

Jun-12 AS-5216x64-DLL Manual.docx 1

Avantes website: http://www.avantes.com email: Info@avantes.com

AS-5216x64 DLL

Interface Package for 64 bit Windows Applications

Version 2.3.0.0

USER’S MANUAL

June 2012

Avantes B.V.

Oude Apeldoornseweg 28

NL-7333 NS Apeldoorn

The Netherlands

Tel: +31-313-670170

Fax: +31-313-670179

Web: www.avantes.com

Email: info@avantes.com

http://www.avantes.com/
mailto:info@avantes.com

2 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Microsoft, Visual C++, Visual Basic, Visual C# , Windows, Windows 95/98/Me, Windows

NT/2000/XP and Microsoft Office are registered trademarks of the Microsoft Corporation. Windows

Vista and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the

United States and/or other countries.

Delphi and C++Builder are trademarks of CodeGear, a subsidiary of Embarcadero Technologies

LabVIEW is a trademark of the National Instruments Corporation

MATLAB is a registered trademark of The MathWorks, Inc.

Qt is a trademark of Nokia Corporation in Finland and/or other countries worldwide.

Copyright © 2012 Avantes bv

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, by any means, electronic, mechanical, photocopying,

recording, or otherwise, without written permission from Avantes bv.

This manual is sold as part of an order and subject to the condition that it shall not, by

way of trade or otherwise, be lent, re-sold, hired out or otherwise circulated without the

prior consent of Avantes bv in any form of binding or cover other than that in

which it is published.

Every effort has been made to make this manual as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on an “as

is” basis. Avantes bv shall have neither liability nor responsibility to any person

or entity with respect to any loss or damages arising from the information contained in

this manual.

Jun-12 AS-5216x64-DLL Manual.docx 3

Avantes website: http://www.avantes.com email: Info@avantes.com

Software License

THE INFORMATION AND CODE PROVIDED HEREUNDER (COLLECTIVELY REFERRED TO
AS “SOFTWARE”) IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
AVANTES BV OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS
PROFITS OR SPECIAL DAMAGES, EVEN IF AVANTES BV OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.

This Software gives you the ability to write applications to acquire and process data from Avantes
equipment. You have the right to redistribute the libraries contained in the Software,
subject to the following conditions:

1. You are developing applications to control Avantes equipment. If you use the
code contained herein to develop applications for other purposes, you MUST obtain a
separate software license .
2. You distribute only the drivers necessary to support your application.
3. You place all copyright notices and other protective disclaimers and notices contained on
the Software on all copies of the Software and your software product.
4. You or your company provides technical support to the users of your application. Avantes bv will not
provide software support to these customers.
5. You agree to indemnify, hold harmless, and defend Avantes bv and its suppliers
from and against any claims or lawsuits, including attorneys’ fees that arise or result from
the use or distribution of your software product and any modifications to the Software.

4 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

0 INSTALLATION.. 6

1 VERSION HISTORY ... 9

1.1 New in version 2.3.0.0 .. 9

1.2 New in version 2.2.0.0 .. 9

1.3 New in version 2.1.0.0 .. 9

1.4 New in version 2.0.0.0 .. 9

1.5 New in version 1.7.0.0 .. 10

1.6 New in version 1.6.0.0 .. 10

1.7 New in version 1.5.0.0 .. 11

1.8 New in version 1.4.0.0 .. 11

1.9 New in version 1.3.0.0 .. 11

1.10 New in version 1.2.0.0 .. 12

1.11 New in version 1.1.0.0 .. 12

1.12 New in version 1.0.0.0: as5216.dll versus as161.dll ... 13
1.12.1 Data acquisition .. 13
1.12.2 Synchronization in Multichannel systems .. 14
1.12.3 Laser control and integration time delay, e.g. for LIBS .. 14
1.12.4 USB2 platform specific functions ... 15

2 AS5216X64 DLL DESCRIPTION ... 16

2.1 Interface overview.. 16

2.2 Usage of the AS5216x64 DLL ... 16

2.3 Exported functions ... 17
2.3.1 AVS_Init .. 17
2.3.2 AVS_Done ... 17
2.3.3 AVS_GetNrOfDevices .. 17
2.3.4 AVS_GetList ... 18
2.3.5 AVS_Activate .. 18
2.3.6 AVS_Deactivate .. 18
2.3.7 AVS_Register .. 19
2.3.8 AVS_PrepareMeasure ... 19
2.3.9 AVS_Measure .. 19
2.3.10 AVS_GetLambda... 20
2.3.11 AVS_GetNumPixels .. 20
2.3.12 AVS_GetParameter ... 21
2.3.13 AVS_PollScan ... 21
2.3.14 AVS_GetScopeData .. 22
2.3.15 AVS_GetSaturatedPixels ... 22
2.3.16 AVS_GetAnalogIn ... 22

Jun-12 AS-5216x64-DLL Manual.docx 5

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.17 AVS_GetDigIn .. 23
2.3.18 AVS_GetVersionInfo .. 23
2.3.19 AVS_GetFileSize .. 24
2.3.20 AVS_GetFile ... 24
2.3.21 AVS_GetFirstFile .. 25
2.3.22 AVS_GetNextFile ... 25
2.3.23 AVS_DeleteFile .. 26
2.3.24 AVS_GetFirstDirectory ... 26
2.3.25 AVS_GetNextDirectory .. 26
2.3.26 AVS_DeleteDirectory ... 27
2.3.27 AVS_SetDirectory ... 27
2.3.28 AVS_SaveSpectraToSDCard .. 28
2.3.29 AVS_SetParameter .. 29
2.3.30 AVS_SetAnalogOut .. 29
2.3.31 AVS_SetDigOut .. 29
2.3.32 AVS_SetPwmOut .. 30
2.3.33 AVS_SetSyncMode ... 31
2.3.34 AVS_StopMeasure .. 31
2.3.35 AVS_SetPrescanMode .. 32
2.3.36 AVS_UseHighResAdc .. 33
2.3.37 AVS_SetSensitivityMode .. 34

2.4 Data Elements .. 35
2.4.1 Return value constants ... 43
2.4.2 Windows messages .. 45

3 EXAMPLE SOURCE CODE ... 46

3.1 Initialization and Activation of a spectrometer .. 46

3.2 Starting a measurement .. 47
3.2.1 Measurement structure: Start- and Stoppixel ... 48
3.2.2 Measurement structure: Integration Time .. 48
3.2.3 Measurement structure: Integration Delay .. 49
3.2.4 Measurement structure: Number of Averages ... 49
3.2.5 Measurement structure: Dynamic Dark Correction ... 49
3.2.6 Measurement structure: Smoothing ... 50
3.2.7 Measurement structure: Saturation Detection .. 51
3.2.8 Measurement structure: Trigger Type ... 52
3.2.9 Measurement structure: Control Settings .. 55

3.3 Measurement result ... 57

3.4 Digital IO .. 58

3.5 Analog IO ... 58

3.6 EEProm .. 59
3.6.1 EEProm structure: Detector Parameters .. 59
3.6.2 EEProm structure: Standalone Parameters .. 64
3.6.3 EEProm structure: Irradiance, Reflectance Calibration and Spectrum Correction 65
3.6.4 EEProm structure: Temperature Sensors ... 66
3.6.5 EEProm structure: Tec Control ... 66
3.6.6 EEProm structure: ProcessControl .. 67

6 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

0 Installation

The AS5216x64 DLL is the 64 bit version of the AS5216 driver interface. It is needed when you want

the DLL to cooperate with 64 bit programs, like self-written 64 bit programs or the 64 bit versions of

LabVIEW or MATLAB. Note that the 32 bit versions of LabVIEW or MATLAB can run perfectly

well on 64 bit versions of Windows. You will have to determine your version, generally this is

displayed in the About box of each program. The Visual Studio IDE is a 32 bit application, that can

generate either 32 or 64 bit programs.

The AS5216x64 DLL package version can be installed under the following operating systems:

 XP/Vista/Windows7 x64 (64-bit O/S)

The installation program can be started by running the file “setup64.exe” from the CD-ROM.

Installation Dialogs

If you use Windows Vista, and the UAC

setting is enabled, you will get the

warning displayed to the left. Please

select “Allow” to install the package.

This installation is password protected. Enter the following password to proceed with the installation:

Avantes6961LL4a

The setup program will check the system configuration of the computer. If no problems are detected,

the first dialog is the “Welcome” dialog with some general information

Jun-12 AS-5216x64-DLL Manual.docx 7

Avantes website: http://www.avantes.com email: Info@avantes.com

In the next dialog, the destination

directory for the AS5216x64 DLL

software can be changed. The default

destination directory is C:\AS5216x64-

DLL_2.3. If you want to install the

software to a different directory, click

the Browse button, select a new

directory and click OK.

If the specified directory does not exist,

it will be created.

During this installation, the installation program will check if the most recent USB driver has been

installed already at the PC. If no driver is found, or if the driver needs to be upgraded, the Device

Driver Installation Wizard is launched automatically, click Next. Starting with version 1.6, the driver

packages are signed, and should not generate a warning that the publisher of the driver software cannot

be identified. If this warning appears anyway, please select “Install this driver software anyway”.

After the drivers have been installed successfully, the dialog at the right is displayed, click Finish.

After all files have been installed, the “Installation Complete” dialog shows up. Click Finish.

Connecting the hardware

Connect the USB connector to a USB port on your computer with the supplied USB cable. Windows

XP will display the “Found New Hardware” dialog. Select the (default) option to install the software

automatically, and click next.

8 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

After the Hardware Wizard has completed, the following dialog is displayed under Windows XP:

Click Finish to complete the installation.

Please note that if the spectrometer is

Connected to another USB port to which it has

not been connected before, the “Found New

Hardware Wizard” will need to install the

software for this port as well. For this reason,

this Wizard will run “NrOfChannel” times for a

multichannel AvaSpec-USB2 spectrometer

system. This happens because inside the

housing, the USB ports for each spectrometer

channel are connected to a USB-Hub.

Windows Vista, or Windows 7 will install the driver silently, without displaying the “Found New

Hardware Wizard” dialogs.

Launching the software

This AS5216x64 DLL manual can be started from the Windows Start Menu. The source code of the

example programs can be found in the Examples folder.

Jun-12 AS-5216x64-DLL Manual.docx 9

Avantes website: http://www.avantes.com email: Info@avantes.com

1 Version History

This section will be used to describe the new features in as5216x64.dll c.q. as5216.dll, compared to

the previous versions.

1.1 New in version 2.3.0.0

- A new function has been added for the NIR detectors (all AvaSpec-NIR models). The

AvaSpec-NIR models can be operated in “Low Noise” or “High Sensitivity” mode. The new

function AVS_SetSensitivityMode can be used to switch between these modes. See also

section 2.3.37.

1.2 New in version 2.2.0.0

- Added support for the new detector in the AvaSpec-2048XL spectrometers, the Hamamatsu

S11155.

- The version of the Qt libraries was updated to 4.6.3

- The AvaSpec-HS1024x58 and 1024x122 (High Sensitivity) series with Hamamatsu S7031

detector were already supported in as5216x64.dll v 2.1, but detector specific data such as

minimum integration time, smoothing and triggering characteristics were missing in the

AS5216x64-DLL v2.1 manual.

1.3 New in version 2.1.0.0

- Added dynamic dark support for the new detectors in the AvaSpec 2048x16 and the AvaSpec

2048x64 spectrometers. It is strongly recommended to keep dynamic dark correction enabled

(default state). See also section 3.2.5.

- Minimum integration time for the AvaSpec-2048x16 changed from 0.91ms to 1.82 ms (see

also section 3.2.2).

- Minimum integration time for the AvaSpec-2048x64 changed from 1.75ms to 2.40 ms (see

also section 3.2.2).

- The Qt samples were extended with a full featured graph, from the open source Qwt library. A

distribution file for this library is included.

1.4 New in version 2.0.0.0

- Support for 64 bit programs, for both native and managed code. The 64 bit DLL is now

written in Microsoft Visual C++ 2008, combined with the Qt4 framework. The 64 bit DLL

requires the Microsoft Visual C++ 2008 and Qt4 runtimes to function. The setup program

installs the VC++2008 runtime, which is called ‘vcredist_x64.exe’. You may need to run this

file yourself on other PC’s that do not have VC++2008 installed. The Qt4 runtime is called

‘QtCore4.dll’, and is best located in the same directory as ‘as5216x64.dll’.

- As the Qt4 framework uses the WM_USER+1 message itself, the DLL now uses the

WM_APP+1 windows message to signal the arrival of new data.

- Addition of two samples written in Microsoft Visual C++ 2008, combined with the Qt4

framework. These are 64 bit native code samples.

- Addition of a Matlab sample, for 64 bit Matlab R2010a.

- The LabView samples were adapted for 64 bit LabView 2009. In the large sample, the

Measurement Configuration structure is now also translated to a linear array of bytes, before

being transferred to the DLL. In previous versions, this was not necessary. The large LabView

sample was also clarified by using an event structure for the different command buttons.

- The VB .net, VC# and VC++ samples were adapted for 64 bit Visual Studio 2008. These are

all managed code samples. The marshalling code of the VB sample was extensively changed,

which allows it to now directly pass structures to the DLL, without translation to a linear array

of bytes.

10 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

- The 32 bit only samples (for Delphi, C++ Builder, VB6 and VC++ 6) were removed from the

64 bit DLL package.

- Addition of support for the new detectors in the AvaSpec 2048x16 and the AvaSpec 2048x64

spectrometers.

1.5 New in version 1.7.0.0

- Support of Dynamic Dark Correction for AvaSpec-NIR-2.0/2.2/2.5. The offset level for the

cooled NIR detectors strongly depends on the ambient temperature. By using Dynamic Dark

Correction, the offset level is measured with each new scan at a few blocked data pixels, and

the measured signal is subtracted from all other data pixels. See also section 3.2.5.

- Floating Point Exceptions handling. The program environment in which the as5216.dll is

written (C++Builder) uses by default another way of handling floating point exceptions than

the MicroSoft (Visual Studio) programming environment in which the application software

can be developed. As long as no floating point exceptions are created by the application (e.g.

because of division by zero), no problems occurred in previous as5216.dll versions. However

if floating point exceptions did occur in the application, or were thrown by other third party

libraries, this may have resulted in a fatal crash of the application. In as5216.dll version

1.7.0.0, this rare problem has been solved by setting the FPU Control Word to the MicroSoft

default. This solved the fatal crash in the few occasions that were reported in the past 5 years.

- Addition of new Delphi and C++Builder sample programs. The “old” Delphi 6.0 and

C++Builder 5.0 sample programs are not fully compatible with the most recent Delphi and

C++Builder versions. Since the Codegear 2009 versions, the character (char type) size is 2

bytes (Unicode), whereas in previous versions this type was only 1 byte. If 1 byte characters

need to be used, the AnsiChar type should be used in the Codegear 2009 environment.

- Addition of a simple Visual Basic 6.0 sample program, which uses AVS_PollScan instead of

Windows Messaging.

- Addition of a simple LabView sample program to illustrate how the StoreToRAM

functionality can be implemented in combination with AVS_PollScan.

- Support of the new AvaSpec-(ULS)350F-USB2, AvaSpec-(ULS)950F-USB2, AvaSpec-

(ULS)1350F-USB2 and AvaSpec-(ULS)1650F-USB2 spectrometers. The “F” in the name

refers to Fast, because of the Fast minimum integration time that can be used for these

spectrometers, see also section 3.2.2. For example, with the AvaSpec-(ULS)350F-USB2, 5000

full spectra (350 pixels) can be saved into onboard RAM in exactly one second (0.20 ms

integration time).

- The return value of the function AVS_GetSaturatedPixels in previous as5216.dll functions

was not implemented as intended. Unlike all other functions, AVS_GetSaturatedPixels

returns ‘1’ on success and ‘0’ if it is called at a moment that no data is available (measurement

pending). Because this return value has been present in all previous versions, changing this in

the as5216.dll may result in an incompatibility of the application software. Therefore it was

decided to make the notification in this manual, and leave the return value as implemented in

the previous versions. See also section 2.3.15.

1.6 New in version 1.6.0.0

Addition of support for Windows Vista x64. The DLL now detects whether it is running on a 64 bit

version of Windows, and will then use the WinUSB device driver, instead of the 32 bit Avsusb2.sys

kernel mode device driver. WinUSB is Microsoft’s own USB driver, that is distributed with Vista. The

install package for the as5216.dll will configure WinUSB to support the AS5216 hardware. The DLL

and examples are all still 32 bit programs, but they will now work on Vista x64 (in the so-called

WoW64 mode).

Jun-12 AS-5216x64-DLL Manual.docx 11

Avantes website: http://www.avantes.com email: Info@avantes.com

1.7 New in version 1.5.0.0

- Addition of support for the AvaSpec-2048L-USB2, with Sony ILX-511 detector.

- Minimum integration time for the AvaSpec-2048x14-USB2 is changed from 2.24 msec to

2.17 msec.

- An additional delay of 500 msec is added when a device is activated, this proved to be

necessary on recent PC’s when using Windows Vista.

1.8 New in version 1.4.0.0

- Implementation of the StoreToRam function, which allows the storing of scans at high speed

(as fast as 1.1 msecs per scan for the AvaSpec-2048-USB2, and 0.1 msecs per scan for the

AvaSpec-102-USB2) in the spectrometer, without the overhead of USB communication.

About 4MB of storage is available, which allows for 1013 full spectra with the AvaSpec-2048-

USB2 and 19784 for the AvaSpec-102-USB2, or a lot more if the pixelrange is reduced by

selecting the start- and stoppixel. StoreToRam requires firmware version 0.20 or later. A

firmware upgrade utility can be downloaded from our website.

- Implementation of directory support for the Secure Digital Card.

- In a few occasions there have been problems with detecting and/or activating AvaSpec-USB2

spectrometers under Windows Vista. The reason for this is that, according to MicroSoft, “a

USB device takes a long time to resume from selective suspend mode on a Windows Vista-

based computer that uses UHCI (Universal Host Controller Interface) USB controllers. In the

as5216.dll version 1.4, a workaround has been implemented to solve this problem.

- New sample programs for Visual C++ 2005, Delphi and LabView

o The Visual C++ 2005 sample program has been created in the Express version.

o A few sample programs in Delphi have been added: besides the comprehensive

sample program that was already available in earlier as5216.dll versions, 3 new

sample programs have been added:

 A multichannel sample program in which up to 16 spectrometer channels can

run simultaneously in SYNC mode or ASYNC mode.

 An sdcard sample program which demonstrates how to save spectra to an

onboard sdcard

 A simple program with only a few lines of code which demonstrates the basic

data acquisition for a single channel AvaSpec-USB2 spectrometer.

o The LabView sample programs have been updated to LabView version 8.2 (earlier

versions can be obtained on request). There are 4 sample programs:

 a comprehensive program for a single channel AvaSpec-USB2, which also

includes subvi’s for all functions in the as5216.dll

 a program that illustrates the use of Windows Messaging in LabView.

 a simple sample program that uses AVS_PollScan instead of Windows

Messaging

 a multichannel example program which illustrates how to run multiple

spectrometer channels (fixed to 2 channels in the example program) in SYNC

mode, as well as ASYNC mode.

- In this manual, examples have been added for using the function AVS_UseHighResAdc in

combination with nonlinearity correction and/or irradiance calibration, see section 3.6.1 under

“Using the nonlinearity correction polynomial in combination with the 16bit ADC Counts

range” and section 3.6.3 under “How to convert ScopeData (A/D Counts) to a power

distribution [µWatt/(cm
2
.nm)]”.

1.9 New in version 1.3.0.0

- Windows Vista support

12 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

- New Sample programs in Visual C# and Visual Basic.NET 2001. These sample programs can

also be used in more recent .NET versions (2005) in which case the Visual Studio Conversion

Wizard will convert the project to the new version. Note that for Visual Basic .NET, there was

already a VB .NET 2005 sample program available.

- ProcessControl Structure added for standalone functionality (see section 3.6.6)

- Stability issues solved. Some spectrometer types (mainly the AvaSpec-102-USB2) have

shown a lock up in continuous measurements over a long period at short integration time.

Another problem that showed up very rarely, concerns multichannel spectrometers running in

synchronization mode. Both problems have been solved in as5216.dll version 1.3.

- Support for the AvaSpec-2048x14 High UV-sensitivity back-thinned CCD Spectrometer. The

new detector type used in this spectrometer is the HAMS9840 and is supported in as5216.dll

version 1.3 and all the sample programs.

- The new function AVS_UseHighResAdc has been added to enable the full 16-bit ADC range

which is available with a 16-bit ADC on the as5216 board as of revision 1D. See also section

2.3.36.

- A minor bug in the smoothing routine has been solved.

- The sample program in Visual Basic 6.0 has been modified because it crashed after running

continuously for a number of hours. The cause was found to be in the VB6 “Timer” function

that was used to show some statistics about the measurement speed. By eliminating the Timer

function from the sample program, this problem was solved. Feedback from VB6

programmers who know how to use the Timer function (or an equivalent) without crashing the

application is appreciated.

1.10 New in version 1.2.0.0

Visual Basic 6.0 developers may have noticed that the programs developed with as5216.dll v.1.1 or

earlier and Visual Basic 6.0 are stable, but the Visual Basic 6.0 Integrated Development Environment

(IDE) was not. Running the program from the VB6 IDE, caused the IDE to close down without saving

any changes, as soon as the program was closed. To solve this problem, a special as5216.dll version

(1.2.0.1) has been created which can be used in the VB6 IDE to develop and debug your programs.

AS5216.dll version 1.2.0.1 will be installed in the VB6 example folder, as well as a readme.txt file

with recommendations for redistributing programs developed with Visual Basic 6.0.

Furthermore, a parameter structure has been added to the EEProm to control the TEC cooling for the

NIR spectrometer (AvaSpec-256-NIR2.2). More detailed information about this TEC Control

structure can be found in section 3.6.5.

The last change in version 1.2 is only in this manual. For spectrometers that have been calibrated for

irradiance measurements, the IrradianceType structure contains data that can be used to convert the

ScopeData (A/D Counts) to an irradiance spectrum. Section 3.6.3 in this manual describes in more

detail how this can be done.

1.11 New in version 1.1.0.0

The as5216.dll version 1.1 includes one new function (AVS_SetPrescanMode) which can be used for

the AvaSpec-3648 spectrometer. Furthermore, a lower and upper limit has been added to the

nonlinearity polynomial to avoid incorrect correction for very low and/or high counts. Finally,

example programs with source in LabView (7.1), Visual C++ (6.0), Visual Basic (6.0) and Visual

Basic .NET 2005 (2.0) have been added to the already existing examples in Delphi (6.0) and Borland

C++ (5.0). The AVS_SetPrescanMode function for the AvaSpec-3648 is described in section 2.3.35,

and detailed information about how to apply the nonlinearity correction can be found in section 3.6.1

Jun-12 AS-5216x64-DLL Manual.docx 13

Avantes website: http://www.avantes.com email: Info@avantes.com

1.12 New in version 1.0.0.0: as5216.dll versus as161.dll

Although there is no previous version for as5216.dll v1.0, a comparison can be made for programmers

who have used the as161.dll to write application software for the USB1 platform AvaSpec

spectrometers.

A number of improvements have been implemented in the as5216.dll when comparing the functions to

the as161.dll. These improvements can be grouped into the following categories:

 Data acquisition

 Synchronization in multichannel systems

 Laser control and integration time delay, e.g. for Laser Induced Breakdown Spectroscopy

 USB2 platform spectrometer

These categories will be described in sections 1.12.1 to 1.12.4

1.12.1 Data acquisition

Just like with the as161.dll, a spectrum can be collected by calling the function AVS_Measure, and

when a scan has been sent to the PC, it can be retrieved with the function AVS_GetScopeData. The

following improvements have been realized in as5216x64.dll for the USB2 platform spectrometers:

1. Starting a measurement. In continuous mode, the USB1 platform spectrometers always run

continuously, also if no measurement requests are posted. A call to AVS_Measure in as161.dll

results in returning the first available scan (see section 2.2 of the as161.dll manual). The USB2

platform spectrometers are in idle mode if not scanning, and will start a scan if a measurement

request (AVS_Measure) from the as5216x64.dll is received.

2. Number of measurements. The AVS_Measure function in as161.dll always results in one single

scan. A spectrum is only sent to the PC if a measurement request is received. The AVS_Measure

function in as5216x64.dll includes a “nrms” argument which specifies the number of

measurements the spectrometer should perform after one measurement request.

3. Stopping a measurement. A measurement in as161.dll cannot be interrupted. After a

measurement request, the application must wait for the response before changing measurement

parameters or sending other commands to the spectrometer. The as5216x64.dll includes a function

AVS_StopMeasure that can be called to interrupt a measurement request.

4. Spectrometer not blocked while measurement is pending. With the USB1 platform

spectrometers, the spectrometer is blocked for receiving commands as long as a measurement is

pending. A measurement is pending between the call to AVS_Measure and the DATA_READY

message from the as161.dll to the application. The USB2 platform spectrometers are not blocked

from receiving commands while a measurement is pending. This means that you can e.g. control

the digital and analog IO ports while a measurement is pending.

5. Measurement parameters. There are a lot of parameters involved that determine the result of a

scan such as integration time, number of averages, smoothing, pixelselection, dark correction etc...

In the as161.dll, a lot of different functions are used to set these parameters: integration time and

averaging are set in AVS_Measure, smoothing in AVS_SetSmoothing, Pixelselection in

AVS_SetPixelSelection, etc… The as5216x64.dll uses a measurement structure which includes all

measurement parameters and uses only one function (AVS_PrepareMeasure) to send these

parameters to the spectrometer.

6. External Trigger. The only setting in the as161.dll for external trigger functionality is to switch

this mode on or off by calling the function AVS_SetExternalTrigger. In external trigger mode, the

USB1 platform spectrometer will start one single scan on the rising edge of the TTL pulse that is

14 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

sent to the external trigger input port of the spectrometer. In the as5216x64.dll, the USB2 platform

spectrometer can be set into external trigger mode by setting the trigger mode parameter into

hardware trigger mode. If the trigger type parameter is set to “EDGE”, the number of

measurements to perform after receiving one TTL pulse can be specified by setting the nrms

parameter in the AVS_Measure function. If the trigger type parameter is set to “LEVEL”, the

spectrometer will keep scanning as long as the TTL input signal is HIGH, and when the signal

becomes LOW, it will return the average scan over all scans that were performed during the HIGH

time period.

7. Integration time. The integration time in the as161.dll can be set with a 1 ms resolution. In the

as5216x64.dll, a 0.01 ms (10 s) resolution is used for the integration time.

8. Timestamp. The AVS_GetScopeData function in as5216x64.dll includes a timestamp in 10 s

resolution ticks generated by the microcontroller, which can be used to measure the time between

two consecutive (and processed) scans very accurately.

1.12.2 Synchronization in Multichannel systems

There is a major difference between the USB1 and USB2 platform multichannel systems. The USB1

platform multichannel systems always needs the same detectortype for each channel. Also, the

integration time and number of averages in a measurement request is equal for all channels.

With the multiple usb support in the as161.dll (v.1.5 and later), spectrometers with different detectors

and at different integration time or average can run simultaneously, but in that case there is no

synchronization between these spectrometers.

With the USB2 platform multichannel systems, the advantage of the multiple USB implementation (up

to 127 spectrometers, possibility of using different detectors, integration time and averaging per

channel) has been combined with the advantage of the as161 multichannel systems (synchronization).

All USB2 platform spectrometers can be connected by a SYNC cable. In syncmode, one spectrometer

is configured as “Master”, all other (“slave”) spectrometers are set into “Trigger by SYNC” mode.

After a measurement request for the slave spectrometer(s), these spectrometers will wait until they

receive the trigger signal on the SYNC cable. This SYNC signal will be started if a measurement

request is posted for the Master spectrometer.

1.12.3 Laser control and integration time delay, e.g. for LIBS

If the AvaSpec-2048FT (USB1 platform) is set in external hardware trigger mode, an external trigger

pulse results in an output signal (pulse width 15 s) at pin2 of the DB15 connector (DO2), about 1.3

s after the trigger pulse was received. The pulse at DO2 can be used to fire a laser in a LIBS

application. The function AVS_SetIntegrationDelay can be used to specify an integration time delay,

which is related to DO2.

With the AvaSpec-2048-USB2 and AvaSpec-3648-USB2, this feature has been improved at the

following points:

1. Not limited to external trigger mode. The output signal and integration delay can be generated in

external trigger mode, but also in “normal” (software trigger) mode.

2. Multiple measurements. The number of measurements can be set by the nrms parameter, in the

AVS_Measure function.

3. Pulse width. The “laserpulse” width at pin 23 of the DB26 connector can be set by the user,

between 0 and 1 ms (21 nanosec steps).

4. Laser Delay. The 1.3 s period (for the AvaSpec-2048-USB2) between receiving a trigger

(measurement request in software trigger mode or TTL pulse in hardware trigger mode) can be

delayed from 1.3 s to 89 sec (21ns steps).

Jun-12 AS-5216x64-DLL Manual.docx 15

Avantes website: http://www.avantes.com email: Info@avantes.com

1.12.4 USB2 platform specific functions

The functions that have been added to as5216x64.dll to support the new hardware features in the

USB2 platform spectrometers, can be grouped into the following categories:

 Analog IO

 Digital IO and Pulse Width Modulation

 SDCard support

 Eeprom IO

1. Analog IO. The USB2 platform spectrometers have 2 programmable analog output pins and 2

programmable analog input pins available at the DB26 connector. The functions

AVS_SetAnalogOut and AVS_GetAnalogIn can be used to control these ports. Moreover, a

number of onboard analog signals can be retrieved with the AVS_GetAnalogIn function. One of

these onboard signals is an NTC thermistor which can be used for onboard temperature

measurements.

2. Digital IO and Pulse Width Modulation. The USB2 platform spectrometers have 10

programmable digital output pins and 3 programmable input pins available at the DB26 connector.

The function AVS_SetDigOut and AVS_GetDigIn can be used to control these ports. Moreover, 6

out of the 10 programmable ouput ports can be configured for pulse width modulation. With the

AVS_SetPwmOut function, a frequency and duty cycle can be programmed for these 6 digital

output ports

3. SDCard support. If the spectrometer was ordered with an SDxxx card, the function

AVS_SaveSpectraToSDCard can be used to save spectra at the SDCard. To access the files that

are saved at the SDCard, the functions AVS_GetFileSize, AVS_GetFile, AVS_GetFirstFile,

AVS_GetNextFile and AVS_DeleteFile can be used.

4. Eeprom IO. With the USB1 platform spectrometers, it is also possible to read/write a number of

parameters from/to Eeprom with the as161.dll, such as start- and stoppixel

(AVS_GetStartStopPixel and AVS_SetStartStopPixel), wavelength calibration coefficients

(AVS_GetWLCoef and AVS_SetWLCoef), gain (AVS_GetGain and AVS_SetGain) and offset

(AVS_GetOffset and AVS_SetOffset). The Eeprom for the USB2 spectrometers has a lot more

memory available to store all kind of parameters. These parameters have been defined in the

DeviceConfigType structure (see section 2.4). The functions AVS_GetParameter and

AVS_SetParameter in as5216x64.dll can be used to read/write the DeviceConfigType structure

from/to Eeprom.

16 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

2 AS5216x64 DLL description

2.1 Interface overview

The interface from the PC to the DLL is based on a function interface. The interface allows the

application to configure a spectrometer and to receive and send data from and to the spectrometer.

2.2 Usage of the AS5216x64 DLL

The DLL uses a single pair of open and close functions (AVS_Init() and AVS_Done()) that have to be

called by an application. As long as the open function is not yet called or not successfully called, all

other functions will return an error code.

The open function (AVS_Init()) tries to open a communication port for all connected devices.

The close function (AVS_Done()) closes the communication port(s) and releases all internal data

storage.

The interface between the application and the DLL can be divided in four functional groups:

 internal data read functions, which read device configuration data from the internal DLL storage.

 blocking control functions which send a request to the device and wait till an answer is received or

a time-out occurs before returning control to the application

 non-blocking data read functions, which send a request to the device and then return control to the

application. After the answer from the device is received, or a timeout occurs a notification is sent

to the application

 data send functions which send device configuration data to the device

After the application has initialised it should select the spectrometer(s) it wants to use. Therefore, the

following steps have to be taken:

1. Call AVS_GetNrOfDevices to determine the number of attached devices

2. Allocate buffer to store identity info (RequiredSize = NrDevices * sizeof(AvsIdentityType))

3. Call AVS_GetList with the RequiredSize and obtain the list of connected spectrometers

4. Select the spectrometers you want to use with AVS_Activate

5. Register a notification window handle with AVS_Register to detect device attachment/removal.

Jun-12 AS-5216x64-DLL Manual.docx 17

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3 Exported functions

2.3.1 AVS_Init

Function: int AVS_Init

 (

 short a_Port

)

Group: Blocking control function

Description: Opens the communication with the spectrometer and initialises internal data structures

Parameters: a_Port: id. of port to be used:

-1: use auto-detect of USB or COM port

 0: use USB port

 1: use COM1 port

 2: use COM2 port

 3: use COM3 port

 4: use COM4 port

 etc….

Return: On success, number of connected devices

On error, ERR_DEVICE_NOT_FOUND

2.3.2 AVS_Done

Function: int AVS_Done

 (

 Void

)

Group: Blocking control function

Description: Closes the communication and releases internal storage.

Parameters: None

Return: SUCCESS

2.3.3 AVS_GetNrOfDevices

Function: int AVS_GetNrOfDevices

 (

 void

)

Group: Blocking control function

Description: Internally checks the list of connected devices and returns the number of devices

attached that have the status AVAILABLE.

Parameters: None

Return: > 0: number of devices in the list

0: no devices found

18 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.4 AVS_GetList

Function: int AVS_GetList

 (

 unsigned int

unsigned int*

AvsIdentityType*

a_ListSize,

a_pRequiredSize,

a_pList

)

Group: Blocking control function

Description: Returns device information for each spectrometer connected to the ports indicated at

AVS_Init.

Parameters: a_ListSize:

a_pRequiredSize:

a_pList:

number of bytes allocated by the caller to store the list data

number of bytes needed to store information

pointer to allocated buffer to store identity information

Return: > 0:

0:

ERROR_INVALID_SIZE

number of devices in the list

no devices found

if (a_pRequiredSize > a_ListSize) then allocate larger buffer

and retry operation

2.3.5 AVS_Activate

Function: AvsHandle AVS_Activate

 (

 AvsIdentityType* a_pDeviceId

)

Group: Blocking control function

Description: Activates selected spectrometer for communication and reads device configuration data

from Eeprom.

Parameters: On success: AvsHandle, handle to be used in subsequent function calls

Return: On error: INVALID_AVS_HANDLE_VALUE

2.3.6 AVS_Deactivate

Function: bool AVS_Deactivate

 (

 AvsHandle a_hDeviceId

)

Group: Blocking control function

Description: Closes communication with selected spectrometer.

Parameters: a_hDeviceId: device identifier returned by AVS_Activate

Return: true:

false:

device successfully closed

device identifier not found

Jun-12 AS-5216x64-DLL Manual.docx 19

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.7 AVS_Register

Function: bool AVS_Register

 (

 HWND a_hWnd

)

Group: Blocking control function

Description: Installs an application windows handle to which device attachment/removal messages

have to be sent

Parameters: a_hWnd: Application window handle

Return: true:

false:

Registration successful

registration failed or function not supported on OS

2.3.8 AVS_PrepareMeasure

Function: int AVS_PrepareMeasure

 (

 AvsHandle a_hDevice,

MeasConfigType* a_pMeasConfig

)

Group: Blocking data write function

Description: Prepares measurement on the spectrometer using the specified measurement

configuration.

Parameters: a_hDevice: Device identifier returned by AVS_Activate

a_pMeasConfig: pointer to structure containing measurement configuration

Return: On success: ERR_SUCCESS

On error: ERR_DEVICE_NOT_FOUND

ERR_OPERATION_PENDING

ERR_INVALID_DEVICE_ID

ERR_INVALID_PARAMETER

ERR_INVALID_PIXEL_RANGE

ERR_INVALID_CONFIGURATION (invalid fpga type)

ERR_TIMEOUT

ERR_INVALID_MEASPARAM_DYNDARK

2.3.9 AVS_Measure

Function: int AVS_Measure

 (

 AvsHandle a_hDevice,

HWND a_hWnd,

 short a_Nmsr

)

Group: Non-Blocking data write function

Description: Starts measurement on the spectrometer

Parameters: a_hDevice: device identifier returned by AVS_Activate

20 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

a_hWnd window handle to notify application measurement result data is

available. The DLL sends a message to the window with command

WM_MEAS_READY, with SUCCESS, the number of scans that

were saved in RAM (if StoreToRAM parameter > 0), or

INVALID_MEAS_DATA as WPARM value and a_hDevice as

LPARM value.

a_Nmsr number of measurements to do after one single call to AVS_Measure

(-1 is infinite)

Return: On success: ERR_SUCCESS

On error: ERR_OPERATION_PENDING

ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_INVALID_PARAMETER

ERR_INVALID_STATE

2.3.10 AVS_GetLambda

Function: int AVS_GetLambda

 (

 AvsHandle a_hDevice,

 double* a_pWavelength

)

Group: Internal data read function

Description: Returns the wavelength values corresponding to the pixels if available. This information is

stored in the DLL during the AVS_Activate() procedure.

The DLL does not test if a_pWaveLength is correctly allocated by the caller!

Parameters: a_hDevice:

a_pWaveLength:

device identifier returned by AVS_Activate

array of double, with array size equal to number of pixels

Return: On success: ERR_SUCCESS

On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

2.3.11 AVS_GetNumPixels

Function: int AVS_GetNumPixels

 (

 AvsHandle a_hDevice,

 unsigned short* a_pNumPixels

)

Group: Internal data read function

Description: Returns the number of pixels of a spectrometer. This information is stored in the DLL

during the AVS_Activate() procedure.

Parameters: a_hDevice:

a_pNumPixels:

device identifier returned by AVS_Activate

pointer to unsigned integer to store number of pixels

Return: On success: ERR_SUCCESS

On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

Jun-12 AS-5216x64-DLL Manual.docx 21

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.12 AVS_GetParameter

Function: int AVS_GetParameter

 (

 AvsHandle a_hDevice,

 unsigned int a_Size,

 unsigned int* a_pRequiredSize,

 DeviceConfigType* a_pData

)

Group: Internal data read function.

Description: Returns the device information of the spectrometer. This information is stored in the DLL

during the AVS_Activate() procedure.

Parameters: a_hDevice,

a_Size,

a_pRequiredSize,

a_pData

device identifier returned by AVS_Activate

number of bytes allocated by caller to store DeviceConfigType

number of bytes needed to store DeviceConfigType

pointer to buffer that will be filled with the spectrometer

configuration data

Return: On success: ERR_SUCCESS

On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_INVALID_SIZE (a_Size is smaller than required size)

2.3.13 AVS_PollScan

Function: int AVS_PollScan

 (

 AvsHandle a_hDevice

)

Group: Internal data read function

Description: Determines if new measurement results are available

The most effective way to let the application know when a new measurement is ready, is

by using Windows Messaging in which case the as5216x64.dll sends a

WM_MEAS_READY message to the application as soon as a measurement is ready to be

imported into the application software (see also section 2.4.2). But if the programming

environment does not support Windows Messaging, it is also possible to use

AVS_PollScan for this purpose. After a measurement request has been posted by calling

AVS_Measure, the function AVS_PollScan can be called in a loop until it returns “1”.

Note that it should be avoided that AVS_PollScan is called continuously without any

delay. This can cause such a heavy CPU load that this can freeze the application software

after a while. Adding a 1 millisecond delay (so polling every ms) already solves this

problem.

Parameters: a_hDevice:: device identifier returned by AVS_Activate

Return: On success: 0: no data available

1: data available

On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

22 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.14 AVS_GetScopeData

Function: int AVS_GetScopeData

 (

 AvsHandle a_hDevice,

 unsigned int* a_pTimeLabel,

 double* a_pSpectrum

)

Group: Internal data read function,

Description: Returns the pixel values of the last performed measurement. Should be called by the

application after the notification on AVS_Measure is triggered.

The DLL does not check the allocated buffer size!

Parameters: a_hDevice, device identifier returned by AVS_Activate

 a_pTimeLabel, ticks count last pixel of spectrum is received by microcontroller ticks

in 10 S units since spectrometer started

 a_pSpectrum array of doubles, size equal to the selected pixelrange

Return: On success: ERR_SUCCESS

On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_INVALID_MEAS_DATA (no measurement data received)

2.3.15 AVS_GetSaturatedPixels

Function: int AVS_GetSaturatedPixels

 (

 AvsHandle a_hDevice,

 unsigned char* a_pSaturated

)

Group: Internal data read function,

Description: Returns for each pixel if that pixel was saturated (1) or not (0). Should be called by the

application after the notification on AVS_Measure is triggered (e.g. after calling

AVS_GetScopeData which also requires that valid data is available)

Parameters: a_hDevice device identifier returned by AVS_Activate

 a_pSaturated array of chars (each char indicates if saturation occurred for

corresponding pixel), size equal to the selected pixelrange

Return: On success: 1 (valid measurement available)

 On error: 0 (no measurement data available)

ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

2.3.16 AVS_GetAnalogIn

Function: int AVS_GetAnalogIn

 (

 AvsHandle a_hDevice,

 unsigned char a_AnalogInId,

 float* a_pAnalogIn

)

Jun-12 AS-5216x64-DLL Manual.docx 23

Avantes website: http://www.avantes.com email: Info@avantes.com

Group: Blocking control function.

Description: Returns the status of the specified analog input

Parameters: a_hDevice: device identifier returned by AVS_Activate

 a_AnalogInId identifier of analog input

0 = thermistor on optical bench (NIR 2.0 / NIR2.2 / NIR 2.5 / TEC)

1 = 1V2

2 = 5VIO

3 = 5VUSB

4 = AI2 = pin 18 at 26-pins connector

5 = AI1 = pin 9 at 26-pins connector

6 = NTC1 onboard thermistor

7 = Not used

 a_pAnalogIn: pointer to float for analog input value [Volts]

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_INVALID_PARAMETER (invalid analog input id.)

ERR_TIMEOUT (error in communication)

2.3.17 AVS_GetDigIn

Function: int AVS_GetDigIn

 (

 AvsHandle a_hDevice,

 unsigned char a_DigInId,

 unsigned char* a_pDigIn

)

Group: Blocking control function.

Description: Returns the status of the specified digital input

Parameters: a_hDevice: device identifier returned by AVS_Activate

 a_DigInId: identifier of digital input (1 – 3)

0 = DI1 = Pin 24 at 26-pins connector

1 = DI2 = Pin 7 at 26-pins connector

2 = DI3 = Pin 16 at 26-pins connector

 a_pDigIn: pointer to digital input status (0 – 1)

Return: On success: ERR_SUCCESS, a_pDigIn contains valid value

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_INVALID_PARAMETER (invalid digital input id.)

ERR_TIMEOUT (error in communication)

2.3.18 AVS_GetVersionInfo

Function: int AVS_GetVersionInfo

 (

 AvsHandle a_hDevice,

 unsigned char* a_pFPGAVersion,

 unsigned char* a_pFirmwareVersion,

 unsigned char* a_pDLLVersion

24 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

)

Group: Blocking read function

Description: Returns the status of the software version of the different parts. DLL does not check the

size of the buffers allocated by the caller.

Parameters: a_hDevice, device identifier returned by AVS_Activate

 a_pFPGAVersion, pointer to buffer to store FPGA software version (16 char.)

 a_pFirmwareVersion pointer to buffer to store Microcontroller software version (16

char.)

 a_pDLLVersion pointer to buffer to store DLL software version (16 char.)

Return: On success: ERR_SUCCESS, buffer contains valid value

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

2.3.19 AVS_GetFileSize

Function: int AVS_GetFileSize

 (

 AvsHandle a_hDevice,

 unsigned char* a_pName,

 unsigned int* a_pSize

)

Group: Blocking read function

Description: Returns the file size in bytes if the file can be read from the SD card

Parameters: a_hDevice: device identifier returned by AVS_Activate

 a_pName: file name (14 characters including terminating zero)

 a_pSize: pointer to buffer to store length

Return: On success: ERR_SUCCESS, buffer contains valid value

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or file not found

2.3.20 AVS_GetFile

Function: int AVS_GetFile

 (

 AvsHandle a_hDevice,

 unsigned char* a_pName,

 unsigned char a_pDest,

 unsigned int a_pSize

)

Group: Blocking read function

Description: Returns the contents of a binary file from the SD card

Parameters: a_hDevice device identifier returned by AVS_Activate

 a_pName file name (14 characters including terminating zero)

 a_pDest pointer to buffer to store binary file data

 a_pSize length of buffer (expected file size, as determined with

AVS_GetFileSize, max. length is 64kB)

Jun-12 AS-5216x64-DLL Manual.docx 25

Avantes website: http://www.avantes.com email: Info@avantes.com

Return: On success: ERR_SUCCESS, buffer contains valid value

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or file not found

2.3.21 AVS_GetFirstFile

Function: int AVS_GetFirstFile

 (

 AvsHandle a_hDevice,

 unsigned char* a_pName

)

Group: Blocking read function

Description: Returns the name of the first file in the root directory of the SD card

Parameters: a_hDevice, device identifier returned by AVS_Activate

 a_pName file name (14 characters including terminating zero)

Return: On success: ERR_SUCCESS, buffer contains valid value

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or file not found

2.3.22 AVS_GetNextFile

Function: int AVS_GetNextFile

 (

 AvsHandle a_hDevice,

 unsigned char* a_pPrevName,

 unsigned char* a_pNextName

)

Group: Blocking read function

Description: Returns the name of the next file in root directory after a_pPrevName

Parameters: a_hDevice device identifier returned by AVS_Activate

 a_pPrevName file name (14 characters including terminating zero), this is the name

returned by AVS_GetFirstFile() or by the previous call to

AVS_GetNextFile()

 a_pNextName file name (14 characters including terminating zero)

Return: On success: ERR_SUCCESS, buffer contains valid value

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or no more files

on the SD card

26 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.23 AVS_DeleteFile

Function: int AVS_DeleteFile

 (

 AvsHandle a_hDevice,

 unsigned char* a_pName

)

Group: Blocking read function

Description: Deletes a file from the SD card

Parameters: a_hDevice device identifier returned by AVS_Activate

 a_pName file name (14 characters including terminating zero)

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or no more

files on the SD card

2.3.24 AVS_GetFirstDirectory

Function: int AVS_GetFirstDirectory

 (

 AvsHandle a_hDevice,

 unsigned char* a_pName

)

Group: Blocking read function

Description: Returns the name of the directory in the root directory of the SD card

Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active

device)

 a_pName: directory name (14 characters including terminating zero)

Return: On success: ERR_SUCCESS (a_pName buffer contains valid info)

 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in

DLL)

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or no

directory found on the SD card

2.3.25 AVS_GetNextDirectory

Function: int AVS_GetNextDirectory

 (

 AvsHandle a_hDevice,

 unsigned char* a_pPrevName,

 unsigned char* a_pNextName

)

Group: Blocking read function

Description: Returns the name of the next directory in the root directory after a_pPrevName

Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active device)

 a_pPrevName directory name (14 characters including terminating zero), this is the

name returned by AVS_GetFirstDirectory() or by the previous call to

Jun-12 AS-5216x64-DLL Manual.docx 27

Avantes website: http://www.avantes.com email: Info@avantes.com

AVS_GetNextDirectory()

 a_pNextName directory name (14 characters including terminating zero)

Return: On success: ERR_SUCCESS, a_pNextName contains valid value

 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in DLL)

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or no more

directories on the SD card

2.3.26 AVS_DeleteDirectory

Function: int AVS_DeleteDirectory

 (

 AvsHandle a_hDevice,

 unsigned char* a_pName

)

Group: Blocking read function

Description: Deletes a directory from the SD card

Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active

device)

 a_pName directory name (14 characters including terminating zero)

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in

DLL)

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present or no more

directories on the SD card

2.3.27 AVS_SetDirectory

Function: int AVS_SetDirectory

 (

 AvsHandle a_hDevice,

 char a_aFileRootName[6]

)

Group: Blocking data send function

Description: Sets current working directory. All file-functions will act on this directory.

Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active

device)

 a_aFileRootName string that sets the current working directory for all file-based

functions

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in

DLL)

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER, no SD card present

28 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.28 AVS_SaveSpectraToSDCard

Function: int AVS_SaveSpectraToSDCard

 (

 AvsHandle a_hDevice,

 bool a_Enable,

 unsigned char a_SpectrumType,

 char a_aFileRootName[6],

 TimeStampType a_TimeStamp

)

Group: Blocking data send function.

Description: Enables/disables writing spectra to file (if disabled the other parameters are neglected)

Parameters: a_hDevice device identifier returned by AVS_Activate

 a_Enable enable/disable storage of spectra to SD card

 a_SpectrumType 0 = Dark Spectrum

1 = Reference Spectrum

2 = Normal Spectrum

The spectrumtype determines the file extension (drk, ref or roh)

 a_aFileRootName[6] string that is used as first part of the name of the stored spectra

 a_TimeStamp file time and date that will be used when the spectra are stored

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER

ERR_OPERATION_NOT_SUPPORTED (SD Card not present)

Jun-12 AS-5216x64-DLL Manual.docx 29

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.29 AVS_SetParameter

Function: int AVS_SetParameter

 (

 AvsHandle a_hDevice,

 DeviceConfigType* a_pData

)

Group: Blocking data send function.

Description: Overwrites the device configuration data internally and in the spectrometer. The data is

not checked.

Parameters: a_hDevice, device identifier returned by AVS_Activate

 a_pData pointer to a DeviceConfigType structure

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_OPERATION_PENDING

ERR_INVALID_STATE (measurement pending)

2.3.30 AVS_SetAnalogOut

Function: int AVS_SetAnalogOut

 (

 AvsHandle a_hDevice,

 unsigned char a_PortId,

 float a_Value

)

Group: Blocking data send function

Description: Sets the analog output value for the specified analog output

Parameters: a_hDevice device identifier returned by AVS_Activate

 a_PortId, identifier for one of the two output signals:

0 = AO1 = pin 17 at 26-pins connector

1 = AO2 = pin 26 at 26-pins connector

 a_Value DAC value to be set in Volts (internally an 8-bits DAC is used)

with range 0 – 5.0V

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER

2.3.31 AVS_SetDigOut

Function: int AVS_SetDigOut

 (

 AvsHandle a_hDevice

 unsigned char a_PortId,

 unsigned char a_Value

)

Group: Blocking data send function.

30 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Description: Sets the digital output value for the specified digital output

Parameters: a_hDevice device identifier returned by AVS_Activate

 a_PortId: identifier for one of the 10 output signals:

0 = DO1 = pin 11 at 26-pins connector

1 = DO2 = pin 2 at 26-pins connector

2 = DO3 = pin 20 at 26-pins connector

3 = DO4 = pin 12 at 26-pins connector

4 = DO5 = pin 3 at 26-pins connector

5 = DO6 = pin 21 at 26-pins connector

6 = DO7 = pin 13 at 26-pins connector

7 = DO8 = pin 4 at 26-pins connector

8 = DO9 = pin 22 at 26-pins connector

9 = DO10 = pin 25 at 26-pins connector

 a_Value: value to be set (0-1)

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER

2.3.32 AVS_SetPwmOut

Function: int AVS_SetPwmOut

 (

 AvsHandle a_hDevice,

 unsigned char a_PortId,

 unsigned long a_Frequency,

 unsigned char a_DutyCycle

)

Group: Blocking data send function.

Description: Selects the PWM functionality for the specified digital output

Parameters: a_hDevice, device identifier returned by AVS_Activate

 a_PortId identifier for one of the 6 PWM output signals:

0 = DO1 = pin 11 at 26-pins connector

1 = DO2 = pin 2 at 26-pins connector

2 = DO3 = pin 20 at 26-pins connector

4 = DO5 = pin 3 at 26-pins connector

5 = DO6 = pin 21 at 26-pins connector

6 = DO7 = pin 13 at 26-pins connector

 a_Frequency desired PWM frequency (500 – 300000) [Hz], the frequency of

outputs 0, 1 and 2 is the same (the last specified frequency is used),

also the frequency of outputs 4, 5 and 6 is the same

 a_DutyCycle percentage high time in one cycle (0 – 100), channels 0, 1 and 2 have a

synchronised rising edge, the same holds for channels 4, 5 and 6

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER

Jun-12 AS-5216x64-DLL Manual.docx 31

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.33 AVS_SetSyncMode

Function: int AVS_SetSyncMode

 (

 AvsHandle a_hDevice,

 unsigned char a_Enable

)

Group: Internal DLL write function

Description Disables/enables support for synchronous measurement. DLL takes care of dividing Nmsr

request into Nmsr number of single measurement requests.

Parameters a_hDevice master device identifier returned by AVS_Activate

 a_Enable 0 is disable sync mode, 1 is enables sync mode

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

2.3.34 AVS_StopMeasure

Function: int AVS_StopMeasure

 (

 AvsHandle a_hDevice

)

Group: Blocking data send function

Description: Stops the measurements (needed if Nmsr = infinite), can also be used to stop a pending

measurement with long integrationtime and/or high number of averages

Parameters: a_hDevice: device identifier returned by AVS_Activate

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_INVALID_PARAMETER

32 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.35 AVS_SetPrescanMode

Function: int AVS_SetPrescanMode

 (

 AvsHandle a_hDevice

 bool a_Prescan

)

Group: Blocking data send function

Description: If a_Prescan is set, the first measurement result will be skipped. This function is only

useful for the AvaSpec-3648 because this detector can be operated in prescan mode, or

clearbuffer mode (see below)

Parameters: a_hDevice: device identifier returned by AVS_Activate

 a_Prescan: If true, the first measurement result will be skipped (prescan mode), else

the detector will be cleared before each new scan (clearbuffer mode)

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

The Toshiba detector in the AvaSpec-3648, can be used in 2 different control modes:

The Prescan mode (default mode).

In this mode the Toshiba detector will automatically generate an additional prescan for every request

from the PC, the first scan contains non-linear data and will be rejected, the 2
nd

 scan contains linear

data and will be sent to the PC. This prescan mode is default and should be used in most applications,

like with averaging (only one prescan is generated for a nr of averages), with the use of an AvaLight-

XE (one or more flashes per scan) and with multichannel spectrometers. The advantage of this mode is

a very stable and linear spectrum. The disadvantage of this mode is that a minor (<5%) image of the

previous scan (ghostspectrum) is included in the signal. This mode cannot be used if the integration

time cycle needs to start within microseconds after the spectrometer is externally triggered, but since

the prescan duration is exactly known at each integration time, accurate timing (21 nanoseconds

precision in external trigger mode) is very well possible in prescan mode.

The Clear-Buffer mode.

In this mode the Toshiba detector buffer will be cleared, before a scan is taken. This clear-buffer mode

should be used when timing is important, like with fast external triggering. The advantage of this

mode is that a scan will start at the time of an external trigger, the disadvantage of this mode is that

after clearing the buffer, the detector will have a minor threshold, in which small signals (<500 counts)

will not appear and with different integration times the detector is not linear.

Jun-12 AS-5216x64-DLL Manual.docx 33

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.36 AVS_UseHighResAdc

Function: int AVS_UseHighResAdc

 (

 AvsHandle a_hDevice

 bool a_Enable

)

Group: Internal DLL write function

Description: With the as5216 electronic board revision 1D and later, a 16bit resolution AD Converter

is used instead of a 14bit in earlier hardware versions. As a result, the ADC Counts scale

can be set to the full 16 bit (0..65535) Counts. For compatibility reasons with previous

hardware revisions, the default range is set to 14 bit (0..16383.75) ADC Counts.

Remark: When using the 16 bit ADC in full High Resolution mode (0..65535), please note that the

irradiance intensity calibration, as well as the nonlinearity calibration are based on the

14bit ADC range. Therefore, if using the nonlinearity correction or irradiance calibration

in your own software using the High Resolution mode, you need to apply the additional

correction with ADCFactor (= 4.0), as explained in detail in section 3.6.1 and 3.6.3

Parameters: a_hDevice: device identifier returned by AVS_Activate

 a_Enable: True: use 16bit resolution, ADC Counts range 0..65535

False: use 14bit resolution ADC Counts range 0..16383.75

Return: On success: ERR_SUCCESS

 On error: ERR_OPERATION_NOT_SUPPORTED: this function is not supported

by as5216 hardware version R1C or earlier

34 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.37 AVS_SetSensitivityMode

Function: int AVS_SetSensitivityMode

 (

 AvsHandle a_hDevice

 unsigned int a_SensitivityMode

)

Group: Blocking data send function

Description: The AvaSpec-NIR models can be operated in LowNoise (a_SensitivityMode = 0) or High

Sensitivity Mode (a_SensitivityMode > 0).

Parameters: a_hDevice: device identifier returned by AVS_Activate

 a_SensitivityMode: 0 = LowNoise, >0 = High Sensitivity

Return: On success: ERR_SUCCESS

 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

ERR_TIMEOUT (error in communication)

ERR_NOT_SUPPORTED_BY_SENSOR_TYPE

ERR_NOT_SUPPORTED_BY_FW_VER

ERR_NOT_SUPPORTED_BY_FPGA_VER

Remark: AVS_SetSensitivityMode is supported by the following detector types: HAMS9201,

SU256LSB and SU512LDB. Calling this function for another detectortype will result in a

return value of -120 (ERR_NOT_SUPPORTED_BY_SENSOR_TYPE)

This function requires a firmware function x.30.x.x or later. Calling this function for a

spectrometer for which an older firmware version is loaded will result in a return value of

-121 (ERR_NOT_SUPPORTED_BY_FW_VER).

The detector specific FPGA needs to support the sensitivity selection feature as well. The

table below shows the minimum required version for the 3 detector types. Calling

AVS_SetSensitivityMode for a spectrometer for which an older FPGA version is loaded

will result in a return value of -122 (ERR_NOT_SUPPORTED_BY_FPGA_VER).

The table below also lists the Default Mode for each detector type. This is the mode in

which the detector operates if the function AVS_SetSensitivityMode is not called. The

default mode is also the mode that is used in models with older firmware and FPGA

versions. Note that irradiance calibrated systems are calibrated in the default mode.

Changing the sensitivity mode for an irradiance and/or nonlinearity calibrated system

requires a recalibration of the system.

Spectrometer Detector Type FPGA version Default Mode

AvaSpec-NIR256-1.7,

AvaSpec-NIR256-2.0TEC,

AvaSpec-NIR256-2.5TEC

SENS_HAMS9201

x.13.x.x

Low Noise

AvaSpec-NIR256-1.7TEC,

AvaSpec-NIR256-2.2TEC

SENS_SU256LSB

x.5.x.x

High Sensitivity

AvaSpec-NIR512-1.7TEC

AvaSpec-NIR512-2.2TEC

SENS_SU512LDB

x.4.x.x

High Sensitivity

Jun-12 AS-5216x64-DLL Manual.docx 35

Avantes website: http://www.avantes.com email: Info@avantes.com

2.4 Data Elements

Several data-types used by the DLL and necessary for the application interface are given below.

Note: To match the structures that are used in the AS5216 firmware the structures mentioned here have to be compiled with byte alignment.

Table 1 API data elements

Type Format Value/Range Description

bool 8 bits value 0 – 1 false - true

char 8 bits value -128 <= x <= 127 signed character

unsigned char 8 bits value 0 <= x <= 255 unsigned character

short 16 bits value -32768 <= x <= 32767 signed integer

unsigned short 16 bits value 0 <= x <= 65535 unsigned integer

int 32 bits value 2,147,483,648 <= x <=

2,147,483,647

signed integer

unsigned int 32 bits value 0 <= x <= 4294967295 unsigned integer

float 32 bits value floating point number (7 digits precision)

double 64 bits value double sized floating point number (15 digits precision)

HWND 32 bits value Windows typedef for window identification, HWND is used for

Windows API calls that require a Window handle.

AvsIdentity

Type

struct

{

char m_aSerialId[10],

char m_aUserFriendlyId[64],

DeviceStatus m_Status

}

serial identification number

user friendly name to be defined by application

device status

(Size = 75 bytes)

36 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description

ControlSettings

Type

struct

{

unsigned short m_StrobeControl,

unsigned int m_LaserDelay,

unsigned int m_LaserWidth,

float m_LaserWaveLength

unsigned short m_StoreToRam,

}

0 – 0xFFFF

0 – 0xFFFFFFFF

0 – 0xFFFF

0 – 0xFFFF

number of strobe pulses during integration period (high time of

pulse is 1 ms), (0 = no strobe pulses)

laser delay since trigger, unit is internal FPGA clock cycle

laser pulse width , unit is internal FPGA clock cycle

 (0 = no laser pulse)

Peak wavelength of laser (nm), used for Raman Spectroscopy

0 = no storage to RAM

> 0 = number of spectra to be stored

(Size = 16 bytes)

DarkCorrection

Type
struct

{

unsigned char m_Enable,

unsigned char m_ForgetPercentage

}

0 – 1

0 - 100

disable – enable dynamic dark correction (sensor dependent)

percentage of the new dark value pixels that has to be used. e.g.,

a percentage of 100 means only new dark values are used. A

percentage of 10 means that 10 percent of the new dark values is

used and 90 percent of the old values is used for drift correction

(Size = 2 bytes)

Jun-12 AS-5216x64-DLL Manual.docx 37

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description

DeviceConfig

Type

struct

{

unsigned short m_Len,

unsigned short m_ConfigVersion,

char m_aUserFriendlyId[64]

DetectorType m_Detector,

IrradianceType m_Irradiance,

SpectrumCalibrationType m_Reflectance,

SpectrumCorrectionType m_SpectrumCorrect,

StandaloneType m_StandAlone,

TempSensorType m_Temperature[3],

TecControlType m_TecControl

ProcessControlType m_ProcessControl

unsigned char m_aReserved[13832]

}

0 – 0xFFFF

Configuration data structure:

size of this structure in bytes

version of this structure

user friendly identification string

sensor/detector related parameters

intensity calibration parameters

reflectance calibration parameters

correction parameters

stand-alone related parameters (e.g. measure mode, control)

calibration parameters of three temperature sensors

TecControl parameters

ProcessControl parameters

makes structure size equal to 63484 bytes

(Size = 63484)

DeviceStatus enum

{

UNKNOWN,

AVAILABLE,

IN_USE_BY_APPLICATION,

IN_USE_BY_OTHER

}

0

1

2

3

initial state

device is connected to PC and not in use

device is connected to PC and in use by caller

device is connected to PC and in use by other application

38 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description

DetectorType struct

{

SensorType m_SensorType,

unsigned short m_NrPixels,

float m_aFit[5],

bool m_NLEnable,

double m_aNLCorrect[8],

double m_aLowNLCounts,

double m_aHighNLCounts,

float m_Gain[2],

float m_Reserved,

float m_Offset[2],

float m_ExtOffset,

unsigned short m_DefectivePixels[30],

}

0 – 4096

1 – 5.7

-0.350 - +0.350

0.0 – 2.0

Sensor configuration structure:

sensor identification

number of pixels of sensor

polynomial coefficients needed to determine wavelength

enable/disable nonlinearity correction

polynomial coefficients needed for non linearity correction

lower counts limit for nonlinearity correction

higher counts limit for nonlinearity correction

gain correction for spectrometer ADC (range is divided in 64

steps)

not used

offset correction for spectrometer ADC in Volt (range is divided

in 512 steps)

offset to match the detector output range with the ADC range

defective pixel numbers

(Size = 188 bytes)

IrradianceType struct

{

SpectrumCalibrationType m_IntensityCalib,

unsigned char m_CalibrationType,

unsigned int m_FiberDiameter,

}

Setting during intensity calibration

Bare fiber, diffusor, integrating sphere, ….

Fiber diameter during intensity calibration

(Size = 16391+1+4 = 16396 bytes)

Jun-12 AS-5216x64-DLL Manual.docx 39

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description

MeasConfig

Type

struct

{

unsigned short m_StartPixel,

unsigned short m_StopPixel,

float m_IntegrationTime,

unsigned int m_IntegrationDelay,

unsigned int m_NrAverages,

DarkCorrectionType m_CorDynDark,

SmoothingType m_Smoothing,

unsigned char m_SaturationDetection,

TriggerType m_Trigger,

ControlSettingsType m_Control,

}

0-4095

0 – 4095

0.002 – 600000

0 – 0xFFFFFFFF

1 – 0xFFFFFFFF

0 – 2

first pixel to be sent to PC

last pixel to be sent to PC

integration time in ms

integration delay, unit is internal FPGA clock cycle

 (0 = one unit before laser start)

number of averages in a single measurement

 dynamic dark correction parameters

smoothing parameters

 0 = disabled,

 1 = enabled, determines during each measurement if pixels are

saturated (ADC value = 2^16 –1)

 2 = enabled, and also corrects inverted pixels (only ILX554)

trigger parameters

control parameters

(Size = 41 bytes)

ProcessControl

Type

struct

{

float m_AnalogLow[2]

float m_AnalogHigh[2]

float m_DigitalLow[10]

float m_DigitalHigh[10]

}

Settings that can be used for the 2 analog and 10 digital output

signals at the DB26 connector. The analog settings can be used

to define a function output range that should correspond to the

0-5V range of the analog output signals.

The digital output settings can be used as lower- and upper

thresholds.

(Size 96 bytes)

SDCardType Struct

{

bool m_Enable,

unsigned char m_SpectrumType,

char m_aFileRootName[6],

TimeStampType m_TimeStamp

}

 Settings for SD Card, needed in stand-alone operation

(Size = 12 bytes)

40 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description

SensorType unsigned char

0 – 0x12 0x00 = Reserved

0x01 = Hams8378-256

0x02 = Hams8378-1024

0x03 = ILX554

0x04 = Hams9201

0x05 = Toshiba TCD1304

0x06 = TSL1301

0x07 = TSL1401

0x08 = Hams8378-512

0x09 = Hams9840

0x0A = ILX511

0x0B = Hams10420-2048x64

0x0C = Hams11071-2048x64

0x0D = Hams7031-1024x122

0x0E = Hams7031-1024x58

0x0F = Hams11071-2048x16

0x10 = Hams11155

0x11 = SU256LSB

0x12 = SU512LDB

Smoothing

Type

struct

{

unsigned short m_SmoothPix,

unsigned char m_SmoothModel

}

0 – 2048

0

number of neighbour pixels used for smoothing, max. has to be

smaller than half the selected pixel range because both the

pixels on the left and on the right are used

Only one model defined so far

(Size = 3 bytes)

Spectrum

Calibration

Type

struct

{

SmoothingType m_Smoothing,

float m_CalInttime,

float m_aCalibConvers[4096]

}

0.002 – 600000

smoothing parameter during calibration

integration time during calibration (ms)

Conversion table from Scopedata to calibrated data

(Size = 16391 bytes)

Jun-12 AS-5216x64-DLL Manual.docx 41

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description

Spectrum

Correction

Type

struct

{

float m_aSpectrumCorrect[4096]

}

 Correct pixel values, e.g. for PRNU

(Size = 16384 bytes)

Standalone

Type
struct

{

bool m_Enable,

MeasConfigType m_Meas,

signed short m_Nmsr,

SDCardType m_SDCard

}

(Size = 56 bytes)

TecControl

Type

struct

{

bool m_Enable,

float m_Setpoint,

float m_aFit[2]

}

 Tec Control parameters for AvaSpec-256-NIR2.2

Set to True if device supports TE Cooling

SetPoint for detector temperature in degr. Celsius

DAC polynomial

(Size = 13 bytes)

TempSensor

Type

struct

{

float m_aFit[5]

}

 Calibration coefficients temperature sensor

(Size = 20 bytes)

TimeStamp

Type

struct

{

unsigned short m_Date,

unsigned short m_Time

}

bit 0..4 (day, 0 – 31)

bit 5..8 (month, 1 – 12)

bit 9..15 (years since 1980, 0 – 119)

bit 0..4 (2-second unit, 0 - 30)

bit 5..10 (minutes, 0 - 59)

bit 11..15(hours, 0 – 23)

42 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description

TriggerType struct

{

unsigned char m_Mode,

unsigned char m_Source,

unsigned char m_SourceType

}

0 – 1

0 – 1

0 – 1

Trigger parameters

mode, (0 = Software, 1 = Hardware)

trigger source, (0 = external trigger, 1 = sync input)

source type, (0 = edge trigger, 1 = level trigger)

(Size = 3 bytes)

Jun-12 AS-5216x64-DLL Manual.docx 43

Avantes website: http://www.avantes.com email: Info@avantes.com

2.4.1 Return value constants

The following table gives an overview of possible integer return codes:

Return code Value Description

ERR_SUCCESS 0 Operation succeeded

ERR_INVALID_PARAMETER -1 Function called with invalid parameter

value.

ERR_OPERATION_NOT_SUPPORTED -2 e.g. Function called to use 16bit ADC mode,

with 14bit ADC hardware

ERR_DEVICE_NOT_FOUND -3 Opening communication failed or time-out

during communication occurred.

ERR_INVALID_DEVICE_ID -4 AvsHandle is unknown in the DLL

ERR_OPERATION_PENDING -5 Function is called while result of previous

call to AVS_Measure is not received yet.

ERR_TIMEOUT -6 No answer received from device

Reserved -7

ERR_INVALID_MEAS_DATA -8 No measurement data is received at the point

AVS_GetScopeData is called

ERR_INVALID_SIZE -9 Allocated buffer size too small

ERR_INVALID_PIXEL_RANGE -10 Measurement preparation failed because

pixel range is invalid

ERR_INVALID_INT_TIME -11 Measurement preparation failed because

integration time is invalid (for selected

sensor)

ERR_INVALID_COMBINATION -12 Measurement preparation failed because of

an invalid combination of parameters,

e.g. integration time of (600000) and (Navg

> 5000)

Reserved -13

ERR_NO_MEAS_BUFFER_AVAIL -14 Measurement preparation failed because no

measurement buffers available

ERR_UNKNOWN -15 Unknown error reason received from

spectrometer

ERR_COMMUNICATION -16 Error in communication occured

ERR_NO_SPECTRA_IN_RAM -17 No more spectra available in RAM, all read

or measurement not started yet.

ERR_INVALID_DLL_VERSION -18 DLL version information can not be

retrieved

ERR_NO_MEMORY -19 Memory allocation error in the DLL

ERR_DLL_INITIALISATION -20 Function called before AVS_Init() is called

ERR_INVALID_STATE -21 Function failed because AS5216 is in wrong

state (e.g AVS_Measure without calling

AVS_PrepareMeasurement first)

ERR_INVALID_PARAMETER_NR_PIXEL -100 NrOfPixel in Device data incorrect

ERR_INVALID_PARAMETER_ADC_GAIN -101 Gain Setting Out of Range

ERR_INVALID_PARAMETER_ADC_OFFSET -102 OffSet Setting Out of Range

ERR_INVALID_MEASPARAM_AVG_SAT2 -110 Use of Saturation Detection Level 2 is not

44 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Return code Value Description

compatible with the Averaging function

ERR_INVALID_MEASPARAM_AVG_RAM -111 Use of Averaging is not compatible with the

StoreToRam function

ERR_INVALID_MEASPARAM_SYNC_RAM -112 Use of the Synchronize setting is not

compatible with the StoreToRam function

ERR_INVALID_MEASPARAM_LEVEL_RAM -113 Use of Level Triggering is not compatible

with the StoreToRam function

ERR_INVALID_MEASPARAM_SAT2_RAM -114 Use of Saturation Detection Level 2

Parameter is not compatible with the

StoreToRam function

ERR_INVALID_MEASPARAM_FWVER_RAM -115 The StoreToRam function is only supported

with firmware version 0.20.0.0 or later.

ERR_INVALID_MEASPARAM_DYNDARK

-116 Dynamic Dark Correction not supported

ERR_NOT_SUPPORTED_BY_SENSOR_TYPE -120 Use of AVS_SetSensitivityMode not

supported by detector type

ERR_NOT_SUPPORTED_BY_FW_VER -121 Use of AVS_SetSensitivityMode not

supported by firmware version

ERR_NOT_SUPPORTED_BY_FPGA_VER -122 Use of AVS_SetSensitivityMode not

supported by FPGA version

Jun-12 AS-5216x64-DLL Manual.docx 45

Avantes website: http://www.avantes.com email: Info@avantes.com

2.4.2 Windows messages

The following table gives an overview of window messages.

Windows message
identifier

WPARM LPARM Description

WM_MEAS_READY 0 (on success)

< 0 (one of the above error reasons)

> 0 (in StoreToRAM mode)

device

handle

After measurement data

is available the DLL

sends this message to

the application. The

command value used is

WM_MEAS_READY

which is defined as

(WM_APP + 1) for the

64 bit version of the

DLL (as5216x64.dll)

WM_DEVICECHANGE DBT_DEVNODES_CHANGED(7) 0 After device

attachment/removal

Windows sends this

message to the

application.

46 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

3 Example source code

Example source code can be found in the directory tree of the driver.

Sample programs (including header files and link libraries, where appropriate) are provided for the

following programming environments:

- Microsoft Visual C++ 2008 combined with the Qt4 framework (native code)

- LabVIEW 2009, 64 bit version (native code)

- MATLAB R2010a, 64 bit version (native code)

- Microsoft Visual Basic 2008, managed code (for .net version 3.5)

- Microsoft Visual C# 2008, managed code (for .net version 3.5)

- Microsoft Visual C++ 2008, managed code (for .net version 3.5)

For VC++2008/Qt4, both a comprehensive and a simple sample are provided.

For LabView, four sample programs are available:

- A comprehensive program for a single channel AvaSpec-USB2, which also includes subvi’s

for all functions in the as5216x64.dll (LabViewSingleChan folder)

- A simple sample program that uses AVS_PollScan instead of Windows Messaging (polling

folder)

- A multichannel example program which illustrates how to run multiple spectrometer channels

(fixed to 2 channels in the example program) in SYNC mode, as well as ASYNC mode

(polling_mc folder)

- A simple sample program that illustrates how the StoreToRam functionality can be

implemented in combination with AVS_PollScan (polling_StoreToRAM folder)

3.1 Initialization and Activation of a spectrometer

After starting the full QtDemo program, located in the ‘Qtdemo_full_demo’ folder, the main window

will be displayed. By clicking the “Open Communication” button, the AVS_Init function is called and

if successful, the serial number and status for the connected spectrometer(s) is collected

(AVS_GetNrOfDevices and AVS_GetList). The result is displayed in the list at the top left of the

window, as shown in the figure below.

Jun-12 AS-5216x64-DLL Manual.docx 47

Avantes website: http://www.avantes.com email: Info@avantes.com

After selecting a spectrometer from the list, clicking the “Activate” button results in a call to the

AVS_Activate function. This function returns a DeviceHandle which needs to be used in further

communication between the dll and this device. After a successful call to AVS_Activate, the status for

the selected device will change from “AVAILABLE” to “IN_USE_BY_APPLICATION”.

The sample program uses one DeviceHandle, so if you want to run multiple devices simultaneously,

you need to allocate storage space for multiple devicehandles (see the main sample program in the

‘Qtdemo_full_demo’ subfolder).

For the activated device, the Device information is collected (AVS_GetVersionInfo,

AVS_GetNumPixels, AVS_GetParameter, AVS_GetLambda), and displayed in the main window.

Thanks to the Windows API OnDeviceChange function, attachment and removal of spectrometers can

be detected by the application (see the OnDeviceChange function in the source code).

Note: To match the structures that are used in the AS5216 firmware the structures

used in the as5216x64.dll should be compiled with byte alignment

3.2 Starting a measurement

Measurements can be started by clicking the “Start Measurement” button. The Nr of Scans field

displays how many scans will be performed after one measurement request. Before a call to

AVS_Measure is done, the AVS_PrepareMeasurement function is called with the parameters in the

MeasConfigType structure. The “Prepare Measurement Settings” group in the figure below shows all

the parameters in this MeasConfigType structure:

48 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

unsigned short m_StartPixel

unsigned short m_StopPixel

float m_IntegrationTime

unsigned int m_IntegrationDelay

unsigned int m_NrAverages

DarkCorrectionType m_CorDynDark

SmoothingType m_Smoothing

unsigned char m_SaturationDetection

TriggerType m_Trigger

ControlSettingsType m_Control

The parameters in the measurement structure have been briefly described in section 2.4. In this section

a more detailed description will be given.

3.2.1 Measurement structure: Start- and Stoppixel

The start- and stoppixel are the first and last pixel to be sent to the PC. The full range for a

spectrometer is between startpixel 0 and stoppixel “NrOfPixels-1”, where NrOfPixels specifies the

total pixels available for the detectortype used in the spectrometer (see also AVS_GetNumPixels). If

the wavelength range of a spectrometer exceeds 1100nm (1160nm for the AvaSpec-2048x14) and the

detectortype is different from “HAMS9201” (AvaSpec-NIR), the stoppixel can be set to the

pixelnumber that corresponds to a wavelength of 1100 (1160) nm, because the sensitivity is almost

zero at this wavelength range. Reducing the range increases the data transfer speed and allows you to

transfer only the data that is relevant to the application.

Note that if m_StartPixel is not equal to zero, then a_pSpectrum[n] (see AVS_GetScopeData),

represents the measured data at pixel number m_StartPixel +n. Also, pSaturated[n] (see

AVS_GetSaturatedPixels) represents pixel number m_StartPixel +n. For example, if m_StartPixel =

10, then a_pSpectrum[0] represents the measured data at pixel number 10.

3.2.2 Measurement structure: Integration Time

The integration time is the exposure time during one scan. The longer the integration time, the more

light is exposed to the detector during a single scan, and therefore the higher the signal. The unit is

milliseconds [ms], and the resolution 0.001 ms steps. The minimum integration time is detector

dependent. The table below shows the values for the different detector types

Spectrometer Detector Type Min. Integration time [ms]

AvaSpec-256-USB2 SENS_HAMS8378_256 0.56

AvaSpec-1024-USB2 SENS_HAMS8378_1024 2.20

AvaSpec-2048-USB2 SENS_ILX554 1.05

AvaSpec-2048L-USB2 SENS_ILX511 1.05

AvaSpec-NIR256-1.7,

AvaSpec-NIR256-2.0TEC,

AvaSpec-NIR256-2.5TEC

SENS_HAMS9201

0.01*

AvaSpec-NIR256-1.7TEC,

AvaSpec-NIR256-2.2TEC**

SENS_SU256LSB

0.02

AvaSpec-NIR512-1.7TEC

AvaSpec-NIR512-2.2TEC

SENS_SU512LDB

0.02

Jun-12 AS-5216x64-DLL Manual.docx 49

Avantes website: http://www.avantes.com email: Info@avantes.com

AvaSpec-3648-USB2 SENS_TCD1304 0.01

AvaSpec-102-USB2 SENS_TSL1301 0.06

AvaSpec-128-USB2 SENS_TSL1401 0.07

AvaSpec-2048x14-USB2 SENS_HAMS9840 2.17

AvaSpec-350F-USB2 SENS_ILX554 0.20

AvaSpec-950F-USB2 SENS_ILX554 0.50

AvaSpec-1350F-USB2 SENS_ILX554 0.70

AvaSpec-1650F-USB2 SENS_ILX554 0.85

AvaSpec-2048x16-USB2 SENS_HAMS11071_2048X16 1.82***

AvaSpec-2048x64-USB2 SENS_HAMS11071_2048X64 2.40****

AvaSpec-HS1024x58-USB2 SENS_HAMS7031_1024X58 5.22

AvaSpec-HS1024x122-USB2 SENS_HAMS7031_1024X122 6.24

AvaSpec-2048XL-USB2 SENS_HAMS11155 0.002

* = 0.01ms for SENS_HAMS9201 in Firmware v. 000.025.000.000 and later, else 0.52ms

** = AvaSpec-NIR256-2.2TEC with SENS_SU256LSB detector released in 2011, and is the

 successor of the NIR2.2 with SENS_HAMS9201 detector

*** = 1.82 ms for SENS_HAMS11071_2048X16 in FPGA 006.003.000.000 or later, else 0.91ms

**** = 2.40 ms for SENS_HAMS11071_2048X64 in FPGA 006.003.000.000 or later, else 1.75ms

The longest integration time is 10 minutes (600000 ms).

3.2.3 Measurement structure: Integration Delay

The integration delay parameter can be used to start the integration time not immediately after the

measurement request (or on an external hardware trigger), but after a specified delay. The unit for this

delay is FPGA clock cycles. The FPGA clock runs at 48 MHz, so the integration delay can be set with

20.83 nanoseconds steps. See also section 3.2.9 about using the integration delay in combination with

the control settings: laser delay and pulse width. Integration delay has been implemented and tested for

the detectors that support fast triggering. These Fast Triggering detectors (Sony ILX554, Sony ILX511

and Hamamatsu S11155 in the AvaSpec-2048-USB2, AvaSpec-2048L-USB2 and AvaSpec-2048XL)

can be reset in respectively 1.3, 3.3 and 0.3 microseconds and start a new integration time immediately

after this reset. The Toshiba TCD1304 in the AvaSpec-3648-USB2 also supports fast triggering in

clearbuffermode (see also section 2.3.35), but because of the nonlinear behavior of the detector and the

“missing” lower Counts in clearbuffer mode, this detector is less suitable for the fast triggering than

the Sony detectors and the Hamamatsu S11155.

For the other detector types, it is recommended to set the integration delay parameter to 0 FPGA

cycles.

3.2.4 Measurement structure: Number of Averages

The signal to noise ratio of the scope data is improved by the square root of NrOfAverage. Averaging

is done by the microcontroller at the as5216 board, therefore, no time is lost by sending the individual

scans from the spectrometer to the PC.

3.2.5 Measurement structure: Dynamic Dark Correction

The pixels of the CCD detector are thermally sensitive, which causes a small dark current, even

without exposure to light. To get an approximation of this dark current, the signal of some optical

black pixels of the detector can be taken and subtracted from the raw scope data. This will happen if

the “Correct for Dynamic Dark” option is enabled. Some detector types (AvaSpec-2048/2048L/3648)

include dedicated optical black pixels. At these optical plack pixels, the intensity and thermal

behaviour is the same as the active data pixels, if no light falls on the detector. Enabling dynamic dark

50 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

correction will therefore result in a baseline fluctuating round zero, and measurement data will be less

sensitive for temperature changes than with dynamic dark correction off.

The back illuminated detectors in the AvaSpec-2048x14, 2048x16, 2048x64, 1024x122 and 1024x58

don’t include optical black pixels, but a few elements in the shift register can also be used for

correcting the raw data. The intensity at these elements may be different from the intensity of the

(2048) data pixels in the dark, so the baseline may not fluctuate round zero, but the correction will

result in a much more linear behavior of the data pixels when exposed to light. Therefore, it is strongly

recommended to leave the (default) Dynamic Dark Correction state “Enabled”.

The 2048XL uses 18 dummy pixels for correcting the raw data. Since these 18 pixels are located at

positions 2050 to 2067, the stoppixel in the measurement structure should be set to 2067. Setting the

stoppixel to a lower value for pixel reduction will have no effect with dynamic dark correction

enabled, because these last 18 pixels are needed for the correction algorithm.

Some NIR detector types (NIR256-2.0TEC, NIR256-2.5TEC) also support dynamic dark, because a

few datapixels are blackened during fabrication of the optical bench. These blackened pixels can then

be used for dynamic dark correction.. If the spectrometer does not include blackened datapixels, nor

dedicated optical black pixels, enabling the dynamic dark correction results in a return value of -116

when calling AVS_PrepareMeasure. This error can be neglected by the application (measurements can

be proceeded), but dynamic dark correction is not possible in that case.

The Dark Correction Type structure includes an m_enable and m_ForgetPercentage field (see also

section 2.4). Measurements have shown that taking into account the historical dark scans, does not

make much difference. The recommended value for m_ForgetPercentage is therefore 100.

3.2.6 Measurement structure: Smoothing

The smoothing type structure includes a smoothpix and a smoothmodel field. In the current version of

the as5216x64.dll there is just one smoothing model available (0), in which the spectral data is

averaged over a number of pixels on the detector array. For example, if the smoothpix parameter is set

to 2, the spectral data for all pixels xn on the detector array will be averaged with their neighbor pixels

xn-2, xn-1, xn+1 and xn+2.

The optimal smoothpix parameter depends on the distance between the pixels at the detector array and

the light beam that enters the spectrometer. For the AvaSpec-2048, the distance between the pixels on

the CCD-array is 14 micron.

With a 200 micron fiber (no slit installed) connected, the optical pixel resolution is about 14.3 CCD-

pixels. With a smoothing parameter set to 7, each pixel will be averaged with 7 left and 7 right

neighbor pixels. Averaging over 15 pixels with a pitch distance between the CCD pixels of 14 micron

will cover 15*14 = 210 micron at the CCD array. Using a fiber diameter of 200 micron means that we

will lose resolution when setting the smoothing parameter to 7. Theoretically the optimal smoothing

parameter is therefore 6. The formula is ((slit size/pixel size) – 1)/2

In the table below, the recommended smoothing values for the AvaSpec spectrometer are listed as

function of the light beam that enters the spectrometer. This light beam is the fiber core diameter, or if

a smaller slit has been installed in the spectrometer, the slit width. Note that this table shows the

optimal smoothing without losing resolution. If resolution is not an important issue, a higher

smoothing parameter can be set to decrease noise at the price of less resolution.

Jun-12 AS-5216x64-DLL Manual.docx 51

Avantes website: http://www.avantes.com email: Info@avantes.com

Slit or

Fiber

AvaSpec-

128

Pixel

63.5 µm

AvaSpec-

256

1024

Pixel

25 µm

AvaSpec-

HS

1024x58

1024x122

Pixel

24 µm

AvaSpec-

2048,

2048L,

2048x14,

2048x16,

2048x64,

2048XL

Pixel

14 µm

AvaSpec-

3648

Pixel

8 µm

AvaSpec-

NIR256

Pixel

 50 µm

AvaSpec-

NIR512

Pixel

25 µm

10µm n.a. n.a. 0 0 0 n.a. n.a.

25µm

n.a. 0 0 0-1 1 n.a. 0

50µm

0 0-1 0-1 1-2 2-3 0 0-1

100µm

0-1 1-2 1-2 3 5-6 0-1 1-2

200µm

1 3-4 3-4 6-7 12 1-2 3-4

400µm

2-3 7-8 7-8 13-14 24-25 3-4 7-8

500µm

3-4 9-10 9-10 17 31 4-5 9-10

600µm

4 11-12 11-12 21 37 5-6 11-12

3.2.7 Measurement structure: Saturation Detection

The 16-bit A/D converter in the AvaSpec results in raw Scope pixel values between 0 and 65535

counts. If the value of 65535 counts is measured at one or more pixels, then these pixels are called to

be saturated or overexposed. Saturation detection can be set off (m_SaturationDetection=0) or on

(m_SaturationDetection=1). Saturation detection is done by the as5216x64.dll, after a measurement

result has been sent to the PC. If a measurement is the result of a number of averages, the

as5216x64.dll can only detect saturation if all NrOfAverage scans in a measurement were saturated for

one or more pixels.

Only for AvaSpec-2048 spectrometers, the third level is available (m_SaturationDetection=2,

autocorrect inverted pixels). The reason for this is that if the detector type in the AvaSpec-2048 (Sony-

ILX554) is heavily saturated (at a light intensity of approximately 5 times the intensity at which

saturation starts), it will return values <65535 counts. The other detector types in the AvaSpec-102,

128, 256, 1024, 2048L, 2048x14 and 3648 and AvaSpec-NIR do not show this effect, so no correction

is needed. Normally, you don’t need to use this third level for the AvaSpec-2048, but when measuring

a peaky spectrum with some heavily saturated peaks, the autocorrect can be used. A limitation to this

level is that it can be used only if no averaging is used (m_NrAverages=1).

The AvaSpec-USB2 spectrometers with an as5216 board Rev C and earlier were equipped with a 14-

bit AD converter (range 0..16383). In this case the detector is saturated at 16383 counts.

52 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

3.2.8 Measurement structure: Trigger Type

The trigger type structure includes settings for Trigger Mode (Hardware, Software), Trigger Source

(External, Synchronized) and Trigger type (Edge, Level).

Setting the Trigger Source to Synchronized is relevant if multiple spectrometers need to run

synchronised (all spectrometers start a measurement at the same time). This option will be described

below under “Running multiple spectrometers Synchronized”.

Single channel spectrometers, or multiple spectrometers in ASYNC mode can operate in one of the

three following Trigger settings (Trigger Source should be set to “External”):

Trigger Mode = Software

This Trigger setting is used when one or more (nrms) measurements should start after a measurement

request in the software (AVS_Measure call). The Edge/Level is irrelevant because this only applies to

an external hardware trigger.

Trigger Mode = Hardware, Edge triggered

This trigger setting is used when one or more (nrms) measurements should start after an external

hardware trigger pulse has been received at pin 6 of the DB26 connector. First a measurement request

is posted in the software (AVS_Measure call). Then the spectrometer waits until a rising edge of the

TTL-input pulse is detected at pin 6 of the DB26 connector before nrms scans are started.

The delay between the rising edge of the TTL pulse and the start of the integration time cycle depends

on the spectrometer type, as shown in the table below.

Spectrometer Type Minimum Delay [s] Maximum Delay [s]

AvaSpec-128-USB2 9 60

AvaSpec-256-USB2 0.80 0.84

AvaSpec-1024-USB2 0.80 0.84

AvaSpec-2048-USB2* 1.28 1.30

AvaSpec-2048L-USB2 3.28 3.30

AvaSpec-3648-USB2 (clearbuffer mode)** 0.28 0.30

AvaSpec-NIR256-1.7,

AvaSpec-NIR256-2.0TEC,

AvaSpec-NIR256-2.5TEC

0

600

AvaSpec-NIR256-1.7TEC,

AvaSpec-NIR256-2.2TEC

4.92***

5.75***

Jun-12 AS-5216x64-DLL Manual.docx 53

Avantes website: http://www.avantes.com email: Info@avantes.com

AvaSpec-NIR512-1.7TEC,

AvaSpec-NIR512-2.2TEC

4.92****

5.75****

AvaSpec-2048x14-USB2 -2170 0

AvaSpec-2048x16-USB2 -1820 0

AvaSpec-2048x64-USB2 -2400 0

AvaSpec-HS1024x58-USB2 -5220 0

AvaSpec-HS1024x122-USB2 -6240 0

AvaSpec-2048XL-USB2 0.28 0.30

* The AvaSpec-350F-USB2, AvaSpec-950F-USB2, AvaSpec-1350F-USB2 and

 AvaSpec-1650F-USB2 use the same detector as the AvaSpec-2048-USB2 and will

 therefore have the same trigger response characteristics as the AvaSpec-2048-USB2

** The delay for the AvaSpec-3648-USB2 in prescan mode strongly depends on the integration

 time setting, but can be calculated within 0.02 µs precision by the following equations:

 Scanspassed = floor((Inttime-0.002+3.6961)/(Inttime-0.002))
 min_delay = 0.00183 + Scanspassed*(Inttime-0.002) [ms]
 max_delay = 0.00185 + Scanspassed*(Inttime-0.002) [ms]

 Inttime = Integration time setting in milliseconds in the preparemeasurement structure

 Example1: Inttime = 0.1ms
 Scanspassed = floor(38.72) = 38
 min_delay = 0.00183 + 38*0.098 = 3.72583 ms
 max_delay = 3.72585 ms

 Example2: Inttime = 0.01ms
 Scanspassed = floor(463.01) = 463
 min_delay = 0.00183 + 463*0.008 = 3.70583ms
 max_delay = 3.70585 ms

 So if the application allows that the AvaSpec-3648-USB2 in prescan mode is triggered a

 couple of milliseconds before the event that needs to be measured, this event can be shifted

 with high precision into the integration time cycle of the spectrometer. Moreover, the

 integration delay parameter (section 3.2.3) can be used to add additional delay in steps of 21

 nanoseconds to the min_delay calculated above.

*** 4.92 – 5.75 µs with FPGA version 6.4 and later, 137.5 – 138.3 µs with FPGA version 6.3

**** 4.92 – 5.75 µs with FPGA version 6.4 and later, 251.1 – 252.8 µs with FPGA version 6.3

Trigger Mode = Hardware, Level triggered

This trigger setting is used when scans should be performed as long as the external trigger at pin 6 of

the DB26 connector is HIGH. The spectrometer will start to accumulate data (take scans at the

selected integration time) at the rising edge of the TTL pulse and will continue to do so as long as the

TTL signal remains high. When the signal becomes low, the average of the accumulated data (except

for the last scan) will be sent. This mode is especially useful for conveying belt applications, when a

product needs to be scanned, independent of the transport speed.

54 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

Running multiple spectrometers Synchronized

All USB2 platform spectrometers can be connected by a SYNC cable. In syncmode, one spectrometer

is configured as “Master” by calling the AVS_SetSyncMode function for this channel with the

a_Enable flag set to 1. The trigger source for the Master channel should not be set to Synchronized,

but to External. The trigger mode for the Master can be set to Software (if a measurement should start

after a measurement request in the software), or to Hardware (if a measurement should start after an

external hardware trigger pulse at pin 6 of the Master DB26 connector. All other (“slave”)

spectrometers are set into “Synchronized” mode by setting the Trigger Source to “Synchronized” and

the Trigger Mode to “Hardware”.

 A synchronized measurement is started by calling AVS_Measure first for all slave channels. As a

result, these channels start listening to their SYNC input port. Secondly a measurement request (call

to AVS_Measure) needs to be posted for the Master channel. If the trigger mode for the Master is

“software”, this result in nrms measurements for all channels. If the trigger mode for the Master is

“hardware”, the nrms measurements for all channels are started after an external trigger has been

received at at pin 6 of the Master DB26 connector. The nrms parameter in the AVS_Measure function

should be set to the same value for all activated channels.

Source code for the sample programs that support synchronization of multichannel systems can be

found in the following folders:

..\examples\ Borland Delphi 6\ multichannel\

..\examples\ Codegear Delphi 2009\ multichannel\

..\examples\LabView\polling_mc\

Synchronization is done at a measurement level. A measurement can include a number of scans to

average. This “number of average” scans is only synchronized for the first scan. For example, if the

number of measurements, integration time and number of average for two channels are set to:

Channel A: nrms=2, integration time 100ms, average 3

Channel B: nrms=2, integration time 65ms, average 2,

then the data acquisition timing and response in synchronized mode will look like:

 ………………………. ……………………….

 Idle time channel B Idle time channel B

Measurement Measurement

Request Result channel A

Channel A Measurement + Measurement

+ Channel B Result channel B Synchronized Result channel B

 Measurement

 Start (n=2)
 Measurement

 Result channel A +

 All nrms (=2) ready

Note that in the example above, the number of averages for channel B can be set to 4 without losing

time because the extra two scans will be taken in the idle time for channel B.

n=1 scan1 n=1 scan2 n=1 scan3 n=2 scan1 n=2 scan2 n=2 scan3

n1 s1

n1 s2

n2 s1 n2 s2

Jun-12 AS-5216x64-DLL Manual.docx 55

Avantes website: http://www.avantes.com email: Info@avantes.com

3.2.9 Measurement structure: Control Settings

The Control Settings include parameters to control

 A pulsed lightsource (m_StrobeControl)

 A laser pulse (m_LaserDelay and m_LaserWidth)

 The Number of Spectra that will be stored to onboard RAM (m_StoreToRam)

Pulsed lightsource control

A pulsed light source like the AvaLight-XE needs to be synchronized with the integration time cycle.

The m_StrobeControl parameter determines the number of pulses the spectrometer sends out at pin 5

at the DB26 connector during one integration time cycle. The maximum frequency at which the

AvaLight-XE operates is 100 Hz. This means that the minimum integration time for 1 pulse per scan is

10 ms. When setting the number of pulses e.g. to 3, the minimum integration time should be 30 ms.

The as5216x64.dll does not check for this limitation because other light sources may operate at higher

frequencies, and should also be controllable by the AvaSpec and as5216x64.dll.

Laser pulse control

For the fast trigger detectors ILX554 and ILX511 in the AvaSpec-2048 and AvaSpec2048L, pin 23 at

the DB26 connector can be used to send out a TTL signal which is related to the start of the integration

time cycle. In the figure below, a measurement is started at the rising edge of the Trig signal. This can

be a hardware or software trigger, see also section 3.2.8. The TTL signal at pin 23 (Laser) is set after

the laserdelay (T1) expires. The pulsewidth for the laser pulse (T3) is set by the m_LaserWidth

parameter. The integration time cycle starts after the integration delay parameter (see section 3.2.3)

expires.

Trig

Laser

Integration

The unit for T1, T2 and T3 is FPGA clock cycles. The FPGA clock runs at 48 MHz, so delays and

pulse width can be set with 20.83 nanoseconds steps. If the integration delay T2 is set to 0 FPGA

T1

 T2

T3

56 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

cycles, the rising edge of the integration signal will start one clock cycle (20.83ns) before the rising

edge of the laser pulse. This will ensure that with this setting, the flash of the source that is triggered

by the laser pulse entirely falls in the integration time cycle.

Laser Induced Breakdown Spectroscopy (LIBS) is an application where the integration delay is used

in combination with a TTL-out at the DB-26 connector to fire a laser. After a measurement request (or

on an external hardware trigger), the laser is fired by the TTL-out. The integration time period should

not include the laser light, so the start of the integration time needs to be delayed. A typical integration

delay in LIBS applications is about 1 s (ILX554 detector in AvaSpec-2048-USB2, see also section

3.2.3).

Laser wavelength

The Laser wavelength (m_LaserWaveLength) control setting is not used in the current version of the

as5216. A value can be entered, but the as5216 firmware does not use this information.

StoreToRam

As of firmware version 0.20.0.0 the StoreToRam function has been implemented. To use this function,

you must set the requested number of scans in the m_StoreToRam control setting, and start measuring

with a call to AVS_Measure using 1 as the number of measurements (a_Nmsr).

There is an amount of 4MB available for scans, corresponding with 1013 scans of 2048 pixels.

Scanning less pixels will yield a larger capacity in scans. The AVS_Measure message signaling the

arrival of data will have a WParam value equal to the number of scans stored in RAM. In regular

measurements, this value only signals success (with value ERR_SUCCESS) or failure (with a negative

error message).

Alternatively, when using AVS_PollScan instead of a message driven interface, the AVS_PollScan

function will return 1 when the StoreToRam scans are available, and 0 as long as they are not.

The scans can subsequently be read with a corresponding number of calls to AVS_GetScopeData.

If you request more scans than will fit in memory, scanning will continue until the memory is fully

used, therefore you should always request the number of scans that is returned in Wparam (when using

Windows Messaging.

If using StoreToRAM in combination with AVS_PollScan, the number of scans that can be processed

by subsequently calling AVS_GetScopeData will normally be equal to the requested number of scans

in the StoreToRAM parameter. If more scans are requested than can be stored (e.g. 1500 scans of 2048

pixels), it can happen that AVS_GetScopeData will be called too many times. In case of the example,

only the first 1013 calls to AVS_GetScopeData will return SUCCESS. The next call will return the

error code ERR_NO_SPECTRA_IN_RAM, which can be used by the application software as an

additional stop condition for reading spectra from RAM. However, reading beyond the number of

scans that can be stored in RAM is a time consuming event, so it is not recommended to request more

scans than the maximum that can be stored.

The StoreToRam functionality has been implemented in most sample programs that come with the

as5216x64-dll interface package. To illustrate how to use StoreToRAM in combination with

AVS_PollScan, a simple LabView sample program has been added since as5216.dll version 1.7.0.0.

Jun-12 AS-5216x64-DLL Manual.docx 57

Avantes website: http://www.avantes.com email: Info@avantes.com

3.3 Measurement result

If a measurement is ready, the windows message WM_MEAS_READY is sent to the application. The

Wparam value of the message should be:

- 0 in regular measurements (where the StoreToRam parameter is zero) to indicate SUCCESS

- > 0 in StoreToRam mode, Wparam holds the number of spectra that were actually saved in

RAM

- < 0 in case an error occurred (see section section 2.4.1).

The Lparam value of the message contains the devicehandle for the spectrometer for which the data is

ready.

LabVIEW cannot easily respond to the incoming Windows message that signals the arrival of new

data. AVS_Pollscan allows the application program to poll the arrival of data, i.e. to actively get the

status of this data, instead of letting a message handler react to the Windows message from the dll.

By calling the function AVS_GetScopeData, the spectral data is stored in the application for further

processing.

58 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

3.4 Digital IO

The USB2 platform spectrometers have 10

programmable digital output pins and 3

programmable input pins available at the DB26

connector. The function AVS_SetDigOut and

AVS_GetDigIn can be used to control these

ports. Moreover, 6 out of the 10 programmable

output ports can be configured for pulse width

modulation. With the AVS_SetPwmOut function,

a frequency and duty cycle can be programmed

for these 6 digital output ports.

The PWM functionality can be used e.g. in

controlling the intensity (dutycycle) of an

AvaLight-LED light source, which receives input

from DO1 (pin 11 of the DB26 connector).

3.5 Analog IO

The USB2 platform spectrometers have 2

programmable analog output pins and 2 programmable

analog input pins available at the DB26 connector. The

functions AVS_SetAnalogOut and AVS_GetAnalogIn

can be used to control these ports. For the Analog Out

signals, an 8-bit DAC is used. The Analog In signals

are converted by the internal 10-bit ADC’s.

A number of onboard analog signals can be retrieved

as well with the AVS_GetAnalogIn function. One of

these onboard signals is the NTC1 X8 thermistor

which can be used for onboard temperature

measurements. The polynomial for converting the

voltage (U) to degrees Celsius for NTC1 is:

Temp [
o
C] = 118.69 – 70.361*U

+ 21.02*U
2
 – 3.6443*U

3
 + 0.1993* U

4

The thermistor X11 is the signal received from a TE

cooled detector and can be used to monitor the detector

temperature. NTC2 X9 is not mounted.

The 1V2, 5VIO and 5VUSB are used internally to test

the power supply

Jun-12 AS-5216x64-DLL Manual.docx 59

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6 EEProm

The EEProm parameters in the DeviceConfigType structure have been briefly described in section 2.4.

In this section a more detailed description will be given. The main sample program display most of the

parameters in the structure. The Structure Length (m_Len), Structure Version (m_ConfigVersion) and

InfoString (m_aUserFriendlyId[64]) are shown on top of the tabs that correspond to the structures that

are used to group the parameters into the following categories:

DetectorType m_Detector,
IrradianceType m_Irradiance,
SpectrumCalibrationType m_Reflectance,
SpectrumCorrectionType m_SpectrumCorrect,
StandaloneType m_StandAlone,
TempSensorType m_Temperature[3]

TecControlType m_TecControl

ProcessControlType m_ProcessControl (not displayed in sample program)

The structure version is used internally to maintain compatible between different versions of the dll

and firmware. The Information character string can be used e.g. to write a user friendly name for the

spectrometer.

3.6.1 EEProm structure: Detector Parameters

The detector parameters are defined in the DetectorType

structure, which includes the following elements:

SensorType m_SensorType

unsigned short m_NrPixels

float m_aFit[5]

bool m_NLEnable

double m_aNLCorrect[8]

double m_aLowNLCounts

double m_aHighNLCounts

float m_Gain[2]

float m_Reserved

float m_Offset[2]

float m_ExtOffset

unsigned short m_DefectivePixels[30]

60 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

SensorType and Number of Pixels

The as5216 board supports many different detectors which are used in the AvaSpec spectrometers as

shown in the table below:

Spectrometer DetectorType Number of Pixels

AvaSpec-102-USB2 SENS_TSL1301 102

AvaSpec-128-USB2 SENS_TSL1401 128

AvaSpec-256-USB2 SENS_HAMS8378_256 256

AvaSpec-1024-USB2 SENS_HAMS8378_1024 1024

AvaSpec-2048x14-USB2 SENS_HAMS9840 2048

AvaSpec-2048x16-USB2 SENS_HAMS11071_2048X16 2048

AvaSpec-2048x64-USB2 SENS_HAMS11071_2048X64 2048

AvaSpec-NIR256-1.7,

AvaSpec-NIR256-2.0TEC,

AvaSpec-NIR256-2.5TEC

SENS_HAMS9201

256

AvaSpec-NIR256-1.7TEC,

AvaSpec-NIR256-2.2TEC*

SENS_SU256LSB

256

AvaSpec-NIR512-1.7TEC,

AvaSpec-NIR512-2.2TEC

SENS_SU512LDB

512

AvaSpec-2048-USB2 SENS_ILX554 2048

AvaSpec-350F-USB2 SENS_ILX554 350

AvaSpec-950F-USB2 SENS_ILX554 950

AvaSpec-1350F-USB2 SENS_ILX554 1350

AvaSpec-1650F-USB2 SENS_ILX554 1650

AvaSpec-2048L-USB2 SENS_ILX511 2048

AvaSpec-3648-USB2 SENS_TCD1304 3648

AvaSpec-HS1024x58-USB2 SENS_HAMS7031_1024X58 1024

AvaSpec-HS1024x122-USB2 SENS_HAMS7031_1024X122 1024

AvaSpec-2048XL-USB2 SENS_HAMS11155 2068

* = AvaSpec-NIR256-2.2TEC with SENS_SU256LSB detector released in 2011, and is the

 successor of the NIR2.2 with SENS_HAMS9201 detector

For each detector, different FPGA firmware is needed. The SensorType parameter should therefore not

be changed unless new FPGA firmware for another detectortype has been loaded.

The number of pixels is determined by the detectortype and should therefore not be changed, unless

another detectortype has been connected and the right FPGA code has been loaded.

Also for the Fast Series (350F, 950F, 1350F, 1650F), the number of pixels is fixed and should not be

changed.

Wavelength Calibration

The polynomial coefficients in m_aFit[5] describe the relation between the pixelnumber of the

detector array (0..m_NrPixels-1) and the corresponding wavelength in nanometer at this pixelnumber:

 = m_aFit[0] + m_aFit[1] *pixnr + m_aFit[2] *pixnr
2
 + m_aFit[3] *pixnr

3
 + m_aFit[4] *pixnr

4

In the function AVS_GetLambda, the m_aFit coefficients are used internally to store the wavelength

numbers into an array.

Jun-12 AS-5216x64-DLL Manual.docx 61

Avantes website: http://www.avantes.com email: Info@avantes.com

Nonlinearity Calibration and Correction

A polynomial can be used to correct for nonlinear behavior of the detector. The polynomial

coefficients can be stored in the EEProm and used by the application software to correct the raw AD

Counts.

The nonlinearity calibration service (determination of the polynomial coefficients) is included in the

IRRAD-CAL irradiance calibration service, but can also be ordered separately (NL-Calibration).

The m_aLowNLCounts and m_aHighNLCounts parameters have been added since as5216.dll version

1.1, to be able to limit the range (in counts) for which the correction polynomial should be applied.

The correction that needs to be implemented in the application software can be illustrated by using an

example:

Suppose the following nonlinearity polynomial has been calculated:

m_aNLCorrect[0] = 9.93286529334744E-001

m_aNLCorrect[1] = -7.18891352982627E-006

m_aNLCorrect[2] = 4.65464905353804E-009

m_aNLCorrect[3] = -1.11258994803382E-012

m_aNLCorrect[4] = 1.42157972847117E-016

m_aNLCorrect[5] = -1.03925487491128E-020

m_aNLCorrect[6] = 4.02566735990250E-025

m_aNLCorrect[7] = -6.44850644473040E-030

m_aLowNLCounts = 200.0

m_aHighNLCounts = 15500.0

The polynomial is calculated by measuring the AD Counts for a number of pixels (10) over different

integration times to get the pixel data over a wide range from (in this example) 200 to 15500 counts.

The measured AD Counts are corrected for the offset value by subtracting the dark spectrum. For each

of the 10 pixels in the measurement the counts per second is calculated and normalized to its

maximum value, which is set to 100%. In the left figure below the normalized counts per second are

displayed against the measured AD Counts (corrected for dark). The polynomial is the best fit through

these measured points. The right figure below has been created by applying the polynomial to the

measured points, and recalculating the normalized counts per second. It is important to realize that the

polynomial should be applied to the AD Counts that have been corrected for the dark counts.

Before linearization After linearization

Counts

16.00014.00012.00010.0008.0006.0004.0002.0000

N
o
rm

a
liz

e
d
 C

o
u
n
ts

 p
e
r

S
e
c
o
n
d
 (

in
 %

)

101,0

100,5

100,0

99,5

99,0

98,5

98,0

97,5

97,0

96,5

96,0

95,5

95,0

Counts

16.00014.00012.00010.0008.0006.0004.0002.0000

N
o
rm

a
liz

e
d
 C

o
u
n
ts

 p
e
r

S
e
c
o
n
d
 (

in
 %

)

103,0

102,5

102,0

101,5

101,0

100,5

100,0

99,5

99,0

98,5

98,0

97,5

97,0

62 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

In the application software, a dark spectrum needs to be saved first and subtracted from the measured

AD Counts before the correction is applied. For example, suppose the measured AD Counts in the

dark for a pixel is a value of 300 Counts. At a certain light intensity, the measured AD Counts for this

pixel becomes a value of 14000 Counts. The AD Counts corrected for dark therefore becomes 13700.

The Normalized Counts Per Second can be calculated from the polynomial:

NCPS= m_aNLCorrect [0] +

m_aNLCorrect [1] *13700 +

m_aNLCorrect [2] *13700
2
 +

m_aNLCorrect [3] *13700
3
 +

m_aNLCorrect [4] *13700
4
 +

m_aNLCorrect [5] *13700
5
 +

m_aNLCorrect [6] *13700
6
 +

m_aNLCorrect [7] *13700
7
 = 0.97741

The AD Counts value corrected for linearity and dark becomes 13700/0.97741 = 14017 Counts. The

AD Counts value corrected for linearity only (not for dark) becomes 14017+300 = 14317 Counts.

Note that the AvaSpec-2048, -2048L, -2048x14 and -3648 include a “Correct for Dynamic Dark”

option (see section 3.2.5). If this correction is applied, the measured dark AD Counts value (without

subtracting measured dark counts) is already fluctuating around zero. The polynomial can therefore be

applied directly to the measured counts.

The m_aLowNLCounts and m_aHighNLCounts parameters can be used to limit the range for the

correction (in counts) for which the polynomial should be applied. The use of polynomials beyond the

range of measured data points can give erratic corrections. In AvaSoft, Avantes uses the same

correction factor (NCPS) for measured counts (corrected for dark) that are lower than

m_aLowNLCounts as is used for m_aLowNLCounts, and for counts higher than m_aHighNLCounts

the same NCPS as is used for m_aHighNLCounts. In the example above, NCPS[200] = 0.99203 and

all counts <= 200 will be corrected in AvaSoft by dividing through 0.99203. Likewise NCPS[15500] =

0.96099 and all counts >= 15500 will be corrected in AvaSoft by dividing through 0.96099. All

counts: 200<counts<15500 will be corrected by the NCPS calculated by the polynomial.

Using the nonlinearity correction polynomial in combination with the 16bit ADC Counts range
(see also section 2.3.36, function AVS_UseHighResAdc) does require a small modification in your

application software, since the polynomial was recorded in 14bit mode, and therefore should be

applied to a 14bit range when calculating the NCPS. This will be illustrated by introducing the

variable “ADCFactor” to the equations that are used in the correction (same example as above, same

polynomial). The value of “ADCFactor” becomes 0.25 when running in 16bit ADC mode and 1.0

when running in 14bit ADC mode.

In 16bit ADC mode, the measured counts will be a factor 4 higher than in 14bit mode, or with a 14 bit

ADC. Therefore, the same pixel of the same spectrometer in this example returns 4*300 = 1200

Counts for darkdata and 4*14000 = 56000 Counts at a certain light intensity. The AD Counts corrected

for dark therefore becomes 54800. The Normalized Counts Per Second can be calculated from the

polynomial:

Jun-12 AS-5216x64-DLL Manual.docx 63

Avantes website: http://www.avantes.com email: Info@avantes.com

NCPS= m_aNLCorrect [0] +

m_aNLCorrect [1] * (ADCFactor * 54800) +

m_aNLCorrect [2] * (ADCFactor * 54800)
2
 +

m_aNLCorrect [3] * (ADCFactor * 54800)
3
 +

m_aNLCorrect [4] * (ADCFactor * 54800)
4
 +

m_aNLCorrect [5] * (ADCFactor * 54800)
5
 +

m_aNLCorrect [6] * (ADCFactor * 54800)
6
 +

m_aNLCorrect [7] * (ADCFactor * 54800)
7
 = 0.97741

The AD Counts value corrected for linearity and dark becomes 54800/0.97741 = 56067 Counts. The

AD Counts value corrected for linearity only (not for dark) becomes 56067+1200 = 57267 Counts.

Using the m_aLowNLCounts and m_aHighNLCounts parameters in 16bit mode also requires to

include the ADCFactor when comparing the measured Counts to these parameters:

m_aLowNLCounts = 200, therefore:

if ADCFactor*(measured counts (corrected for Dark))<200, use NCPS[200] = 0.99203

else if ADCFactor*(measured counts (corrected for Dark))>15500, use NCPS[15500] = 0.96099

else, calculate NCPS as shown above.

In the example above, all counts (corrected for dark) <= 800 will be corrected in AvaSoft by dividing

through 0.99203. Likewise, all counts (corrected for dark) >= 62000 will be corrected in AvaSoft by

dividing through 0.96099. All counts (corrected for dark): 800<counts<62000 will be corrected by the

NCPS calculated by the polynomial.

Gain and Offset

These parameters have been optimized by Avantes, and there should be no need to change these

values. The m_Gain and m_Offset parameters are used to optimize the Gain and Offset of the AD

Converter. Most detector types use only the m_Gain[0] and m_Offset[0]. The parameters m_Gain[1]

and m_Offset[1] are only used by the SENS_SU512LDB detectors (512 pixel NIRs). The

m_ExtOffset parameter is used to be able to match the detector output range with the ADC range.

Defective Pixels
The m_DefectivePixels[30] array can be used to store the pixelnumbers that should be eliminated from

the data transfer. The as5216x64.dll will calculate the data for a defective pixel by interpolating the

data of the neigbor pixels. A defective pixel can be specified in the range from 0 to “NrOfPixels-1”,

where NrOfPixels specifies the total pixels available for the detectortype used in the spectrometer (see

also AVS_GetNumPixels).

The as5216x64.dll evaluates the array m_DefectivePixels[i] in an increasing order until a pixel is

specified which is equal or larger than the number of pixels in the detector.

64 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6.2 EEProm structure: Standalone Parameters

The StandaloneType

structure includes a

boolean (m_Enable)

which is not used in the

standard version, but

which can be used for

user specific standalone

functionality. The

Measurement parameters

are also included in this

structure, as well as the

Number of Measurements

parameter (m_Nmsr).

Finally, the SDCardType

structure has been added,

to have storage space

available to store dark and

reference and scopemode

spectra.

The Measurement parameter structure (MeasConfigType) has been described in detail in section 3.2,

as well as the Number of Measurements parameter (m_Nmsr).

The SDCardType structure includes the following parameters:

bool m_Enable

unsigned char m_SpectrumType

char m_aFileRootName[6]

TimeStampType m_TimeStamp

These are the same parameters that have been defined in the function AVS_SaveSpectraToSDCard.

The boolean m_Enable is not used but has been added for possible future standalone functionality to

start saving spectra to the SDCard if m_Enable becomes true;

The m_SpectrumType can be set to 0, 1 or 2 to indicate that a dark (*.drk), reference (*.ref) or scope

(*.roh) spectrum should be saved. The m_aFileRootName[6] parameter is a character string that is

used as first part of the name of the stored spectra. A sequence number (00 to 99 if the rootname is six

characters long, 000 to 999 if the rootname is five characters long etc…) and the file extension (*.drk),

reference (*.ref) or scope (*.roh) completes the filename on SDCard.

The m_TimeStamp parameter has been added to be able to add a date/time to the files saved on

SDCard.

Jun-12 AS-5216x64-DLL Manual.docx 65

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6.3 EEProm structure: Irradiance, Reflectance Calibration and Spectrum Correction

The m_Irradiance, m_Reflectance and m_SpectrumCorrect parameters occupy together over 99% of

the defined memory in the EEProm structure (Sizeof(DeviceParamType) with the m_aReserved block

excluded). This is because each of these three parameters include an array of 4096

(MAX_NR_PIXELS) float numbers which can hold pixel specific calibration data.

The Irradiance Calibration structure (IrradianceType) has been defined to store the results of an

irradiance intensity calibration in EEProm, as well as the settings during this calibration (integration

time, smoothing, measurement setup, fiberdiameter). By reading these data from EEProm, it will be

possible to convert a spectrum with raw scopedata into an irradiance spectrum.

The Reflectance Calibration data can be used to convert the scopedata into a Reflectance or

Absorbance spectrum. The Spectrum Correction data can be used to correct the spectral data, e.g. for

Pixel Response Non Uniformity (PRNU), or for temperature effects. The Reflectance and Correction

arrays are not yet used for calibration purposes by Avantes.

How to convert ScopeData (A/D Counts) to a power distribution [µWatt/(cm2.nm)]

In the application software, the smoothpix value in the preparemeasurement structure should be set

to the same value as the smoothpix during the intensity calibration. This value can be found in

m_Irradiance.m_IntensityCalib.m_Smoothing.m_SmoothPix.

Also, before the irradiance intensity for a pixel i can be calculated, a dark spectrum (= A/D Counts

with no light exposed to spectrometer) should be saved (once) at the integration time that will be

used in the measurements. The dark spectrum for each pixel i can be called e.g. darkdata(i).

The irradiance intensity at a certain pixel i (i = 0 ..totalpixels-1) can then

be calculated from:

ScopeData(i) = Measured A/D Counts at pixel i (AVS_GetScopeData)

DarkData(i) = Dark data at pixel i, saved in application software

IntensityCal(i) = m_Irradiance.m_IntensityCalib.m_aCalibConvers[i]

CalInttime = m_Irradiance.m_IntensityCalib.m_CalInttime

CurInttime = Integration time in measurement (used in the PrepareMeasurement structure)

The equation for irradiance intensity at pixel i then becomes:

Inttimefactor = (CalInttime/CurInttime)

Irradiance Intensity = Inttimefactor* ((ScopeData(i) -DarkData(i))/IntensityCal(i))

If Scopedata(i) and Darkdata(i) are taken with the 16bit ADC Counts range (see also section

2.3.36, function AVS_UseHighResAdc), an additional “ADCFactor” needs to be added to the

equation above, because the intensity calibration (if performed by Avantes, or by using AvaSoft

application software) is always recorded in 14bit mode. The value of “ADCFactor” becomes 0.25

when running in 16bit ADC mode and 1.0 when running in 14bit ADC mode. The equation

becomes:

Irradiance Intensity = ADCFactor * Inttimefactor * ((ScopeData(i) -DarkData(i))/IntensityCal(i))

66 AS-5216x64-DLL Manual.docx Jun-12

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6.4 EEProm structure: Temperature Sensors

The as5216 boards are prepared for using up to three thermistors. NTC1 is mounted on the board,

NTC2 is not mounted, and the third thermistor is in the detector. The voltage level of the thermistors

can be retrieved by calling the AVS_GetAnalogIn function (see also section 2.3.16 and 3.5).

The structure TempSensorType can hold the coefficients for a polynomial that converts the voltage

level into a temperature.

3.6.5 EEProm structure: Tec Control

The TecControl parameters are used to control the cooling of the detector in the AvaSpec-256-NIR

2.0/2.2/2.5, the AvaSpec-2048TEC-USB2 and AvaSpec-3648TEC-USB2

For these spectrometer types, the m_Enable flag will be set to true.

The default setpoint in degrees Celsius is –20 °C for the AvaSpec-256-NIR (two-stage cooling)

and +5°C for the 2048TEC and 3648TEC (one-stage cooling), but it can be changed if needed.

It is not recommended to change the DAC polynomial (m_aFit) which has been optimized for the

detector type. For recent models (AvaSpec-ULS2048-TEC and for the ASM5216 boards), the X0 and

X1 coefficients in the m_aFit polynomial are 0.0, because the PID control has been entirely

implemented in the firmware.

Jun-12 AS-5216x64-DLL Manual.docx 67

Avantes website: http://www.avantes.com email: Info@avantes.com

To monitor the detector temperature, use the AVS_GetAnalogIn function, with a_AnalogInId set to 0

(see also section 2.3.16 and 3.5). The polynomial coefficients for converting the measured voltage (U)

to degrees Celsius can be found in the table below:

Spectrometer DetectorType m_aTemperature[2].

m_aFit[0]

m_aTemperature[2].

m_aFit[1]

AvaSpec-NIR-2.0/2.5TEC SENS_HAMS9201 58.70 -20.48

AvaSpec-NIR256-1.7/2.2TEC SENS_SU256LSB 56.60 -18.58

AvaSpec-NIR512-1.7/2.2TEC SENS_SU512LDB 56.60 -18.58

AvaSpec-2048TEC SENS_ILX554 51.4 -16.38

AvaSpec-3648TEC SENS_TCD1304 51.4 -16.38

AvaSpec-HS1024x58 SENS_HAMS11155 82.15 -22.43

AvaSpec-HS1024x122 SENS_HAMS11155 82.15 -22.43

These coefficients are stored in the TempSensorType structure in the eeprom as described in section

3.6.4.

3.6.6 EEProm structure: ProcessControl

The settings in the ProcessControl structure can be used for the 2 analog and 10 digital output signals

at the DB26 connector.

The analog settings can be used to store a function output range that should correspond to the 0-5V

range of the analog output signals. For example, if the measured function output is expected to be in a

range between 1000 and 2000, these values can be stored in the m_AnalogLow[0] and

m_AnalogHigh[0] parameters. The function output can then be converted to a 0-5V analog output at

pin 17 by using the range stored in eeprom.

The digital output settings can be used as lower- and upper thresholds, to set the corresponding pins to

0 or 5V if these thresholds are exceeded.

The Process Control structure has been successfully used in applications, in which the spectrometer

runs completely standalone, without a connection to a PC. Data processing is in that case done

onboard by dedicated firmware and the analog and digital outputs are used to signal the function

output.

