

Micrel KS8861/2 16Bit Bus BSP User's Manual

Version 1.0

06/28/2006

Contents

1.	Overview	3
2.	CLI Commands	4
	2.1 Connecting a Serial Cable for the Terminal Emulator	4
	2.2 Running the KS8861/2 BSP	4
	2.3 CLI Commands Descriptions	5
3.	Running the OpenTCP Demo	15
	3.1 Setting the Target IP	15
	3.2 Connecting a Cable for Ethernet Connection	15
	3.3 PING to KS8861/2 Demo Target	15
	3.4 Running Windows TCP GUI Demo Program	16
4.	LinkMD GUI Demo Program	18
	4.1 Capabilities Tab	18
	4.2 Diagnostics Tab	20
	4.3 TX/RX Traffic Test	21
5.	KS8861/2 BSP Installation	24
	5.1 Creating a KS886x BSP Directory	24
6.	Building KS8861/2 BSP from HEW	25
	6.1 Starting HEW KS886x Project	25
	6.2 Build KS8861/2 BSP from HEW	27
	6.3 Build KS8862 BSP	27
	6.4 Build KS8861 BSP	28
7.	Downloading (re-loading) the Firmware Program	30
	7.1 Running FoUSB Programmer	30
	7.2 Downloading KS8861/2 BSP	31

1 Overview

The KS8861/2 BSP is developed under Renesas M16C/62P microprocessor¹ with Renesas HEW (High-performance Embedded Workshop) IDE.

The KS8861/2 BSP² contains the KS8861/2 driver and OpenTCP³ protocol stack with no OS (Operating System) involved. Initially it is developed for KSZ8841/2 which are almost identical to KS8861/2 except that port one supports 100 Based TX instead of fiber interface. Any reference to KS8841/2 is applicable to KS8861/2 except noted.

This manual is divided into two parts. The first part describes how to run KS8861/2 BSP with OpenTCP 1.0.4 on Micrel KS8861 and KS8862 demo board.

The second part describes how to install, and build KS8861/2 BSP by using the Renesas SKP16C62P StarterKit Plus (SKP).

 \rightarrow NOTE: KS8861/2 BSP works for Micrel KS8841, KS8842, KS8861 and KS8862 demo board.

¹ Please reference the **M16C62_Hardware_Manual** from SKP CD for detail information about M16C/62P microprocessor via the website <u>www.renesas.com</u>.

² BSP is Board Support Package.

³ OpenTCP® is a license and royalty free TCP/IP stack available to the public. It was created by Viola Systems in Finland originally. Please reference the **OpenTCP_App_Note** manual for detail information about OpenTCP protocol stack.

Proprietary Information Rev. 1.0 2180 Fortune Drive, San Jose CA95131, USA• (408)944-0800 • <u>http://www.micrel.com</u>

2 CLI Commands

The KS8861/2 BSP provides a set of CLI commands to help user to debug KS8861/2 device through the RS-232 serial port from your host laptop.

2.1 Connecting a Serial Cable for the Terminal Emulator

Connect the serial port of the laptop and serial port of the KS8861/2 demo board via a RS-232 cable.

After completed of serial connection, set up the communications software. Any communication software for personal computer communications can be used (Hyper terminal, Windows terminal and etc.).

NOTE: The HyperTerminal serial port setup is 38400 8-N-1.

KS8861/2 Demo Board

2.2 Running the KS8861/2 BSP

After power up the KS8861/2 demo board, The ks8861/2 BSP code is running at M16C/62P flash.

The BSP messages contain:

- Bus interface of KS8861 or KS8862 interface.
- OpenTCP Ethernet driver version.
- KS8862 or KS8861 hardware driver version. -
- KS8861/2 Chip ID.
- KS8861/2 Device Revision.
- KS8862 or KS8861 base address that is mapped to the CPU memory space. -
- MAC address of KS8861 or KS8862 station.
- IP address of KS8861 or KS8862 target.
- Port Link Status.

Proprietary Information Rev. 1.0 2180 Fortune Drive, San Jose CA95131, USA• (408)944-0800 • http://www.micrel.com Page 4 -

2.3 CLI Commands Descriptions

From CLI command prompt, type **hwhelp**, will display all the CLI commands that the BSP provides (Figure 2-3-1).

⇒ hwhelp

iera ierm - LUMI VI	
ile Edit Setup Control Window Help	
<pre>Spann = (0 ff) Baint number. ggData = (0 ffff) Register number. ggData = (0 ffff) Register data to write. ithask = (1 2, 4) Register data width to read\write (1:in BYTE, 2:in WORD, 4:in LONG). itHask = (0 0001) Mask defining bit pattern field. itPat = (0 0001) Mask defining bit pattern field. itPat = (0 0001) Bit pattern to check for. ifNum = (0 0001) Debug buffer number. ifOffset = (0 7ff) Debug buffer length. an = (1 800) Debug buffer length. Data = (0 ff) Buffer data to fill. ifInc = (0 ff) Buffer data to fill. ifInc = (0 ff) Buffer data to fill. ifInc = (0 ff) Buffer data to fill. ineDut = (0 n) Repeat times. ort = (0 n) Time in ms to wait before giving up ndex = (0 n) Time in ms to wait before giving up ndex = (0 n) Time in defined to the fill by increase (action for the fill action for the fill). ineQut = (0 n) Time in defined to fill before giving up ndex = (0 n) Time in defined the fill before giving up ndex = (0 n) Time in defined to the lentry items (max Count: mac1-8, mac2-1024, vlan-6, mib-102). ggDataH = (0 ffffffff) Table Update Write Data Register High (bit_63 ~ bit_32). sgDataH = (0 fffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). umpFlag = (0 fffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). umpFlag = (0 fffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). umpFlag = (0 ffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). umpFlag = (0 ffffffff) Dable update Write Data Register Low Oht=31 ~ bit_0). umpFlag = (0 ffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). umpFlag = (0 ffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). umpFlag = (0 ffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). UmpFlag = (0 fffffffff) Table Update Write Data Register Low Oht=31 ~ bit_0). Um</pre>	·
 And e - (macl_macz, vian, min/ - lable laentliler (macl=static fmu, mac2=dynamic fmuc) whelp - Display help message. wread Bankhum RegNum Width - Read ks884% register. worite Bankhum RegNum BitHask BitPat TimeOut - Poll register bit if it match bit pattern. buff wite BufNum BufOffset Len - Display contents of debug buffer. whuf wite BufNum BufOffset Data BufInc Len - Fill data to debug buffer. buft wite Work BufNum Len Repeat SameBuf Delay - Tx packet from debug buffer to ks884%. whufrx BufNum ImmeOut - RepBatal RegDataL tablershow Table Index Count - Read ks884% table data register. wtablershow Table Index Count - Nead ks884% table data register. wtablershow Table Index Count - Show ks884% table data register. wtablershow Table Index Count - Show ks884% table data register. wtablershow Table Index Count - Show ks884% table data register. wtablershow Table Index Count - Show ks884% table data register. wtablershow Table Index Count - Show ks884% table wtableshow Table Index Count - Show ks884% table wtable Port - Count - Show ks884% table wtable Port - Show ks884% table wtable Port - Show ks884% table wtable Port - Fable Port - Show ks884% table wtable Port - Fable Port - Show ks844% tabl	

Figure 2-3-1 hwhelp display

The top of portions are CLI command input\output data format.

		r	~			
BankNum	=	ł	0	••	3± }	 Bank number.
RegNum	=	ł	0	••	±}	 Register number.
RegData	=	ł	0	f	fff }	 Register data to write.
Width	=	{	1	2	, 4 }	 Register data width to read\write (1:in
						BYTE, 2:in WORD, 4:in LONG).
BitMask	=	{	0	0	001 }	 Mask defining bit pattern field.
BitPat	=	{	0	0	001 }	 Bit pattern to check for.
BufNum	=	{	0	••	5 }	 Debug buffer number.
BufOffset	=	{	0	••	7ff }	 Debug buffer offset.
Len	=	{	1		800 }	 Debug buffer length.
WData	=	ł	0		ff }	 Buffer data to write (e.g. FF 00 01 0A).
FData	=	ł	0		ff }	 Buffer data to fill.
BufInc	=	{	0		ff }	 Buffer data to fill by increasing count.
Repeat	=	{	0		n }	 Repeat times.
Port	=	ł	0		3	 Port number(0-by lookup, 1-direct to
						port 1, 2-direct to port 2, 3-direct to
						port 1 and 2)
SameBuf	=	{	0		1 }	 1 - use same buffer to Tx, 0 - continuous
						next buffer to Tx.
TimeOut	=	{	0		n }	 Time in ms to wait before giving up
Index	=	Ì	0		n ĵ	 Table index.
Count	=	Ì	0		n ĵ	 Number of table entry items (max Count:
					,	mac1-8, mac2-1024, vlan-6, mib-102).
ReqDataH	=	{	0	ffff	ffff}	 Table Update Write Data Register High
2		Ľ			,	(bit 63 ~ bit 32).
ReqDataL	=	{	0	ffff	ffff}	 Table Update Write Data Register Low
		Ľ			,	(bit 31 ~ bit 0).
DumpFlag	=	{	0		1 }	 1 - Start dumpping packet, 0 - Stop
1 5		Ľ			,	dummping packet.
Delav	=	{	0		ff }	 Delay ms between continous transmit
		ι	Ŭ		J	packets.
Table = {m	ací	.T	nac	2.vlan	.mib}	 Table identifier (mac1=static MAC, mac2=dynamic
		- , .		,	, _ ~J	

The bottom of portions are CLI command syntax, describe as following:

 \rightarrow Note: All the inpu or output data is in hex format.

The following CLI commands are used to access the device registers.

hwread BankNum RegNum Width -- Read KS8861/2 register. =>hwread 20 0 2 =>bank32-reg.00 : 8880 Read bank 32, register 0, with data width is WORD⁴ format.

hwwrite BankNum RegNum RegData Width -- Modify KS8861/2 register. =>hwwrite 2 0 12345678 4 =>hwread 2 0 4 =>bank02-reg.00 : 12345678

Proprietary Information

2180 Fortune Drive, San Jose CA95131, USA• (408)944-0800 • http://www.micrel.com

⁴ BYTE is 8-bit, WORD is 16-bit, and DWORD is 32-bit data width.

Write bank 2, register 0, with data value 0x12345678 in DWORD format.

=>hwpoll 11 2 0001 0000 10

Polling bank 17, register 2, bit 1 if it match 0b pattern, in 10 ms.

=>hwpoll 11 2 0001 0001 10 =>ERROR: Time out

If 10 ms passed, and match bit pattern no found, ERROR message display.

The following CLI commands to prepare an Ethernet packet and transmit from CLI command to KS8861/2 device. There are total six data buffer for the user to store the Ethernet packet. One data buffer can only store one Ethernet packet, and must be a completed Ethernet packet.

hwbufwrite BufNum BufOffset WData [...] -- Write data to debug buffer. =>hwbufwrite 0 0 ff ff ff ff ff ff 08 00 70 22 44 55

Write a destination MAC address (broadcast), source MAC address (08:00:70:22:44:55) to the data buffer 0, data buffer offset 0.

hwbuffill BufNum BufOffset FData BufInc Len -- Fill data to debug buffer.=>hwbuffill 0 0c 01 02 3c

Fill data buffer 0, start from data buffer offset $0 \times 0c$, with data 0×01 , and increasing by 0×02 , totally filling data length is $0 \times 3c$ (60 bytes).

 hwbufread BufNum BufOffset Len
 -- Display contents of debug buffer

 =>hwbufread 0 0 3c
 =>

 00000000 ff ff ff ff ff ff ff ff ff 08 00 - 70 22 44 55 01 03 05 07

 00000010 09 0b 0d 0f 11 13 15 17 - 19 1b 1d 1f 21 23 25 27

 00000020 29 2b 2d 2f 31 33 35 37 - 39 3b 3d 3f 41 43 45 47

 00000030 49 4b 4d 4f 51 53 55 57 - 59 5b 5d 5f

Display the contents of data buffer 0, offset 0, data length 0x3c (60 bytes).

hwbuftx Port BufNum Len Repeat SameBuf Delay -- Tx packet from debug buffer to KS8861/2

=>hwbuftx 1 0 3c 2 1 0

Transmit packet to Port 1 of KS8862, from data buffer 0, with packet length 60 bytes, transmit 2 times, using the same buffer, no delay between transmit packets.

=>hwbuftx 2 0 5ea 10 1 0

Transmit packet to Port 2 of KS8862, from data buffer 0, with packet length 1514 bytes, transmit 16 times, using the same buffer, no delay between transmit packets.

Proprietary Information Rev. 1.0 2180 Fortune Drive, San Jose CA95131, USA• (408)944-0800 • <u>http://www.micrel.com</u> - Page 7 -

=>hwbuftx 3 0 5ea 3e8 1 1

Transmit packet to Port 1 and Port 2 of KS8862, from data buffer 0, with packet length 1514 bytes, transmit 1000 times, using the same buffer, delay 1ms between transmit packets.

=>hwbuftx 0 0 3c 6 0 0

Transmit packet to KS8862 by lookup mode or KS8861, from data buffer 0, with packet length 60 bytes, transmit 6 times, continuous next buffer for next transmit⁵, no delay between transmit packets.

hwdumptx DumpFlag -- Start/Stop dumpping transmit packet data
=>hwdumptx 1

Start dumping transmits packets to the screen when every packet sends to KS8861/2 device from CPU system. Eg,

=>hwbuftx 1 0 3c 1 1 0 Tx Cntl Word: 0x8113, Byte Count: 0x003c Tx On port 1 Pkt Len=60 DA=ff:ff:ff:ff:ff SA=08:00:70:22:44:55 Type=0103 0000 ff ff ff ff ff ff 08 00 70 22 44 55 01 03 05 07 09 0b 0d 0f 11 13 15 17 19 1b 1d 1f 21 23 25 27 0010 29 2b 2d 2f 31 33 35 37 39 0020 3b 3d 3f 41 43 45 47 0030 49 4b 4d 4f 51 53 55 57 59 5b 5d 5f

The first line of message tells you what "Control Word", and "Byte Count" is written to the KS8861/2 TXQ.

=>hwdumptx 0

Stop dumping transmits packets to the screen.

hwdumprx DumpFlag -- Start/Stop dumpping receive packet data =>hwdumprx 1

Start dumping received packets (received from KS8861/2 device) to the screen when every packets received from KS8861/2 device to CPU system. Eg, if PING from the laptop:

Rx Cntl Word: 0x82c8, Byte Count: 0x003c
Rx On port 2
Pkt Len=60
DA=ff:ff:ff:ff:ff:ff
SA=00:50:ba:15:56:29
Type=0806
0000 ff ff ff ff ff ff 00 50 ba 15 56 29 08 06 00 01

⁵ If you already prepare the six buffers with different Ethernet packets data, it will transmit data buffer from 0 to 5 one by one. Proprietary Information Rev. 1.0

2180 Fortune Drive, San Jose CA95131, USA• (408)944-0800 • http://www.micrel.com

0010	08	00	06	04	00	01	00	50	ba	15	56	29	с0	a8	01	0a
0020	00	00	00	00	00	00	с0	a8	01	01	00	00	00	00	00	00
0030	00	00	00	00	00	00	00	00	00	00	00	00				

The first line of message is Receive Status from register RXSR and RXBC.

=>hwdumprx 0

Stop dumping received packets to the screen.

The following CLI commands are used to access the device indirect access registers for the VLAN table, static MAC table, dynamic MAC table, and MIB counters.

hwtableread Table Index Count Read ks886x table data register =>hwtableread vlan 0 6 Read ks886x table data register => DataH DataM DataL 0000 0000000 000f0001 0001 0000 0000000 000f0001 0000 0000000 000f0001 0002 0000 0000000 000f0001 00000000 000f0001 0004 0000 0000000 000f0001 00000000 000f0001 0005 0000 0000000 000f0001 Read ks886x table data register								
Read VLAN tables from entry 0 for total 6 entries.								
=>hwtableread mac1 0 2								
=> DataH DataM DataL								
0000 00000000 0000000								
0001 0000 0000000 0000000								
Read static MAC tables from entry 0 for total 2 entries.								
=>hwtableread mac2 2 4								
=> DataH DataM DataL								
0002 0000 0199d33d bblee313								
0003 0000 014ef0d7 fa7feddc								
0004 0000 01823988 e0157890								
0005 0000 0102cc09 29e95603								
Read dynamic MAC tables from entry 2 for total 4 entries.								
=>hwtableread mib 20 4								

=>	DataH	DataM	DataL
0020	0000	0102cc09	40007229
0021	0000	0102cc09	4000000
0022	0000	0102cc09	4000000
0023	0000	0102cc09	4000000

Read MIB counters from entry 32 for total 4 entries.

→ Note: DataH column shows data from bit_79 to bit_64, DataM column shows data from bit_63 to bit_32, DataL column shows data from bit_31 to bit_0.

Proprietary Information

2180 Fortune Drive, San Jose CA95131, USA• (408)944-0800 • http://www.micrel.com

Rev. 1.0

02

01

м – –

hwtablewrite Table Index RegDataH RegDataL -- Write ks886x table data register =>hwtablewrite vlan 1 00000000 000ba00a Write VLAN table with data value 0×000000000 to data bit 63 to data bit 32, 0x000ba00a to data bit 31 to data bit 0. hwtableshow Table Index Count -- Show ks886x table. =>hwtableshow vlan 0 6 Entry Status VID FID Port(123) 0000 valid 0001 0000 ммм 0001 valid 0010 0010 мм-0002 valid 0001 0000 ммм 0003 valid 0001 ммм 0000 valid 0004 0001 0000 ммм 0005 valid 0001 0000 ммм Display VLAN table from entry 0 for total 6 entries. =>hwtableshow mac1 0 2 FID Port(123) UseFID Override Entry Status MAC invalid 00-00-00-00-00 0000 0000 - - -FALSE FALSE 0001 invalid 00-00-00-00-00 0000 FALSE - - -FALSE Display static MAC table from entry 0 for total 4 entries. =>hwtableshow mac2 0 4 Entry Status MAC FID Port(123) AgingTime learned 00-50-ba-15-56-29 0000 0000 – M – 00 learned 08-00-70-22-44-55 0000 invalid d3-3d-bb-1e-e3-13 0009 – – M 0001 00 0002 – M –

Display dynamic MAC table from entry 0 for total 4 entries.

0003 invalid f0-d7-fa-7f-ed-dc 0014

=>hwtableshow mib 0 1

	Port 1	Port 2	Port 3	Driver	
RxLoPriorityByte	: 000000	000 00000629	00000298	00000605	RxByte
RxHiPriorityByte	: 000000	00000000 000	00000000	0000002	RxBroadcastPkts
RxUndersizePkt	: 000000	00000000 000	00000000	0000002	RxMulticastPkts
RxFragments	: 000000	00000000 000	00000000	0000004	RxUnicastPkts
RxOversize	: 000000	00000000 000	00000000	0000006	RxTotalPkts
RxJabbers	: 000000	00000000 000	00000000		
RxSymbolError	: 000000	00000000 000	00000000	0000000	RxRuntError
RxCRCError	: 000000	00000000 000	00000000	0000000	RxCRCError
RxAlignmentError	: 000000	00000000 000	00000000	0000000	RxMIIError
RxCtr18808Pkts	: 000000	00000000 000	00000000	0000000	RxTooLong
RxPausePkts	: 000000	00000000 000	00000000	0000000	RxInvalidFrame
RxBroadcastPkts	: 000000	000 0000002	00000000	0000000	RxIPChecksumError
RxMulticastPkts	: 000000	00000000 000	00000000	0000000	RxTCPChecksumError
RxUnicastPkts	: 000000	000 00000000000000000000000000000000000	0000004	0000000	RxUDPChecksumError
Rx64Octets	: 000000	00000001	0000001	0000000	RxTotalError
Rx65to1270ctets	: 000000	000 00000000000000000000000000000000000	0000003	0000000	RxErrorFrameInterrupt
Rx128to2550ctets	: 000000	00000001	00000000	0000000	RxOverrunInterrupt
Rx256to5110ctets	: 000000	0000000 000	00000000	0000000	RxStopInterrupt
Rx512to1023Octets	: 000000	0000000 000	00000000	0000000	RxOSDroppedPkts
Rx1024to1522Octets	: 000000	00000000 000	00000000	0000006	RxInterrupt
TxLoPriorityByte	: 000000	000 00000298	00000629	00000278	TxByte
TxHiPriorityByte	: 000000	00000000 000	00000000	0000004	TxTotalPkts
TxPausePkts	: 000000	00000000 000	00000000		
TxBroadcastPkts	: 000000	00000000 000	00000000	0000000	TxLateCollision
TxMulticastPkts	: 000000	00000000 000	00000000	0000000	TxMaximumCollision
TxUnicastPkts	: 000000	00000004	0000004	0000000	TxUnderrun
TxLateCollision	: 000000	00000000 000	00000000	0000000	TxTotalError
TxDeferred	: 000000	00000000 000	00000000	0000000	TxAllocMemFail
TxTotalCollision	: 000000	00000000 000	00000000	0000000	TxStopInterrupt
TxExcessiveCollision	: 000000	00000000 000	00000000	0000000	TxOSDroppedPkts
TxSingleCollision	: 000000	00000000 000	00000000	0000000	TxUnderrunInterrupt
TxMultiCollision	: 000000	00000000	0000000	0000004	TxDoneInterrupt
RxDroppedPackets	: 000000	00000000 000	0000000		
TxDroppedPackets	: 000000	0000000 000	00000000		

Display MIB counters for all the ports, and driver statistic counters.

→ Note: From left to right columns, the first four columns show MIB counters from device registers. The fifth to seventh columns shows driver statistic counters.

hwclearmib Port -- Clear software MIB counter database (clear all if Port=4) Clear all the MIB counters by per-port or all the ports.

The following CLI commands are used to get\set device PHY link status.

hwgetlink Port -- Get Link status.

=>hwgetlink 1 =>^[00000000,000186a0,00000002,0000010f,0005010f,00000000]\$

Display link status in hex by following sequence: [LinkStatus, LinkSpeed, LinkDuplex, LinkCapable, LinkAdvertisement, LinkPartnerCapable]

For the Link status information 'LinkStatus': 0 means Link is download 1 means Link is good For the Link Speed status information 'LinkSpeed': 1000000 means Link Speed is 100Mbps 100000 means Link Speed is 10Mbps For the Link Duplex mode status information 'LinkDuplex': 0x01 means Link Duplex is full duplex 0x02 means cable is crossed 0x04 means is reversed For the Link Capable status information 'LinkCapable': 0x00000001 means 10BaseT full duplex 0x00000002 means 10BaseT half duplex 0x00000004 means 100BaseTX full duplex 0x00000008 means 100BaseTX half duplex 0x00000100 means Link Pause For the Link Auto-Negotiation Advertisement status information 'LinkAdvertisement': 0x0000001 means 10MBPS full duplex 0x00000002 means 10MBPS half duplex 0x00000004 means 100MBPS full duplex 0x0000008 means 100MBPS half duplex 0x00000100 means Pause frame 0x00010000 means enable Auto MDIX 0x00020000 means Force MDIX 0x00040000 means Auto Polarity For the Link Partner Capabilities status information `LinkPartnerCapable': 0x00000001 means 10MBPS full duplex 0x00000002 means 10MBPS half duplex 0x00000004 means 100MBPS full duplex 0x00000008 means 100MBPS half duplex 0x00000100 means Pause frame hwsetlink Port Data -- Set Link speed. =>hwsetlink 1 0000004 =>Set Port 1 with Data=00000004 The PHY port's auto-negotiation advertisement link speed, duplex, and pause frame are set according to 'Data' value: 0x00000001, 10MBPS, full duplex 0x00000002, 10MBPS, half duplex 0x00000004, 100MBPS, full duplex 0x00000008, 100MBPS, half duplex 0x00000100, Pause frame 0x00010000, Auto MDIX (Micrel) 0x00020000, Force MDIX

The following CLI commands are used to enable\disable Early Transmit\Receive function on KS8861 only. hwrxthres FData -- Set Early Receive Threshold (in unit of 64-byte) =>hwrxthres 1 Set Early receive threshold to 64 bytes. hwtxthres FData -- Set Early Transmit Threshold (in unit of 64-byte) Set Early transmit threshold to 64 bytes. hwearly Flag -- Enable/Disable Early Transmit/Receive (1 - Enable, 0 - Disable). =>hwearly 1 Enable Early transmit\receive function. =>hwearly 0 Disable Early transmit\receive function. hwrepeat Flag -- Enable/Disable Repeat mode (1 -Enable, 0 - Disable). => hwrepeat 1 Enable KS8862 Repead mode function. => hwrepeat 0

Disable KS8862 Repead mode function.

3 Running the OpenTCP Demo

3.1 Setting the Target IP

In order to use the demo, you must first assign an IP address to the target. The KS8861/2 demo board is assigned a fix IP address 192.168.1.1, and if you connect one of Ethernet port from KS8861/2 target to your laptop. You should use an IP number on the same sub-net as you laptop. For example, set the IP address of your laptop is 192.168.1.10 (Figure 3-2-1).

→ Note: If you want to use a IP address other than this, you need to edit the gui_demo.c file and rebuild your project.

3.2 Connecting a Cable for the Ethernet Connection

Connecting an Ethernet cable between your laptop and one of the ports on the KS8862 demo board. Or

Connecting an Ethernet cable between your laptop and port 1 on the KS8861 demo board.

Figure 3-2-1 Example of connection between KS8861/2 Demo Board and Laptop

3.3 PING to KS8861/2 Demo Target

You can use the **PING** command from your laptop Windows Command Prompt to test whether the KS8861/2 is accessible over the network (Figure 3-3-1).

Command Prompt - ping 192.168.1.1 -t	IX
Microsoft Windows 2000 [Version 5.00.2195] (C) Copyright 1985-2000 Microsoft Corp.	
P:\>ping 192.168.1.1 -t	
Pinging 192.168.1.1 with 32 bytes of data:	
Reply from 192.168.1.1: bytes=32 time<10ms TTL=100 Reply from 192.168.1.1: bytes=32 time<10ms TTL=100	
	-

Figure 3-3-1 Issue PING from the laptop Command Prompt

3.4 Running Windows TCP GUI Demo Program

The KS8861/2 BSP packet also provides a Windows GUI program tcp_gui.exe that can run on your laptop to test whether the KS8861/2 is accessible in the real TCP\IP application protocol.

From the directory that you installed the KS8861/2 BSP packet on your host laptop, double click M16C Software\Demo Program\TCP GUI Demo\tcp_gui.exe. An interactive TCP GUI Window will come up. Change the IP address in the upper left-hand corner of the window by clicking on the IP address button (Figure 3-4-1).

NOTE: You should change the IP address to the one that you assigned to your board.

💑 TCP / UDP Demo	×				
MICREL [®]	UDP Receive Routine				
IP Address of Board	When ever the value of the on board pot is				
192.168.1.1 Establish connection	changed, the new value				
Connected Close connection	datagram on port 5004				
TCP Send Routine					
Enter text to be Micrel	Start Streaming				
(port 5001) KS8842	Stop Streaming				
Send	Current Value: 80				
TCP Receive Routine	UDP Send				
When a button is pressed on the remote board, the board uses the opened TCP connection to transfer button information back. (port 5001)	Sliding this bar will cause this app to send UDP packets to the board over port 5004				
222					
	Get Device Stats				

Figure 3-4-1 - Interactive TCP Windows GUI Program

Now click the "Establish connection" button in order to open a TCP and UDP connection to your target board. If a successful connection is made, the LCD on the target board will read "Conn Est" meaning connection established. The demo has been set up so that the OpenTCP stack will close a socket if it remains inactive for more than 2 minutes.

To write to the LCD, simply type in the edit boxes (one for each line on the LCD) and click the "Send" button. This sends the LCD text using the TCP socket it opened when the connection was established.

When a button is pressed on the target board, that info is also sent via the TCP connection to the windows program and the corresponding picture of the button on the GUI will change.

To send/receive UDP packets, click the "Start Streaming" button. This will send a TCP packet to the target board telling it to start sending the current A2D value of the pot via a UDP packet every time it changes. Also, when the slider bar on the GUI is moved, the new value is send to the target board via UDP packets and the value is displayed on the LCD.

4. LinkMD GUI Demo Program

The Micrel LinkMD software is a Windows Graphical User Interface (GUI) program that simplifies and expedites the evaluation and testing of the KS8861/2. Three separate Window tabs provide menu selections to check the PHY's link status and capabilities; perform cable diagnostics and integrity check on transmit and receive datapaths.

To launch the LinkMD program, navigate to the directory with the Micrel LinkMD software (M16C Software\Demo Program\LinkMD GUI Demo) and double click on the LinkMD.exe file. The LinkMD program will start and display the Capabilities menu page. The other two menu pages are Diagnostics and PHY. Common to all three pages are the Exit button to close the LinkMD program and the Help button to display the current version of LinkMD software.

4.1 Capabilities Tab

The Capabilities Tab, shown in Figure 4-1, provides the following basic link status and settings for the KS8861/2.

- Link Status section shows the current link speed, duplex, MDI/MDIX and polarity settings of the KS8861/2. If there is no link, these four fields are dimmed to indicate no status.
- Advertised Capabilities and Link Partner Capabilities sections show the speed, duplex and full duplex flow control capabilities of the KS8861/2 and its link partner. KS8861/2 capabilities are programmable. Its link partner capabilities are read only, and dimmed to indicate no capabilities when there is no link.
- Crossover option allows the PHY to be set in HP Auto-MDIX for automatic detection and correction for straight through and crossover cabling, or forced to either MDI or MDIX mode.

To read the latest PHY status, press the Refresh button.

To configure the PHY, set the desired settings and press the Update button.

Figure 4-1: LinkMD - Capabilities Tab

🛃 LinkMD			
Capabilities Diagnostics PHY	COM1:KS88421		
Link Status Speed: 100 Mbps MDI/MDIX: MDIX	Duplex: Full-Duplex Polarity: Normal		
Advertised Capabilities 1 Gbps, Full-duplex 1 Gbps, Half-duplex 100 Mbps, Full-duplex 100 Mbps, Half-duplex 10 Mbps, Full-duplex 10 Mbps, Half-duplex Symmetric Pause Symmetric Pause	Link Partner Capabilities 1 Gbps, Full-duplex 1 Gbps, Half-duplex 100 Mbps, Full-duplex 100 Mbps, Half-duplex 10 Mbps, Full-duplex 10 Mbps, Half-duplex Asymmetric Pause Symmetric Pause	Refresh Update Help	
Crossover		Exit	

4.2 Diagnostics Tab

The Diagnostics Tab provides the menu page to check the cable status and the integrity of transmit and receive datapaths. These two selections are provided by the cable diagnostic test and the TX/RX traffic test, respectively.

Cable Diagnostic Test

The cable diagnostic test is enabled only when there is no link to the KS8861/2 PHY. This test provides the following cable information for the differential pairs connected to pins $\{1,2\}$ and $\{3,6\}$ of the RJ-45 jack.

- Status: Indicates whether the differential pair is **Open**, **Short**, or Unknown (no link and no cable test conducted). If there is a physical link, Status is Good.
- Provides approximate distance in meters to the open or • Length: short cable fault. If there is a physical link, Length has no meaning and displays an empty field.

To run the cable diagnostic test, press the Test button.

Figure 4-2 shows the sample test results of the cable diagnostic test where a 4 meters short and 3 meters open were found on the differential pairs connected to pins $\{1,2\}$ and $\{3,6\}$ of the RJ-45 jack, respectively.

KS886x 16Bit BSP User's Manual

🚣 LinkMD					
Capabilities Dia Cable Status:	agnostics PH	⊣Y СОМ 3m —	1:KS8842 1		
Pair: Status: Length:	12 <mark>Open</mark> 3 m	3–6 <mark>Short</mark> 4 m	4–5 Unknown —	7–8 Unknown —	
		D			Refresh Test
	6	P			Help Exit
RX:	2 1 0	•	RX:	407 36	
Se	nd		Ser	nd	
mic		B			

Figure 4-2: LinKMD – Diagnostics (Cable Status) Tab

4.3 TX/RX Traffic Test

The TX/RX traffic test uses Ethernet packets to check the integrity of transmit and receive datapaths. This test requires the KS8861/2 PHY to have a physical link established with a PHY on the PC that is connected to the KS8861/2 via RS232 Serial interface, as shown in Figure **4-3**.

KS8861 or KS8862 Demo Board

Figure 4-3: TX/RX Traffic Test Setup

The PC should be connected to only two PHYs. One is the KS8861/2 via RS232 serial interface; and the other could be either a PHY on the motherboard or a network interface card (NIC). The PHYs should be configured with different static IP addresses under the same subnet. See section 4-3 on how to configure network settings for Windows XP.

The Cable Status field at the top of this menu page displays the cable link status of the KS8861/2. Before starting the TX/RX traffic test, press the Refresh button to check the latest cable status. If there is a link, the status will display either **Crossed** for a crossover connection or **Good** for a straight connection. If there is no link, the status will display **Unknown**.

For the test setup in

Figure 4-3, the TX/RX counters and Send button at the bottom left of this menu page are associated with the KS8861/2 PHY. Similarly, the TX/RX counters and Send button at the bottom right of this menu page are associated with the other PHY.

The drop down menu between the TX/RX counters selects the number of Ethernet packets to send. The selections are 1, 10, 100, 1000, or Continuous.

The Send buttons start the transmission of packets with respect to either KS8861/2 PHY or other PHY. The sample test results in 4-4 shows 100 packets sent by the KS8861/2 PHY and 100 packets received by other PHY. Also, all 100 packets sent by the other PHY are received the KS8861/2 PHY. Note, if

Rev. 1.0

the PC is sending ARP packets or other Ethernet traffic is present, the transmit count and receive count may differ.

Figure 4-4: LinkMD – Diagnostics (Traffic Test) Tab

💑 LinkMD					
Capabilities Dia	agnostics P	нү Сом1	:KS88421	•	
Cable Status:	Crossed		-		
Pair: Status: Length:	1–2 Good	3–6 Good	4–5 Unknown ——	7–8 Unknown —	
		T			Refresh Test
	C	K	y		Help
					Exit
RX: TX:	100 1 100	00 💌	RX: TX:	100 100	
Se	nd		Ser	nd	
mic	REL	0			

5 KS8861/2 BSP Installation

This section describes how to install, and build KS8861/2 BSP under Renesas HEW Version 3.01.05 / OpenTCP 1.04 for Renesas M16C/62P.

Before install KS8861/2 BSP, The Renesas SKP16C62P StarterKit Plus (SKP) CD^{6} for M16C/62P must be installed on the host system (Microsoft Windows).

→ Note: The SKP kit comes with an integrated software development environment, HEW (IDE, C-compiler, assembler, and linker), KD30 Debugger, and FoUSB (Flash-over-USB^M) Programmer.

→ NOTE: For more detail information about HEW, see the SKP16C62P_Tutorial_1_HEW from Renesas.

The ks88xx_1.0.0 SW Driver.zip ZIP file under directory "M16C Software\Driver\" contains:

- o OpenTCP protocol stack, and demo program.
- o BSP functions including UART driver, LCD driver etc.
- o KS8861 or KS8862 Ethernet driver.
- o Windows TCP GUI demo program.
- o Windows LinkMD GUI demo program.

5.1 Creating a KS886x BSP Directory

Create a KS886x directory under installDir (eg. MTOOL\ks886x), and copy the ks884x.zip to MTOOL\ks886x. Unzip ks884x.zip under MTOOL\ ks886x directory. It is successful if you see a new the directory MTOOL\ks886x\OpenTCP_104.

The most of subdirectories and files are the same as you download from OpenTCP website, the KS8861/2 BSP only add or modify following subdirectories and files:

Directory	Status	Description
ks886x\OpenTCP_104\ks884x\ethernet_ks884x.c	Add	OpenTCP Ethernet Driver for Micrel KS8861/2 device.
ks886x\OpenTCP_104\gui_demo.c	Modify	Change target IP to 192.168.1.1. Init UART driver, and polling UART receive.
ks886x\OpenTCP_104\arch\M16C\set30_62pskp.inc	Modify	Change the ISP in vector table to ks884xIntr ISP.
ks886x\OpenTCP_104\ks884x	Add	This directory contains the KS8861/2 driver.
ks886x\OpenTCP_104\arch\uart	Add	This directory contains UART driver and CLI parser.

⁶ Please contact Renesas support on how to get SKP CD via the website <u>www.renesas.com</u>.

6 Building KS8861/2 BSP from HEW

This section describes how to build KS8861/2 BSP for KS8861/2 demo board from Renesas HEW project facility.

6.1 Starting HEW KS886x Project

To start HEW, from your development Windows PC, click on the Start-> Programs -> Renesas High-performance Embedded Workshop -> High-performance Embedded Workshop . After HEW opens, from the Welcome dialog box (Figure 6-1-1), select "Browse to another project workspace" option, and then click OK.

Figure 6-1-1: HEW Main Window

Then click on Browse, selection of **Hew3** under MTOOL\ks886x\OpenTCP_104\arch\M16C directory from the Workspace Browse window (Figure 6-1-2).

Open Worksp	ace		<u>?</u> ×
Look in: 🔁	M16C	- 🖬 📩 -	
M16C62P_	Release		
File name:	Hew3	Оре	n
Files of type:	HEW Workspaces (*.hws)	▼ Cano	:el

Figure 6-1-2: HEW Workspace Browse Window

HEW workspace should look like the figure 6-1-3 below.

Figure 6-1-3: HEW Workspace

Proprietary Information

Rev. 1.0

2180 Fortune Drive, San Jose CA95131, USA• (408)944-0800 • http://www.micrel.com

- Page 26 -

6.2 Build KS8861/2 BSP from HEW

If need to rebuild the KS8861/2 BSP from HEW, click on the '**Build All**' icon. This will re-compile and link all the source files. Status, errors, messages, etc during a build process is displayed on the Output window (Figure 6-2-1).

Figure 6-2-1: HEW Workspace with Output window

6.3 Build KS8862 BSP

To rebuild the KS8862 BSP from HEW, click on the 'Options -> Renesas M16C Standard Toolchain'. From 'C -> Defines', add DEF_KS8842 1, then Build All'(Figure 6-3-1).

Now an executable file **OpenTCP_M16C62P.mot** has been created in the MTOOL\ks886x\OpenTCP_104\arch\M16C\M16C62P_Release directory.

→ NOTE: Rename OpenTCP_M16C62P.mot to OpenTCP_M16C62P_ks8842.mot.

Renesas M16C Standard Toolchain	? ×
Configuration : M16C62P_Release All Loaded Projects OpenTCP_M16C62P OpenTCP_M	C Assembly Link Librarian Lmc Cfg M.▲ ▶ Category : Source ▼ ● Show entries for : ● ● ● Defines ▼ ● ● [-D] Define a identifier : ● ● ● Define Value ● ● M16C_62P 1 ■ ■ KS_ISA_BUS 1 ■ ■ DEF_KS8842 1 ■ ■
	Options C : -{\$(PROJDIR)\\\include -{\$(PROJDIR)\\\webfiles -{\$(PROJDIR)\\\ks884x -{\$(PROJDIR)\\\uart -{\$(PROJDIR) -DM16C_62P=1 -DKS_ISA_BUS=1 OK Cancel

Figure 6-3-1: Renesas M16C Standard Toolchain window to build KS8862 BSP

6.4 Build KS8861 BSP

To rebuild the KS8861 BSP from HEW, click on the 'Options -> Renesas M16C Standard Toolchain'. From 'C -> Defines', add DEF_KS8841 1, then Build All'(Figure 6-4-1).

Now an executable file **OpenTCP_M16C62P.mot** has been created in the MTOOL\ks886x\OpenTCP_104\arch\M16C\M16C62P_Release directory.

→ NOTE: Rename OpenTCP_M16C62P.mot to OpenTCP_M16C62P_ks8841.mot.

Renesas M16C Standard Toolchain				
Configuration : M16C62P_Release	C Assembly Link Librarian Lmc Cfg M▲ Category : Source ▼ Show entries for : ▼ Defines ▼ [-D] Define a identifier : Define Value Add M16C_62P 1 Remove KS_ISA_BUS 1 DEF_KS8841 1			
	Options C : -1\$(PROJDIR)\\\include -1\$(PROJDIR)\\\webfiles -1\$(PROJDIR)\\\ks884x -1\$(PROJDIR)\\\uart -1\$(PROJDIR) -DM16C_62P=1 -DKS_ISA_BUS=1			

Figure 6-4-1: Renesas M16C Standard Toolchain window to build KS8861 BSP

7 Downloading (re-loading) the Firmware Program

Updating the KS8861/2 BSP is currently possible done by FoUSB (Flash-Over-USB™). FoUSB along with the ICD (RTA-FoUSB-MON) to download (reprogramming) the M16C/62P flash MCU with firmware.

Before downloading the demo program, First, Renesas FoUSB has been installed in your host system (Microsoft Windows)⁷.

Seconds, connect the RTA-FoUSB-MON (ICD) to your host system and to your KS8861/2 demo board (Figure 7-1).

ks8861/2 Demo board

Figure 7-1: M16C/62P System Connectivity for FoUSB programmer

→ IMPORTANT! When using RTA-FoUSB-MON connect to the KS8861/2 demo board, switch the power source switch on the RTA-FoUSB-MON to "TARGET" Powered Mode since the power supply on the KS8861/2 demo board will provide power to the KS8861/2 demo board as well as the RTA-FoUSB-MON. If the switch is left at "USB" Powered Mode, some MCU pins may be driven to undesirable levels.

7.1 Running FoUSB Programmer

Apply the 5V power supply to External Power Input on the KS8861/2 demo board. Click on **Start -> Programs -> Renesas-Tools -> Flashover-USB Ver. 2.01. -> FoUSB Programmer** and a screen similar to Figure 7-1-1 will be displayed.

⁷ Please reference the **RTA-FoUSB-MON_Users_Manual** for how to install FoUSB ICD.

Figure 7-1-1 Example of FoUSB Programmer Screen with KS8861/2 demo board Connected

7.2 Downloading KS8861/2 BSP

To download the KS8861/2 BSP, perform following steps:

- 1. Click on **OPEN** on FoUSB main GUI. Windows file selection menu appears as shown in Figure 7-2-1.
- 2. Find the demo file (e.g., OpenTCP_M16C62P_ks8842_v0.1.11.mot for KS8862, and OpenTCP_M16C62P_ks8841_v0.1.11.mot for KS8861) for loading into MCU flash. The selected target file appears on FoUSB main GUI beside FILE as shown in Figure 7-2-2.
- 3. Click on **PROGRAM** on FoUSB main GUI. The Program Flash dialog box appears as shown in Figure 7-2-3.
- 4. Click on **Program** of the Program Flash GUI. The loading of target program into MCU flash will start at this point and the progress of flash programming will be shown dynamically by a moving bar located at the lower part of this dialog box. After a successful programming of the flash, a *Program Completed Successfully* dialog box will appear.
- 5. Click on \boldsymbol{OK} button and the dialog box disappear.
- 6. Click on **EXIT** button on the lower right corner of the main GUI to exit FoUSB Programmer.

→ Note:

Select **Erase->Program->Verify** option (the default option) from Choose an Operation. Select **Erase Only Needed Blocks** option from Erasing Options.

Open		?×
Look in: 🖂	M16C62P_Release 🔽 🖛 🗈 📸 📰 🛪	
OpenTCP_	M16C62P.mot	
OpenTCP_	M16C62P_ks8841_8bit_v0.1.11.mot	
OpenTCP_	M16C62P_ks8841_v0.1.11.mot	
		- 1
File name:	OpenTCP_M16C62P_ks8841_v0.1.11	n
Files of tupe:	Intel Hey or Motorola S-Becord	el I
r nos or type.		

Figure 7-2-1 Dialog box for file selection

Figure 7-2-2 FoUSB main GUI after file selection

Figure 7-2-3 Menu options for programming flash