
ALOE
A Graphical Editor for OWL Ontologies

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Daria Spescha

2005

Leiter der Arbeit:

Prof. Dr. Gerhard Jäger,
Institut für Informatik und angewandte Mathematik

2

Abstract

Existing ontology editors are either too complex or do not offer enough functionality. Thus,
the goal of this diploma thesis was the development of an easy-to-use, graphical browser
and editor for ontologies. ALOE is an ontology editor written in Java and based on
knOWLer, an ontology management system. It enables the user to edit ontologies in OWL
format without having to change the source code. This diploma thesis describes the use
and development of ALOE.

Acknowledgements

I would like to thank Professor G. Jäger for his supervision of my diploma thesis. Special
thanks also go to Dr. Thomas Studer for his support and motivation.

Furthermore, many thanks to Iulian Ciorascu and Claudia Ciorascu from the Uni-
versity of Neuchâtel, Switzerland, for their support with, and for the customisation and
enhancements to knOWLer.

I like to thank Norbert Kottmann and Marco Robertini for proofreading and everyday
support. Finally, I’m grateful to everyone who supported me.

2

Contents

1 Introduction 5
1.1 Structure of This Thesis . 5

2 Theoretical Basics 7
2.1 The Semantic Web . 7
2.2 OWL - Web Ontology Language by W3C 7
2.3 knOWLer . 12

3 User Manual 13
3.1 Getting Started . 13

3.1.1 Prerequisites . 13
3.1.2 Installation and Starting . 13
3.1.3 Mac OS X . 14

3.2 Loading an Ontology . 15
3.3 Browsing an Existing Ontology . 15

3.3.1 Views for the Resources . 15
3.3.2 The Navigation . 16
3.3.3 Search for Resources . 16
3.3.4 Navigating through the Resources 18

3.4 Creating and Editing Resources . 19
3.4.1 Creating a Resource . 19
3.4.2 Edit . 19
3.4.3 Editing a Class . 20
3.4.4 Editing a Property . 21
3.4.5 Editing an Individual . 22

3.5 Deleting Resources . 23
3.6 Saving an Ontology . 23
3.7 Example . 24

4 Implementation 27
4.1 Libraries Used . 27

4.1.1 JGraph . 27
4.1.2 JDOM . 27

3

4 CONTENTS

4.2 Design . 28
4.3 Implementation Examples . 29

5 Comparison with Other Ontology Editors 33
5.1 Protégé . 33
5.2 SWOOP . 35
5.3 SWeDE . 35
5.4 KAON . 36

6 Conclusion and Further Work 41
6.1 Conclusion . 41
6.2 Further Work . 42

Appendices 45

A Example Ontologies 45
A.1 Asterix & Obelix Ontologies . 45

A.1.1 Story Ontology . 45
A.1.2 Cartoon Ontology . 47

A.2 Asterix & Obelix Graphs . 52

B UML Diagrams 55

Bibliography 60

Chapter 1

Introduction

For my diploma thesis, I developed ALOE, a browser and editor for ontologies in OWL
format. There exist already some ontology editors like Protégé or OntoEdit, however all
of them offer either not enough possibilities or too many (the advantages and weaknesses
of some of these editors are presented in detail in Chapter 5). Thus, the main goal of
the diploma thesis was the development of an easy-to-use editor satisfying the following
requirements:

Ease of use: The application should be useable for users with a basic knowledge about
ontologies and OWL in general, but without profound knowledge.

General Overview: It should be possible to obtain an overview of existing ontologies
with little effort.

Graphical: The ontology should be graphically represented to get an overview of the
design and the relations between different resources.

Visibility: All attributes available for OWL should be visible and editable.

Navigation: Related resources should be accessible from each other.

Huge Ontologies: The editor should be able to handle also huge ontologies in a practical
manner, i.e. also big ontologies should be presented concisely.

ALOE is implemented in Java and based on the Java interface of knOWLer (see 2.3).
Therefore, it is platform independent (for restrictions see 2.3 and 1).

1.1 Structure of This Thesis

Chapter 2 presents the basics about the Semantic Web, OWL, and knOWLer. Chapter
1 contains the user manual with a detailed overview of the features of ALOE and an
example of the creation of an ontology. Chapter 4 describes the design and the most
important implementation decisions. A comparison with similar applications is provided

5

6 CHAPTER 1. INTRODUCTION

in Chapter 5. Finally, the conclusions drawn from the development of ALOE, as well as
some ideas for further work are presented in Chapter 6.

Chapter 2

Theoretical Basics

2.1 The Semantic Web

According to Wikipedia “The Semantic Web is a project that intends to create a universal
medium for information exchange by giving meaning (semantics), in a manner under-
standable by machines, to the content of documents on the Web.”[8] The idea is to make
computers not only present formated documents to the user, but also to enable computers
to deal with the contents. Therefore, documents should be supplemented with additional
mark-ups containing meta information. For the realization of this idea, vocabularies for
the meta information, so-called ontologies, would be required.

An ontology “[. . .] is a document or file that formally defines the relations among
terms.”[3] It “[. . .] is the product of an attempt to formulate an exhaustive and rigorous
conceptual schema about a domain. An ontology is typically a hierarchical data structure
containing all the relevant entities and their relationships and rules within that domain
(e.g. a domain ontology).”[7] In other words, an ontology formalizes the concepts of the
real world and defines the core glossary of a field. Webpage owners can then use this
vocabulary to tag their documents. In combination with given rules, agents can execute
reasoning tasks about the information and provide the additional knowledge to the user.
For a more detailed introduction to the vision of the Semantic Web see [3] and [10].

2.2 OWL - Web Ontology Language by W3C

To be able to generate the meta tags mentioned above and the vocabularies, a special
language called ontology language is required. At present, different ontology languages exist
as several institutions created their own language. Among others, also the W3C developed
a language, the Web Ontology Language OWL, for which the W3C Recommendations were
released in February 2004. OWL tries to be as conform as possible to SHOE, OIL, and
DAML+OIL and is based on Description Logic. It adopts and extends the XML syntax
of the Resource Description Framework (RDF, also released as a W3C Recommendation).
For the design principles behind OWL read [11].

7

8 CHAPTER 2. THEORETICAL BASICS

OWL provides three sublanguages which are decreasingly expressive:

OWL Full has the maximum expressiveness. However, it misses guarantees for computa-
tional completeness and decidability. One main difference to OWL DL is the ability
to treat classes as individuals.

OWL DL provides maximal expressiveness for computational completeness and decid-
ability. Its expressiveness corresponds to the one of Description Logic (DL). Due
to its computational properties, it is intended for reasoners. The main constraint
of OWL DL, with respect to OWL Full, is the disjointness of classes, properties,
individuals and datatypes.

OWL Lite has the ability to express hierarchical information and some easy constraints.

For creating a vocabulary for a field, OWL offers mainly three types of resources:
classes, properties and individuals. To assure uniqueness of resource identifiers, each re-
source can be assigned a name with the attributes rdf:ID or rdf:about and a namespace.
OWL uses namespaces as identifiers for ontologies, so each ontology should have one unique
namespace. Thus, references to other ontologies and resources defined elsewhere are pos-
sible.

A class can be used as a representation of a concept or a type. Syntactically, a class is
an instance of owl:Class (with owl being the prefix for the OWL namespace). There are
two predefined classes in OWL: owl:Thing, the universal class containing all elements, and
owl:Nothing, the empty concept. Furthermore, a class can be defined as a restriction on a
property. This is a possibility to constrain the values possible for statements with instances
of the restriction class as subject and the given property as predicate. The limitation
can either be a cardinality constraint or a type restriction (cf. Table 2.4). Restrictions
are always anonymous, that is they can not have a name. Classes can be related to
each other by several axioms expressing equivalence, subclass hierarchy, or intersection, to
name the most important ones. These axioms are interpreted as set operators: the axiom
owl:subclassOf for example can be mapped to the subset operator ⊆ or to the inclusion
operator v from DL and implies that all elements of the subclass are also elements of the
superclass.

Whereas a class represents a type, an individual stands for a single object. It can be an
instance of one or more classes with the predicate rdf:type. As OWL does not support
the unique-names assumption, two individuals can be different as well as point to the
same real world object if no further information is provided. Therefore, the two axioms
owl:differentFrom and owl:sameAs can be applied to individuals to make statements
about identity. An individual in OWL is defined like in RDF with rdf:Description.

Relations between real world objects are modeled as properties. There are two different
types: owl:ObjectProperty relating two objects and owl:DatatypeProperty assigning a
(data)value to an object. One or more classes can define domain and range of a property.
Like classes, they can be structured hierarchically with the predicate owl:superProperty

and be equivalent to each other. Additionally, two properties can be the inverse of each

2.2. OWL - WEB ONTOLOGY LANGUAGE BY W3C 9

other. Furthermore, properties can be assigned the following attributes which are of impor-
tance for reasoners: transitive, symmetric, functional and inverse functional. A functional
property behaves like an injective function and implies that each individual can be assigned
at most one value by this property. If a properterty is inverse functional, individuals can
have at most one source for this property. After defining a property, it can be instantiated
as a statement of the form subject predicate object.

Table 2.1, 2.3, and 2.2 show an overview of the available axioms, their corresponding
DL axioms and the informal semantic.

Axiom DL-
Axiom

Semantic Lite DL/
Full

owl:Class concepts C Represents a type or concept of the
real world

X X

owl:Restriction see Table
2.4

Defines an anonymous class as a re-
striction on a Property. Requires ex-
actly one owl:onProperty and one
or more constraints (see 2.4).

X X

ow:subClassOf v Links two classes. Defines a special-
ization or type hierarchy

X X

owl:equivalentClass ≡ Different names for the same type;
same elements

X X

owl:disjointWith A uB ≡⊥ Links two classes. The two classes
don’t have common instances.

7 X

owl:oneOf {e1, e2, . . .} Class defined as enumeration of ob-
jects

7 X

owl:intersectionOf u Links a class with a list of classes.
The class contains the elements
which are in the intersection of the
other classes.

X X

owl:unionOf t Links a class with a list of classes.
The class contains the elements
which are in either of the classes.

7 X

owl:complementOf ¬C Links two classes. The classes are
disjoint and each element is an in-
stance of either of them.

7 X

owl:Thing > The universal class. X X
owl:Nothing ⊥ The empty class. X X

Table 2.1: OWL Syntax for Classes

10 CHAPTER 2. THEORETICAL BASICS

Axiom DL-
Axiom

Semantic Lite DL/
Full

rdf:Description individuals
a

Defines a new individual. X X

〈Classname〉 Defines an individual as an
instance of class Classname,
equivalents to combining
rdf:Description and rdf:type

X X

rdf:type C(a) Links an individuals to a class.
Defines a individual as an in-
stance of the class.

X X

〈Propertyname〉 P (a, b) Defines a statement for the prop-
erty Propertyname

X X

owl:sameAs = Links two individuals. States
that the individuals refer to the
same thing.

X X

ow:differentFrom 6= Links two individuals. States
that the individuals refer to dif-
ferent things.

X X

owl:AllDifferent Requires owl:distinctMembers.
A short form for
owl:differentFrom to de-
clare that all elements listed
in owl:distinctMembers are
pairwise disjoint.

7 X

Table 2.2: OWL Syntax for Individuals

Axiom DL-
Axiom

Semantic Lite DL/
Full

owl:ObjectProperty roles R Defines a property for linking
individuals to individuals

X X

owl:DatatypeProperty Defines a property for linking
individuals to data values.

X X

owl:AnnotationProperty

owl:OntologyProperty

N.A. Defines a new annotation for
resources or ontologies

X X

rdfs:subPropertyOf v Links two properties. Defines
a hierarchy for properties.

X X

OWL Syntax for Properties

2.2. OWL - WEB ONTOLOGY LANGUAGE BY W3C 11

Axiom DL-
Axiom

Semantic Lite DL/
Full

rdfs:domain Links a property with a class.
Restricts the domain for a
property. In statement with
this property, the subject will
be inferred to be an instance of
the domain.

X X

rdfs:range Links a property with a class.
Restricts the range for a prop-
erty. In statement with this
property, the object will be in-
ferred to be an instance of the
range.

X X

owl:equivalentProperty ≡ Links two properties. X X
owl:inverseOf R− Links two properties. If a P is

inverse to Q and in OWL the
statement P (a, b) is defined,
then Q(b, a) is inferred.

X X

owl:FunctionalProperty A functional property is a
global cardinality constraint
for a property: every individ-
ual can be assigned at maxi-
mum one value with this prop-
erty.

X X

owl:

InverseFunctionalProperty

A inverse functional property
is a global cardinality con-
straint for a property: every
individual can be reached from
at maximum one subject with
this property.

X X

owl:SymmetricProperty If P is a symmetric property
and P (a, b) is defined, then
P (b, a) is inferred.

X X

owl:TransitiveProperty If P is a transitive property
and P (a, b) and P (b, c) are de-
fined, then P (a, c) is inferred.

X X

Table 2.3: OWL Syntax for Properties

A good introduction to the semantic web in general and especially OWL is [1]. For
detailed information about OWL and the OWL syntax, see the different W3C Recommen-
dations ([12], [13], [2], and [9]).

12 CHAPTER 2. THEORETICAL BASICS

RestrictionConstraint DL Lite DL/Full
hasValue R : a X X

Property Type Restrictions
allValuesFrom ∀R.C X X
someValuesFrom ∃R.C X X

Restricted Cardinality
minCardinality > nR {0, 1} X
maxCardinality 6 nR {0, 1} X
cardinality > nRu 6 nR {0, 1} X

Table 2.4: Constraints for OWL Restrictions on a Property

2.3 knOWLer

knOWLer is a system for processing ontology files. It has been developed at the University
of Neuchâtel, Switzerland, by Prof. Dr. Kilian Stoffel, Iulian Ciorascu and Claudia Cio-
rascu. It is able to read ontology files, reason about the resources and manipulate them. It
is designed to be able to deal especially with big ontologies and provides good performance.
It implements an extension of OWL Lite.

knOWLer consists of the kernel, responsible for the actual handling of the resources
and for the reasoning, and different modules for import/export and storage. It provides
several user interfaces, among other a Java API which I used for this diploma thesis. At
present, it runs on Linux and Mac. For more information about knOWLer read [5] and [4].

Chapter 3

User Manual

This chapter describes the installation and usage of ALOE in details. At present, ALOE
runs on Mac OS X and Linux.1

ALOE is a tool to browse, edit and create ontologies. It is not a reasoner, but it does
some basic reasoning to check the validity of modifications. It enables the user to get an
overview of the design of an ontology by navigating through the resources and showing
its related resources (cf. 1.3.4). The details of a resource are available either in the detail
view or in OWL format (see 1.3.1). All resources, new ones as well as those from existing
ontologies, can be edited with the help of an edit mask like described in Section 1.4.

3.1 Getting Started

3.1.1 Prerequisites

To use ALOE, the following prerequisites need to be met:

Java: ALOE requires a properly installed Java Runtime Environment JRE 1.4.2.2

knOWLer Java: The Java API of knOWLer must be installed and set up correctly ac-
cording to the installation instructions of knOWLer. Most important, the environ-
ment variables must be set. At the moment, knOWLer is available for Mac OS X
and Linux.3.

3.1.2 Installation and Starting

ALOE is available as a compressed archive (.zip or .tar.gz file). It should be unpacked
to a user-defined location. Hereon the folder ALOE contains the following folder structure:

1ALOE is pure Java and therefore runs on all platforms with JRE and knOWLer installed (see 1.1.1).
However, at present knOWLer runs only on Mac OS X and Linux.

2The JRE is available at http://java.sun.com/j2se/1.4.2/download.html
3The knOWLer home-page can be accessed at http://taurus.unine.ch/knowler/

13

http://java.sun.com/j2se/1.4.2/download.html
http://taurus.unine.ch/knowler/

14 CHAPTER 3. USER MANUAL

Figure 3.1: Main view of ALOE on Mac OS X

aloe.jar: the actual application
doc: the documentation including this document and the Javadocs.
examples: the examples used in Section 1.7 icons: the icons used by ALOE.
lib: additional jar libraries.
log: folder for the log file.
setup.sh: setup script
src: Java source files.

The script ./setup.sh configures ALOE and it should be executed in a shell. The ap-
plication can now be started by executing ./aloe (or directly with java -jar aloe.jar.
After starting the ALOE, the main view (see Figure 1.1) opens with an empty ontology
and is ready to use. (If the installation directory of knOWLer is changed, ./setup.sh
needs to be executed again.)

3.1.3 Mac OS X

For Mac OS X, ALOE is also available as a bundled application. To install it, the archive
needs to be extracted and the following commands have to be executed in a shell:

3.2. LOADING AN ONTOLOGY 15

cd ALOE-macOSX

./setup

The created ALOE.app can now be dragged to any folder and started with a double click.
If the installation directory of knOWLer is changed, ALOE also needs to be installed again.

3.2 Loading an Ontology

An existing ontology can either be loaded with the “open”button in the toolbar or through
the menu “File”. The file must be a valid OWL document. It can contain all elements of
OWL Full, but only the elements conforming to OWL Lite will be handled and additional
axioms like disjointWith (cf. 2.2) are ignored. If another ontology was already loaded/-
generated, it is removed from the temporary storage and changes after the last save are
lost.

An ontology can also be loaded into the current ontology. In this case, the resources
already loaded/generated will be kept. This is useful if you have an ontology where re-
sources from another one are referenced and you want to get the definitions of the referenced
resources. It can be be achieved by selecting “Load Ontology Into”from the menu “File”.

After an ontology is loaded, the navigation tab on the left hand side (cf. 1.3.2) is
updated. During a normal load, the frames containing the graphical representation are
reset.

3.3 Browsing an Existing Ontology

3.3.1 Views for the Resources

In ALOE, the user can inspect a resource in three different views: graphically as a node
or vertex in a graph, in the detail view or as a preview of the OWL output. The detail
view (cf. Figure 1.2(a)) shows the details of a single resource. All axioms, as mentioned
in 2.2, and all annotations for this resource are listed. One of the main goals of ALOE is
to enable users to edit ontologies without knowledge of the OWL XML syntax. However,
it offers the OWL view for those interested in the OWL XML representation of a resource
(vide Figure 1.2(b)).

The main view is the graphical view (cf. Figure 1.3). It shows not only single resources,
but the relations between them as well. The selected resources are presented as a graph.
Therfor, classes and individuals are represented as vertices, properties and axioms as edges.
To easily distinguish between properties and axioms, they are displayed in different colors:
the former are black and the latter grey. Classes and individuals are shown in separate
graph frames, whereas properties can be found in both, but with a different semantic: If two
classes are linked with a property, it means that the source class is in the domain and the
target class in the range of the property. If two individuals are connected by a property, this
is a property instance, that is, it is a statement of the form subject predicate object.

16 CHAPTER 3. USER MANUAL

(a) Detail View for a Property (b) OWL View of a property

Figure 3.2: Different views of a property

To connect classes and individuals, the classes of an individual are shown whenever the
cursor is over the vertex. The actions available for this view are described in detail in
Section 1.3.4.

If a graph has grown too big, it is possible to hide the vertices and edges visible by
different criterias. For example, it is possible to hide all axiom edges and show only the
properties. The filter to apply to the graph can be selected on top of the graph frame.
On pressing the button “Filter”, the vertices and edges are filtered. Several filters can
be applied consecutively. The hidden elements can be made visible again by the button
“Show All”.

3.3.2 The Navigation

On the left of ALOE, there is the navigation panel with a tab for each resource type
(classes, individuals, and properties). All resources are either displayed as a list or as a
tree (see Figure 1.3.2). It is possible to switch between the two views with the radio button
at the top of the panel.

A resource can be displayed in the appropriate graph (cf. 1.3.1) either by a double click
or by a click of the right mouse button (command click on mac) and selecting “Show”in the
pop-up menu. The pop-up menu for the right click on a resource offers also the possibility
to show its details or to edit it.

3.3.3 Search for Resources

ALOE provides the possibility to search for individuals or classes by name. The resources
found are shown in the respective graph. The easiest way to find a resource is by typing part
of the name in the text input in the toolbar, selecting the type (classes or individuals) and

3.3. BROWSING AN EXISTING ONTOLOGY 17

Figure 3.3: Graph view of the w6 Ontology (w6: the six “wh*”questions)

pressing the search button. If the field is empty, a dialog asks for an input. Furthermore,
there is the Advanced Search for more sophisticated search criteria. It is accessible either
from the toolbar button or from the menu “Navigation ä Advanced Search”. The user
can select one of four possibilities to search: resources whose name start with the given
characters, resources having exactly the given name or having partly the given name, or
resources whose name match a given regular expression.

To keep the graph from growing too much because of big search results, there is a limit
on the number of resources which are inserted. If more resources should be displayed, a
list with all found resources appears and lets the user select which resources really should
be visualised. This limit can be set in “Navigation ä Set Maximum Insert Size”.

18 CHAPTER 3. USER MANUAL

(a) List View (b) Tree View

Figure 3.4: The Navigation Panel

Figure 3.5: Search Dialog

3.3.4 Navigating through the Resources

A pop-up menu can be invoked for each resource in the graph view to navigate from one
resource to its related resources. Depending on the type of the resource, different actions
are available. The following actions are common to all types:

Show Details: Opens the detail view for the resource as described in 1.3.1.

Show OWL Representation: Shows the OWL XML preview for the resource.

Edit: Opens the edit wizard as explained in Section 1.4.

For individuals, the following additional actions are available:

Show Classes: Displays in the class graph all classes the individual is an instance of.

3.4. CREATING AND EDITING RESOURCES 19

Show Related: Displays all individuals related to the selected individual either by a
property instance or by an axiom.

As classes are the most complex resources, they offer the greatest number of possibilities
for navigating through the ontology:

Show Superclasses: Shows all direct superclasses in the class graph.
Show Subclasses: Displays all direct subclasses.
Show All Properties: Presents in the class graph all properties the selected class is in

the domain or range of.
Show All Related: Is a subsumption of the three above actions and displays also all

equivalent classes.
Show Instances: Poses all direct instances of this class in the individual graph.
List Instances: Presents all direct instances of the selected class in a list.

3.4 Creating and Editing Resources

3.4.1 Creating a Resource

Resources can be created with a wizard. The wizard is accessible either from the but-
tons in the toolbar or from the menu “Edit”. Each resource needs a namespace and a
name. The user can either choose an existing namespace or type a new URI. The pair
〈namespace#name〉 must be unique, otherwise an error message will be displayed. When
creating a property, it must be specified whether it is a ObjectProperty or DatatypeProperty.
For individuals, one class must be given at creation. After the new resource is created, it
is inserted in the graph view and an edit window opens on.

In addition to the three main resource types, it is also possible to create annotation
properties. Annotation properties are used to add different annotations to resources (for
further information on annotation properties see [2, “7.1 Annotations”]). Annotations can
only be created, but neither displayed in a graph nor edited. They are used when editing
other resources as explained below.

3.4.2 Edit

The edit dialog looks similar to the detail view, however it does not show all details
available, but all axioms editable. This section describes the actions common to all resource
types, the type specific actions are explained individually in the following sections.

Every dialog has two buttons, “Change”and “Done”, to adopt the values changed.
“Change”reads the changes for the name and the annotations and updates the graphical
view, “Done”does the same and closes the edit dialog. If the window is closed otherwise,
changes to the name and to the annotations will be lost.

To rename a resource, the user can type a new name in the text field at the top of the
dialog. The new name must not exist in the namespace of the resource, otherwise an error
message will be shown on applying the change.

20 CHAPTER 3. USER MANUAL

Furthermore, the resource can be annotated. There is a text field for each annotation.
The annotations available are those predefined by OWL, such as versionInfo, label,
comment, seeAlso, and isDefinedBy, as well as the user defined ones.

For each resource type, there are different axioms for relating two resources as described
in Section 2.2. For each of these axioms, there is a list with the resources already related by
this one and two buttons to add and remove resources. When resources are added, ALOE
does some basic checks if the change does not lead to an inconsistent state of the ontology.
It also checks whether the change has further effects, i.e. whether there are additional
facts which can be deduced from the change. If there is such an effect, the user is warned.
However, ALOE is not a reasoner and therefore may not detect all errors or all additional
effects.

For putting a resource in relation to a class, there is a dialog where the user can select a
class (cf. 1.6). It offers three kinds of classes for selection: The user can choose an already
existing class, create a new anonymous restriction or make an anonymous intersection. If
he decides to create an anonymous intersection, he can select two classes. When a new
restriction is created, the dialog asks the user to select a property and to add restriction
constraints. (Adding restrictions constraints to a restriction is explained later.) After
pressing “Ok”, a new anonymous class is created and then put in relation to the class
currently edited by the axiom.

(a) Selecting an existing class (b) Selecting an anonymous restriction

Figure 3.6: Adding a Class

3.4.3 Editing a Class

In addition to the general possibilities for modification, the user can manipulate the super-
classes and the equivalent classes of a class. As OWL Lite does not facilitate a possibility
to define two classes as disjoint, there are no restrictions on those axioms.

A class can be an intersection of at least two other classes. If a class is an intersection
of two others and the user wants to remove one, he can either remove none or both, but
not just one. Likewise, at least two classes must be chosen when adding a new intersection.

If a class is defined as a restriction, it is not possible to change the name as restrictions

3.4. CREATING AND EDITING RESOURCES 21

Figure 3.7: Editing a Class

are always anonymous. The only manipulations allowed are addition and removal of con-
straints. When adding a constraint, the dialog shown in Figure 1.8 is opened. The user
can select the type of the restriction and the value depending on the selection of the type.

Figure 3.8: Dialog for adding a restriction constraint

3.4.4 Editing a Property

Each property should have at least one class in the domain and the range. When manipu-
lating the domain and the range, it must be taken into account that they are interpreted
as the intersection of the classes and not as the union of them if there is more than one.

When a superproperty is being added, it must be of the same type as the property
currently edited. In other words, a DatatypeProperty cannot be the superproperty of
an ObjectProperty and vice versa. It is also checked whether the domain and range

22 CHAPTER 3. USER MANUAL

respectively of the subproperty are in the domain and the range of the superproperty or
whether they are subclasses of a class of the domain and the range. If this is not the case,
a warning appears.

The restrictions of a property (transitive, symmetric, functional and inverse functional)
can be switched on and off with the checkboxes. If symmetric is selected, ALOE tests
whether domain and range of the property comply with each other and warns if this is not
the case.

3.4.5 Editing an Individual

An individual can be an instance of several classes. In OWL Lite there is no limitation
because it is not possible to exclude individuals. Furthermore, two individuals can represent
the same object or different ones.

Property instances can be created and deleted in the edit mask of the subject of the new
statement. In the dialog for creating a new property instance (shown in Figure 1.9), the
subject is already inserted and cannot be changed. First, a property should be selected as
predicate. By default, only those properties are listed which have one of the classes of the
subject in the domain. By checking the checkbox “All Properties”, all available properties
are listed. As soon as the predicate is chosen, the list with the possible objects is updated
with all individuals that are instances of the classes in the range of the prefix. Like for the
predicates, all individuals can be displayed by enabling the checkbox “All Individuals”.

Figure 3.9: Creating a new statement

A statement will not be accepted and an error message will be shown if one of the
following conditions holds:

• The predicate is a FunctionalProperty and the subject already has a value for
this property which cannot be inferred to be the same object as the value. Two
individuals cannot be the same object if they are inferred to be different.

• The predicate is an InverseFunctionalProperty and the object already has a sub-
ject for this property which cannot be inferred to be the same object as the subject.

• The subject has a hasValue restriction on the predicate and the object is not equal
to the required value.

The following deduced facts will be recognized, that is, ALOE is able to deduce the
following additional facts:

3.5. DELETING RESOURCES 23

• The subject has a cardinality restriction (cardinality or maxCardinality) on the
predicate and has already reached the limit of objects. In this case, some of the
objects will be deduced to be sameAs.

• The subject has a allValuesFrom restriction on the predicate and the object is not
already an instance of the required class. Thus, the object is inferred to be an instance
of the required class.

• The predicate is a FunctionalProperty and the subject already has a value for this
property which can be the same as the object. Therefore the object will be deduced
to be sameAs the other value(s).

• The predicate is an InverseFunctionalProperty and the object already has a sub-
ject for this property which can be the same as the new subject. Hence, the new
subject will be inferred to be sameAs the other subject(s)

3.5 Deleting Resources

A resource can be deleted by selecting “Delete”in the popup menu for a resource in the
graph view. If other resources depend on the resource to delete, an error message is shown
explaining which resources depend on it and that it cannot be deleted. For example a
property cannot be deleted if there is a restriction on it. If the resource to delete is
referenced by other resources, a warning is displayed.

3.6 Saving an Ontology

An ontology can be saved in OWL format. First, a file must be chosen to write to. Then
a dialog for configuring the ontology header and the namespaces is displayed. Values for
all available annotations for an ontology can be defined. Additionally, the name of the
author can be given. It will be inserted as a comment as OWL does not provide an author
annotation. Furthermore, a prefix for each namespace must be defined. This prefix will be
used as an abbreviation for the namespace as indicated in the OWL XML syntax definition.
Also one namespace must be chosen as the default namespace. If constructs from other
ontologies are referenced, the namespace defining these ontologies should be imported. As a
namespace usually identifies an ontology, ALOE allows the export of selected namespaces.
Only the definitions of the resources in the selected namespace(s) will be saved. Resources
in other namespaces will just be referenced. This is useful because often several ontologies
will be loaded (the ontology currently edited as well as the ontologies referenced), but only
the ontology (ontologies) currently edited are supposed to be saved.

24 CHAPTER 3. USER MANUAL

3.7 Example

In this section I demonstrate the usage of ALOE by creating an example ontology step
by step. Therefore, I want to develop an ontology about cartoons based on an ontology
about stories. The full OWL sources of the example ontologies can be found in Appendix
A. Figure 1.10 shows the classes of the ontology I want to extend.

Figure 3.10: The ontology about stories

First, I want to model the fact that cartoons are a kind of stories. Therefore, I create a
new class named Cartoon in the new namespace http://www.iam.unibe.ch/∼spescha/

cartoons and add Story as superclass. After inserting a comment, I’m done with this
class. As there are cartoons appearing as a series, either as book like “Asterix & Obelix”or
as a stripe in a newspaper like “Calvin and Hobbes”, I create CartoonSeries as a subclass
of Cartoon in the same namespace and BookSeries and ComicStrip as subclasses of
CartoonSeries. A booklet series consists of several booklets. Thus, I first make a class
Book. Then I generate the property hasBook as an ObjectProperty. In the edit mask for
hasBook I add BookSeries as domain and Book as range and select it to be an inverse

3.7. EXAMPLE 25

functional property. Now I create the ObjectProperty belongsToSeries with Book as
domain and BookSeries as range. As this is the opposite of hasBook, I add the latter as
inverse property and define belongsToSeries to be functional. A BookSeries must have
at least one Book. Hence, I define BookSeries as subclass of an anonymous restriction. The
restriction is a restriction on the property hasBook and has a minCardinality constraint
with value 1.

To specify the attributes for a Book, I define the two functional DatatypeProperty
title and isbn, both with Book as domain and string from XML schema as range.
Similar to Book, I define Episode as elements for ComicStrip. As a lot of comic strips
are about heros and their bad antagonists, I add two subclasses of Character, Hero and
BadGuy.

Now there are all classes I need and I can now start modeling “Asterix & Obelix”. I
create Asterix and Obelix as instances of Hero. As they are both humans, I add Person

as class for both of them. Then I add a statement for Asterix. In the dialog for creating
the property instance, I select hasFriend as predicate and Obelix as object. Now I am
done with these characters.

As “Asterix & Obelix”is a booklet series, I generate an individual AsterixAndObelix
as an instance of BookletSeries. I add two statements to define Asterix and Obelix as
main characters of the comic strip. Then, I define French to be the original language and
state that AsterixAndObelix was translated to other languages. Similarly, I create other
characters from “Asterix & Obelix”and the comic strip “Calvin And Hobbes”.

Finally, I want to save my ontology. I make some annotations for the resource and
define prefixes for the namespaces. http://www.iam.unibe.ch/∼spescha/cartoons is
the default namespace of this ontology and also the only one I want to export. The
resulting OWL file is available in the Appendix A.1.

26 CHAPTER 3. USER MANUAL

Chapter 4

Implementation

This chapter describes the implementation of ALOE. In a short form, the libraries used
in addition to knOWLer are introduced. The package structure and design principles are
explained as well and some examples are presented. The source code is well documented
with Javadoc comments. More details on the implementation can be found in the generated
API specification on the supplemented CD-ROM.

4.1 Libraries Used

4.1.1 JGraph

JGraph1 is a Java library for graph drawing with Swing. JGraph started as diploma thesis
at the ETH Zurich and is available as open source under the LGPL license.

JGraph is pure Java and can be used in any Swing application. It is designed using the
Model-View-Controller pattern of Swing. JGraph offers the ability to drag and drop, export
the graphs, route the edges and to zoom, to name just a few. Furthermore, the layout of the
edges and vertices is fully customizable. The auxiliary library JGraph Addons2 contains
useful features like layout algorithms and different shapes for the vertices.

ALOE employs JGraph and JGraph Addons for the graph view of the resources.
JGraph is used in version 5.X and JGraph Addons in version 1.0.7.

4.1.2 JDOM

JDOM3 is a Java library for manipulating XML data in Java. It permits the user to treat
XML elements as Java objects and therefore makes it easy to manipulate them. It supports
namespace declarations, which is very important for OWL. Furthermore, it provides the
functionality to print XML data in a customizable form.

1http://www.jgraph.com
2JGraph Addons was lately replaced by a commercial library and will not be developped further.
3http://www.jdom.org

27

http://www.jgraph.com
http://www.jdom.org

28 CHAPTER 4. IMPLEMENTATION

ALOE uses JDOM for saving an ontology in OWL XML format. JDOM version 1.0 is
used.

4.2 Design

The implementation of ALOE consists of the following packages (cf. also Figure 4.1):

ch.unibe.ontoBrowser contains the main class starting the application and the controller
responsible for the visualisation of the model. The controller also passes actions from
the view to the model.

ch.unibe.ontoBrowser.dialogs includes all dialogs used for creating resources, adding
relations and saving an ontology. All dialogs are subclasses of javax.swing.JDialog.

ch.unibe.ontoBrowser.event contains the classes and interfaces used for events, which
are used for the communication between the model and the view. The model throws
events whenever changes are made. This is the case whenever the ontology is changed
by adding or deleting a resource or whenever a single resource is modified. Compo-
nents interested in those changes must implement the corresponding interface and
can register as listeners to the events. This mechanism is used to synchronize the
different views and to keep track of the changes.

ch.unibe.ontoBrowser.graph holds the classes used for the graph view. Most of these
classes are subclasses of JGraph. They either extend the functionality of JGraph with
convenience methods or they customize the behaviour and the layout for ALOE.

ch.unibe.ontoBrowser.log includes the class Logger which is responsible for writing
the log file. It implements the singleton pattern. All information which needs to be
logged should be written to the log file with the help of this class.

ch.unibe.ontoBrowser.model consists of all classes and interfaces which are responsible
for modelling the OWL resources. One part of the classes in this package subclass
the resource classes of knOWLer. They extend the functionaliy of knOWLer by
adding convenience methods and some basic reasoning. Furthermore, it contains
the interface EditManager together with an implementation. EditManager defines
an interface for basic validity checks for changes. All methods return an integer
indicating whether the change is alright, alright implying additional facts or would
lead to an inconsistent state.

ch.unibe.ontoBrowser.test contains unit tests for some of the classes of the model.
OntologyTestSuite is responsible for creating the test suite with all unit tests.

ch.unibe.ontoBrowser.view consists of all classes needed for building the GUI. OBrowser
is the main frame of the application. Furthermore, classes for the different views of
the resources are included.

4.3. IMPLEMENTATION EXAMPLES 29

ch.unibe.ontoBrowser.view.actions contains the actions for the GUI. Only the actions
encapsulating functionality are implemented as a class, other actions are written as
anonymous classes when they are used.

Figure 4.1: UML diagram of the package structure and dependencies.

ALOE implements the Model-View-Controller (MVC) pattern for the graph view. The
model (package ch.unibe.ontoBrowser.model) consists of classes representing the OWL
resources which are derived from the classes proviced by knOWLer. The view is made up of
subclasses of classes of JGraph (package ch.unibe.ontoBrowser.graph). The controller
is a class responsible for translating the objects of the model to graph objects for the view.
Appendix B contains UML diagrams for the most important classes explaining the design
of the packages.

4.3 Implementation Examples

This section contains the interface EditManager:

5 package ch . unibe . ontoBrowser . model ;

import ch . unine . k id . knowler . OntologyResource ;
import ch . unine . k id . knowler . Re s t r i c t i onCons t r a i n t ;

30 CHAPTER 4. IMPLEMENTATION

10 /∗∗
∗ An ed i t manager i s r e s p on s i b l e f o r check ing the
∗ v a l i d i t y o f a s ta tement . <code>EditManager</code>
∗ d e f i n e s the minimal requ irements f o r the kind o f s ta tements
∗ which needed to be checked . Implementing c l a s s e s can e s p e c i a l l y

15 ∗ vary in the warning l e v e l .

∗ Each Method can re turn one o f the f o l l ow i n g s t a t e s :
∗
∗ < l i ><code>EditManager .OK</code> i f e v e r y t h in g i s ok .
∗ < l i ><code>EditManager .WARNING</code> i f the user shou ld be warned

t ha t
20 ∗ a f t e r t h i s change a d d i t i o n a l knowledge w i l l be i n f e r r e d .

∗ < l i ><code>EditManager .ERROR</code> i f the change would cause an
i n v a l i d s t a t e

∗ f o r the on to logy .
∗
∗ I f <code>ERROR</code> or <code>WARNING</code> was returned , an

e x p l i c a t i o n o f the
25 ∗ problem shou ld be a c c e s s i b l e by c a l l i n g <code>g e tLa s tExp l i c a t i on </

code>
∗ @author Daria Spescha
∗/

public interface EditManager {

30 public stat ic int OK = 0 ;
public stat ic int WARNING = 1 ;
public stat ic int ERROR = 2 ;

/∗∗
35 ∗ Checks whether an i n d i v i d u a l can be an ins tance o f the g iven

c l a s s .
∗ @param i n d i v i d u a l the in tended ins tance
∗ @param c las sRes the c l a s s <code>i n d i v i dua l </code> shou ld be an
∗ i n s tance o f .
∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e

re turn va l u e s .
40 ∗/

public int canBeInstanceOf (ExtendedIndiv idualResource ind iv idua l ,
ExtendedClassResource c l a s sRe s) ;

/∗∗
∗ Checks whether two p r o p e r t i e s can be inv e r s e .

45 ∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e
re turn va l u e s .

∗/

4.3. IMPLEMENTATION EXAMPLES 31

public int canBeInverse (ExtendedPropertyResource property1 ,
ExtendedPropertyResource property2) ;

/∗∗
50 ∗ Checks whether the g iven proper ty can be the superProperty

∗ o f the g iven subproper ty .
∗ @param sub the p o t e n t i a l subproper ty
∗ @param superP the p o t e n t i a l superproper ty
∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e

re turn va l u e s .
55 ∗/

public int canBeSuperproperty (ExtendedPropertyResource sub ,
ExtendedPropertyResource superP) ;

/∗∗
∗ Tests whether the proper ty can be symmetric .

60 ∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e
re turn va l u e s .

∗/
public int canBeSymmetric (ExtendedPropertyResource property) ;

/∗∗
65 ∗ Co l l e c t s a l l r e s t r i c t i o n s the g iven c l a s s has on the g iven

proper ty .
∗ @param c las sRes the c l a s s to search the r e s t r i c t i o n s o f .
∗ @param proper ty the proper ty which shou ld be in the onProperty

par t
∗ o f the r e s t r i c t i o n .
∗ @return an array wi th the c on s t r a i n t s found .

70 ∗/
public Res t r i c t i onCons t r a i n t [] g e tRes t r i c t i onsOn (

ExtendedClassResource c las sRes , ExtendedPropertyResource
property) ;

/∗∗
∗ Co l l e c t s a l l r e s t r i c t i o n c on s t r a i n t s the i n d i v i d u a l has on the

g iven
75 ∗ proper ty .

∗ @param i n d i v i d u a l the i n d i v i d u a l to c o l l e c t i t s c on s t r a i n t s .
∗ @param proper ty the proper ty f o r the onProperty par t .
∗ @return an array wi th the c on s t r a i n t s found .
∗/

80 public Res t r i c t i onCons t r a i n t [] g e tRes t r i c t i onsOn (
ExtendedIndiv idualResource ind iv idua l , ExtendedPropertyResource
property) ;

32 CHAPTER 4. IMPLEMENTATION

/∗∗
∗ Checks i f the s ta tement <code>(sub j e c t , p red i ca t e , o b j e c t)</

code>
∗ i s a v a l i d s ta tement .

85 ∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e
re turn va l u e s .

∗/
public int i sVa l idStatement (ExtendedIndiv idualResource subjec t ,

ExtendedPropertyResource pred i cate , ExtendedIndiv idualResource
ob j e c t) ;

/∗∗
90 ∗ Tests whether the g iven i n d i v i d u a l s can be sameAs .

∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e
re turn va l u e s .

∗/
public int canBeSameAs (ExtendedIndiv idualResource res1 ,

ExtendedIndiv idualResource r e s2) ;

95 /∗∗
∗ Tests whether the g iven i n d i v i d u a l s can be de f ined to be

d i f f e rentFrom each o ther
∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e

re turn va l u e s .
∗/

public int canBeDifferentFrom (ExtendedIndiv idualResource res1 ,
ExtendedIndiv idualResource r e s2) ;

100
/∗∗
∗ Gets the e x p l i c a t i o n why the l a s t check method re turned
∗ an error or warning .
∗ @return The e x p l i c a t i o n f o r the l a s t e r ror or warning .

105 ∗/
public St r ing ge tLas tExp l i c a t i on () ;

/∗∗
∗ Test whether a resource can be renamed to the g iven new name .

110 ∗ @return See {@l inkp l a in EditManager above} f o r the p o s s i b l e
re turn va l u e s .

∗/
public int canBeRenamed(OntologyResource res , S t r ing newname) ;

}

Chapter 5

Comparison with Other Ontology
Editors

In this chapter, some other ontology editors are presented briefly and compared with ALOE.
A short overview is given in table 5.1 where the criterias are split in four categories:

OS: The operating systems the editor runs on.
Languages: A selection of ontology languages the editor supports.
Browsing: Some criterias indicating how easy it is to browse and explore an existing

ontology.
Editing Support: A selection of edit actions which are supported. (The possibility to

do the edit in the source code is not counted as editing support.)

5.1 Protégé

Characteristics

Name: Protégé
Developer: Stanford Medical Informatics at the Stanford University School of Medicine
License: Freeware, open source
Homepage: http://protege.stanford.edu/

Supported Languages: RDF Schema, CLIPS, OWL with additional plug-in
Version: 3.01

Comment: Requires JDK 1.3

Protégé is intended as an editor for knowledge base systems. It offers a special OWL
view (see Figure 5.1) for editing OWL ontologies. On the left hand side, it has a list of
resources for each resource type, like ALOE. Classes are listed in a hierarchical tree. This
is convenient for a first overview of the hierarchy, but it is confusing if a class has more than

1Latest version (June 2005)

33

http://protege.stanford.edu/

34 CHAPTER 5. COMPARISON WITH OTHER ONTOLOGY EDITORS

one superclass. The edit masks for the resources offer many features and it is possible to
edit all axioms available from OWL Full. However, it lacks uniformity as not all axioms are
treated the same way. In the edit mask for classes, it is not clear which are the superclasses
because they are not listed explicitly.

If an existing ontology is loaded, Protégé opens the general view and not the OWL
specific one and it is not possible to switch the perspective. In the general view, some
elements are named differently, for example properties are called slots, which is confusing.
Unlike ALOE, it is not possible to load several ontologies at the same time. Furthermore
Protégé does not support the use of multiple namespaces.

Protégé is suitable for advanced users, as profound knowledge about ontologies is re-
quired and knowledge of (description) logics is recommended because a lot of images used
are taken from logics notation. Though, it does not provide an intuitive user interface for
inexperienced users.

Figure 5.1: OWL view of Protégé

5.2. SWOOP 35

5.2 SWOOP

Characteristics

Name: SWOOP

Developer: MINDSWAP Research Group, University of Maryland, College Park

License: LGPL

Homepage: http://www.mindswap.org/2004/SWOOP/

Supported Languages: OWL

Version: 2.2.11

Comment:

SWOOP looks like a common web-browser and has an intuitive user interface. The
application lets the user load several ontologies and switch between them. Like ALOE,
it has a list with all resources on the left hand side, but the resources are shown as a
hierarchical tree.

SWOOP offers four different perspectives of the resources, including the OWL XML
Syntax and one called “Concise Format”. The latter enables the editing of resources with
add and remove buttons as well as wizards for adding a relation. It is also possible to
navigate from one resource to the detail view of its related resources.

In contrast to ALOE, it is not possible to look at different resources at the same time.
SWOOP also lacks a graphical representation.

5.3 SWeDE

Characteristics

Name: SWeDE (Semantic Web Development Environment)

Developer: BBN Technologies

License: Freeware

Homepage: http://owl-eclipse.projects.semwebcentral.org/

Supported Languages: OWL

Current version: 2.0.01

Comment: Requires Eclipse

SWeDE is available as a plug-in for Eclipse 3.0. It offers an editor for the OWL XML
syntax with syntax highlighting and auto-completion as well as an editor for restrictions.
Furthermore, it has a validator which does not seem to work properly and does not provide
very informative error messages. SWeDE is a good editor for editing OWL files directly,
though.

http://www.mindswap.org/2004/SWOOP/
http://owl-eclipse.projects.semwebcentral.org/

36 CHAPTER 5. COMPARISON WITH OTHER ONTOLOGY EDITORS

Figure 5.2: SWOOP

5.4 KAON

Characteristics

Name: KAON
Developer: FZI (Forschungszentrum Informatik) and AIFB (Institut für Angewandte

Informatik und Formale Beschreibungsverfahren, University of Karlsruhe)
License: LGPL
Homepage: http://kaon.semanticweb.org/

Supported Languages: RDF(S)
Version: 1.2.71

Comment: Requires Java J2SE 1.4.0 01 or Java Webstart

Among the editors examined, KAON is the only one offering a graphical representation.
However, KAON supports only RDF(S) and not OWL. Like ALOE, it displays the ontology
as a graph. Though, KAON shows the properties also as vertices and not as edges, which

http://kaon.semanticweb.org/

5.4. KAON 37

is quite irritating. Furthermore, the layout of the graph is done automatically and it is
not possible to drag vertices by hand. It does not have a list of all resources. Thus, the
only possibility to explore an ontology is by navigating through the graph starting from
“Root”. As the graph grows too complex, some nodes can be hidden, but in opposition to
ALOE, it is not possible to make them visible again.

Like ALOE, KAON uses colors to distinguish between the resource types. Also the
edges have different colors for the different kinds of relations. This is practical to get
an overview, but it would be difficult to adopt the coloring of axioms to ALOE as OWL
supports a lot more axioms.

KAON lets the user connect two resource by drawing a line from one resource to another
one. The type of the relation is identified depending on the type of the resources.

38 CHAPTER 5. COMPARISON WITH OTHER ONTOLOGY EDITORS

Figure 5.3: KAON

5.4. KAON 39

A
L
O

E

S
W

O
O

P

K
A
O

N

P
ro

té
g
é

S
W

eD
E

O
S

Linux X X X X X
Mac X X 7 X X
Windows 7 X X X X

L
a
n
g
u
a
g
e
s OWL Lite X X 7 X X

OWL DL 7 X 7 X X
OWL Full 7 X 7 X X
RDF 7 7 X X 7

DAML 7 7 7 X 7

B
ro

w
si

n
g Graphical Representation X 7 X 7 7

Selecting the visualisation X 7 7 7 7

Intuitive User Interface X X 7 7 X
Navigation X X X 7 7

Visibility of axioms X X X X X
Loading several ontologies X X X 7 X

E
d
it

in
g

S
u
p
p
o
rt

Individuals X X X X 7

Individual identity X X 7 X 7

Classes X X X X 7

Subclass X X X X 7

Intersection X X 7 X 7

Restriction X X 7 X 7

Equivalent classes X X 7 X 7

Properties X X X X 7

Subproperty X X X X 7

Domain and Range X X X X 7

Equivalent properties X X 7 X 7

Rename resources X X X X 7

User defined annotations X X 7 X 7

Save selected ontology X X X 7 X

Table 5.1: Comparison of Ontology Editors

40 CHAPTER 5. COMPARISON WITH OTHER ONTOLOGY EDITORS

Chapter 6

Conclusion and Further Work

6.1 Conclusion

Based on the requirements for ALOE and the previous chapters, this section explains in
short terms how ALOE achieves this criteria and why it complies better with the require-
ments than other ontology editors.

Ease of use: As all changes are done in edit masks and dialogues, it is easy for users
without any knowledge about the OWL syntax to edit or create an ontology. Fur-
thermore, the user interface is intuitive as all main actions are available in the toolbars
and navigation through the ontology is possible with a right click on the resources.

General Overview: The navigation tab on the left hand side offers a fast overview of
the existing resources. To avoid too much scrolling, the resources can also be listed
alphabetically, sorted by the first letter of their name. In addition, the relations
between the resources are accessible in the graph view. It is also possible to look at
the details of several resources at the same time and compare them.

Graphical: The graph view offers a very intuitive graphical representation of an ontology.

Visibility: All axioms available in OWL Lite are visible in the detail view or in the OWL
view. All properties, relations and so on can be edited in the edit mask.

Navigation: Related resources can be displayed in the graph with different commands
which let the user select the kind of relations he wants to see. Furthermore, the
details of all related resources can be viewed in the detail view of a resource.

Huge Ontologies: ALOE lets the user select the resources which are to be displayed in
the graph view. Therefore, it is easy to concentrate on one part of the ontology
and even huge ontologies can be handled. The separation of classes and individuals
prevents the graphs from getting too complex. If the graph gets too big anyhow,
the vertices and edges can be filtered by different criteria and afterwards reshown.

41

42 CHAPTER 6. CONCLUSION AND FURTHER WORK

Furthermore, there is a mechanism to impede that too many resources are inserted
to the graph by accident (see section 1.3.3).

ALOE is able to handle for example the Wordnet ontology (see http://taurus.

unine.ch/knowler/wordnet.html). Though, it takes a while until the ontology is
loaded into knOWLer.

Moreover, ALOE can handle several ontologies at the same time. It is possible to
load an additional ontology to the current one in order to extend it or in order to edit
it in parallel. Furthermore, the resources which should be saved can be specified by the
namespace.

6.2 Further Work

Finally, I want to present some ideas for useful extensions to ALOE:

• Queries: It would be useful to have an interface for composing queries and presenting
the result.

• Reasoner: A reasoner explaining the inferred facts would be valuable for experienced
users.

• As mistakes are made very easily, an “Undo”functionality would be useful.

• At the moment, the colours used for instances and classes are fixed. It would be nice
to be able to select these colours and set them as preferences.

• Syntax highlighting for the OWL view would make the OWL Syntax more readable.

• As JGraph offers many features for editing graphs, it would be nice to connect re-
sources by dragging edges from one vertex to another one.

http://taurus.unine.ch/knowler/wordnet.html
http://taurus.unine.ch/knowler/wordnet.html

Appendices

43

Appendix A

Example Ontologies

A.1 Asterix & Obelix Ontologies

A.1.1 Story Ontology

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE rdf:RDF [

<!ENTITY r d f s ’ h t tp : //www.w3 . org /2000/01/ rdf−schema#’>
< !ENTITY xsd ’ h t tp : //www.w3 . org /2001/XMLSchema#’>
< !ENTITY cartoon ’ h t tp : //www. iam . unibe . ch/˜ spescha / car toons#’>
< !ENTITY owl ’ h t tp : //www.w3 . org /2002/07/ owl#’>

7 < !ENTITY s to ry ’ h t tp : //www. iam . unibe . ch/˜ spescha / s to ry#’>
< !ENTITY rd f ’ h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#’>
]>

<rdf:RDF
12 xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns :cartoon=” ht tp : //www. iam . unibe . ch/˜ spescha / car toons#”
xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

17 xmlns : s to ry=” ht tp : //www. iam . unibe . ch/˜ spescha / s to ry#”
xmlns=” ht tp : //www. iam . unibe . ch/˜ spescha / s to ry#”
xml:base=” ht tp : //www. iam . unibe . ch/˜ spescha / s to ry#”>

<owl:Ontology>
< !−−Author: Daria Spescha−−>

22 <ow l : v e r s i o n I n f o>v 1 .0</ ow l : v e r s i o n I n f o>
<rdfs:comment>A bas i c onto logy about s t o r i e s .</ rdfs:comment>

</ owl:Ontology>
< !−−Annotations−−>
< !−−Classes−−>

27 <ow l :C la s s rd f : about=”#Story ” />

45

46 APPENDIX A. EXAMPLE ONTOLOGIES

<ow l :C la s s rd f : about=”#Character ” />
<ow l :C la s s rd f : about=”#Person”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”#Being” />
</ owl :C la s s>

32 <ow l :C la s s rd f : about=”#Language” />
<ow l :C la s s rd f : about=”#Film”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”#Story ” />
</ owl :C la s s>
<ow l :C la s s rd f : about=”#Novel”>

37 <rd f s : subC la s sO f r d f : r e s o u r c e=”#Story ” />
</ owl :C la s s>
<ow l :C la s s rd f : about=”#Being” />
<ow l :C la s s rd f : about=”#Animal”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”#Being” />
42 </ owl :C la s s>

<ow l :C la s s rd f : about=”#Dog”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#Animal” />

</ owl :C la s s>
<ow l :C la s s rd f : about=”#Tiger ”>

47 <rd f s : subC la s sO f r d f : r e s o u r c e=”#Animal” />
</ owl :C la s s>
< !−−Proper t i e s−−>
<owl :ObjectProperty rd f : about=”#hasFriend ”>

<r d f : t yp e r d f : r e s o u r c e=”&owl ; SymmetricProperty” />
52 <r d f s : r a n g e r d f : r e s o u r c e=”#Character ” />

<rd f s :domain r d f : r e s o u r c e=”#Character ” />
</ owl :ObjectProperty>
<owl :ObjectProperty rd f : about=”#or ig ina lLanguage ”>

<r d f : t yp e r d f : r e s o u r c e=”&owl ; Funct ionalProperty ” />
57 <r d f s : r a n g e r d f : r e s o u r c e=”#Language” />

<rd f s :domain r d f : r e s o u r c e=”#Story ” />
</ owl :ObjectProperty>
<owl :ObjectProperty rd f : about=”#trans latedTo ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Language” />
62 <rd f s :domain r d f : r e s o u r c e=”#Story ” />

</ owl :ObjectProperty>
<owl :ObjectProperty rd f : about=”#mainCharacter ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Character ” />
<rd f s :domain r d f : r e s o u r c e=”#Story ” />

67 <rd f s : subProper tyOf r d f : r e s o u r c e=”#hasCharacter ” />
</ owl :ObjectProperty>
<owl :ObjectProperty rd f : about=”#writtenBy”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Person” />
<rd f s :domain r d f : r e s o u r c e=”#Story ” />

72 </ owl :ObjectProperty>

A.1. ASTERIX & OBELIX ONTOLOGIES 47

<owl:DatatypeProperty rd f : about=”#t i t l e ”>
<r d f s : r a n g e r d f : r e s o u r c e=”&xsd ; s t r i n g ” />
<rd f s :domain r d f : r e s o u r c e=”#Story ” />

</ owl:DatatypeProperty>
77 <owl :ObjectProperty rd f : about=”#appears ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Story ” />
<rd f s :domain r d f : r e s o u r c e=”#Character ” />
<ow l : i nve r s eOf r d f : r e s o u r c e=”#hasCharacter ” />

</ owl :ObjectProperty>
82 <owl :ObjectProperty rd f : about=”#hasEnemy”>

<r d f : t yp e r d f : r e s o u r c e=”&owl ; SymmetricProperty” />
<r d f s : r a n g e r d f : r e s o u r c e=”#Character ” />
<rd f s :domain r d f : r e s o u r c e=”#Character ” />

</ owl :ObjectProperty>
87 <owl :ObjectProperty rd f : about=”#authorOf”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Story ” />
<rd f s :domain r d f : r e s o u r c e=”#Person” />
<ow l : i nve r s eOf r d f : r e s o u r c e=”#writtenBy” />

</ owl :ObjectProperty>
92 <owl :ObjectProperty rd f : about=”#hasCharacter ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Character ” />
<rd f s :domain r d f : r e s o u r c e=”#Story ” />

</ owl :ObjectProperty>
< !−−I n d i v i d u a l s−−>

97 <Language rd f : about=”#French” />
<Language rd f : about=”#Engl i sh ” />
<Language rd f : about=”#German”>

< r d f s : l a b e l>Deutsch</ r d f s : l a b e l>
</Language>

102 </rdf:RDF>

A.1.2 Cartoon Ontology

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE rdf:RDF [

<!ENTITY r d f s ’ h t tp : //www.w3 . org /2000/01/ rdf−schema#’>
< !ENTITY xsd ’ h t tp : //www.w3 . org /2001/XMLSchema#’>
< !ENTITY cartoon ’ h t tp : //www. iam . unibe . ch/˜ spescha / car toons#’>
< !ENTITY owl ’ h t tp : //www.w3 . org /2002/07/ owl#’>

7 < !ENTITY s to ry ’ h t tp : //www. iam . unibe . ch/˜ spescha / s to ry#’>
< !ENTITY rd f ’ h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#’>
]>

<rdf:RDF
12 xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

48 APPENDIX A. EXAMPLE ONTOLOGIES

xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns :cartoon=” ht tp : //www. iam . unibe . ch/˜ spescha / car toons#”
xmlns=” ht tp : //www. iam . unibe . ch/˜ spescha / car toons#”

17 xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”
xmlns : s to ry=” ht tp : //www. iam . unibe . ch/˜ spescha / s to ry#”
xml:base=” ht tp : //www. iam . unibe . ch/˜ spescha / car toons#”>

<owl:Ontology>
< !−−Author: Daria Spescha−−>

22 <ow l : v e r s i o n I n f o>v 1 .0</ ow l : v e r s i o n I n f o>
<rdfs:comment>A bas i c onto logy about car toons .</ rdfs:comment>
<owl : import s r d f : r e s o u r c e=” ht tp : //www. iam . unibe . ch/˜ spescha / s to ry ”

/>
</ owl:Ontology>
< !−−Annotations−−>

27 < !−−Classes−−>
<ow l :C la s s rd f : about=”#Cartoon”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&sto ry ; Story ” />
<rdfs:comment>Cartoons are s p e c i a l s t o r i e s , they are painted .</

rdfs:comment>
</ owl :C la s s>

32 <ow l :C la s s rd f : about=”#CartoonSer i e s ”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#Cartoon” />

</ owl :C la s s>
<ow l :C la s s rd f : about=”#ComicStr ipSer i e s ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”#CartoonSer i e s ” />
37 <rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=”#hasEpisode ” />
<owl :minCard ina l i ty rd f : da ta type=”&xsd ; nonNegat iveInteger ”>1</

owl :minCard ina l i ty>
</ ow l :R e s t r i c t i o n>

42 </ rd f s : subC la s sO f>
<rdfs:comment>Some cartoons appear as comic s t r i p s e r i e s in

newspapers l i k e ”Calvin And Hobbes” .</ rdfs:comment>
</ owl :C la s s>
<ow l :C la s s rd f : about=”#BookSer ies ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”#CartoonSer i e s ” />
47 <rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=”#hasBook” />
<owl :minCard ina l i ty rd f : da ta type=”&xsd ; nonNegat iveInteger ”>1</

owl :minCard ina l i ty>
</ ow l :R e s t r i c t i o n>

52 </ rd f s : subC la s sO f>

A.1. ASTERIX & OBELIX ONTOLOGIES 49

<rdfs:comment>Some cartoons appear as books such as Aste r ix and
Obel ix .</ rdfs:comment>

</ owl :C la s s>
<ow l :C la s s rd f : about=”#BookEpisode”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”#Episode ” />
57 </ owl :C la s s>

<ow l :C la s s rd f : about=”#Episode ” />
<ow l :C la s s rd f : about=”#Hero”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&sto ry ; Character ” />
</ owl :C la s s>

62 <ow l :C la s s rd f : about=”#BadGuy”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”&sto ry ; Character ” />

</ owl :C la s s>
<ow l :C la s s rd f : about=”#newspaper” />
< !−−Proper t i e s−−>

67 <owl :ObjectProperty rd f : about=”#hasEpisode ”>
<r d f : t yp e r d f : r e s o u r c e=”&owl ; Inver seFunct iona lProper ty ” />
<r d f s : r a n g e r d f : r e s o u r c e=”#Episode ” />
<rd f s :domain r d f : r e s o u r c e=”#CartoonSer i e s ” />

</ owl :ObjectProperty>
72 <owl :ObjectProperty rd f : about=”#hasBook”>

<r d f : t yp e r d f : r e s o u r c e=”&owl ; Inver seFunct iona lProper ty ” />
<r d f s : r a n g e r d f : r e s o u r c e=”#BookEpisode” />
<rd f s :domain r d f : r e s o u r c e=”#BookSer ies ” />

</ owl :ObjectProperty>
77 <owl:DatatypeProperty rd f : about=”#t i t l e ” />

<owl:DatatypeProperty rd f : about=”#isbn ”>
<r d f : t yp e r d f : r e s o u r c e=”&owl ; Funct ionalProperty ” />
<r d f s : r a n g e r d f : r e s o u r c e=”&xsd ; s t r i n g ” />
<rd f s :domain r d f : r e s o u r c e=”#BookEpisode” />

82 </ owl:DatatypeProperty>
<owl :ObjectProperty rd f : about=”#be longsToSer i e s ”>

<r d f : t yp e r d f : r e s o u r c e=”&owl ; Funct ionalProperty ” />
<r d f s : r a n g e r d f : r e s o u r c e=”#CartoonSer i e s ” />
<rd f s :domain r d f : r e s o u r c e=”#Episode ” />

87 <ow l : i nve r s eOf r d f : r e s o u r c e=”#hasEpisode ” />
<ow l : i nve r s eOf r d f : r e s o u r c e=”#hasBook” />

</ owl :ObjectProperty>
<owl:DatatypeProperty rd f : about=”#ep i s od eT i t l e ”>

<r d f : t yp e r d f : r e s o u r c e=”&owl ; Funct ionalProperty ” />
92 <r d f s : r a n g e r d f : r e s o u r c e=”&xsd ; s t r i n g ” />

<rd f s :domain r d f : r e s o u r c e=”#Episode ” />
</ owl:DatatypeProperty>
<owl:DatatypeProperty rd f : about=”#episodeNo”>

<r d f s : r a n g e r d f : r e s o u r c e=”&xsd ; i n t e g e r ” />

50 APPENDIX A. EXAMPLE ONTOLOGIES

97 <rd f s :domain r d f : r e s o u r c e=”#Episode ” />
</ owl:DatatypeProperty>
<owl:DatatypeProperty rd f : about=”#f i r s tAppearance ”>

<r d f : t yp e r d f : r e s o u r c e=”&owl ; Funct ionalProperty ” />
<r d f s : r a n g e r d f : r e s o u r c e=”&xsd ; date ” />

102 <rd f s :domain r d f : r e s o u r c e=”#Episode ” />
</ owl:DatatypeProperty>
<owl :ObjectProperty rd f : about=”#appearedIn ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#newspaper” />
<rd f s :domain r d f : r e s o u r c e=”#ComicStr ipSer i e s ” />

107 </ owl :ObjectProperty>
< !−−I n d i v i d u a l s−−>
<r d f :D e s c r i p t i o n rd f : about=”#Aste r ix ”>

<r d f : t yp e r d f : r e s o u r c e=”#Hero” />
<r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Person” />

112 </ r d f :D e s c r i p t i o n>
<r d f :D e s c r i p t i o n rd f : about=”#Obel ix ”>

<r d f : t yp e r d f : r e s o u r c e=”#Hero” />
<r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Person” />
<s t o ry :ha sFr i end r d f : r e s o u r c e=”#Aste r ix ” />

117 </ r d f :D e s c r i p t i o n>
<BookSer ies rd f : about=”#AsterixAndObelix ”>

<cartoon:hasBook r d f : r e s o u r c e=”#Aster ix1 ” />
<s t o ry : o r i g i na lLanguage r d f : r e s o u r c e=”&sto ry ; French” />
<s t o ry : t r an s l a t edTo r d f : r e s o u r c e=”&sto ry ; Eng l i sh ” />

122 <s t o ry : t r an s l a t edTo r d f : r e s o u r c e=”&sto ry ; German” />
<s t o ry : t r an s l a t edTo r d f : r e s o u r c e=”#Latin ” />
<s tory :mainCharacter r d f : r e s o u r c e=”#Aste r ix ” />
<s tory :mainCharacter r d f : r e s o u r c e=”#Obel ix ” />
<s to ry :wr i t t enBy r d f : r e s o u r c e=”#Goscinny” />

127 <s to ry :wr i t t enBy r d f : r e s o u r c e=”#Uderzo” />
< s t o r y : t i t l e>Aster ix And Obel ix</ s t o r y : t i t l e>

</BookSer ies>
<story :Language rd f : about=”#Latin ” />
<s t o ry :Pe r son rd f : about=”#Goscinny”>

132 <rdfs:comment>Rene Goscinny</ rdfs:comment>
</ s to ry :Pe r son>
<s t o ry :Pe r son rd f : about=”#Uderzo”>

< r d f s : l a b e l>Albert Uderzo</ r d f s : l a b e l>
</ s to ry :Pe r son>

137 <BookEpisode rd f : about=”#Aster ix1 ”>
<c a r t o on : e p i s o d eT i t l e>Aster ix the Gaul</ c a r t o on : e p i s od eT i t l e>
<cartoon :ep i sodeNo rd f : da ta type=”&xsd ; nonNegat iveInteger ”>1</

cartoon :ep i sodeNo>
</BookEpisode>

A.1. ASTERIX & OBELIX ONTOLOGIES 51

<r d f :D e s c r i p t i o n rd f : about=”#Id e f i x ”>
142 <r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Character ” />

<r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Dog” />
<s t o ry :ha sFr i end r d f : r e s o u r c e=”#Obel ix ” />
<s t o ry : appea r s r d f : r e s o u r c e=”#AsterixAndObelix ” />

</ r d f :D e s c r i p t i o n>
147 <newspaper rd f : about=”#LosAngelesTimes” />

<ComicStr ipSer i e s rd f : about=”#CalvinAndHobbes”>
<car toon :hasEpi sode r d f : r e s o u r c e=”#f i r s tCH ” />
<s tory :mainCharacter r d f : r e s o u r c e=”#Calvin ” />
<s tory :mainCharacter r d f : r e s o u r c e=”#Hobbes” />

152 <s to ry :wr i t t enBy r d f : r e s o u r c e=”#Watterson” />
<s to ry :ha sCharac t e r r d f : r e s o u r c e=”#Moe” />
<car toon :appearedIn r d f : r e s o u r c e=”#LosAngelesTimes” />

</ ComicStr ipSer i e s>
<s t o ry :Pe r son rd f : about=”#Watterson”>

157 < r d f s : l a b e l>B i l l Watterson</ r d f s : l a b e l>
</ s to ry :Pe r son>
<r d f :D e s c r i p t i o n rd f : about=”#Calvin ”>

<r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Character ” />
<r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Person” />

162 </ r d f :D e s c r i p t i o n>
<r d f :D e s c r i p t i o n rd f : about=”#Hobbes”>

<r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Character ” />
<r d f : t yp e r d f : r e s o u r c e=”&sto ry ; Tiger ” />
<s t o ry :ha sFr i end r d f : r e s o u r c e=”#Calvin ” />

167 </ r d f :D e s c r i p t i o n>
<Episode rd f : about=”#f i r s tCH ”>

<cartoon :ep i sodeNo>1</ cartoon :ep i sodeNo>
<ca r t oon : f i r s tAppea ranc e>11−18−1985</ ca r t oon : f i r s tAppea ranc e>
<rdfs:comment>The f i r s t ep i sode o f Calvin And Hobbes</ rdfs:comment

>
172 </Episode>

<BadGuy rd f : about=”#Moe”>
<story:hasEnemy r d f : r e s o u r c e=”#Calvin ” />

</BadGuy>
</rdf:RDF>

52 APPENDIX A. EXAMPLE ONTOLOGIES

A.2 Asterix & Obelix Graphs

Figure A.1: Class graph of the cartoon ontology

A.2. ASTERIX & OBELIX GRAPHS 53

Figure A.2: Individual graph for “Asterix and Obelix”

54 APPENDIX A. EXAMPLE ONTOLOGIES

Figure A.3: Individual graph for “Calvin and Hobbes”

Appendix B

UML Diagrams

This appendix presents UML diagrams of the important classes by package:

Figure B.1: Class Diagram for package ch.unibe.ontoBrowser.dialogs

55

56 APPENDIX B. UML DIAGRAMS

Figure B.2: Class Diagram for package ch.unibe.ontoBrowser.event

57

Figure B.3: Class Diagram for package ch.unibe.ontoBrowser.graph

58 APPENDIX B. UML DIAGRAMS

Figure B.4: Class Diagram for package ch.unibe.ontoBrowser.model

59

Figure B.5: Class Diagram for package ch.unibe.ontoBrowser.view

60 APPENDIX B. UML DIAGRAMS

Bibliography

[1] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press, 2004. ISBN 0-262-01210-3.

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, L. McGuin-
ness, Deborah, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web On-
tology Language Reference, February 2004. URL http://www.w3.org/TR/2004/

REC-owl-ref-20040210/.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):35–43, 2001.

[4] Claudia Ciorascu, Iulian Ciorascu, and Kilian Stoffel. knOWLer - Ontological Support
for Information Retrieval Systems. In Proceedings of 26th Annual International ACM
SIGIR 2003 Conference, Workshop on Semantic Web, Toronto, Canada, August 2003.
URL http://taurus.unine.ch/knowler/sigir2003.pdf.

[5] Iulian Ciorascu, Claudia Ciorascu, and Kilian Stoffel. Scalable Ontology Imple-
mentation Based on knOWLer. In Proceedings of 2nd International Semantic Web
Conference (ISWC2003), Workshop on Practical and Scalable Semantic Systems,
Florida, USA, October 2003. URL http://km.aifb.uni-karlsruhe.de/ws/psss03/

proceedings/stoffel-et-al.pdf.

[6] David De Roure, R. Jennings, Nicholas, and R. Shadbolt, Nigel. The Semantic Grid:
A Future e-Science Infrastructure. In F. Berman, A.J.G. Hey, and G. Fox, editors,
Grid Computing, pages 437–470. John Wiley, 2003. ISBN 0470853190.

[7] Wikipedia The Free Encyclopedia. Ontology (computer science), Mai 2005. URL
http://en.wikipedia.org/wiki/Ontology %28computer science%29.

[8] Wikipedia The Free Encyclopedia. Semantic web, Mai 2005. URL http://en.

wikipedia.org/wiki/Semantic Web.

[9] Jeff Heflin. OWL Web Ontology Language Use Cases and Requirements, February
2004. URL http://www.w3.org/TR/2004/REC-webont-req-20040210/.

[10] Jeff Heflin and James Hendler. A Portrait of the Semantic Web in Action. IEEE
Intelligent Systems, 16(2):54–59, 2001.

61

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://taurus.unine.ch/knowler/sigir2003.pdf
http://km.aifb.uni-karlsruhe.de/ws/psss03/proceedings/stoffel-et-al.pdf
http://km.aifb.uni-karlsruhe.de/ws/psss03/proceedings/stoffel-et-al.pdf
http://en.wikipedia.org/wiki/Ontology_%28computer_science%29
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Semantic_Web
http://www.w3.org/TR/2004/REC-webont-req-20040210/

62 BIBLIOGRAPHY

[11] Ian Horrocks, F. Patel-Schneider, Peter, and Frank van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web Seman-
tics, 1(1):7–26, 2003. ISSN 1570-8268. URL http://www.cs.man.ac.uk/∼horrocks/

Publications/download/2003/HoPH03a.pdf.

[12] L. McGuinness, Deborah and Frank van Harmelen. OWL Web Ontol-
ogy Language Overview, February . URL http://www.w3.org/TR/2004/

REC-owl-features-20040210/.

[13] Michael K. Smith, Chris Welty, and L. McGuinness, Deborah. OWL Web
Ontology Language Guide, February 2004. URL http://www.w3.org/TR/2004/

REC-owl-guide-20040210/.

http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/HoPH03a.pdf
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/HoPH03a.pdf
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

	Introduction
	Structure of This Thesis

	Theoretical Basics
	The Semantic Web
	OWL - Web Ontology Language by W3C
	knOWLer

	User Manual
	Getting Started
	Prerequisites
	Installation and Starting
	Mac OS X

	Loading an Ontology
	Browsing an Existing Ontology
	Views for the Resources
	The Navigation
	Search for Resources
	Navigating through the Resources

	Creating and Editing Resources
	Creating a Resource
	Edit
	Editing a Class
	Editing a Property
	Editing an Individual

	Deleting Resources
	Saving an Ontology
	Example

	Implementation
	Libraries Used
	JGraph
	JDOM

	Design
	Implementation Examples

	Comparison with Other Ontology Editors
	Protégé
	SWOOP
	SWeDE
	KAON

	Conclusion and Further Work
	Conclusion
	Further Work

	Appendices
	Example Ontologies
	Asterix & Obelix Ontologies
	Story Ontology
	Cartoon Ontology

	Asterix & Obelix Graphs

	UML Diagrams
	Bibliography

