

Institute of Systems and Robotics

TraxBot ROS Driver Guide

André Araújo

David Portugal

Micael Couceiro

Rui P. Rocha

Document	ROS Driver Guide
Project	TraxBot Platform
Version	V1.1
Date	July 13, 2012
State	pre-release
Distribution	Public

Mobile Robotic Laboratory (MRL)

Institute of Systems and Robotics - University of Coimbra (ISR-UC)

Portugal Contact person: Rui P. Rocha E-mail address: <u>rprocha@isr.uc.pt</u> Webpage: <u>http://paloma.isr.uc.pt/mrl/</u>

Authors contact: André Araújo, David Portugal, Micael Couceiro E-mail address: <u>aaraujo@isr.uc.pt</u>, <u>davidbsp@isr.uc.pt</u>, <u>micaelcouceiro@isr.uc.pt</u>

Contents

Chapter	1 – Installation Guide 3
1.1.	Requirements4
1.2.	ROS files organization
1.3.	Download and Install the TraxBot driver5
1.4.	Download and Install the Arduino IDE6
1.5.	Upload firmware to Arduino UNO7
1.6.	Important Notes
1.6.	1. Hardware startup
1.6.	2. Uploading code to Arduino
Chapter	2 - User Manual
2.1.	Testing firmware
2.2.	Running TraxBot driver in ROS 11
2.3.	Available TraxBot driver Topics12
Appendi	x A - Protocol Table
A.1. P	rotocol data insertion14
A.2. P	rotocol data insertion example14
A.2. C	Communication protocol technical info14
Appendi	x B - ROS Cheat Sheet

Chapter 1 – Installation Guide

1.1. Requirements

• Install ROS according to the Ubuntu version running on your machine and your preferences and needs.

• Install subversion on Ubuntu, open an Ubuntu system console, then:

1.2. ROS files organization

For better management of the stacks, it is possible to create a folder to use all the stacks which are necessary without having to use in the root folder of stacks of ROS, it is necessary to create a folder called stacks in the home folder, and add this destination path for ROS be aware of this new location:

• Create a folder in your home directory to manage all your custom ROS packages and stacks:

```
$ cd ~
$ mkdir stacks
$ cd stacks
```

• Add the new path to yout bash initilzation file (.bashrc) in your home directory (replace USER with your username):

\$ echo "export ROS_PACKAGE_PATH=/home/USER/stacks:\$ROS_PACKAGE_PATH" >> ~/.baschrc

1.3. Download and Install the TraxBot driver

```
• Open your stack folder, created in section 1.2:
```

```
$ cd ~/stacks
```

```
• Install the serial communication stack stack:
```

```
$ svn co http://isr-uc-ros-pkg.googlecode.com/svn/stacks/serial_communication/trunk
```

```
$ mv trunk serial_communication
```

\$ rosmake serial_communication

• Install the TraxBot driver stack:

```
$ svn co http://isr-uc-ros-pkg.googlecode.com/svn/stacks/mrl_traxbot/trunk
$ mv trunk mrl_traxbot
$ rosmake mrl_traxbot
```

1.4. Download and Install the Arduino IDE

It is neccessary to install the Arduino IDE to upload the firmware to the TraxBot's Arduino:

• Install the Arduino IDE in Ubuntu:

\$ sudo apt-get install arduino

Verify if the installed IDE version is v1.0 or higher. Otherwise download it from: http://arduino.cc/en/Main/Software.

1.5. Upload firmware to Arduino UNO

• After the installation, run the Arduino IDE:

\$ arduino

Open the driver firmware in the Arduino IDE, go to *File -> Open* and insert the following path folder:

```
/home/USER/stacks/mrl_robots/traxbot_robot/upload_arduino
```

Double-click in "*TrabotRobot_DriverROSv2.ino*". If these steps were successful, you will see the firmware code in the Arduino IDE:

Next, connect the USB cable from the computer, taking into attention Section 1.6.2 and upload the firmware code as shown in the next figure,

You will know when the code was successfully uploaded, when you see the confirmation message - "Done Uploading".

1.6. Important Notes

1.6.1. Hardware startup

Before plugging the USB cable to the Arduino Uno (e.g., code upload or simply sending commands), make sure that the traxBot's power switch is ON. Otherwise the robot will not respond, because the Arduino Uno uses the first initialized power source (battery or USB power).

1.6.2. Uploading code to Arduino

If the XBee shield is mounted on top of the Arduino Uno board, its switch should be in USB mode in order to upload code, otherwise it will not be possible.

Available switches: a) XBee shield Serie 1 b) XBee shield Serie 2 c) External switch

Chapter 2 -User Manual

2.1. Testing firmware

To test the firmware, switch the TraxBot on, as refered in section 1.6.1, open the Arduino IDE and then open the serial terminal:

The serial console window will pop up:

• /dev/ttyACi	M0	•••
		Send
		Ê
🗹 Autoscroll	No line ending 🔹 19200) baud 🔻

Attention: the baud rate should be define to "19200 baud".

To perform a linear move with the TraxBot motors, as a testing firmware example, type in the serial console: "@9,1,20,1,20e", followed by the Enter button.

• /dev/ttyACM0	● 🛙 😣
@9,1,20,1,20e	Send

If all the procedure was done correctçy, the TraxBot will start to move forward in a straight linear motion. To stop the motors, simply send the command "@11e"

2.2. Running TraxBot driver in ROS

• First run the roscore Master, in an Ubuntu console:

• roscore http://chopin-04:11311/				008
File Edit View Search Terminal	Help			
Checking log directory for disk u Press Ctrl-C to interrupt Done checking log file disk usage	sage. This may take awhi . Usage is <1GB.	le. 🔮 📃 🔍		
<pre>started roslaunch server http://c ros_comm version 1.6.6</pre>	hopin-04:49806/			
SUMMARY				
PARAMETERS * /rosversion * /osversion				
NODES				
auto-starting new master process[master]: started with pid ROS_MASTER_URI=http://chopin-04:1	[3908] manifestaml 1311/			
setting /run_id to ad59f3d8-ccd6-	11e1-9adc-20cf300db6c9			

• After the installation, run the Arduino IDE:

|--|--|--|--|

The driver assumes /*dev/ttyACM0* as the default serial port. If the robot is connected on a different serial port, e.g. /*dev/ttyACM1*, you should run:

٠	mrl	@chopir	1-04: ~						008
File	e Ed	it View	Search	Terminal	Tabs Help)			
ros	core l	http://ch	opin-04:1	1311/	×	mrl@chopin-04: ~	×	mrl@chopin-04: ~	×
mr\ [W [I [I [I [I [I	@chop ARN] ARN] NFO] NFO] NFO] NFO] NFO] NFO]	<pre>in-04:- [134218 [134218 [134218 [134218 [134218 [134218 [134218 [134218 [134218</pre>	\$ rosrun 3006.24(3006.24) 3009.007 3009.007 3009.007 3009.007 3009.007	h traxbot 1294877]: 1294877]: 131564]: 1600871]: 1992890]: 2268973]: 2268973]: 2553507]: 2760516]: 2960612]:	robot robo No Serial USage: "ro Robot G Robot G Temperatur OMNI_Firmw Battery = VDriver = ID = 0	t node Port defined, defaulting srun [pkg] robot_node /se etting ID eply: @5,2590,263,960,2,6 e = 25.90 C are = 2.63 9.60 (V) 2.00	to "/dev/ttyACM0" erial_port" 9e		Alexico Mineri Alexico Mineri Telesputi
									OEMO (ELESPLANT)

At this moment, the driver is activated and ready to send velocity commands to the robot and receive any kind of information from it, depending on the desired application.

2.3. Available TraxBot driver Topics

• To verify the available topics, simply run in a console,

\$ rostopic list

The possible topics available, for this TraxBot driver are:

	Торіс	Message type	Description	
	/odom	nav_msgs::Odometry	Robot odometry (x,y,θ).	
	/sonar_front	sensor_msgs::Range	Front sonar range in (cm).	
	/sonar_right	sensor_msgs::Range	Right sonar range in (cm).	
	/sonar_left	sensor_msgs::Range	Left sonar range in (cm).	
shers	/battery_power	std_msgs::Float32	Battery tension in (V).	
Publis	/driverFirmware	std_msgs::Float32	OMNI-3MD firmware version.	
	/driverTemperature	std_msgs::Float32	OMNI-3MD temperature.	
	/robotID	std_msgs::Int16	Robot ID (integer).	
	/encoder1	std_msgs::Int32	Encoder motor 1 in (pulses).	
	/encoder2	std_msgs::Int32	Encoder motor 2 in (pulses).	
ers	/cmd_vel	geometry_msgs::Twist	Velocity commands (linear,angular).	
oscribe	/stopMotors	std_msgs::Empty	Activate callback function to stop motors.	
Sub	/encodersReset	std_msgs::Empty	Activate callback function to reset encoders.	

Appendix A -Protocol Table

A.1. Protocol data insertion

The communication frame between ROS and the Arduino follows the following protocol:

INITIAL Char	COMMAND	SEP	1 st PARAMETER	SEP	2 nd PARAMETER	SEP	 n PARAMETER	FINAL Char
@	1 - 17	,	Int num	,	Int num	,	 Int num	е

A.2. Protocol data insertion example

This protocol accepts 3 types of data: Initial configuration, Cinematic commands and sensors readings.

Example of a linear move command to the motors:

A.2. Communication protocol technical info

- Serial Baud rate 19200
- All inserted values must be integers

Fra	ame	Description		
Send	Reply	Description		
@le	-	OMNI-3MD motor driver auto calibration.		
@2,Kp,Ki,Kde	-	Define PID motor controller gains Kp,Ki and Kd (0 - 65535).		
@3,enc,valuee	-	Set encoders prescaler, enc: enconder (1 - 2) value: value (0 - 4)		
@4,enc,valuee	-	Set encoder value, enc: enconder (1 - 2) value: value (0 - 65535)		
@5e	@5,temp,firm,bat,r_firm,r_ide	Provides robot information, temp: OMNI-3MD temperature firm: OMNI-3MD firmware bat: Battery power r_firm: Robot firmware r_id: Robot ID		
@6e	@6,enc1,enc2e	Provides encoder readings, enc1: encoder 1 (Left) enc2: encoder 2 (Right)		
@7e	@7,son1,son2,son3e	Provides sonars readings, son1: encoder 1(Front) son2: encoder 2 (Left) son3: encoder 2 (Right)		
@8e	@8,enc1,enc2,son1,son2,son3e	Provides sonars and encoders readings, enc1: encoder 1 (Left) enc2: encoder 2 (Right) son1: encoder 1 (Front) son2: encoder 2 (Left) son3: encoder 2 (Right)		
@9,dir1,speed1,dir2,speed2e	-	Send linear move commands with PID controller, dir1: direction motor 1 (1- 2) speed1: speed motor 1 (0 - 100) dir2: direction motor 2 (1 - 2) speed2: speed motor 2 (0 - 100)		
@10,dir1,speed1,dir2,speed2e	-	Send linear move, dir1: direction motor 1 (1- 2) speed1: speed motor 1 (0 - 100) dir2: direction motor 2 (1 - 2) speed2: speed motor 2 (0 - 100)		
@11e	-	Stop motors.		
@12e	-	Encoders reset.		
@13e	(to the console) @13,"0/1"e	Check Debug mode (0-1).		
@14,"0/1"e	-	Set debug mode (0-1).		
@15e	@15,"0/1"e	Info stream mode (0-1).		
@16e	@6,enc1,enc2e	Streaming encoder readings, enc1: encoder 1 (Left) enc2: encoder 2 (Right)		
@17e	-	Stop stream.		

Appendix B -ROS Cheat Sheet

ROS Cheat Sheet

Filesystem Command-line Tools

<pre>rospack/rosstack</pre>	A tool inspecting packages/stacks.
roscd	Changes directories to a package or
	stack.
rosls	Lists package or stack information.
roscreate-pkg	Creates a new ROS package.
roscreate-stack	Creates a new ROS stack.
rosdep	Installs ROS package system dependen-
	cies.
rosmake	Builds a ROS package.
roswtf	Displays a errors and warnings about a
	running ROS system or launch file.
rxdeps	Displays package structure and depen-
-	dencies.

Usage:

\$ rospack find [package]
\$ roscd [package[/subdir]]
\$ rosls [package[/subdir]]
\$ roscreate-pkg [package_name]
\$ rosmake [package]
\$ rosdep install [package]
\$ roswtf or roswtf [file]
\$ rxdeps [options]

Common Command-line Tools

roscore

A collection of nodes and programs that are pre-requisites of a ROS-based system. You must have a roscore running in order for ROS nodes to communicate.

roscore is currently defined as:

master parameter server rosout

Usage:

\$ roscore

rosmsg/rossrv

rosmsg/rossrv displays Message/Service (msg/srv) data structure definitions.

Display the fields in the msg.

Search for code using the msg. Display the msg md5 sum.

List all the messages in a package.

List all the packages with messages.

Commands:	
rosmsg show	
rosmsg users	
rosmsg md5	
rosmsg package	
rosnode packages	3

Examples:

Display the Pose msg: \$ rosmsg show Pose List the messages in nav_msgs: \$ rosmsg package nav_msgs List the files using sensor_msgs/CameraInfo: \$ rosmsg users sensor_msgs/CameraInfo

\mathbf{rosrun}

rosrun allows you to run an executable in an arbitrary package without having to cd (or roscd) there first.

Usage: \$ rosrun package executable

Example: Run turtlesim: \$ rosrun turtlesim turtlesim_node

rosnode

Displays debugging information about ROS nodes, including publications, subscriptions and connections.

 Commands:
 rest connectivity to node.

 rosnode ping
 Test connectivity to node.

 rosnode list
 List active nodes.

 rosnode info
 Print information about a node.

 rosnode machine
 List nodes running on a particular machine.

 rosnode kill
 Kills a running node.

Examples:

Kill all nodes:
 \$ rosnode kill -a
List nodes on a machine:
 \$ rosnode machine aqy.local
Ping all nodes:
 \$ rosnode ping --all

roslaunch

Starts ROS nodes locally and remotely via SSH, as well as setting parameters on the parameter server.

Examples:

Launch on a different port: \$ roslaunch -p 1234 package filename.launch Launch a file in a package: \$ roslaunch package filename.launch Launch on the local nodes: \$ roslaunch --local package filename.launch

rostopic

A tool for displaying debug information about ROS topics, including publishers, subscribers, publishing rate, and messages.

Commands:
rostopic bwDisplay bandwidth used by topic.rostopic echoPrint messages to screen.rostopic hzDisplay publishing rate of topic.rostopic listPrint information about active topics.rostopic pubPublish data to topic.rostopic typePrint topic type.rostopic findFind topics by type.

Examples:

Publish hello at 10 Hz: \$ rostopic pub -r 10 /topic_name std_msgs/String hello Clear the screen after each message is published: \$ rostopic echo -c /topic_name Display messages that match a given Python expression: \$ rostopic echo --filter "m.data=='foo'" /topic_name Pipe the output of rostopic to rosmsg to view the msg type: \$ rostopic type /topic_name | rosmsg show

rosparam

A tool for getting and setting ROS parameters on the parameter server using YAML-encoded files.

Command	ls: set	Set a parameter.
rosparam	get	Get a parameter.
rosparam	load	Load parameters from a file.
rosparam	dump	Dump parameters to a file.
rosparam	delete	Delete a parameter.
rosparam	list	List parameter names.

Examples: List all the parameters in a namespace: \$ rosparam list /namespace Setting a list with one as a string, integer, and float: \$ rosparam set /foo "['1', 1, 1.0]" Dump only the parameters in a specific namespace to file: \$ rosparam dump dump.yaml /namespace

rosservice

A tool for listing and querying ROS services.

Commands:		
rosservice	list	Print information about active services.
rosservice	node	Print the name of the node providing a
		service.
rosservice	call	Call the service with the given args.
rosservice	args	List the arguments of a service.
rosservice	type	Print the service type.
rosservice	uri	Print the service ROSRPC uri.
rosservice	find	Find services by service type.

Examples:

Call a service from the command-line: \$ rosservice call /add_two_ints 1 2 Pipe the output of rosservice to rossrv to view the srv type: \$ rosservice type add_two_ints | rossrv show Display all services of a particular type: \$ rosservice find rospy_tutorials/AddTwoInts

Logging Command-line Tools rosbag

This is a set of tools for recording from and playing back to ROS topics. It is intended to be high performance and avoids deserialization and reserialization of the messages.

rosbag record will generate a ".bag" file (so named for historical reasons) with the contents of all topics that you pass to it.

Examples:

- Record all topics: \$ rosbag record -a
- Record select topics:

\$ rosbag record topic1 topic2

rosbag play will take the contents of one or more bag file, and play them back in a time-synchronized fashion.

Examples:

Replay all messages without waiting:
 \$ rosbag play -a demo_log.bag
Replay several bag files at once:
 \$ rosbag play demo1.bag demo2.bag

Graphical Tools

rxgraph

Displays a graph of the ROS nodes that are currently running, as well as the ROS topics that connect them.

\$ rxgraph

rxplot

A tool for plotting data from one or more ROS topic fields using matplotlib.

Examples:

- To graph the data in different plots:
- \$ rxplot /topic1/field1 /topic2/field2
- To graph the data all on the same plot:
- \$ rxplot /topic1/field1,/topic2/field2
- To graph multiple fields of a message: \$ rxplot /topic1/field1:field2:field3

rxbag

A tool for visualizing, inspecting, and replaying histories (bag files) of ROS messages.

Usage:

\$ rxbag bag_file.bag

$\mathbf{rxconsole}$

A tool for displaying and filtering messages published on rosout.

rxconsole		×
Message	Severity	Node
Publishing /narrow_stereo_textured/left/image_rect	Info	/narrow_s ^
Publishing /narrow_stereo_textured/right/image_mono	Info	/narrow_s
Publishing /narrow_stereo_textured/right/image_rect	Info	/narrow_s
Some frames were never seen. The dropped packet count will be incorrect.	Warn	/wide_ste
Some frames were never seen. The dropped packet count will be incorrect.	Warn	/narrow_s
A Short frame #17746 (2 video lines were missing, last was 76)	Warn	/wide_ste
Some frames were never seen. The dropped packet count will be incorrect.	Warn	/wide_ste
Publishing inarrow stereo textured/left/image mono	Info	/narrow_s ~
everity 🖞 Fatal 🔇 Error 🖏 Warn 🕲 Info 🕲 Debug 🛛 Pause Clear Setup	Levels	New Window
🖞 Enabled 🛛 🔹 🗆 Regex 🛛 From 🖾 Message 🖉 Node 💟 Loc	ation 🗹 Topi	cs 🤤 🕹 🏠
		0

Usage:

\$ rxconsole

tf Command-line Tools

tf_echo

A tool that prints the information about a particular transformation between a source_frame and a target_frame.

Usage:

\$ rosrun tf tf_echo <source_frame> <target_frame>

Examples:

To echo the transform between /map and /odom: \$ rosrun tf tf_echo /map /odom

view_frames

A tool for visualizing the full tree of coordinate transforms.

Usage:

\$ rosrun tf view_frames
\$ evince frames.pdf

Copyright \bigodot 2010 Willow Garage