

sgcWebSockets 3.4

iii

Table of Contents

IDE Editions ... 3
Delphi supported IDE ... 3
CBuilder supported IDE .. 3
AppMethod supported IDE 3
FreePascal supported IDE 4
HTML supported IDE .. 4
Free Version ... 4

Library ... 4
Installation .. 5

Delphi / CBuilder / Lazarus 5
HTML5 Builder ... 9

History .. 11
QuickStart ... 29

VCL Server ... 29
VCL Client .. 29
WebBrowser Client .. 30
How To Use .. 31

WebBrowser Test.. 32
Features.. 33

Authentication ... 33
Custom Objects ... 36

Secure Connections .. 38
Compression ... 40
Flash .. 42
Bindings ... 44
Quality Of Service .. 45
Queues .. 49
Transactions ... 52
HTTP .. 54
Throttle .. 56
Server-sent Events (Push Notifications) 57
HeartBeat ... 61

WatchDog ... 62
Files ... 63
Proxy ... 64
Logs .. 65

General ... 67
WebSocket Events ... 67
WebSocket Parameters Connection 68

sgcWebSockets 3.4

iv

Using inside a DLL.. 69

TsgcWebSocketServer ... 71
Methods .. 72
Properties .. 73

TsgcWebSocketHTTPServer 78
Methods .. 80
Properties .. 80

TsgcWebSocketClient .. 82
Methods .. 83
Properties .. 83

TsgcWebSocketClient_SocketIO 87
Methods .. 87

Properties .. 89
Properties .. 90

TsgcWebSocketProxyServer 91
TsgcIWWebSocketClient .. 92

Methods .. 93
Properties .. 93

Connections ... 94
TsgcWSConnection ... 94

Protocols ... 96
Protocols .. 96
Protocols Javascript .. 98

Subprotocols ... 103
Default .. 104
Dataset ... 119
Files .. 132
WebRTC .. 139
WAMP ... 143

Extensions ... 155
Extensions .. 155
Extensions | PerMessage-Deflate 156
Extensions | Deflate-Frame 158

Library .. 159

Library | Build .. 161
QuickStart ... 162

QuickStart | Library | Delphi 162
QuickStart | Library | C# 164

Client.. 166
Library | Client .. 166
Library Client | SocketIO 169

Table of Contents

v

Library | Client Protocol SGC 176

Server .. 182
Library | Server ... 182
Library | Server Protocol SGC 186

WebSockets ... 191
JSON .. 192
JSON-RPC 2.0 .. 193
WAMP ... 194
WebRTC .. 195
Server-Sent Events ... 196
License ... 197

1

Introduction

sgcWebSockets is a complete package providing access to
WebSockets protocol, allowing to create WebSockets
Servers, Intraweb Clients or WebSocket Clients in VCL,
FreePascal and Firemonkey applications.

 Fully functional multithreaded WebSocket
server according to RFC 6455.
 Supports Firemonkey (Windows and MacOS).
 Supports NEXTGEN Compiler (IOS and Android

Support).
 Supports Lazarus / FreePascal.
 Supports CBuilder.
 Supports Chrome, Firefox, Safari, Opera and
Internet Explorer (including iPhone, iPad and
iPod)
 Supports C#.NET using compiled library (for
Windows 32 and 64 bits).
 Multiple Threads Support
 Supports Message Compression using
PerMessage_Deflate extension.

 Supports Text and Binary Messages.
 Supports Server and Client Authentication.
 Server component providing WebSocket and
HTTP connections through the same port.
 Proxy Server component allowing to Web
Browsers to connect to any TCP server.
 Client WebSocket supports connections through
Socket.IO Servers.
 FallBack support through Adobe Flash for old
Web Browsers like Internet Explorer from 6 to 9.
 Supports Server-Sent Events (Push
Notifications) over HTTP Protocol.
 WatchDog and HeartBeat built-in support.
 Client WebSocket supports connections through
HTTP Proxy Servers.
 Events Available: OnConnect, OnDisconnect,
OnMessage, OnError, OnHandshake

sgcWebSockets 3.4

2

 Built-in sub-protocols: JSON-RPC 2.0, Dataset,

WebRTC and WAMP
 Built-in Javascript libraries to support browser
clients.
 Easy to setup
 Javascript Events for a full control
 Async Events using Ajax
 SSL/TLS Support for Server / Client
Components

Main components available are:

 TsgcWebSocketServer: Non-visual component,
it's used to manage client threaded connections.
Supports RFCC 6455.
 TsgcWebSocketHTTPServer: Non-visual
component, it's used to manage client threaded
connections. Supports RFCC 6455. Supports HTTP
Requests using an unique port for WebSocket and
HTTP Connections.
 TsgcWebSocketClient: Non-visual component,
used to establish a WebSocket connection with a
WebSocket server.

 TsgcWebsocketProxyServer: Non-visual
component, used to translate websocket connections
to normal TCP connections.
 TsgcIWWebSocketClient: Non-visual
component, used on Intraweb forms to establish a
WebSocket connection with a WebSocket Server.

You can use WebSockets too, using sgcWebSockets.dll,
modules available:

 Delphi
 C# .NET

3

Overview

IDE Editions

Delphi supported IDE

 Delphi 7 (* only supported if upgraded to Indy
10, Intraweb is not supported)
 Delphi 2007
 Delphi 2009
 Delphi 2010

 Delphi XE
 Delphi XE2
 Delphi XE3
 Delphi XE4
 Delphi XE5
 Delphi XE6
 Delphi XE7
 Delphi XE8
 Delphi 10 Seattle

CBuilder supported IDE

 CBuilder 2010
 CBuilder XE
 CBuilder XE2
 CBuilder XE3
 CBuilder XE4
 CBuilder XE5
 CBuilder XE6
 CBuilder XE7
 CBuilder XE8
 CBuilder 10 Seattle

AppMethod supported IDE

 AppMethod 2014

sgcWebSockets 3.4

4

FreePascal supported IDE

 Lazarus

HTML supported IDE

 HTML5 Builder

Free Version

Compiled *.dcu files provided with free version are using
default Indy and Intraweb version. If you have upgraded
any of these packets, probably it won't work or you need to
buy full source code version.

Library

Just copy sgcWebSockets.dll to your Application folder or to
a common path. Supported languages:

 Delphi

 C# .NET

Overview

5

Installation

Delphi / CBuilder / Lazarus

1. Unzip the files included into a directory {$DIR}

2. From Delphi\CBuilder:

Add the directory where the files are unzipped {$DIR}
to the Delphi\CBuilder library path under Tools,
Environment options, Directories

All Delphi\CBuilder Versions

Add the directory {$DIR}\source to the library
path

For specific Delphi version

Delphi 7 : Add the directory {$DIR}\libD7 to
the library path
Delphi 2007 : Add the directory

{$DIR}\libD2007 to the library path
Delphi 2009 : Add the directory
{$DIR}\libD2009 to the library path
Delphi 2010 : Add the directory
{$DIR}\libD2010 to the library path
Delphi XE : Add the directory {$DIR}\libDXE
 to the library path
Delphi XE2 : Add the directory
{$DIR}\libDXE2\$(Platform) to the library path
Delphi XE3 : Add the directory
{$DIR}\libDXE3\$(Platform) to the library path

Delphi XE4 : Add the directory
{$DIR}\libDXE4\$(Platform) to the library path
Delphi XE5 : Add the directory
{$DIR}\libDXE5\$(Platform) to the library path
Delphi XE6 : Add the directory
{$DIR}\libDXE6\$(Platform) to the library path

sgcWebSockets 3.4

6

Delphi XE7 : Add the directory

{$DIR}\libDXE7\$(Platform) to the library path
Delphi XE8 : Add the directory
{$DIR}\libDXE8\$(Platform) to the library path
Delphi 10 : Add the directory
{$DIR}\libD10\$(Platform) to the library path

For specific CBuilder version

C++ Builder 2010 : Add the directory
{$DIR}\libD2010 to the library path

C++ Builder XE : Add the directory
{$DIR}\libDXE to the library path
C++ Builder XE2 : Add the directory
{$DIR}\libDXE2\$(Platform) to the library path
C++ Builder XE3 : Add the directory
{$DIR}\libDXE3\$(Platform) to the library path
C++ Builder XE4 : Add the directory
{$DIR}\libDXE4\$(Platform) to the library path
C++ Builder XE5 : Add the directory
{$DIR}\libDXE5\$(Platform) to the library path
C++ Builder XE6 : Add the directory

{$DIR}\libDXE6\$(Platform) to the library path
C++ Builder XE7 : Add the directory
{$DIR}\libDXE7\$(Platform) to the library path
C++ Builder XE8 : Add the directory
{$DIR}\libDXE8\$(Platform) to the library path
C++ Builder 10 : Add the directory
{$DIR}\libDXE8\$(Platform) to the library path

For all CBuilder versions, Add dcp\$(Platform) to
the library path (contains .bpi files)

For AppMethod

AppMethod : Add the directory
{$DIR}\libAppMethod\$(Platform) to the library
path

Overview

7

3. From Delphi

Choose
File, Open and browse for the correct
Packages\sgcWebSockets.groupproj (First compile
sgcWebSocketsX.dpk and then install
dclsgcWebSocketsX.dpk)

packages files for Delphi

sgcWebSocketsD7.groupproj : Delphi 7

sgcWebSocketsD2007.groupproj : Delphi 2007
sgcWebSocketsD2009.groupproj : Delphi 2009
sgcWebSocketsD2010.groupproj : Delphi 2010
sgcWebSocketsDXE.groupproj : Delphi XE
sgcWebSocketsDXE2.groupproj : Delphi XE2
sgcWebSocketsDXE3.groupproj : Delphi XE3
sgcWebSocketsDXE4.groupproj : Delphi XE4
sgcWebSocketsDXE5.groupproj : Delphi XE5
sgcWebSocketsDXE6.groupproj : Delphi XE6
sgcWebSocketsDXE7.groupproj : Delphi XE7
sgcWebSocketsDXE8.groupproj : Delphi XE8

sgcWebSocketsD10.groupproj : Delphi 10

4. From CBuilder

Choose
File, Open and browse for the correct
Packages\sgcWebSockets.groupproj (First compile
sgcWebSocketsX.dpk and then install
dclsgcWebSocketsX.dpk)

packages files for CBuilder

sgcWebSocketsC2010.groupproj : C++ Builder
2010
sgcWebSocketsCXE.groupproj : C++ Builder
XE

sgcWebSockets 3.4

8

sgcWebSocketsCXE2.groupproj : C++ Builder

XE2
sgcWebSocketsCXE3.groupproj : C++ Builder
XE3
sgcWebSocketsCXE4.groupproj : C++ Builder
XE4
sgcWebSocketsCXE5.groupproj : C++ Builder
XE5
sgcWebSocketsCXE6.groupproj : C++ Builder
XE6
sgcWebSocketsCXE7.groupproj : C++ Builder
XE7

sgcWebSocketsCXE8.groupproj : C++ Builder
XE8
sgcWebSocketsC10.groupproj : C++ Builder
10

5. From AppMethod

Choose

File, Open and browse for the correct
Packages\sgcWebSockets.groupproj

(First compile sgcWebSocketsX.dpk and then install
dclsgcWebSocketsX.dpk)

packages files for AppMethod

sgcWebSocketsAppMethod.groupproj :
AppMethod

6. From Lazarus

Choose : File, Open and browse
Packages\sgcWebSocketsLazarus.lpk (First compile and
then install)

Compiled files are located on Lazarus Directory, inside
this, there is a Indy directory with latest Indy source
version.

Overview

9

Tested with Lazarus 1.0.6 and Indy 10.5.9.4930

7. Demos

All demos are available in subdirectory Demos. Just
open the project and run it. Intraweb demos may need
to modify some units due to different Intraweb
Versions.

HTML5 Builder

1. Copy "esegece" directory into HTML5 Builder’s
RPCL directory.

 C:\Program Files\Embarcadero\HTML5 Builder\5.0\rpcl

2. From HTML5 Builder

 go to Home > Packages and press button "Add Package"

 Locate your package file (sgcWebSockets.package.php),
select it and click Open.

3. If you start a new project you will see a new
palette called "SGC - WebSockets", drop a
sgcWebSocket component on a Form and configure

required properties.

4. Demos

sgcWebSockets 3.4

10

 All demos are available in subdirectory Demos. Just open

the project and run it.

Overview

11

History

 [*] : Bug
 [+] : New
 [-] : Deleted
 [/] : Breaking changes

3.4: 2015 September

 [+] : New Property "AutoEscapeText" on DataSet Protocol:
disabled by default. Automatically escape/unescape
characters inside field values like "{", "["...
 [+] : WriteData Method has a new parameter "size" which
is the maximum size of every text packet.
 [+] : New Property "ReadStartSSL" on HTTP Server
component, max number of times an HTTPS connection
tries to start.
 [+] : New Property "DisconnectAll" on Server components,
disconnects all active connections.

 [*] : Fixed Bug Dataset Protocol sending/receiving

messages.
 [*] : Fixed Bug re-sending messages using qosLevel2
through a broker.
 [*] : Fixed Bug when call to disconnect using ssl client
connection.
 [*] : Fixed Bug when a client try to connect without
handshake headers.
 [*] : Fixed Bug Files Protocol reading Message File.
 [*] : Fixed Bug Dataset Protocol sending updates from
client.
 [*] : Fixed Bug Dataset Protocol raising dataset events.

 [*] : Fixed Bug Files Protocol QoSLevel2 for fragments not
received.
 [*] : Fixed Bug Reading fragmented text message.
 [*] : Fixed Bug Reading SSE message from D2009+.
 [*] : Fixed Bug Reading/Writing using Protocols.

sgcWebSockets 3.4

12

 [*] : Fixed Bug Client Component not clearing

FWSConnection field when a connection was closed by
server.
 [*] : Fixed Bug Client Component destroying Critical
Section.
 [*] : Fixed Bug SGC Protocol OnDisconnect Event, an
access violation was raised trying to send a message inside
this event.

3.3: 2015 May

 [+] : Added support for Rad Studio XE8.
 [+] : New Property "RaiseDisconnectExceptions": enabled
by default, raises an exception every time there is a
disconnection by protocol error.
 [+] : New Property "IO_HandShakeCustomURL"on
Socket.io client, overrides url to get socket.io session.
 [+] : New Event, "OnBeforeSubscription" on Server
Component Protocols, allows/denies a client subscribe to a
channel.
 [+] : New Property "FragmentedMessages", allows to
handle Fragmented Messages:

 frgOnlyBuffer: message is buffered until all data is
received, it raises OnBinary or OnMessage event (option by
default)
 frgOnlyFragmented: every time a new fragment is
received, it raises OnFragmented Event.
 frgAll: every time a new fragment is received, it
raises OnFragmented Event with All data received from first
packet.
 When all data is received, it raises OnBinary or
OnMessage event.
 [+] : WriteData Method has a new parameter "size" which

is the maximum size of every binary packet.
 [+] : Added Support on Broker Protocol Components for
binary messages.
 [+] : New Methods for SGC Client Protocol to retrieve
Method and Parameters sent on RPC calls:
GetRPCMethodById and GetRPCParamsById.

Overview

13

 [+] : Ping Method has been overloaded to accept a

TimeOut, first sends a pings and waits a response, if no
response after a timeout, returns false.
 [+] : New Property "Subscriptions" on Server and Client
Protocol Components, returns a list of active subscriptions.
 [+] : New Event, "OnStartup" on WebSocket Servers,
raised when a server is started.
 [+] : New Event, "OnShutdown" on WebSocket Servers,
raised when a server is stopped.
 [+] : Method "Disconnect" of TsgcWSConnection now it's
overloaded to accept close code as a parameter.
 [+] : New Method, SetAuthenticationCloseCode on

TsgcWSConnectionServer, allows to set close code if not
authenticated.
 [+] : Added support for broker on SGC Protocol using
sgcWebSockets library.
 [+] : New Method "UnSubscribeAll" for Client SGC
Protocol.

 [*] : Fixed Access Violation when Client tries to reconnect
to Server.
 [*] : Fixed DeadLock when Client disconnects and buffer is
not empty.

 [*] : Fixed Scape Error when JSON value is an object or
array.
 [*] : Fixed Bug trying to disconnect a connection several
times.
 [*] : Fixed Bug building CBuilder XE6-XE7 Package on
Win64.
 [*] : Fixed Bug SGC Protocol OnMessage Event.
 [*] : Fixed Bug SGC Protocol WriteData Method.
 [*] : Fixed Bug SGC Protocol Broadcast Method.
 [*] : Fixed Bug Server Broadcast method using include /
exclude arguments.

 [*] : Fixed Bug SGC Protocol using QoSLevel2.
 [*] : Fixed Bug SGC Protocol OnRPCResult Event, when
result parameter was an array of objects.
 [*] : Fixed Bug SGC Dataset Client when attached to a
broker.
 [*] : Fixed Bugs JSON parser.
 [*] : Fixed Bug HeartBeat Timeout.

sgcWebSockets 3.4

14

 [*] : Fixed Bug Socket.IO Client on SendEvent method.

 [*] : Fixed Bug when using TsgcWSConnection.Data
property OnDestroy Event.
 [*] : Fixed Bug DataSet Protocol when a DateTime Field
IsNull.

 [/] : WriteData method now "Stream" parameter is a
TStream.

3.2: 2014 September

 [+] : Added support for Rad Studio XE7.
 [+] : Added support for AppMethod.
 [+] : Added support for Server-Sent Events API (SSE),
push notifications from server to client using http
connection.
 [+] : Added suport for SSE on Javascript libraries:
automatic fallback to SSE+XHR if WebSocket is not
implemented.
 [+] : New Component TsgcWebSocketProxyServer: server
that translates WebSocket protocol to normal socket,
allowing a browser to connect to any application/server.

 [+] : New Property "WatchDog"
 Server: keeps server active automatically (disabled
by default).
 Client: reconnects automatically after an
unexpected disconnection (disabled by default).
 [+] : New Property "LocalIP" on TsgcWSConnection,
returns IP Address of Host.
 [+] : New Property "LocalPort" on TsgcWSConnection,
returns Port Address of Host.
 [+] : New Property "HeartBeat" on Server Components:
sends a ping every x seconds (disabled by default).

 [+] : New Property "IO_API" on
TsgcWebSocketClient_SocketIO:
 ioAPI0: supports socket.io 0.* servers (selected by
default)
 ioAPI1: supports socket.io 1.* servers

Overview

15

 [*] : Fixed Bug writing data on

TsgcWebSocketClient_SocketIO if connection is not Active.
 [*] : Fixed Bug on search paths runtime packages from
Delphi XE3-XE6.
 [*] : Fixed DeadLock writing data on Server and Client
components.
 [*] : Fixed Bug reading JSON objects passed as
parameters in SGC and Dataset Protocols.
 [*] : Fixed Memory Leak OnException Event.
 [*] : Fixed Bug Broadcast method using Exclude
parameter.
 [*] : Fixed Bug sending double quoted string inside a JSON

parameter.
 [*] : Fixed DeadLock when Keep-Alive is active on
TsgcWebSocketHTTPServer.
 [*] : Fixed Bug retrieving MIME-Type from file, when
TsgcWebSocketHTTPServer tries to serve a file from
DocumentRoot.
 [*] : Fixed DeadLock on TsgcTimer class when compiled as
a library.
 [*] : Fixed Warnings.

 [/] : Deleted property

TsgcWSConnectionServer.ServerHost
 [/] : Deleted property TsgcWSConnectionServer.ServerPort

3.1: 2014 May

 [+] : Added support for Rad Studio XE6
 [+] : Added support for C++Builder (2010-XE6).
 [+] : Added support for old browsers (using Adobe Flash
FallBack) without WebSocket implementation like Internet
Explorer 6 to 9.

 [+] : New WebSocket Extension: PerMessage-Deflate.
Deflate-frame Extension has been deprecated and replaced
by PerMessage-Deflate.
 [+] : New Property "ReadTimeOut" on Server components,
timeout to check if socket has received data.

sgcWebSockets 3.4

16

 [+] : New Property "ReadEmptySource" on HTTP Server

component, max number of times an HTTP connection is
read with no data.
 [+] : New Property "Transport" on TsgcWSConnection,
returns which transport is used (RFC6455, Hixie76, Flash or
Undefinided).
 [+] : New Property "SessionList" on
TsgcWebSocketHTTPServer
 [+] : New Property "ParseParams" on
TsgcWebSocketHTTPServer

 [*] : Fixed Bug on DCP paths design packages from Delphi

XE2-XE5.
 [*] : Fixed Bug reading if TCPConnection is connected.
 [*] : Fixed Bug detecting connection state on javascript
library.
 [*] : Fixed Bug detecting type of message on javascript
library.
 [*] : Fixed Bug setting client log filename.
 [*] : Fixed Bug sending a compressed close connection
frame.

3.0: 2014 March

 [+] : New Library "sgcWebSockets.dll" which allows to
handle WebSocket (Server and Client) connections from
Delphi or C# .Net (Demos inside Library Folder)
 WebSocket Server
 WebSocket Client
 WebSocket SocketIO Client
 WebSocket Server Protocol SGC
 WebSocket Client Protocol SGC
 [+] : New Property "IO_HandShakeTimestamp" on
Socket.io client, if enabled allows to connect to gevent-

socket.io servers

 [*] : Fixed Bug calculating SendBytes with Binary
Messages.
 [*] : Fixed Bug TsgcWSConnection.WriteData when
NotifyEvents = neNoSync.
 [*] : Fixed Bug assigning ssl properties after set active.

Overview

17

 [*] : Fixed Memory Leak in built-in libraries on some

webbrowsers.
 [*] : Fixed Bug OnException Event on NEXTGEN compilers.
 [*] : Fixed Bug socket.io client on SendEvent procedure.
 [*] : Fixed Bug processing http cache requests.

 [/] : If you compile sgcWebSockets inside a DLL or a
console application, there is no need to call
CheckSynchronize manually.

2.6: 2013 November

 [+] : Added support for Rad Studio XE5
 [+] : Added support for Android
 [+] : Added Basic Authentication support for VCL
Websockets and HTTP Requests.
 [+] : New for Protocols "sgc" and "Dataset": Added
"Queue" param to the following methods: RPC, Publish and
Notify:
 Level 0: messages are not queued on Server
 Level 1: last message is queued on Server, and is
sent every time a client subscribes to a new channel or

connects to server.
 Level 2: all messages are queued on Server, and is
sent every time a client subscribes to a new channel or
connects to server.
 [+] : New "QoS" Level (Quality of Service):
 Level 2: messages are assured to arrive exactly
once. If the acknowledgement message is not received
after a specified period of time, the message is sent again.
 [+] : New Property "Throttle": if enabled, limits the
amount of bandwith usage.
 [+] : New Demo: Server Authentication

 [+] : Improved Documentation: new topics about features
and general questions.

 [*] : Fixed Bug with TsgcWebSocketServer on Windows
XP.
 [*] : Fixed Bug Connecting using a sub-protocol and using
Authentication.

sgcWebSockets 3.4

18

 [*] : Fixed Bug in TsgcWebSocketServer causing clients to

hang on unauthorized connection.
 [*] : Fixed Bug in TsgcWebSocketHTPServer, http sessions
were not created.

2.5: 2013 September

 [+] : Improved Socket.IO client with new methods and
events.
 [+] : New Property "RawMessages" on Socket.IO client: if
true, socket.io messages are not processed (it works as

before 2.5 udpate); if false, it handles socket.io messages
(false by default).
 [+] : New for Protocols "sgc" and "Dataset": Added
Support for transactional messages through server local
transactions.
 When a client Starts a Transaction on a channel, all
messages sent to this channel are queued until client do a
commit.
 [+] : New for Protocols "sgc" and "Dataset": Added "QoS"
(Quality of Service) property with 2 values:
 Level 0: messages are delivered according to the

best efforts of the underlying TCP/IP network (active by
default)
 Level 1: messages are assured to arrive but
duplicates may occur. If the acknowledgement message is
not received after a specified period of time, the message is
sent again.
 [+] : New for Protocols "sgc" and "Dataset": Added event
"OnSession", it raises when server sends client session id.
 By default is sent by server after a client connection.
 [+] : New for Protocols "sgc" and "Dataset": Added Method
GetSession. Allows to get server session id of connection.

 [+] : New for Client Protocols "sgc" and "Dataset": Added
event "OnAcknowledgment", an acknowledgment is sent by
server to client when receives a message from client.
 [+] : New for Server Protocol "Dataset": Added property
"UpdateMode" [upWhereAll]: updates all fields of a record,
[upWhereChanged]: updates only fields that have changed.

Overview

19

 [+] : New for Client Protocol "Dataset": Added Event

"OnMetaData" to get field structure of server dataset.
 [+] : New for All Protocols: Added Event OnRawMessage ,
allows to handle protocol messages.
 [+] : New Property "ConnectTimeout" on Client
Components.
 [+] : New Property "ReadTimeout" on Client Components.
 [+] : New Property "Queue", when "true" queues
string/binary messages and when "false" process all
messages.
 [+] : New Method "QueueClear", clear all queued
messages.

 [+] : New Events on TsgcWSPServer_Dataset:
 + OnBeforeNewRecord
 + OnBeforeUpdateRecord
 + OnBeforeDeleteRecord
 + OnBeforeDatasetUpdate
 + OnAfterNewRecord
 + OnAfterUpdateRecord
 + OnAfterDeleteRecord
 + OnRPCAuthentication
 + OnNotification
 + OnRPC

 + OnRPCAuthentication
 [+] : New Events on TsgcWSPClient_Dataset:
 + OnBeforeNewRecord
 + OnBeforeUpdateRecord
 + OnBeforeDeleteRecord
 + OnBeforeDatasetUpdate
 + OnBeforeSynchronize
 + OnAfterSynchronize
 + OnRPCResult
 + OnRPCError
 + OnEvent

 [+] : Property HandShake now is public on
TsgcWSConnectionServer class.
 [+] : Property Connection now is public on Client
Component.
 [+] : Added Interfaces directory with source code
interfaces.

sgcWebSockets 3.4

20

 [*] : Fixed Bug sending Options.Parameters on SocketIO

client.
 [*] : Fixed Bug Handling Error Event.
 [*] : Fixed Bug WAMP Server Protocol using publish
method (messages were broadcasted to all clients,
subscribed or not).
 [*] : Fixed Bug Broker Server Component (events were
forwarded to protocol components).
 [*] : Fixed Bug WriteData Method if TCPConnection has
been destroyed.
 [*] : Fixed Bug UnSupported Protocol raised an access
violation

 [*] : Fixed Bug WAMP Server Protocol, now CallId is
unique by client connection.
 [*] : Fixed Bug getting IP from TsgcWSConnection.
 [*] : Fixed Bug calling Synchronize Method first time on
Protocol Dataset Client.
 [*] : Fixed Bug Reading JSON Boolean values.
 [*] : Fixed Bug Serving DocumentRoot files.
 [*] : Fixed Memory Leak on Server Component.
 [/] : OnConnectionData event has been removed. Now
Connection.Data is read/write.
 [/] : OnAfterNewRecord event Added Connection as

Parameter.
 [/] : OnAfterUpdateRecord event Added Connection as
Parameter.
 [/] : OnAfterDeleteRecord event Added Connection as
Parameter.

2.4: 2013 June

 [+] : Added support for Rad Studio XE4
 [+] : Added support for NEXTGEN IOS Compiler

 [+] : New Method "Disconnect": allows to disconnect a
client connection from server side.
 [+] : New Property "LogFile" (Server and Client
components): save messages to a log file, useful for
debugging.
 [+] : Improved "Protocol DataSet": now synchronizes in
Two ways (from server to client and from client to Server).

Overview

21

 [+] : New Property "AutoSynchronize" (Protocol Dataset

Server): synchronizes automatically all records OnConnect
event.
 [+] : New Method "Synchronize" (Protocol Dataset Client):
synchronizes automatically all records from Server.
 [+] : New Property "NotifyUpdates" (Protocol Dataset):
allows to notify updates from server to client or client to
server.
 [+] : New Property "ApplyUpdates" (Protocol Dataset):
allows to apply updates from server to client or client to
server.
 [+] : New Property "AllowNonAuth": allows to connect to

non-authenticated users if authentication enabled
 [+] : New Protocol Components: "Broker" allows to use
more than one protocol using a single connection.

 [*] : Fixed Bug loading resources when is a library
 [*] : Fixed Bug OnException Event
 [*] : Fixed Bug when a client has more than one protocol
assigned
 [*] : Fixed Bug handling multithreading messages
 [*] : Fixed Bug Firefox Close Code
 [-] : Removed all WITH statements

 [/] : Removed sgcWebSocket_CS.pas, now it's defined on
sgcWebSockets_Classes.pas

2.3: 2013 March

 [+] : Added Support to Lazarus / FreePascal.
 [+] : Added Support to Delphi 7 (upgrading to Indy 10)
 [+] : Improved performance and reliability on websocket
connections.

 [+] : New Property "DocumentRoot": if defined,
automatically publish http response files.
 [+] : New Event "DataSession": allows to assign a user
session object (database connection, user session data...)
 [+] : New Property "Authentication": allows to
authenticate WebSocket Connections using a
user/password.

sgcWebSockets 3.4

22

 [+] : New Property "ThreadPool" on server components

 [+] : New Property "AsyncEvents": allows to define which
method used to notify websocket events: none,
asynchronous (is the default) and synchronous.
 [+] : New Property "HeartBeat": sends a ping every x
seconds (disabled by default).
 [+] : New Property "ValidateUTF8": validates utf8
messages (disabled by default).
 [+] : New Property "JavascriptFiles" on server
components: allows requests to server built-in javascript
libraries.
 [+] : New Property "HTMLFiles" on server components:

allows requests to server built-in html files.

 [*] : Fixed Bug OnHandShake event not fired
 [*] : Fixed exception when socket closes connection
 [*] : Fixed Bug when receiving fragmented message with
control code
 [*] : Fixed Bug when optcode is not recognized
 [*] : Fixed Bug with RSV bits when no extension is
negotiated
 [*] : Fixed Bug when payload is empty
 [*] : Fixed exception reading Guid

 [*] : Fixed Bug with binary Ping Frames
 [*] : Fixed Bug with Ping payload greater than 125 octets

 [/] : Javascript libraries: binary messages are now
received using "stream" event (before, this messages were
received on "message" event).
 [/] : Protocols are now based on JSON-RPC 2.0 (except
WAMP protocol which uses his own protocol).

2.2: 2013 January

 [+] : New WebSocket Protocol: WAMP
 Open Source SubProtocol
 Provides two asynchronous messaging patterns:
 - RPC
 - Subscription / Publish
 [+] : New WebSocket Protocol: WebRTC

Overview

23

 Open Project that enables web browsers with Real-

Time Communications (RTC)
 Currently Only Chrome it's supported
 WebRTC is still on Beta Status
 [+] : Added support for read/write JSON lists
 [+] : Server Components: Added Arguments Exclude and
Include List of guids
 [+] : Javascript source is minified to save bandwith.
 [+] : Added methods to send stream on sub-protocol base
component.

 [*] : Fixed Bug on Test Pages using ssl connection

 [*] : Fixed Bug on Read UnMasked Frame
 [*] : Fixed Bug on Client Component when Error #10054
raised.

2.1: 2012 November

 [+] : New WebSocket Extension: Deflate-frame, allows to
compress exchanged data.
 [+] : Server Components: New Event "OnBinary" fired
when a clients sends a binary message.

 [+] : Server Components: Overloaded BroadCast and
WriteData to allow to send streams.
 [+] : Server Components: New Property "SSL", allows to
stablish SSL connections with clients.
 [+] : TsgcWebSocketClient: New Event "OnBinary" fired
when client receives a binary message.
 [+] : TsgcWebSocketClient: Overloaded WriteData to allow
to send streams.
 [+] : TsgcWebSocketClient: New Event "OnException" fired
when a Exception is raised outside WebSocket Connection.
 [+] : Server Components: New Property "Bindings".

 [+] : Server Components: New Property "OriginsAllowed",
on new connection, checks if origin is allowed (by default
accepts all origins).
 [+] : TsgcWebSocketClient: New Property "Options",
allows to define which Parameters / Origin are sent on
opening HandShake.

sgcWebSockets 3.4

24

 [+] : TsgcWSConnection: New Property "Port" (connection

peer port).
 [+] : TsgcWSConnection: New Property "RecBytes"
(connection bytes received).
 [+] : TsgcWSConnection: New Property "SendBytes",
(connection bytes sent).

 [*] : Fixed Bug re-connectiong from a SSL Client
connection.
 [*] : Fixed some memory leaks.
 [*] : Fixed bug on Protocol Hixie76.
 [*] : FIxed bug UTF-8 messages.

 [/] : TsgcWebSocketClient: Property "Parameters" now is a
Property of "Options"

2.0: 2012 October

 [+] : RAD [+] : RAD Studio XE3 Supported
 [+] : Added Support to Firemonkey (Win32, Win64 and
MacOSX)
 [+] : Added support to create custom sub-protocols

 [+] : TsgcWebSocketHTTPServer: New Component!
WebSocket Server that includes HTTP Server to share
WebSocket and HTTP connections over the same port.
 [+] : TsgcWebSocketClient_SocketIO: New Component!
WebSocket Client that allows to connect to Socket.IO
Servers
 [+] : TsgcWSPServer_sgc: New Component! server that
uses JSON to broadcast messages to all clients.
 [+] : TsgcWSPClient_sgc: New Component! client that
uses JSON messages to communicate with server.
 [+] : TsgcWSPServer_dataset: New Component! broadcast

dataset changes to all clients connected.
 [+] : TsgcWSPClient_dataset: New Component!
automatically updates client dataset from server changes.
 [+] : TsgcWebSocketServer: Added javascript browser
client support.
 [+] : TsgcWebSocketServer: Added built-in html pages to
test browser websocket connection.

Overview

25

 [+] : TsgcWebSocketServer: New Property

"MaxConnections"
 [+] : TsgcWebSocketClient: New Property "Proxy", now
supports WebSocket Protocol over HTTP Proxy Connections.
 [+] : TsgcWebSocketClient: New Method "Ping"
 [+] : TsgcWebSocketClient: New Property
"MaxConnections"
 [+] : TsgcWebSocketClient: New Property "Parameters",
allows to pass parameters on Handshake

 [*] : Fixed RangeCheck Error
 [*] : Fixed Unicode Warnings

 [*] : Fixed Active Property Error
 [*] : TsgcWebSocketClient: OnConnect Event only fired if
HandShake is correct

 [/] : TsgcWebScocketServer: Deleted property Protocols
 [/] : TsgcWebSocketClient: Deleted property Protocol
 [/] : Subscription / UnSubscription methods now are
implemented on protocol components.

1.2: 2012 June

 [+] : TsgcWebSocketServer: Now Supports draft Hixie76,
Safari and iOS browsers now are supported from version
4.2
 [+] : TsgcIWWebSocketClient: New Property "Mode":
[Native, Emulation] Allows to emulate socket connections
 on webbrowsers that don't support websockets
natively (like internet explorer).
 [+] : TsgcWebSocketServer: New Property
"Specifications": [RFC6455, Hixie76] defines which
specifications are supported.

 [+] : TsgcWebSocketClient: New Property "Specifications":
[RFC6455, Hixie76] defines which specifications are
supported.
 [+] : TsgcWebSocketServer: Method "Broadcast" now
accepts "Subscription" allowing to send custom messages
only to subscribed clients

sgcWebSockets 3.4

26

 [+] : TsgcWebSocketServer: New Event "OnSubscription"

fired when a client Subscribes to a channel
 [+] : TsgcWebSocketServer: New Event
"OnUnSubscription" fired when a client UnSubscribes to a
channel
 [+] : TsgcWebSocketClient: New Methods: "Subscribe" and
"Unsubscribe" allowing to subscribe to custom channels
 [+] : TsgcIWWebSocketClient: New Methods: "Subscribe"
and "Unsubscribe" allowing to subscribe to custom channels

 [*] : TsgcWebSocketServer: Fixed bug reading get
parameters

 [*] : TsgcWebSocketServer: Fixed bug OnMessage Event

1.1: 2012 May

 [+] : TsgcWebSocketServer: allows to Send a Message to
a single Client
 [+] : TsgcWebSocketServer: New Property "Connections"
to get access to all client connections
 [+] : TsgcWebSocketServer: New Event "OnHandshake"
allows to modify handshake before send to client

 [+] : TsgcWebSocketClient: New Event "OnHandshake"
allows to modify handshake before send to server
 [+] : TsgcWebSocketClient: New Property "TLS" allows to
stablish secure connections
 [+] : TsgcIWWebSocketClient: New Property "TLS" allows
to stablish secure connections
 [+] : TsgcWebSocketServer: Event "OnDisconnect" now
has "Code" to get close reason if applicable

 [*] : TsgcWebSocketclient: Fixed error assigning
properties at runtime

 [*] : TsgcWebSocketServer: Fixed broadcast error on
Chrome (v.19)
 [*] : TsgcIWWebSocketClient: Fixed close connection error
on Chrome (v.19)
 [*] : TsgcWebSocketClient: error reading handshake
status

Overview

27

 [*] : TsgcWebSocketClient: in some environments,

OnDisconnect event was not fired
 [*] : TsgcIWWebSocketClient: Fixed close connection error

 [/] : TsgcWebSocketServer: Event "OnDisconnect"
introduced parameter "Code"
 [/] : TsgcWebSocketClient: Event "OnDisconnect"
introduced parameter "Code"

1.0: 2012 April

 [+] : First Version

29

QuickStart

QuickStart

Let's start with a basic example where we need to create a
Server WebSocket and 2 client WebSocket types: VCL
Application Client and Web Browser Client.

VCL Server

1. Create a new VCL Forms Application on Delphi

2. Drop a TsgcWebSocketServer in a Form.

3. On Events Tab, Double click OnMessage Event, and type
following code:

 ShowMessage('Message Received From Client: ' +
Text);

4. Drop a TButton in a Form, Double Click and type this

code:

 sgcWebSocketServer1.Active := True;

5. Build Project and that's all, you have configured a basic
WebSocket Server.

VCL Client

1. Create a new VCL Forms Application on Delphi

2. Drop a TsgcWebSocketClient in a Form and configure
Host and Port Properties to connect to Server.

3. Drop a TButton in a Form, Double Click and type this
code:

sgcWebSockets 3.4

30

 sgcWebSocketClient1.Active := True;

4. Drop a TButton in a Form, Double Click and type this
code:

 sgcWebSocketClient1.WriteData('Hello Server From

VCL Client');

5. Build Project and that's all, you have configured a basic
WebSocket Client.

WebBrowser Client

1. Create a new html file

2. Open file with a text editor and copy following code:

<html>

<head>

<script type="text/javascript"

src="http://host:port/sgcWebSockets.js"></scrip

t>

</head>

<body>

<a href="javascript:var socket = new

sgcWebSocket('ws://host:port');">Open

<a href="javascript:socket.send('Hello Server

From Web Browser');">Send

</body>

</html>

 You need to replace host and port in this file for your
custom Host and Port!!

3. Save File and that's all, you have configured a basic
WebSocket Web Browser Client.

QuickStart

31

How To Use

1. Start VCL Server Application and press button to start
WebSocket Server to listen new connections.

2. Start VCL Client Application and press button1 to connect
to server and press button2 to send a message. On Server
Side, you will see a message with text sent by VCL Client.

3. Open HTML file with your Web Browser (Chrome, Firefox,

Safari or Internet Explorer 10+), press Open to open a
connection and press send, to send a message to server.
On Server Side, you will see a message with text sent by
Web Browser Client.

sgcWebSockets 3.4

32

WebBrowser Test

TsgcWebSocketServer implements a built-in Web page
where you can test WebSocket Server connection with your
favorite WebBrowser.

To access to this Test Page, you need to type this url:

 http://host:port/sgcWebSockets.html

Example: if you have configured your WebSocket Server on

IP 127.0.0.1 and uses port 80, then you need to type:

 http://127.0.0.1:80/sgcWebSockets.html

In this page, you can test following WebSocket methods:

 Open
 Close
 Status
 Send

33

Topics

Features

Authentication

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient

 Java script (*only URL Authentication is supported)

WebSockets Specification doesn't has any authentication
method and Web Browsers implementation don't allow to
send custom headers on new WebSocket connections.

To enable this feature you need to access to the following
property:

 Authentication/ Enabled

sgcWebSockets implements 3 different types of WebSocket
authentication:

Session: client need to do a HTTP GET passing
username and password, and if authenticated, server
response a Session ID. With this Session ID, client
open websocket connection passing as a parameter.
You can use a normal HTTP request to get a session id
using and passing user and password as parameters

http://host:port/sgc/req/auth/session/:

user/:password

example: (user=admin, password=1234) -->
http://localhost/sgc/req/auth/session/admin/1234

sgcWebSockets 3.4

34

This returns a token that is used to connect to server

using WebSocket connections:

 ws://localhost/sgc/auth/session/:token

URL: client open websocket connection passing
username and password as a parameter.

 ws://host:port/sgc/auth/url/username/p
assword

example: (user=admin, password=1234) -->
http://localhost/sgc/auth/url/admin/1234

Basic: implements Basic Access Authentication, only
applies to VCL Websockets (Server and Client) and
HTTP Requests (client webbrowsers don't implement
this type of authentication). When a client tries to
connect, it sends a header using AUTH BASIC
specification.

You can define a list of Authenticated users, using
Authentication/ AuthUsers property. You need to define
every item following this schema: user=password.
Example:

admin=admin
user=1234
....

There is an event called OnAuthentication where you can

handle authentication if user is not in AuthUsers list, client
don't send an authorization request... You can check User
and Password params and if correct, then set Authenticated
variable to True. example:

procedure WSServerAuthentication(Connection:

TsgcWSConnection;

Topics

35

 aUser, aPassword: string; var

Authenticated: Boolean);

begin

 if (aUser = 'John') and (aPassword = '1234')

then

 Authenticated := True;

end;

sgcWebSockets 3.4

36

Custom Objects

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO

Every time a new WebSocket connection is established,
sgcWebSockets creates a TsgcWSConnection class where
you can access to some properties like identifier, bytes

received/sent, client IP... and there is a property called
Data where you can store objects in memory like database
access, session objects...

You can create a new class called MyClass and create some
properties, example:

TMyClass = class

private

 FRegistered: Boolean;

 FUser: String;

public

 property Registered: Boolean read FRegistered

write FRegistered;

 property User: String read FUser write FUser;

end;

Then, when a new client connects, OnConnect Event, create
a new TMyClass and Assign to Data:

procedure WSServerConnect(Connection:

TsgcWSConnection);

begin

 Connection.Data := TMyClass.Create;

end;

Every time a new message is received by server, you can
access to your custom object using Connection.Data
property.

Topics

37

procedure WSServerMessage(Connection:

TsgcWSConnection; const

 Text: string);

begin

 if TMyClass(Connection.Data).Registered then

 DoSomeStuff;

end;

When a connection is closed, you may free your object:

procedure

TfrmServerChat.WSServerDisconnect(Connection:

TsgcWSConnection;

 Code: Integer);

var

 oMyClass: TMyClass;

begin

 oMyClass := TMyClass(Connection.Data);

 if Assigned(oMyClass) then

 begin

 oMyClass.Free

 Connection.Data := nil;

 end;

end;

sgcWebSockets 3.4

38

Secure Connections

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO
 Web Browsers

SSL support is based on Indy implementation, so you need
to deploy openssl libraries in order to use this feature. In

Compiled Demos file, there is a directory called Third-
Parties/ openssl, where you can find the libraries need
for every Delphi Version.

Server Side

To enable this feature, you need to enable the following
property:

SSL/ Enable

There are other properties that you need to define:

SSLOptions/ CertFile/ KeyFile/ RootCertFile: you
need a certificate in .PEM format in order to encrypt
websocket communications.

SSLOptions/ Password: this is optional and only
needed if certificate has a password.

SSLOptions/ Port: port used on SSL connections.

Client Side

Topics

39

To enable this feature, you need to enable the following

property:

TLS/ Enable

sgcWebSockets 3.4

40

Compression

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO
 Web Browsers like Chrome

This is a feature that works very well when you need to

send a lot of data, usually using a binary message, because
it compresses WebSocket message using protocol
"PerMessage_Deflate" which is supported by some browsers
like Chrome.

To enable this feature, you need to activate the following
property:

 Extensions/ PerMessage_Deflate / Enabled

When a client tries to connect to a WebSocket Server and
this property is enabled, it sends a header with this
property enabled, if Server has activated this feature, it
sends a response to client with this protocol activated and
all messages will be compressed; if Server doesn't has this
feature, then all messages will be sent without
compression.

On Web Browsers, you don't need to do anything, if this
extension is supported it will be used automatically, if not,
then messages will be sent without compression.

If WebSocket messages are small, is better don't enable
this property because it consumes cpu cycle to
compress/decompress messages; but if you are using big
amount of data, you will notify and increase on messages
exchange speed.

Topics

41

sgcWebSockets 3.4

42

Flash

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer

WebSockets are supported natively by a wide range of web
browsers (please check http://caniuse.com/websockets),
but there are some old versions that don't implement
WebSockets (like Internet Explorer 6, 7, 8 or 9). You can
enable Flash Fallback for all these browsers that don't

implement WebSockets.

Almost all other or older browser support Flash installing
Adobe Flash Player. To Support Flash connection, you need
to open port 843 on your server because Flash uses this
port for security reasons to check for cross-domain-access.
If port 843 is not reachable, waits 3 seconds and tries to
connect to Server default port.

Flash is only applied if Browser doesn't support websockets
natively. So, if you enable Flash Fallback on server side,
and Web Browser supports WebSockets natively, it will still
use WebSockets as transport.

To enable Flash Fallback, you need to access to FallBack /
Flash property on server and enable it. There are 2
properties more:

1. Domain: if you need to restrict flash connections to a
single/multiple domains (by default all domains are
allowed). Example: This will allow access to domain
swf.example.com

swf.example.com

2. Ports: if you need to restrict flash connections to a
single/multiple ports (by default all ports are allowed).

http://caniuse.com/websockets

Topics

43

Example: This will allow access to ports 123, 456, 457, and

458

123,456-458

Flash connections only support Text messages, binary
messages are not supported.

sgcWebSockets 3.4

44

Bindings

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer

Usually Server have more than one IP, if you enable a
WebSocket Server and set listening port to 80, when server
starts, tries to listen port 80 of ALL IP, so if you have 3 IP,
it will block port 80 of each IP's.

Bindings allows to define which exact IP and Port are used
by the Server. Example, if you need to listen on port 80 for
IP 127.0.0.1 (internal address) and 80.254.21.11 (public
address), you can do this before server is activated:

 With WSServer.Bindings.Add do

 begin

 Port := 80;

 IP := 127.0.0.1;

 end;

 With WSServer.Bindings.Add do

 begin

 Port := 80;

 IP := 80.254.21.11;

 end;

Topics

45

Quality Of Service

Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc
 Java script

SGC Default Protocol implements a QoS (Quality of Service)
for message delivery, there are 3 different types:

Level 0: "At most once", where messages are
delivered according to the best efforts of the underlying
TCP/IP network. Message loss or duplication can occur.
This level could be used, for example, with ambient
sensor data where it does not matter if an individual
reading is lost as the next one will be published soon
after.

Level 1: "At least once", where messages are assured
to arrive but duplicates may occur.

Level 2: "Exactly once", where message are assured to
arrive exactly once. This level could be used, for
example, with billing systems where duplicate or lost
messages could lead to incorrect charges being applied.

Level 0

The message is delivered according to the best efforts
of the underlying TCP/IP network. A response is not

expected and no retry semantics are defined in the
protocol. The message arrives at the server either once
or not at all.

The table below shows the QoS level 0 protocol flow.

sgcWebSockets 3.4

46

Client
Message and

direction
Server

QoS =
0

PUBLISH
---------->

Action: Publish message to
subscribers

Level 1

The receipt of a message by the server is
acknowledged by a ACKNOWLEDGMENT message. If
there is an identified failure of either the
communications link or the sending device, or the
acknowledgement message is not received after a
specified period of time, the sender resends the
message. The message arrives at the server at least
once.

A message with QoS level 1 has a Message ID in the
message.

The table below shows the QoS level 1 protocol flow.

Client
Message and

direction
Server

QoS = 1
Message ID = x

Action: Store
message

PUBLISH
---------->

Actions:
 Store

message
 Publish

message to
subscribers

 Delete

message

Action: Discard
message

ACKNOWLEDGMENT
<----------

If the client does not receive a ACKNOWLEDGMENT

message (either within a time period defined in the
application, or if a failure is detected and the
communications session is restarted), the client may
resend the PUBLISH message.

Level 2

Topics

47

Additional protocol flows above QoS level 1 ensure that

duplicate messages are not delivered to the receiving
application. This is the highest level of delivery, for use
when duplicate messages are not acceptable. There is
an increase in network traffic, but it is usually
acceptable because of the importance of the message
content.

A message with QoS level 2 has a Message ID in the
message.

The table below shows the QoS level 2 protocol flow.

There are two semantics available for how a PUBLISH
flow should be handled by the recipient.

Client
Message and

direction
Server

QoS = 2
Message ID = x

Action: Store
message

PUBLISH
---------->

Action: Store

message

 PUBREC
<---------- Message ID = x

Message ID = x
PUBREL

---------->

Actions:

 Publish
message to
subscribers

 Delete
message

Action: Discard

message
ACKNOWLEDGMENT

<----------
Message ID = x

If a failure is detected, or after a defined time period,

the protocol flow is retried from the last
unacknowledged protocol message. The additional
protocol flows ensure that the message is delivered to
subscribers once only.

sgcWebSockets 3.4

48

Topics

49

Queues

Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc
 Java script

SGC Default Protocol implements Queues to add
persistence to published messages (it's only available for

Published messages)

Level 0: Messages are not queued on Server

Level 1: only last message is queued on Server, and is
sent every time a client subscribes to a new channel or
connects to server.

Level 2: All messages are queued on Server, and are
sent every time a client subscribes to a new channel or
connects to server.

Level 0

The message is not queued by Server

The table below shows the Queue level 0 protocol flow.

Client
Message and

direction
Server

Queue =
0

PUBLISH
---------->

Action: Publish message to
subscribers

Level 1

sgcWebSockets 3.4

50

A message with Queue level 1 is stored on server and if

there are other messages stored for this channel, are
deleted.

The table below shows the Queue level 1 protocol flow.

Client

Message
and

direction

Server

Queue = 1
PUBLISH
---------->

Actions:

 Deletes All
messages of this

channel
 Store last message by

Channel

Action: Process

message
NOTIFY

<----------

Action: Every time a new
client subscribes to this

channel, last message is
sent.

This is useful where publishers send messages on a
"report by exception" basis, where it might be some time
between messages. This allows new subscribers to
instantly receive data with the retained, or Last Known
Good, value.

Level 2

All messages with Queue level 2 are stored on server.

The table below shows the Queue level 2 protocol flow.

Client

Message

and
direction

Server

Queue = 2
PUBLISH
----------> Action: Store message

Action: Process

message
NOTIFY

<----------
Action: Every time a new

client subscribes to this

Topics

51

channel, ALL Messages are
sent.

sgcWebSockets 3.4

52

Transactions

Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc
 Java script

sgcWebSockets SGC Protocol supports transactional
messaging, when a client commits a transaction, all
messages sent by client are processed on server side.
There are 3 methods called by client:

StartTransaction

 Creates a New Transaction on server side and all
messages that are sent from client to server after this
method, are queued on Server side, until client calls to
Commit or Rollback

Client
Message and

direction
Server

Channel = X
STARTTRANSACTION

---------->

Action: Creates a

new Queue to store
all Messages of

specified channel

Channel = X
PUBLISH

---------->

Action: Message is

stored on Server
Side.

Action: Client

get confirmation
of message sent

ACKNOWLEDGMENT

<----------

Action: Server
returns an

Acknowledgment to
client because

message is stored.

....

Commit

Topics

53

 When a client calls to commit, all messages queued by

server are processed.

Client
Message and

direction
Server

Channel

= X
COMMIT

---------->
Action: Process all messages

queued by Transaction

RollBack

 When a client calls to RollBack, all messages queued by
server are deleted and not processed on server side.

Client
Message and

direction
Server

Channel

= X
ROLLBACK
---------->

Action: Delete all messages

queued by Transaction

sgcWebSockets 3.4

54

HTTP

Supported by

 TsgcWebSocketHTTPServer

TsgcWebSocketHTTPServer is a component that allows
to handle WebSocket and HTTP connections using the SAME
port. Is very useful when you need to setup a server where
only HTTP port is enabled (usually 80 port). This

component supports all TsgcWeBSocketServer features and
allows to serve HTML pages.

You can serve HTML pages statically, using
DocumentRoot property, example: if you save test.html in
directory "C:\inetpub\wwwroot", and you set
DocumentRoot to "C:\inetpub\wwwroot". If a client tries
to access to test.html, it will be served automatically,
example:

 http://localhost/test.html

Or you can serve HTML or other resources dynamically
by code, to do this, there is an event called
OnCommandGet that is fired every time a client requests
a new HTML page, image, javascript file... Basically you
need to check which document is requesting client (using
ARequestInfo.Document) and send a response to client
(using AResponseInfo.ContentText where you send
response content, AResponse.ContentType which is the
type of response and a AResponseInfo.ResponseNo with
number of response code, usually is 200), example:

procedure WSServerCommandGet(AContext:

TIdContext; ARequestInfo:

 TIdHTTPRequestInfo; AResponseInfo:

TIdHTTPResponseInfo);

begin

Topics

55

 if ARequestInfo.Document = '/myfile.js' then

 begin

 AResponseInfo.ContentText :=

'<script>alert("Hello!");</script>';

 AResponseInfo.ContentType :=

'text/javascript;

 AResponseInfo.ResponseNo := 200;

 end

end;

sgcWebSockets 3.4

56

Throttle

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO

Bandwidth Throttling is supported by Server and Client
components, if enabled, can limit the amount of bits per
second sent/received by socket. Indy uses a blocking

method, so if a client is limiting its reading, unread data will
be inside client socket and server will be blocked from
writing new data to client. As much slower is client reading
data, much slower is server writing new data.

Topics

57

Server-sent Events (Push Notifications)

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 Java script

SSE are not part of WebSockets, defines an API for opening
an HTTP connection for receiving push notifications from a
server.

SSEs are sent over traditional HTTP. That means they do
not require a special protocol or server implementation to
get working. In addition, Server-Sent Events have a variety
of features that WebSockets lack by design such as
automatic reconnection, event IDs, and the ability to send
arbitrary events.

Events

 Open: when a new SSE connection is opened.
 Message: when client receives a new message.
 Error: when there any connection error like a
disconnection.

JavaScript API

To subscribe to an event stream, create an EventSource
object and pass it the URL of your stream:

var sse = new EventSource('sse.html');

sse.addEventListener('message', function(e) {

 console.log(e.data);

}, false);

sse.addEventListener('open', function(e) {

 // Connection was opened.

}, false);

sgcWebSockets 3.4

58

sse.addEventListener('error', function(e) {

 if (e.readyState == EventSource.CLOSED) {

 // Connection was closed.

 }

}, false);

When updates are pushed from the server, the onmessage
handler fires and new data is be available in its e.data
property. If the connection is closed, the browser will
automatically reconnect to the source after ~3 seconds
(this is a default retry interval, you can change on server
side).

Fields

The following field names are defined by the specification:

event

The event's type. If this is specified, an event will be
dispatched on the browser to the listener for the specified
event name; the web site would use addEventListener() to

listen for named events. the onmessage handler is called if
no event name is specified for a message.

data

The data field for the message. When the EventSource
receives multiple consecutive lines that begin with data:, it
will concatenate them, inserting a newline character
between each one. Trailing newlines are removed.

id

The event ID to set the EventSource object's last event ID
value to.

Topics

59

retry

The reconnection time to use when attempting to send the
event. This must be an integer, specifying the reconnection
time in milliseconds. If a non-integer value is specified, the
field is ignored.

All other field names are ignored.

For multi-line strings use #10 as line feed.

Examples of use:

If you need to send a message to a client, just use
WriteData method.

 Connection.WriteData('Notification from

server');

To send a message to all Clients, use Broadcast method.

 Connection.Broadcast('Notification from

server');

To send a message to all Clients using url 'sse.html', use
Broadcast method and Channel parameter:

 Connection.Broadcast('Notification from

server', '/sse.html');

You can send a unique id with an stream event by including
a line starting with "id:":

 Connection.WriteData('id: 1' + #10 + 'data:

Notification from server');

sgcWebSockets 3.4

60

If you need to specify an event name:

 Connection.WriteData('event: notifications' +

#10 + 'data: Notification from server');

 javascript code to listen "notifications" channel:

 sse.addEventListener('notifications',

function(e) {

 console.log('notifications:' + e.data);

 }, false);

Topics

61

HeartBeat

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO

On Server components, automatically sends a ping to all
active WebSocket connections every x seconds.

On Client components, automatically sends a ping to server
every x seconds.

sgcWebSockets 3.4

62

WatchDog

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO

On Server components, automatically restart server after
unexpected disconnection.

On Client components, automatically reconnect to server
after unexpected disconnection.

Topics

63

Files

Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc

This protocol allows to send files from client to server and
from server to client in an easy way. You can send from
really small files to big files using a low memory usage. You
can set:

1. Packet size in bytes.
2. Use custom channels to send files to only subscribed
clients.
3. Progress of file send and received.
4. Authorization of files received.
5. Acknowledgment of packets sent.

sgcWebSockets 3.4

64

Proxy

Supported by

 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO

Client WebSocket components support WebSocket
connections through proxies, to enable proxy connection
you need to activate the following properties:

Proxy / Enabled

Once set to True, you can setup

Host: Proxy server address
Port: Proxy server port
UserName/Password: Authentication to connect to
proxy, only if required.

Topics

65

Logs

Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO

This is a useful feature that allows to debug WebSocket
connections, to enable this, you need to access to the

following property:

LogFile/ Enabled

Once enabled, every time a new connection is established it
will be logged in a text file. On Server component, if file it's
not created it will be created but with you can't access until
server is closed, if you want to open log file while server is
active, log file needs to be created before start server.

Example:

127.0.0.1:49854 Stat Connected.

127.0.0.1:49854 Recv 09/11/2013 11:17:03: GET /
HTTP/1.1
Upgrade: websocket
Connection: Upgrade
Host: 127.0.0.1:5414
Origin: http://127.0.0.1:5414
Pragma: no-cache
Cache-Control: no-cache

Sec-WebSocket-Key: 1n598ldHs9SdRfxUK8u4Vw==
Sec-WebSocket-Version: 13
Sec-WebSocket-Extensions: x-webkit-deflate-frame

127.0.0.1:49854 Sent 09/11/2013 11:17:03: HTTP/1.1 101
Switching Protocols

sgcWebSockets 3.4

66

Upgrade: websocket

Connection: Upgrade
Sec-WebSocket-Accept: gDuzFRzwHBc18P1CfinlvKv1BJc=

127.0.0.1:49854 Stat Disconnected.
0.0.0.0:0 Stat Disconnected.

Topics

67

General

WebSocket Events

WebSocket connections have the following events:

OnConnect
Event raised when a new connection is established.

OnDisconnect

Event raised when a connection is closed.

OnError
Event raised when a connection has any error.

OnMessage
Event raised when a new text message is received.

OnBinary
Event raised when a new binary message is
received.

By default, sgcWebSockets uses an asynchronous
mechanism to raise these events, when any of these events
is raised internally, it queues this message and is
dispatched by operating system when is allowed. This
behavior can be modified using a property called
NotifyEvents, by default neAsynchronous is selected, if
neNoSync is checked then events will be raised without
synchronizing with the main thread (if you need to update
any VCL control or access to shared resources, then you
will need to implement your own synchronizing method).

neNoSync is recommended when you need to handle a lot
of messages on a very short period of time, if no, then you
can set default property to neAsynchronous.

sgcWebSockets 3.4

68

WebSocket Parameters Connection

Supported by

 TsgcWebSocketClient
 TsgcWebSocketClient_SocketIO
 Java script

Sometimes is useful to pass parameters from client to
server when a new WebSocket connection is established. If
you need to pass some parameters to server, you can use
the following property:

 Options / Parameters

By default, si set to '/', if you need to pass a parameter like
id=1, you can set this property to '/?id=1'

On Server Side, you can handle client parameters using the
following parameter:

procedure WSServerConnect(Connection:

TsgcWSConnection);

begin

 if Connection.URL = '/?id=1' then

 HandleThisParameter;

end;

Using Javascript, you can pass parameters using connection
url, example:

<script

src="http://localhost/sgcWebSockets.js"></scrip

t>

<script>

 var socket = new

sgcWebSocket('ws://localhost/?id=1');

</script>

Topics

69

Using inside a DLL

If you need to work with Dynamic Link Libraries (DLL) and
sgcWebSockets (or console applications), NotifyEvents
property needs to be set to neNoSync.

71

Components

TsgcWebSocketServer

TsgcWebSocketServer implements Server WebSocket
Component and can handle multiple threaded client
connections. Follow next steps to configure this component:

1. Drop a TsgcWebSocketServer component in the form

2. Set Port (default is 80). If you are behind a firewall

probably you will need to configure it.

3. Set Specifications allowed, by default all specifications
are allowed.

 RFC6455: is standard and recommended WebSocket
specification.

 Hixie76: it's a draft and it's only recommended to
establish Hixie76 connections if you want to provide
support to old browsers like Safari 4.2

4. If you want, you can handle events:

 OnConnect: every time a WebSocket connection is
established, this event is fired.

 OnDisconnect: every time a WebSocket connection is
dropped, this event is fired.

 OnError: every time there is a WebSocket error (like
mal-formed handkshake), this event is fired.

 OnMessage: every time a client sends a text message
and it's received by server, this event is fired.

 OnBinary: every time a client sends a binary message
and it's received by server, this event is fired.

sgcWebSockets 3.4

72

 OnHandhake: this event is fired after handshake is
evaluated on server side.

 OnException: every time an exception occurs, this
event is fired.

 OnAuthentication: if authentication is enabled, this
event if fired. You can check user and password passed by
client and enable/disable Authenticated Variable.

 OnStartup: raised when a server is started.

 OnShutdown: raised when a server is stopped.

5. Create a procedure and set property Active := True

 sgcWebSocketServer1.Active := True

Methods

 Broadcast: sends a message to all connected clients.

Message / Stream: message or stream to send to all
clients.

Channel: if you specify a channel, message will be
sent only to subscribers.

Protocol: if defined, message will be sent only to
specific protocol.

Exclude: if defined, list of connection guid excluded
(separated by comma).

Include: if defined, list of connection guid included
(separated by comma).

Components

73

 WriteData: sends a message to a single or a multiple

clients. Every time a Client establishes a WebSocket
connection, this connection is identified by a Guid, you can
use this Guid to send a message to a client.

 Ping: sends a ping to all connected clients. If a time-out
is specified, it waits a response until a time-out is
exceeded, if no response, then closes connection.

 DisconnectAll: disconnects all active connections.

Properties

 Authentication: if enabled, you can authenticate
websocket connections against a username and password.

Authusers: is a list of authenticated users, following
spec:

user=password

 Implements 3 types of WebSocket Authentication

Session: client need to do a HTTP GET passing
username and password, and if authenticated, server
response a Session ID. With this Session ID, client
open websocket connection passing as a parameter.

URL: client open websocket connection passing
username and password as a parameter.

Basic: implements Basic Access Authentication, only

applies to VCL Websockets (Server and Client) and
HTTP Requests (client webbrowsers don't implement
this type of authentication).

 Bindings: used to manage IP and Ports.

sgcWebSockets 3.4

74

 Connections: contains a list with all clients connections.

 Count: Connections number count.

 Extensions: you can enable compression on messages
sent (if client don't support compression, messages will be
exchanged automatically without compression).

 FallBack: if WebSockets protocol it's not supported
natively by browser, you can enable the following fallbacks:

 Flash: if enabled, if browser hasn't native websocket
implementation and has flash enabled, it uses Flash as a
Transport.

 ServerSentEvents: if enabled, allows to send push
notifications from server to browser clients.

 Retry: interval in seconds to try to reconnect to
server (3 by default).

 HeartBeat: if enabled try to keeps alive websocket

client connections sending a ping every x seconds.

Interval: number of seconds between each ping.

Timeout: max number of seconds between a ping and
pong.

 MaxConnections: max connections allowed (if zero
there is no limit).

 NotifyEvents: defines which mode to notify websocket

events.

neAsynchronous: this is the default mode, notify
threaded events on asynchronous mode, adds events
to a queue that are synchronized with the main thread
asynchronously.

Components

75

neSynchronous: if this mode is selected, notify

threaded events on synchronous mode, needs to
synchronize with the main thread to notify this events.

neNoSync: there is no synchronization with the main
thread, if you need to access to controls that are not
thread-safe you need to implement your own
synchronization methods.

 Options:

FragmentedMessages: allows to handle Fragmented

Messages

 frgOnlyBuffer: message is buffered until all
data is received, it raises OnBinary or OnMessage event
(option by default)
 frgOnlyFragmented: every time a new
fragment is received, it raises OnFragmented Event.
 frgAll: every time a new fragment is received,
it raises OnFragmented Event with All data received
from first packet. When all data is received, it raises
OnBinary or OnMessage event.

HTMLFiles: if enabled, allows to request Web Browser
tests, enabled by default.

JavascriptFiles: if enabled, allows to request
Javascript Built-in libraries, enabled by default.

RaiseDisconnectExceptions: enabled by default,
raises an exception every time there is a disconnection
by protocol error.

ReadTimeOut: time in milliseconds to check if there is
data in socket connection, 10 by default.

ValidateUTF8: if enabled, validates if message
contains UTF8 valid characters, by default is disabled.

sgcWebSockets 3.4

76

 ReadEmptySource: max number of times an HTTP

Connection is read and there is no data received, 0 by
default (means no limit). If limit is reached, then
connection is closed.

 SecurityOptions:

OriginsAllowed: define here which origins are allowed
(by default accepts connections from all origins), if
origin is not in the list closes connection.

 SSL: enables secure connections.

 SSLOptions: used to define SSL properties: certificates
filenames, password...

 ThreadPool: if enabled, when a thread is no longer
needed this is put into a pool and marked as inactive (do
not consume cpu cycles), it's useful if there are a lot of
short-live connections.

MaxThreads: max number of threads to be created,
by default is 0 meaning no limit. If max number is

reached then connection is refused.

PoolSize: size of ThreadPool, by default is 32.

 WatchDog: if enabled, restart server after unexpected
disconnection.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then
unlimited.

 Throttle: used to limit the amount of bits per second
sent/received.

Components

77

sgcWebSockets 3.4

78

TsgcWebSocketHTTPServer

TsgcWebSocketHTTPServer implements Server WebSocket
Component and can handle multiple threaded client
connections as TsgcWebSocketServer, and allows to server
HTML pages using a built-in HTTP Server, sharing the same
port for websocket connections and HTTP requests.

Follow next steps to configure this component:

1. Drop a TsgcWebSocketHTTPServer component in the
form

2. Set Port (default is 80). If you are behind a firewall
probably you will need to configure it.

3. Set Specifications allowed, by default all specifications
are allowed.

 RFC6455: is standard and recommended WebSocket
specification.

 Hixie76: it's a draft and it's only recommended to
establish Hixie76 connections if you want to provide
support to old browsers like Safari 4.2

4. If you want, you can handle events:

 OnConnect: every time a WebSocket connection is
established, this event is fired.

 OnDisconnect: every time a WebSocket connection is
dropped, this event is fired.

 OnError: every time there is a WebSocket error (like
mal-formed handkshake), this event is fired.

 OnMessage: every time a client sends a text message
and it's received by server, this event is fired.

Components

79

 OnBinary: every time a client sends a binary message

and it's received by server, this event is fired.

 OnHandhake: this event is fired after handshake is
evaluated on server side.

 OnCommandGet: this event is fired when HTTP Server
receives a GET command requesting a HTML page, an
image... Example:

AResponseInfo.ContentText :=

'<HTML><HEADER>TEST</HEAD><BODY>Hello!</BODY></HTML>';

 OnCommandOther: this event is fired when HTTP
Server receives a command different of GET.

 OnCreateSession: this event is fired when HTTP Server
creates a new session.

 OnInvalidSession: this event is fired when an HTTP
request is using an invalid/expiring session.

 OnSessionStart: this event is fired when HTTP Server
starts a new session.

 OnCommandOther: this event is fired when HTTP
Server closes a session.

 OnException: this event is fired when HTTP Server
throws an exception.

 OnAuthentication: if authentication is enabled, this
event if fired. You can check user and password passed by
client and enable/disable Authenticated Variable.

5. Create a procedure and set property Active := True

 sgcWebSocketHTTPServer1.Active := True

sgcWebSockets 3.4

80

Methods

 Broadcast: sends a message to all connected clients.

Message / Stream: message or stream to send to all
clients.

Channel: if you specify a channel, message will be
sent only to subscribers.

Protocol: if defined, message will be sent only to
specific protocol.

Exclude: if defined, list of connection guid excluded
(separated by comma).

Include: if defined, list of connection guid included
(separated by comma).

 WriteData: sends a message to a single or a multiple
clients. Every time a Client establishes a WebSocket
connection, this connection is identified by a Guid, you can
use this Guid to send a message to a client.

 Ping: sends a ping to all connected clients.

 DisconnectAll: disconnects all active connections.

Properties

 Connections: contains a list with all clients connections.

 Bindings: used to manage IP and Ports.

 DocumentRoot: here you can define a directory where
you can put all html files (javascript, html, css...) if a client
sends a request, server automatically will search this file on
this directory, if it finds, it will be served.

Components

81

 Extensions: you can enable compression on messages

sent (if client don't support compression, messages will be
exchanged automatically without compression).

 MaxConnections: max connections allowed (if zero
there is no limit).

 Count: Connections number count.

 AutoStartSession: if SessionState is active, when
server gets a new http request, creates a new session.

 SessionState: if active, enables http sessions.

 KeepAlive: if enabled, connection will stay alive after
the response has been sent.

 ReadStartSSL: max. number of times an HTTPS
connection tries to start.

 SessionList: read-only property used as a container for
TIdHTTPSession instances created for the HTTP server.

 SessionTimeOut: timeout of sessions.

sgcWebSockets 3.4

82

TsgcWebSocketClient

TsgcWebSocketClient implements Client VCL WebSocket
Component and can connect to a WebSocket Server. Follow
next steps to configure this component:

1. Drop a TsgcWebSocketClient component in the form

2. Set Host and Port (default is 80) to connect to an
available WebSocket Server.

3. You can select if you want TLS (secure connection) or
not, by default is not Activated.

4. You can connect through a HTTP Proxy Server, you need
to define proxy properties:

 Host: host name of proxy server.
 Port: port number of proxy server.
 Username: user to authenticate, blank if anonymous..
 Password: password to authenticate, blank if
anonymous.

5. If server supports compression, you can enable
compression to compress messages sent.

6. Set Specifications allowed, by default all specifications
are allowed.

 RFC6455: is standard and recommended WebSocket
specification.

 HIxie76: always is false

7. If you want, you can handle events

 OnConnect: when a WebSocket connection is
established, this event is fired

Components

83

 OnDisconnect: when a WebSocket connection is

dropped, this event is fired

 OnError: every time there is a WebSocket error (like
mal-formed handkshake), this event is fired

 OnMessage: every time server sends a text message,
this event is fired

 OnBinary: every time server sends a binary message,
this event is fired

 OnHandhake: this event is fired when handshake is
evaluated on client side.

 OnException: every time an exception occurs, this
event is fired.

8. Create a procedure and set property Active := True

 sgcWebSocketClient1.Active := True

Methods

 WriteData: sends a message to a WebSocket Server.
Could be a String or TStream. If "size" is set, packet will be
split if size of message is greater of size.

 Ping: sends a ping to a Server. If a time-out is specified,
it waits a response until a time-out is exceeded, if no
response, then closes connection.

Properties

 Authentication: if enabled, websocket connection will
try to authenticate passing a username and password.

sgcWebSockets 3.4

84

 Implements 2 types of WebSocket Authentication

Session: client need to do a HTTP GET passing
username and password, and if authenticated, server
response a Session ID. With this Session ID, client
open websocket connection passing as a parameter.

URL: client open websocket connection passing
username and password as a parameter.

 Host: IP or DNS name of server.

 HeartBeat: if enabled try to keeps alive websocket a
connection sending a ping every x seconds.

Interval: number of seconds between each ping.

Timeout: max number of seconds between a ping and
pong.

 ConnectTimeout: max time in miliseconds before a
connection is ready.

 ReadTimeout: max time in miliseconds to read
messages.

 Port: Port used to connect to host.

 LogFile: if enabled save socket messages to a specified
log file, useful for debugging.

Enabled: if enabled every time a message is received
and sent by socket it will be saved on a file.

FileName: full path to filename.

 NotifyEvents: defines which mode to notify websocket
events.

Components

85

neAsynchronous: this is the default mode, notify

threaded events on asynchronous mode, adds events
to a queue that are synchronized with the main thread
asynchronously.

neSynchronous: if this mode is selected, notify
threaded events on synchronous mode, needs to
synchronize with the main thread to notify this events.

neNoSync: there is no synchronization with the main
thread, if you need to access to controls that are not
thread-safe you need to implement your own

synchronization methods.

 Options: allows to customize headers sent on
handshake.

FragmentedMessages: allows to handle Fragmented
Messages

 frgOnlyBuffer: message is buffered until all
data is received, it raises OnBinary or OnMessage event
(option by default)

 frgOnlyFragmented: every time a new
fragment is received, it raises OnFragmented Event.
 frgAll: every time a new fragment is received,
it raises OnFragmented Event with All data received
from first packet. When all data is received, it raises
OnBinary or OnMessage event.

Parameters: define parameters used on GET.

Origin: customize connection origin.

RaiseDisconnectExceptions: enabled by default,
raises an exception every time there is a disconnection
by protocol error.

ValidateUTF8: if enabled, validates if message
contains UTF8 valid characters, by default is disabled.

sgcWebSockets 3.4

86

 Extensions: you can enable compression on messages
sent.

 Protocol: if exists, shows current protocol used

 Proxy: here you can define if you want to connect
through a HTTP Proxy Server.

 WatchDog: if enabled, when an unexpected
disconnection is detected, tries to reconnect to server
automatically.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then
unlimited.

 Throttle: used to limit the amount of bits per second
sent/received.

 TLS: enables secure connection.

Components

87

TsgcWebSocketClient_SocketIO

TsgcWebSocketClient_SocketIO inherits all properties and
methods from TsgcWebSocketClient and allows to connect
to a Socket.IO Server.

Methods

These messages are only supported by ioAPI0:

 SendDisconnect: Signals disconnection. If no endpoint

is specified, disconnects the entire socket.

Examples:

Disconnect a socket connected to the /test
endpoint.

SendDisconnect('/test');

Disconnect the whole socket

SendDisconnect;

 SendConnect: Only used for multiple sockets. Signals a
connection to the endpoint. Once the server receives it, it's
echoed back to the client.

Example, if the client is trying to connect to the
endpoint /test, a message like this will be delivered:

SendConnect('[path] [query]');

Example:

SendConnect('/test?my=param');

To acknowledge the connection, the server echoes back
the message. Otherwise, the server might want to
respond with a error packet.

http://socket.io/

sgcWebSockets 3.4

88

 SendHeartBeat: Sends a heartbeat. Heartbeats must
be sent within the interval negotiated with the server. It's
up to the client to decide the padding (for example, if the
heartbeat timeout negotiated with the server is 20s, the
client might want to send a heartbeat evert 15s).

Example:

SendHeartBeat;

 SendTextMessage: A regular message.

Example: send a text message "Hi Folks", with id
"fjghs121" to clients connected to EndPoint "/test"

SendTextMessage('Hi Folks', 'fjghs121',

'/test');

 SendJSONMessage: A JSON encoded message.

Example: send a JSON encoded message "{"a":"b"}"

SendJSONMessage('{"a":"b"}');

 SendEvent: An event is like a json message, but has
mandatory name and args fields. name is a string and args
an array.

The event names: 'message', 'connect', 'disconnect',
'open', 'close', 'error', 'retry', 'reconnect' are reserved,
and cannot be used by clients or servers with this
message type.

Example: send event "test" with arguments
"["1","2","3"]"

SendEvent('test', ["1","2","3"]);

 SendACK: An acknowledgment contains the message id
as the message data. If a + sign follows the message id,
it's treated as an event message packet.

Components

89

Example: simple acknowledgement of message id "2"

SendACK("2");

 SendError: For example, if a connection to a sub-socket
is unauthorized.

Example: send error "not authorized" with advise
"connect with admin user"

SendError("not authorized", "connect with

admin user");

 SendNoop: No operation. Used for example to close a
poll after the polling duration times out.

Example:

SendNoop;

Properties

These events are only raised if "RawMessages" property is
disabled and ioAPI0 is selected.

 OnMessageDisconnect

 OnMessageConnect

 OnMessageHeartBeat

 OnMessageText

 OnMessageJSON

 OnMessageEvent

 OnMessageACK

sgcWebSockets 3.4

90

 OnMessageError

 OnMessageNoop

Properties

 RawMessages: if not enabled (which is default)
socket.io messages are processed and specific socket.io
messages events are raised, if enabled, then socket.io
messages are not processed and OnMessage event is
raised.

 IO_API: specifies SocketIO version:

ioAPI0: supports socket.io 0.* servers (selected by
default)

ioAPI1: supports socket.io 1.* servers

 IO_CloseTimeout: close timeout received from
Socket.io server.

 IO_HandShakeTimestamp: only enable if you want to
send timestamp as a parameter when a new session is
requested (enable this property if you try to access to a
gevent-socketio python server).

 IO_HeartBeatTimeout: HeartBeat timeout received
from Socket.io server.

 IO_SessionId: SessionId received from Socket.io
server.

 IO_Base64: if enabled, binary messages are received

as base64.

 IO_HandShakeCustomURL: allows to customize url to
get socket.io session.

Components

91

TsgcWebSocketProxyServer

TsgcWebSocketProxyServer implements a WebSocket
Server Component which listens client websocket
connections and forward data connections to a normal
TCP/IP server. This is specially useful for browser
connections, because allows a browser to virtually connect
to any server.

sgcWebSockets 3.4

92

TsgcIWWebSocketClient

TsgcIWWebSocketClient implements Intraweb WebSocket
Component and can connect to a WebSocket Server. Follow
next steps to configure this component:

1. Drop a TsgcIWWebSocketClient component in the form

2. Set Host and Port (default is 80) to connect to an
available WebSocket Server.

3. You can select if you want TLS (secure connection) or
not, by default is not Activated.

4. Set Transports allowed.

 WebSockets: it will use standard WebSocket
implementation

 Emulation: if browser don't support WebSockets, then it
will use a loop AJAX callback connection

5. If you want, you can handle events

 OnAsyncConnect: when a WebSocket connection is
established, this event is fired

 OnAsyncDisconnect: when a WebSocket connection is
dropped, this event is fired

 OnAsyncError: every time there is a WebSocket error
(like mal-formed handkshake), this event is fired

 OnAsyncMessage: every time server sends a message,
this event is fired

 OnAsyncEmulation: this event is fired on every loop of
emulated connection

Components

93

6. Create an Async Procedure and set property Active :=

True

 sgcIWWebSocketClient1.Open;

Methods

 Open: Opens a WebSocket Connection.

 Close: Closes a WebSocket Connection.

 WriteData: sends a message to WebSocket Server.

Properties

 Connected: is a read-only variable and returns True if
connection is Active, otherwise returns False.

 JSOpen: here you can include JavaScript Code on client
side when a connection is opened.

 JSClose: here you can include JavaScript Code on client
side when a connection is closed.

 JSMessage: here you can include JavaScript Code on
client side when clients receives a message from server.
You can get Message String, using Javascript variable
"text".

 JSError: here you can include JavaScript Code on client
side when an error is raised. You can get Message Error,
using Javascript variable "text".

sgcWebSockets 3.4

94

Connections

TsgcWSConnection

TsgcWSConnection is a wrapper of client WebSocket
connections, you can access to this object on Server or
Client Events.

Methods

 WriteData: sends a message to the client.

 Disconnect: close client connection from server side. A
"CloseCode" can be specified optionally.

 Ping: sends a ping to the client.

 Subscribed: returns if connection is subscribed to a
custom channel.

Properties

 Data: user session data object, here you can pass a
object and access this every time you need, example: you
can pass a connection to a database, user session
properties...

 Protocol: returns sub-protocol used on this connection.

 IP: returns Peer IP Address.

 Port: returns Peer Port.

 LocalIP: returns Host IP Address.

 LocalPort: returns Host Port.

 URL: returns url requested by client.

Components

95

 Guid: returns connection ID.

 HeadersRequest: returns a list of Headers received on
Request.

 HeadersResponse: returns a list of Headers sent as
Response.

 RecBytes: number of bytes received.

 SendBytes: number of bytes sent.

 Transport: returns the transport type of connection:

trpRFC6455: a normal websocket connection.

trpHixie76: a websocket connection using draft
websocket spec.

trpFlash: a websocket connection using Flash as
FallBack.

trpSSE: a Server-Sent Events connection.

sgcWebSockets 3.4

96

Protocols

Protocols

With WebSockets you can implement Sub-protocols
allowing to create customized communications, for
example: you can implement a sub-protocol over
WebSocket protocol to communicate a customized
application using JSON messages, and you can implement
another sub-protocol using XML messages.

When a connection is open on Server side, it will validate if
sub-protocol sent by client is supported by server, if not,
then it will close the connection. A server can implement
several sub-protocols, but only one can be used on a single
connection.

Sub-protocols are very useful to create customized
applications and be sure that all clients support same
communication interface.

Although protocol name is arbitrary, it's recommended to
use unique names like "dataset.esegece.com"

With sgcWebSockets package you can build your own
protocols and you can use built-in sub-protocols provided:

1. Protocol Default: implemented using JSON-RPC 2.0
messages, provides following patterns: RPC, PubSub,
Transactional Messages, Messages Acknowledgment and
more.

2. Protocol Dataset: inherits from Default Protocol, can
send dataset changes (new record, save record or delete

record) from server to clients.

3. Protocol Files: implemented using binary messages,
provides support for send files: packet size, authorization,
QoS, message acknowledgment and more.

Components

97

4. Protocol WebRTC: open source project aiming to

enable the web with Real Time Communication (RTC)
capabilities.

5. Protocol WAMP: open WebSocket subprotocol that
provides two asynchronous messaging patterns: RPC and
PubSub.

If you need to use more than one protocol using a
single connection (example: you may need to use
default protocol to handle Remote Procedure Calls and

Dataset protocol to handle database connections) you can
assign a "Broker" to each protocol component and all
messages will be exchanged using this intermediary
protocol (you can check "Tickets Demo" to get a simple
example of this).

Javascript Reference

Here you can get more information about common
javascript library used on sgcWebSockets.

sgcWebSockets 3.4

98

Protocols Javascript

Default Javascript sgcWebSockets uses sgcWebSocket.js
file.

Here you can find available methods, you need to replace
{%host%} and {%port%} variables as needed, example: if
you have configured your sgcWebSocket server to listen
port 80 on www.example.com website you need to
configure your access to sgcWebSocket.js file as:

<script

src="http://www.example.com:80/sgcWebSockets.js"><

/script>

Open Connection

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 var socket = new

sgcWebSocket('ws://{%host%}:{%port%}');

</script>

sgcWebSocket has 3 parameters, only first is required:

sgcWebSocket(url, protocol, transport)

 URL: websocket server location, you can use
"ws:" for normal websocket connections and "wss:"
for secured websocket connections.

sgcWebSocket('ws://127.0.0.1')

sgcWebSocket('wss://127.0.0.1')

 Protocol: if server accepts one or more protocol,
you can define which is the protocol you want to
use.

Components

99

sgcWebSocket('ws://127.0.0.1',

'esegece.com')

 Transport: by default, first tries to connect using
websocket connection and if not implemented by
Browser, then tries Server Sent Events as Transport.

Use websocket if implemented, if not, then use
Server Sent Events:

sgcWebSocket('ws://127.0.0.1')

Only use websocket as transport:

sgcWebSocket('ws://127.0.0.1', '',

['websocket'])

Only use Server Sent as transport:

sgcWebSocket('ws://127.0.0.1', '',

['sse'])

Open Connection With Authentication

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 var socket = new

sgcWebSocket({"host":"ws://{%host%}:{%port%}","use

r":"admin","password":"1234"});

</script>

Send Message

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 var socket = new

sgcWebSocket('ws://{%host%}:{%port%}');

 socket.send('Hello sgcWebSockets!');

sgcWebSockets 3.4

100

</script>

Show Alert with Message Received

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 var socket = new

sgcWebSocket('ws://{%host%}:{%port%}');

 socket.on('message', function(event)

 {

 alert(event.message);

 }

</script>

Binary Message Received

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 var socket = new

sgcWebSocket('ws://{%host%}:{%port%}');

 socket.on('stream', function(event)

 {

 document.getElementById('image').src =

URL.createObjectURL(event.stream);

 event.stream = "";

 }

</script>

Binary (Header + Image) Message Received

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 var socket = new

sgcWebSocket('ws://{%host%}:{%port%}');

Components

101

 socket.on('stream', function(event)

 {

 sgcWSStreamRead(evt.stream, function(header,

stream) {

 document.getElementById('text').innerHTML =

header;

 document.getElementById('image').src =

URL.createObjectURL(event.stream);

 event.stream = "";

 }

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 var socket = new

sgcWebSocket('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Close Connection

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 socket.close();

sgcWebSockets 3.4

102

</script>

Get Connection Status

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script>

 socket.state();

</script>

Components

103

Subprotocols

sgcWebSockets 3.4

104

Default

Protocol Default

This is default sub-protocol implemented using "JSONRPC
2.0" messages, every time you send a message using this
protocol, a JSON object is created with following properties:

jsonrpc: A String specifying the version of the JSON-RPC
protocol. MUST be exactly "2.0".

method: A String containing the name of the method to be
invoked. Method names that begin with the word rpc

followed by a period character (U+002E or ASCII 46) are
reserved for rpc-internal methods and extensions and
MUST NOT be used for anything else.

params: A Structured value that holds the parameter
values to be used during the invocation of the method. This
member MAY be omitted.

id: An identifier established by the Client that MUST contain
a String, Number, or NULL value if included. If it is not
included it is assumed to be a notification. The value
SHOULD normally not be Null [1] and Numbers SHOULD
NOT contain fractional parts [2]

JSON object example:

{"jsonrpc": "2.0", "method": "subtract", "params":

[42, 23], "id": 1}

Features

 Publish/subscribe message pattern to provide
one-to-many message distribution and decoupling of
applications.

 A messaging transport that is agnostic to the content
of the payload

 Acknowledgment of messages sent.

Components

105

 Supports transactional messages through server

local transactions. When the client commits the
transaction, the server processes all messages
queued. If client rollback the transaction, then all
messages are deleted.

 Implements QoS (Quality of Service) for message
delivery.

Components
 TsgcWSPClient_sgc: Server Protocol Default VCL
Component.

 TsgcWSPClient_sgc: Client Protocol Default VCL
Component.

 Javascript Component: Client Javascript Reference.

Browser Test
If you want to test this protocol with your favorite
WebBrowser, please type this url (you need to define your
custom host and port)

 http://host:port/esegece.com.html

sgcWebSockets 3.4

106

TsgcWSPServer_sgc

This is Server Protocol Default Component, you need to
drop this component in the form and select a
TsgcWebSocketServer Component using Server Property.

Methods
 Publish: sends a message to all subscribed clients.

 RPCResult: if a call RPC from client is successful, server
will respond with this method.

 RPCError: if a call RPC from client it has an error, server
will respond with this method.

 Broadcast: sends a message to all connected clients, if
you need to broadcast a message to selected channels, use
Channel argument.

 WriteData: sends a message to a single or multiple
selected clients.

Properties
 RPCAuthentication: if enabled, every time a client
requests a RPC, method name needs to be authenticated
against a username and password.

 Methods: is a list of allowed methods. Every time a
client sends a RPC first it will search if this method is
defined on this list, if it's not in this list,
OnRPCAuthentication event will be fired.

 Subscriptions: returns a list of active subscriptions.

Events
 OnRPCAuthentication: if RPC Authentication is enabled,
this event is fired to define if a client can call this method or
not.

Components

107

 OnRPC: fired when server receives a RPC from a client.

 OnNotification: fired every server receive a Notification
from a client.

 OnBeforeSubscription: fired every time before a client
subscribes to a custom channel. Allows to deny a
subscription.

 OnSubscription: fired every time a client subscribes to a
custom channel.

 OnUnSubscription: fired every time a client
unsubscribes from a custom channel.

 OnRawMessage: this event is fired before a message is
processed by component.

sgcWebSockets 3.4

108

TsgcWSPClient_sgc

This is Client Protocol Default Component, you need to drop
this component in the form and select a
TsgcWebSocketClient Component using Client Property.

Methods
 Publish: sends a message to all subscribed clients.

 RPC: Remote Procedure Call, client request a method and
response will be handled OnRPCResult or OnRPCError
events.

 Notify: client sends a notification to a server, this
notification don't need a response.

 Broadcast: sends a message to all connected clients, if
you need to broadcast a message to selected channels, use
Channel argument.

 WriteData: sends a message to a server. If you need to
send a message to a custom TsgcWSProtocol_Server_sgc,
use "Guid" Argument. If you need to send a message to a

single channel, use "Channel" Argument.

 Subscribe: subscribe client to a custom channel. If client
is subscribed, OnSubscription event will be fired.

 Unsubscribe: unsubscribe client to a custom channel. If
client is unsubscribed, OnUnsubscription event will be fired.

 UnsubscribeAll: unsubscribe client from all subscribed
channel. If client is unsubscribed, OnUnsubscription event
will be fired for every channel.

 GetSession: requests to server session id, data session is
received OnSession Event.

 StartTransaction: begins a new transaction.

Components

109

 Commit: server processes all messages queued in a

transaction.

 RollBack: server deletes all messages queued in a
transaction.

Events
 OnEvent: this event is fired every time a client receives a
message from a custom channel.

 OnRPCResult: this event is fired when client receives
successful response from server after a RPC is sent.

 OnRPCError: this event is fired when client receives error
response from server after a RPC is sent.

 OnAcknowledgment: this event is fired when client
receives error an acknowledgment from server that
message has been received.

 OnRawMessage: this event is fired before a message is
processed by component.

 OnSession: this event is fired after a successful
connection or after a GetSession request.

Properties
 Queue: disabled by default, if True all text/binary
messages are not processed and queued until queue is

disabled.

 QoS: Three "Quality of Service" provided:

Level 0: "At most once", the message is delivered
according to the best efforts of the underlying TCP/IP
network. A response is not expected and no retry

sgcWebSockets 3.4

110

semantics are defined in the protocol. The message

arrives at the server either once or not at all.

Level 1: "At least once", the receipt of a message by
the server is acknowledged by an ACKNOWLEDGMENT
message. If there is an identified failure of either the
communications link or the sending device, or the
acknowledgement message is not received after a
specified period of time, the sender resends the
message. The message arrives at the server at least
once. A message with QoS level 1 has an ID param in
the message.

Level 2: "Exactly once", where message are assured to
arrive exactly once. This level could be used, for
example, with billing systems where duplicate or lost
messages could lead to incorrect charges being applied.
If there is an identified failure of either the
communications link or the sending device, or the
acknowledgement message is not received after a
specified period of time, the sender resends the
message.

 Subscriptions: returns a list of active subscriptions.

Components

111

TsgcIWWSPClient_sgc

This is Intraweb Client Protocol Default Component, you
need to drop this component in the form and select a
TsgcIWWebSocketClient Component using Client Property.

Methods
 WriteData: sends a message to a server. If you need to
send a message to a custom TsgcWSProtocol_Server_sgc,
use "Guid" Argument. If you need to send a message to a
single channel, use "Channel" Argument.

 Subscribe: subscribe client to a custom channel. If client
is subscribed, OnSubscription event will be fired.

 Unsubscribe: unsubscribe client to a custom channel. If
client is unsubscribed, OnUnsubscription event will be fired.

sgcWebSockets 3.4

112

Protocol Default Javascript

Default Protocol Javascript sgcWebSockets uses
sgcWebSocket.js and esegece.com.js files.

Here you can find available methods, you need to replace
{%host%} and {%port%} variables as needed, example: if
you have configured your sgcWebSocket server to listen
port 80 on www.example.com website you need to
configure:

<script

src="http://www.example.com:80/sgcWebSockets.js"><

/script>

<script

src="http://www.example.com:80/esegece.com.js"></s

cript>

Open Connection
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

</script>

Send Message
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

Components

113

 socket.send('Hello sgcWebSockets!');

</script>

Show Alert with Message Received
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcmessage', function(event)

 {

 alert(event.message);

 }

</script>

Publish Message to test channel
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.publish('Hello sgcWebSockets!', 'test');

</script>

Show Alert with Event Message Received
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcevent', function(event)

 {

sgcWebSockets 3.4

114

 alert('channel:' + event.channel + '. message:

' + event.message);

 }

</script>

Call RPC
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 var params = {param:10};

 socket.rpc(GUID(), 'test',

JSON.stringify(params));

</script>

Handle RPC Response
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcrpcresult', function(event)

 {

 alert('result:' + event.result);

 }

 socket.on('sgcrpcerror', function(event)

 {

 alert('error:' + event.code + ' ' +

event.message);

 }

</script>

Call Notify

Components

115

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 var params = {param:10};

 socket.notify('test', JSON.stringify(params));

</script>

Send Messages in a Transaction
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.starttransaction('sgc:test');

 socket.publish('Message1', 'sgc:test');

 socket.publish('Message2', 'sgc:test');

 socket.publish('Message3', 'sgc:test');

 socket.commit('sgc:test');

</script>

Show Alert OnSubscribe or OnUnSubscribe to a channel
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcsubscribe', function(event)

 {

 alert('subscribed: ' + event.channel);

sgcWebSockets 3.4

116

 }

 socket.on('sgcunsubscribe', function(event)

 {

 alert('unsubscribed: ' + event.channel);

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Get Session
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcsession', function(event)

 {

 alert(event.guid);

Components

117

 };

 socket.getsession();

</script>

Close Connection
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 socket.close();

</script>

Get Connection Status
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.state();

</script>

Set QoS
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.qoslevel1();

 socket.publish('message', 'channel');

sgcWebSockets 3.4

118

</script>

Set Queue Level
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/esegece.com.js"></sc

ript>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.queuelevel2();

 socket.publish('message1', 'channel1');

 socket.publish('message2', 'channel1');

</script>

Components

119

Dataset

Protocol Dataset

This protocol inherits from Protocol Default and it's useful if
you want to broadcast dataset changes over clients
connected to this protocol.

It uses "JSON-RPC 2.0" Object, and every time there is a
dataset change, it sends all field values (* only fields
supported) using Dataset Object.

To allow component to search records on dataset, you need
to specify which fields are the Key, example: if in your
dataset, ID field is the key you will need to write a code like
this

procedure OnAfterOpenDataSet(DataSet:

TDataSet);

begin

 DataSet.FieldByName('ID').ProviderFlags :=

 Dataset.FieldByName('ID').ProviderFlags +

[pfInKey];

end;

Components
 TsgcWSPServer_Dataset: Server Protocol Dataset VCL
Component.

 TsgcWSPClient_Dataset: Client Protocol Dataset VCL
Component.

 Javascript Component: Client Javascript Reference.

Browser Test
If you want to test this protocol with your favorite
WebBrowser, please type this url (you need to define your
custom host and port)

sgcWebSockets 3.4

120

 http://host:port/dataset.esegece.com.html

Components

121

TsgcWSPServer_Dataset

This is Server Protocol Dataset Component, you need to
drop this component in the form and select a
TsgcWebSocketServer Component using Server Property
and select a Dataset Component using Dataset Property.

This component inherits from TsgcWSProtocol_Server_sgc
all methods and properties.
Properties
 ApplyUpdates: if enabled, every time server receives a
dataset update from client, it will be saved on server side.

 NotifyUpdates: if enabled, every time dataset server
changes, server broadcasts this change to all connected
clients.

 AutoEscapeText: if enabled (disabled by default),
automatically escape/unescape characters inside field
values like "{", "["...

 AutoSynchronize: if enabled, every time a client
connects to server, server will sent metadata and all

dataset records to client.

 UpdateMode: if umWhereAll (by default) all fields are
broadcasted to clients, if umWhereChanged only Fields that
have changed will be broadcasted to connected clients.

Events
 These events are specific on dataset protocol.

 OnAfterDeleteRecord: event fired after a record is
deleted from Dataset.

 OnAfterNewRecord: event fired after a record is created
on Dataset.

sgcWebSockets 3.4

122

 OnAfterUpdateRecord: event fired after a record is

updated on Dataset.

 OnBeforeDeleteRecord: event fired before a record is
deleted from Dataset. If Argument "Handled" is True,
means that user handles this event and if won't be deleted
(by default this argument is False)

 OnBeforeNewRecord: event fired before a record is
created on Dataset. If Argument "Handled" is True, means
that user handles this event and if won't be inserted (by
default this argument is False)

 OnBeforeUpdateRecord: event fired before a record is
updated on Dataset. If Argument "Handled" is True, means
that user handles this event and if won't be updated (by
default this argument is False)

Components

123

TsgcWSPClient_Dataset

This is Client Protocol Dataset Component, you need to
drop this component in the form and select a
TsgcWebSocketClient Component using Client Property and
select a Dataset Component using Dataset Property.

This component inherits from TsgcWSProtocol_Client_sgc
all methods and properties.

Methods
 Subscribe_all: subscribe to all available channels

new: fired on new dataset record.
update: fired on post dataset record.
delete: fired on delete dataset record.

 Synchronize: requests all dataset records from server

 GetMetaData: requests all dataset fields from server

Events
 These events are specific on dataset protocol.

 OnAfterDeleteRecord: event fired after a record is
deleted from Dataset.

 OnAfterNewRecord: event fired after a record is created
on Dataset.

 OnAfterUpdateRecord: event fired after a record is
updated on Dataset.

 OnAfterSynchronize: event fired after a synchronization
has ended.

 OnBeforeDeleteRecord: event fired before a record is
deleted from Dataset. If Argument "Handled" is True,

sgcWebSockets 3.4

124

means that user handles this event and if won't be deleted

(by default this argument is False)

 OnBeforeNewRecord: event fired before a record is
created on Dataset. If Argument "Handled" is True, means
that user handles this event and if won't be inserted (by
default this argument is False)

 OnBeforeUpdateRecord: event fired before a record is
updated on Dataset. If Argument "Handled" is True, means
that user handles this event and if won't be updated (by
default this argument is False)

 OnBeforeSynchronization: event fired before a
synchronization starts.

 OnMetaData: event fired after a GetMetaData request.
Example:

procedure OnMetaData(Connection:

 TsgcWSConnection; const JSON:

TsgcObjectJSON);

var

 i: integer;

 vFieldName, vDataType: string;

 vDataSize: Integer;

 vKeyField: Boolean;

begin

 for i:= 0 to JSON.Count -1 do

 begin

 vFieldName :=

JSON.Item[i].Node['fieldname'].Value;

 vDataType :=

JSON.Item[i].Node['datatype'].Value;

 vDataSize :=

JSON.Item[i].Node['datasize'].Value;

 vKeyField :=

JSON.Item[i].Node['keyfield'].Value;

 end;

end;

Components

125

Properties
 AutoSubscribe: enabled by default, if True, client
subscribes to all available channels after successful
connection.

 ApplyUpdates: if enabled, every time client receives a
dataset update from server, it will be saved on client side.

 AutoEscapeText: if enabled (disabled by default),
automatically escape/unescape characters inside field
values like "{", "["...

 NotifyUpdates: if enabled, every time dataset client
changes, is sends a message to server notifying this
change.

 UpdateMode: if umWhereAll (by default) all fields are
transmitted to server, if umWhereChanged only Fields that
have changed will be transmitted to server.

sgcWebSockets 3.4

126

TsgcIWWSPClient_Dataset

This is Intraweb Client Protocol Dataset Component, you
need to drop this component in the form and select a
TsgcIWWebSocketClient Component using Client Property
and select a Dataset Component using Dataset Property.

This component inherits from TsgcIWWSPClient_sgc all
methods and properties.

Methods
 Subscribe_New: fired on new dataset record
 Subscribe_Update: fired on post dataset record
 Subscribe_Delete: fired on delete dataset record

Components

127

Protocol Dataset Javascript

Dataset Protocol Javascript sgcWebSockets uses
sgcWebSocket.js and dataset.esegece.com.js files.

Here you can find available methods, you need to replace
{%host%} and {%port%} variables as needed, example: if
you have configured your sgcWebSocket server to listen
port 80 on www.example.com website you need to
configure:

<script

src="http://www.example.com:80/sgcWebSockets.js"><

/script>

<script

src="http://www.example.com:80/dataset.esegece.com

.js"></script>

Open Connection
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 var socket = new

sgcws_dataset('ws://{%host%}:{%port%}');

</script>

Send Message
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 var socket = new

sgcws_dataset('ws://{%host%}:{%port%}');

 socket.send('Hello sgcWebSockets!');

sgcWebSockets 3.4

128

</script>

Show Alert with Message Received
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcdataset', function(event)

 {

 alert(event.dataset);

 }

</script>

Show Alert with Dataset Received
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 var socket = new

sgcws_dataset('ws://{%host%}:{%port%}');

 socket.on('sgcmessage', function(event)

 {

 alert(event.message);

 }

</script>

Show Alert OnSubscribe or OnUnSubscribe to a channel
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

Components

129

 var socket = new

sgcws_dataset('ws://{%host%}:{%port%}');

 socket.on('sgcsubscribe', function(event)

 {

 alert('subscribed: ' + event.channel);

 }

 socket.on('sgcunsubscribe', function(event)

 {

 alert('unsubscribed: ' + event.channel);

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 var socket = new

sgcws_dataset('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Subscribe All Dataset Changes
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

sgcWebSockets 3.4

130

 socket.subscribe_all();

</script>

UnSubscribe All Dataset Changes
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 socket.unsubscribe_all();

</script>

Handle Dataset Changes
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

var socket = new

sgcws_dataset('ws://{%host%}:{%port%}');

socket.on('sgcdataset', function(evt){

if ((evt.channel == "sgc@dataset@new") ||

(evt.channel == "sgc@dataset@update")) {

... here you need to implement your own

code insert/update records ...

}

else if (evt.channel ==

"sgc@dataset@delete") {

... here you need to implement your own

code to delete records ...

}

});

</script>

Components

131

Close Connection
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 socket.close();

</script>

Get Connection Status
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/dataset.esegece.com.

js"></script>

<script>

 socket.state();

</script>

sgcWebSockets 3.4

132

Files

Protocol Files

This protocol allows to send files using binary websocket
transport. It can handle big files with a low memory usage.

Features

 Publish/subscribe message pattern to provide
one-to-many message distribution and decoupling of
applications.

 Acknowledgment of messages sent.

 Implements QoS (Quality of Service) for file delivery.
 Optionally can request Authorization for files

received.
 Low memory usage.

Components
 TsgcWSPServer_Files: Server Protocol Files VCL
Component.

 TsgcWSPClient_Files: Client Protocol Files VCL
Component.

Classes
 TsgcWSMessageFile: object which encapsulates file packet
information.

Components

133

TsgcWSPServer_Files

This is Server Files Protocol Component, you need to drop
this component in the form and select a
TsgcWebSocketServer Component using Server Property.

Methods
 SendFile: sends a file to a client, you can set the
following parameters

aSize: size of every packet in bytes.
aData: user custom data, here you can write any text
you think is useful for client.
aChannel: if you only want to send data to all clients
subscribed to this channel.
aQoS: type of quality of service.

 BroadcastFile: sends a file to all connected clients. You
can set several parameters:

aSize: size of every packet in bytes.
aData: user custom data, here you can write any text
you think is useful for client.
aChannel: if you only want to send data to all clients
subscribed to this channel.

aExclude: connection guids separated by comma,
which you don't want to send this file.
aInclude: connection guids separated by comma,
which you want to send this file.
aQoS: type of quality of service.

Properties
 Files: files properties.

 BufferSize: default size of every packet sent, in bytes.

 SaveDirectory: directory where all files will be stored.

 QoS: quality of service

sgcWebSockets 3.4

134

 Interval: interval to check if a qosLevel2 message

has been sent.

 Level: level of quality of service.

qosLevel0: message is sent.

qosLevel1: message is sent and you get an
acknowledgment if message has been processed.

qosLevel2: message is sent, you get an
acknowledgment if message has been processed

and packets are requested by receiver.

 Timeout: maximum wait time.

Events
 OnFileBeforeSent: fired before a file is sent. You can
use this event to check file data before is sent.

 OnFileReceived: fired when a file is successfully

received.

 OnFileReceivedAuthorization: fired to check if file can
be received.

 OnFileReceivedError: fired when an error occurs
receiving a file.

 OnFileReceivedFragment: fired when a fragment file is
received. Useful to show a progress.

 OnFileSent: fired when a file is successfully sent.

 OnFileSentAcknowledgment: fired when a fragment is
sent and receiver has processed.

 OnFileSentError: fired when an error occurs sending a
file.

Components

135

 OnFileSentFragment: fired when a fragment file is
sent. Useful to show a progress.

sgcWebSockets 3.4

136

TsgcWSPClient_Files

This is Server Files Protocol Component, you need to drop
this component in the form and select a
TsgcWebSocketClient Component using Client Property.

Methods
 SendFile: sends a file to server, you can set the
following parameters

aSize: size of every packet in bytes.
aData: user custom data, here you can write any text
you think is useful for server.
aQoS: type of quality of service.

Properties
 Files: files properties

 BufferSize: default size of every packet sent, in bytes.

 SaveDirectory: directory where all files will be stored.

 QoS: quality of service

 Interval: interval to check if a qosLevel2 message
has been sent.

 Level: level of quality of service.

qosLevel0: message is sent.

qosLevel1: message is sent and you get an
acknowledgment if message has been processed.

qosLevel2: message is sent, you get an
acknowledgment if message has been processed
and packets are requested by receiver.

 Timeout: maximum wait time.

Components

137

Events
 OnFileBeforeSent: fired before a file is sent. You can
use this event to check file data before is sent.

 OnFileReceived: fired when a file is successfully
received.

 OnFileReceivedAuthorization: fired to check if file can
be received.

 OnFileReceivedError: fired when an error occurs
receiving a file.

 OnFileReceivedFragment: fired when a fragment file is
received. Useful to show a progress.

 OnFileSent: fired when a file is successfully sent.

 OnFileSentAcknowledgment: fired when a fragment is
sent and receiver has processed.

 OnFileSentError: fired when an error occurs sending a
file.

 OnFileSentFragment: fired when a fragment file is
sent. Useful to show a progress.

sgcWebSockets 3.4

138

TsgcWSMessageFile

This object is passed as a parameter every time a file
protocol event is raised.

Properties

 BufferSize: default size of packet.
 Channel: if specified, this file only will be sent to
clients subscribed to specific channel.
 Method: internal method.
 FileId: identifier of a file, is unique for all files
received / sent.
 Data: user custom data. Here user can set
whatever text.
 FileName: name of file.
 FilePosition: file position in bytes.
 FileSize: Total file size in bytes.
 Id: identifier of a packet, is unique for every
packet.
 QoS: quality of service of message.
 Streaming: for internal use.
 Text: for internal use.

Components

139

WebRTC

Protocol WebRTC

WebRTC (Web Real-Time Communication) is an API
definition being drafted by the World Wide Web Consortium
(W3C) to enable browser to browser applications for voice
calling, video chat and P2P file sharing without plugins.The
RTC in WebRTC stands for Real-Time Communications,
technology that enables audio/video streaming and data
sharing between browser clients (peers). As a set of
standards, WebRTC provides any browser with the ability to

share application data and perform teleconferencing peer to
peer, without the need to install plug-ins or third-party
software.

WebRTC components are accessed with JavaScript APIs.
Currently in development are the Network Stream API,
which represents an audio or video data stream, and the
PeerConnection API, which allows two or more users to
communicate browser-to-browser. Also under development
is a DataChannel API that enables communication of other
types of data for real-time gaming, text chat, file transfer,

and so forth.

Components
 TsgcWSPServer_WebRTC: Server Protocol WebRTC VCL
Component.

Browser Test
If you want to test this protocol with your favorite
WebBrowser, please type this url (you need to define your
custom host and port)

 http://host:port/webrtc.esegece.com.html

sgcWebSockets 3.4

140

TsgcWSPServer_WebRTC

This is Server Protocol WebRTC Component, you need to
drop this component in the form and select a
TsgcWebSocketServer Component using Server Property.

There is no need to configure any parameter.

Components

141

Protocol WebRTC Javascript

Here you can find available methods, you need to replace
{%host%} and {%port%} variables as needed, example: if
you have configured your sgcWebSocket server to listen
port 80 on www.example.com website you need to
configure:

<script

src="http://www.example.com:80/sgcWebSockets.js"><

/script>

<script

src="http://www.example.com:80/webrtc.esegece.com.

js"></script>

Open Connection
When a websocket connection is opened, browser request
access to local camera and microphone, you need to allow
access.

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/webrtc.esegece.com.j

s"></script>

<script>

 var socket = new

sgcws_webrtc('ws://{%host%}:{%port%}');

</script>

Open WebRTC Channel

When a browser has accessed to local camera and
microphone, 'sgcmediastart' event is fired and then you can
try to connect to another client using webrtc_connect
procedure

sgcWebSockets 3.4

142

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/webrtc.esegece.com.j

s"></script>

<script>

 var socket = new

sgcws_webrtc('ws://{%host%}:{%port%}');

 socket.on('sgcmediastart', function(event)

 {

 socket.webrtc_connect('custom channel');

 }

</script>

Close WebRTC channel
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/webrtc.esegece.com.j

s"></script>

<script>

 socket.webrtc_disconnect('custom channel');

</script>

Components

143

WAMP

Protocol WAMP

WAMP is an open WebSocket subprotocol that provides two
asynchronous messaging patterns: RPC and PubSub.

Technically, WAMP is an officially registered WebSocket
subprotocol (runs on top of WebSocket) that uses JSON as
message serialization format.

What is RPC?

Remote Procedure Call (RPC) is a messaging pattern
involving peers to two roles: client and server.
A server provides methods or procedure to call under well
known endpoints.
A client calls remote methods or procedures by providing
the method or procedure endpoint and any arguments for
the call.
The server will execute the method or procedure using the
supplied arguments to the call and return the result of the
call to the client.

What is PubSub?

Publish & Subscribe (PubSub) is a messaging pattern
involving peers of three roles: publisher, subscriber and
broker.
A publisher sends (publishes) an event by providing a topic
(aka channel) as the abstract address, not a specific peer.
A subscriber receives events by first providing topics (aka
channels) he is interested. Subsequently, the subscriber will
receive any events publishes to that topic.

The broker sits between publishers and subscribers and
mediates messages publishes to subscribers. A broker will
maintain lists of subscribers per topic so it can dispatch
new published events to the appropriate subscribers.
A broker may also dispatch events on it's own, for example
when the broker also acts as an RPC server and a method
executed on the server should trigger a PubSub event.

sgcWebSockets 3.4

144

In summary, PubSub decouples publishers and receivers

via an intermediary, the broker.

Components
 TsgcWSPServer_WAMP: Server Protocol WAMP VCL
Component.

 TsgcWSPClient_WAMP: Client Protocol WAMP VCL
Component.

 Javascript Component: Client Javascript Reference.

Browser Test
If you want to test this protocol with your favorite
WebBrowser, please type this url (you need to define your
custom host and port)

 http://host:port/wamp.esegece.com.html

Components

145

TsgcWSPServer_WAMP

This is Server Protocol WAMP Component, you need to drop
this component in the form and select a
TsgcWebSocketServer Component using Server Property.

Methods
 CallResult: When the execution of the remote procedure
finishes successfully, the server responds by sending a
message with result.

 CallId: this is the ID generated by client when
request a call to a procedure
 Result: is the result, can be a number, a JSON
object...

 CallError: When the remote procedure call could not be
executed, an error or exception occurred during the
execution or the execution of the remote procedure finishes
unsuccessfully for any other reason, the server responds by
sending a message with error details.

 CallId: this is the ID generated by client when

request a call to a procedure
 ErrorURI: identifies the error.
 ErrorDesc: error description.
 ErrorDetails: application error details, is
optional.

 Event: Subscribers receive PubSub events published by
subscribers via the EVENT message.

 TopicURI: channel name where is subscribed.

 Event: message text.

Events

sgcWebSockets 3.4

146

 OnCall: event fired when server receives RPC called by

client

 CallId: this is the ID generated by client when
request a call to a procedure
 ProcUri: procedure identifier...
 Arguments: procedure params, can be a
integer, a JSON object, a list...

 OnPrefix: Procedures and Errors are identified using URIs
or CURIEs, this event is fired when a client sends a new
prefix

 Prefix: compact URI expression.
 URI: full URI.

Components

147

TsgcWSPClient_WAMP

This is Client Protocol WAMP Component, you need to drop
this component in the form and select a
TsgcWebSocketClient Component using Client Property.

Methods
 Prefix: Procedures and Errors are identified using URIs or
CURIEs, client uses this method to send a new prefix.

 aPrefix: compact URI expression.
 aURI: full URI.

 Subscribe: A client requests access to a valid topicURI
(or CURIE from Prefix) to receive events published to the
given topicURI. The request is asynchronous, the server will
not return an acknowledgement of the subscription.

 aTopicURI: channel name.

 UnSubscribe: Calling unsubscribe on a topicURI informs
the server to stop delivering messages to the client

previously subscribed to that topicURI.

 aTopicURI: channel name.

 Call: sent by client when requests a Remote Procedure
Call (RPC)

 aCallId: this is the UUID generated by client
 aProcURI: procedure identifier.
 aArguments: procedure params, can be a

integer, a JSON object, a list...

 Publish: The client will send an event to all clients
connected to the server who have subscribed to the
topicURI.

sgcWebSockets 3.4

148

 TopicURI: channel name.
 Event: message text.

Events
 OnWelcome: is the first server-to-client message sent by
a WAMP server

 SessionId: is a string that is randomly generated
by the server and unique to the specific WAMP
session. The sessionId can be used for at least

two situations: 1) specifying lists of excluded or
eligible clients when publishing event and 2) in the
context of performing authentication or
authorization.
 ProtocolVersion: is an integer that gives the
WAMP protocol version the server speaks,
currently it MUST be 1.
 ServerIdent: is a string the server may use to
disclose it's version, software, platform or identity.

 OnCallError: event fired when the remote procedure call
could not be executed, an error or exception occurred
during the execution or the execution of the remote
procedure finishes unsuccessfully for any other reason, the
server responds by sending a message with error details

 CallId: this is the ID generated by client when
request a call to a procedure
 ErrorURI: identifies the error.
 ErrorDesc: error description.
 ErrorDetails: application error details, is
optional.

 OnCallResult: event fired when the execution of the
remote procedure finishes successfully, the server responds
by sending a message with result.

Components

149

 CallId: this is the ID generated by client when

request a call to a procedure
 Result: is the result, can be a number, a JSON
object...

 OnEvent: event fired when client receive PubSub events
published by subscribers via the EVENT message.

 TopicURI: channel name where is subscribed.
 Event: message text.

sgcWebSockets 3.4

150

Protocol WAMP Javascript

Here you can find available methods, you need to replace
{%host%} and {%port%} variables as needed, example: if
you have configured your sgcWebSocket server to listen
port 80 on www.example.com website you need to
configure:

<script

src="http://www.example.com:80/sgcWebSockets.js"><

/script>

<script

src="http://www.example.com:80/wamp.esegece.com.js

"></script>

Open Connection
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

</script>

Send New Prefix
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.prefix('sgc', 'http://www.esegece.com');

</script>

Components

151

Request RPC (Remote Procedure Call)
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.call('', 'sgc:CallTest', '20')

</script>

Subscribe to a TopicURI
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.subscribe('sgc:test)

</script>

UnSubscribe to a TopicURI
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.unsubscribe('sgc:test)

</script>

Publish message

sgcWebSockets 3.4

152

<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.publish('sgc:channel', 'Test Message',

[], []);

</script>

Show Alert with Message Received
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcmessage', function(event)

 {

 alert(event.message);

 }

</script>

Show Alert OnCallResult or OnCallError
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.on('wampcallresult', function(event)

 {

 alert('call result: ' + event.CallId + ' - ' +

event.CallResult);

 }

Components

153

 socket.on('wampcallerror', function(event)

 {

 alert('call error: ' + event.CallId + ' - ' +

event.ErrorURI + ' - ' + event.ErrorDesc + ' - ' +

event.ErrorDetails);

 }

</script>

Show Alert OnEvent
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.on('wampevent', function(event)

 {

 alert('call result: ' + event.TopicURI + ' - '

+ event.Event);

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 var socket = new

sgcws_wamp('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

sgcWebSockets 3.4

154

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Close Connection
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 socket.close();

</script>

Get Connection Status
<script

src="http://{%host%}:{%port%}/sgcWebSockets.js"></

script>

<script

src="http://{%host%}:{%port%}/wamp.esegece.com.js"

></script>

<script>

 socket.state();

</script>

Components

155

Extensions

Extensions

WebSocket protocol is designed to be extended. WebSocket
Clients may request extensions and WebSocket Servers
may accept some or all extensions requested by clients.

Extensions supported:

1. Deflate-Frame: compress websocket frames.

2. PerMessage-Deflate: compress websocket messages.

sgcWebSockets 3.4

156

Extensions | PerMessage-Deflate

PerMessage is a WebSocket protocol extension, if the
extension is supported by Server and Client, both can
compress transmitted messages:

 Uses Deflate as compression method.
 Compression only applies to Application data
(control frames and headers are not affected).
 Server and client can select which messages will
be compressed.

Max Window Bits

This extension allows to customize Server and Client size of
sliding window used by LZ77 algorithm (between 8 - 15).
As greater is this value, more probably will find and
eliminate duplicates but consumes more memory and cpu
cycles. 15 is default value.

No Context Take Over

By default, previous messages are used to compression and
decompression, if messages are similar, this improves the
compression ratio. If Enabled, then each message is
compressed using only its message data. By default is
disabled.

MemLevel

This value is not negotiated between Server and Client.

when set to 1, it uses the least memory, but slows down
the compression algorithm and reduces the compression
ratio; when set to 9, it uses the most memory and delivers
the best performance. By default is set to 1.

Components

157

* Indy version provided with Rad Studio XE2 raises an exception because zlib

version mismatch with initialization functions, to fix this, just update your Indy

version to latest.

sgcWebSockets 3.4

158

Extensions | Deflate-Frame

Is a WebSocket protocol extension which allows the
compression of frames sent using WebSocket protocol,
supported by webkit browsers like chrome or safari. This
extension is supported on Server and Client Components.

This extension has been deprecated.

* Indy version provided with Rad Studio XE2 raises an exception because zlib

version mismatch with initialization functions, to fix this, just update your Indy

version to latest.

159

Library

Library

DLL
The sgcWebSockets.dll will need to be on any machine that
your program will run on. It needs to be in the path.
Typically, you would install it in the same directory as your
executable, or in the C:\Windows\System32 or
C:\Windows\SysWOW64 directory.

sgcWebsockets.dll is located inside Lib Directory:

Win32: dll for Windows 32bits.
Win64: dll for Windows 64bits.

Delphi
Include the files sgcWebSocketLib.pas,
sgcWebSocketLib_Types.pas and
sgcWebSocketLib_Const.pas in your project. These files are
Pascal import units which defines all of the sgcWebSocket
methods and events defined.

Add sgcWebSocketLib to your uses clauses.

Example of use: open a new websocket client connection to
host '127.0.0.1' and port 8080.

sgcWebSocketLib.Instance.Client_Initialize('127

.0.0.1', 8080);

sgcWebSocketLib.Instance.Client_Start;

QuickStart

C# (C Sharp .NET)
Include the file sgcWebSocketLib.cs in your project. That
file defines all of the sgcWebSocket methods and events
defined.

sgcWebSockets 3.4

160

Add esegece.sgcWebSockets and
System.Runtime.InteropServices to your uses clauses.

Example of use: open a new websocket client connection to
host '127.0.0.1' and port 8080.

sgcWebSocketLib.Instance.Client_Initialize("127

.0.0.1", 8080);

sgcWebSocketLib.Instance.Client_Start();

QuickStart

Library

161

Library | Build

If you are a registered customer, you can rebuild
sgcWebSockets.dll, to do this, just open sgcWebSockets
project located inside Package directory and recompile the
library.

sgcWebSockets 3.4

162

QuickStart

QuickStart | Library | Delphi

Let's start with a basic example where we need to create a
Client WebSocket.

1. Add sgcWebSocketLib.pas, sgcWebSocketLib_Types.pas
and sgcWebSocketLib_Const.pas to your project.

2. Add sgcWebSocketLib to your uses clauses.

3. Create Methods to handle WebSocket events:

procedure WSClientConnect(const aGuid:

widestring); stdcall;

begin

 // Log('#connected');

end;

procedure WSClientDisconnect(const aGuid:

widestring; const Code: Integer);

 stdcall;

begin

 // Log('#disconnected (' + IntToStr(Code) +

')');

end;

procedure WSClientError(const aGuid, Error:

widestring); stdcall;

begin

 // Log('#error: ' + Error);

end;

procedure WSClientMessage(const aGuid, Text:

widestring); stdcall;

begin

 // Log(Text);

end;

4. Register event methods:

Library

163

sgcWebSocketLib.Instance.Client_OnConnect(WSCli

entConnect);

sgcWebSocketLib.Instance.Client_OnDisconnect(WS

ClientDisconnect);

sgcWebSocketLib.Instance.Client_OnError(WSClien

tError);

sgcWebSocketLib.Instance.Client_OnMessage(WSCli

entMessage);

5. Start a new WebSocket connection (Host is 127.0.0.1
and Port 80):

sgcWebSocketLib.Instance.Client_Initialize('127

.0.0.1', 80);

sgcWebSocketLib.Instance.Client_Start;

6. Send a message to Server:

sgcWebSocketLib.Instance.Client_WriteData('Hell

o World');

7. Stop WebSocket connection:

sgcWebSocketLib.Instance.Client_Stop;

sgcWebSockets 3.4

164

QuickStart | Library | C#

Let's start with a basic example where we need to create a
Client WebSocket.

1. Add sgcWebSocketLib.cs to your project.

2. Add esegece.sgcWebSockets and
System.Runtime.InteropServices to your uses clauses.

3. Create Methods to handle WebSocket events:

private void

OnConnectEvent([MarshalAs(UnmanagedType.LPWStr)

] string ID)

{

 // Log("#connected: " + ID);

}

private void

OnDisconnectEvent([MarshalAs(UnmanagedType.LPWS

tr)] string ID, int aCode)

{

 // Log("#disconnected: " + ID);

}

private void

OnMessageEvent([MarshalAs(UnmanagedType.LPWStr)

] string ID, [MarshalAs(UnmanagedType.LPWStr)]

string aText)

{

 // Log(ID + ":" + aText);

}

private void

OnError([MarshalAs(UnmanagedType.LPWStr)]

string ID, [MarshalAs(UnmanagedType.LPWStr)]

string aError)

{

 // Log("#error: " + aError);

}

Library

165

4. Register event methods:

sgcWebSocketLib.Instance.Client_OnConnect(OnCon

nectEvent);

sgcWebSocketLib.Instance.Client_OnDisconnect(On

DisconnectEvent);

sgcWebSocketLib.Instance.Client_OnError(OnError

);

sgcWebSocketLib.Instance.Client_OnMessage(OnMes

sageEvent);

5. Start a new WebSocket connection (Host is 127.0.0.1
and Port 80:

sgcWebSocketLib.Instance.Client_Initialize('127

.0.0.1', 80);

sgcWebSocketLib.Instance.Client_Start();

6. Send a message to Server:

sgcWebSocketLib.Instance.Client_WriteData('Hell

o World');

7. Stop WebSocket connection:

sgcWebSocketLib.Instance.Client_Stop();

sgcWebSockets 3.4

166

Client

Library | Client

Create WebSocket Clients to connect to WebSocket
Servers. Library client is based on VCL WebSocket Client,
more info.

Methods

 Client_Create(aID: WideString = '')

Creates a new websocket client. aID parameter is used
if you want to create multiple instances of a client.

 Client_Clear(aID: WideString = '')

Destroys an existing websocket client.

 Client_Initialize(aHost: WideString = '127.0.0.1';

aPort: Integer = 80;
 aID: WideString = '')

This method needs to be called before a new
connection is started. You can define which is the
Server Host and Port where you want to connect.

 Client_Finalize

Used internally to delete all clients created.

 Client_Start(aID: WideString = '')

Starts a new websocket connection.

 Client_Stop(aID: WideString = '')

Stops a websocket connection.

Library

167

 Client_LoadOptions(aOptions: WideString; aID:
WideString = '')

Load websocket client options from a string.

 Client_WriteData(aText: WideString; aID:
WideString = '')

Sends a Text message.

 Client_WriteData(aStream: TMemoryStream; aID:

WideString = '')

Sends a Binary Message.

Events

 Client_OnConnect(aOnConnect:
TsgcWSClient_OnConnect;
 aID: WideString = '')

Event raised when a new websocket connection is
opened.

 Client_OnDisconnect(aOnDisconnect:
TsgcWSClient_OnDisconnect;
 aID: WideString = '')

Event raised when a websocket connection is closed.

 Client_OnMessage(aOnMessage:

TsgcWSClient_OnMessage;
 aID: WideString = '')

Event raised when client receives a new text message
from server.

sgcWebSockets 3.4

168

 Client_OnBinary(aOnBinary:

TsgcWSClient_OnBinary;
 aID: WideString = '')

Event raised when client receives a new Binary
message from server.

 Client_OnError(aOnError: TsgcWSClient_OnError;
aID: WideString = '')

Event raised when there is any error on websocket
connection.

Types

 TsgcWSClient_OnConnect = procedure(const aGuid:
WideString);
 TsgcWSClient_OnMessage = procedure(const aGuid:
WideString; const aText: WideString);
 TsgcWSClient_OnBinary = procedure(const aGuid:
WideString;

 const aStream: TMemoryStream);
 TsgcWSClient_OnDisconnect = procedure(const aGuid:
WideString;
 const aCode: Integer);
 TsgcWSClient_OnError = procedure(const aGuid:
WideString; const aError: WideString);

Library

169

Library Client | SocketIO

Create SocketIO clients to connect to SocketIO WebSocket
Servers. Library client is based on VCL WebSocket SocketIO
Client, more info.

Methods

 Client_SocketIO_Create(aID: WideString = '')

Creates a new websocket client. aID parameter is used
if you want to create multiple instances of a client.

 Client_SocketIO_Clear(aID: WideString = '')

Destroys an existing websocket client.

 Client_SocketIO_Initialize(aHost: WideString =
'127.0.0.1'; aPort: Integer = 80;
 aID: WideString = '')

This method needs to be called before a new
connection is started. You can define which is the
Server Host and Port where you want to connect.

 Client_SocketIO_Finalize

Used internally to delete all clients created.

 Client_SocketIO_Start(aID: WideString = '')

Starts a new websocket connection.

 Client_SocketIO_Stop(aID: WideString = '')

Stops a websocket connection.

sgcWebSockets 3.4

170

 Client_SocketIO_LoadOptions(aOptions:

WideString; aID: WideString = '')

Load websocket client options from a string.

 Client_SocketIO_WriteData(aText: WideString;
aID: WideString = '')

Sends a Text message.

 Client_SocketIO_WriteData(aStream:
TMemoryStream; aID: WideString = '')

Sends a Binary Message.

 Client_SocketIO_SendDisconnect(aEndPoint:
WideString = ''; aID: WideString =
 '')

Signals disconnection. If no endpoint is specified,
disconnects the entire socket.

 Client_SocketIO_SendConnect(aEndPoint:

WideString = ''; aID: WideString = '')

Only used for multiple sockets. Signals a connection to
the endpoint. Once the server receives it, it's echoed
back to the client.

 Client_SocketIO_SendHeartBeat(aID: WideString
= '')

Sends a heartbeat. Heartbeats must be sent within the
interval negotiated with the server. It's up to the client

to decide the padding (for example, if the heartbeat
timeout negotiated with the server is 20s, the client
might want to send a heartbeat evert 15s).

 Client_SocketIO_SendTextMessage(aText,
aMessageId, aEndPoint: string;
 aID: WideString = '')

Library

171

Sends a Text message.

 Client_SocketIO_SendJSONMessage(aJSON,
aMessageId, aEndPoint: string;
 aID: WideString = '')

Sends a JSON encoded message.

 Client_SocketIO_SendEvent(aEventName,
aEventArgs, aMessageId,
 aEndPoint: string; aID: WideString = '')

An event is like a json message, but has mandatory
name and args fields. name is a string and args an
array.
The event names: 'message', 'connect', 'disconnect',
'open', 'close', 'error', 'retry', 'reconnect' are reserved,
and cannot be used by clients or servers with this
message type.

 Client_SocketIO_SendACK(aMessage, aData:
WideString; aID: WideString = '')

An acknowledgment contains the message id as the
message data. If a + sign follows the message id, it's
treated as an event message packet.

 Client_SocketIO_SendError(aReason, aAdvice,
aEndPoint: WideString; aID:
 WideString = '')

For example, if a connection to a sub-socket is
unauthorized.

 Client_SocketIO_SendNoop(aID: WideString = '')

No operation. Used for example to close a poll after the
polling duration times out.

sgcWebSockets 3.4

172

Events

 Client_SocketIO_OnConnect(aOnConnect:
TsgcWSClient_OnConnect;
 aID: WideString = '')

Event raised when a new websocket connection is
opened.

 Client_SocketIO_OnDisconnect(aOnDisconnect:
TsgcWSClient_OnDisconnect;
 aID: WideString = '')

Event raised when a websocket connection is closed.

 Client_SocketIO_OnMessage(aOnMessage:
TsgcWSClient_OnMessage;
 aID: WideString = '')

Event raised when client receives a new text message
from server.

 Client_SocketIO_OnBinary(aOnBinary:

TsgcWSClient_OnBinary;
 aID: WideString = '')

Event raised when client receives a new Binary
message from server.

 Client_SocketIO_OnError(aOnError:
TsgcWSClient_OnError; aID: WideString = '')

Event raised when there is any error on websocket
connection.

These events are only raised if "RawMessages"
property is disabled.

Library

173

 Client_SocketIO_OnMessageDisconnect(aOnMessa

geDisconnect:
 TsgcWSClient_SocketIO_OnMessageDisconnect;
aID: WideString = '')

Event raised when a client receives a Disconnect
message.

 Client_SocketIO_OnMessageConnect(aOnMessage
Connect:
 TsgcWSClient_SocketIO_OnMessageConnect;
aID: WideString = '')

Event raised when a client receives a Connect
message.

 Client_SocketIO_OnMessageHeartBeat(aOnMessag
eHeartBeat:
 TsgcWSClient_SocketIO_OnMessageHeartBeat;
aID: WideString = '')

Event raised when a client receives a HeartBeat
message.

 Client_SocketIO_OnMessageEvent(aOnMessageEve
nt:
 TsgcWSClient_SocketIO_OnMessageEvent; aID:
WideString = '')

Event raised when a client receives an Event Message.

 Client_SocketIO_OnMessageText(aOnMessageText
:
 TsgcWSClient_SocketIO_OnMessageText; aID:

WideString = '')

Event raised when a client receives a Text message.

 Client_SocketIO_OnMessageJSON(aOnMessageJSO
N:

sgcWebSockets 3.4

174

 TsgcWSClient_SocketIO_OnMessageJSON; aID:

WideString = '')

Event raised when a client receives a JSON message.

 Client_SocketIO_OnMessageACK(aOnMessageACK:
 TsgcWSClient_SocketIO_OnMessageACK; aID:
WideString = '')

Event raised when a client receives an
Acknowledgment message.

 Client_SocketIO_OnMessageError(aOnMessageErr
or:
 TsgcWSClient_SocketIO_OnMessageError; aID:
WideString = '')

Event raised when a client receives an Error message.

 Client_SocketIO_OnMessageNoop(aOnMessageNoo
p:
 TsgcWSClient_SocketIO_OnMessageNoop; aID:
WideString = '')

Event raised when a client receives a Noop message.

Types

 TsgcWSClient_OnConnect = procedure(const aGuid:
WideString);
 TsgcWSClient_OnMessage = procedure(const aGuid:

WideString; const aText: WideString);
 TsgcWSClient_OnBinary = procedure(const aGuid:
WideString;
 const aStream: TMemoryStream);
 TsgcWSClient_OnDisconnect = procedure(const aGuid:
WideString;

Library

175

 const aCode: Integer);

 TsgcWSClient_OnError = procedure(const aGuid:
WideString; const aError: WideString);

 TsgcWSClient_SocketIO_OnMessageDisconnect =
procedure(const aGuid: WideString;
 const Text: WideString; var Handled: Boolean) stdcall;
 TsgcWSClient_SocketIO_OnMessageConnect =
procedure(const aGuid: WideString; const
 Text: WideString; const EndPoint: WideString) stdcall;
 TsgcWSClient_SocketIO_OnMessageHeartBeat =
procedure(const aGuid: WideString; const Text:

 WideString; var Handled: Boolean) stdcall;
 TsgcWSClient_SocketIO_OnMessageEvent =
procedure(const aGuid: WideString; const
 Text, MsgId, MsgEndPoint, EventName, EventArgs,
JSON: WideString) stdcall;
 TsgcWSClient_SocketIO_OnMessageText =
procedure(const aGuid: WideString; const
 Text, MsgId, MsgEndPoint, MsgText: WideString)
stdcall;
 TsgcWSClient_SocketIO_OnMessageJSON =
procedure(const aGuid: WideString; const

 Text, MsgId, MsgEndPoint, JSON: WideString) stdcall;
 TsgcWSClient_SocketIO_OnMessageACK =
procedure(const aGuid: WideString; const Text,
 MsgData: WideString) stdcall;
 TsgcWSClient_SocketIO_OnMessageError =
procedure(const aGuid: WideString; const
 Text, MsgEndPoint, MsgError: WideString) stdcall;
 TsgcWSClient_SocketIO_OnMessageNoop =
procedure(const aGuid: WideString; const
 Text: WideString) stdcall;

sgcWebSockets 3.4

176

Library | Client Protocol SGC

Create WebSocket Clients to connect to WebSocket
Servers. Library client is based on VCL WebSocket Client
using protocol SGC, more info.

Methods

 Client_Create(aID: WideString = '')

Creates a new websocket client. aID parameter is used
if you want to create multiple instances of a client.

 Client_Clear(aID: WideString = '')

Destroys an existing websocket client.

 Client_Initialize(aHost: WideString = '127.0.0.1';
aPort: Integer = 80;
 aID: WideString = '')

This method needs to be called before a new
connection is started. You can define which is the
Server Host and Port where you want to connect.

 Client_Finalize

Used internally to delete all clients created.

 Client_Start(aID: WideString = '')

Starts a new websocket connection.

 Client_Stop(aID: WideString = '')

Stops a websocket connection.

Library

177

 Client_LoadOptions(aOptions: WideString; aID:

WideString = '')

Load websocket client options from a string.

 Client_WriteData(aText: WideString; aID:
WideString = '')

Sends a Text message.

 Client_WriteData(aStream: TMemoryStream; aID:
WideString = '')

Sends a Binary Message.

 Client_sgc_Subscribe(aChannel: WideString; aID:
WideString = '')

Subscribe to a new channel.

 Client_sgc_UnSubscribe(aChannel: WideString;
aID: WideString = '')

Unsuscribe from a channel.

 Client_sgc_Broadcast(aText, aChannel:
WideString; aID: WideString = '')

Sends a Text message to all clients connected to an
specified channel.

 Client_sgc_RPC(aIdMethod, aMethod, aParams:
WideString; aID: WideString = '')

Sends a Remote Procedure Call.

 Client_sgc_Notify(aMethod, aParams: WideString;
aID: WideString = '')

Notify a message to server.

sgcWebSockets 3.4

178

 Client_sgc_Publish(aText, aChannel: WideString;

aID: WideString = '')

Sends a Text message to all clients connected to an
specified channel.

 Client_sgc_GetSession(aID: WideString = '')

Requests Session ID from Server.

 Client_sgc_StartTransaction(aChannel: WideString
= ''; aID: WideString = '')

Starts a New Transaction.

 Client_sgc_Commit(aChannel: WideString = '';
aID: WideString = '')

Commits all messages of a Transaction.

 Client_sgc_RollBack(aChannel: WideString = '';
aID: WideString = '')

RollBack all messages of a Transaction.

 Client_sgc_Broker(aID_Broker: WideString = '';
aGUID_Broker:
 WideString = ''; aID: WideString = '')

Connect sgc protocol to a broker.

Events

 Client_sgc_OnConnect(aOnConnect:
TsgcWSClient_OnConnect;
 aID: WideString = '')

Event raised when a new websocket connection is
opened.

Library

179

 Client_sgc_OnDisconnect(aOnDisconnect:
TsgcWSClient_OnDisconnect;
 aID: WideString = '')

Event raised when a websocket connection is closed.

 Client_sgc_OnMessage(aOnMessage:
TsgcWSClient_OnMessage;
 aID: WideString = '')

Event raised when client receives a new text message

from server.

 Client_sgc_OnBinary(aOnBinary:
TsgcWSClient_OnBinary;
 aID: WideString = '')

Event raised when client receives a new Binary
message from server.

 Client_sgc_OnError(aOnError:
TsgcWSClient_OnError; aID: WideString = '')

Event raised when there is any error on websocket
connection.

 Client_sgc_OnSubscription(aOnSubscription:
 TsgcWSP_sgc_OnSubscription; aID: WideString
= '')

Event raised if a new subscription is received from
server.

 Client_sgc_OnUnSubscription(aOnUnSubscription:
 TsgcWSP_sgc_OnUnSubscription; aID:
WideString = '')

Event raised if an unsubscription is received from
server.

sgcWebSockets 3.4

180

 Client_sgc_OnEvent(aOnEvent :

TsgcWSPClient_sgc_OnEvent; aID: WideString
 = '')

Event raised when a new event is received.

 Client_sgc_OnSession(aOnSession :
TsgcWSPClient_sgc_OnSession; aID: WideString
 = '')

Event raised when a Session ID is received from
server.

 Client_sgc_OnAcknowledgment(aOnAcknowledgm
ent : TsgcWSPClient_sgc_OnAcknowledgment; aID:
WideString
 = '')

Event raised when client receives an Acknowledgment
from server that message has been received.

 Client_sgc_OnRPCError(aOnRPCError:
TsgcWSPClient_sgc_OnRPCError; aID:

 WideString = '')

Event raised if server sends an error as response to a
Remote Procedure Call.

 Server_sgc_OnRPCResult(aOnRPCResult :
TsgcWSPClient_sgc_OnRPCResult;
 aID: WideString = '')

Event raised when server sends a response to client
after a Remote Procedure Call.

Types

 TsgcWSClient_OnConnect = procedure(const aGuid:
WideString);

Library

181

 TsgcWSClient_OnMessage = procedure(const aGuid:

WideString; const aText: WideString);
 TsgcWSClient_OnBinary = procedure(const aGuid:
WideString;
 const aStream: TMemoryStream);
 TsgcWSClient_OnDisconnect = procedure(const aGuid:
WideString;
 const aCode: Integer);
 TsgcWSClient_OnError = procedure(const aGuid:
WideString; const aError: WideString);
 TsgcWSP_sgc_OnSubscription = procedure(const aGuid,
aChannel: string);

 TsgcWSP_sgc_OnUnSubscription = procedure(const
aGuid, aChannel: string);
 TsgcWSPClient_sgc_OnRPCResult = procedure(const
aGuid, aId, aResult: string);
 TsgcWSPClient_sgc_OnRPCError = procedure(const aGuid,
aId: string;
 aErrorCode: Integer; const ErrorMessage, ErrorData:
string);
 TsgcWSPClient_sgc_OnEvent = procedure(const aGuid,
aChannel, aText: string);

sgcWebSockets 3.4

182

Server

Library | Server

Create WebSocket Servers. Library server is based on VCL
WebSocket Server, more info.

Methods

 Server_Create(aID: WideString = '')

Creates a new websocket server. aID parameter is
used if you want to create multiple instances of a
server.

 Server_Clear(aID: WideString = '')

Destroys an existing websocket server.

 Server_Initialize(aPort: Integer = 80; aID:

WideString = '')

This method needs to be called before a new
connection is started. You can define which is the Port
to listen client connections.

 Server_Finalize

Used internally to delete all servers created.

 Server_Start(aID: WideString = '')

Starts a server.

 Server_Stop(aID: WideString = '')

Stops a server.

Library

183

 Server_LoadOptions(aOptions: WideString; aID:

WideString = '')

Load websocket server options from a WideString.

 Server_Broadcast(aText: WideString; aID:
WideString = '';
 aExclude: WideString = ''; aInclude: WideString =
'')

Sends a Text message.

 Server_Broadcast(aStream: TMemoryStream; aID:
WideString = '';
 aExclude: WideString = ''; aInclude: WideString =
'')

Sends a Binary message.

Events

 Server_OnConnect(aOnConnect:
TsgcWSServer_OnConnect;
 aID: WideString = '')

Event raised when a new websocket connection is
opened.

 Server_OnDisconnect(aOnDisconnect:
TsgcWSServer_OnDisconnect;

 aID: WideString = '')

Event raised when a websocket connection is closed.

 Server_OnMessage(aOnMessage:
TsgcWSServer_OnMessage;

sgcWebSockets 3.4

184

 aID: WideString = '')

Event raised when server receives a new text message
from client.

 Server_OnBinary(aOnBinary:
TsgcWSServer_OnBinary;
 aID: WideString = '')

Event raised when server receives a new Binary
message from client.

 Server_OnError(aOnError: TsgcWSServer_OnError;
aID: WideString = '')

Event raised when there is any error on a websocket
connection.

 Server_OnAuthentication(aOnAuthentication
 : TsgcWSServer_OnAuthentication; aID:
WideString = '')

Event raised when a client tries to authenticate agains

server.

Types

 TsgcWSServer_OnConnect = procedure(const aGuid:
WideString);
 TsgcWSServer_OnMessage = procedure(const aGuid:
WideString; const aText: WideString);
 TsgcWSServer_OnBinary = procedure(const aGuid:
WideString;

 const aStream: TMemoryStream);
 TsgcWSServer_OnDisconnect = procedure(const aGuid:
WideString;
 const aCode: Integer);
 TsgcWSServer_OnError = procedure(const aGuid:
WideString; const aError: WideString);

Library

185

 TsgcWSServer_OnAuthentication = procedure(const

aGuid: WideString;
 aUser, aPassword: WideString; var Authenticated:
Boolean);

sgcWebSockets 3.4

186

Library | Server Protocol SGC

Create WebSocket Servers. Library server is based on VCL
WebSocket Server using SGC Protocol, more info.

Methods

 Server_Create(aID: WideString = '')

Creates a new websocket server. aID parameter is
used if you want to create multiple instances of a
server.

 Server_Clear(aID: WideString = '')

Destroys an existing websocket server.

 Server_Initialize(aPort: Integer = 80; aID:
WideString = '')

This method needs to be called before a new
connection is started. You can define which is the Port
to listen client connections.

 Server_Finalize

Used internally to delete all servers created.

 Server_Start(aID: WideString = '')

Starts a server.

 Server_Stop(aID: WideString = '')

Stops a server.

 Server_LoadOptions(aOptions: WideString; aID:
WideString = '')

Library

187

Load websocket server options from a WideString.

 Server_Broadcast(aText: WideString; aID:
WideString = '';
 aExclude: WideString = ''; aInclude: WideString =
'')

Sends a Text message.

 Server_Broadcast(aStream: TMemoryStream; aID:
WideString = '';

 aExclude: WideString = ''; aInclude: WideString =
'')

Sends a Binary message.

 Server_sgc_Publish(aMessage, aChannel:
WideString; aExclude: WideString = '';
 aInclude: WideString = ''; aID: WideString = '')

Publish a new message to all clients subscribed to a
custom channel.

 Server_sgc_RPCResult(aIdMethod, aMethod:
WideString;
 aID: WideString = '')

Sends result as response of Remote Procedure Call.

 Server_sgc_RPCError(aIdMethod: WideString;
aCode: Integer;
 aMessage, aData: WideString; aID: WideString =
'')

Sends an error as response of Remote Procedure Call.

Events

sgcWebSockets 3.4

188

 Server_sgc_OnConnect(aOnConnect:
TsgcWSServer_OnConnect;
 aID: WideString = '')

Event raised when a new websocket connection is
opened.

 Server_sgc_OnDisconnect(aOnDisconnect:
TsgcWSServer_OnDisconnect;
 aID: WideString = '')

Event raised when a websocket connection is closed.

 Server_sgc_OnMessage(aOnMessage:
TsgcWSServer_OnMessage;
 aID: WideString = '')

Event raised when server receives a new text message
from client.

 Server_sgc_OnBinary(aOnBinary:
TsgcWSServer_OnBinary;

 aID: WideString = '')

Event raised when server receives a new Binary
message from client.

 Server_sgc_OnError(aOnError:
TsgcWSServer_OnError; aID: WideString = '')

Event raised when there is any error on a websocket
connection.

 Server_sgc_OnSubscription
 (aOnSubscription: TsgcWSP_sgc_OnSubscription;
aID: WideString = '')

Event raised when a client requests a new subscription
to a channel.

Library

189

 Server_sgc_OnUnSubscription

 (aOnUnSubscription:
TsgcWSP_sgc_OnUnSubscription; aID: WideString =
'')

Event raised when a client requests an unsubscription
from a channel.

 Server_sgc_OnNotification(aOnNotification
 : TsgcWSPServer_sgc_OnNotification; aID:
WideString = '')

Event raised when server receives a notification from a
client.

 Server_sgc_OnRPC(aOnRPC:
TsgcWSPServer_sgc_OnRPC;
 aID: WideString = '')

Event raised when server receives a Remote Procedure
Call from a client.

 Server_sgc_OnRPCAuthentication(aOnRPCAuthenti

cation
 : TsgcWSPServer_sgc_OnRPCAuthentication;
aID: WideString = '')

Event raised when server receives a RCP which
requires authentication.

Types

 TsgcWSServer_OnConnect = procedure(const aGuid:

WideString);
 TsgcWSServer_OnMessage = procedure(const aGuid:
WideString; const aText: WideString);
 TsgcWSServer_OnBinary = procedure(const aGuid:
WideString;
 const aStream: TMemoryStream);

sgcWebSockets 3.4

190

 TsgcWSServer_OnDisconnect = procedure(const aGuid:

WideString;
 const aCode: Integer);
 TsgcWSServer_OnError = procedure(const aGuid:
WideString; const aError: WideString);
 TsgcWSServer_OnAuthentication = procedure(const
aGuid: WideString;
 aUser, aPassword: WideString; var Authenticated:
Boolean);

 TsgcWSP_sgc_OnSubscription = procedure(const aGuid,
aChannel: string);

 TsgcWSP_sgc_OnUnSubscription = procedure(const
aGuid, aChannel: string);
 TsgcWSPServer_sgc_OnNotification = procedure(const
aGuid, aMethod,
 aParams: string);
 TsgcWSPServer_sgc_OnRPC = procedure(const aGuid,
aId, aMethod,
 aParams: string);
 TsgcWSPServer_sgc_OnRPCAuthentication =
procedure(const aGuid, aMethod,
 aUser, Password: string; var Authenticated: Boolean);

191

Reference

WebSockets

WebSocket is a web technology providing for bi-
directional, full-duplex communications channels, over a
single Transmission Control Protocol (TCP) socket.

The WebSocket API is being standardized by the W3C, and
the WebSocket protocol has been standardized by the IETF
as RFC 6455.

WebSocket is designed to be implemented in web browsers
and web servers, but it can be used by any client or server
application. The WebSocket protocol makes possible more
interaction between a browser and a web site, facilitating
live content and the creation of real-time games. This is
made possible by providing a standardized way for the
server to send content to the browser without being
solicited by the client, and allowing for messages to be
passed back and forth while keeping the connection open.
In this way a two-way (bi-direction) ongoing conversation
can take place between a browser and the server. A similar
effect has been done in non-standardized ways using stop-
gap technologies such as comet.

In addition, the communications are done over the regular
TCP port number 80, which is of benefit for those
environments which block non-standard Internet
connections using a firewall. WebSocket protocol is
currently supported in several browsers including Firefox,
Google Chrome, Internet Explorer and Safari. WebSocket
also requires web applications on the server to be able to
support it.

More Information
Browser Support

http://en.wikipedia.org/wiki/WebSocket
http://caniuse.com/websockets

sgcWebSockets 3.4

192

JSON

JSON or JavaScript Object Notation, is a text-based
open standard designed for human-readable data
interchange. It is derived from the JavaScript scripting
language for representing simple data structures and
associative arrays, called objects. Despite its relationship to
JavaScript, it is language-independent, with parsers
available for many languages.

The JSON format is often used for serializing and
transmitting structured data over a network connection. It
is used primarily to transmit data between a server and
web application, serving as an alternative to XML.

More Information

http://en.wikipedia.org/wiki/JSON

Reference

193

JSON-RPC 2.0

JSON-RPC is a stateless, light-weight remote procedure call
(RPC) protocol. Primarily this specification defines several
data structures and the rules around their processing. It is
transport agnostic in that the concepts can be used within
the same process, over sockets, over http, or in many
various message passing environments. It uses JSON (RFC
4627) as data format.

Example: client call method subtract with 2 params (42
and 23). Server sends a result of 19.

Client To Server --> {"jsonrpc": "2.0", "method":
"subtract", "params": [42, 23], "id": 1}

Server To Client<-- {"jsonrpc": "2.0", "result": 19, "id":
1}

More information

http://www.jsonrpc.org/specification

sgcWebSockets 3.4

194

WAMP

The WebSocket Application Messaging Protocol (WAMP) is
an open WebSocket subprotocol that provides two
asynchronous messaging patterns: RPC and PubSub.

The WebSocket Protocol is already built into modern
browsers and provides bidirectional, low-latency message-
based communication. However, as such, WebSocket it is
quite low-level and only provides raw messaging.

Modern Web applications often have a need for higher level
messaging patterns such as Publish & Subscribe and
Remote Procedure Calls.

This is where The WebSocket Application Messaging
Protocol (WAMP) enters. WAMP adds the higher level
messaging patterns of RPC and PubSub to WebSocket -
within one protocol.

Technically, WAMP is an officially registered WebSocket
subprotocol (runs on top of WebSocket) that uses JSON as

message serialization format.

More Information

http://www.wamp.ws/

Reference

195

WebRTC

WebRTC is a free, open project that enables web browsers
with Real-Time Communications (RTC) capabilities via
simple Javascript APIs. The WebRTC components have been
optimized to best serve this purpose. The WebRTC initiative
is a project supported by Google, Mozilla and Opera.

WebRTC offers web application developers the ability to
write rich, realtime multimedia applications (think video
chat) on the web, without requiring plugins, downloads or
installs. It's purpose is to help build a strong RTC platform
that works across multiple web browsers, across multiple
platforms.

More Information

http://www.webrtc.org/

sgcWebSockets 3.4

196

Server-Sent Events

Server-sent events (SSE) is a technology for where a
browser gets automatic updates from a server via HTTP
connection. The Server-Sent Events EventSource API is
standardized as part of HTML5 by the W3C.

A server-sent event is when a web page automatically gets
updates from a server. This was also possible before, but
the web page would have to ask if any updates were
available. With server-sent events, the updates come
automatically.

Examples: Facebook/Twitter updates, stock price updates,
news feeds, sport results, etc.

More information
Browser Support

http://en.wikipedia.org/wiki/Server-sent_events
http://caniuse.com/eventsource

197

License

License

eSeGeCe Components End-User License Agreement
eSeGeCe Components ("eSeGeCe") End-User License
Agreement ("EULA") is a legal agreement between you
(either an individual or a single entity) and the Author of
eSeGeCe for all the eSeGeCe components which may
include associated software components, media, printed
materials, and "online" or electronic documentation

("eSeGeCe components"). By installing, copying, or
otherwise using the eSeGeCe components, you agree to be
bound by the terms of this EULA. This license agreement
represents the entire agreement concerning the program
between you and the Author of eSeGeCe, (referred to as
"LICENSER"), and it supersedes any prior proposal,
representation, or understanding between the parties. If
you do not agree to the terms of this EULA, do not install or
use the eSeGeCe components.
The eSeGeCe components is protected by copyright laws
and international copyright treaties, as well as other
intellectual property laws and treaties. The eSeGeCe
components is licensed, not sold.
The eSeGeCe components is a freeware. You may evaluate
it for free and You can use the eSeGeCe components for
commercial purpose. If you want SOURCE CODE you need
to pay the registration fee. You must NOT give the license
keys and/or the full editions of eSeGeCe (including the DCU
editions and Source editions) to any third individuals and/or
entities. And you also must NOT use the license keys
and/or the full editions of eSeGeCe from any third
individuals' and/or entities'.

1. GRANT OF LICENSE
The eSeGeCe components is licensed as follows:
(a) Installation and Use.
LICENSER grants you the right to install and use copies of
the eSeGeCe components on your computer running a
validly licensed copy of the operating system for which the

sgcWebSockets 3.4

198

eSeGeCe components was designed [e.g., Windows 95,

Windows NT, Windows 98, Windows 2000, Windows 2003,
Windows XP, Windows ME, Windows Vista, Windows 7].
(b) Royalty Free.
You may create commercial applications based on the
eSeGeCe components and distribute them with your
executables, no royalties required.
(c) Modifications (Source editions only).
You may make modifications, enhancements, derivative
works and/or extensions to the licensed SOURCE CODE
provided to you under the terms set forth in this license
agreement.

(d) Backup Copies.
You may also make copies of the eSeGeCe components as
may be necessary for backup and archival purposes.
2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS
(a) Maintenance of Copyright Notices.
You must not remove or alter any copyright notices on any
and all copies of the eSeGeCe components.
(b) Distribution.
You may not distribute registered copies of the eSeGeCe
components to third parties. Evaluation editions available
for download from the eSeGeCe official websites may be

freely distributed.
You may create components/ActiveX controls/libraries
which include the eSeGeCe components for your
applications but you must NOT distribute or publish them to
third parties.
(c) Prohibition on Distribution of SOURCE CODE (Source
editions only).
You must NOT distribute or publish the SOURCE CODE, or
any modification, enhancement, derivative works and/or
extensions, in SOURCE CODE form to third parties.
You must NOT make any part of the SOURCE CODE be

distributed, published, disclosed or otherwise made
available to third parties.
(d) Prohibition on Reverse Engineering, Decompilation, and
Disassembly.
You may not reverse engineer, decompile, or disassemble
the eSeGeCe components, except and only to the extent

License

199

that such activity is expressly permitted by applicable law

notwithstanding this limitation.
(e) Rental.
You may not rent, lease, or lend the eSeGeCe components.
(f) Support Services.
LICENSER may provide you with support services related to
the eSeGeCe components ("Support Services"). Any
supplemental software code provided to you as part of the
Support Services shall be considered part of the eSeGeCe
components and subject to the terms and conditions of this
EULA.
eSeGeCe is licensed to be used by only one developer at a

time. And the technical support will be provided to only one
certain developer.
(g) Compliance with Applicable Laws.
You must comply with all applicable laws regarding use of
the eSeGeCe components.
3. TERMINATION
Without prejudice to any other rights, LICENSER may
terminate this EULA if you fail to comply with the terms and
conditions of this EULA. In such event, you must destroy all
copies of the eSeGeCe components in your possession.
4. COPYRIGHT

All title, including but not limited to copyrights, in and to
the eSeGeCe components and any copies thereof are
owned by LICENSER or its suppliers. All title and intellectual
property rights in and to the content which may be
accessed through use of the eSeGeCe components is the
property of the respective content owner and may be
protected by applicable copyright or other intellectual
property laws and treaties. This EULA grants you no rights
to use such content. All rights not expressly granted are
reserved by LICENSER.
5. NO WARRANTIES

LICENSER expressly disclaims any warranty for the
eSeGeCe components. The eSeGeCe components is
provided "As Is" without any express or implied warranty of
any kind, including but not limited to any warranties of
merchantability, non-infringement, or fitness of a particular
purpose. LICENSER does not warrant or assume
responsibility for the accuracy or completeness of any

sgcWebSockets 3.4

200

information, text, graphics, links or other items contained

within the eSeGeCe components. LICENSER makes no
warranties respecting any harm that may be caused by the
transmission of a computer virus, worm, time bomb, logic
bomb, or other such computer program. LICENSER further
expressly disclaims any warranty or representation to
Authorized Users or to any third party.
6. LIMITATION OF LIABILITY
In no event shall LICENSER be liable for any damages
(including, without limitation, lost profits, business
interruption, or lost information) rising out of "Authorized
Users" use of or inability to use the eSeGeCe components,

even if LICENSER has been advised of the possibility of
such damages. In no event will LICENSER be liable for loss
of data or for indirect, special, incidental, consequential
(including lost profit), or other damages based in contract,
tort or otherwise. LICENSER shall have no liability with
respect to the content of the eSeGeCe components or any
part thereof, including but not limited to errors or omissions
contained therein, libel, infringements of rights of publicity,
privacy, trademark rights, business interruption, personal
injury, and loss of privacy, moral rights or the disclosure of
confidential information.

201

Index

202

A
A
Authentication 33
B
Bindings 44
C
Compression 40
Custom Objects 36
D
Deflate-Frame 158
Delphi Editions 3
E
Editions 3
Extensions 155
F
Files 63
Flash 42
G
Guid 119
H
HeartBeat 61
History 11
HTTP 54
I
Installation 5
Introduction 1
J
JSON 119, 192
L
Library159, 161, 162, 164,

166, 169, 176, 182, 186
Library Build 161
Library Client166, 169, 176
Library Client Protocol SGC

 176

Library Client SocketIO 169
Library Server 182, 186
Library Server Protocol

SGC 186
License 197
Logs 65

O
Overview 29
P
PerMessage-Deflate 156
Protocol Dataset .. 119, 127
Protocol Dataset Javascript

 127
Protocol Default104, 112,

119
Protocol Default Javascript

 112

Protocol Files 132
Protocol WAMP 143, 150
Protocol WAMP Javascript

 150
Protocol WebRTC . 139, 141
Protocol WebRTC

Javascript 141
Protocols96, 98, 104, 112,

119, 127, 132, 139, 141,
143, 150, 176, 186

Protocols Javascript 98

Proxy 64
Q
Quality 45

Service 45
Quality Of Service 45
Queues 49
QuickStart Library C 164
QuickStart Library Delphi

 162
S
Secure Connections 38

Server-Sent Events 57, 196
Service 45

Quality 45
T
Throttle 56
Transactions 52
TsgcIWWebSocketClient 92

Index

203

TsgcIWWSPClient_Dataset

 126
TsgcIWWSPClient_sgc . 111
TsgcWebSocketClient 82
TsgcWebSocketClient_Sock

etIO 87
TsgcWebSocketHTTPServer

 78
TsgcWebSocketProxyServe

r 91
TsgcWebSocketServer ... 71
TsgcWSConnection 94

TsgcWSMessageFile 138
TsgcWSPClient_Dataset 123
TsgcWSPClient_Files ... 136
TsgcWSPClient_sgc 108
TsgcWSPClient_WAMP . 147
TsgcWSProtocol_Client_dat

aset 123
TsgcWSProtocol_Client_sgc

 108

TsgcWSProtocol_Server_da

taset 121
TsgcWSProtocol_Server_sg

c 106
TsgcWSPServer_Dataset

 121
TsgcWSPServer_Files .. 133
TsgcWSPServer_sgc 106
TsgcWSPServer_WAMP 145
TsgcWSPServer_WebRTC

 140
U
Using DLL 69
W
WAMP 194
WatchDog 62
Web Browser Test 32
WebRTC 195
WebSocket Events 67
WebSocket Parameters

Connection 68
WebSockets 191

