled; as soon

as such an agent is alive again, the Mirador program tries to re-create the corresponding

remote subscription. This also applies if a new agent gets detected and its settings match the

values from the attributes “Cluster Names” and “Agent Names”, the Mirador program also

tries to create a new remote subscription.

 All response data – if any - from remote microagent methods (synchronous invocations and

asynchronous event notification) is collected and passed to the Mirador presentation layer

in tabular format. Every such table has two leading columns named “Cluster” and “Agent”

respectively, which indicate from where each individual table row comes from.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 51 of 57

6 ENHANCED VIEWS

6.1 BUSINESSWORKS MONITORING

Mirador offers a special view on BusinessWorks (BW) process engines by using certain data retrieved

from the TIBCORuntimeAgent microagent (COM.TIBCO.admin.TRA) and the individual BW

process engine microagents (COM.TIBCO.ADAPTER.bwengine.<domain>.<engine

name>.Process Archive). The original microagents appear unchanged with all their methods as

do all other microagents but the program creates additional tree nodes and panels underneath the

BusinessWorks Engines folder node .

The alternate view only access data from read-only microagents where no side effects occur.

Therefore in order to increase user comfort, Mirador automatically requests and shows the current

data from the corresponding microagents each time the user navigates to a different node or selects a

different panel. The data of the current selected panel can also be refreshed manually at any time by

activating the top right located invoke button . If you want the data to be refreshed at a fixed

interval, simply activate the subscribe button and define the interval in seconds.

The different result views (historical, bar charts, pie charts, time charts etc.) are also available on most

panels, the same as in the standard microagent view.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 52 of 57

6.1.1 PROCESS ENGINES GROUP NODE

The BusinessWorks Engines folder node groups all detected BW process engines. Its detail view

contains a summary with useful resource data from all depending BW process engines. Their status,

CPU and memory usage for example is visible on the fly.

In a large environment with a high number of BusinessWorks

engines, you may be interested in a limited set of engines

only. Also for some specific monitoring tasks, you may want to

limit the number of displayed engines, especially if you want

to represent their resource consumption in a chart.

To restrict the number of displayed engines, simply click on

the “Define Filter” button on top of the result control panel. A

dialog will pop up (see example) and let you select the engines

you want to have included in the result table.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 53 of 57

6.1.2 PROCESS ENGINE NODE

Every deployed BusinessWorks process engine is represented as a package node and appears

directly beneath the Business Engines folder node (). Its detail view contains a series of tabbed

panes, each of them showing BW engine data of a certain type such as process definitions as shown in

the figure below. The underlined blue text in the table and within the row detail view represents a link

to another tree node. If a mouse click occurs on them, the referenced node gets selected. This lets

you easily navigate between related nodes.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 54 of 57

6.1.3 PROCESS DEFINITIONS NODE

The process definitions contained within a BW engine are hierarchically structured using the process

folder node . The process definitions appear as leaf nodes with a gear icon either directly

beneath the engine node or inside the corresponding folder node. Process definitions that are linked

to a process starter are represented by an additional green arrow .

The process definitions from the BW engine shown in the figure in the previous chapter would be

structured as follows.

Each process definition has again a number of tabbed panes that let you easily retrieve and display

data obtained from the underlying microagents. Especially within the “Activity Hierarchy” and the

“Process Monitor” panels, you’ll see the real benefit of this alternate BusinessWorks view. In fact it’s

not just a view but the data gets retrieved from different microagents, aggregated and displayed in a

way to give an accurate and quick overview of what’s going on.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 55 of 57

6.1.3.1 ACTIVITY HIERARCHY

The activities of the selected process definition are shown in a hierarchical structured way. Activities

must have been executed at least once in order to appear in the structure. Subprocess definition

nodes with all their activities can be collapsed and expanded individually by clicking the plus/minus

icon in front of the node. You can also expand the entire process definition structure using the top left

located expand all button or the collapse all button . If you have to deal with a very large

process definition structure, you may also find useful the following buttons:

 expands all subprocess definitions that contain an activity whose last return code was ERROR.

 expands all subprocess definitions that contain an activity whose last return code was WAITING.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 56 of 57

6.1.3.2 PROCESS MONITOR

The process monitor gives real time information about the execution of BusinessWorks process

instances. Within the top located table, every newly started process instance (job) appears as a new

row with its start time, end time and duration. The top right located combo box “Process History Size”

determines how many rows are shown in the table. Old process instances are discarded automatically

if a new instance exceeds the selected number. The process monitor can be started by activating the

start button . A running process monitor can be stopped again if you activate the stop button .

If you select a process instance row from the table, you can follow its execution path within the panel

that appears at the bottom of the panel. Every executed activity gets listed together with its start time

and also its end time and duration where applicable. Processes often call subprocesses through

multiple levels; indentation is used to show the activity names in the correct context. If you select an

activity from the table, all its sibling activities are represented with a yellow background color. This

useful feature adds clarity especially when parallel execution of subprocesses occurs.

User Manual Mirador Release 2.1

 copyright  centeractive ag Page 57 of 57

7 REPORT GENERATION

You can generate useful reports from the Hawk agents found in the monitored environment. Report

generation is defined in the “Document Agents” dialog that is invoked by selecting the menu item File

> Document Agents… from the main menu. The same dialog is also shown if you press the button

from the main toolbar. Here you can define, among other things, the Hawk agents you want to

document, the output format (currently only HTML) as well as the filename and path of the output

file.

	2 Introduction
	3 User Interface
	3.1 Application Controls
	3.1.1 Main Menu
	3.1.2 Main Toolbar

	3.2 Tree Nodes
	3.2.1 Hawk Environment Node
	3.2.1.1 All Alerts
	3.2.1.2 Console Warnings

	3.2.2 Cluster Node
	3.2.3 Agent Node
	3.2.4 Rulebase Engine Node
	3.2.5 Schedules Node
	3.2.6 Rulebase Node
	3.2.7 Microagent Group Node
	3.2.8 Microagent Node
	3.2.9 Microagent Method Group Node
	3.2.10 Microagent Method Node
	3.2.10.1 Result View

	3.2.11 Mirador Agent

	3.3 Alert Table Panel

	4 Configuration and Persistency
	4.1 Application Properties
	4.1.1 Hawk Environments
	4.1.1.1 Advanced Options

	4.1.2 Formats
	4.1.2.1 Date Formats

	4.1.3 Alerts
	4.1.4 Microagents
	4.1.4.1 Microagent Structuring
	4.1.4.2 Method Invocation

	4.2 Saving Work Settings
	4.2.1 Hawk Environment Configuration
	4.2.2 Microagent Method Subscriptions

	5 Agent Collection Microagents
	6 Enhanced Views
	6.1 BusinessWorks Monitoring
	6.1.1 Process Engines Group Node
	6.1.2 Process Engine Node
	6.1.3 Process Definitions Node
	6.1.3.1 Activity Hierarchy
	6.1.3.2 Process Monitor

	7 Report Generation

