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ABSTRACT 
 
 

Reverse osmosis (RO) desalination is increasingly used to produce potable water 

throughout the world. Despite their promising abilities, membrane filtration processes are 

limited by fouling. Fouling is a broad term for organics, inorganics, colloids and 

organisms that interact physically, chemically, or biologically with the membrane 

surface, resulting in reduced flux and shortened membrane lifespan. There is potential to 

create a snakeskin-like barrier between the membrane and foulants by electrostatically 

binding a coating material to the membrane that can be released by pH manipulation, 

removing foulants in the process. The feasibility of using functionalized nanoparticles as 

removable adsorptive coatings on RO membranes was evaluated in this study. Several 

inorganic-polymer composite nanoparticles (NPs) were examined in this study, including 

titanium dioxide coupled with polydiallyldimethylammonium chloride (polyDADMAC) 

to impart a positive charge [TiO2(+)], titanium dioxide incorporated with polyacrylate to 

impart a negative charge [TiO2(-)] and silver incorporated with polyacrylate, again to 

incorporate a negative charge [Ag(-)]. PolyDADMAC was used as a positively charged 

binding layer atop the negatively charged membrane surface to adsorb negatively charged 

nanoparticles. 

A series of concentration experiments was performed for each NP to find the 

lowest effective concentration for self-assembled coatings. The optimal concentration 

was then used in a series of kinetic experiments to determine the time required for 

coatings to assemble. Coating removal experiments were performed over a range of high 

and low pH values, with attention to indications of chemical alterations to the virgin 
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membrane. Titrations were run on pairs of membrane samples in an electrokinetic 

analyzer to measure the surface zeta potential over a range of pH values. While virgin 

SW30HR had an isoelectric point ~4, the polyDADMAC-coated membrane was 

completely positive over the pH range tested (3 to 9). When low pH cleaning was used, 

polyDADMAC was partially removed from the membrane, indicated by an isoelectric 

point of ~4.5. NP coatings also resulted in changes to the membrane isoelectric point, 

which was more closely recovered after low pH cleaning. A secondary method for 

confirming coating and removal was not found, which is an excellent dilemma: coatings 

are thin enough to be invisible to scanning electron microscopy (SEM) and infrared 

spectroscopy analysis, but are definitely present as indicated by significant zeta potential 

changes induced by extremely small quantities of material. It is expected that X-ray 

photoelectron spectroscopy (XPS) would effectively detect and quantify coatings.  

Bench-scale RO experiments were run to test coating efficacy in an applied 

system. Flux was monitored for deionized water, sodium alginate fouling and acid 

cleaning. A second deionized water run was performed to determine flux recovery after 

fouling and cleaning. Membranes were coated similarly to those for electrokinetic 

studies, but on a larger coupon. RO experiments resulted in 69% recovery of the DI water 

flux after cleaning a fouled membrane with no coating, compared to a flux of 83% 

recovery when a NP layer was used.  
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CHAPTER ONE 
 

BACKGROUND AND INTRODUCTION 
 

 
 Drinking water quality is a major health concern throughout the world. Dwindling 

supplies of potable water mandate the reuse of water and purification of groundwater and 

surface water prior to use (Shannon et al., 2008). As human populations continue to 

expand and concentrate in coastal areas, many communities around the globe only have 

access to briny, salty or polluted water. Membrane filtration systems can remove a 

significant amount of undesirable biological and chemical species, including salt; 

typically have a smaller footprint than distillation systems; and are more effective at 

contaminant removal than standard filtration. These attributes make membrane filtration 

systems a conceptually appealing solution.  

 Four levels of membrane filtration are available for water purification purposes: 

microfiltration (MF) removes microbes and particles typically larger than 0.1 µm; 

ultrafiltration (UF) removes macromolecules such as proteins, polysaccharides, larger 

molecular weight pesticides and pharmaceuticals; nanofiltration (NF) removes smaller 

organic pollutants such as chlorinated pesticides and multivalent ions like calcium, 

magnesium, and iron; and reverse osmosis (RO) removes monovalent ions such as 

sodium and chloride. NF and RO are both pressure-driven processes, requiring robust 

membrane materials to withstand high operating pressures. Thin-film composite 

membranes are frequently used, with a thin active layer supported by a thick, strong and 

inert backing layer. This endurance requirement has until recently led to membrane 
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development focused on building stronger and longer-lasting membranes. Within the past 

several decades, the focus on membrane lifetime has led to research in fouling resistance, 

but membrane cleaning remains an issue (van der Bruggen et al., 2008). 

 RO technology is widely used for desalination of seawater and brackish water, 

both of which may contain large quantities of organic matter and marine organisms that 

may contribute to chemical and biological fouling of the membrane. For example, the 

sheer mass of bacteria present in red tides can cause significant fouling in desalination 

plants and frequently require the plant to cease operation until the bloom has dispersed 

(Petry et al., 2007). In a study using NF for seawater desalination, 20% fouling was 

observed over a three-day period, making the operation unsustainable (Harrison et al., 

2007). Fouling is a hindrance to the RO process, frequently requiring the system to be 

offline for cleaning. Commercial membranes have been developed to reduce the rate of 

fouling or prevent certain types of fouling, but no indefinitely fouling-resistant membrane 

has been achieved. 

 Negatively charged NPs have been coupled with RO membranes to investigate 

the feasibility of using electrostatic interactions to attach and release self-assembled 

coatings of these materials. Electrostatic interactions between membranes and coating 

materials were manipulated to cause adsorption and desorption by varying the pH. On 

negatively charged membranes such as polyamide, an increase in proton concentration 

(decreasing pH) protonates the carboxyl groups on the membrane, neutralizing the 

membrane once a critical proton concentration is reached. Surface charge continues to 

increase beyond the isoelectric point as protons collect around electron density at surface 



 

3 
 

carboxyl groups. The polymer polydiallyldimethylammonium chloride (polyDADMAC) 

was selected for its strong positive charge to serve as a binding layer between the 

negatively charged membrane and negatively charged NPs. This project developed 

coating, removal and characterization methods and examined the advantages and 

drawbacks of each. 

1.1 Reverse osmosis membranes  

 Reverse osmosis is the most globally employed desalination technology, with half 

of 15,000+ desalination plants employing RO processes (Greenlee et al., 2009). 

Successful development of membrane materials, followed by further modifications to 

increase membrane performance, played a crucial role in the global application of this 

technology.  Many commercial RO membranes are thin film composite (TFC) polyamide 

(PA) membranes, which consist of three layers: a polyester supportive backing layer 

(120-150 µm thickness), a microporous polysulfone interlayer (40 µm) and an extremely 

thin polyamide active layer on the membrane surface (0.2 µm) (Petersen & Cadotte, 

1990). Commercial materials are developed for effectiveness despite heterogeneity 

caused by the manufacturing process, and active layers can vary chemically across the 

membrane as well as throughout the depth of the surface layer (Coronell et al., 2011).  

1.2 Fouling  

 While RO is low-cost compared to other desalination techniques, the process is 

hindered by fouling (Goosen et al., 2004). Seventy percent of seawater RO plants in the 

Middle East have biofouling issues and 83% of plants surveyed in the United States 

reported fouling problems as well (Yang et al., 2009). A wide range of materials can foul 
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membranes, including organics (e.g. natural organic matter [NOM] and humic acid), 

inorganics (e.g. scale-forming salts like barium sulphate; van de Lisdonk et al., 2000), 

biopolymers (e.g. proteins and polysaccharides making up extracellular polymeric 

substances [EPS]), and biological organisms themselves (e.g. Mycobacterium sp.; 

Campbell et al., 1999). Foulants can originate as soluble materials in the feed water that 

deposit on the membrane, or they can be colloidal or particulate in nature before 

depositing. Inorganic solutes can precipitate on the surface of the membrane, or 

precipitate to form particles first, then deposit. Organic foulants tend to be the most 

common due to their prevalence in feed waters of all types and their complex interaction 

chemistries. Organics can adsorb to the membrane surface as well as within the pores of 

MF, UF and NF membranes (Lee et al., 2005; Braghetta et al., 1998; Cho et al., 1998; 

Hong et al., 1997). The surface chemistry of the membrane and the chemistry of the feed 

solution both factor into fouling effects, as well. Negatively charged membrane materials 

tend to incur less biological fouling due to electrostatic repulsion effects, but cation 

bridging, surfactant boundary formation and pH changes can all increase fouling 

(Childress and Elimelech, 1996).   

 The wide variety of materials that cause membrane fouling, which can result in 

several types of fouling within a single system, makes it difficult to design a membrane 

material impervious to all types of fouling. Our research, therefore, aims not to develop a 

membrane material, but a coating that acts as a snakeskin-like barrier such that all types 

of fouling are removed when the coating is washed away. The coating could then be 

reapplied to refresh the barrier layer.  
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1.3 Membrane matrix modifications  

 One strategy for reducing fouling while maintaining membrane flux is 

modification of the membrane matrix before or after casting. NPs have become a 

promising set of materials due to their small size, affinity for polymer binding and 

attractive properties such as biocidal silver and photoactivated titanium dioxide (Kim and 

van der Bruggen, 2010; Soroko and Livingston, 2009; Yan et al., 2006).  

 Polymer-functionalized metal composite NPs are a type of nanomaterial with 

properties that could be of interest. These NPs are typically given charge by a carboxyl- 

or amino-functionalized polymer; however, research to this point has focused on pure 

material NPs and only one publication could be found regarding functionalized NP use in 

membrane filtration (Jadav et al., 2010). Pure NP materials most often described in the 

literature are titanium dioxide (TiO2), alumina (Al2O3), silver (Ag), silica and zirconia. 

There have been a number of self-assembly poly(ether)sulfone and polysulfone UF 

membranes that use TiO2 NPs as modifiers; an optimized amount of NPs is added to the 

casting solution before preparing the membrane itself (Luo et al., 2005). Jeong et al. 

(2007) have created mixed matrix RO membranes incorporating various concentrations 

of 50-150 nm zeolite NPs in the casting solution. These mixed matrix membranes had 

improved permeability over PA membranes also formed in the laboratory, indicating that 

inclusion of nanomaterials in the membrane active layer may be a promising avenue.   

 The membrane surface can also be modified by dipping the membrane in a 

concentrated NP solution. These studies have been done with carefully controlled 

preparations of TiO2 NPs that were pre-analyzed for particle size (Bae et al., 2006). Both 
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matrix incorporation and dip coating methods seem promising for application to many 

membrane types as well as different types of NPs. Some concerns have been noted such 

as the aggregation of NPs when the concentration is too high, resulting in a reduction of 

permeability and flux (Soroko and Livingston, 2009; Luo et al., 2005; Yang et al., 2007). 

Another concern noted by Taurozzi et al. (2008) regarded significant silver NP loss from 

the matrix during initial wetting of the membrane. There have also been encouraging 

results from these investigations. It has been reported that addition of nano-sized alumina 

did not affect the structure of the membrane or its pores (Yan et al., 2006). The 

mechanical properties of the membrane actually improved and later studies explored the 

optimal concentrations for enhancing membrane strength and fouling resistance.  

1.4 Permanent surface modification  

 Anti-fouling research for NF and RO membranes is currently progressing toward 

permanent modification by covalent bonding of coatings to the membrane surface. 

Polymer surface modification typically makes the surface more hydrophilic, since lower 

fouling potential is generally correlated to greater hydrophilicity (Ba et al., 2010; Louie et 

al., 2006). Over the past decade researchers such as Kilduff and Belfort have made 

significant developments in surface modification, developing a graft polymerization 

technique that employs UV light or plasma to create reactive sites on the membrane 

surface that are then exposed to a coating material, creating permanent chemical bonds 

between a membrane and the polymer coating (Zhou et al., 2009; Kilduff et al., 2003; 

Minghao et al., 2012). These modifications tend to be highly specialized, targeting certain 
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chemical or biological species types instead of serving as a one-stop filtration unit, and 

reduction of membrane fouling has been questioned (van der Bruggen et al., 2008). 

1.5 Removable coatings 

 Permanent surface modification is a useful means of changing fouling behavior, 

but even the most resistant membranes can eventually be fouled. This is especially true 

for feed waters like wastewater and surface water, which contain a wide variety of 

organic and inorganic material. An ideal removable membrane coating would reverse 

fouling no matter the foulant characteristics. This would reduce the impact of membrane 

cleaning, leading to longer lasting membranes and lower overall system cost. The use of 

NPs in membrane systems has been reported in the literature and shows great promise 

with improved membrane mechanics and permeability as well as strong evidence of 

fouling resistance. The primary focus of this research will be to develop a system of NPs 

and membranes where the NPs can be deposited and subsequently removed to yield a 

regenerable system. 

 Polyvinyl alcohol has been investigated as a removable coating paired with a 

positively charged NF membrane to create a coating that can be removed with a simple 

acid cleaning (Ba et al., 2010). This combination was a highly effective coating, with flux 

recovery of nearly 100% after low pH cleaning. The interaction of functionalized 

nanoparticles with polymeric membranes has also been investigated, with the intention of 

removing the NPs using membrane processes (Ladner et al., 2012). NPs were effectively 

removed and demonstrated interesting adsorption characteristics, which led to the 

development of the work performed for this thesis.  
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1.6 Membrane characterization 

 Some background on membrane characterization methods is included here to 

understand how the techniques used in this study fit into the literature of the field. 

Physicochemical properties of membranes and effects of fouling, coatings and 

modifications are characterized using an array of techniques from materials science, 

chemical engineering and traditional chemical analysis. Chemical (zeta potential, 

elemental composition and functional groups present) and physical (hydrophilicity, flux 

and roughness) properties are observed and compared to virgin membrane to determine 

beneficial or disadvantageous effects. Many techniques are available for RO membrane 

characterization and their use depends on the properties being investigated. For chemical 

analysis, zeta potential indicates the overall surface charge and isoelectric point, 

attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy 

determines functional groups associated with the membrane surface and foulants, and 

energy-dispersive X-ray spectroscopy (EDS) determines elemental composition. For 

physical analysis, contact angle measurement indicates hydrophilicity of the membrane 

material, bench-scale filtration determines baseline flux and flux effects of modification, 

atomic force microscopy (AFM) visualizes surface roughness, and scanning electron 

microscopy (SEM) visualizes the membrane surface and any coating or foulant 

aggregation.  

1.6.1 Zeta potential  

 Electrokinetic characteristics of reverse osmosis membranes have a significant 

influence on fouling performance and contaminant retention. Polyamide membranes, 
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which have a slightly negative surface charge at neutral pH, can electrostatically repel 

negatively charged functional groups common to natural organic matter. In the presence 

of positively charged functional groups, however, the membrane charge is a hindrance 

and encourages electrostatic binding that can be difficult to remove (Ba et al., 2010). 

Fundamental studies over the past several decades have investigated the chemical 

properties of the membrane surface layer (Childress and Elimelech, 1996; Childress and 

Elimelech, 2000). Significant progress has been made toward understanding the complex 

chemistries involved in membrane surface interactions, but fouling continues to plague 

desalination plants and other membrane filtration processes. The mechanisms of fouling 

and means of preventing it are still being explored. Zeta potential characterization of 

membrane cleaning studies has also been undertaken, though these studies use complex 

cleaning agents as used in large-scale operations and recommended by manufacturers 

(Al-Amoudi et al., 2007).  

 The work conducted for this thesis included a SurPASS electrokinetic analyzer 

manufactured by Anton Paar GMBH. The electrokinetic properties of the membrane 

surface are determined by forcing an electrolyte solution through a sample cell containing 

the material of interest; electrodes at each end of the sample cell measure the resulting 

streaming current and zeta potential is calculated (Buksek et al., 2010). The Fairbrother-

Mastin (F-M) approach to calculating zeta potential (ζ), given in Equation 1, improves 

upon the earlier Helmholtz-Smoluchowski (H-S) approach, accounting for phenomena in 

the instrument that affect the reported measurements (Buksek et al., 2010).   
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ζ= dIdp×
η

ε× εo
× L
A      (1) 

Here dI/dp is the measured slope of streaming current versus pressure, η is the electrolyte 

viscosity, ε is the dielectric constant of the electrolyte, ε0 is the vacuum permittivity, L is 

the length of the streaming channel, and A is the cross-sectional area of the streaming 

channel. 

1.6.2 Scanning electron microscopy and energy-dispersive X-ray spectroscopy 

 Scanning electron microscopy (SEM) is used to visualize the membrane surface 

and determine whether coatings or fouling have caused considerable changes to the 

surface structure (Cahill et al., 2008). Polymeric materials are not electrically conductive 

and do not contribute to the backscattering and secondary electrons that scanning electron 

microscopy relies upon to produce an image, so membranes must be sputter-coated with 

gold, platinum or another heavy element (Michler, 2008).  

 Energy-dispersive X-ray spectroscopy (EDS) is an analytical technique 

commonly coupled with scanning or tunneling electron microscopes to determine the 

elemental composition of solid samples. In membrane systems, EDS can be used to 

confirm the presence of inorganic contaminants or uncharacteristic C:N:O ratios. For this 

research, EDS is intended to detect the metallic components of the nanoparticles, 

indicating the presence of the nanoparticle layer. The requirement for sputter coating and 

the small quantities of coating material on the membrane surface complicate the results of 

EDS analysis.  
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1.6.3 Attenuated total reflectance Fourier-transform infrared spectroscopy 

 ATR-FTIR spectroscopy is used to confirm functional groups present in the 

membrane, such as the carboxyl and amine groups expected for a polyamide membrane, 

or to determine functional groups associated with natural organic matter (NOM) or other 

foulant materials (Cho et al., 1998). In RO research, ATR-FTIR is often used to confirm 

that the membrane surface, coating or foulant is performing as expected (Coronell et al., 

2010; Tang et al., 2009a; Tang et al., 2007). This technique is not often the primary 

analysis of membranes or membrane coatings, though some studies such as Belfer et al. 

(1998) have demonstrated the benefits of utilizing peak emergence and absorbance 

changes for assessing membrane coatings. Proper accessories and setup of the instrument, 

such as crystal selection, angle of incidence and atmosphere purging, are critical for 

ATR-FTIR use as the primary instrumentation for analysis. Without extremely sensitive 

instrumentation, it is very difficult to discern the small quantities of coating layers over 

the dominant vibrational bands of the polysulfone support membrane and ATR-FTIR is 

of limited benefit (Gabelich et al., 2005).  

1.6.4 Contact angle measurements  

 Contact angle measurement is used to assess the hydrophilic character of a 

membrane material and the change resulting from membrane modification or coating. 

The sessile drop method is most commonly used for membrane analysis. This method 

involves placement of a liquid droplet onto the membrane surface and photographic 

visualization with a contact angle goinometer (Hurwitz et al., 2010). Software is used to 

determine the contact angle of the drop on the membrane. Titrations can be performed by 
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varying the pH of droplets, allowing characterization of membrane surface chemistry 

throughout a range of pH values. The type of liquid used in the droplet can also be varied, 

and a “wettability” parameter can be identified based on the affinity of the membrane for 

particular liquids (Brant and Childress, 2004). A second technique that can be applied to 

membrane surface characterization is the captive bubble method, in which the surface is 

immersed face-down in a liquid and a gas bubble is released onto the membrane surface 

from below (Drelich et al., 1996).  

 In both cases, the shape of the drop/bubble is metastable and can be affected by 

outside pressures, evaporation and other factors. There is a phenomenon called hysteresis 

well described by Gao and McCarthy (2006). In basic terms, an increasing droplet will 

cover a defined area with changing contact angle until reaching a certain volume, at 

which point it will increase in area with a constant contact angle; a decreasing droplet 

will decrease in volume with a changing contact angle until reaching a critical volume, at 

which point the area will decrease with a constant contact angle. To account for both 

aspects of this phenomenon, contact angle measurements often include additions and 

subtractions of drops/bubbles to find the constant contact angle (Drelich et al., 1996). 

Apolar compounds can also be used to serve as an indicator of hydrophobicity; for RO 

membranes, large contact angles indicating a decrease in hydrocarbon affinity would be 

desired (Brant and Childress, 2002; Subramani and Hoek, 2008).  
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CHAPTER TWO 

RESEARCH OBJECTIVES 

 This project was designed to evaluate the interactions between reverse osmosis 

membranes and nanoparticle coatings and to determine whether the coatings could be 

removed from the membrane. The specific objectives were:  

1.  Determine appropriate conditions for self-assembly of polymer and 

nanoparticle coatings on reverse osmosis membranes. Experimental conditions 

such as working concentrations of polymer and nanoparticles, time required for 

coating and methods for applying coatings needed to be identified.  

2. Determine appropriate conditions for coating removal. Two possible desorption 

scenarios were anticipated: desorption of the nanoparticles from the 

polyDADMAC coating, and desorption of the polyDADMAC coating from the 

membrane. Experiments investigated whether high or low pH cleaning was more 

effective for coating removal.  

3. Use zeta potential titrations to detect the presence of self-assembled coatings. 

The Anton-Paar SurPASS electrokinetic analyzer was purchased for this project. 

Optimization of instrument methods was a critical component of this project.  
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CHAPTER THREE 

MATERIALS AND MATERIAL CHARACTERIZATION 

 Significant developments have been made regarding permanent membrane 

modifications and improved removal of target compounds, but removable coating design 

has not been widely reported in the literature to date. Because removable coating design 

has not been widely studied, it was necessary to determine how best to coat the 

membranes, remove coatings and to perform concentration studies to optimize the later 

experiments. Ultrapure water (DDI) from a Super-Q Plus System (Millipore, Bedford, 

MA) was used for all solutions, sample preparation and electrokinetic analysis. The use 

of the words “adsorption” in this document refers to electrostatic adsorption unless 

otherwise noted.  

3.1 Membranes 

 Reverse osmosis membranes from two manufacturers were used: SW30HR from 

Dow Filmtec, a subsidiary of the Dow Chemical Company (Midland, Michigan) and 

SWC4 and SWC5 from Hydranautics, a Nitto-Denko company (Oceanside, California). 

All membranes are thin film composite (TFC) polyamide (PA) formed by cross-linking 

of m-phenylenediamine and trimesoyl chloride, shown in Figures 3.1 and 3.2. SW30HR 

is commercially coated with a polyvinyl alcohol surface layer while SWC4 and SWC5 

are uncoated (Tang et al., 2009b).  
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Figure 3.1. Structures of m-phenylenediamine (a) and trimesoyl chloride (b), the precursors to PA TFC 
surface layers. 
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Figure 3.2. Structure of cross-linked polyamide. 
 

 SW30HR and SWC4 were obtained as flat sheets prior to 2009 and stored dry in 

cardboard tubes to protect from light. Membrane material was cut from the flat sheet, 

wetted with DDI water and stored at 4°C in DDI water that was changed at least 

biweekly. SWC5 was purchased as a complete, tested RO module in late 2011 and stored 

at 4°C in DDI water once opened. Coupons for experiments were cut and placed in DDI 

water, then stored at 4°C at least overnight and up to several weeks with DDI water 

changed weekly. 
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3.2  Coating materials 

3.2.1 PolyDADMAC positively charged polymer 

 PolyDADMAC was selected for its low cost and widespread availability as well 

as its strong positive charge. It is widely used as a flocculent in water treatment and, if 

effective, would be easy to implement. The monomer structure is shown in Figure 3.3. 

PolyDADMAC has been demonstrated to interact with polyamide membranes in 

favorable ways regarding these research goals, including deposition on the membrane in 

thin layers and minimal flux reduction after deposition (Gabelich et al., 2005). One 

drawback to polyDADMAC in a water treatment context is that it has recently been 

implicated as a disinfection byproduct precursor; it leads to n-nitrosodimethylamine 

(NDMA) formation, in particular (Park et al., 2009). The polyDADMAC used in this 

study was 20% (w/v) Clarifloc C-308P, donated by James Amburgey of UNC-Charlotte 

and by Polydyne, Inc. (Riceboro, GA). C-308P has an average molecular weight range of 

80-120 kDa. The 20% stock solution was used as received. A graduated cylinder was 

used to measure polyDADMAC and was rinsed several times into the final solution to 

ensure complete transfer of the slightly viscous polymer.  

N Cl

n  

Figure 3.3. Monomer structure of diallyldimethyl ammonium chloride. 
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3.2.2 Functionalized silver and titanium dioxide nanoparticles  

Functionalized nanoparticles were purchased from Vive Nano, Inc. (Ontario, 

Canada). General representation of the NP surface is shown in Figure 3.4 for negative (a) 

and positive (b) charges. Negatively charged silver [Ag(-)] was functionalized by the 

manufacturer with a sodium polyacrylate derivative and received in aqueous solution of 1 

g/L Ag. A 0.1 g/L working solution of Ag(-) was prepared by a tenfold dilution of the 

stock solution, which was used as received.  

Negatively charged titanium dioxide [TiO2(-)] was functionalized by the 

manufacturer with a polyacrylic acid derivative and a polystyrene sulfonate derivative 

and arrived as 18.3% w/w powder (lot PB75). Stock solution was prepared by dissolving 

0.100 g powdered TiO2(-) into 100 mL DDI water for a final concentration of 0.184 g 

Ti/L.  

Positively charged titanium dioxide [TiO2(+)] was functionalized by the 

manufacturer with polyDADMAC and arrived as at 20% w/w powder (lot PB75). Stock 

solution was prepared by dissolving 0.106 g powdered TiO2(+) into 100 mL DDI water 

for a final concentration of 0.212 g Ti/L.  
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Figure 3.4. Sketch representation of NP surface charges imparted by (a) polyacrylate and (b) 
polyDADMAC. 

 

3.3 Membrane characterization methods 

3.3.1 Zeta potential  

3.3.1.1 Instrumentation 

 Surface zeta potential was measured with a SurPASS electrokinetic analyzer 

(Anton-Paar, Graaz, Austria). VisioLab software version 2.10 was provided for 

instrument control and upgraded to version 2.20 before experiments started. The 

instrument was purchased with a clamping cell sample holder. This measuring cell 

required membrane coupons of 55 mm x 25 mm and used only 9% of the total membrane 

area, while the contribution of the remaining membrane area to membrane body 

conductance was unaccounted for (Bukšek et al., 2010).  The adjustable gap cell 

(AGC) sample holder, which required smaller membrane coupons of 10 mm x 20 mm 

and used 100% of the membrane surface area for measurement, was purchased in spring 

2011 due to improvements in measurement reliability and was used from May 2011 

onward (Figure 3.5).  
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Figure 3.5. General representation of adjustable gap cell setup. 

 

3.3.1.2 Chemicals for analysis 

 Potassium chloride salt was purchased from BDH Chemicals, Ltd, a subsidiary of 

VWR International (Radnor, PA), and used as received. A stock KCl solution of 0.1 M 

was prepared with DDI water and kept in the dark at room temperature. The stock 

solution was vacuum filtered with a 0.22 µm polyvinylidene fluoride filtration membrane 

(Millipore, Billerica, MA). Working solutions of 0.001 M KCl were prepared before each 

titration by diluting 10 mL of stock solution into 1 L of ultrapure water and vacuum 

filtering through a 1 µm Nylasorb nylon membrane (Pall Life Sciences, Ann Arbor, MI) 

to eliminate dust and other particulates. 

 Acid titrations used 0.1 M hydrochloric acid (HCl), prepared by diluting 8 mL of 

37% laboratory grade HCl (BDH Ltd, Radnor, PA) into 1 L DDI water. Base titrations 
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used 0.1 M sodium hydroxide (NaOH), prepared by dissolving 4 g NaOH pellets (EMD 

Millipore, Billerica, MA) in 1 L DDI water.  

3.3.1.3 Titrations 

 The AGC was assembled as instructed in the instrument user manual. DDI water 

was used for filling and rinsing of the instrument, gap adjustment and flow check. KCl 

electrolyte solution was flushed through the instrument before each measurement. The 

Adjustable Gap Cell template file in VisioLab software was used for all AGC 

measurements in “pH titration” mode, modified for a maximum pH of 9 for base 

titrations.  

 During initial experiments on the AGC, titrations were run from acidic (pH ~3) to 

basic (pH ~10-11) or vice versa. After being advised against single titrations because of 

the ionic strength of the feed solution, titrations were split into two “halves”, an acid 

titration from ambient DDI pH (~5.5) to 3 and a base titration from ambient pH to 9. 

Acid titrations were executed first for all samples. When the acid titration finished, the 

instrument was rinsed with three changes of DDI water to eliminate electrolyte in the 

system. KCl solution was flushed through before the base titration was started. Upon 

completion of the base titration, the instrument was rinsed with DDI water until the 

baseline pH (~5.5) was restored. The Empty command was used to clear the tubing and 

conclude the experiment. Used membranes were discarded. 

3.3.1.4 Single measurements 

 Single measurements were performed to assess instrument variability and 

occasionally to perform rapid analysis of surface potential at a predetermined pH. 
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Samples were prepared as for titration measurements. In VisioLab software the “single 

measurement” mode was selected and 12 measurements were taken to decrease 

instrument noise. 

3.3.1.5 Instrument maintenance 

 Routine instrument maintenance was performed for the SurPASS over the course 

of the project. The conductivity meter was calibrated every three months or before use if 

the instrument had been unused for at least a week. The pH meter was stored in 3 M KCl 

when not in use and was calibrated monthly. Titration unit tubing was rinsed monthly to 

eliminate air bubbles in the lines. The sample cell was fully disassembled and cleaned 

with dilute isopropyl alcohol after all SW30HR experiments concluded. 

3.3.2 Attenuated total reflectance Fourier-transform infrared spectroscopy 

 ATR-FTIR spectroscopy was used to determine whether the coatings could be 

detected, as would be expected if quantities sufficient to foul the membrane were present. 

A Nicolet 6700 FTIR (Thermo Scientific, Waltham, MA) fitted with a diamond Smart-

iTR plate was used with a scanning resolution of 2, giving a total of 32 scans per 

spectrum.  

3.3.3 Scanning electron microscopy 

 SEM was employed to visualize the effects of the coating and removal processes. 

Membrane samples were sputter-coated with gold using a Hummer 6.2 sputtering 

machine (Anatech Ltd., Battle Creek, MI) prior to analysis. Images were taken at 

magnification of 2.5 k and 10.0 k with a tabletop TM3000 unit (Hitachi High 

Technologies America, Inc., Dallas, TX). High-resolution images were taken at 
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magnification 10 k and 100 k with a variable pressure Field Emission SEM SU6600 

microscope (Hitachi High Technologies America, Inc., Dallas, TX).  

3.3.4 Inductively coupled plasma optical emission spectroscopy (ICP-OES) 

 Nanoparticle solution concentrations were quantified using ICP-OES. Three 

samples of each NP working solution were dissolved in 5% HNO3 for 24 hours before 

analysis. A 1000 ppm (1000 mg/L) titanium standard was used for Ti NPs and a multi-

element standard containing 10 ppm  (10 mg/L) silver was used for Ag NPs. Titanium 

NPs were diluted 1:1 into HNO3 for an expected concentration of 0.1 g Ag/L; the 0.1 g/L 

working solution of Ag NPs was diluted to 0.5% for an expected final concentration of 

0.5 mg Ag/L. Calibration concentrations are shown in Table 3.1.  

Table 3.1. Calibration concentrations for ICP-OES analysis. 
[Ti] (ppm) [Ag] (ppm) 

0 0 
10 0.01 
25 0.025 

100 0.05 
250 0.1 

 

3.4  Membrane characterization results 

Each membrane had a unique zeta potential curve and isoelectric point. Breaks in 

the titration curve were caused by the separation of acid and base titrations, which 

resulted in two sets of data for the pH range 3-9. Each data point is the averaged value 

from four measurements; the average standard deviation for titration curves was ±2 mV 

and consistent throughout the experiments. Figure 3.6 shows the characteristics of each 

membrane involved in this study. SWC5 and SWC4 show similarities in zeta potential at 
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operational pH for desalination (approximately pH 8), but the charge of SWC5 is much 

lower than SWC4 at acidic pH. The isoelectric point of SWC5 is roughly 3, while SWC4 

has an isoelectric point of about 4.7. This indicates a significant difference in surface 

functionality of the two membranes, though further characterization of the chemical 

differences was beyond the scope of this study. SW30HR is commercially coated with 

polyvinyl alcohol, which neutralizes many of the dangling carboxyl groups of the 

polyamide active layer and creates a more neutrally charged membrane over the pH range 

used in titrations (3 to 9).  

 
Figure 3.6. Zeta potential curves for SW30HR, SWC4 and SWC5 TFC PA membranes. Breaks in the 

titration curve resulted from the separation of acid and base titrations, which provided separate sets of data. 
 

Some variability was noted between samples of the same membrane, 

demonstrated in Figure 3.7 by SW30HR samples. This was an expected result as surface 

layer heterogeneity is a well-reported property of commercially prepared RO membranes 
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(Coronell et al., 2011; Freger, 2003). From August 2011 onward, samples were cut from 

a dry membrane sheet and soaked in water overnight before analysis. Titration data from 

“old” membranes soaked for more than a month and “new” membranes soaked for less 

than a week suggest that contact time with water affects the membrane surface chemistry, 

with the surface becoming more negatively charged over time. SWC5 was purchased as a 

full membrane module that arrived pre-tested and vacuum-sealed in water, so it may be 

expected that the surface charge of SWC5 will not change as significantly as a function 

of water soaking time. 

 
Figure 3.7. Titrations of three SW30HR samples. Titrations have very similar shapes but vary slightly in 

zeta potential, as seen with the June and February data. The January titration was performed after the 
membrane had been stored at 4°C for over 3 months. 

  

When acid cleaning experiments were performed using SW30HR membrane, the 

zeta potential curve of SW30HR decreased significantly after washing in pH 1 solution 
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for 30 minutes (Figure 3.8). A significant decrease in zeta potential indicates that the 

surface chemistry was modified by the very low pH cleaning of the membrane. One 

possible change is that the polyvinyl alcohol layer may have been removed to some 

extent. This phenomenon was not observed with cleaning solutions of pH 3 or higher, as 

Figure 3.8 shows. The pH 1 cleaning appears to damage the coating layer of the 

SW30HR membrane and is compared to the uncoated PA of SWC5 in Figure 3.9 to 

determine whether the data provide a rough approximation of PVA removal. Similar 

experiments were outlined for SWC4 and/or SWC5 membrane, but have not been 

performed yet. Acid cleaning of SWC4 and SWC5 could confirm the hypothesis that 

PVA is somewhat removed by low pH cleaning, or could indicate another phenomenon 

entirely.  

 
Figure 3.8. SW30HR samples in HCl solutions of varying strength for 30 min. Strong acid significantly 

altered the zeta potential while weaker acid solutions did not. 
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Figure 3.9. Zeta potential drop of pH 1 acid-washed SW30HR compared to virgin SW30HR and SWC5 

membranes. 
 

3.5 Polymer and nanoparticle characterization 

 PolyDADMAC and both TiO2 NP stock solutions were prepared at the beginning 

of the project and lasted throughout the duration of the project. Silver NP stock solution 

was prepared twice over the course of the project. The first solution was not 

characterized, which exacerbated erroneous calculations of NP concentrations and 

misleading data in the preliminary results. Concentrations of NP solutions were not 

measured until the culmination of the project, an oversight that left many questions about 

multiple sets of data. Future work with this project should include characterization of 

stock solutions immediately after preparation and periodically thereafter to determine the 

extent to which nanoparticles degrade or aggregate over time.  
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3.5.1 PolyDADMAC 

 PolyDADMAC concentration of the hundredfold dilution was assumed to be 

0.2% polymer in the aqueous working solution. This assumption was based on the 

hydrophilic properties of the polymer. Stock solution was measured into a graduated 

cylinder that was then rinsed several times into a volumetric flask to ensure complete 

transfer of the polymer during dilution. The method was significantly more reliable than 

using a pipette due to the viscous nature of the concentrated stock solution. 

PolyDADMAC is not UV active or fluorescent; manufacturers could not recommend a 

simple laboratory experiment to quantify polyDADMAC so reported concentrations are 

based on dilution volumes.  

3.5.2 Nanoparticle concentration determination using ICP-OES   

NP working solution concentrations were measured by ICP-OES using Aristar 

Plus multielement standard for trace metal analysis, which contained 10 mg/L Ag (BDH 

Ltd, Radnor, PA; lot C2-MEB296061). Excellent calibration curves were obtained for 

both materials, with an R2 value of 0.99991 for Ag calibration and 0.99946 for Ti 

calibration. Silver NPs were received in aqueous suspension and diluted into DDI water 

to make working solutions. Early use of a high concentration of Ag(-) NPs resulted in 

aggregation, which was observable on low-magnification SEM images. TiO2 NP 

concentrations were prepared from powdered NPs diluted into DDI water. These NPs 

were observed adhered to glassware used for stock solution preparation, so not all of the 

material was fully dissolved into the stock solutions. 
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The 0.1 g/L silver NP working solution was first diluted by 50%, resulting in an 

expected concentration of 50 mg Ag/L. This sample concentration was far greater than 

the highest standard, so the 50 mg/L Ag samples were diluted by 100 for a final 

anticipated sample concentration of 0.5 mg Ag/L. A miscalculation regarding the final 

anticipated Ag concentration resulted in a calibration curve 10x lower than necessary. 

The calibration curve had a high R2 value despite being too low in concentration and was 

used for preliminary Ag concentration analysis. Based on the calibration curve and 

instrument response for Ag samples (Table 3.3), the NPs appear to have dissolved 

completely in 5% HNO3. ICP results indicate that Ag concentrations were 0.47±0.004 mg 

Ag/L, which was in excellent agreement with the expected 0.5 mg Ag/L.  

Table 3.2. ICP data for Ag standards and triplicate working solution diluted to 0.5%. 
Sample Signal Intensity [Ag] Average [Ag] 
Ag(-) 1 9911 0.46 

0.47±0.004 Ag(-) 2 10077 0.47 
Ag(-) 3 10042 0.47 

Ag Std 0ppm -76.13 0.00 

N/A 
Ag Std 0.01 ppm 120.04 0.01 
Ag Std 0.025ppm 449.09 0.025 
Ag Std 0.05ppm 1001.10 0.05 
Ag Std 0.1ppm 2078.54 0.10 

 

  A 1 g/L titanium standard was used for calibration, allowing Ti NP stock 

solutions to be diluted 1:1 in 5% HNO3, with a final concentration of 2.5% HNO3, for 

ICP analysis. Concentrations were expected to be similar for the positive and negative 

NPs; stock solutions were calculated as 212 mg Ti/L and 184 mg Ti/L for TiO2(+) and 

TiO2(-), respectively. For the diluted solutions, ICP data were expected to yield 

approximately 100 mg/L for TiO2(+) and 90 mg/L for TiO2(-). However, ICP results 

indicated a concentration of 5.5 mg/L for TiO2(-) and 55 mg/L for TiO2(+) (Table 3.2). 
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Disagreement between expected values and ICP results was most likely caused by 

incomplete dissolution of TiO2 NPs. An acid or microwave digestion would be needed to 

completely dissolve Ti NPs. Data suggest that TiO2(+) NPs are more soluble in HNO3 

than TiO2(-) NPs.  

Table 3.3. ICP data for Ti standards and triplicate working solutions diluted to 50%.  
Sample Signal Intensity [Ti] (mg/L) Average [Ti] (mg/L) 

TiO2(-) 1 286325 5.07 
5.4±1.5 TiO2(-) 2 368288 6.96 

TiO2(-) 3 242744 4.06 
TiO2(+) 1 2525300 56.7 

54.9±1.8 TiO2(+) 2 2441280 54.8 
TiO2(+) 3 2370068 53.1 

Ti Std 0ppm 101 0.0 

N/A 
Ti Std 10ppm 456409 10.0 
Ti Std 25 ppm 1150798 25.0 

Ti Std 100 ppm 4583184 100.0 
Ti Std 250 ppm 10836125 250.0 
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CHAPTER FOUR 

COATING CONDITION OPTIMIZATION 

The goal of this chapter is to describe the conditions required for effectively 

coating RO membranes with NPs. Each coating material was prepared at several different 

concentrations and the effects were examined by electrokinetic measurements in the 

SurPASS. Once optimal concentrations were determined, coating times were varied to 

determine how quickly coatings would assemble. NP concentrations are reported as mass 

of the metal component (Ti or Ag) per liter, as the manufacturer did not provide more 

specific particle analysis. A mass-based measurement is insufficient to quantify NP 

concentration on the membrane as the number of metal atoms present per NP is 

unknown, but an alternative method of quantification has not yet been identified.  

4.1 Determining coating concentrations 

4.1.1 PolyDADMAC coating layer 

 PolyDADMAC was used as a positive binding layer bridging between negatively 

charged NPs and the negatively charged membrane surface. Coating solutions were 

prepared by dilution of the stock solution using DDI water. PolyDADMAC coatings of 

5%, 2% and 0.2% (w/v) were applied to dry SWC4 membranes to test concentration 

effects on a highly negative membrane. Coatings of 2%, 1% and 0.2% were applied to 

dry SW30HR membrane after SWC4 data was collected. All coatings for the 

concentration experiments were allowed to assemble for 24 hours in the refrigerator 

(4°C). Membranes were removed from coating solution, rinsed in 200 mL DDI water for 
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30 seconds and stored in DDI water in the refrigerator for at least 12 hours before 

analysis or further coating.  

During the process of determining coating concentrations, it was decided that 

using wet membranes would be more applicable to plant operating conditions, so the 

0.2% coatings for negative NP experiments were assembled onto wet SW30HR 

membranes from August 2011 onward. Results of coating dry membranes with 0.2% 

polyDADMAC were compared to those for coating wet membranes with 0.2% 

polyDADMAC.  

4.1.2 TiO2(+) NPs on membrane surface 

 TiO2(+) NPs were electrostatically adsorbed directly to the membrane surface. 

SWC4 was initially used for TiO2(+) concentration experiments because the surface 

carries a stronger negative charge. Carboxyl groups of the SWC4 surface are not shielded 

by polyvinyl alcohol coating as with the SW30HR membrane, resulting in a higher 

charge density. TiO2(+) coatings were prepared by diluting 10 µL and 20 µL of TiO2(+) 

stock solution into 10 mL, resulting in concentrations of 0.212 mg Ti/L and 0.423 mg 

Ti/L, respectively. Dry membrane coupons of SWC4 were submerged in the coating 

solution for 24 hours at 4°C. These concentrations did not alter surface charge, so for 

SW30HR experiments higher concentrations of 21.2 mg/L, 10.6 mg/L, 4.2 mg/L and 2.1 

mg/L were used. Single measurements were taken to quickly determine the zeta potential 

changes imparted by varying the NP concentrations.  
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4.1.3 Ag(-) NPs on polyDADMAC coated membranes 

 Ag(-) NPs were adsorbed onto a 0.2% polyDADMAC binding layer. Initial 

experiments used concentrations of 100 mg Ag/L, 50 mg/L and 10 mg/L. 

PolyDADMAC-coated membrane coupons were placed into Ag(-) coating solutions after 

at least 12 hours in DDI water. After 24 hours, Ag(-) coated membranes were rinsed for 

30 seconds and soaked in DDI water at least overnight before analysis. Soaking allowed 

detachment of any NPs not adsorbed to the membrane.  

4.1.4 TiO2(-) NPs on polyDADMAC coated membranes 

 TiO2(-) NPs were adsorbed onto a 0.2% polyDADMAC binding layer. Initial 

experiments used 18.4 mg Ti/L, 9.2 mg/L and 1.8 mg/L. As with Ag(-) NPs, 

polyDADMAC coated membrane coupons were coated with NP coating solution at least 

12 hours after polyDADMAC coating. Samples were coated with TiO2(-) for 24 hours, 

then rinsed for 30 seconds before soaking in DDI water at 4°C at least overnight.  

4.1.5 Coating controls  

Coating controls were prepared to confirm that binding of the coating layers was 

electrostatic. Controls included TiO2(+) exposed to a polyDADMAC coated membrane, 

TiO2(-) exposed to a virgin membrane and Ag(-) exposed to a virgin membrane. NPs 

were not expected to bind in control experiments due to electrostatic repulsion.   

4.2 Coating concentration results 

4.2.1 PolyDADMAC coatings 

 PolyDADMAC coatings adsorbed strongly to the PA membranes, causing a 

significant increase in zeta potential (Figure 4.1). The polyDADMAC coating resulted in 
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a positive zeta potential over the entire pH range of the titration (3 to 9). The increase in 

zeta potential at the low end of the pH range can be attributed to high proton density at 

the membrane surface.  

   
Figure 4.1. PolyDADMAC coating on SWC4 membrane. The polymer coating significantly altered the 

surface chemistry, creating a positively charged membrane surface.  
 

 Varying concentrations of polyDADMAC were applied to SW30HR membranes 

to determine a threshold concentration. The lowest effective coating concentration was 

desired to keep polyDADMAC coatings thin. Figure 4.2 shows zeta potential titrations 

for concentrations of 2%, 1% and 0.2% on dry-coated SW30HR membranes. All 

concentrations produced a significant increase in zeta potential, with a negligible 

difference between 0.2% and 1% concentrations and only slightly higher zeta potential 

for 2% concentrations. The 0.2% concentration was selected for further experiments 

because of the effectiveness at a low concentration.  
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Figure 4.2. PolyDADMAC coatings of 2%, 1% and 0.2% on dry SW30HR membranes. All coatings 

impart a strong charge; there is no notable difference between 0.2% and 1%, and little difference at 2%. 
 

4.2.2 TiO2(+) NP coatings 

 TiO2(+) NPs, which were functionalized by the manufacturer with 

polyDADMAC, adsorbed directly to PA membranes, changing the surface charge from 

negative to positive. The zeta potential did not change when 0.212 mg/L and 0.424 mg/L 

of TiO2(+) was applied to SWC4 membranes. Higher concentrations were applied to 

SW30HR membrane and did change the surface charge, indicated by changes in single 

measurement values in Figure 4.3. The 21.2 mg/L TiO2(+) solution imparted the smallest 

change and had the tightest error bars. Error bars in Figure 4.3 suggest that the instrument 

may not be sensitive enough to accurately evaluate small changes in zeta potential 

incurred from varying NP concentrations. The 4.2 mg Ti/L coating was selected for 

future work because of the relatively high zeta potential and low concentration. 
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Figure 4.3. Effects of 2.1 mg/L, 4.2 mg/L, 10.6 mg/L and 21.2 mg/L TiO2(+) on membrane surface charge 

compared to the uncoated SW30HR membrane. Error bars represent a standard deviation from 12 
measurements. 

  

The TiO2(+) coatings varied quite significantly between experiments. A set of 

experiments was prepared in August 2011 and a second set was prepared in May 2012. 

The difference in titration curve between the two TiO2(+) coated membranes was notable. 

The difference may be attributed to heterogeneity between membrane samples or NP 

aggregation over the course of the stock solution lifetime. Membrane heterogeneity 

seems unlikely, as virgin membrane comparisons did not vary nearly as much as the 

TiO2(+) coated membranes. If aggregation occurred in the stock solution, considerably 

different quantities of NPs could be acquired with each aliquot removed from solution 

and the coatings would not be uniform. The changes observed in Figure 4.4 suggest that 

NP stock solutions need to be buffered, sonicated or otherwise modified in the future to 

prevent aggregation. The manufacturer provided particle size analysis for the powdered 
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form of the NP that was received, but size analysis for the stock solution would be useful 

for detecting NP aggregates.  

 
Figure 4.4. TiO2(+) NP coatings for two sets of experiments. Significant differences could be attributed to 

changes in NP stock solution or heterogeneity of the membrane surface.  
 

 Because TiO2(+) NPs were functionalized by polyDADMAC, it was initially 

expected that the NPs would impart a surface charge comparable to that of the linear 

polymer. Coating with NPs resulted in a significantly lesser positive charge, indicating a 

lower charge density (Figure 4.5). Upon further consideration it was concluded that the 

NPs could not impart a surface charge comparable to the polyDADMAC coating because 

each polymer chain included loops and tails that contributed significantly to the surface 

charge. Each NP, however, was a roughly spherical particle contributing a single point 

charge and resulting in a lower charge density. Surface packing may also have factored 
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in, with adsorption of the dilute polymer being a more highly favored mechanism than 

the aggregation of NPs at the membrane surface.  

 
Figure 4.5. Charge density of polyDADMAC coating compared to TiO2(+) NP coating, which was 

functionalized with polyDADMAC.  
 

4.2.3 Ag(-) NP coatings 

 Ag(-) NPs, given negative charge by polyacrylate, adsorbed to the 

polyDADMAC-modified membranes. Adsorption was indicated by a decrease in the zeta 

potential of polyDADMAC coating. Ag(-) coating successfully reduced the strong 

positive charge of the polyDADMAC-coated membrane, bringing the zeta potential at pH 

5.6 from +26 mV to a range of –1.5 à +5 mV (Figure 4.6). As expected, the higher 

concentrations of NPs resulted in a larger charge difference, with the 10 mg Ag/L coating 

maintaining a slightly positive surface charge and the 20 mg/L, 50 mg/L and 100 mg/L 

coatings imparting neutral to very slightly negative surface charges. Similarly to the 
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TiO2(+) data, the standard deviation of the zeta potential in Figure 4.5 exceeded the 

differences between most single measurement values for Ag(-) concentrations. The 

measurement with the highest standard deviation - 20 mg/L Ag(-) solution - was a data 

point from a titration curve, which was averaged from four measurements, while the 

other values were single measurement data that were averaged from 12 measurements. 

This indicates that the instrument is more precise when more measurements are used to 

report each data point. When 10 mg/L, 50 mg/L and 100 mg/L were compared, 100 mg/L 

coating solution was selected for future experiments because of its large zeta potential 

change. After NP aggregates were discovered, however, the concentration was reduced to 

20 mg/L.  

 
Figure 4.6. Reduction in surface charge by Ag(-) NPs adsorbed to polyDADMAC. As expected, the higher 

the NP concentration, the lower the zeta potential.  
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  Titrations of Ag(-) NP coatings showed less deviation between individual 

titration than deviation between TiO2(+)-coated membranes. Membranes prepared at 

different times had agreeable acid titration curves from pH 4-6 (Figure 4.7). The shape of 

the base titration curves agreed as well, but the zeta potential of one sample dropped 

substantially between the acid and base titrations. This occurred because the experiment 

was left overnight before the base titration was run, allowing time for the acidic solution 

to remove some of the coating from the membrane. Had the second titration been run 

immediately after the first, the base titrations should have lined up almost exactly as 

observed in other titrations. Zeta potential was also measured for an Ag(-) coated 

membrane that had been stored for four months. The surface charge of the old membrane 

was considerably lower than both the fresh Ag(-) coated membranes and the uncoated 

SW30HR. This could be a result of the NPs dissolving, detaching from the membrane, or 

being otherwise altered by the storage solution (pH ~5.5). Biological growth would result 

in a decrease in surface charge, though the biocidal properties of nanosilver may mitigate 

such fouling. The mechanism for zeta potential decrease after long-term storage has not 

yet been identified. 
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Figure 4.7. 20 mg/L Ag(-) coatings compared to virgin SW30HR. 

 SEM analysis of membranes revealed aggregation of the Ag(-) NPs in low 

magnification (2,500 magnification) images (Figure 4.8). Aggregates of up to 6 µm were 

visible. The size is considerable when compared to the 10nm nanoparticles. Based on 

SEM images, the higher charge density on the 100 mg/L Ag(-) surface was attributed to 

aggregates rather than more NPs providing better coverage of the membrane surface. A 

“breakthrough” aggregation concentration likely occurs between 50-100 mg/L; there is 

little difference between surface charge of the 20 mg/L and 50 mg/L coatings, indicating 

the coatings may be similar in NP density, while aggregates form on membranes coated 

with 100 mg/L Ag(-) NPs. The concentration used for coatings was decreased to 20 mg 

Ag/L to decrease likelihood of aggregation and obtain data that could be compared to 

TiO2(-) coatings.  
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Figure 4.8. SEM image of Ag(-) aggregation on SW30HR membrane. Aggregates are very large, up to 

6µm in size. Nanoparticles are ~10nm.  
 

4.2.4 TiO2(-) NP coatings 

 TiO2(-) NPs, given negative charge by polyacrylate, adsorbed to the 

polyDADMAC-coated membranes. Adsorption was indicated by a decrease in the zeta 

potential of the polyDADMAC coating (Figure 4.9). TiO2(-) coating resulted in a similar 

degree of zeta potential change as the Ag(-) coating; however, the variation between 

individual TiO2(-) coatings and individual Ag(-) coatings prevented the assumption that 

the different NPs provided equal coverage of the surface. Ag(-) experiments used 20 mg 

Ag/L while TiO2(-) experiments used 4.2 mg Ti/L; assuming that the metal component 

per NP is comparable between Ti and Ag NPs, more Ag was used in experiments than Ti. 

The observed variation in zeta potential, imparted by the same coating solution in 

different experiments, could be attributed to charge density heterogeneity of the 

polyDADMAC layer, heterogeneity of the virgin membrane, aggregation or charge 

density heterogeneity of the NP coatings, or a combination. Uneven polyDADMAC or 
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NP coatings are more likely than significant membrane heterogeneity. TiO2 NPs may 

have aggregated as the stock solution aged, causing large clusters of NPs to adsorb to the 

membrane surface; particle size analysis of the stock solution would allow this possibility 

to be confirmed or eliminated. TiO2(-) was not visible in SEM images at the time the 

Ag(-) aggregates were discovered, so further SEM imaging was not pursued for TiO2(-) 

coatings.  

 
Figure 4.9. TiO2(-) coatings on polyDADMAC membranes from two experiments. Deviation in shape and 

zeta potential were observed. 
  

4.3 Membrane coating methods 

 Coatings were self-assembled onto the membranes in 10 mL polypropylene petri 

dishes, which allowed membrane coupons to float easily in coating solution. Two 

membrane coupons of approximately 1.5 cm x 2.5 cm were coated in each dish. One 
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membrane was placed active side up and one active side down to prevent the coupons 

from sticking together and interfering with coatings. Despite different orientation, both 

membranes were completely submerged during the entire coating process. 

 Membrane coupons for initial experiments, particularly concentration studies, 

were coated in the refrigerator (4ºC) to prevent photodegradation of the membrane 

samples and inhibit any biological growth. As method development progressed, it was 

decided that room temperature coating processes better simulated real world conditions 

and that photodegradation and biological growth were not a concern on experimental 

time scales of less than 24 hours. To emulate movement across the membrane surface 

similar to the flushing of feed water through modules in a RO plant, a rocker table was 

used on the bench top at room temperature (22±2ºC) for coatings used in removal 

(Chapter 5) and RO (Chapter 6) experiments. Coating (Chapter 4) experiments from 

August 2011 also utilized the rocker table. 

4.4  Coating method evaluation   

4.4.1 Wet vs. dry membranes 

For the concentration experiments, dry membrane coupons were placed into 

polyDADMAC or TiO2(+) solution for coating. This caused inconsistency in coating 

conditions as the negative nanoparticles were applied to a wet membrane while the 

polyDADMAC layer and positive NP were applied to a dry membrane. It was determined 

that all coatings should be applied to wet membranes to emulate real-world conditions 

where possible. Figure 4.10 shows that polyDADMAC binding was stronger on a dry 

membrane than on a wet one, but this effect could also be attributed to whether the 
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coating process was dynamic (wet membrane), allowing less loose binding, or binding 

via passive adsorption in a static solution (dry membrane). The stronger affinity of 

polyDADMAC for the dry membrane is assumed to be a result of static vs. dynamic 

coating conditions rather than temperature or degree of membrane saturation. Coating a 

wet membrane in cool, static conditions could easily test this hypothesis.  

 
Figure 4.10. Titrations for polyDADMAC-coated SW30HR show that a dry membrane coated statically at 
low temperature had a more positive charge than a wet membrane coated dynamically at room temperature. 
 

4.4.2 Control coatings 

Control experiments were performed to determine whether coatings adsorbed via 

electrostatic interactions alone or a combination of factors (H-bonding, van der Waals 

forces, etc.). TiO2(+) did not alter the zeta potential or curve shape of the polyDADMAC-

coated membrane (Figure 4.11), indicating that positive NPs did not adsorb to the 

polymer coating layer. Ag(-) and TiO2(-) NPs adsorbed almost equally to the bare 
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SW30HR membrane despite electrostatically-repelling carboxyl groups present in both 

the NPs and membrane surface. Atop the PA layer SW30HR had a commercially applied 

layer of uncharged PVA, which served as a barrier between the membrane carboxyl 

groups and the negatively charged NPs and allowed adsorption to the membrane surface 

via non-electrostatic interactions, such as van der Waals forces. Negative NPs would be 

expected to show less affinity for SWC4 and SWC5, both of which are bare PA and have 

significantly stronger negative character than SW30HR. Experiments with SWC4 and 

SWC5 were laid out but not performed, so future work may confirm or deny this 

hypothesis. It was assumed that the polyDADMAC binding layer carried strong enough 

charge to attract the negative NPs and overpower alternate adsorption pathways. 

 
Figure 4.11. Control coatings on SW30HR. TiO2(+) did not adsorb to polyDADMAC; TiO2(-) and Ag(-) 

appear to have adsorbed to SW30HR despite carboxyl groups promoting electrostatic repulsion.  
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4.4.3 SEM imaging results  

 SEM was used to investigate whether applied coatings were thick enough to be 

visible on the membrane surface. Initial SEM analysis after coating experiments used the 

TM3000 instrument with a maximum resolution of 10,000 (10k) magnification. Even 

with relatively low magnification of 2.5k, Ag(-) aggregates of up to 6 µm were visible on 

the membrane surface when coated with 100 mg Ag/L NP solution (Figure 4.7). Titanium 

NPs, applied in much lower concentrations, were not visible on the membrane surface 

(Figure A.1). A higher resolution instrument, the SU6600, was used to achieve 100k 

magnification of the membrane surface. Ag(-) coatings of 20 mg Ag/L were used for the 

high resolution imaging but were not visible on the membrane surface at the lower 

concentration (Figure A.2). PolyDADMAC coatings, not visible at 10k magnification, 

were visible in 100k images as “filled in” valleys in the membrane structure (Figure 

4.12).  

  
Figure 4.12. SEM images of virgin SW30HR (left) and polyDADMAC-coated SW30HR (right). 

PolyDADMAC coating appeared to fill in the loop and valley structure of the membrane. 
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4.4.4 ATR-FTIR analysis 

 Infrared spectroscopy was used to investigate whether coatings were present in 

sufficient quantities to impart changes in infrared spectra. A significant quantity of 

polyDADMAC coating was expected to result in an emerging C-N peak at ~1100 cm-1, 

while polyacrylate from the negative NP coatings was expected to result in a shift of the 

carboxyl C=O as the aliphatic carboxyl group contributed to the peak. However, no 

changes were observed in the presence of any coating (Figure 4.13), substantiating the 

conclusion that coatings were thin.  

 
Figure 4.13. ATR-FTIR of polyDADMAC and negatively charged NP coatings did not indicate any 

changes in surface chemistry.  
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CHAPTER FIVE 

REMOVAL OF COATINGS 

 One hypothesis of this work is that electrostatic interactions are the dominant 

mechanism for coating attachment, so simple acid or base cleaning should be sufficient 

for coating removal.  

5.1 Coating removal methods 

 For removal experiments, wet membranes were coated in 0.2% polyDADMAC 

solution on a rocker table at room temperature for 24 hr, soaked in DDI overnight and 

coated in NP solutions under the same conditions for 2 hr; TiO2(+) NPs were simply 

coated for 2 hr on the rocker table. Concentrations used for coating were 20 mg Ag/L 

Ag(-), 3.7 mg Ti/L TiO2(-) and 4.2 mg Ti/L TiO2(+). All coated membranes were soaked 

in DDI water for at least 12 hours before analysis or further coating to allow dissociation 

of any material not strongly attached to the membrane surface.  

 Coated membranes were exposed to hydrochloric acid (HCl) or sodium hydroxide 

(NaOH) solutions to investigate the appropriate conditions for coating removal. Initial 

removal experiments used strong HCl (pH 1) and NaOH (pH 13) for several hours. 

Membrane integrity limitations were addressed for subsequent experiments and acid 

solutions of pH 1, 2, 3 and 4 (HCl concentration 0.1, 0.01, 0.001 and 0.0001 M) were 

used for no longer than 30 minutes as per manufacturer recommendations. Control 

samples of virgin membrane were washed at each acid and base concentration to 

determine whether the caustic solutions altered the properties of the membrane (Figure 

3.8). Strong cleaning with pH 1 HCl significantly altered the membrane, so 
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polyDADMAC and NP coatings were cleaned with pH 2, 3 and 4 solutions for the 

majority of experiments. 

5.2 Coating removal results 

5.2.1 PolyDADMAC coating removal 

 PolyDADMAC was effectively removed from the SW30HR membrane surface at 

a pH below the membrane isoelectric point (pH ~4 for SW30HR). As the pH decreased 

the membrane zeta potential became slightly positive, causing electrostatically 

unfavorable conditions for the polyDADMAC coating. Theoretically, as the membrane 

zeta potential increased, the polyDADMAC would be electrostatically repelled from the 

membrane and the coating removed. Figure 5.1 indicates that some polyDADMAC 

remained on the surface after cleaning with both pH 1 and pH 4 solutions. This was 

expected because of the nature of the polyDADMAC polymer. A highly charged, 80-120 

kiloDalton (kDa) linear polymer, polyDADMAC likely bound to the PA surface at 

multiple contact points, creating a strongly bound coating layer. Removal of a single 

polyDADMAC chain would require every contact point to be electrostatically 

unfavorable; it is likely that a percentage of the polymer remained attached to the 

membrane at one or several contact points per chain. 

SW30HR was used for coating removal experiments because it was not highly 

charged at low pH values, probably because of the PVA layer (as opposed to other 

membranes that do not have such a layer). Had the membrane been more positively 

charged at low pH, electrostatic repulsion between it and polyDADMAC would likely 

have been stronger, leading to greater removal. Since polyDADMAC was only used as a 
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binding layer for negative NPs, it was not considered a negative result for residual 

polymer to remain on the membrane. If applied in a membrane system, the 

polyDADMAC layer would be replenished anyway.  

 
Figure 5.1. Acid cleaning of polyDADMAC-coated SW30HR resulted in significant but incomplete 

removal of the polymer. 
 

 PolyDADMAC was also subjected to a NaOH cleaning solution of pH 13 for 8 

hours. Though the cleaning conditions exceeded the manufacturer recommendations for 

exposure time to high pH, some insights were gained from the single measurement data 

collected (Table 5.1). While the polyDADMAC-coated membrane had a zeta potential of 

+14 mV and the negative zeta potential of an acid-cleaned sample indicated some 

removal of the polyDADMAC layer, the base-cleaned sample retained a positive zeta 

potential of +8 mV. It is unclear from the experiments performed whether the decrease in 

zeta potential was caused by damage to the membrane by the caustic solution over an 
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excessive duration or if some of the polyDADMAC coating was removed. If the 

membrane was not damaged by caustic cleaning, polyDADMAC would be expected to 

adsorb more strongly to the membrane as the percentage of negative binding sites 

increased. The data may support this hypothesis: if a polyDADMAC chain adsorbed to 

the SW30HR surface at several points and the rest remained dangling from the surface, a 

high zeta potential would result. If the membrane became more negatively charged at 

high pH and the polymer chain became more attracted to the surface, the zeta potential 

measurement would decrease as the membrane neutralized a higher percentage of the 

polymer chain.  

Table 5.1. Comparison of single measurement electrokinetic data for coating materials. Change in zeta 
potential for acid and base cleaning is reported as the difference between the coated membrane and after 

cleaning. 
Sample polyDADMAC ZP (mV) Ag ZP (mV) TiO2(-) ZP (mV) 
Uncoated SW30HR -12.8 -12.8 -12.8 
pD or pD-NP coating 14.0 -2.3 5.5 
pH 1 cleaning -0.92 -11.8 -6.9 
Change in ZP (acid) -14.92 -9.5 -12.4 
pH 13 cleaning 7.8 1.6 9.3 
Change in ZP (base) -6.2 3.9 3.8 

 

5.2.2 TiO2(+) coating removal 

 TiO2(+) NPs were effectively removed by each acid concentration considered 

(Figure 5.2). Slight differences between titrations were assumed to be instrument 

variability rather than significant results since the pH 1 cleaning solution appears to have 

the highest zeta potential when compared to pH 2 and 3 cleaning solutions. When the 

titration curves of the acid cleaned membrane were compared to the virgin membrane, all 

of the NP coating appeared to be removed by acid solutions as weak as pH 3. NPs should 
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be roughly spherical in shape; if this was true, TiO2(+) NPs adsorbed to the membrane 

surface via a single contact point and were simpler to repel or release from the membrane 

than was the polyDADMAC polymer. Base cleaning was not investigated for TiO2(+) 

NPs based on the results of polyDADMAC-coated membrane cleaning; it was not 

anticipated to be an effective means of removing the positively-charged materials.  

 
Figure 5.2. Acid cleaning of TiO2(+) coatings. Acid cleaning resulted in complete removal of NPs for all 

acid concentrations investigated.  
 

5.2.3 Ag(-) coating removal 

 Aggregation of Ag(-) NPs discovered by SEM imaging became an asset for 

coating removal data. Along with coatings, acid cleaning with pH 1 and base cleaning 

with pH 13 were observed using the TM3000 SEM (Figure 5.3). Aggregates were 

observed on the coated membrane as discussed previously. Fewer aggregates were 

observed on the acid-cleaned membrane, but some smaller aggregates remained. No 
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aggregates were located on the base-cleaned membrane. When considered along with 

electrokinetic data for samples from the same membrane coupons (Table 5.1), several 

conclusions can be drawn. The absence of NPs in the SEM image and increase in zeta 

potential indicate removal of the NPs and endurance of the polyDADMAC coating. Acid 

cleaning resulted in a significant drop in zeta potential, indicating removal of 

polyDADMAC coating but Ag(-) aggregates were still visible in SEM images. Two 

possibilities exist: either Ag(-) NPs adsorbed to the membrane surface via non-

electrostatic interactions or aggregates remained adsorbed to the polyDADMAC polymer 

not removed from the membrane by cleaning. Control experiments indicated that NPs 

had adsorbed to the membrane surface in the absence of the polyDADMAC binding 

layer, so either mechanism is possible.  
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Figure 5.3. SEM images of uncoated SW30HR (a), Ag(-)-coated SW30HR (b), pH 1 acid-cleaned Ag(-)-

coated SW30HR (c) and pH 13 base-cleaned Ag(-)-coated SW30HR (d). 
 

 Electrokinetic data were collected for titrations of acid-cleaned Ag(-)-coated 

membranes (Figure 5.4). An increase in zeta potential at the low end of the titration 

indicated that polyDADMAC remained on the membrane. The low zeta potential values 

at high pH drop below the SW30HR membrane, suggesting that NPs may remain 

adsorbed to the membrane and contribute to an increase in negative character at high pH. 
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Figure 5.4. Electrokinetic behavior of Ag(-) coatings, bound to a polyDADMAC layer, after acid cleaning.  
 

5.2.4 TiO2(-) coating removal  

 TiO2(-) coatings behaved quite similarly to Ag(-) coatings for acid cleaning 

experiments. No NP aggregates were visible in SEM images because a low concentration 

(3.7 mg Ti/L) was used throughout the course of coating and removal experiments, but 

electrokinetic data were very similar to Ag(-) coatings, so similar conclusions regarding 

NP adsorption and detachment may be drawn. Single measurements for TiO2(-) coating, 

acid and base titrations (Table 5.2) confirm the similar behavior to Ag(-). The TiO2(-) 

coating imparted less charge decline because the concentration was much lower than that 

of Ag(-) (3.7 mg Ti/L vs 100 mg Ag/L). Acid cleaning resulted in a zeta potential drop 

while base cleaning resulted in an increase in zeta potential. When the quantitative 

change in zeta potential was compared for acid and base cleaning of Ag(-) and TiO2(-) 
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coatings, the results were very similar. These similarities suggested that the 

functionalizing polymer component of the composite NP (polyacrylate), rather than the 

inorganic component (Ti or Ag), contributed most significantly to NP behavior on the 

membrane surface.  

 Unlike with other coatings, electrokinetic behavior after acid cleaning of TiO2(-) 

coatings appeared to be directly related to acid strength (Figure 5.5). A pH 4 cleaning 

solution did not change the acid titration zeta potential values, and a drop in zeta potential 

for the base titration was attributed to leaving the membrane in acid overnight before 

running the second half of the titration. A pH 3 cleaning solution decreased the zeta 

potential slightly for both titrations. A pH 2 cleaning solution produced the largest change 

but still did not return the acid titration curve to the SW30HR values; the zeta potential 

remained high at low pH and dropped far below the SW30HR zeta potential during the 

base titration, indicating that NPs were still bound to the membrane and contributing 

additional negative charge at high pH.  
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Figure 5.5. Electrokinetic behavior of TiO2(-) coatings after acid cleaning. 
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CHAPTER SIX 

BENCH SCALE REVERSE OSMOSIS FOULING EXPERIMENTS  

Bench scale reverse osmosis experiments were undertaken to begin testing the 

viability of the coating materials. Silver NPs were selected for bench scale RO 

experiments. Membranes coated for RO experiments were coated on the bench top as 

done previously. These experiments provide preliminary results for future work 

investigating fouling on RO membranes with removable coatings.  

6.1 Experimental design  

Three cycles of three experiments, outlined in Table 6.1, were performed in the 

bench-scale tests. The first cycle of experiments was performed with uncoated SWC5 

membrane, the second cycle with polyDADMAC coated SWC5 and the third cycle with 

polyDADMAC and Ag(-) coated SWC5. Three membranes were prepared for each cycle 

of experiments: with the first membrane a three hour clean water flux test was performed, 

the second membrane was fouled for three hours with sodium alginate and the third 

membrane was fouled for two hours with sodium alginate and cleaned for 30 minutes 

with a pH 3 HCl wash. After all experiments were completed a single experiment of the 

complete cycle was performed for each set with a single membrane being used for clean 

water flux, fouling, cleaning and post-cleaning flux recovery.  
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Table 6.1. Experimental matrix for bench scale RO experiments using SWC5 membranes.  
Experiment (+) Coating (-) Coating Foulant Cleaning 

1.1 none none none none 
1.2 none none Na Alginate none 
1.3 none none Na Alginate pH 3 HCl 
2.1 pDADMAC none none none 
2.2 pDADMAC none Na Alginate none 
2.3 pDADMAC none Na Alginate pH 3 HCl 
3.1 pDADMAC Ag(-) none none 
3.2 pDADMAC Ag(-) Na Alginate none 
3.3 pDADMAC Ag(-) Na Alginate pH 3 HCl 

 

6.2 RO methods and additional materials 

 A bench scale reverse osmosis system, diagrammed in Figure 6.1, was used for 

the RO experiments. An existing LabView program, v38, was used for all experiments. A 

pump circulated the water through the piping at approximately 800 mL/min and a cooling 

system maintained the temperature of the recirculating feed water at 24±2°C. An 

automated needle valve was used to ramp the pressure to a target of 1000 psi; if the 

pressure dropped below 985 or above 1005 psi (the two set points used), the valve was 

automatically adjusted. The clean water permeate forced through the membrane was 

collected into a beaker on a digital scale recording mass as input for the LabView 

program to calculate flux. Permeate containers were 1 L in size and emptied after 

approximately 750-950 mL had accumulated.  

An experiment was defined as the tests performed on a single membrane sample 

(3.1 or 2.2, for example), while the set of experiments for a particular membrane coating 

was referred to as an experimental cycle. After each experiment in Table 6.1, the 

membrane coupon was removed and prepared for electrokinetic analysis. A fresh 
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membrane was used for each experiment. Some repetition occurred between experiments, 

such as fouling in two experiments of each cycle; the data was used to confirm 

repeatability of experiments and observe variability between individual membrane 

coupons.  

Feed tank

High pressure pump

 Automated
needle valve

Pressure 
  gauge

Membrane cell

Temperature 
      control

Pressure 
  gauge

Feed water recycle

Permeate balance
Computer controls  

 
Figure 6.1. Diagram of reverse osmosis bench scale filtration system. 

 A high concentration of sodium alginate was used as a model polysaccharide to 

foul the membranes and cause flux decline (Mi and Elimelech, 2009; Herzberg et al., 

2009). A 2 g/L stock solution was prepared by combining 2 g sodium alginate powder 

with 1 L of DI water and stirring overnight to dissolve. For fouling experiments, 200 mL 

of sodium alginate stock solution was diluted into 4 L DI water, resulting in a 95 mg/L 

sodium alginate solution.  

 Deionized water flux tests, represented in Table 6.1 by experiments X.1, used 

approximately 10 L of DI water in continuous recycle mode. DI water experiments ran 
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for three hours to allow for membrane compaction and evaluate the effects of the 

different coatings on general flux.  

 Fouling experiments, represented in Table 6.1 by experiments X.2, started with a 

one hour clean water flux to compact the membrane. DI water was used in recycle mode 

for the clean water flux time. After one hour any water remaining in the feed tank was 

wasted until the water level was just above the pump, at which point the pump was 

stopped. Sodium alginate feed solution was prepared in a 4 L flask and added to the feed 

tank. The feed hose was filled with water and the system set back to recycle mode. The 

program was started and fouling occurred for three hours from the time the system 

reached the target pressure of 1000 psi. The membrane was removed from the sample 

holder, the sample cell was bypassed and the system was cleaned with 1 L pH 12 NaOH 

for five minutes followed by 1 L pH 3 HCl for 10 minutes. At least 20 L DI water was 

flushed through the system after cleaning.  

 Membrane cleaning experiments, represented in Table 6.1 by experiments X.3, 

consisted of one hour DI flux and two hours sodium alginate fouling as described for X.2 

experiments. After 2 hr of fouling any remaining solution in the feed tank was wasted 

until the water level was just above the pump. Four liters of pH 3 (0.001 M) HCl solution 

was immediately added to the system and recycled through for 30 min. The system was 

flushed with DI water for at least 5 minutes after acid cleaning to remove residual acid, 

foulant and coating material from the system, then the membrane was removed and the 

system cleaned as described for the fouling experiments.  
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 Finally the entire cycle of experiment was performed on a single membrane 

sample, involving DI water flux, fouling, cleaning and recovery. In the full experiments, 

membranes were compacted for one hour, fouled for three hours, cleaned with HCl for 30 

minutes and DI water was run through the system for at least one hour to evaluate flux 

recovery after cleaning. The system was flushed with 20 L DI water after full 

experiments without caustic cleaning.  

 A six hour DI water experiment was run to evaluate membrane compaction over 

the course of the experiments. After six hours of DI flux through the membrane a 35 g/L 

NaCl solution was used to test membrane rejection. Rejection exceeded 99% throughout 

a one hour experiment. This indicates that despite high flux values (in excess of 120 

L/m2h), the membranes used for RO experiments had acceptable integrity.  

6.3  Bench-scale RO results  

 The bench scale RO experiments had promising results. Actual flux values are 

reported in standard units of L/m2/hr (lmh) and normalized flux values are reported as a 

fraction. When fluxes were normalized to the six hour DI water experiment and 

compared (Table 6.2), the membrane coated with both polyDADMAC and Ag(-) had the 

best flux recovery after fouling and cleaning. Fluxes for experimental membranes are 

reported throughout this section in relation to the six hour DI water experiment, which is 

considered to be 100% flux (maximum flux achievable under experimental conditions) at 

all times; the flux after four hours, which was reduced from the initial by 10% due to 

membrane compaction, was considered 100% flux after four hours of experiment time. 

The six hour experiment accounted for membrane compaction so that experiment cycles 
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could be compared to a “normal” membrane subjected to the same filtration duration. 

Results are reported as normalized flux averaged throughout the experiment timeframe 

(one hour for DI flux, one hour for DI flux after cleaning, etc) except for fouling 

experiments, in which the last five minutes of flux data is averaged; averaged normalized 

flux is then compared to that of the SWC5 six hour DI water experiment to determine 

what degree of flux decline or recovery was achieved after membrane compaction was 

addressed.  

The initial fluxes for all membranes were similar (Figure 6.2), indicating that 

coatings were not thick enough to cause flux decline. PolyDADMAC-coated SWC5 

achieved 98% of uncoated membrane flux while the Ag(-)-coated membrane achieved 

97% flux. Some variability was observed between membrane samples (±5%, not shown); 

experiments with similar flux values were compared where possible. Variability was 

expected due to heterogeneity of the membrane and some user error with the bench-scale 

unit. Some variability on coated membranes was also attributed to heterogeneity of 

coatings, which was exacerbated for Ag(-) coatings if the polyDADMAC coating varied 

significantly.  
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Figure 6.2. Comparison of DI water flux. Uncoated SWC5 had the highest flux with polyDADMAC-

coated and Ag(-) coated fluxes slightly lower.  
 

 In fouling tests (Figure 6.3), the coated membranes fouled at approximately the 

same rate with an equal overall flux (75% of clean water flux). The uncoated membrane 

fouled more quickly, resulting in faster flux decline and lower overall flux (66%). There 

is an offset in Figure 6.3 due to flux being normalized to the six hour DI water 

experiment rather than the actual flux of each membrane when fouling began. The lower 

rate of fouling and higher flux for coated membranes indicates that the coatings may 

block foulants from adsorbing in the “loops and valleys” of the membrane structure. 

When actual flux values were compared (Figure A.6) it was noted that both coated 

membranes had lower fluxes when fouling began, but fouled to a lesser extent than the 

uncoated membrane. The flux for both coated membranes after fouling, which was 



 

 
65 

indistinguishable in both normalized and actual flux data, was slightly higher (75 lmh) 

than the uncoated membrane (70 lmh).  

 
Figure 6.3. Fouling of virgin, polyDADMAC coated and Ag(-) coated membranes. Somewhat less fouling 

occurred on the coated membranes, resulting in 10% higher flux. 
 
 
 Flux recovery experiments after pH 3 cleaning for 30 minutes are shown in Figure 

6.4, with polyDADMAC-coated and virgin membranes demonstrating similar recovery. 

Most notably, Ag(-) coated membranes had improved flux recovery over the virgin and 

polyDADMAC coated membranes, which suggests that the NP coating improves the 

removal of the foulant and benefits flux recovery after washing. The flux through each 

membrane was normalized to the flux of the six hour DI water experiment after four 

hours of membrane compaction. When actual flux values are compared (Figure A.7), a 

similar effect is observed. Cleaning of the polyDADMAC-coated membrane shows 

improvement when normalized flux is considered, but actual flux values are very similar 
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to the uncoated membrane. When the Ag(-)-coated membrane is cleaned, however, the 

resulting flux is higher than that of the uncoated membrane.  

 
Figure 6.4. Flux recovery after acid cleaning. PolyDADMAC coating gives slight improvement in flux 

recovery, but Ag(-) coating notably increases post-cleaning flux. 
 

Repeated parts of experiments (fouling occurred on two of the three membranes 

in each experimental cycle, for example) were compared to determine the repeatability of 

RO flux test results. Flux data in these figures are normalized to the first flux 

measurement of each experiment for comparison purposes. DI water flux data were 

compared from three separate Ag(-) coating experiments (Figure 6.5). Data were 

comparable except for an anomalous initial flux on 5/23/2012. DI flux data for 

polyDADMAC-coated membranes were similar. SWC5 fouling experiments are more 

varied than DI water experiments (Figure 6.6). Experiments differ in rate of fouling and 

final flux after fouling.  
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Figure 6.5. Comparison of DI water flux for Ag(-) coated SWC5 membranes. The third data set suddenly 

dropped by approximately 5% flux after 1.5hr, which cannot be explained with the data available. 
 

 
Figure 6.6. Comparison of SWC5 fouling experiments. Fouling experiments were more varied than DI 

water flux. Different rates of fouling and flux declines are observed. 
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 The complete cycle of experiments consisted of DI water flux for 1.3 hours, 

sodium alginate fouling until 4.1 hours, pH 3 HCl cleaning for 30 minutes and DI water 

flux recovery after cleaning. Cleaning was performed at low pressure and flux data were 

not collected, so flux recovery data were modified by approximately 30 minutes for 

continuity of Figure 6.7.  

In the full cycle experiment, a clean water flux was run through a SWC5 

membrane for six hours to evaluate membrane compaction effects. Improved flux 

recovery was expected for the coated membranes when compared to the uncoated 

membrane. Both coated membranes had slightly higher DI water flux than the uncoated 

SWC5. Fouling occurred more slowly on coated membranes than for SWC5, with 10% 

higher flux through coated membranes. Flux recovery for the Ag(-) coated membrane 

showed notable improvement over both polyDADMAC-coated and uncoated SWC5, 

achieving 83% flux after pH 3 HCl cleaning compared to 74 and 69% of DI water flux, 

respectively. With respect to Figure 6.7, the average flux of the SWC5 DI flux is 

considered to be 100% throughout the experiment such that the 83% flux of the Ag(-) 

coated membrane is relative to the SWC5 membrane after four hours of membrane 

compaction.   

 
Table 6.2. Average flux normalized to SWC5 DI water experiment after each stage of RO filtration.  
    Averaged Normalized Flux  

Membrane Initial Flux 
(lmh) DI water Fouling Post-cleaning Final 

SWC5 122 0.907 0.664 0.639 0.690 
SWC5-pD 113 0.958 0.751 0.684 0.739 
SWC5-pD-Ag 112 0.954 0.751 0.766 0.827 
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Figure 6.7.  Full cycle RO experiments. PolyDADMAC and Ag(-) coatings had lower initial flux and 

slower fouling. Ag(-) had notable flux improvement after cleaning. 
 

Overall, the coating concept showed promise in the RO experiments. 

PolyDADMAC and Ag(-) coated membranes did not significantly decrease the flux of 

the membrane. Fouling occurred to a lesser extent, with less flux decline, on coated 

membranes. Nanoparticle coated membranes showed notable flux improvement after 

simple acid cleaning. Future experiments need to be performed in saltwater conditions so 

salt rejection, the most important aspect of desalination membranes, can be considered. 

Coatings should be re-applied in the RO system to determine feasibility of the 

regenerable coating concept.  
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 

 Considerable progress has been made toward the goal of determining whether the 

materials used in this study can be electrostatically applied and removed. Coatings 

demonstrated success in delaying fouling of the membranes and cleaning experiments in 

the bench-scale RO system indicated that coating removal may improve flux recovery 

after fouling. This chapter aims to summarize the progress toward the main research goal 

and suggest future experiments and analyses.   

7.1 Conclusions relating to research objectives 

7.1.1 Determine appropriate conditions for self-assembly of polymer and NP coatings 

on RO membranes. 

The polymer and NPs selected for this study were novel materials for RO 

membrane coatings. PolyDADMAC is currently used in the water treatment industry as a 

flocculant and would be simple to implement in RO systems if effective. PolyDADMAC 

had also been previously demonstrated to cause few negative changes to the membrane 

when explored in an operational context (Gabelich et al., 2005). NDMA formation is not 

a concern in drinking water treatment operations because oxidative disinfectants are not 

used; they are detrimental to polyamide membranes. However, polyDADMAC has been 

demonstrated to decrease antiscaling membrane properties when used as a coagulant in 

pretreatment trains prior to RO filtration (Kim et al., 2009). Diluted solutions of 

polyDADMAC (0.2% w/v) effectively coated the polyamide membranes, causing a large 
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increase in zeta potential throughout the pH range investigated (3 – 9) and negligible flux 

decline under normal operating conditions in DI water.  

Functionalized inorganic-polymer composite NPs are a model system useful for 

the fundamental work performed here, though their applicability in full-scale systems 

may be cost-prohibitive. Future work with this project may continue to use the NPs 

purchased for this study, but consideration should be given to whether NP use is 

economically or ecologically feasible. There are environmental concerns regarding 

behavior of nanomaterials in natural systems (Auffan et al., 2009); on the large scale, a 

process would need to be implemented to remove and dispose of NPs after removal. The 

effects of the inorganic component, such as any antifouling properties, should also be 

considered; no significant difference was observed between TiO2(-) and Ag(-) when 

measurement variability was considered, suggesting that the functionalizing polymer 

(polyacrylate) dominated mechanisms of adsorption to the membrane. Small quantities of 

NPs – 3.8 mg Ti/L TiO2(+), 4.2 mg Ti/L TiO2(-) and 20 mg Ag/L Ag(-) NPs – were able 

to cause notable zeta potential changes on the membrane surface. The percent coverage 

of the membrane and coating heterogeneity have not yet been determined.  

Coating methods were developed over the course of this study. When experiments 

began, dry membrane coupons were placed directly into coating solution and coated 

statically at low temperature (4°C). As experiments progressed and implementation was 

considered, coating conditions were modified to more closely emulate the operating 

conditions of an RO facility. In an RO plant, coating and cleaning membrane modules 

would be accomplished by passing the solution over the membrane surface at ambient 
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temperature (~25°C). Membrane modules are inspected by the manufacturer and 

vacuum-sealed in water before purchase, so all membranes being coated would already 

be saturated with water. From August 2011 onward, membrane coupons were soaked at 

least overnight before being immersed in the coating solution. A rocker table was used to 

agitate the coating solution to move continuously across the membrane surface, creating 

dynamic coating conditions expected in a RO plant. 

7.1.2 Determine appropriate conditions for coating removal. 

All coatings were at least partially removed by acid cleaning, as indicated by zeta 

potential measurements and SEM imaging. Zeta potential titrations indicated that 

polyDADMAC remained on the membrane surface after cleaning with all acid 

concentrations, likely due to the polymer adsorbing at multiple sites on the membrane or 

getting “stuck” in the loop and valley structure of the membrane surface. Alternative 

binding mechanisms, such as van der Waals interactions, may also have played a role in 

polyDADMAC adsorption after acid cleaning. If binding was truly electrostatic, 

polyDADMAC should have been repelled from the membrane surface as high proton 

concentrations “crowded out” the negative charge density on the membrane surface 

(Figure 7.1a).  

Negatively charged Ag and Ti NPs were removed by acid cleaning because they 

were bound to the polyDADMAC layer; when the polyDADMAC was repelled from the 

membrane, the NPs were removed as well. The few base cleaning experiments performed 

indicated some removal of the negative NPs but endurance of the polyDADMAC 

coating. This was an expected result for electrostatic interactions (Figure 7.1b). SEM 
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imaging of Ag(-) aggregates indicated that NPs remained on the surface after strong acid 

cleaning but were removed by strong base cleaning. Base cleaning was not pursued 

because it was not as effective in removing the polyDADMAC as acid cleaning; 

experiments were focused on removal of all coatings, so NPs were removed via removal 

of polyDADMAC.  

 
Figure 7.1. Expected desorption mechanisms for positive materials at low pH (a) and negative particles at 
high pH (b). PolyDADMAC and TiO2(+) were expected to detach from the membrane via mechanism (a) 
while negatively charged NPs were expected to detach from the polyDADMAC layer via mechanism (b). 

 
 

There remains a question of whether NPs can be removed from the membrane if 

they are entrapped in the loop and valley structure. PolyDADMAC coating was observed 

“filling in” the loop and valley structure in several SEM images (Figure 4.12; Figure 

C.5), which could prevent NPs from becoming trapped. Additionally, the only goal of 

removing the coating materials is to remove foulants; if some NPs remain on the 

membrane after cleaning but foulants are removed, the end goal has been accomplished. 

Coatings that adsorb within the loop and valley structure also occupy active sites where 

undesirable materials may adsorb or accumulate, such as bacteria and mineral deposits. 

!

 b 

!

 a 
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7.1.3 Use zeta potential titrations to detect the presence of self-assembled coatings. 

Zeta potential measurements were used throughout the study to detect the 

presence of membrane coatings. Zeta potential measurement was the only way to detect 

the coatings in most cases; though polyDADMAC coating was not visible to ATR-FTIR 

or low to moderate magnification SEM, the adsorbed material caused significant changes 

to the zeta potential of the membrane, confirming its presence. The same was true for 

both TiO2 NPs, and lower concentrations of Ag(-) NPs, which were not visible on SEM. 

Comparison of zeta potential single measurements with SEM images of coated and 

cleaned Ag(-) NP aggregates allowed more complex conclusions to be considered.  

7.2 Future work recommendations 

7.2.1 Materials and material characterization 

Quantification of the polyDADMAC polymer was not performed because a 

suitable method was not determined during the course of this study. Total organic carbon 

or total nitrogen analysis of the coating solution and reverse osmosis permeate may be 

effective methods for detecting polyDADMAC in solution; comparison to the 20% stock 

solution provided by the manufacturer should allow for quantification of the samples.  

Several methods were available for quantification of NPs but only one was used. 

Quantification of Ti NPs is particularly important because solutions were prepared from 

powdered NPs that were observed sticking to glassware after preparation. The inorganic 

component of each NP was targeted during analysis; in this study, ICP-OES determined 

the concentration of Ag or Ti present in stock solution samples acidified with 5% HNO3. 

Low Ti NP concentrations indicated that NPs were incompletely dissolved in simple acid 
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solution and digestion should be performed for further analysis. Digestion was not 

undertaken for the solutions discussed in this study but there is confidence in the 

measurements of Ag(-) NPs, which was as expected. A microwave digestion instrument 

is available for use and acid digestion SOPs were obtained; comparison between the two 

digestion methods would be interesting. ICP analysis of Ag(-) NPs produced the expected 

result, so further analysis is probably only necessary to produce a calibration curve at 

higher concentrations. 

Zeta potential titrations at different stages of the study revealed significant 

variation in NP coatings that were applied using the same process. It is suspected that Ti 

NPs may have aggregated in the stock solutions after being stored for several months, 

resulting in a large variation in concentration between aliquots of NP solution. While size 

analysis was reported by the manufacturer for the Ag(-) solution and powdered TiO2 NPs, 

verification of NP size in stock solutions would be beneficial. Differences between values 

reported by the manufacturer and laboratory measurements may indicate whether 

aggregation occurred when dissolving NPs in DDI water. Future stock solutions may be 

prevented from aggregating by sonicating solutions occasionally during storage and 

before aliquots are removed for membrane coating. 

The NPs adsorbed to the membrane surface should be quantified. Acid digestion 

of the membrane coupons can be used to release the Ti and Ag from the functionalizing 

polymer and the membrane surface; these concentrations can be used to infer the quantity 

of inorganic components on the membrane. Because both sides of the membrane are 

exposed to NPs during coating, it must be taken into account that Ti or Ag values from 
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ICP analysis will include NPs bound to the backing layer as well as the active layer. This 

method does not address how many inorganic components are present in each NP or how 

NPs are distributed on the membrane surface, nor percent coverage.  

7.2.2 Coating condition optimization 

Coating kinetics were briefly examined to determine NP coating duration, but 

kinetics did not fit the scope of this study. Kinetics should be investigated more 

thoroughly, similarly to the concentration experiments in this work, seeking the shortest 

effective coating time. It is expected that coatings assemble electrostatically on the order 

of minutes. Reducing the duration of coating time may reduce the cost of implementing 

this technology. 

Verification of coating layers by a technique other than zeta potential would be 

useful; X-ray spectroscopy is expected to be a viable option. X-ray photoelectron 

spectroscopy (XPS) is used for elemental characterization of membrane surfaces and can 

be employed to verify the presence of Ti and Ag on the membrane (Siegbahn, 1981). 

XPS requires concentrations of parts per thousand or higher, which may present issues 

with the extremely thin NP coatings. Parts per million concentrations are detectable, but 

longer data collection times or specialized instrumentation are required. Energy-

dispersive X-ray spectroscopy (EDS), a technique coupled to SEM instrumentation, can 

also be used for elemental analysis of the sample. Sputter-coating may interfere with 

detection of small quantities of Ti or Ag, so samples that are not sputter-coated should be 

analyzed. Samples may then be sputter-coated for SEM visual analysis. 
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Both X-ray techniques are critical tools, as the top 1-10 nm of the material can be 

analyzed; compared to ATR-FTIR, which produced a spectrum dominated by the 

polysulfone membrane backing, these techniques are highly sensitive (Tang et al., 

2009a). No interference is expected for either Ag or Ti detection due to the organic nature 

of the membrane structure, functionalizing polymers and polyDADMAC coating. Trace 

amounts of other elements in the NPs, analyzed and reported by the manufacturer in the 

technical specification sheet, would produce negligible if any response.   

SW30HR, the membrane used for most of the experiments, had a commercially 

applied PVA layer that prevented significantly high (+30 mV) or low (-30 mV) zeta 

potential from developing at the membrane surface. Though this property is beneficial in 

operating conditions, the shielding of the PA surface layer decreased the electrostatic 

strength of membrane interactions and may have prevented coatings from being fully 

adsorbed or removed. Electrostatically unfavorable conditions would likely develop on 

SWC4 and SWC5 membranes; effects might not be observable on SWC5 in the pH range 

of titrations since the isoelectric pH is ~3, but comparable experiments using SWC4 

could confirm conclusions drawn from SW30HR experiments. 

7.2.3 Removal of coatings 

Base solutions of various strengths should be investigated in the future to 

determine whether foulants could be removed by cleaning of the NP coating alone; 

however, from an application perspective, polyDADMAC is inexpensive enough to 

justify pursuing acid cleaning alone.  
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7.2.4 Bench-scale RO fouling experiments 

Reverse osmosis experiments were promising, with the nanoparticle-coated 

membrane having the highest relative flux recovery as well as less flux decline than the 

uncoated membrane during fouling. Despite some flux improvement, sodium alginate 

was visible on all fouled membrane samples removed from the bench scale unit. The 

fouling layer may have been too thick for the acid cleaning solution to effectively repel 

the polyDADMAC coating from the membrane surface; the quantity of foulant used 

represented a worst-case scenario for fouling. 

Additional RO fouling experiments should be performed in saltwater solutions so 

salt rejection data can be collected and the comprehensive effects of membrane coatings 

can be evaluated. Different types of foulants should be tested as well to determine 

whether the coating materials are effective against multiple modes of fouling. To 

evaluate whether coatings are “regenerable” and could be reapplied, application of 

coatings in the bench scale system should be attempted.  

Future studies of this research topic should focus on bench-scale experiments. 

Though membrane characterization is useful and method development necessary, 

coatings must be applicable in a system to be of any benefit. In RO experiments, salt 

water should be used to determine feed water chemistry effects on coatings. Coatings can 

be explored with other types of membranes as well to be applied to other systems, though 

adsorption within pores will need to be considered in the case of MF and UF membranes 

(Luxbacher, 2006). 
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Appendix A 

Additional Images 

 
Figure A.1. SEM image of SW30HR membrane coated with 0.2% polyDADMAC and 

3.7 mg/L TiO2(-). 
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Figure A.2. SEM image of SW30HR membrane coated with 0.2% polyDADMAC and  

20 mg/L Ag(-).  
 

 
Figure A.3. SEM image of uncoated SW30HR membrane.  
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Figure A.4. SEM image of SW30HR coated with 0.2% polyDADMAC. The clump of 
material in the upper right quadrant of the image is an artifact of membrane formation. 

 

 
Figure A.5. SEM image of SW30HR coated with 0.2% polyDADMAC. This section of 

the membrane shows the “filled in” loop and valley structure. 
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Figure A.6. Actual flux values for uncoated, polyDADMAC-coated and Ag(-)-coated 

SWC5 membranes. While the fluxes of the coated membranes were lower when fouling 
began, fouling occurred less dramatically overall for both coated membranes. 

 

 
Figure A.7. Actual flux values for uncoated, polyDADMAC-coated and Ag(-)-coated 
SWC5 membranes after acid cleaning. Cleaning of the Ag(-) membrane resulted in a 

notable improvement.  
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Appendix B 
 

SurPASS Adjustable Gap Cell: Standard Operating Procedures 
 

Night-before Preparation 
1. Cut membrane coupons (~1”x0.5”) and soak in DDI water overnight.  
2. Prepare 1 mM KCl solution:  

• Pipet 10 mL 0.1 M KCl solution into 1000 mL volumetric flask. 
• Fill to mark with DDI water.  
• Vacuum filter KCl solution: 

o Rinse Whatman funnel with DI water. 
o Position a 1 µm, 47mm membrane and assemble unit. 
o Rinse membrane by filtering 50-100mL DDI water; discard. 
o Filter KCl solution. 
o Clean up: rinse used glassware 3x with DI water and place on drying rack.  

 
Adjustable Gap Cell Assembly 

1. Adhere double-sided tape to blue sample holder. Press out bubbles. 
2. Peel backing off tape and adhere backing of membrane to tape.  

• Pull overhanging edges firmly with tweezers; press with Parafilm if needed. 
3. Trim membrane to exact size of sample holder. 

• Exercise extreme caution to not damage the sample holder with scissors. 
4. Insert sample holders into AGC.  
5. Adjust gap so both sides appear equal – a very thin slit of light should be visible 

from each side.  
6. Allow knurled nuts to freely spin onto sample holder stems until they stop at the 

AGC. Place holders and fold down arms to secure.  
7. Tighten knob on top of AGC until finger tight.  
8. Double check gap on both sides to ensure gaps are equal. 

ñ If gaps are not equal, disassemble to step 5 and readjust before proceeding.  
9. Insert the leads into the perfusion holes. 
10. Adjust the AGC holder to align with the grooves in the leads. Press down gently. 

Adjust if needed. 
11. Attach the AGC and tighten the leads with the knob on the holder until the clutch 

engages. 
 
Instrument Startup 

1. Start up VisioLab for SurPASS. 
2. Turn instrument on.  
3. Fill 600 mL Schott beaker with 500 mL 1 mM KCl. Add stir bar. 
4. Open Pre-Measurement window and run Fill cycle for 100 s.  
5. Run Rinse cycle to determine gap height: 



 

 
85 

• Start Rinse cycle. 
• When first ramp achieves target pressure (-300mbar), observe gap height 

readings.  
• If instrument fails to achieve target pressure, narrow gap height and repeat 

Rinse. 
• Adjust gap height as necessary to reach 0.105±0.01mm.  

6. Run full Rinse cycle for 300s after acceptable gap height is achieved. 
7. Run Flow check at 300mbar. Record final pressure and flow for each ramp.  

• If either ramp is nonlinear or does not achieve target pressure (±50mbar), re-
run Flow check.  
o It may be necessary to take apart the AGC and check the membrane, 

reverse the orientation of the AGC, re-run and closely observe the Rinse 
cycle, or undertake other troubleshooting measures. 

8. If running titrations and machine has been OFF, switch to beaker of 500 mL DI 
water and rinse syringes to clear bubbles from tubing: 
• Open Setup window and select Titration Settings. 
• Rinse both Left & Right syringes for 2 rinse cycles into DDI water, not the 

KCl solution. 
 
Membrane Analysis 

1. Run HCl titration: 
• File → New Measurement Document from Template (Ctrl+T) 
• Select “Adjustable Gap Cell.stf” 
• Fill appropriate sample description: material, pore size, coating, etc. 
• Select appropriate user (YOU!). 
• Measurement Type → pH Titration 
• Under pH Titration, change Used Syringe to Syringe Right (HCl). 
• Return to Sample Settings and START titration.  
• Save file: “year-month-day (sample description) HCl”  

.1. E.g., 2011-01-01 SWC4 virgin membrane HCl.srf 
2. Rinse instrument 3x with DDI water – pH reading should return to ~5.5. 
3. Rinse instrument 1x with fresh KCl solution.  
4. Run NaOH titration using same procedure as HCl, except: 

• Do NOT change Use Syringe settings. 
• Change pH Maximum to 9. 
• Change Desired pH difference to 0.25 
• Save file: “year-month-day (sample description) NaOH” 

.1. E.g., 2011-01-01 SWC4 virgin membrane NaOH.srf 
5. Rinse instrument with DDI water at least 3x until pH stabilizes between ~5.5. 

 
Instrument shut-down  

1. After pH has stabilized: 
• If instrument has been run for 2+ titrations, set max. Time for Empty cycle to 
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500s.  
• If instrument has been run for a single titration, set max. Time to 300s.  
• Fill  600mL Schott beaker with DDI water.  
• Disconnect the outlet hose from beaker cover and put it in the DDI beaker. 
• Place the beaker cover with inlet hose onto an empty beaker.  
• Start the Empty process in the Monitor window of VisioLab.  

2. If instrument is suspected to be contaminated by desorbed coatings, see SurPASS 
instruction manual for appropriate cleaning measures (pg 60).  

3. Turn instrument off.  
4. Disassemble AGC.  
5. Discard used membranes.  
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Appendix C 

Bench Scale RO for Membrane Coatings: Standard Operating Procedures 

Night-before Preparation 
• Add 200 mL of sodium alginate to 4 liters of DI to make fouling solution. 
• If cold, bring water sample to room temperature overnight. 
• If membrane is not already in DI water, cut coupon and place in DI water. 

o Membranes for coated experiments should be pre-coated and soaked in DI 
water at least overnight. 

 
Clean-water flux run 
• DI should be in the system after the cleaning. 
• Calibrate conductivity meters. (50 mS for on-line meter, 0.447 mS for bench-top meter)  
• Set up the system by bypassing the membrane cell and using small plastic Nalgene feed 

reservoir. 
• Calibrate computer clock. 
• Tare pressure gauge.  Don’t tare flow meter; I think it drifts less than taring makes it 

change. 
• Start “RO Control 38.vi” 

o Set Actuator valve voltage to 10V  
o Run software 
o Set pump control to Manual, 4 Hz  
o Turn ON pump inverter to start pump 
o Increase pump speed to 7 Hz 
o Make sure there is no air in the pump intake hose 

• Run DI at high pressure.  If pulsating, let it run at low pressure for several minutes, or 
run at about 300 psi, 7 Hz, until pulsation dampens.  (Be sure that bubbles have left 
the DI before running.) 

o Click Actuator valve auto control to ON 
o Set upper limit to 5 psi, lower limit to 15 psi 
o Run at high pressure until system stabilizes; check for leaks at joints 

• Run membrane baseline flux/rejection before each fouling experiment. This will require 
attaching SEPA cell, establishing flux/rejection, wasting DI water and then adding 
foulant solution. 

• Run the DI out until water level is just above pump (don’t let air get into the pump). 
• Add the fouling solution of  200 mL of 2 g/L sodium alginate in 4 liters DI water. 
• Run system to mix foulant with water already present. 
• Set up membrane cell: 

o Place membrane coupon in cell WITHOUT spacer 
o Active side toward O-rings 
o Use permeate carrier from Hydranautics brackish water module 
o Pressurize cell to 1200 psi using hydraulic pump 
o Hook up to the system 
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o Membrane type     and coatings      
  

 
• To start computer data collection:  

o Run system at 7 Hz pump speed (6.4 Hz on controller)  
o Set actuator valve to completely open (10 Hz) 
o Start computer data collection (arrow button on top toolbar at left) 

 
• Write down file name and start time        

 . 
• Turn ON actuator valve auto control. Make sure upper limit is set to 5 psi and lower 

limit to 15 psi. 
• Run at constant 1000-psi pressure and manually input Temperature reading at least 

every 30 minutes. If temperature has not changed, input different temperature and 
then return to actual temperature 1 minute later. When you are reading data, this 
confirms that temperature was monitored although not changing. 

o Check and record gauge pressure (just prior to Sepa cell): 
_______________________________________________________________
____. 

• Turn off program: 
o Set actuator valve to completely open (10 Hz) 
o Set pump to zero in Labview 
o Turn OFF pump inverter to stop pump 
o Use the STOP button on Labview screen to stop data recording. 

 
Cleaning (must be done after fouling) 
• The system should be sitting in DI from the previous run. 
• Run the DI out until water level is just above pump. 
After fouling: 
• Fill small feed tank with 1 liter of pH 12 sodium hydroxide solution (0.4 g into 1 L) 
• Run through for 10 minutes in recycle mode to remove foulants, then drain to just above 

the level of the pump.  
• Run through at least 20 L of DI water without recycle. 
• Make sure conductivity of the exit stream ends at close to conductivity of DI water: 

o Example: input of 25 mS DI water and output of 29 mS. 
General maintenance: 
• Fill small feed tank with 1 liter of 10% phosphoric acid (H3PO4) solution (117 ml of 

85% H3PO4 added to DI water to make 1 liter). 
• Run through for 20 minutes (10 minutes for H3PO4) in recycle mode to remove rust and 

particulates. (Note that after adding to DI, the acid concentration is lower than 10% 
and that is fine).  Do not leave running much more than 20 minutes (15 minutes for 
H3PO4). 

• Run through at least 28-l of DI water, without recycle. 
• Make sure conductivity of the exit stream ends at close to conductivity of DI water  
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o Example: input of 25 mS DI water and output of 29-mS.   
o Example: input of <5 mS DI and output of 8 - 9 mS. 

• Leave system full of DI water. 
 
Shutdown  
• Turn off program, then shut down system. 
• Remove membrane from cell. Cut membrane samples for electrokinetic analysis and 

refrigerate in DDI water. 
• If it’s late and you won’t be doing cleaning today, run 20 L DI water through the 

system. 
• Leave system in DI water over night. 
• Rinse conductivity probe with DI water.  Leave to dry. 
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