
Development of a PC-Based

Object-Oriented Real-Time

Robotics Controller

by

Hang Tran

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master’s of Applied Science

in

Mechanical Engineering

Waterloo, Ontario, Canada, 2005

©Hang Tran, 2005

 ii

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the

purpose of scholarly research

Signature

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

Signature

 iii

Abstract

The industrial world of robotics requires leading-edge controllers to match the speed of new

manipulators. In order to improve the performance of the Deltabot, an ultra high-speed cable-based

robot, a new controller called the QNX Multi-Axis Robotic Controller (QMARC) was developed.

QMARC is a PC-based controller built for the replacement of the existing commercial controller

called PMAC, created by Delta Tau Data Systems. Although the PMAC has its own real-time

processor, the rigid and complex internal structure of the PMAC makes it difficult to apply advanced

control algorithms and interpolation methods. Adding unconventional hardware to PMAC, such as a

camera and vision system is also quite challenging. With the development of QMARC, the flexibility

issue of the controller is resolved. QMARC’s open-sourced object-oriented software structure allows

to the addition of new control and interpolation techniques as required. In addition, the software

structure of the main Controller process is decoupled for the hardware, so that any hardware change

does not affect the main controller, just the hardware drivers. QMARC is also equipped with a user-

friendly graphical user interface, and many safety protocols to make it a safe and easy-to-use system.

Experimental real-time test has proven QMARC to be a reliable real-time system. Despite minor

fluctuations in the servo loop periods, the controller can still achieve close path tracking running at

2.5 kHz. In comparing the PMAC and QMARC controller performance on two pick-and-place

paths, it was found that for both paths QMARC yielded better results than PMAC on all three motors

of the Deltabot. Accumulated following error for the PMAC was at least one order of magnitude

greater than QMARC, and QMARC was more easily tuned than PMAC. These experimental results

show that QMARC is a reliable and safe controller with consistent results.

The stable software foundation created by the QMARC will allow for future development of the

controller as research on the Deltabot progresses. Its open source structure will ease the way for new

researchers implementing software modules such as servo control algorithms and trajectory, or new

hardware like grippers and vision sensors, creating a flexible and powerful system that can be used

for many applications.

 iv

Acknowledgements

For the past two years, I have received a generous amount of help and guidance from my supervisors,

Dr. Amir Khajepour and Dr. Kaan Erkorkmaz. I would like to thank Dr. Khajepour for taking me

into the Robotics research group, which has provided me with both practical experience in robotics

control, and academic experience in the development of new robotic manipulators, such as the

Deltabot. I also thank Dr. Erkorkmaz for sharing his knowledge and expertise in control systems,

trajectory generation and software development, which was pivotal in my research.

I take great pride in my work, but where would I be without the help of my peers and colleagues. I

would like to give a big hug to Edmon Chan for his insight into all things mechanical and electrical,

Saeed Behzadipour for his assistance in my research, Gireesh Dharwarkar for keeping me on my toes,

and Matthew Asselin for sharing his knowledge of the QNX operating system with me without

hesitation.

With all of the software and hardware implementation involved in this project, I would like to

graciously thank Robert Wagner, Andy Barber and Steve Hitchman, our fine technicians, for their

help and kindness to us pesky students.

I would like to thank my family for their undying support when I told them that I wanted to

continue my education and especially my boyfriend, Neil Lonsdale, for encouraging me and picking

me up when things went astray in my research.

Last, but not least, I would like to acknowledge the financial support of Materials and

Manufacturing Ontario (MMO) in this research. Without their support our ideas could not have been

realized.

 v

Contents

Chapter 1 Background... 1
1.1 Deltabot .. 1
1.2 PMAC... 3
1.3 QNX Real-Time Operating System.. 4
1.4 Object-Oriented Software Design .. 6

1.4.1 Reusability.. 6
1.4.2 Encapsulation ... 7
1.4.3 Inheritance .. 7
1.4.4 Polymorphism... 8
1.4.5 Operator Overloading... 9
1.4.6 Constructors and Destructors.. 9

Chapter 2 Literature Review... 10
2.1 PC-Based Controllers ... 10

2.1.1 Distributed Multiprocessor Control Systems ... 11
2.1.2 Single-Processor Host and DSP Control Systems .. 12

2.2 Object-Oriented Software Design in Robotic Controllers.. 13
2.3 Robot Control Structure ... 16

2.3.1 Trajectory Generation... 16
2.3.2 PID Control Algorithm... 18

Chapter 3 Design and Implementation... 21
3.1 Overview .. 21
3.2 Hardware Setup .. 22
3.3 Process Structure of the QMARC .. 23

3.3.1 QNX Message-Handling Functions.. 25
3.4 Design of the Controller Console ... 27
3.5 Design of the Starter Process.. 29

 vi

3.6 Design of the Hardware Server .. 32
3.7 Design of the Timer.. 34
3.8 Design of the Controller ... 35
3.9 Running the Controller ... 44
3.10 Safety Features ... 44

3.10.1 Hardware Limit Switches ... 44
3.10.2 Software Position Limits .. 45
3.10.3 Following Error Limit .. 46

3.11 Control Algorithm .. 46
3.11.1 Notch Filter...48

3.12 Trajectory Generation... 48
3.12.1 Offline Cubic Spline Trajectory Generation .. 49
3.12.2 Online Position-Velocity-Time (PVT) Trajectory Generation..................................... 50

Chapter 4 Software Design Issues... 52
4.1 Timing .. 52

4.1.1 POSIX Timer vs. QMARC Timer.. 53
4.2 Data Logging.. 54
4.3 Memory Allocation of Variables.. 55

Chapter 5 Software Testing and Analysis .. 57
5.1 Real-Time Behavioural Tests and Results.. 58
5.2 Controller Performance Tests and Results ... 60

5.2.1 Standard X-Z Plane Path Test .. 61
5.2.2 Rotated Standard Path Test .. 69

5.3 Reproducibility Tests and Results .. 75

Chapter 6 Conclusions ... Error! Bookmark not defined.

Chapter 7 Recommendations .. Error! Bookmark not defined.

Bibliography .. 83

 vii

 viii

List of Figures

Figure 1-1: General structure of the Deltabot [5] .. 2
Figure 1-2: Encoder Conversion Table Process [6] ... 3
Figure 1-3: Class inheritance code example .. 7
Figure 1-4: Polymorphism class declaration example ... 8
Figure 1-5: Polymorphism function call example ... 9
Figure 2-1: Block Diagram of Kriegman and Siegel hand control system [18] 12
Figure 2-2: QMotor 2.0 Hardware/Software Architecture [33]... 15
Figure 2-3: Class Hierarchy of QMotor Robotic Toolkit Platform [33].. 16
Figure 3-1: QMARC Control Structure ... 22
Figure 3-2: QMARC Process Communication Structure .. 24
Figure 3-3: Message Structure for Client-Server Communication .. 25
Figure 3-4: Example code for client-server communication and message-handling......................... 26
Figure 3-5: QMARC Photon Graphical User Interface (GUI) .. 29
Figure 3-6: Flow Chart of Starter Process ... 31
Figure 3-7: Flow-chart for Hardware Server ... 33
Figure 3-8: Code for Timer ISR and Setup Procedure... 34
Figure 3-9: Class structure of robotic motion controller.. 36
Figure 3-10: Flow-chart of algorithm for offline trajectory generation control loop, ctrlLoop() 41
Figure 3-11: Flow-chart of algorithm for online trajectory generation control loop,

ctrlLoopOnlineTraj() ... 42
Figure 3-12: Schematic of PID Feed-Forward Velocity and Acceleration Control Algorithm......... 47
Figure 3-13: Schematic of path for PVT online trajectory generation... 50
Figure 4-1: Memory allocation code sample ... 55
Figure 5-1: Real-Time Servo Loop Period Variation in a Step Input Test .. 59
Figure 5-2: Standard X-Z Plane Path in Cartesian Space .. 61
Figure 5-3: X-Z Plane Path – Arm Positions with Selected Path Knots.. 61
Figure 5-4: X-Z Plane Path – End-Effector Position using PMAC and QMARC............................. 62
Figure 5-5: X-Z Plane Path - Arm Positions for PMAC and QMARC with Cubic Spline................ 63

 ix

Figure 5-6: X-Z Plane Path - Arm Position Errors for PMAC and QMARC with Cubic Spline 65
Figure 5-7: X-Z Plane Path - Command Velocity using PMAC and QMARC with Cubic Spline .. 66
Figure 5-8: X-Z Plane Path – Command Velocities for PVT and Cubic Spline on QMARC........... 67
Figure 5-9: X-Z Plane Path – Arm Position Errors with PVT and Cubic Spline on QMARC.......... 68
Figure 5-10: X-Z Plane Path - Command Acceleration... 69
Figure 5-11: Rotated Standard Path in Cartesian Space .. 69
Figure 5-12: Rotated Path - Arm Positions with selected path knots .. 70
Figure 5-13: Rotated Path - End-Effector Position for PMAC and QMARC.................................... 70
Figure 5-14: Rotated Path – Arm Position for PMAC and QMARC .. 72
Figure 5-15: Rotated Path – Arm Position Error for PMAC and QMARC....................................... 73

 x

List of Tables

Table 1: QMARC Controller Gains... 60
Table 2: Arm Position Errors (in radians) for PMAC and QMARC using Cubic Spline 64

 1

Chapter 1

Background

Robotics is being used for increasingly more applications in different industries. The mass

production of everything from cars to surgical needles requires precision repetitive work ranging from

assembling parts, welding, machining, and pick and place tasks. To control these robots, engineers

have built a multitude of controllers using Programmable Logic Controllers (PLC’s), Digital Signal

Processing (DSP) boards and Personal Computers (PC’s). Although PLC’s are still widely used in

industry, research in the past decade or so has been concentrated on the development of PC-based

controllers for industrial applications. Typically, DSP controllers with host computers have been

used as controllers, however the high cost and complexity have made PC-based controllers a desirable

field of research. In this work, a single-processor PC-based controller was developed for a three

degree-of-freedom ultra high-speed cable-based parallel robot, named the Deltabot, created at the

University of Waterloo [1], [2].

1.1 Deltabot

The Deltabot was designed based on the Stewart Platform [3], a six degree-of-freedom mechanism

developed for flight simulations that used six linear actuators in parallel created in 1965. The parallel

structure of the Deltabot is depicted in Figure 1-1. This cable-based robot is among a new line of

high-speed robots built for pick-and-place operations. In its novel design, there are three motors

attached to three aluminum arms that control the location of the end-effector through a set of

lightweight cables. The end-effector is attached to a central shaft that is pressurized to keep the

cables in tension. By using cables instead of rigid links, the inertia of the manipulator is minimized,

thus allowing high accelerations of 2g. Currently, this prototype can run a 35cm path at 120 cycles

per minute [4].

2

Figure 1-1: General structure of the Deltabot [5]

Parallel manipulators have distinct advantages over serial chain-link counterparts, namely, greater

stiffness, higher precision and less inertia. However, these advantages come at the cost of singular

configurations in the workspace, and smaller and more complex workspaces. For parallel

manipulators, computation of the forward position kinematics is a challenging task involving non-

linear equations. Whereas the inverse position kinematics calculation is relatively straightforward.

This is opposite to kinematic calculations for serial manipulators. Due to the nature of parallel

manipulators, more computation is required for proper control of the robot [4]. In addition, more

advanced control algorithms must be considered for the Deltabot because, not only is it a parallel

manipulator, but it also has cable-based links. In spite of disadvantages with control and workspace

issues, parallel manipulators offer promising performance speed and precision for pick and place

operations.

3

1.2 PMAC

Currently, the Deltabot uses a general-purpose commercial controller called the Programmable

Multi-Axis Controller (PMAC) version 2.0 made by Delta Tau Data Systems Inc [6]. The PMAC

does not perform the inverse or forward position kinematics on the manipulators, but rather it

performs control based on joint coordinates. This controller is composed of a real-time multi-tasking

computer with DSP technology. Although the PMAC has the capability to control up to eight motors

simultaneous on eight separate coordinate systems, each standard PMAC 2.0 module controls only

four motors. The software architecture of the PMAC is complex and somewhat hidden to make it

simpler for users. What is known is that each PMAC module contains four encoder inputs, which

each has hardware encoder counters with associated timers. As shown in Figure 1-2, at the end of

each servo cycle, a servo interrupt is sent to latch the counter values and store them in a software

structure called the Encoder Conversion Table. This Encoder Conversion Table consists of two

columns: X memory and Y memory. In X memory, the actual 24-bit value of the encoder position is

stored in the highest word. The rest of the X memory contains intermediate values. Memory Y

contains the information required to process and convert the position value so that it can be stored in

the X memory location. Y memory consists of a 16-bit address of the source of the encoder that it is

reading from plus an 8-bit value of the conversion method performed on the encoder value. The

actual position is then extended to 48-bits by the software, which also multiplies the value by a

position-scaling factor. Actual encoder positions are used as feedback data for the servo control loop.

When the new servo control signal is calculated, the signal is sent at an opto-isolated set of Digital to

Analog Converters (DAC) that are connected to the motor amplifier.

Figure 1-2: Encoder Conversion Table Process [6]

4

Although the PMAC has a wide range of options and an impressive range of capabilities that allow

users to tailor the controller to each application, the process of understanding the PMAC architecture

and modifying its programming is very slow and sometimes difficult due to the complexity of the

PMAC system. Adding unconventional components to the controller, such as a vision system, can be

quite challenging, time-consuming and costly. Due to the complex nature to the Deltabot’s

mechanical structure, more advanced control algorithms must also be considered for control of this

cable-based manipulator.

In order to minimize hardware costs as well as allow for higher system flexibility in the controller,

the PC-based controller was developed for motion-control of the Deltabot. The open-source code of

the PC-based controller will allow future research to quickly produce controllers with advanced

control algorithms for the Deltabot, along with the incorporation of sophisticated trajectory generation

techniques, which cannot be performed by the PMAC.

In this research, a single-processor PC-based motion controller was developed on a real-time

operating system called QNX Neutrino 6.0. This controller is named the QNX Multi-Axis Robotic

Controller or QMARC. A literature review on different aspects of the real-time control systems will

be discussed in Chapter 2. The detailed software design of the controller, from its object-oriented

software structure to its control algorithm and safety features will be covered in Chapter 3. Chapter 4

will review the issues that arose during the development stage such as timing, logging data, and

memory management, followed by the experimental results of the PC-based controller compared to

the PMAC performance in Chapter 5. To produce comparable results, the PC-based controller was

programmed with similar control and trajectory generation algorithms as the PMAC. The

conclusions of this research along with details on future work will be discussed in Chapter 6.

1.3 QNX Real-Time Operating System

An operating system (OS) is a software platform on computers that manages resources, and controls

memory and peripheral devices. Its responsibilities include performing all input/output operations

and efficient use of devices [7]. In order to qualify as a real-time operating system (RTOS), the OS

must be able to perform duties within a given time constraint, whether that objective time is measured

in microseconds or milliseconds. A RTOS must also be able to handle simultaneous tasks that are

triggered asynchronously as well as have an effective method of scheduling these tasks. The main

function of the RTOS is to allocate processor time to different processes and have the ability to stop

5

and resume any task. QNX Neutrino 6.0 is an example of a RTOS developed by QNX Software

Systems. The QNX operating system is a modular operating system with high fault tolerance, in the

case of a device driver failing, the entire OS will not crash. A thorough analysis of different

commercially available real-time operating systems was not the objective of this research. Instead,

QNX was found to be the most economically choice for a RTOS that was suitable for development of

the motion controller.

In a motion controller, there are multiple tasks that need to be performed simultaneously, such as

monitoring limit switches, performing input/output operations to hardware, and performing the

control loop and online trajectory generation on multiple motors. Saying that an RTOS can run

multiple processes simultaneously, however, does not necessarily mean that the speed of task will be

completed more quickly. This is because the computer usually still has only one processor and

multiple tasks are not truly run “concurrently”. There are different methods of scheduling processes

so that each task can have a chance to run on the processor according to their priority, a numerical

value assigned to each process. In priority-based execution, a ready process with higher priority will

run first and to completion if the processor is idle. In pre-emptive priority-base execution, any task

can be stopped, or pre-empted, if a higher priority task is suddenly ready, and the interrupted task will

only continue when the high priority task is completed [8]. QNX uses pre-emptive priority-based

scheduling with two different types of scheduling algorithms: First-In First-Out (FIFO) and Round

Robin (RR) with 64 priority levels.

In FIFO scheduling a task can run on the processor as long as it wants, unless a higher priority task

is ready to run. Tasks with the same priority are locked from running, and wait in a first-in first-out

queue. Lower priority tasks get an opportunity to run when there are no other tasks ready. RR

scheduling is pretty much the same as FIFO except tasks can only run for a predefined timeslice that

can be set by the programmer. If the task is not complete after the timeslice is up, another task with

the same priority will have the opportunity to run. For this research, RR scheduling is used for all

processes and threads. A process refers to any application running on the processor, whereas threads

are created from within a process and typically run smaller segments of code for increased parallelism

in the software.

In QNX multiple processes can communicate through “message-handling”. The idea of message

handling is that one process can send a message to another process to trigger an action in the other

process or simply to deliver or request data. When the second process has handled the message, it

sends a reply message back to the first process, which also unblocks it. To prevent dead-locking, a

6

phenomenon with multiple processes whereby all process are blocked waiting for a message, it is

common practice to only send messages that request action or information to a server. A server is a

process that runs in an infinite loop waiting for messages from client processes. In client-server

software architecture, only clients send messages requesting data, and only the server sends reply

messages [9].

1.4 Object-Oriented Software Design

Object-oriented design (OOD) is a method of programming whereby objects and concepts in the real

world are used as the basis for building functions in the program. By grouping functions that are

normally associated together into single entity, we express code in a more comprehensive way, which

in turn makes the program easier to understand, maintain and modify.

OOD uses the concept of a class to group together a set of functions and properties related to the

same entity. For instance, a class written to control a modem would contain actions performed on a

modem, such as connecting to a port, dialing a number and hanging up. Theses actions would be

written in code referred to as member functions of the class, or methods. Attributes of the modem,

such as ringer volume, are called member variables. Grouping code into a class structure allows for

reusability of the code. Other important properties of OOD are reusability, encapsulation, inheritance,

polymorphism and operator overloading [10]. In addition, constructors and destructors can be used in

OOD to facilitate class initialization and destruction.

1.4.1Reusability

Writing code for any task consumes both time and resources. The prospect of writing code that is

reusable is therefore a highly desirable and practical. Programming languages such as C, C++, Java,

Visual Basic, and Fortran are all examples of languages that provide code in the form of classes

allowing programmers to develop software without having to write every single function from

scratch. A well-written class can be used to in any application, for instance, CString is a C++ class

that allows for the easy manipulation of character strings, can be used in any C++ program.

7

1.4.2Encapsulation

Classes are written to allow high reusability, however, encapsulation is often used by programmers

who do not want to reveal the details of their software structure, or do not want other programs to

have access to functions or variables that are used internally. OOD allows programmers to define

components as either public or private. Public variables and functions can be accessed by other

programs outside of the class, whereas private variables cannot be accessed. Public and private labels

are found in the class definition, as shown in Figure 1-3. By defining a concrete interface for a user,

class functions are protected from improper function calls and make the classes simpler to use.

1.4.3Inheritance

Inheritance is another method of reusing code but specifically from an existing class, called a base

class. A class can inherit the member functions and variables of a base class by how the class is

defined. In C++ the declaration of a base class is shown in Figure 1-3. The base class contains one

integer-type member variable, iBaseVar, and one member function called funct1(). The subclass

CSubClass is defined as a subclass of public CBaseClass by using a single colon in the class

definition. By doing this, all of the public member functions and variables of CBaseClass are

automatically inherited by the subclass. Since variable iPrivateVar is a private member variable, it is

not inherited by CSubClass. Functions and variables of the base class are often very general;

therefore, subclasses usually add variables and functions that are more specific to its application.

//Base Class declaration
class CBaseClass
{
public:

int iPublicVar; //Declare member variables
 void funct1(void); //Declare member functions
private:
 int iPrivateVar;
};
class CSubClass:public CBaseClass
{

//Inherits all of the public variables and functions from CBaseClass
 //Add more specialized member variables
 int iSubClassVar;
 //Add more member functions
 void funct2(double);
};

Figure 1-3: Class inheritance code example

8

1.4.4Polymorphism

Polymorphism is the ability of a subclass to implement a different version of a member function

inherited from its base class. To keep the interface to the classes uniform, the subclass must have the

same function definition as the base class, however the contents of the function can be different. In

addition, the function must be declared as a public virtual function in the base class. A virtual

function is one that can be overloaded by a subclass. A public function is one that can be accessed

outside of the class. Based on the code segment from Figure 1-3, in order to redefine funct1() in

CSubClass, funct1() must be declared as a virtual function in CBaseClass, as shown in Figure 1-4.

Subclasses must also be declared from public base class. The virtual function in the base class must

be implemented in order for the subclass to inherit it, ie. you can not simply declare the virtual

function.

A pointer to CBaseClass can be used to point to any instance of its subclasses. As shown in Figure

 1-5, the compiler will determine which version of the funct1() to use depending on which subclass it

is pointing to. In CSubClass2, funct1() is not redefined, so it that case, the funct1() from the

CBaseClass will be executed.

class CBaseClass
{
public:

//Declare member functions
 virtual void funct1(void)

{ printf(“funct1 in CBaseClass\n”);
}

};
class CSubClass1:public CBaseClass
{
 //Redefine member function funct1()
 void funct1(void)
 { printf(“funct1 in CSubClass1\n”);

}
};
class CSubClass2:public CBaseClass
{
 //But does not redefine funct1()
};

Figure 1-4: Polymorphism class declaration example

9

CBaseClass *classPtr; //Pointer to base class object
CSubClass1 subClass1; //subClass1 object
CSubClass2 subClass2; //subClass2 object

//Point classPtr to CSubClass1
classPtr = &subClass1;
classPtr->funct1(); //Calls funct1() defined in CSubClass1

//Point classPtr to CSubClass2
classPtr = &subClass2;
classPtr->funct1(); //Calls funct1() defined in CBaseClass

OUTPUT:
funct1 in CSubClass1
funct1 in CBaseClass

Figure 1-5: Polymorphism function call example

1.4.5Operator Overloading

Operator overloading was used in object-oriented design to override a base class function with a

subclass function of the same name. If the parameters of the base class and subclass functions are

different, then the parameter types used in the function call will determine which version of the

function to use. This property is useful with subclasses that require additional parameters, which

other subclasses, derived from the same base class, do not require.

1.4.6Constructors and Destructors

Constructors and destructors are special member functions that are called on the creation and

destruction of a class object. Referring to Figure 1-5 when the “CSubClass1 subClass1” is called, the

constructor of the subClass1 can be used to perform initialization actions. Destructors are called

when object is deleted using the “delete” command.

10

Chapter 2

Literature Review

2.1 PC-Based Controllers

In the economic world, industries are constantly seeking ways to increase productivity while

decreasing costs. The development of robotics use in automation has greatly facilitated production

gains; however, researchers are constantly looking for more cost effective methods to control robots

for greater efficiency.

In the 1970s, industry of robotic control and automation was dominated by Programmable Logic

Controllers (PLCs). PLCs were based on “solid-state controllers” as opposed to computer

technology, which was in early development stages at that time. Although the PLCs built the

foundation for automation, they did not take advantage of the developing technology in electronics

and computers. By the 1990s, the solid-state PLCs no longer met the needs of the industry. PLCs

were integrated with micro-processors and became more powerful, but Relay Ladder Logic, the

programming language of PLCs, were not suitable for high-functions required in modern control

systems, such as data communication, diagnostics and data gathering. Engineers found that using

controllers built on Personal Computers (PCs) gave them the ability to attain higher-functions, while

reducing costs [11].

All complex PC-based controllers used for servo control must be able to perform real-time

operations, communicate to peripherals, have high processing power for computations, have the

ability to perform multiple tasks simultaneously and have a method to communicate between those

tasks. Researchers have found many ways to build control systems that fulfill these requirements

such as: using multi-processor computers, building multiple PC and device networks, interfacing with

commercial motion controller cards, using Digital Signal Processing (DSP) boards with Host

computers, and running the controller on single-processor PCs with Real-Time Operating Systems

11

(RTOS). When more than one computer is working together for a common goal, then the system is

called a “distributed” system [12].

2.1.1Distributed Multiprocessor Control Systems

Multi-processor control systems were used for parallel computations of inverse kinematics, dynamics,

trajectory generation and other complex calculations. Many researchers have developed algorithms to

determine which control calculations could be done concurrently, to maximize parallelism and hence

minimize software execution time. Luh et al. [13] used inexpensive processors to increase real-time

computation power by processing control algorithms in parallel based on Newton-Euler formulation.

Kasahara and Narita [14] also used the Newton-Euler method, but were able to actually implement it

on a six-joint robotic arm using a multiprocessing scheduling algorithm. Others have developed

computer architectures for these multiprocessor systems to increase computation efficiency [15], [16],

 [17]. These researchers focused on minimizing processing time by splitting-up segments of the

calculations and running them on parallel processors.

Another technique to parallel processing was to assign different tasks to each processor. Kriegman

and Siegel [18] developed a control system for a four-digit Utah-MIT hand shown in Figure 2-1,

which was composed of five microprocessors, one for each of the four fingers plus one processor to

manage all of the tasks. All processors had access to a priority-based multi-bus, where all processes

in the system had equal priority to ensure fair distribution of resources. They also shared dual-ported

RAM, using in high-speed Direct Memory Access (DMA) operations on a VAX system. A servo

loop scheduler was used to manage processes according to the rate of their servo loops. Higher

priority was given to faster servo loops interrupting any slower loops that may have been running,

which had lower priority. For the most part, the fingers were controlled independently and in parallel,

since they were on separate processors, but the managing processor coordinated the fingers to achieve

the desired position in Cartesian space. Inter-processor communication was accomplished with

message passing system that sent standard formatted messages to each processor’s mailboxes.

12

Figure 2-1: Block Diagram of Kriegman and Siegel hand control system [18]

General computer architectures have also been developed to for real-time control. Zheng and Chen

 [19] developed a simple, flexible, and modular software structure to manage any multilink systems.

After the user decomposed their multilink system into tasks, they were required to schedule them on

separate processors. Each processor contained a hierarchial executive structure, created by Zheng and

Chen, which took care of task scheduling, interprocess communication and multilevel functions.

Parallel computation of applied torques was also implemented on a separate processor to provide

dynamic control. Other examples of computer architectures for control structures are the CHIMERA

 [20] and CONDOR [21].

2.1.2Single-Processor Host and DSP Control Systems

All research previously discussed used distributive systems to attain the computational power

required for real-time systems. Single-processors prior to the 1990s were still too slow compared to

the PCs found today. Instead of having four or five microprocessors to do computations, researchers

have found that using a single-processor computer with a DSP board to be good enough to do the job.

This system is referred to as the Host/DSP system. The host computer is often used to monitor

analyze and collect data from the control system, while the servo control itself is done on the DSP

board using built-in and customized library functions to achieve real-time tasks. Having the DSP

board perform all of the real-time tasks minimizes the overhead in controller computation, and using

multiple DSP boards can allow for concurrent processing. Erol and Altintas [22] developed an Open

13

Real-Time Operating System (ORTS) based on the OSACA system created by Pritschow [23], which

handled and scheduled tasks running on multiple DSP boards in a single Windows NT computer.

Erol and Altintas applied the ORTS for position and force control of a CNC Machine tool.

Disadvantages of Host/DSP architecture are high cost, complex software, and the amount of in-

depth knowledge required to interface all of the hardware components together. Research by

Costescu and Loffler [24] showed that there are various advantages to using a single processor-single

host PC for robotic control over Host/DSP systems. The advantages include a decrease in cost, less

hardware, higher flexibility, and better reliability and stability. For these reasons, single-processor

PC-based controllers have recently become highly desirable.

Attempts to create effective real-time controllers for large systems with a single process have been

proven infeasible and inflexible, since such systems require multiple concurrent processes in order to

be efficient. As control systems increase in size, their complexity increases exponentially [25]. Single

processor, PC-based controllers require a stable task-scheduling system to manage concurrent

processes, such as a Real-Time Operating System (RTOS).

2.2 Object-Oriented Software Design in Robotic
Controllers

Software engineering has two main types of architectures: structured programming and object-

oriented (OO) programming. Structured programming breaks down a program into its functions or

behaviors as a top-down approach. These programs are simple to design, however they can be

difficult to alter and adapt to new systems. OO design is based on the idea of creating modules of

code, or classes, with generalized functions. This code is then encapsulated so that if one module

changes, the other ones are not affected. Object-oriented software is more difficult to design because

it requires a lot of pre-planning. However, it allows users to modify the code easily as well as reuse

existing for code to minimize development time of new modules. Initially, it was believed that

object-oriented design would cause too much overhead, which is detrimental in real-time control

applications. However, the overhead is negligible [26] and object-oriented control software has been

successfully used in many robotic control applications.

In 1990, Miller and Lennox [27] were one of the first to investigate the use of object-oriented

software design for a robotic controller. They built the “Robot Independent Programming

14

Environment” (RIPE), a modular software environment that allowed for the quick implementation of

robot systems without dealing with the costly low-level debugging common in structured software

development. The environment itself had four layers: 1) task-level programming, 2) supervisory

control, 3) real-time control and 4) device drivers. The first layer was for planning and simulation.

The second layer was implemented in object-oriented programming based on the physical objects

found in a work cell. It was written in C++ programming language on UNIX operating system.

Using a common general-purpose programming language gave it high portability, and made the code

easier to modify. The third layer dealt with real-time control of devices using a VME-based 68000

family processor running VxWorks, which is compatible with UNIX. The fourth layer contained

device drivers.

OO design has been used for various aspects of robotic controllers. Bagchi and Kawamura used an

object-oriented framework for client and server communication within their distributed robotic

system, ISAC (Intelligenet SoftArm Control) [28]. Barcio and Ramaswamy developed on OO

reactive robotic system built on event-driven state transitions [29]. Robotic control frameworks have

also been created Fernandez and Gonzalez (NEXUS) [30] and Traub and Schraft [31] by applying

OO design.

The most significant research into PC-based robotic controllers relevant to this project was done by

Costescu and Dawson [32] with their development of the QRobot, later renamed QMotor. Unlike

traditional PC-based controllers, QMotor system did not use a DSP for real-time control of hardware

devices, instead all control was accomplished from the PC through the use of a real-time operating

system called QNX Neutrino 4.0. QMotor was composed of four concurrent processes, as shown in

Figure 2-2. QS is the server process used to monitor the MultiQ board used for input/output in the

system. QC is the client process of QS, which contains all of the software that perform control on the

system. QN and QG are additional processes for network communication and the graphical user

interface (GUI) with real-time plots, respectively. Matlab was used to analyze the data from the

GUI. QG could be run on the same PC as the controller, or connect to it through a network or on a

remote workstation. All these processes were designed using structured programming.

In 2000, Loffler, Chitrakaran and Dawson [33] improved on the QMotor 2.0 to develop an object-

oriented QMotor Robotic Toolkit (RTK), now running with QNX Neutrino 6.0. As seen in Figure

 2-3, the controller design was based on three sets of classes: Core Classes, Generic Robot Classes and

Specific Robot Classes. These classes built the infrastructure to the controller, including the QMotor

Toolkit, which contained the actual control loop functions. Using an object-oriented design for the

15

controller allows for easy code maintenance, and greatly flexibility. The QMotor RTK was

successfully tested on a Puma 560 robot arm and a Barret Whole Arm Manipulator (WAM) using

PID control.

Figure 2-2: QMotor 2.0 Hardware/Software Architecture [33]

16

Figure 2-3: Class Hierarchy of QMotor Robotic Toolkit Platform [33]

2.3 Robot Control Structure

The problem of robotic control has been divided into two main categories, trajectory generation (or

planning) and path-control (or tracking). This research focuses more on developing a solid software

infrastructure of the QMARC control system, as opposed to investigating advanced techniques in

trajectory generation and path control. In the current implementation, the QMARC system is capable

of cubic spline trajectory generation and Proportional-Integral-Derivative (PID) control with feed-

forward velocity and acceleration compensation. More advanced trajectory generation and control

methods can easily be added in the future, as required.

2.3.1Trajectory Generation

A large part of effective motion control for a robotic manipulator is the technique in which the

command path is computed. Obviously, the shortest distance between two points in space is the

straight-line distance, however, generating straight-line positional distance between several knots on

the same path will cause discontinuities in the manipulator velocity and acceleration. These

discontinuities translate to physical vibrations or jerk on the motors. For pick-and-place operations,

although minimal vibration is tolerable, the overall motion of the manipulator should be as smooth as

possible.

17

One of the earliest forms of robotic trajectory generation was developed by Richard Paul in 1979

 [34], whereby straight-line segments with smoothed out transitions at controlled accelerations were

used to connect path knots defined in Cartesian coordinate systems. If two time segments each

required a different constant velocity, then before ending the first time segment a change of velocity

was applied for a time interval of τ. This constant acceleration was then maintained for an additional

τ length of time into the second time segment, hence giving a smooth transition of 2τ between the two

desired velocities. With this trajectory generation method, the path did not actually pass any of the

path knots, except for the end knot. The path, however, could be forced to go through all knots

without causing overshoot at “trajectory extremums” if the velocity at extremums were forced to

zero-velocity. Because all knots were defined in Cartesian space, manipulator link equations were

used to calculate intermediate joint angles to achieve the goal. Taylor [35] improved upon Paul’s

Cartesian technique by developing a method that required the calculation of less intermediate points,

however the computational time of each knot increased. Thus, he proposed a second interpolation

method implemented in joint space, whereby joint space trajectories were preplanned offline prior to

starting the control loop. Doing this greatly decreased the amount of real-time computations required

but a certain number of path knots had to be known a priori. Taylor presented a method that

produced intermediate points that would guarantee that the straight-line motion stays within

predefined bounds. Both Paul and Taylor used straight-line paths to facilitate compatibility with

conveyor motion.

Because the path segments were not simple straight-line segments, due to the reasons stated earlier,

the path needed to be optimized for minimum time. Luh and Lin [36] developed a minimum time

trajectory generation method using straight-lines with arcs to blend motion between time segments.

The length of these arcs had to be minimized so that the path did not deviate too far from the desired

trajectory. To perform this optimization, Luh and Lin applied two approaches: a “method of

approximate programming” (MAP), and a “direct approximate programming algorithm” (DAPA).

Doing optimization, in general, requires more computing time. It was found the DAPA converged

and required less computing time than their modified version of MAP.

An alternative to using straight line segments to connect path knots, is to use piece-wise low-order

polynomials. Paul [37] and Finkel [38] proposed trajectory generation using cubic splines. Cubic

splines provided smooth trajectories through path knots despite physical constraints on velocity and

acceleration. To maximize the lifespan of the manipulator, jerk (the rate of change in acceleration)

was also minimized. Lin et al. [39] used the piece-wise cubic polynomial to interpolate joint

18

trajectories as well. However, to ensure velocity and acceleration continuity, they added two extra

knots to the trajectory that could be freely specified, giving the path enough degrees of freedom for

continuity. To minimize the total travel time of the path, the Nelder and Mead’s flexible polyhedron

search was utilized. All of these earlier methods, only considered the kinematic model of the

manipulator. Dynamic models were later incorporated by Bobrow et al. [40] for more realistic

robotic control.

Trajectory generation and its optimization for both online and offline planning has been a

thoroughly research topic area. Numerous types of splines have been investigated for trajectory

generation, Lin and Chang [41] used X-splines and quartic splines, Dubowsky et al. [42] used the

Bezier, and Bobrow [43] used B-splines, with varying optimization techniques.

2.3.2PID Control Algorithm

Many advanced control algorithms have been developed for robotic control. Classic control methods

include PID feedback control, computed torque method, feed-forward and state-space control. In the

past two decades, growing interest in fuzzy controllers, neural networks and adaptable control

methods has sparked many journal articles on the topic. However, PID controllers have dominated

the control industry of sixty years with more than 95% process control applications [44], and most of

industrial robotic control. PID control stability in rigid robotic arms has been proven by Rocco [45],

based on a robotic model with decoupled linear and nonlinear uncertain components, used for

independent joint control.

The dynamic model of an N degree-of-freedom robotic manipulator is given by a set of Lagrange

equations in the form of:

τ=++)(),()(qgqqqCqqM &&&& (2-1)

Where, q is the motor joint angle, M(q) is the inertia matrix of the manipulator,),(qqC & is the

Coriolis, centrifugal and damping terms, g(q) is the gravitational terms, and τ is a vector of driving

torques acting on the links, which are supplied by motors.

For classic PID control, all motors are treated as decoupled closed loop control systems. The

torque of each individual motor, τm , can be calculated as:

∫ ++= mDmImPm eKdteKeK &τ (2-2)

19

Where, em is the position error of the motor, and KP , KI , and KD represents the proportional,

integral and derivative gains of the controller, respectively. Integration and derivation of em are

calculated with respect to time, t [45].

The original method of tuning PID controllers was suggested by Ziegler and Nichols in 1942 [46],

whereby an open loop step response was used to calculate the gains. Ziegler and Nichols presented a

frequency response method and a step response method. Their methods were based on simulating a

large number of different processes and correlating the data to suitable controller gains. The Ziegler-

Nichols tuning method of a PID controller can be summarized as follows [47]:

1. Apply a step input to the system.

2. Increase the proportional gain until sustained oscillations occur, while keeping integral and

derivative gains at zero.

3. When oscillations appear, record the proportional gain value as kU and the period of the

oscillations as tU .

20

4. Three values, kc , Ti and Td , are then computed from the following ratios:

Proportional Gain, kc = 0.6 kU

Integral Time, Ti = 0.5 tU (2-3)

Derivative Time, Td = 0.125 tU

5. Manually fine-tune the gains by trial-and-error to achieve controller design objective.

Ziegler-Nichols tuning formulas presented in Equation 2-3 are usually implemented in a slightly

different form of the classic PID controller (Equation 2-2). PID implementation for Ziegler-Nichols

is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫ ++=

dt
dy

Tedt
T

eku f
d

i
cc

1
 (2-4)

yye r −= (2-5)

y
NsT

y
d

f /1
1

+
= (2-6)

where, uc is the control loop output, y is the process output, and yr is the process command signal.

Although the Ziegler-Nichols tuning method has been very influential, the controller based on

Equation 2-3 provided a closed loop control system with poor robustness [48]. Many researchers

have developed methods to improve Ziegler-Nichols tuning. Cohen and Coon used normalized dead-

time to improve controller tuning [49] and Astrom and Hagglund developed a step-response tuning

method based on robust loop-shaping [50].

The time-consuming task of manually tuning the PID controller has also inspired a multitude

papers regarding adaptive and auto-tuning PID controllers such as using pattern recognition [51],

artificial intelligence [52], and fuzzy logic [53].

21

Chapter 3

Design and Implementation

3.1 Overview

The focus of this research was to build a reliable real-time PC-based Multi-Axis Robotic Controller

(QMARC) using QNX operating system for motion control of the Deltabot. QNX is a real-time

operating system, which allows programmers to create efficient multi-process applications. It is a

fundamental tool to the development of the QMARC. The software was designed such that it would

be modular, could easily adapted and would be easy to understand. A modular structure gives the

software the flexibility to be modified to work with new hardware and new features. The overall

structure of the QMARC, as shown in Figure 3-1, has five main software modules, the graphical user

interface (GUI), the controller, the hardware driver, trajectory generator and safety protocols.

Controller settings and initialization is done through the GUI, providing users with a comprehensive

interface to run the controller. The controller itself has access to the trajectory generator, hardware

driver and safety protocols, but only the controller and safety protocols have direct access to the

hardware drivers, which are utilized to control the functionality of the interface card. This card

provides counters to track the encoder position of the motors, analog output lines used to control the

velocity of the DC motors, and digital output lines used to enable the motors through the analog

amplifiers. Six digital input lines are also utilized on the card to interface with the limit switches on

the manipulator. The control loop input is the encoder position read from the counters, and the

controller output is the velocity command signal sent through the analog output lines. A watchdog

timer on the card can also be employed to protect the system in case of the PC crashing. Together,

this structure creates a closed loop control system for position control of the Deltabot.

22

Figure 3-1: QMARC Control Structure

To keep the software modular, the hardware drivers are kept separate from the controller software.

The controller software itself was developed using object-oriented design (OOD), in order to

maximize software modularity and code reusability without sacrificing readability of the code.

Currently, the Deltabot uses the Delta Tau Programmable-Multiaxis-Controller (PMAC) for servo

control. Due to rigidity in the software structure of the PMAC, it was difficult to incorporate

customized control algorithms and trajectory generation techniques. In order to provide a fair

comparison between the controller developed in this research to the PMAC, the controller was

programmed using PMAC control and spline techniques.

3.2 Hardware Setup

The controller runs on a Dell Optiplex GX110 Pentium III /667MHz computer with a Sensoray 626

encoder card using a QNX Neutrino 6.0 operating system. The encoder card provides up to six 24-bit

23

counters for quadrature decoding, as well as 48 digital input/output channels that have edge-triggered

interrupt capabilities and four analog output channels with 14-bit digital-to-analog conversion (DAC)

providing an output voltage of ±10V. The motor enable signals, as well as the limit switches are

connected to the digital input/output lines of the 626 card with 0V(off) and 5V(on) states. The RS422

protocol encoder signals from all three motors of the DeltaBot are connected to the 626’s dedicated

encoder input channels. The cost of a single 626 card is only $500 US, allowing for the development

of a cost effective control system around a standard personal computer.

3.3 Process Structure of the QMARC

The distributed software system of the controller consists of five concurrent processes, shown in the

ovals in Figure 3-2. These processes are the GUI, Starter, Timer, Controller and Hardware Server.

As their names suggest, the GUI is the QNX Photon Graphical User Interface. On the GUI, the user

can change settings for the QMARC system, and initialize the Starter process. The purpose of the

Starter process is to run (or spawn) the Controller and Hardware Server, and to establish

communication with these processes. The reason that the GUI does not do this directly is because

QNX Photon applications do not have the same communication channels as regular QNX programs.

It is simpler for the GUI to spawn the Starter process to handle the process communication. The

Timer process is a real-time interrupt that keeps track of the system clock initiated from the

Controller process. The Timer sends the Controller messages at a fixed sampling rate. When the

Controller receives a Timer message, it sends a message to the Hardware Server requesting

information about the current position of the motor. Using the data about the motor, the Controller

performs its control algorithm and sends a second message to the Hardware server providing it with

the command for the motor. The Hardware Server is a separate process that manages all data to and

from the encoder card as well as analog/digital inputs and outputs and safety features. This process is

always waiting for the Controller to send it messages. When the Hardware Server has completed its

task, it replies to the Controller, freeing it from its blocked state.

24

Figure 3-2: QMARC Process Communication Structure

Once the Controller runs to completion, it ends the Timer and sends a message to the Hardware

Server telling it to exit. Before exiting, both the Hardware Server and the Controller sends a message

to the Starter program telling it to end as well. Thus all processes exit and the user can return to the

GUI process to run the controller again.

 The messages sent between the processes only occur in one direction, with replies returning in the

opposite direction. The Starter sends replies to the Controller and Hardware Server and the Hardware

Server replies to the Controller, however the Timer does not require a reply. Using this client-server

communication network prevents deadlock, which is a serious problem in multi-process systems.

The Hardware Server runs at the highest priority, next is the Timer and then the Controller. Setting

important processes to high priorities ensures that they execute without interruption by low-priority

processes. The priority of the Hardware Server is 60, whereas the Controller and Timer are at a

priority of 50. The Starter runs at the lowest priority of 30.

Using the distributed software structure with this hardware-communication setup allows for fast,

efficient real-time control of the motor. Because only the Hardware server deals with direct

protocols to the 626 Encoder card, the hardware is effectively decoupled from the software system.

This means that changing the hardware will not affect the controller software, and just the Hardware

Server needs to be updated.

25

3.3.1QNX Message-Handling Functions

QNX has many message handling functions that can be used for ease of communication between

processes. Before sending a message to a process, the structure of the message must be defined and

communication connection must be established between the processes.

The message structure can vary between applications depending on the need of the client and

servers. For this research, four different fields were required in the message, defined by structure

called ClientMessageT, as shown in Figure 3-3. The first field is an integer, iMsgType, representing

the message type, or what kind of task it wants performed by the server. The second field is

fMsgData, a floating-point array containing data transferring between the client and server processes.

The third field is an integer array containing initialization data used to establish communication

between the client and server processes. The fourth field is an integer representing the status of the

server, iStatus, used to communicate success or hardware failures. The fMsgData and iInitData

arrays are defined to be the size of the maximum number of motors in the system, providing enough

room to contain data for every motor in a single message. For the Deltabot, NUM_MOTOR_MAX is

equal to three.

// message structure
typedef struct
{
 int iMsgType; //Message Type
 float fMsgData[NUM_MOTOR_MAX]; //Floating-Point Data
 int iInitData[NUM_MOTOR_MAX]; //Initialization Data
 int iStatus; //Status of hardware
}ClientMessageT;

Figure 3-3: Message Structure for Client-Server Communication

To establish communication between the client and server processes, the server needs to provide the

client with its process id and channel id numbers. The process id number can be retrieved within any

process by calling the getpid() function, and the channel id can be created by calling ChannelCreate().

With this information, the client can establish a connection to the server by calling ConnectAttach().

ConnectAttach() returns a connection id number, which is then used to send messages to the server.

Sample code of how to do this is shown in Figure 3-4. Messages are sent from the client using the

MsgSend() function, and is received by the server with the MsgReceive() function. MsgReply() is

used to send a reply message to the client after the server is finished. It is important to plan how the

26

server process id and channel id will be sent to client processes, so that they can establish

communication to the server.

#define MT_ENABLE_MOTORS 30 //Message Type
#define NO_ERR 0

ClientMessageT outmsg, replymsg, inmsg;

/* In server process */
Process_id = getpid(); //Get process id
Channel_id = ChannelCreate(0); //Create a communication channel

//Server loops infinitely processing messages
while (1)
{
 //get the message and print it
 rcvid = MsgReceive (chid, &inMsg, sizeof (ClientMessageT), NULL);

 //perform function to enable motors
 .
 .
 .
 //Reply to client when completed
 outMsg.iStatus = NO_ERR;

MsgReply (rcvid, EOK, &outMsg, sizeof (ClientMessageT));
}
.
.
.
/* In client process*/
connection_id = ConnectAttach (0, process_id, channel_id, 0 , 0);
outmsg.iMsgType = MT_ENABLE_MOTORS;

MsgSend(connection_id, outmsg, sizeof(ClientMessageT), replymsg,

sizeof(ClientMessageT));

Figure 3-4: Example code for client-server communication and message-handling

After the client process calls MsgSend(), the client process will stop running (or be in blocked state)

until the it receives a reply message from the server call to MsgReply(). On the server side, the server

is blocked until it receives a message from the client with MsgReceive(). When a process is in a

blocked state, other processes are allowed to run. By setting the client and server to high priorities, it

can be ensured that they can continue to run again as soon as they are unblocked. For the QMARC,

all message types are defined in the MsgType.h header file located in the Include folder of the main

directory of the QMARC system.

27

3.4 Design of the Controller Console

Programming a Graphical User Interface (GUI) on the QNX operating system is very similar to

Microsoft Visual C++ development. Using the QNX Momentics Software Development suite, GUIs

can be creating with predefined widgets, such as buttons, integer edit boxes, floating point edit boxes,

combo boxes, and labels available in the Photon Application Builder. Photon operates on the

principle that any event caused by moving or clicking the GUI, will send a message to the main

Photon message loop. It is up to the programmer to write specific functions to handle desired events.

For example, when a button is clicked on by the mouse an “arm” message is created. By writing a

callback function for the “arm” message, the programmer can specify what actions are taken when the

button is clicked. Because Photon has special messages that it uses to process actions on the GUI,

regular QNX message-handling described in section 3.3.1 can not be done. Instead, special Photon

message channels must be setup to establish communication. In the QMARC system, the GUI will be

referred to as Controller Console and its purpose is to initialize the controller. Since the Controller

Console is not updated by information from other processes, it was not necessary to setup Photon

communication channels. Instead, the GUI spawns Starter, a QNX process that handles all of the

communication for it.

The layout of the Controller Console is shown in Figure 3-5, depicts the five main sections of the

GUI. The first section is “Controller General Settings”, which allows user to set the number of

motors to be controlled, the servo loop period and the home position measured from the top limit

switch in counts. The servo loop period is restricted to periods of at least 300μs and must be an even

multiple of 100. The second section has the “Trajectory Generation” settings. This section allows the

user to select the method of trajectory generation to use and select the file location where the path

knots are stored. The third section is the “Step Motor” settings. When tuning the PID controller, a

step input is generally used. The size (in counts) and duration (in seconds) for the step input can be

specified from the GUI. To run the step, the user must click on the “Step Motor Now” button. Note,

that doing this will step all motors specified in the first section of the GUI. The fourth section is the

“Controller Gains” settings. It allows the user to specify gains used for the PID controller with feed-

forward velocity and acceleration compensation and notch filter for the number of motors specified.

Although there are entries for four motors, the maximum number of motors allowable on the Deltabot

is currently three. The edit boxes for motor gains, which are not being used will be disabled on the

GUI whenever the user updates the “Number of motors” edit box. The sixth section is “Data Gather

28

Settings”. Here, the user can specify the frequency to collect data, the file location to log the data,

and what fields to collect. The frequency of gather data is a function of the servo loop, it can be set to

gather data every servo loop, every other servo loop etc. There are four different fields that can be

collected: time of the sample, DAC output to the motors, the command position and the actual

position of the motor, measured in counts. The data is output in a Matlab data file and should have a

“.m” extension. Writing the data to a Matlab file allows the user to graph to data more easily on a

computer with a Microsoft Windows platform. Currently, graphing features are not used on the QNX

computer.

All controller settings on the Controller Console, except for the “Step Motor” settings are saved to

a settings.txt file, located in the directory of the Console program, before exiting the program.

Whenever the GUI is started, the controller settings are retrieved from the file and loaded onto the

GUI.

After the controller settings are entered, the user can click on the “Home Robot” button to run the

homing sequence of the robot, or click on the “Start Controller” button to run the robot with the

trajectory generator specified. The “Cancel” button is closes the GUI without saving changes to the

settings file, whereas the “Exit” button will save the settings before exiting. Whenever the “Step

Motor Now” button, “Home Robot” button or “Start Controller” button is clicked on, the data from

the GUI is saved to the settings file, and the Starter process is spawn from the GUI. To determine

which button was pressed, the GUI sends a message type flag to the Starter process. This information

is then passed along to the Controller process so that it can start up in the appropriate controller mode.

While tuning the controller, it is often useful to know the accumulated absolute position error of the

motors. This statistical data is displayed on the same terminal where the user runs the Controller

Console program. All error messages from the Hardware Server or the Controller will be displayed

on this terminal as well.

29

Figure 3-5: QMARC Photon Graphical User Interface (GUI)

3.5 Design of the Starter Process

The purpose of the Starter program is to be a gateway between the Controller Console and the

Controller and Hardware Server processes. As mentioned in section 3.4, the Controller Console does

not use the same message channels as the QNX processes, making communication more difficult.

However, since the console does not need to be updated by any other process, the GUI only needs to

do one-way communication. As shown in Figure 3-6, when a button (other than the Exit button) is

pressed on the console, the Starter process is spawned from the GUI passing along information about

30

which button was pressed, using the spawnl() function. The Starter program reads these values in as

string arguments and converts them to integer or floating-point values. Starter than spawns the

Hardware Server and Controller processes using spawnl() passing them its channel id number.

Starter’s channel id is used by the Hardware Server and the Controller to connect it. The connection

allows the Starter to know if the spawnl() was successful. When Hardware Server is spawn it sends a

message to the Starter to inform it that the spawnl() call was successful, and it also sends back its own

Process ID and Channel ID numbers. These ID numbers are then passed on the Controller process by

the Starter, so that the Controller can establish direct communication with the Hardware Server. If

the “Step Motor Now” button was pressed on the GUI, then the step size and duration are passed to

the Starter program as arguments in spawnl() and passed to the Controller process in the reply

message. Starter then waits for a message from the Hardware Server and the Controller indicating

that it is done. Once it receives messages from both processes, the Starter program exits. Keeping

the Starter process running ensures that any error messages from the child processes will be displayed

on the terminal window. If the Starter process exits immediately after spawning the processes, the

error messages and statistical data will be lost, unless it is output to file.

31

Retrieve GUI data from spawnl() arguments

START

Block process, waiting for a message to be
received from Hardware Server using the

MsgReceive() command

Has
a message been

received?

No

Yes

Button pressed on Controller Console

Create a channel for message communication

Spawn Hardware Server passing it the channel id

Block process, waiting for a message to be
received from Controller using the

MsgReceive() command

Has
a message been

received?

No

Yes

Spawn Controller process passing it the
channel id of Starter

Send reply to Controller with GUI button data and
Hardware Server’s Process ID and Channel ID

Send a reply to Hardware Server

Block process, waiting for “Done” messages
from the Hardware Server and Controller

Messages
received?

No

Yes

END

Figure 3-6: Flow Chart of Starter Process

32

3.6 Design of the Hardware Server

The Hardware Server is a process initialized from the Starter process, and terminated by a message

from the Controller process. This server receives messages regarding input and output to the

Sensoray 626 Encoder card. It performs all hardware input and output, and monitors limit switches

using an edge-triggered interrupt line built into the interface card. The Hardware Server runs in a

semi-infinite loop blocked by the operating system on a MsgReceive() command until it receives a

message from the Controller. When a message is received, the Hardware Server unblocks,

determines the type of message that was sent to it using the integer field, iMsgType, in the message

and then performs the appropriate actions. After the action is completed, the Hardware Server sends

a reply message back to the Controller along with the status of its actions, and then continues back to

the beginning of the message loop. The server handles twelve different messages:

1. Retrieve the encoder counter values for all motors.

2. Send DAC output for all motors.

3. Retrieve the encoder counter value for a single, specified motor.

4. Send DAC output for a single, specified motor.

5. Enable a single, specified motor.

6. Disable a single, specified motor

7. Disable all motors

8. Reset encoder counter to “zero” value.

9. Enable interrupts to monitor hardware safety features.

10. Disable interrupts to monitor hardware safety features.

11. Clear safety status flag.

12. Exit Hardware Server

A safety status flag is used to monitor the errors in the Hardware Server. If the limit switches are

tripped, encoder overflow occurs, or an unrecognized message is detected, the status flag is set and

sent back to the Controller in the reply message. Messages are processed in order of time-critical

importance. Messages related to retrieving encoder positions and sending DAC output is checked

first in the message loop because they are used in a real-time control loop by the Controller. Single

motor functions are kept separate from functions that apply to all motors. Single motor functions are

predominately used in homing procedures. Functions concerning all motors are used for time-critical

33

control loops, since sending a single message for each motor can be time consuming. All data passed

in the messages are stored in the fMsgData array contained in the message structure.

The Hardware Server was written specifically for the Sensoray 626 encoder card using the

Sensoray QNX library. Hardware protocols are kept separate from the Controller so that the

Controller is decoupled from the equipment used in the application. This means that if new hardware

is purchased, only the Hardware Server will have to be rewritten, saving both time and money.

When the Hardware Server is initially started from the Controller Console, it connects to the Starter

and sends it a message with its process id and channel id number. Through the Starter, the process id

and channel id of the Hardware Server is passed to the Controller. As shown in Figure 3-7, the

Hardware Server then runs in a semi-infinite loop processing messages received from the Controller

and performing calls to the Sensoray QNX library. When the server receives an exit message from

the Controller indicating that the Controller is complete, the Hardware Server sends a “Done”

message to the Starter program and then exits. Safety protocols and homing procedures will be

covered in section 3.10.

Initialize the 626 Encoder Card

START

Block process, waiting for a message to be
received using the MsgReceive() command

Has
a message been

received?
No

Yes

Determine what type of message was received

Perform actions required

Was
it an “Exit”
message?

No

Yes

END

Send “Done” message to Starter Process

Figure 3-7: Flow-chart for Hardware Server

34

3.7 Design of the Timer

The Timer consists of a software interrupt handler, using the timer interrupt number 0 built into QNX

Neutrino 6.0. The period of the timer interrupt is determined by calling ClockPeriod(), a QNX

function called from the setupTimer() function in the MultiAxisRobot class. A global timer event

variable, timevent, is attached to the timer interrupt and then linked to an interrupt service routine

(ISR), as shown in Figure 3-8. For the QMARC, the interrupt handler is set for a period of 100 μs. In

the ISR, a global variable is used to keep track of the number of times the timer interrupt has

occurred. This variable, timctr, must be declared as volatile. When the counter equals the servo

interrupt time of the servo loop, then the ISR returns the timer event, so that the Controller process

unblocks the InterruptWait() command in the servo loop.

struct sigevent timevent; //Timer Event
volatile unsigned timctr; //Timer for counter

//ISR - Interrupt Service Routine
//Handles the timer ClockPeriod() interrupts
const struct sigevent *handler(void *area, int id)
{
 //Clock runs by period set by ClockPeriod()
 if(++timctr == iServoIntRnd)
 {
 timctr=0;
 return(&timevent);
 }
 else
 return(NULL);
}
//Set the timer interrupt according to ClockPeriod(), interrupt 0
int MultiaxisRobot::setupTimer(void)
{
 struct _clockperiod clkper;
 //Set the Clock Period to minimum value of 100 microseconds
 clkper.nsec = 100000;
 clkper.fract = 0;
 ClockPeriod(CLOCK_REALTIME,&clkper,NULL,0);

 ThreadCtl(_NTO_TCTL_IO,0); //Request I/O privity
 timevent.sigev_notify=SIGEV_INTR; //Initialize event structure

 //Attach ISR vector, interrupt 0 is clock interrupt
 timid=InterruptAttach(SYSPAGE_ENTRY(qtime)->intr,&handler,NULL,0,0);
 return 0;
}

Figure 3-8: Code for Timer ISR and Setup Procedure

35

3.8 Design of the Controller

The Controller is the heart of the QMARC system. It consists of the control algorithm, trajectory

generation, safety procedures, timing and hardware message handling in closed control-loop.

Objectives of the Controller design were to create a general software structure that had high

flexibility, expandability, and was easy to follow, update and understand. High flexibility allows for

expansions in the software such as applying different control algorithms and trajectory generation

techniques. Hardware changes such as the incorporation of a vision system and different end-

effectors, motor drives and manipulators should also be possible with minimal change to the existing

software. To build a flexible system, the software structure needs to be modular. A modular program

keeps segments of code encapsulated, such that a change in one component of the software will not

adversely affect other areas. In software engineering, a technique called Object-Oriented design is

used to achieve this goal [10].

The object-oriented structure used for this project was developed based on research by Loffler et al.

 [33]. As shown in Figure 3-9, the controller was organized into Base Classes and Specific

Subclasses. The Base Classes are modules providing general functions and properties commonly

found in a robotic motion controller. Five base classes were created for this motion controller:

CObject, CManipulator, CGripper, CTrajGenerator, and CServoCtrl. All Base Classes are preceded

with a “C” to distinguish them for Specific Subclasses.

The Base Classes are divided into two groups: physical classes and functional classes. Physical

classes are based on physical hardware used in the motion controller, whereas functional classes deal

with the mathematical aspects of the controller. On the hardware side, there is the CObject class.

This class contains all properties common to any physical object, such as a universal system timer,

servo loop period etc. CManipulator and CGripper are classes for manipulators and grippers,

respectively, and are subclasses of CObject. Being a subclass means that it inherits all of the parent

class’ public properties and functions. If additional hardware is required, then new subclasses can

be made from CObject. The remaining two base classes: CTrajGenerator and CServoCtrl, contain the

operations and calculations required for trajectory generation and servo control, respectively. By

default, the CTrajGenerator produces a constant trajectory used for Step Input. Using the five base

classes defined above, Specific Subclasses can be derived that are specific to the controller

application. All base classes were designed to maximize reusable code by a specific subclass.

36

The motion controller in this research was designed for control of the Deltabot. Key functions such

as performing the control loop are defined in the MultiaxisRobot class, a subclass of the

CManipulator base class. The MultiaxisRobot class also contains the communication protocols to the

Hardware Server and the Timer used for the control loop. The control algorithm implemented on the

manipulator was PID control with Velocity and Acceleration Feed-Forward compensation, which is

contained in the PIDffCtrl class derived from the CServoCtrl base class. Details on this control

algorithm are covered in Section 3.11. In addition, two different methods of trajectory generation

were implemented in this controller: offline cubic spline and online Position-Velocity-Time (PVT)

trajectory generation. These techniques were separated into two different classes named

CubSplineTrajGen and PVTOnlineTrajGen. Trajectory generation is used to determine the command

position for each time instance of the servo loop. Details on these algorithms are covered in Section

 3.12. In addition, it should be noted that both the control and trajectory generation algorithms were

implemented from the PMAC model, to facilitate the comparisons between the two controllers. The

control of the gripper was not necessary in this research; therefore CGripper does not have a specific

subclass.

CObject

Base Classes

Specific Subclasses

CManipulator CGripper CTrajGenerator CServoCtrl

MultiaxisRobot CubSplineTrajGen PVTTrajGen PIDffCtrl

Figure 3-9: Class structure of robotic motion controller

3.8.1.1 Detailed Base Class Descriptions

This section will cover the detailed software description of each base class: CObject, CManipulator,

CGripper, CTrajGenerator and CServoCtrl. Not all base classes are fully implemented but are still

presented here to demonstrate the full software infrastructure for future research development.

37

As a standard naming convention for all member variables, variables with an “i” prefix represents

an integer data type and “f” represents a floating point number. Integers are two-byte signed values

ranging from –32768 to 32767. Floating-point numbers are four bytes long and range from -3.4 X

10-38 to 3.4 X 1038.

Base classes: CObject, CTrajGenerator and CServoCtrl all contain a floating-point variable,

fServoInt used to specific the period of the servo interrupt in seconds. This variable is defined by

calling the init() function in each base class. This init() function is declared as virtual so that it can be

overloaded by subclasses if necessary.

3.8.1.1.1 CObject Class Description

The CObject class contains a member variable for the servo interrupt period, fServoInt. It also

contains the init() function that sets this variable and converts it from microseconds to seconds.

3.8.1.1.2 CManipulator Class Description

The CManipulator Class has three member variables: iNumMotors, iHome and fCurPos, which

represents the number of motors in the manipulator, the home position of each motor measured in

counts and the current position of each motor in counts.

Virtual functions are also defined for the control loop (ctrlLoop()) and to setup the timer

(setTimer()). These functions are implemented in the subclass level. Only empty functions are

provided here to ensure the polymorphism can be applied to future subclasses of CManipulator.

3.8.1.1.3 CGripper Class Description

The CGripper class currently does not contain any member variables or function. It is added as a

demonstration of how the CObject class can be used and is reserved for future research development.

3.8.1.1.4 CTrajGenerator Class Description

Command positions are created for servo control via trajectory generation. CTrajGenerator class

contains four member variables: fServoInt represents the servo interrupt period, fPosQueue represents

a pointer to the position queue, iPosCurPtr indicates the index of the current position to read

command values, and iPosQueueCtr gives the total size of the queue. All of these variables are used

for the collection of command positions at each time instance of the servo control. For offline

trajectory generation, these position values are calculated prior to starting the control loop. The size

of the position queue is dynamically allocated in real-time based on the total time length of the

manipulator motion, as well as the desired servo control clock frequency. Dynamic memory

38

allocation is performed by calling member function setPosQueue(), giving it the size of the desired

queue. Queue size is calculated using the following equation:

Position queue size = (total time of move / servo interrupt period) + 1

Member function getCurPosQueue() is used to retrieve the current command position from the

position queue.

In CTrajGenerator there are two sets of virtual member functions for: online and offline trajectory

generation. Online trajectory generation requires separate functions for interpolating between two

knots (interpPoint()) , calculation path segment coefficients (calcCoeff()) and to retrieve real-time

data (readData()). Offline trajectory generation combines all computations in one simple function

called to calcPath(). All of these functions are redefined at the subclass level. The default trajectory

implemented in calcPath() is an ideal step input, with a step size and duration defined by the user in

the Controller Console.

3.8.1.1.5 CServoCtrl Class Description

The control algorithm for the motion controller is contained in the CServoCtrl base class. CServoCtrl

contains one member variable for the new DAC output, fDACOut, and two member functions to set

the gains of the controller (setGain()) and the control computation itself called ctrlCalc(). Both

setGain() and ctrlCalc() are empty in this base class and are reserved for implementation in its

subclasses.

3.8.1.2 Detailed Specific Subclass Descriptions

The Specific Subclasses are written for a specific application of the QMARC. All subclasses are

derived from one of the five base classes described in Section 3.8.1.1. For motion control, four

specific subclasses are used: MultiaxisRobot, CubSplineTrajGen, PVTTrajGen and PIDffCtrl.

Variable data type naming conventions are identical to those described for the Base Classes.

3.8.1.2.1 MultiaxisRobot Class Description

The MultiaxisRobot Class is derived from the CManipulator base class, and is primarily used for the

communication to the Hardware Server, to initialize and monitor the Timer of the controller, perform

the control loop, and handle safety protocols involved with hardware and software faults.

There are two member variables in this class used for communication: the connection ID (iCoid), is

used to communicate to the Hardware Server, and iTimid holds the process id for communication to

39

the Timer. Functions sendServerMsg() is used to send messages to the Hardware Server,

faultHandler() is used to handle fault messages received from the Hardware Server, and setupTimer()

is used to initialize and setup the Timer.

The settings for gathering data are summarized in three member variables: outFilePtr is a file

pointer to the output file, iDataGatherFreq gives the frequency to gather data in the servo loop, and

iDataGatherFlags contains the bit flags indicating the fields to gather data from. The options for data

collection during the servo loop are: time, DAC output, command position and actual position. The

logged data is output to a Matlab file by calling the outputDataFile() member function.

In order to read knots that define the desired manipulator path, two variables are used:

iCurQueuePtr representing the position of the circular queue with knot data and bQueueEOF flag

used to indicate the end of the queue. This circular queue is an array of the position-velocity-time

(PVT) structure type with a length of 10, which is declared globally. It is used only for online

trajectory generation in the member function readFile() of the PVTOnlineTrajGen class.

All of these member variables and functions covered thus far are private and can only be accessed

within the class. Another private member function called homeCtrlLoop() is a special control loop

used to home the motors.

Public member functions include initiating communication to the Hardware Server and setting the

servo interrupt period in init(), ending communication in close(), setting the home position of all

motors in setHomePos(), setting the “zero” encoder positions for the motors in zeroMotorPos() and

the performing the control loop. Depending on the value of member variable indicating the

trajectory generation mode (iTrajGenMode), ctrlLoop() is called for offline trajectory generation,

whereas ctrlLoopOnlineTrajGen() is called for online trajectory generation. Both ctrlLoop() and

ctrlLoopOnlineTrajGen() require pointers to CTrajGenerator and CServoCtrl objects to perform the

control loop, however online trajectory generation also requires a pointer to a data file containing

information on path knots. Since the control loop functions use base class pointers as inputs, they

accept any subclasses of that base class as well. This is possible due to the polymorphic nature of

object-oriented software design. By setting the base class pointers to the appropriate subclass, the

trajectory generation and control algorithm can be altered without modifying the member function.

The calcPath() function must always be called prior to calling the ctrlLoop() function. Since

ctrlLoop() assumes that the position queue for the command path has already been calculated. The

algorithm used for this control loop is shown in Figure 3-10. Basically, the program determines the

length of the position queue by reading the CTrajGenerator member variable iPosQueueCtr, and then

40

loops around waiting for an interrupt from the Timer. It then extracts the current command position

using getCurPosQueue() and calculates the new DAC output by calling ctrlCalc() in CServoCtrl.

Sending messages between processes take considerable time, so to minimize time in the control loop

a single message is sent to the Hardware Server to retrieve all motor positions and to send all motors

their new DAC output signal. All statistical data is saved to a buffer array during the motion, and is

output to a Matlab file after the move is completed. The motors and safety features are automatically

enabled before the move and disabled after the move is done.

The algorithm for the control loop used in online trajectory generation (ctrlLoopOnlineTrajGen())

is shown in Figure 3-11. This control loop is very similar to ctrlLoop() used in offline trajectory

generation, except the total time of the move is marked by the end of the data file containing the PVT

knots for trajectory generation. The readFile() function in the MultiaxisRobot class is used to read

data from the PVT data file and store knots into a circular queue. The first time readFile() is called,

the first three knots in the path are read, then every successive call reads two knots. This means that

in order to do PVT online trajectory generation at least three points on the manipulator path must be

known a priori. Instead of reading in three points, the function can be easily modified to read in only

two, however this is left for future research. The PVTOnlineTrajGen class has its own readData()

function used to copy knot points from the circular queue to a small array located within the class

memory. After reading the initial path knot from the queue, the program enters a loop where it first

reads in a point representing the end of the time segment, calculates the coefficients of the cubic

spline between the two knots and then loops through waiting for the interrupt and interpolating

command positions, doing control, at each time instance within that segment. When the time segment

covered by the two knots is finished, the function reads another knot from the circular queue, until the

end flag in the circular queue is found. This end flag signifies an end of file, which terminates the

control loop and outputs data to file.

41

Initialize variables

START

Get length of command position
 queue from CTrajGenerator

Get start time of control loop

Is
i < length of

position queue?
No

Yes

Send message to Hardware Server to retrieve
encoder positions for all motors

Calculate current command position by calling
getCmdPos() inCTrajGenerator

Calculate new feedrate by calling
ctrlCalc() in CServoCtrl

Send feedrate in message to Hardware Server
to output command signal to all motors

Save current time, actual and command
position data to buffer array.

Output error message if control interval is > 20us
of the desired period of the controller.

Send message to Hardware Server
to enable all motors.

Send message of Hardware Server
to disable all motors

Wait for Timer interrupt

Output data in buffer array to a Matlab file

For
each
motor

END

i = i+1

Figure 3-10: Flow-chart of algorithm for offline trajectory generation control loop, ctrlLoop()

42

Initialize variables

START

Read data for initial knot for each motor in
CTrajGenerator by calling readData()

Get start time of control loop

Is
it the end of
the data file?

No

Yes

Read in data point for end of time segment by calling readData()
and calculate path coefficients by calling calcCoeff() in CTrajGenerator

Send message to Hardware Server to retrieve
encoder positions for all motors

Calculate current command position
through CTrajGenerator by calling interpPoint()

Calculate new feedrate by calling
ctrlCalc() in CServoCtrl

Send feedrate in message to Hardware Server
to output command signal to all motors

Save current time, actual and command
position data to buffer array.

Output error message if control interval is > 20us
of the desired period of the controller.

Send message to Hardware Server
to enable all motors.

Send message of Hardware Server
to disable all motors

Is
run time

within current time
segment

Yes

Calculate run time of controller and time shift
factor for current time segment.

Wait for Timer interrupt

No

Output data in buffer array to a Matlab file

For
each
motor

END

Figure 3-11: Flow-chart of algorithm for online trajectory generation control loop,

ctrlLoopOnlineTraj()

43

3.8.1.2.2 CubSplineTrajGen Class Description

The cubic spline offline trajectory generation class CubSplineTrajGen is derived from the

CTrajGenerator base class. CubSplineTrajGen has two private member functions: getAcceleration(),

which calculates the acceleration of each knot so that the acceleration, velocity and position of the

trajectory is continuous and interpPoint(), which interpolates the position for any point in time.

InterpPoint() is declared as a virtual function in the base class CTrajGenerator, however, for offline

trajectory generation overloads the operators to make the function suitable for offline computation.

Both interpPoint and getAcceleration() are used by calcPath(), which is the only public member

function of this class. CalcPath() calculates the cubic spline path for any set of non-uniformly spaced

knots, and produces a full position queue ready for the control loop. The mathematics of this class

are covered in Section 3.12.1.

3.8.1.2.3 PVTOnlineTrajGen Class Description

The Position-Velocity-Time (PVT) trajectory generation class PVTOnlineTrajGen is derived from the

CTrajGenerator base class. There are eight member variables in this class: iCurKnotPtr is the current

position on the circular queue used by the trajectory generator, the coefficients fA, fB, fC and fD of

the cubic spline polynomial equation, and arrays for two time instances of position, velocity and time

in variables fP, fV, and fT. Public member functions include: a constructor used to initialize class

variables, readData() used to read PVT values from circular queue, calcCoeff() uses the PVT knots to

calculate the fA, fB, fC, and fD coefficients of the cubic polynomial for the current time segment,

interpPoint() is used to interpolate the position within a spline segment, and saveDataInstance() used

to move array values from the current time instance to previous time instance in fP, fV and fT. The

mathematical details of this class are covered in Section 3.12.2.

3.8.1.2.4 PIDffCtrl Class Description

The PID control with feed-forward acceleration and velocity algorithm with a notch filter is

implemented in the PIDffCtrl class. This class is derived from the CServoCtrl base class and has five

private member variables representing the gains of the controller, which can be set by calling the

public setGain() member function. The gains are: portional gain (fPGain), integral gain (fIGain),

derivative gain (fDGain), feed-forward velocity gain (fKvff), and acceleration gain (fKaff). Two

private arrays are used to store the coefficients of the notch filter. Array fNcoeff stores the

coefficients for the numerator and fDcoeff stores the coefficients of the denominator, covered in

Section 3.11.1 of the notch filter.

44

In addition, this class has five member variables used to store a few time instances of intermediate

variables used for the control calculation, these are: position error (ferror), integral error (fIntError),

command velocity (fCmdVel), command position (fCmdPos), and actual position (fActPos). To

calculate the feedrate for the motors, the controller calls the ctrlCalc() function. The init() is first

called to initialize all private member variables. The mathematical details of this control algorithm

are covered in Section 3.11.

3.9 Running the Controller

Before starting the control loop, the Controller is initialized by the Starter process, receiving the

process id and channel id of the Hardware Server. The Controller then reads the settings.txt data file

written by the Controller Console and saves the settings into the memory. It then processes the reply

message type from the Starter to determine which button on the GUI was pressed. Depending on the

button type, three different functions are called homeRobot(), stepMotor() or initCtrller(). These

three functions call and initialize the class functions.

3.10 Safety Features

Applying the QMARC to a robotic manipulator required the implementation of safety measures to

ensure that the robot arm and the motors of the Deltabot were not damaged if the control law became

unstable. Safety protocols monitoring motor positions with limit switches, software limits of the

encoder counters, and following error of the controller were developed.

3.10.1 Hardware Limit Switches

The DeltaBot uses two proximity limit switches to indicate maximum and minimum angles allowed

by the arms connected to each of the three motors. The QMARC uses six digital input channels to

monitor the limit switches via hardware interrupts initialized from the Hardware Server. When a

limit switch is tripped, the server determines which limit switch it was and sets a status flag for that

motor. As a result all limit switch interrupts are temporarily disabled. When the Controller process

requests information from the Hardware Server during the servo control loop, the server informs the

controller process that the limit switch has been tripped using the iStatus field in the message. When

45

the Controller receives a non-zero status flag, the Controller exits the control loop and enters the fault

handler function, faultHandler() in the MultiaxisRobot class. The faultHandler() immediately

disables all motors and outputs an error message to the terminal.

3.10.1.1 Robot Homing Procedure

During homing, the limit switches are used to set the home position of each motor of the manipulator.

This is activated by pressing the “Home Robot” button on the GUI. The homing is done through the

setHomePos() function in the MultiaxisRobot class. Function setHomePos() calls the

homeCtrlLoop() function, to move the robot arm at a constant velocity up to the top limit switch.

When the Hardware Server finds the top limit switch, it sets the status flags and informs the

Controller of the status of the limit switch at the next hardware request. The control loop will end

immediately and return to the setHomePos() function in MultiAxisRobot class. The homing

subroutine will move the motor down slowly. At every sampling interval it will check to see if the

status of the limit switch triggered has changed, to make sure that the motor is no longer outside of its

boundaries. If the motor does not clear the limit switch within 10 counts, then a fatal error could have

occurred, so all motors are disabled as a safety measure. If the motor clears the limit switch within 10

counts successfully, then robot arm moves to the home distance set by the Controller Console. The

motor encoder counter is set to “zero” value. The entire process is repeated for each motor one-by-

one.

To maintain the client-server communication hierarchy, the Hardware Server cannot send a

message to the controller process directly when it knows that a limit switch has been tripped. In the

worse case scenario, the limit switch would occur immediately after the client receives a response

from the Hardware Server. This means that it would take one sampling interval for the appropriate

actions to be taken by the Controller. For our application a delay of one servo interrupt period is

tolerable.

3.10.2 Software Position Limits

The counters used to measure the position of the motor encoder signals are located on the Sensoray

626 encoder card. These counters have 24-bit resolution, with a range from 0 to 16777216. At the

end of the homing sequence described in section 3.10.1.1, the counters are set to “zero”. This “zero”

value is actually 8388608, a value in the mid-range of the counter. An addition 32-bit signed long

software counter is used for every motor, which is set to zero by the zeroHomPos() function in the

46

MultiAxisRobot class. Every time the hardware counter is read, the Hardware Server calculates the

change in the counter from the previous time instance, and adds the difference in counts to the

software counter. The software counter ranges from -2,147,483,648 to 2,147,483,648. Using a a

variable to store the counter value prevents the problem of counter overflow, which may occur in

robot motion using a hardware counter. Any hardware counter overflow that does occur is handled

by the calculation of the software counter.

3.10.3 Following Error Limit

When a controller becomes unstable, the accumulated following error of the position can blow up

dramatically. To ensure that controller instability does not damage the manipulator, a software limit

on the integrated following error is implemented in the ctrlLoop() and ctrlLoopOnlineTraj() functions

of the MultiaxisRobot class. This following error limit has been set to 200,000 counts in the

MsgType.h header file, but can be easily redefined by the programmer. If a following error occurs

the control loop will exit, and enter the fault handler subroutine, faultHandler(), located in the

MultiaxisRobot class. The faultHandler will immediately disable all motors and output an error

message to the terminal.

3.11 Control Algorithm

Digital control in the QMARC was modeled after the control algorithm utilized by the PMAC, so that

results and gains from the two controllers were comparable. PMAC uses a discrete time controller

that calculates the 16-bit DAC output of the system during every servo cycle [6]. The control

algorithm consists of a straightforward PID discrete time controller with feed-forward velocity and

acceleration, as shown in Figure 3-12.

47

K (1 -2z)aff
-1

+z
-2

+

+

+

- (1 - z)
-1

K (1 - z)vff
-1

+ Kp

Output Limit

Actual Position Feedback

Velocity
Command
To Amplifier

Desired
Position

Ki

Kd (1 - z)
-1

+

-

Figure 3-12: Schematic of PID Feed-Forward Velocity and Acceleration Control Algorithm

The control algorithm for the DAC output of the PMAC at each nth time instance can be expressed as

the following equation:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
−

⋅
+

⋅+⋅
+⋅= −

128
)(

2
)(

128
)()(

)(2)(23
19 nAVKnIEKnCAKnCVK

nFEKnDACOut diaffvff
p (3-1)

Where,

Command velocity, CV(n) = command position(n) – command position(n-1)

Actual velocity, AV (n) = actual position(n) - actual position(n-1)

Command acceleration, CA(n) = CV(n) – CV(n-1)

Following error, FE(n) = command position(n) – actual position(n)

Integrated error, IE(n) = ∑
−

=

1

0
)(

n

j
jFE

Variables K p , K i , and K d are the proportional, integral and derivative gains of the PID controller,

respectively. K vff and K aff are the velocity and acceleration feed-forward gains.

In the PMAC control algorithm, the following error and derivative terms are multiplied by a scaling

factor of 96 because in the PMAC process, the position is converted from a 24-bit value to a 48-bit

value and divided by 96. Since, the QMARC does not extend the position value in software, these

scaling factors are eliminated from Equation 3-1. Additional scaling factors found in the equation are

used to ensure numerical accuracy in the control calculation.

The DAC output signals from the Sensoray 626 Encoder card used for the QMARC system only

have only 14-bit resolution opposed to 16-bit found on in the PMAC. Because of this difference

Equation 3-1 was divided by a factor of 22 when implemented into QMARC.

48

General tuning of the PID gains of the controller can be done using Ziegler-Nichols method with a

step input and then fine-tuned manually to minimize the accumulated squared error in position. The

feed-forward gains can be tuned with a standard second-order trajectory path. This control algorithm

was implemented in the PIDffCtrl class derived from the CServoCtrl base class in the software. The

gains of the controller are set through the graphical user interface, and initialized in the controller

using the setGain() function in the PIDffCtrl class.

3.11.1 Notch Filter

A second-order notch filter shown in equation 3-2 was implemented on the QMARC to compensate

for resonant frequencies in the robot manipulator. The notch filter equation is:

Notch Filter = 2
2

1
1

2
2

1
1

1
1

−−

−−

++
++

zdzd
znzn

 (3-2)

where n1 and n2 are the numerator coefficients and where d1 and d2 are the denominator coefficients.

Due to the light-weight design of the DeltaBot, the resonant frequency of the robot is not

apparent, and the notch filter is not required for its control. However, the notch filter can be used in

future control applications.

3.12 Trajectory Generation

Trajectory generation in QMARC can be accomplished through online or offline computation.

Offline computation has the advantage of ensuring (C2) acceleration continuity, and allows the

control loop to run at a slightly faster rate. However, offline trajectory generation requires exact

knowledge of the manipulator path prior to starting the control loop. Online trajectory generation

requires the user to specify path knots in a data file. These points can be generated in real-time

allowing the manipulator higher flexibility in movement for obstacle avoidance. Online computations

and reading the input data file adds computation time in each servo loop, however it can still be done

without slowing down the servo cycle rate of 2.5 kHz. Currently, both online and offline trajectory

generation is based on the cubic polynomial (spline path), however online trajectory generation does

not guarantee acceleration continuity, which would be dependent on the criterion used to calculate the

position, velocity and time points for each knot. Both trajectory generation methods calculates the

path using absolute position reference, opposed to relative positions.

49

3.12.1 Offline Cubic Spline Trajectory Generation

The CubSplineTrajGen class provides smooth offline trajectory generation for an N number of knots

in a predefined path. For position control of a DC motor, the program requires a data file containing

the position of the motor at different time instances as input. Using a natural cubic spline

interpolation method by Press et al. [54], the full path of the motor is determined at discrete time

instances corresponding to the sampling frequency. The knots can have regular or irregular time

intervals.

For QMARC, the interpolation is done for time (t) vs. motor position (y). Interpolation of the knots

is accomplished in two steps, first the second derivative of each knot is determined, and then the joint

position for each time instance, in between the knots, is calculated by evaluating the cubic spline.

The cubic spline equation takes the form of:

11 ++ ′′+′′++= jjjj yDyCByAyy (3-3)

where,

jj

j

tt
tt

A
−

−
≡

+

+

1

1 ,
jj

j

tt
tt

B
−

−
≡

+1

, (3-4)

2
1

3
6
1))((jj ttAAC −−≡ + , (3-5)

2
1

3
6
1))((jj ttBBD −−≡ + (3-6)

In order to ensure that the second derivative of the equation above is also continuous for the first

derivative, we evaluate the first derivative of Equation 3-3, y´, for t=tj in the interval of (tj-1, tj) and set

it equal y´ for t=tj in the interval of (tj, tj+1). This produces the following equation, for j=2,…

N-1:

1
111

1
1

636 +
+−+

−
− ′′

−
+′′

−
+′′

−
j

jj
j

jj
j

jj y
tt

y
tt

y
tt

1

1

1

1

−

−

+

+

−

−
−

−

−
=

jj

jj

jj

jj

tt
yy

tt
yy

 (3-7)

There will be N-2 linear equations for N unknown y ′′ values. The remaining two equations are

developed by setting the boundary conditions of y ′′ at the two end knots of the path to zero. Doing

this will obtain a “natural” spline. Press et al. takes advantage of the tridiagonal property of this set

of equations to solve this system numerically. A tridiagonal is a “special case of a system of linear

50

equations … that has nonzero elements only on the diagonal plus or minus one column” [54].

Systems with this characteristic can be solved using LU decomposition, forward and backwards

substitution in the order of N operations.

After calculating the y ′′ for each knot in the getAcceleration() function, the calcPath() function calls

the interpPoint() method that using a bisection search to find the appropriate time segment of the

spline and uses the appropriate y ′′ values to solve Equation 3-3 for the command position of any given

time instance. All command positions generated are stored in an array of values, fPosQueue. The

ctrlLoop() function in MultiaxisRobot class calls the getCurCmdPos() function in the CTrajGenerator

class to retrieve these command positions from fPosQueue. Although the control loop accesses the

command position queue in real-time, all calculations for the trajectory are done offline, prior to

starting the control loop.

3.12.2 Online Position-Velocity-Time (PVT) Trajectory

Generation

Online trajectory generation in the QMARC is performed by calculating the piece-wise cubic

polynomial between any two knots. Like the PMAC, each knot is specified with a position, velocity

and time interval, Xk , V k and T k , respectively, as shown in Figure 3-13. The piece-wise cubic

polynomial spans from the kth knot to the (k+1)th knot, and is different for each time segment.

Xk

Xk+1

Xk-1

Tk
Time

Position

Vk+1
Vk

Vk-1

Figure 3-13: Schematic of path for PVT online trajectory generation

Using the general third order cubic polynomial equation, the position Xk can be defined as follows:

DCtBtAtX k +++= 23 (3-8)

51

Taking the derivative of Equation 3-8 gives the velocity:

CBtAtVX kk ++== 23 2& (3-9)

where, polynomial coefficients A, B, C, and D must be solved for each time segment.

Between knots k and k+1, the initial position X(0)= Xk and initial velocity V(0)= Vk . By

substituting the initial conditions into Equations 3-8 and 3-9, C and D can be solved to be C = Vk and

D = Xk .

Substituting the values of C and D back into Equations 3-8 and 3-9 gives a set of two equations and

two unknowns, A and B, which can be solved algebraically. The result is four linearly independent

equations that can be used to solve the coefficients of the cubic polynomial.

2
1

3
1)()(2

k

kk

k

kk

T
VV

T
XX

A ++ −
+

−
= (3-10)

k

kk

k

kk

T
VV

T
XX

B
)2()(3 1

2
1 ++ −
−

−
= (3-11)

kVC = (3-12)

kXD = (3-13)

Since each time segment calculates the cubic polynomial with the assumption the polynomial starts at

time zero, in order to connect the piece-wise cubic polynomials to form a continuous path, a time shift

must be applied to Equation 3-8. The time shift, tshift , is the total time of the path up to the kth knot.

Subtracting tshift from time t will cause a shift in the positive direction of the time-axis. The modified

cubic polynomial equation used for PVT trajectory generation is therefore as follows:

DttCttBttAX shiftshiftshiftk +−+−+−=)()()(23 (3-14)

In the PVTOnlineTrajGen class, Equations 3-10 to 3-13 are implemented in calcCoeff() function, and

Equation 3-14 is implemented in the interpPoint() function. Both of these functions are called from

the ctrlLoopOnlineTraj() function in the MultiaxisRobot class as part of the online trajectory

generation control loop.

52

Chapter 4

Software Design Issues

In real-time software development, there are a number of issues that commonly occur that can be

resolved with practical programming techniques. While developing the QMARC system, problems

encountered involved timing, data logging and memory allocation. All of these issues were addressed

and analyzed on the QMARC.

4.1 Timing

In robotic control, this time limit is determined by the sampling frequency of the controller. In each

sampling interval there are a number of tasks that must be completed before the next sample can be

processed. These tasks are as follows:

1. Retrieve the current motor encoder position.

2. Attain the current command position from the trajectory generator.

3. Calculate the new DAC output for velocity command of the motor using a servo control

algorithm.

4. Output the new control signal to the DAC hardware.

5. Record the diagnostic data for each motor to a data buffer.

To minimize the computation time of the tasks required in every servo loop, separate control loop

functions, ctrlLoop() and ctrlLoopOnline() in the MultiaxisRobot Class, were written to reduce the

number of “if” conditional statements that would be needed if the two were incorporated into one

function.

In addition, the control loops were programmed with the following programming guidelines. The

degree of code efficiency using these guidelines depends heavily on the compiler [55].

53

1. The number of “special cases” and if-statements were kept to a minimum.

2. Recursive loops were kept to a minimum.

3. Procedures were written inline (opposed to calling functions) whenever possible.

4. Procedures that were not required in the control loop were done before or after the loop.

5. All messages sent within the control loop to the Hardware Server (steps 1 and 4) performed

all motor operations with a single message, to minimize overhead caused by message-

handling.

6. Integer arithmetic is faster than floating-point arithmetic, so variables were kept as integers

whenever possible.

7. Boolean variables were be eliminated and replaced with integers.

4.1.1POSIX Timer vs. QMARC Timer

Initially, the real-time controller used the POSIX timer functions built into the QNX operating

system. POSIX is a Portable Operating System Interface standard common to operating systems

such as UNIX, LINUX and QNX with additional library functions specific to each operating system.

In the POSIX libraries there is a timer function that allows programmers to easily set a periodic timer

according to the computer clock. QNX extends the timer capabilities by allowing programmers to link

the timer to a communication network that sends messages to the controller at every time pulse.

Using the POSIX timer may seem to be a plausible alternative to writing a software interrupt.

Unfortunately, high-speed control applications require very quick and accurate timers. The POSIX

functions did not provide a reliable periodic timer.

The key to understanding the POSIX timer problem is associated with how the POSIX timer works.

Before using the POSIX timer, the timer resolution of the system must be set with a QNX function

called ClockPeriod(). ClockPeriod() sets the time of a periodic interrupt associated with interrupt

number 0 on the operating system. The minimum interval is determined by either the computer

processor speed or 10μs [56]. The POSIX timer is basically an interrupt handler that allows the user

to set the period of the timer as long as it is an even multiple of the time set by ClockPeriod(). Having

a clock period of 10μs, for instance, would allow a higher resolution periodic timer, but the processor

will be interrupted every 10μs. For a sampling interval of 500μs, it would therefore be feasible to set

ClockPeriod() to 100μs, instead of 10μs. Since the POSIX timer is not open-source code, what

happens in the handler is unknown, which may cause irregular time signals due to unknown overhead

sources.

54

It was found that using the POSIX timer, in the real-time controller, caused irregular time samples

for the first 0.30s of the control loop, no matter what the sampling frequency was set to. This

irregularity was related to the message-passing to the hardware server and the clock period, but could

not be isolated or amended. As a result, a specialized interrupt service routine (ISR) was written to

solve the problem. This ISR was attached to a built-in timer interrupt 0 as opposed to using the

POSIX timer. After each servo interrupt period, the ISR sent a timer event out to unblock any

processes waiting on an InterruptWait() command. Because the ISR is a time-critical subroutine, the

code in the function should be minimal. In addition, the ISR can only access a limited number of

library functions [56].

Interrupt latencies have been documented by Krten [9]. These latencies arise when interrupts do

not occur at exactly 400μs from when the timer is started because other processes consume processor

time. For the most part, setting the control loop to the highest priority can diminish the effects of

latencies, but a timer request would still be asynchronous with the clock, so it would depend on when

in the clock cycle the request is made. Other latencies are involved with saving system variables

before switching to and from the interrupt.

4.2 Data Logging

For statistical analysis of the QMARC system, data logging was implemented. A common problem

in real-time systems is missing samples when logging data. By using a timer interrupt instead of the

POSIX timer, the timevent.sigev_notify property of the timer event associated with the ISR could be

controlled and set SIGEV_INTR, shown in Figure 3-8. This property allows one timer event to be

queued if it cannot be processed immediately. This means that no timer event will be missed as long

as the processing time of the control loop is not more than two times the sampling interval. If the

control loop is not finished when another timer event has arrived, the event will be put on queue until

the control loop is completed; the next iteration will simply be delayed. Data is stored in a buffer

array and output to a file after the move is completed. No data will be missed as long as there is

enough memory. For redundancy, the execution time of the control loop is calculated by keeping

track of the ClockCycles() function, which gives the current system clock pulse. If the sampling

interval is more than 40µs greater than the desired sampling period then an error message is displayed

on the screen.

55

Data logged is stored into a large static array called fBuffer. The maximum size of the buffer is

2000 samples for 10 data fields. If the number of data samples reaches the maximum size, and error

message will be displayed and the control loop will go into the fault handler. This buffer size can be

increased to whatever is necessary.

4.3 Memory Allocation of Variables

In a controller the memory allocation of large arrays is a major concern. Large arrays are used to

store path knots, the position command queue and the data buffer. When allocating memory for these

arrays it is often beneficial to declare a static pointer and then allocate memory to the pointer

dynamically. For instance, the fPosQueue using in CTrajGenerator class is a pointer to a floating-

point value. Using the setPosQueue() function in the CTrajGenerator class the memory is allocated to

the position queue using the new command available in the C++ programming libraries, as shown in

Figure 4-1. Variable iPosQueueCtr must be set prior to calling setPosQueue(), in order to initialize

the position queue with the correct size. Declaring the position queue size dynamically ensures that

there is exactly enough memory of the queue preventing memory waste from static declarations that

are too large or memory faults from static arrays that are too small. If there is not enough memory in

the system, the new command will return a NULL value.
//Declaration of relevant variables in CTrajGenerator class
class CTrajGenerator
{ private:

float * fPosQueue;
 public:

int iPosQueueCtr;
}
//Allocate just enough memory to store all data points
int CTrajGenerator::setPosQueue()
{ //Allocate memory for position queue
 fPosQueue=new float[iPosQueueCtr];
 if (fPosQueue==NULL)
 { printf("Error: Allocating memory for fPosQueue\n");
 return(-1);
 }
 return 0;
}

Figure 4-1: Memory allocation code sample

56

The new operator, however, does not work for memory allocation of multi-dimensional arrays in

QNX. The data buffer, fBuffer, in QMARC had to be declared statically to the size 2000 by 10 units.

However, depending on where this buffer is declared a memory fault error can occur. To understand

the problem, the memory allocation of programs must be examined. When programs are loaded into

memory, it is organized into three segments: the text segment (or code segment), stack segment and

heap segment. The text segment contains the compiled code, the stack contains variables saved

during a context switch when calling a function as well as local variables declared within the function

or class, and the heap stores global and static variables used in the program [57].

Initially, the fBuffer was declared in the MultiaxisRobot class. In QNX, the stack has 50kB of

memory, which is enough for a small application, however the fBuffer is 2000 by 10 floating-point

values in size. Each floating point is four bytes therefore the entire fBuffer is 80kB. This exceeds the

50kB limit on the stack. To resolve the problem the fBuffer was declared as a global variable,

allowing the buffer to be stored on the heap, which has a lot more memory thus avoiding memory

faults.

57

Chapter 5

Software Testing and Analysis

The testing of distributed real-time software systems such as the QMARC can be challenging since a

real-time system is highly coupled to its environment. There are two main types of systems: Event-

Triggered (ET) and Time-Triggered (TT) systems. In ET systems, actions are initiated by an

observed event. Since ET systems rely heavily on other tasks, they are generally more difficult to

develop and test. On the other hand, TT systems perform actions exclusively at predefined moments

in time. They are synchronous to the clock, so as long as all processes have access to the same global

clock source, then development is relatively easy [58]. The QMARC can be considered as an Event-

Triggered system. Although QMARC have a Timer process, the Controller acts on a timer event, not

at a predefined point in time. Being an ET system has drastic implications on how the system can be

effectively tested.

In general, distributed software systems are tested in phases, first starting from the development

and testing of individual processes, then their interfaces and finally system integration. Important

properties in testing a distributed system are observability and reproducibility. Observability of a

software system is the ability to test what the system does, how it does it and when it does it. In an

ET system, adding the elements to observe the system could change the behaviour of the system

itself. For instance in QMARC, if a printf() statement is added in the Hardware Server process to

view an intermediate value during the servo loop, then the delay caused by the printf() statement itself

can create a delay in the servo loop cycle, which in turn produces an error. Reproducibility is the

ability to predict and reproduce the same results given the same sequence of inputs. In a system that

has many concurrent processes, improper timing of events can cause differences in the observable

output. A reliable distributed software system must have predictable output.

58

Experimental testing of the QMARC can be categorized into three main groups:

1. Tests for real-time behaviour of the servo controller.

2. Tests for the controller performance.

3. Tests for reproducibility of the controller results.

All data collected for these experiments were done after the robot motion had completed, as to not

effect the observability of the system. Testing of the trajectory generation, and safety protocols were

done in unison to all tests are will not be presented as a formal experiment.

5.1 Real-Time Behavioural Tests and Results

The real-time behaviour of the QMARC was monitored using the ClockCycles() function available in

QNX. The ClockCycles() function returns the value of the computer clock and was used as a timer

for the servo loop interval.

Inaccurate clock pulses are detrimental to the controller because a fixed sampling interval is used in

the trajectory generation prior to entering the control loop. If the timer pulses are incorrect and the

error accumulates, then the command velocity will not be exactly as desired. Through benchmark

testing, slight variations in the actual sampling interval within 5μs were detected.

Currently, the QMARC operates at a maximum frequency of 2.5kHz, or with a sampling interval of

400μs, for three concurrent motors. Calculations in the control loop on a 667MHz PC only requires

about 190μs. Out of this 190μs, about 65μs is taken to send the DAC output to the motor, which is

about 20μs to send an analog output signal to each motor using a single-ended command signal

(opposed to a differential signal).

A step input of 1000 motor counts was applied to a single motor. As shown in Figure 5-1, when

the DAC output changes drastically from a positive to negative voltage or vice-versa, the desired

servo period of 400μs was increased by 20μs. This occurs at 0.025 seconds, 0.035 seconds and 0.045

seconds. If the magnitude of the DAC output during the change in polarity is large, then the result is

a longer delay due to the analog output. In fact, it can take up to 40μs per channel for the digital-to-

analog conversion depending on the magnitude of the DAC signal during this change. Smaller

magnitude polarity changes can be observed at 0.062s and 0.0085s resulted in 10μs addition on to the

servo period. The servo loop period also varies at the beginning of the move when the system is busy

starting up the Sensoray 626 Encoder card. Slight variations in the servo period within 5μs are

expected due to the resolution of the ClockCycles() function output.

59

Figure 5-1: Real-Time Servo Loop Period Variation in a Step Input Test

 Technically, the additional 40μs per DAC channel would bring the total computational time of the

five steps to about 310μs (for three motors), which is still within the 400μs time constraint, however,

this does not happen in practice. The Timer process is set at a high priority of 50, however, the driver

for the hardware preempts the Timer interrupt handler when the DAC output is taking more than

65μs. Changing the priority of the Timer to a higher priority than the Hardware Server has made no

difference. The DAC driver causes up to 40μs per channel to be added on to the total time from that

sampling interval. If this time accumulated, then the trajectory that was generated offline would be

incorrect. However, every time the DAC signal changes signs and causes a longer servo cycle, the

next servo cycle is compensated with a shorter servo cycle, such that the average between the two

intervals is still about 400μs. This compensation occurs because of the global variable keeping track

of the number of times the timed Interrupt 0 occurs is not cleared and the timer events are queued. As

a result, the odd characteristic of the DAC driver does not affect the overall performance of the

controller.

60

5.2 Controller Performance Tests and Results

The performance of the QMARC was compared to the commercial PMAC controller, currently used

for control of the Deltabot. Experimental command trajectories for both controllers were developed

by Rob Dekker [4]. The first path represents a standard pick-and-place operation on the X-Z plane of

the Deltabot’s workspace, and the second path was an arched pick-and-place path rotated by 30

degrees.

The experimental data collected from the PMAC was performed by Rob Dekker [4]. Using eleven

knots to define the path in Cartesian space, he generated the joint space knots using the inverse

kinematic equation of the Deltabot. These joint angles were then converted to motor counts using a

quadrature encoder resolution of 4096 counts/revolution and a gear ratio of 12:1. PMAC used these

knots to generate a uniform non-rational cubic B-spline path (using the spline1 function) [6].

Unfortunately, the controller gains used by Dekker are unknown; therefore, the paths cannot be

recreated. PMAC, however, was tuned for the best results possible; therefore, QMARC was also

tuned for optimal performance.

The PID portions of the QMARC controller was initially tuned using Ziegler-Nichols method [46]

with a 1000 count step input and then manually adjusted for fine-tuning. The velocity and

acceleration feed-forward components were tuned to a sinusoidal input with an amplitude of 1000

counts for 0.5ms. Tuning was done with the objective of minimizing the sum of absolute position

error. The controller gains used for QMARC are listed in Table 1. All tests on PMAC were run at

2.26 kHz (442μs period) and tests on QMARC were run at 2.5 kHz (400μs period).

Table 1: QMARC Controller Gains

Gains Motor 1 Motor 2 Motor 3
K p 182000 182000 183000
K i 100 100 100

K d 3000 3000 3000

K vff 119000 103500 104000

K aff 100 100 100

61

5.2.1Standard X-Z Plane Path Test

The standard path for the Deltabot is a pick and place motion in the X-Z plane, shown in Figure 5-2,

was applied to the three arms of the Deltabot. The path moves 300mm along the X-axis and 25mm in

the Z-axis, with a total move time of approximately 0.5s, allowing the Deltabot to move at the rate of

about 120 cycles per minute.

 The command path from the PMAC experiments was used as a basis for the QMARC

experiments. Only eleven points could be used to define the path in the PMAC tests because its

trajectory generator has a minimum time between knots. There is no such limit in QMARC. A

Matlab program was written to extract 37 knots from the command position, uniformly spaced 10ms

apart. Having more knots allows the QMARC to follow the desired path more closely. These 37

knots were then used in QMARC with cubic spline trajectory generation and then with PVT. The

command positions of the three arms are depicted in Figure 5-3, along with the 37 selected knots.

Note that the path for arm 2 was the same as the path for arm 3, due to the symmetry of the robot

moving in the X-Z plane.

Figure 5-2: Standard X-Z Plane Path in Cartesian Space

Figure 5-3: X-Z Plane Path – Arm Positions with Selected Path Knots

62

After running the tests on QMARC using cubic spline and PVT trajectory generators, the end-effector

position was calculated using the forward kinematics equations of the Deltabot. The achieved arm

positions in Cartesian space are shown in Figure 5-4. It can be seen that the QMARC was able to

follow the desired end-effector path more closely than the PMAC, whether using PVT or cubic spline

trajectory generation. The greatest factor in controller performance was the tuning. Since controller

tuning in QMARC is much faster and simpler than tuning in PMAC [59], it can be seen that the

QMARC yielded better results.

Figure 5-4: X-Z Plane Path – End-Effector Position using PMAC and QMARC

5.2.1.1 Tests using Cubic Spline Trajectory Generation

Cubic spline trajectory generation was used for QMARC tests to ensure that the robot motion was

smooth. Offline cubic spline interpolation guaranteed velocity and acceleration continuity. By using

path knots sampled directly from the PMAC tests, the cubic spline trajectory generator in QMARC

was able to reproduce the PMAC command signal within 0.002 radians.

As shown in Figure 5-5, the actual positions of the arms were much closer to the command path

user QMARC than PMAC. The actual position of all three arms using PMAC lagged behind the

command position in regions of high velocity. In QMARC, this velocity error was compensated for

by increasing feed-forward velocity compensation. In theory, this could have also been done in

PMAC; however, both controllers have limits to the feed-forward velocity compensation. By

increasing the gain too high, the motor will start to vibrate and become unstable. Although QMARC

was implemented with the same controller algorithm as PMAC, their internal structures are very

different as a result; the limits on controller gains are also different. If PMAC’s feed-forward

compensation could have been increased more, then it probably would have been tuned further.

PMAC must have hit its gain limit. In general, QMARC feed-forward velocity gains can be used

with more success in mitigating velocity effects on servo position control than PMAC.

63

Figure 5-5: X-Z Plane Path - Arm Positions for PMAC and QMARC with Cubic Spline

64

The Arm position errors for both PMAC and QMARC are shown in Figure 5-6. The position error

of the PMAC ranged from –0.0970 to 0.0964 radians from Arm 1, -0.0609 to 0.0616 radians for Arm

2, and –0.0619 to 0.0616 radians for Arm 3. QMARC had an error from –0.00627 to 0.00680 radians

for Arm 1, -0.00634 to 0.00327 radians for Arm 2 and –0.00676 to 0.00442 radians from Arm 3.

Overall, the accumulated following error of PMAC was 8 to 12 times that of QMARC with cubic

spline trajectory generation. These results are summarized in Table 2. Looking at the velocity

profiles of the position errors for PMAC and comparing them to the velocity profile of the command

signal in Figure 5-7 confirms the observation that velocity was the cause of high following error in

PMAC. The velocity profile of Arm 1 matches that of position error, and the same goes with Arm 2

and 3. The velocity profile and the position error for PMAC were very closely related.

Table 2: X-Z Plane Path - Arm Position Errors for PMAC and QMARC using Cubic Spline

Arm # Controller Min. Position
Error (rad)

Max. Position
Error (rad)

Accumulated Absolute
Following Error (rad)

1 PMAC -0.0970 0.0964 6.407
 QMARC -0.00627 0.00680 0.538

2 PMAC -0.0609 0.0616 4.344

 QMARC -0.00634 0.00327 0.513

3 PMAC -0.0619 0.0616 4.358

 QMARC -0.00676 0.00442 0.525

The source of position error using QMARC was mostly due to arm acceleration. This error will be

analyzed in more detail in the next section.

65

Figure 5-6: X-Z Plane Path - Arm Position Errors for PMAC and QMARC with Cubic Spline

66

Figure 5-7: X-Z Plane Path - Command Velocity using

PMAC and QMARC with Cubic Spline

5.2.1.2 Tests with PVT Trajectory Generation

As a comparison between the two types of trajectory generation in QMARC, the PVT interpolation

algorithm was also applied to the standard X-Z plane path using the same 37 path knots uniformly

spaced 10ms apart. The command position generated by the cubic spline and PVT algorithms were

within 0.001 radians of each other. The most significant difference between PVT and cubic spline

trajectory generators were the arm velocities. Because PVT does not guarantee velocity and

acceleration continuity, the command velocities was not smooth, causing slightly higher position

error than cubic spline. The QMARC PVT command velocity in Figure 5-8 depicts the slight arcs

between path knots. These arcs can be minimized by using a greater number of path knots in PVT

trajectory generation.

67

Figure 5-8: X-Z Plane Path – Command Velocities for PVT and Cubic Spline on QMARC

The position errors of the three arms using the cubic spline and PVT are depicted in Figure 5-9.

The accumulated following error using cubic spline was 0.667 radians for Arm 1, 0.648 radians for

Arm 2 and 0.711 radians for Arm 3. Whereas the accumulated following error for PVT was 0.03% to

0.09% higher at 0.668 for Arm 1, 0.675 for Arm 2 and 0.715 for Arm 3. Not only were the

accumulate errors very close, but the actual profile of the position errors were almost identical.

Looking more closely at the command acceleration of the path, shown in Figure 5-10, revealed that

the position errors were due to the acceleration of the command signal. Knowing this, the feed-

forward acceleration compensation in the QMARC was increased; however, the error did not change

significantly. QMARC could not compensate for acceleration any further. Whether using the cubic

spline trajectory generation or PVT online method, the following error was still exceptionally low

compared to PMAC.

68

Figure 5-9: X-Z Plane Path – Arm Position Errors with PVT and Cubic Spline on QMARC

69

Figure 5-10: X-Z Plane Path - Command Acceleration

5.2.2Rotated Arc Path Test

The second path was an arched pick-and-place path rotated by 30 degrees about the Z-axis. This path

traveled 300 mm along the X-axis, 15mm in the Z-axis and 200mm across the Y-plane, as shown in

Figure 5-11. Using an rotated arc command path allows for faster pick-and-place motion, by saving

time in the distance the end-effector needs to travel, and also by creating smoother velocity and

acceleration profiles so that controllers can track the path more easily.

Figure 5-11: Rotated Arc Path in Cartesian Space

Like the standard X-Z plane path test, the command positions from the PMAC were used to create

the path knots of QMARC trajectory generation. For this path, 57 knots were used, uniformly spaced

10ms apart. The total time of the motion is about 0.65s. Arm positions of the three motors are

depicted in Figure 5-12. Notice that the command path is a lot smoother for the arched path than the

70

X-Z plane path in Figure 5-3. Because the motion moves along all three axes, the arm motions for

each motor had different profiles. The rotated arc path tests were tested on PMAC and QMARC

using only cubic spline trajectory generation.

Figure 5-12: Rotated Arc Path - Arm Positions with selected path knots

The end-effector positions were calculated using the forward kinematic equations for the arms from

both the PMAC and QMARC tests, as shown in Figure 5-13. It can be seen that the PMAC path was

closer to the command path using this arched trajectory instead of the square trajectory in the

previous test, showing that the smoother command path does make a difference in the controller

performance. The end-effector position using QMARC, however, was still closer to the command

position.

Figure 5-13: Rotated Arc Path - End-Effector Position for PMAC and QMARC

71

The nature of the position errors on the rotated path was very similar to those of the X-Z plane

path. Arm positions for the Deltabot are shown in Figure 5-14. Again, the arm position using PMAC

lagged behind the command position at times of higher velocity. QMARC was very close to the

command position but had slight overshooting at around 0.04s. The command paths for PMAC and

QMARC were nearly identical with differences up to 0.001 radians at areas of high velocity.

Positional errors for both PMAC and QMARC are shown in Figure 5-15. The PMAC following

error was lower with the rotated path than the X-Z plane path, despite the rotated path being 0.2s

longer. For the rotated path, the position errors for PMAC ranged from -0.0509 to 0.0523 radians for

Arm 1, -0.0229 to 0.0238 radians from Arm 2 and -0.0520 to 0.0530 radians from Arm 3.

Corresponding errors on the QMARC ranged from -0.00313 to 0.000508 radians for Arm 1, -0.00383

to 0.00000243 radians for Arm 2, and -0.00484 to 0.0011 radians from Arm 3. In general, the

accumulated following error of PMAC was one order of larger than QMARC. These results are

summarized in Table 3.

Table 3: Rotated Arc Path - Arm Position Errors for PMAC and QMARC

Arm # Controller Min. Position
Error (rad)

Max. Position
Error (rad)

Accumulated Absolute
Following Error (rad)

1 PMAC -0.0509 0.0523 5.196
 QMARC -0.00313 0.000508 0.457

2 PMAC -0.0229 0.0238 3.200

 QMARC -0.00383 0.00000243 0.606

3 PMAC -0.0520 0.0530 5.268

 QMARC -0.00484 0.0011 0.562

72

Figure 5-14: Rotated Arc Path – Arm Position for PMAC and QMARC

73

Figure 5-15: Rotated Arc Path – Arm Position Errors for PMAC and QMARC

74

Like the X-Z Plane tests, the PMAC position errors had the same profile as the command velocity for

the rotated path shown in Figure 5-16. It seemed like the PMAC could not match the velocity peaks

of the arms, and lagged behind throughout the motion. QMARC followed the command velocity

better but still had some overshoot in the first 0.05s and in areas of high acceleration. Acceleration

was again the cause of error in QMARC, which was expected since the controller gains were not

changed between the X-Z plane path tests and the rotated path tests. Overall, PMAC’s performance

on the rotated path was better than the X-Z plane path, however, QMARC still out-performed PMAC

in both experiments.

Figure 5-16: Rotated Arc Path - Arm Velocity of PMAC and QMARC

75

5.3 Reproducibility Tests and Results

The standard X-Z plane path was run on QMARC one hundred times consecutively to observe the

reproducibility of the controller, its ability to reproduce similar results given the same input. The

number of times the servo period took 40µs less than or greater than the desired servo period was also

recorded. Looking at the number of times servo cycles where the controller was too slow is a good

indication to the consistency of the real-time aspect of the controller.

5.3.1Repeated Trials

The Controller Console was run manually for one hundred cycles using the X-Z plane path. After

each cycle, the accumulated absolute following error was record. The scatter plots of the trials are

depicted in Figure 5-17. For the most part, it was found that the error stayed consistent throughout

the trials, this demonstrates the effectiveness and reliability of the controller. The accumulated error

ranged from 0.665 to 0.682 radians for Arm 1, 0.636 to 0.649 radians for Arm 2 and 0.713 to 0.733

radians for Arm 3. Average accumulated following error of Arm 1, Arm 2 and Arm 3 were 0.667

radians, 0.641 radians, and 0.720 radians, respectively. There were a few trials, however, that were

not as successful as others, such as Trial number 34 on Arm 1, which was 0.02 radians higher than the

rest of the trials. Variation in the trials is not completely dependent on QMARC, but also on the

motors and amplifiers themselves. If the motor suddenly moves faster than a regular trial, then the

QMARC will have to correct a larger position error, this can result in a higher accumulated error.

Overall, these errors are still quite consistent proving that QMARC outputs are reproducible.

76

Figure 5-17: Scatter Plots of Accumulated Absolute Following Error for 100 Trials

5.3.2Erroneous Sampling Periods

During the one hundred trials, the number of sampling periods outside of the acceptable variation

range of 40µs was also recorded. The bar graph, shown in Figure 5-18, illustrates the number of

erroneous servo periods in each trial. Out of the 100 trials, 27 of them had at least one erroneous

servo period. However, considering that each trial has 1048 servo periods, which equals 104800

servo periods for the 100 trials, only 29 periods were outside acceptable range. This means that only

0.0277% of the servo periods were erroneous. This variation in real-time behaviour is tolerable for

QMARC.

77

Figure 5-18: Number of Erroneous Servo Periods in 100 Trials

78

Chapter 6

Conclusions

As robotic manipulators try to achieve higher operating speeds, it has become increasing important to

have controllers that can move these robots as fast as possible without sacrificing the smoothness of

the motion. Many commercial controllers are available in today’s market, but these controllers have a

rigid structure, limit programming capabilities and a high price tag. A new class of PC-based

controllers has been introduced in the past two decades as an alternative to traditional PLC and DSP

solutions. These PC-based controllers use distributed real-time systems to perform the diverse

concurrent tasks required in motor servo control. By using higher-level programming languages,

such as C/C++, the capabilities of the PC-based controller can be greatly expanded.

 In this research, a new QNX Multi-Axis Robotic Controller (QMARC) was developed in

order to improve the performance of the Deltabot, a three-degree-of-freedom, ultra high-speed

parallel cable-based manipulator at the University of Waterloo. QMARC was developed as an object-

oriented real-time PC-based controller on QNX Neutrino 6.0 operating system to replace an existing

commercial controller called PMAC, created by Delta Tau Data Systems. Although the PMAC has

its own real-time processor, the rigid and complex internal structure of the PMAC makes it difficult to

apply advanced control algorithms and interpolation methods. Adding unconventional hardware to

PMAC, such as a camera and vision system is also quite challenging. With the development of

QMARC, the flexibility issue of the controller is resolved. QMARC’s open-sourced object-oriented

software structure allows simple addition of new control and interpolation techniques. In addition,

the software structure of the main Controller process is decoupled for the Hardware Server, so that

any hardware change does not change the main controller, just the Hardware Server. QMARC is also

equipped with a user-friendly graphical user interface, and many safety protocols to make it a safe

and easy-to-use system.

79

In experimental tests, it was determined that the QMARC is a very reliable real-time controller.

Real-time tests showed that although the servo loop period is not always exact the same due to the

DAC output, the 40µs differences in the period does not impact the overall controller performance

because the error does not accumulate. In addition, these erroneous servo periods only occur in

0.0277% of the servo loop intervals.

By comparing the PMAC and QMARC controller performance on two pick-and-place paths, it was

found that in both paths QMARC yielded better results than PMAC on all three motors of the

Deltabot. Accumulated following error for the PMAC was at least one order of magnitude greater

than QMARC. For a 0.5s pick-and-place move, the QMARC’s accumulated following error was only

0.05 radians. PMAC positional error was mostly attributed to the tuning of PMAC compared to

QMARC. Although both controllers have the same control algorithm, their internal structures differ

resulting in different threshold. QMARC can be tuned for better results than PMAC and with more

ease. Unlike PMAC, QMARC also does not have any trajectory generation restrictions on it. These

experimental results show that QMARC is a good and safe controller. Running the controller for one

hundred trials also demonstrated consistent results in the QMARC performance.

The stable foundation laid down by the QMARC will allow for future development of QMARC

into a fully functional controller ready for commercial use. The object-oriented software structure

will make the QMARC more expandable, easier to maintain and easier to understand. These

characteristics allow for future research into the servo control, trajectory generation and vision system

to be more easily implemented. Due to the class structure, the existing code can be reused, hence

decreasing the development time that would be required to code and debug new software modules.

Finally, the use of a simple Pentium III computer with a single Sensoray 626 Encoder Card makes

QMARC a highly cost-effective system. The QMARC has proved to be a highly successful

controller that yields endless possibilities for future applications.

80

Chapter 7

Recommendations

QMARC was built as a foundation for further research into control algorithms, trajectory generation

and different types of hardware, such as gripper and a vision system. The software structure of the

QMARC can be expanded to accommodate these changes without rewriting the whole system.

Although the QMARC was created for the Deltabot, it can be implemented on any manipulator; all

that needs to be updated is the Hardware Server process. Recommendations on how to incorporate a

vision system, gripper, watch-dog timer and how to use QMARC as a controller in an existing system

are covered in this chapter.

7.1 Adding a Vision System

There are two main components to adding a vision system to the QMARC: the hardware driver and

the camera data processing. The simplest way to add the camera hardware to the system is by adding

the procedures required to read the camera data in the Hardware Server. Since the Controller process

already sends messages requesting hardware-related tasks to the Hardware Server, it is most

appropriate to add another message type for camera requests in the server and then write new

functions to access camera hardware. Theses functions would be to trigger the camera, read data and

change settings. If the Cognex Insight 5100 vision sensor is used on the QMARC, then additional

protocols for network communication must also be added to the system, because the Cognex vision

sensor transmits data through the network ports on the computer.

The vision sensor will most likely be used to detect the position and orientation of objects in its

field of view. Data about these objects will need to be processed and stored in a queue in memory.

All of this data processing should be done in the main Controller process. First, a new Base Class, for

example, called CCamera can be derived from the CObject base class. This CCamera class will

81

inherit the fServoInt, the servo period variable, from CObject class. Procedures such as storing object

data to the queue and getting information from the queue should be contained in the CCamera class.

To deal with the particular format of the camera data, a Specific Subclass, like CognexCamera, can be

created. CognexCamera can contain the specific functions to parse the data, process the data, and

convert it to different coordinate systems. These functions will change for different vision sensors.

By creating a new CCamera base class separate from the specific type of sensor, this allows a variety

of vision sensors to be implemented without having to rewrite all procedures.

Higher functions such as image processing and pattern recognition should be implemented as a

completely new Base Classes that are not derived from anything because they are not related to any of

the existing Base Classes.

7.2 Adding a Gripper to the End-Effector

Simple devices such as grippers or suction-cups may be added to the end-effector of the Deltabot.

These devices will most likely require some digital output ports from the Sensoray 626 Encoder card.

Currently, only nine out of forty-eight digital input/output channels on the card are being used. To

add a gripper, a Specific Subclass should be derived from the existing CGripper class, which was

included in the QMARC design. The signal to turn the digital line on and off can be handled by

another message type in the Hardware Server, which is already configured to perform digital

input/output.

7.3 Watch-dog Timer

Currently, the QMARC system does not protect the manipulator from a computer crash. There,

however, is a watch-dog timer built into the Sensoray 626 Encoder card. If a separate thread is used

to send an “ok” signal periodically to the watch-dog timer, then if the computer crashes the watch-dog

timer will know that something has gone wrong and take the appropriate actions. The watch-dog

timer should be further investigated for future implementations of QMARC.

82

7.4 Using QMARC in an Existing System

The QMARC can be incorporated into an existing system as a dedicated controller, if the data for the

trajectory generation and controller execution could be passed to the QNX computer through the

network card. QNX has advanced network protocols that have been used by other researchers [32] to

do this. A new Base Class can be written for the network communication protocols and to handle the

data processing. QMARC may also need another process or thread to act as a server waiting for

network data. This server can then send messages to the Controller process.

 83

Bibliography

[1] Khajepour, A., Chan, E., Behzadipour, S., Dekker, R., “Deltabot: A new cable-based ultra high

speed robot”, in Proceedings of IMECE S’03, ASME, 2003.

[2] Amir Khajepour, Saeed Behzadipour, Robert Dekker, and Edmon Chan “Light Weight Parallel

Manipulators using Active/Passive Cables”, US Provisional Patent: 60/394,272.

[3] Stewart, D., “A platform with six degrees of freedom,”, in Proceedings of Institute of

Mechanical Engineers, London, 1965, pp. 371-386.

[4] Dekker, R., Design and Testing of an Ultra High Speed Cable-Based Parallel Robot, Masters of

Science Thesis, University of Waterloo, Waterloo, ON, 2003.

[5] Behzadipour, Saeed, Ultra High-Speed Cable-based Parallel Robots, Ph.D. Proposal, University

of Waterloo, ON, 2003, p.32.

[6] Inc. Delta Tau Data Systems, User Manual: PMAC, Delta Tau Data Systems, Chatsworth, CA,

USA, May 29, 2003, Chapter 7, p. 3-27.

[7] Koivo, Heikki N., and Peltomaa, Arto S., “Microcomputer real-time multi-tasking operating

systems in control applications”, in Computers in Industry, vol. 5, n. 1, March 1984, p. 31-39.

[8] Joseph, Mathai, Real-time Systems – Specification, Verification and Analysis, Prentice Hall

International Series in Computer Science, Trowbridge, Wiltshire, 1996, p.18-19.

[9] Krten, Rob, Getting Started with QNX Neutrino 2 – A guide for Realtime Programmers, PARSE

Software Devices, Kanata, ON, Canada, 2001, p. 111-159.

[10] Todd, Micheal, and Green, David G., “Object-oriented approach to robotic motion”, in

Conference Proceedings of IEEE SoutheastCon, Charlotte, NC, USA, Apr. 4-7, 1993.

[11] Gee, D., “The how’s and why’s of PC based control”, Pulp and Paper Industry Technical

Conference, June 18-22, 2001, pp. 67-74.

[12] Urban, J. E., Hankyu, J., “Executable specification for distributed software systems,” in Proc. Of

Fifth IEEE Computer Society Workshop on Future Trends of Distributed Computing Systems,

Aug. 28-30, 1995, pp. 257-265.

84

[13] Luh, J. Y. S., Lin, C. S., “Scheduling of parallel computation for a computer-controlled

mechanical manipulator”, IEEE Trans. Syst., Man, Cybern., vol. SMC-12, pp. 214-234, March,

1982.

[14] Kasahara, H., Narita, S., “Parallel Processing of Robot-Arm Control Computation on Multi-

microprocessor System,” IEEE Journal of Robotics and Automation, Vol. RA-1, No. 2, June

1985, pp. 104-113.

[15] Nigam, Ravi, Lee, C. S. G., “A Multiprocessor-Based Controller for the Control of Mechanical

Manipulator”, in Proc. Of IEEE Int’l Conf. on Robotics and Automation, March 1985, pp. 815-

821.

[16] Chen, J. B., Fearing, R. S., Armstrong, B. S., Burdick, J. W., “NYMPH: A multiprocessor for

manipulation applications”, in Proc. IEEE Int’l Conf. On Robotics and Automation, San

Francisco, CA, April 1986, vol. 3, pp. 1731-1736.

[17] Liu, C. H., Chen, Y. M., “Multimicroprocessor-based Cartesian space control techniques for a

mechanical manipulator”, in Proc. IEEE Int’l Conf. On Robotics and Automation, 1986, pp. 823-

827.

[18] Kriegman, D. J., Seigel, D. M., Narasimhan, S., Hollerbach, J. M., Gerpheide, G. E.,

“Computational architecture for the Utah/MIT hand”, IEEE Conference on Robotics and

Automation, 1984, pp. 918-924.

[19] Zheng, Y. F., and Chen, B. R., “A multiprocessor for dynamic control of multilink systems”,

1985 IEEE Int’l Conf. On Robotics and Automation, Vol. 2, March 1985, pp. 295-300.

[20] Stewart, D. B., Schmitz, D. E., Khosla, P. K., “The CHIMERA II: real-time multiprocessing

environment for sensor-based control applications”, in Proc. IEEE Int’l Symp. Intelligent

Control, 1989, pp. 265-271.

[21] Narasimhan, S., Siegel, D. M., Hollerbach, J. M., “Condor: an architecture for controlling the

utah-mit dexterous hand”, IEEE Trans. Robotics and Automation, vol. 5, Oct. 1989, pp. 616-627.

[22] Erol, N. A., Altintas, Y., “Open architecture modular took kit for motion and machining process

control”, Manufacturing Science and Technology, Vol. 1, 1997, pp. 15-22.

[23] Pritschow, G., Daniel, Ch., Junghans, G., Sperling, W., “Open System Controllers-A Challenge

for the Future of the Machine Tool Industry”, CIRP Annals, Vol. 42, No. 1, 1993, pp. 449-452.

[24] Costescu, N., Dawson, D., Loffler, M., “QMotor 2.0 – a real-time PC based control

environment”, IEEE Control Systems, Vol. 19, Issue 3, June 1999, pp. 68-76.

85

[25] Y. P. Luh, S. S. Chiou, J. W. Chang, “Design of Distributed Control System Software Using

Client-Server Architecture”, in Proc. IEEE Int’l Conf. Industrial Technology, 1996, pp. 348-350.

[26] Stroustrup, B., “An overview of the C++ programming language”, in Handbook of Object

Technology, Boca Raton, FL: CRC Press, 1999.

[27] Miller, D. J., Lennox, R. C., “An object-oriented environment for Robot System Architectures,”

in Proc. IEEE Int’l Conf. on Robotics and Automation, 1990, pp. 52-361.

[28] Bagchi, S. Kawamura, K., “An Architecture of a Distributed Object-oriented Robotic System”,

in Proc. Intelligent Robots and Systems, 1992 Vol. 2, pp. 711-716.

[29] Bacio, B. T., Ramaswamy, S., and Barber, K. S., “OARS: An Object-oriented architecture for

reactive systems”, in Proc. IEEE Int’l Conf. on Robotics and Automation, 1996, pp. 1093-1098.

[30] Fernandex, J. A., Gonzalez, J., “The NEXUS open system for integrating robotic software”,

Robotics Comput Integrated Manuf, Vol. 15, No. 6, 1999, pp 431-440.

[31] Traub, A., and Schraft, R., “An object-oriented realtime framework for distributed control

systems,” in Proc. IEEE Int’l Conf. on Robotics and Automation, May, 1999, pp.3115-3121.

[32] Costescu, N., Loffler, M., Zergeroglu, E., Dawson, D., “Qrobot – a multitasking PC based robot

control system”, in Proc. IEEE Conf. on Control Applications, 1998, Vol. 2, Part 2, pp. 892-896.

[33] Loffler, M. S., Chitrakaran, V. K., Dawson, D. M., “Design and Implementation of the Robotic

Platform”, in Proc. IEEE Conf. on Control Applications, 2001, pp. 357-362.

[34] Paul, R., “Manipulator Cartesian path control”, IEEE Trans. On Systems, Man and Cybernetics,

Vol. SMC-9, No. 11, Nov. 1979, pp. 702-711.

[35] Taylor, R. H., “Planning and execution of straight-line manipulator trajectories”, IBM J.

Research and Development, Vol. 23, 1979, pp. 424-436.

[36] Luh, J. Y. S., Lin, C. S., “Optimal path planning for mechanical manipulators”, ASME Journal

Dynamic Systems, Measurement, and Control, Vol. 102, June, 1981, pp. 142-151.

[37] Paul, R. C., “Modeling, trajectory calculation and servoing of a computer controlled arm,” Ph.D.

dissertation, Stanford Univ., CA., Aug. 1972.

[38] Finkel, R. A., “Constructing and debugging manipulator programs,” Memo AIM-284, Stanford

Artificial Intelligence Laboratory, Stanford Univ., CA., No. 1972.

[39] Lin, C. S., Chang, P. R., Luh, J. Y. S., “Formulation and optimization of cubic polynomial joint

trajectories for industrial robots”, IEEE Trans. Aut. Control, Vol. AC-28, 1983, pp. 1067-1073.

[40] Bobrow, J. E., Dubowsky, S., Gibson, J. S., “Time optimal control of robotic manipulators along

specified paths”, Int’l Journal Robotics Res., Vol. 4, 1985, pp. 3-17.

86

[41] Lin, C. S., Chang, P. R., “Joint trajectories of mechanical manipulators for Cartesian path

approximation”, IEEE Trans. Syst., Man, Cybern, Vol. SMC-13, Nov. 1983, pp. 1094-1102.

[42] Dubowsky, S., Norris, M. A., Shiller, Z., “Time Optimal Trajectory Planning for Robotic

Manipulators with Obstacle Avoidance: A Cad Approach,” Proc. Of IEEE Int’l Conf. On

Robotics and Automation, 1986, pp. 1906-1912.

[43] Bobrow, J. E., “Optimal Robot Path Planning Using Minimum-Time Criterion,” IEEE Journal of

Robotics and Automation, Vol. 4, No. 4, 1988, pp. 443-450.

[44] Astrom, K.J., Hagglund, T., PID controllers: theory, design, and tuning, Second Edition,

Instrument Society of America.

[45] Rocco, P., “Stability of PID control for industrial robot arms”, IEEE Trans. on Robotics and

Automation, Vol. 12, No. 4, Aug. 1996, pp. 606-614.

[46] Ziegler, J. G., Nichols, N. B., “Optimum settings for automatic controllers”, Transactions of the

ASME, Vol. 64, 1942, pp. 759-768.

[47] Hayward, G. L., Computerized Control System: Basics. In: Gauri, S. (ed) Computerized control

systems in the food industry, New York: Marcel Dekker, Inc., 1997, pp. 87-117.

[48] Astrom, K. J., Hagglund, T., “The future of PID control”, Control Engineering Practice, Vol. 9,

No. 11, Nov. 2001, pp. 1163-1175.

[49] Cohen, G. H., and Coon, G. A., “Theoretical consideration of retarded control”, Transactions of

ASME, Vol. 75, 1953, pp. 827-834.

[50] Astrom, K. J., Hagglund, T., “Revisiting the Ziegler-Nichols step response method for PID

control”, Journal of Process Control, Vol. 14, 2004, pp. 635-650.

[51] Kraus, T. W., Mayron, T. J., “Self-tuning PID controllers based on pattern recognition

approach,”, Control Engineering, 1984, pp. 106-111.

[52] Higham, E. H., “A self-tuning controller based on expert systems and artificial intelligence”,

Proc. Control 85, UK, 1985, pp. 110-115.

[53] He, S. Z., Tan, S., Xu, F. L., and Wang, P. Z., “Fuzzy self-tuning of PID controllers”, Fuzzy Sets

and Systems 56, 1993, pp. 37-46.

[54] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., Numerical Recipes: The

Art of Scientific Computing (Fortran Version), Cambridge University Press, Cambridge, 1989,

pp. 86-89.

87

[55] Sollbach, E. M., Goldenberg, A. A., “Real-Time Control of Robots: Strategies for Hardware and

Software Development”, Robotics & Comptuer-Integrated Manufacturing, Vol. 6, No. 4, 1989,

pp. 323-329.

[56] (QNX Online Developer Support) QNX Software Systems, 2004, Available:

http://www.qnx.com/developers/docs/momentics621_docs/neutrino/sys_arch/kernel.html (URL).

[57] (EE150 Introduction of Computer Programming Methods Lecture Notes) University of Hawaii –

Electrical Engineering, 1994, Available: http://www-ee.eng.hawaii.edu/Courses/EE150/Book/

chap14/subsection2.1.1.8.html (URL).

[58] Schütz, Werner, The Testability of Distributed Real-Time Systems, Kluwer Academic Publishers,

Norwell, Massachusetts, 1993.

[59] Tran, H., Khajepour, A., Erkorkmaz, K., “Development and Analysis of a PC-Based Object-

Oriented Real-Time Robotics Controller”, accepted for Proc. of IEEE Conference on Control

Applications, Toronto, ON, August 28-31, 2005.

