Field Device Web Server
Release 1.0 Software User
Manual

ALS 53424 a—en

First issue: 02—2000

Meaning of terms that may be used in this
document / Notice to readers

WARNING

Warning notices are used to emphasize that hazardous voltages, currents,
temperatures, or other conditions that could cause personal injury exist or
may be associated with use of a particular equipment.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution

Caution notices are used where there is a risk of damage to equipment for
example.

Note

Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be actfmteation
contained herein does not purport to cover all details or variations in hardware or software, nor to provide for everggissillecy in
connectiorwith installation, operation, or maintenance. Features may be described herein which are not present in all systems. AuB&OM ass
no obligation of notice to holders of this document with respect to changes subsequently made.

ALSTOM makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no respdhsilaitivufacy,
completeness, sufficiency, or usefulness of the information contained herein. ALSTOM gives no warranties of mercharftatsgty for
purpose shall apply.

In this publication, no mention is made of rights with respect to trademarks or tradenames that may attach to certagignerdherabsence
of such mention, however, in no way implies there is no protection.

Partial reproduction of this document is authorized, but limited to internal use, for information only and for no commposal pu

However, such authorization is granted only on the express condition that any partial copy of the document bears a tseuitigedy,i
including the copyright statement.

All rights reserved.
O Copyright 2000. ALSTOM (Paris, France)

Page 2 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Revisions

Index letter

Date

Nature of revision

ALS 53424 a—en

Field Device Web Server Release 1.0 Software User Manual Page 3

Revisions

Page 4 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Preface

1. PURPOSE OF MANUAL AND DOCUMENTED VERSION

This manual describes the collection of software packages called in the sequel FieldDeviceWebServer<>. Its main
objective is to facilitate the design and implementation of software applications Enaileellded Web Sitesr
interchangeablyEmbedded Web ServeiEhe document contains the detailed description of the functions contained

in the software packages and is considered as the reference manual for designers of the embedded servers using this
technology as support for their projects.

2. CONTENT OF THIS MANUAL
Chapter 1 — Presentationithis chapter presents the background of the FieldWebServer as well as its architecture.

Chapter 2 — General information: this chapter introduces basic information about the utilization context and the
specific package (Cocktail). It also deals with the start/stop procedures.

Chapter 3 — Use:this chapter presents, for the four packages, the functions and procedures of each module.

3. RELATED PUBLICATIONS
® INTERNET COMMUNICATIONS STEP 1: Software Development Plan — Y3-30 A4189§2]A.

® INTERNET COMMUNICATIONS STEP 1: Internet Techniques in Distributed Control Systems Tutorial —
Y3-30 A419463-1[2].

® [INTERNET COMMUNICATIONS STEP 1: System Specifications and Design Document — Y3-30
A419481-A[3].

® SOCKAPI SOCKETS Software Specification Document — Y3—-30 A41946[8HB.
® J. Grosch — Generators for High Speed Front Ends, Repdit NCoCoLab —Datenverarbeiturig].
® J. Grosch Rex — A Scanner Generator, Rept NCoColLab —Datenverarbeiturj§].

® J. Grosch Lark — An LR(1) Parser Generator with Backtracking, Rep@2NCoColLab —Datenverarbeitung.
[7].

® J. Grosch Puma — A Generator for the Transformation of Attributed Trees, Reba® JCoColab
—Datenverarbeitund8].

® J. Grosch Ast — A Generator for Abstract Syntax Trees, RegdrtbNCoColLab —Datenverarbeiturig].

® T.Berners—-Lee, R.Fielding, H.Frystyk: Hypertext Transfer Protocol —HTTP /1.0 , Network Working Group,
RFC 1945[10].

4. WE WELCOME YOUR COMMENTS AND SUGGESTIONS

ALSTOM strives to produce quality technical documentation. Please take the time to fill in and return the "Reader’s
Comments” page if you have any remarks or suggestions.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 5

Preface

Page 6 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Reader’'s comments

ALS 53424 a—en Field Device Web Server Release 1.0 Software Use
Manual

r

Your main job is:

D System designer D Programmer

D Distributor D Maintenance
System integrator D Operator

D Installer D Other (specify below)

If you would like a personal reply, please fill in your name and address below:

Send this form directly to your ALSTOM sales representative or to this address:

ALSTOM Technology
Technical Documentation Department (TDD)
5 avenue Newton BP 215
92142 Clamart Cedex
France
Fax: +33 (0)1 46 29 12 44

All comments will be considered by qualified personnel.

REMARKS

Continue on back if necessatyy.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 7

Reader’'s comments

Page 8 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Contents

CHAPTER 1 - PRESENTATION

1. GENERAL DESCRIPTION OF DEVELOPED SOFTWARE. 1-4

CHAPTER 2 — GENERAL INFORMATION

1. UTILISATION CONTEXT . . oottt e e e 2-1

2. ROLE OF COCKTAIL TOOLBOX . . . oottt e et e e e e e e e e 2-4

3. START-UP/STOP FUNCTIONS e 2-5
3.1, Start—Up ProCeAUIE ot 2-5
3.2, SEOP PrOCEAUIE. . . o ottt e e e e 2-5

CHAPTER 3 - USE

1. PACKAGE VFS GENERATION. . . . e 3-1
1.1. Module Commondef. 3-2
1.1.1. Function char * init_char(constchar®). i 3-3
1.1.1.1. DeSCHPtON. . o oot 3-3
1102, INPUES . . oottt 3-3.
11,13, OUIPULS. . . 3-3
1.1.1.4, Fault MeSSageS. . . o oottt it e e e 3-3
1.1.2. Procedure void close_char(char®). 3-3
1.0.2. 1. DeSCHPtON. . o oot 3-3
1.1.2.2. INPUES . . oottt 3-3.
1.1.2.3. OULPULS. . . . e 3-3
1.1.2.4, Fault MeSSages. . . o oottt ettt e 3-3
1.2. Module data_base structure. 34
1.2.1. Definition of tdata_base_structure datatype. 3-4
1.2.2. Function tdata_base_struct Makedata_base—struct(unsigned char Kind). 3-7
1.2.2. 1. DESCHPtON. . . oot 3-7
1.2.2.2. INPUES . . oot e e 3-7.
1.2.2.3. OULPULS. .« . . e e e e e e 3-7
1224, Fault MESSA0ES. . . . o ittt e 3-7
1.2.3. Procedure void Releasedata_base-struct(tdata_base_structobj)................ 3-8
1.2.3. 1. DeSCHPtiON. . . oot 3-8
1.2.4. Function rbool data_base_struct_IsType(tdata_base_struct obj, unsigned char. Kind) 3-8
1.2.4.1. DeSCHPLON. . . . oo 3-8
1242, INPUES. . . oot 3-8.
1.2.4.3. OULPULS. .« . et 3-8
1244, Fault MeSSageS. . . . oottt ittt e e 3-8
1.3. Module data_base processingui i 3-9
1.3.1. Function tdata_base_struct InitRepository(tdata_base_struct node, pchar default, pchar name)

1.3.2.

ALS 53424 a—en

3-9

1.3.1. 1. DeSCHPtiON. . . oot 3-9
1.3.1.2, INPULS . . ottt e e e 3-9.
1.3.1.3. OULPULS. .« . . e e e e 3-9
1.3.1.4, Fault MESSAgES.ttt it e 3-9
Function tdata_base_struct BuildDirNode(pcharname). 3-10
1.3.2. 1. DeSCrPtiON. . . oot 3-10

Field Device Web Server Release 1.0 Software User Manual Page 9

Contents

1.3.3.

1.3.4.

1.35.

1.3.6.

1.3.7.

1.3.8.

1.3.9.

1.3.10.

1.3.11.

1.3.12.

1.3.13.

Page 10

1.3.2.2. INPUES. . .ottt 3-10
1.3.2.3. OULPULS. . . . e e 3-10
1.3.2.4. Fault MESSAQES.t vt ittt e e 3-10
Function tdata_base_struct BuildFileNode(pchar name, pchar contents, unsigned short size,
unsigned short fid, unsigned shortnature) 3-10
1.3.3.1. DeSCHptioN. . .. oo 3-10
1.3.3 2. INPUES . . oo e 3-10
1.3.3.3. OUIPULS. « oottt 3-10
1.3.3.4, Fault MeSSageS. . . . o ottt e 3-10
Function tdata_base_struct BuildScriptNode(pchar name,tscript exec, unsigned short fid) 3-11
1.3.4.1. DesCrptioN. . .. oo 3-11
1.3.4.2. INPUES . . .ottt 3-11
1.3.4.3. OULPULS. .« . e e e e e e 3-11
1.3.4.4, Fault MeSSA0ES. . . . o vttt e 3-11
Procedure void InsertNode(tdata_base_struct dir, tdata_base_struct node) 3-11
1.3.5. 1. DeSCHPLON. . . o oo e 3-11
1,352, INPUES . . o e e e e 3-11
1.3.5.3. OULPULS. .« . . e 3-11
1.35.4, Fault meSSages.ottt 3-11
Procedure void AppendNode(tdata_base_struct root, tdata_base_struct node) 3-12
1.3.6.1. DeSCHPLON. . .o oo 3-12
1.3.6.2. INPULIS . . .t e e 3-12
1.3.6.3. OULPULS. . . e e e 3-12
1.3.6.4. Fault MESSAgES.ttt 3-12
Function tdata_base_struct FindNode(tdata_base_struct root, tdata_base_struct path, pchar
user, pchar password)ot 3-13
1.3.7. 1. DesCription.o 3-13
1.3.7.2, INPUES . . oo e e 3-13
1.3.7.3. OULPULS. .« . e e e 3-13
1.3.7.4, Fault MESSAQES.ttt e e 3-13
Function tdata_base_struct SearchNodelnWidth(tdata_base_struct root, pchar. name) 3-14
1.3.8.1. DeSCHPtiON. . .o oo 3-14
1.3.8.2. INPUES. . . oo 3-14
1.3.8.3. OULPULS. . . . 3-14
1.3.8.4. FaUlt MESSAQES.ttt e 3-14
Function tdata_base_struct GetNodeRef(tdata_base_struct root, tdata_base_struct path) 3-14
1.3.9.1. DeSCriptioN. . .o oo 3-14
1.3.9.2. INPUES . . . oo 3-14
1.3.9.3. OUIPULS. . . . 3-14
1.3.9.4. Fault MeSSAQES.ttt ittt e 3-14
Procedure void ProcessNode(tdata_base_struct node, thameproc proc). 3-15
1.3.10.1. DESCHIPLION. . . o o oot et 3-15
1.3.00. 2. INPUES . . oottt 3-15
1.3.10.3. OULPULS. . . . o e e e e e 3-15
1.3.10.4. FAUIt MESSAGES. . . . v vt ittt e e e e e 3-15
Function pchar InstallFileContent(tdata_base_struct root, tdata_base_struct path, pchar
contents, unsigned shortlength). 3-15
1.3.11.0. DeSCHPLION. . . o o oot et e e e 3-15
13002, INPULS . . oo e 3-15
1.3.10.3. OUIPULS. .« . e e e e e e 3-15
1.3.11.4. FAUIt MESSAQES. . . o vt ettt e e e e 3-16
Procedure void InstallAuthorisation(tdata_base_struct realm, pchar username,
PChar PaSSWOIA)o 3-16
1.3.12.1. DESCHIPLION. . . o o oot e e e 3-16
1.3 02, 2, INPULS . o ot e e e 3-16
1.3.12.3. OULPULS. .« . e e e e e e e 3-16
1.3.12.4. FAUIt MESSAQES. . . o . e ettt it e e e e e 3-16
Function tdata_base_struct AppendStep(tdata_base_struct path:, pchar name:). . . 3-16
1.3.13. 1. DESCHIPHON. .« . v ot it e 3-16
1.3 08 2 INPULS . o o e e 3-16
Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Contents

1.3.13.3. OULPULS. . . . e e e e e e e 3-16
1.3.13.4. FAUIt MESSAQES. . . .« . e ettt it e e e e e e 3-17
1.3.14. Function pchar RecoverResName(tdata_base_struct.path). 3-17
1.3.14.1. DESCHIPHON. .« . o o oo 3-17
1.3 L4, 2. INPULS . . ottt e 3-17
1.3.14.3. OULPULS. . . . o e e e e e e e e e e 3-17
1.3.14.4. FAUIt MESSAGES. . - .« . v vttt e et e e e e e 3-17
1.3.15. Function pchar PathToString(tdata_base_struct path). 3-17
1.3.15.1. DESCHIPLION. .« . o o oottt 3-17
1.3 0D 2 INPUES . . ottt 3-17
1.3.15.3. OULPULS. . . . e e e e e e 3-17
1.3.15.4. FAUIt MESSAQES.ttt ittt et e 3-17
1.3.16. Function tdata_base_struct StringToPath(pchar pathstring). 3-18
1.3.16.1. DESCHIPLION. . . o o oottt 3-18
1.3.06. 2. INPULS . . o ottt 3-18
1.3.16.3. OULPULS. 3-18
1.3.16.4. FaUlt MESSAQgES. . . o o vt ettt e e 3-18
1.3.17. Procedure void PrintPath(tdata_base_struct path): 3-18
1.3.27.1. DESCHIPLION. . . o ottt 3-18
13,07 2. INPULS . . o ettt 3-18
1.3.17.3. OULPULS. . . . e e 3-18
1.3.17.4. FaUlt MESSAQgES. . . o ottt ettt e e 3-18
1.3.18. Procedure void PrintNode(tdata_base_structnode). 3-19
1.3.18.1. DESCHPLION. . . o o oottt 3-19
1.3 08 2. INPULS . . o ot 3-19
1.3.18.3. OUIPULS. . . ottt e et e e e e 3-19
1.3.18.4. FAUlt MESSAQgES. . . . ottt ittt e e 3-19
1.3.19. Procedure void PrintRepository(tdata_base_structroot). 3-20
1.3.19.1. DEeSCHPLION. . .« o oot e 3-20
1.3.00 2. INPULS . . o ottt 3-20
1.3.09.3. OUIPULS. . . ottt et e e e e 3-20
1.3.19.4. FAUIt MESSAQgES. . . o o vttt et e e e 3-20
2. PACKAGE SERVER ENGINE e 3-21
2.1. Module SErvenging. 3-22
2.1.1. Procedure void server_loop(unsigned short port_nr, tcallback analyse_routine_ref, tcallback
response_routine_ref, tcallback error_report_ref, tcallback cleanup_routine. ref) . . . 3-23
2.1.0.2. DeSCIIPON. . . .ottt e 3-23
2.0 02, INPULS . . 3-23
2.01.1.3. OUIPULS. . ottt 3-23
2.1.1.4. Operational ProCeSSING . . . o oottt t e 3-24
2.1.1.5. Fault meSSages. . . o o oottt e 3-24
2.1.2. Procedure void server_boot(unsigned short port.nr). 3-24
2.1.2.1. DESCHPLON. . . v ottt et e 3-24
2.0 2. 2, INPULS . e 3-25
2.1.2.3. OUIPULS. . . oo 3-25
2.1.2.4. Operational proCesSINg vttt e 3-25
2.1.25. FaUlt MESSAQES. . . . o oottt e 3-25
2.2. Module Sendback. 3-26
2.2.1. Variables exported by the module. 3-26
2.2.2. Procedure int response_composer(int socket_id, tprocessor scrproc, tprocessor pproc,
IPrOCESSOr APFOC) . . o o v i et e e e e e e e e e e e e 3-27
2.2.2.1. DESCHPLON. . . . ottt e 3-=27
2.2, 2. 2, INPULS . 3-27
2.2.2.3. OUIPULS. . . oo 3-27
2.2.2.4. Operational proCesSINgt vttt e 3-27
2.2.25. FaUlt MESSAQES. . . . o oottt e 3-29
2.2.3. Procedure unsigned short generic_sendback_routine(int socket id). 3-29
2.2.3.0. DESCIIPION. . .\ttt e 3-29

ALS 53424 a—en

Field Device Web Server Release 1.0 Software User Manual Page 11

Contents

2.3.

Page 12

2.2.3. 2, INPULS . . e 3-29
2.2.3.3. OUIPULS. . . oo 3-29
2.2.3.4. Operational ProCeSSING v vttt e e 3-29
2.2.3.5. Fault mMeSSages. . . . o oot 3-29
2.2.4. Procedure unsigned short generic_error_report(int socket.id). 3-29
2.2.4.0. DeSCIHIPON. . . .ottt 3-=29
2,242, INPUES . . .ottt 3-29
2,243, OUIPULS. . . oottt e e 3-29
2.2.4.4. Operational proCesSSING . . . o vttt e 3-30
2245, Fault meSSaAgeS. . . o o ittt 3-30
2.2.5. Procedure int typed_server_prompt(int socket_id, char*res_type)............... 3-30
2.2.5. 1. DESCIIPLON. . . .ottt 3-30
2.2, 5. 2, INPULS . 3-30
2.253. OUIPULS. . ..o 3-30
2.2.5.4. Operational proCessiNgottt e 3-30
2255, Fault meSSAges. oo 3-30
Module Sockinterf. 331
2.3.1. Procedure intinitsockets(void). 3-31
2.3.1.1. DEeSCIIPON. . . .ottt e 3-31
2.3, 02, INPULS . . e 3-31
2.3.1.3. OUIPULS. . . oo 3-31
2.3.1.4, Fault MeSSAQES. . . . o v oottt et 3-31
2.3.2. Procedure int passivesocket(unsigned short port_nr,char* type,int quelen). 3-32
2.3.2.1. DESCIIPON. . . .ottt 3-32
2.3.2. 2, INPULS . . 3-32
2.3.2.3. OUIPULS. . . oottt e 3-32
2.3.2.4. Operational proCeSSING . . . oo vttt e 3-32
2.3.25. Fault mesSSages. oo 3-33
2.3.3. Procedure int waitforconnect(int main_sock). 3-33
2.3.3.1. DESCIIPLON. . . v ottt 3-33
2.3.3. 2, INPULS . 3-33
2.3.3.3. OUIPULS. . . oo 3-33
2.3.3.4. Operational proCesSINg vttt e 3-33
2.3.3.5. Fault MESSAgES. . . . o oottt 3-33
2.3.4. Procedure int closestream(intsock_id). 3-34
2.3.4.0. DESCIPHON. . .\ttt 3-34
2.3 4. 2, INPULS . . 3-34
2.3.4.3. OUIPULS. . ..ot 3-34
2344, Fault MESSAQES. . . . o i ottt e 3-34
2.3.5. Procedure int sockprintf(int sock_id,char*xtempl,0). 3-34
2.3.5.0. DESCIIPHON. . .\ttt 3-34
2.3.5. 2, INPULS . . 3-34
2.3.5.3. OUIPULS. . .. oo 3-34
2.3.5.4. Operational ProCeSSING« v vttt e 3-34
2.3.5.5. Fault mMeSSages. oottt e 3-34
2.3.6. Procedure int vsockbinsend(int sock_id,char* string,unsigned short length) 3-35
2.3.6.1. DESCIIPON. . . .ottt 3-35
2.3.6.2, INPULS . . . 3-35
2.3.6.3. OULPULS. . . .ottt 3-35
2.3.6.4. Fault MESSAQES. . . . o oottt it e 3-35
2.3.7. Procedure int sockreadf(int sock_id,char* buffer, intsize). 3-35
2.3.7.1. DESCIIPLON. . . . ottt 3-35
2.3, 7.2, INPULS . . e 3-35
2.3.7.3. OUIPULS. . ..t 3-35
2.3.7.4. Fault mMeSSaAQeS. . . o o oottt e 3-35
2.3.8. Procedure void peeraddrstr(char* buffer). 3-36
2.3.8.1. DESCIIPON. . . .ottt 3-36
2.3.8. 2, INPULS . . . 3-36
2.3.8.3. OUIPULS. . . ottt 3-36
2.3.84. Fault MESSAQES. . . o o i ottt it 3-36
Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Contents

2.4. Module data base module. 3-37
2.4.1. Procedure void init_data_base(void). 3-37
2.4.1.1. DESCHPLON. .« o v ettt ettt e e 3=37
2.4, L. 2, INPULS . . 3-37
2413, OUIPULS. . . oot 3-37
2414, FaUlt MESSAQES. . . o o i ottt e e e e e 3-37
2.4.2. Procedure void get_db_data(char* name, tdb_result*result). 3-38
2.4.2.0. DESCIIPHON. . .\ttt e 3-38
2.4 2. 2, INPULS . . 3-38
2.4.2.3. OUIPULS. . ..o 3-38
2.4.2.4. Operational proCesSINgttt e 3-38
2425, FaUlt MESSAQES. . . . o oottt 3-39
2.4.3. Procedure int set_db_data(char* name, unsigned char val_type, void* value). 3-39
2.4.3.1. DESCIIPHON. . .\ttt 3-39
2.4 3.2, INPULS . . e 3-39
2.4.3.3. OUIPULS. . ..ot 3-39
2.4.3.4. Operational ProCeSSING . . . o oottt e 3-39
2.4.35. Fault meSSages. . . . o oot 3-40
2.4.4. Procedure char* get_first_key(void) 3-40
2440, DeSCIIPUON. . . .ottt 3-40
244 2, INPUES . . . 3-40
2443, OUIPULS. . .ot 3-40
2444, FaUlt MESSAQES. . . o o i oottt et 3-40
2.45. Procedure char* get_next_key(char*ref name)........... 3-40
2451, DEeSCIHPLON. . . .ottt 3-40
2.4, 2, INPULS . 3-40
2453, OUIPULS. . ..o 3-40
2454, Fault MeSSaAQES. . . o ot oottt 3-40
3. PACKAGE HTTP ANALYSIS. . . . e 3-41
3.1, Module http_ProCess.o 342
3.1.1. Procedure void InitParser(Void).ot 3-42
3110, DESCHPLON. . . . vttt 3-42
B 0.0 2, INPUES . . e 3-42
3113, OUIPULS. . o ottt 3-42
3.1.1.4. Fault MESSAQES. . . . vt ittt et e 3-42
3.1.2. Procedure unsigned short EndParsing(int socket_id). 3-42
3.1.2.1. DeSCHPLON.ttt 3-42
3 0.2 2, INPUES . 3-42
3.1.2.3. OUIPULS. . o oot 342
3.1.2.4. Fault MESSAQES. . . . vt ittt et e 3-43
3.1.3. Procedure unsigned short ParseFromSocket(int socket.id). 3-43
3.1.3.1. DESCHPLON.ttt 3-43
3 0.3 2, INPUES . 3-43
3133, OUIPULS. . ottt e 3-43
3.1.3.4. Operational ProCesSiNg oottt 3-43
3.1.3.5. Fault MeSSageS. . . . oottt e 3-44
3.2. Syntax Analysingmodules. 3-44
3.2.1. Module SOUICE. 3-45
3.2.2. MOAUIE SCANNET. . . o\ttt e 3-45
3.2.3. MOdUIE Parsero 346
3.3, MOdUIE BNV _Var. . . 3-46
3.3.1. Function char*AllocTokenStr(unsigned long length). 3-48
3.3.L.1. DESCHPLON. . .ttt 3-48
B 3.0 2, INPUES . e e 3-48
3,313, OUIPULS. . o oot 3-48
3.3.14. Fault MESSAQES. . . . o o ittt et 3-48
3.3.2. Procedure void FreeTokenStr(char* tokenstr). it 3-48
3.3.2.1. DESCHPLON. . .ttt e 3-48

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 13

Contents

3302 2, INPUES . 3-48
3.3.2.3. OUIPULS. . o ottt 3-48
3.3.2.4. FaUlt MESSA0ES. . . .t i ottt ettt e e 3-48
3.3.3. Procedure void clean_env(void) 3-49
3.3.3.1. DESCHPLON. . . .\ttt 3-49
333 2, INPUES . . 3-49
3.3.3 3. OUIPULS. o o 3-49
3.3.3.4. Fault MESSageS. . . . v ottt 3-49
3.3.4. Procedure void init_env(void). e 3-49
3.3.4.1. DESCHPLON.ttt 3-49
3. 34 2. INPUES . . 3-49
3.3.4.3. OUIPULS. . . oot 3-49
3.3.4.4. Fault MESSAQES. . . . vt ittt e 3-49
3.3.5. Procedure void print_env(void) 3-50
3.3.5.1. DeSCHPLiON.ttt 3-50
335 2, INPULS . 3-50
3353, OUIPULS. . o et 3-50
3.3.5.4. Fault mMeSSages. . . . oottt e 3-50
3.3.6. Procedure void extract_auth(void). 3-50
3.3.6.1. DeSCrIPtiON.ot 3-50
3.3.6. 2, INPULS . o 3-50
3.3.6.3. OUIPULS. . ottt 3-50
3.3.6.4. FaUlt MESSAQgES. . . . vt vttt e 3-50
3.3.7. Procedure void add_cgi_par(unsigned char par_type, url_val value) 3-51
3.3.7.1. DESCHPLiON.ttt 3-51
B 3.7 2, INPULS . o ottt 3-51
B.3.7.3. OUIPULS. . ottt e e e 3-51
3.3.7.4. Fault messagesandfailuremades i, 3-51
3.3.8. Function char* decode_url_str(char* inpstr). i 3-51
3.3.8.1. DESCHPLiON.ttt 3-51
B.3.8. 2, INPULS . . oo 3-51
3.3.8.3. OUIPULS. . oot 3-51
3.3.8.4. Fault MeSSages.ottt e 3-51
3.3.9. Function tdata_base_struct search_object(void). i 3-52
3.3.9.1. DeSCHIPLiON.ttt 3-52
3.3.9. 2, INPULS . o oot 3-52
3.3.0.3. OUIPULS. « ottt 3-52
3.3.9.4. Fault MESSAQES. . . . o ittt e 3-52
3.3.10. Function tdata_base_struct search_script(void) 3-52
3.3.10.1. DESCHIPLON. .« . o ottt e e e e 3-52
3310, 2. INPUES . . . et 3-52
3.3.00.3. OUIPULS. o oot 3-52
3.3.10.4. FAUIt MESSAQES. - . . ¢ o ittt e e 3-52
3.4. Module basicencoderc. 3-53
3.4.1. Functionintgetkey(charKk). e 3-53
3410, DESCHPHON. . o .ttt 3-53
B4, 0. 2, INPUES . . 3-53
3.4.1.3. OUIPULS. . . oot 3-53
3.4.1.4. Fault MESSAgES. . . . vt ittt et e 3-53
3.4.2. Function unsigned short decode_four(unsigned char inpbuf[4], char* outstr, unsigned
Char PUr) .o 3-54
3.4.2.1. DeSCHPLON.t 3-54
B4, 2. . INPUES . 3-54
34,23, OUIPULS. . o o e 3-54
3.4.2.4. Fault MESSAQgES. . . . vttt ittt e 3-54
4. PACKAGE HTML GENERATION e 3-55
4.1. Module html_page_elements. 3-57
4.1.1. Definition of thtml_page_elementsdatatype. 3-57

Page 14 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Contents

4.1.2. Function thtml_page_elements Makehtml_page_elements(uchar. Kind). 3-62
4.1.2.1. DeSCHPLON.ottt 3-62
4.1.2.2. INPULS . . .ttt 3-62
4.1.2.3. OUIPUES. . oottt e e e 3-62
4.1.2.4. FaUlt MESSAQgES. . . . vt vttt et e e e e 3-62

4.1.3. Procedure void Releasehtml_page_elements(thtml_page_elements.object). 3-62
4.1.3. 1. DESCHPLON. . . oottt e e 3-62
40,32, INPUES . o ottt e 3-62
4.1.3.3. OUIPULS. . . oot e 3—62
4.1.3.4. Fault MESSAQgES. . . . vt ittt e e 3-62

4.1.4. Function html_page_elements_IsType(thtml_page_elements object, uchar Kind) . . 3-63
4.1.4.1. DeSCHPLON.ottt 3-63
O 3 | 1 11 | 3-63
4.1.4.3. OUIPULS. . . ottt e 3-63
4.1.4.4. Fault MESSAQES. . . .« ottt e e e e e e e 3-63

4.2. Module html_gen_hl. 3-64

4.2.1. Routines generating container objects. 3-64
4.2.1.1. DeSCHPLON.ttt 3-65
42,02, INPUES . . e 3-65
4.2.1.3. OUIPULS. . . oottt e 3—66
4.2.1.4. FaUlt MESSAQES. . . . ¢ ittt e e 3-66

4.2.2. Routines which append simple objectsto htmlpages.......................... 3-66
4.2.2.1. DESCHPLON. . . .\ttt 3-66
4.2, 2. . INPUES . . 3-67
4.2.2.3. OUIPULS. . . ottt 3—-68
4224, FauUlt MESSAQES. . . . vttt ittt et e 3-68

4.3. Modulegen_tree module. e 3-69

4.3.1. Routines which generate HTML related objects. 3-69
4.3.1.1. DeSCHPtiON.ottt 3-69
4.3.0. 2. INPUES . o 3-70
4.3.1.3. OUIPULS. . oottt 3=71
4.3.1.4. Fault MESSAQgES. . . . vt vttt et e 3-71

4.3.2. Routines which modify the structure of HTML related objects 3-72
4.3.2.1. DeSCHPLON.ttt 3=72
4.3.2. 2, INPUES . o oottt 3-72
4.3.2.3. OUIPULS. . oottt e 3=72
4.3.2.4. FaUlt MESSAQES. . . . ot ittt e e 3-72

4.4. Module html_conv_module 3-73

4.4.1. Function unsigned short HtmlPageToString (pchar buffer, unsigned char buff_ptr,
thtml_page_elements html_page obj). 3-73
4.4.1.0. DeSCHPtON. . . .ttt 3-73
44,0 2. INPUES . o 3-73
4.4.1.3. OUIPULS. . . oottt e e 3-73
4.4.1.4. Fault MESSAQgES. . . . vt ittt et e 3-73

APPENDIX A — HTTP PROTOCOL SPECIFICATION FOR FIELD DEVICE WEB

SERVER
1. CONTEXT-FREE GRAMMAR OF HTTP REQUEST A-1
2. LEXICAL GRAMMAR OF TOKENS OF HTTP REQUEST. A-9

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 15

Contents

APPENDIX B — CONFIGURATION OF REPOSITORY OF VIRTUAL FILE SYSTEM

APPENDIX C - EMBEDDING HTML PAGES, IMAGES AND APPLETS

APPENDIX D - SERVING DYNAMIC HTML
1. SKELETON BASED DYNAMIC PAGES

2. ON-LINE GENERATION OF PAGES. D4

Page 16 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Figures

Figure 1.1 — Place of field devices in automation system. 1-1
Figure 1.2 — Three—tier architecture of INTERNET client—server application. 1-2
Figure 1.3 — Architecture of INTERNET based application in an Alspa F8000 equipment. 1-5
Figure 1.4 — General architecture of Field Device Web Server software. 1-6
Figure 2.1 — Development process for an embedded server application. 2-1
Figure 2.2 — Detailed view of embedded software application. 2-3
Figure 3.1 — Module relationship within the package VFS Generation. 3-2
Figure 3.2 — Module relationships within the package Servengine. 3-21
Figure 3.3 — Flow diagram of the basic serverloop. i i 3-22
Figure 3.4 — Flow diagram of the response—composingroutine. oo ... 3-28
Figure 3.5 — Module relationships within the package HTTP Analysis. 3-41
Figure 3.6 — Module relationship within the package HTML GENERATION. 3-55
Figure A.1 — Context free grammar for Parsermodule i A-8
Figure A.2 — Lexical specifications of Scannermodule. A-12
Figure B.1 — Structure of the repository skeleton. B-2
Figure B.2 — Example of skeleton constructing routine. i B-3
Figure B.3 —Virtual File Treeo B-3
Figure C.1 — Module representing the code of an embedded image (shown within the comment). Cc-1
Figure D.1- View of the page fromthe example i e D-2
Figure D.2 — Skeleton of the page fromtheexample i D-2
Figure D.3 — Part of Figure D.L program.ttt it e ettt e e e e D-3
Figure D.4 — Example of abstract representation procedure. i, D-4
Figure D.5 — Example of HtmIPageToString routine.t e D-5

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 17

Tables

Table 3.1 — Type values and their mean e e 3-5
Table 3.2 — Non Abstract objects attributes 3-6
Table 3.2 — Non Abstract objects attributes (continued). i 3-7
Table 3.3 — Server loop phase, corresponding routineand module 3-24
Table 3.4 — Relationship between the first and second field values. 3-38
Table 3.5 — Compatibility of the record type and the routine parameter. 3-39
Table 3.6 — Environment data StrUCIULES. ottt e e e 3-46
Table 3.7 — Common types of option fields. 3-47
Table 3.8 — Symbolic name corresponding to the value of the firstfield 3-58
Table 3.9 — Description of non abstract class attributes. oL 3-59
Table 3.9 — Description of non abstract class attributes (continued). 3-60
Table 3.9 — Description of non abstract class attributes (continued). 3-61
Table 3.10 — RoUtiNe deSCriptiaNo i e 3-65
Table 3.11 — Description of first group parameters. e e 3-66
Table 3.12 — Routine role 3-66

Table 3.13 — Description of the attribute section for the six first group routines. 3-67
Table 3.14 — Description of parameters accordingto function. 3-70
Table 3.14 — Description of parameters according to function (continued). 3-71
Table 3.15 — Description of FOULINESo e e 3-72

Page 18 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Chapter | Presentation

This manual describes the collection of software packages called in the sequel Field Device Web Server. The rationale
for this product is to support the technology which enhances control system architectures, and especially
fieldbus—based parts of these architectures, with the potential for INTERNET-compatible processing.

The use of this technology allows control systems to take advantage of the INTERNET type client—server
architecture where elements of the user interface to applications placed in field devices, including their
look—and—feel part, are provided by the server.

It is worth stressing that one of the most important features of the technology developed and supported by the software
described below is that it should provide components witlancerather thameplace existing applications hosted

by a control device. The principal mission of a device in which the embedded INTERNET components are to be
installed is by no means changed.

Control room

console

Interconnecting network

Process computer

/

Field devices

=

s

Fieldbus

Automation cell

Figure 1.1 — Place of field devices in automation system

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 1-1

Titre de chapitre (variable)

To sketch the impact of the technology it is important to identify the place of a field device in a typical architecture
of a control system, as shown in Figure 1.1. The field device is part afitamation cel- a collection of
co—operating instruments which provide a well defined automation function. These devices are of different levels
of complexity — from simple sensors with extremely limited functions to process computers equipped with powerful
processors and large memory banks containing large quantities of embedded software.

Automation cells of a control system co—operate in order to implement a coherent control application. The
co—operation is possible thanks to information exchanges via a higher level network which forms the system
backbone. This backbone links the automation cells with the control room supervisory computers which implement
the interface between the system and human operators. In most cases control applications are arranged in two sets
of functions: automation functions implemented in automation cells and supervisory functions implemented in
control room computers.

Informationexchange between the two parts is based almost exclusively on the client—server paradigm. Data streams
exchangedetween control room client software and automation cell servers transit via the backbone network of the
system, which in most cases is based on the Ethernet link layer and supports information transport via the
TCP/UDP/IP protocol stack. Application data exchange is implemented by the variety of higher level protocols,
mostly proprietary and sometimes standardised (MMS, FTP).

Application protocols influence the structure of client and server software which varies greatly from one system to
another. Non standard protocols result in non standard solutions in terms of services provided, flexibility,
performanceand complexity. This lack of compatibility strongly reduces the migration of software components from

one application to another and virtually excludes the portability of control applications from one system to another.

The idea which initiated launching of the development process of the Field Device Web Server had its origins in the
analysis of INTERNET structure. This world—wide communication support is one example of a successful
application ofthe interoperability principle applied to diverse software products. The interoperability of INTERNET
products (clients and servers) is based on universally accepted standards which are:

® the TCP/IP protocol for reliable data transport,
® the HTTP protocol for application information exchange,

® the HTML format for information structuring and presentation.

Application
Client Server Application
tier tier tier

Figure 1.2 — Three—tier architecture of INTERNET client—server application

Page 1-2 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Presentation

INTERNET—distributedapplications are based on the principla dfiree—tierarchitecture Figure 1.2 which makes

use of universal client and server frameworks independent of the nature of data processed, on condition that the data
exchangedver the network are transported via the HTTP protocol and are structured according to the HTML format.
The three—tier architecture standardises basic services of the client and server parts of the application. In this
configurationthe client part is totally independent of the application (so cdilectlient). The burden of application
personalisation iplaced on the server side, which is interfaced directly with the embedded application software. This
configuration is athe origin of the internal architecture of the server tier which contains three functionally separate
parts:

® generic modules of the server which support HTTP protocol operation, totally independent of the user
application,

® user—provided modules implementing interaction mechanisms between the human operator and the embedded
application software. These modules contain passive data such as embedded HTML pages, embedded images
and embedded Java applets as well as active data such as routines generating dynamic pages or routines
embedding process data into served HTML pages,

® application wrapper modules which adapt the APl exposed by the embedded application to the needs of user—
provided modules.

This architecture simplifies the development process of newly created applications. Only user—provided modules are
to be developed for each new project. Generic modules are to be totally reused for a wide range of environments and
for different types of applications. Wrapper modules are to be developed for each type of hosting device and reused
for different applications placed in the given type of the device.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 1-3

Presentation

1. GENERAL DESCRIPTION OF DEVELOPED SOFTWARE

The introductory explanation from the previous section shows that there are two conditions for setting up
INTERNET technology inside the automation cells.

® enhancement dieldbus protocol stack with the TCP/IP layer; the cell front—end (process) computer must in this
case play the role of IP router,

® placing the server part of the distributed application in a device within the cell; this device should be equipped
with suficient processing power and should have enough memory to host the server modules; in many cases the
server is placed in the cell front—-end computer.

The software structure of the device hosting the server will thus be composed of two functionally specialised parts:

® the essential application doing the real job of process control; this application is in principle independent of the
INTERNET,

® the server tier from Figure 1.2 adapting the interaction mode between the generic thin client and the essential
application.

Since elements of automation cells do not dispose of large computing resource reserves it is necessary to develop
the components allowing the user to construct with ease small, portable and modular server tiers. In most cases every
server tier is composed of three basic elements:

® generic server body — principal active component which loops heaping to the incoming service requests and
processes them; request processing consists in parsing the PDU syntax, recovering environment variables in
order to support CGI operations, identifying requested resources together with the operations to be applied to
them:the generic server body is in principle independent of the applications in which it is incorporated; its basic
elements are server engine, request parser, response composer and persistence module,

® server object repository — active component implementing the logistics of server object management; this
component structures the collection of objects which together make up the application, and is in charge of
assembling the elements which incorporate information generated by the application,

® collection of application specific components — elements which implement both the look—and—feel part of the
application (HTML pages, compressed images, Java applets, ActiveX controls) and its dynamics (CGl scripts,
servlets); it igmportant to state that these components do not do the real job of the application; their role consists
in conveying data between the client part and the essential application; most naturally these elements are totally
application dependent.

The analysis of the structure of an embedded server highlights yet another building block of the architecture — the
applicationwrapper. This block is very often introduced into the device structure for reasons of convenience. Its role
consists in adapting the functional interface of the basic application to the needs of the page composition module.
The structure of this block is totally dependent on the basic application and on the design of application specific
components of the server. The construction of this block is not supported by the modules of the Field Device Web
Server and for this reason it is left outside of the server tier structure.

Page 1-4 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Presentation

TilibaSenve

A

4 N

Application HTTPreuse
Wrapper (A
Module HTMLgen
DBgen

Persistence Module Sendback
Request Respons " 3
Analyser Composer HTTPAnalyse
Basic : > <
Server Engine
Application Servengine
\\ J

Socket Presentation Layer

TCP/IP

Fieldbus stack (layers 1 and 2)

Figure 1.3 — Architecture of INTERNET—-based application in an Alspa F8000 equipment

Takinginto account these considerations, the entire INTERNET-based server architecture, in the context of a control
device, can be represented by the schematic in Figure 1.3.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 1-5

Presentation

The left part of the schematic above shows the software architecture at run time, which highlights mutual
relationshipetween all building block instances. The right part of the schematic shows the organisation of the Field
Device Web Server module library, called in the context of this pridjE€Preuseat development time. As shown

in Figure 1.3, it is composed of five interrelated software packages, set up in order to support configuration
management:

e Servenginepackage: this package groups the modules which provide the functions of server engine
operation, network adaptation and persistence of request data,

e HTTP Analysis package: this package implements the functions of request analysis and CGI environment
building,

e DBgenpackage: this package provides the elements which support the implementation of the embedded
equivalent of a disk file system,

e HTMLgen package: this package provides the elements which support the implementation of embedded
HTML pages,
e Sendbackpackage: implements basic response composition functions.

The following figure shows the mutual relationships between the packages:

]
j_/ Http

Analysis
Dbgen
P Servengine
HTMLGen Sendback

Figure 1.4 — General architecture of Field Device Web Server software

Page 1-6 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Chapter | General information

1. UTILISATION CONTEXT

The software described in this manual is in principle independent of the implementation platform i.e. the processor
type, operating system and network stack. A few implementation details can be adapted to almost any environment,
provided that the environment supports ANSI C run —time routines. Clearly, you need to use the development tools
(compiler, linker, loader) to install the generated code in its environment. The unique requirement imposed on the
hardware platform consists in the availability of free space in the processor memory and in access to a version of
the socket presentation interface of the TCP/IP network. In principle, the software is independent of the type of socket
implementation and operating system.

Look-and-feel

Text
> | cqitor ".* embedpage
> embedbin

compilVFS
/ C/C++ ’I

ompile

uew

Organisation

Linker

&

Links with application

Figure 2.1 — Development process for an embedded server application

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 2-1

General information

The generic modules provided by the HTTPreuse library are the most complex part of the server tier application.
Despite this fact the application developer tends not to see them in the process of application development. His
attention is naturally focused on five aspects of the application which are:

application start—up: a set of operations activated before the server loop is bootstrapped; these operations
initialise other application components; their implementation is done manually by assembly of parts from
HTTPreuse packages,

embeddedite oganisation; this part of the application concerns the design of the Virtual File System (VFS) of
the server tier; the VFS holds the references of all objects which are part of the site and provides the search
mechanism for server objects: pages, applets, images and CGl scripts; the application developer constructs this
part of the embedded site by using the routines from the package described in chapter 3 § 1; it is worth noting
that non trivial sites can be tedious and complicated but can be easily mechanised by using a configuration tool
(see Appendix B),

embeddedbok—and—feel objects which are data structures representing embedded passive objects (page frames,
applets, images); these data are represented as octet arrays residing in memory regions accessible via VFS ; in
the normal development process these objects are designed and implemented by tools adapted to the object
nature(HTML editors, image editors, JAVA development tools), a necessary step concerning the transformation

of standard formats of their representations (ASCII files, GIF/JPEG files, byte—code) to byte arrays loadable to
device memories is to be supported by appropriate tools (see Appendix B),

page composing routines which allow the user to merge passive objects (page frames) with application data in
order toform a complete HTML pages which incorporate application status; these routines are to be programmed
manually or are to be generated from a user friendly notation (see Appendix C),

routines representing active server objects (CGI scripts, dynamic pages) execatpebsts received from the

client; these routines serve to integrate application data to server pages; the routines reuse generic functions
provided by HTTP reuse; their design is so dependent on the application that only manual development process
is possible.

The development process of the specific application is presented in Figure 2.1. Relationships between application
components are presented in Figure 2.2.

Page 2-2 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

General information

Page '
composer ‘
V.E.S .

HTTP reuse

Applicatio

Pages, CGil script,
servlets

dynamic page

images,
applets

ALS 53424 a—en

Figure 2.2 — Detailed view of embedded software application

Field Device Web Server Release 1.0 Software User Manual

Page 2-3

General information

2. ROLE OF COCKTAIL TOOLBOX

One of the important functions of the developed system consists in analysing the requests incoming from the network.
The software package which implements this function operates as an analyser of a stream of ASCIl encoded
charactersThis makes its design very similar to the design of front end modules of programming language compilers.
Such modules are never programmed manually but are generated from the high level specification of the syntax of
the character stream. To generate the analysers one uses the software known under the generic name of compiler
compilers. The most eminent (but not the most powerful) example of such a software is the pair of UNIX programs
LEX and YACC.

The technique of implementation of request analysers used in this project is based on the principle of automatic
generation of the analysers. The tools used in the project belong to the COJK;BAN,8,9]package — which is
one of the most powerful tool sets known in the area of compiler compilers.

It is composed of a coherent set of processors which support the following operations:
® rex — lexical analyser counterpart of lex; generates scanners four times smaller and four times faster,

® |ark — counterpart of yacc; among many features which make it more user friendly than yacc, this processor
generates parsers which are twice as fast as parsers generated by its well-known predecessor for approximately
the same size of code,

® ag- evaluator of attributed grammars not used here; does not have any counterpart among freeware programs,

® ast — abstract syntax tree generator used here to generate the programs in the modules
data_base_structure and html_page_elements

® puma — supports tree evaluation and transformation; used in modiales base processing,
gen_tree_module andhtml_conv_module.

The use of these tools considerably increases the speed and the quality of the development process. This can be
explained by the size of the source files which directly influences the ease of code maintenance.

Another advantage of the COCKTAIL package is the existence of a library of reusable software components which
are used not only by the routines generated by the above cited tools but can also provide services to hand written
programs.

Page 2-4 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

General information

3. START-UP/STOP FUNCTIONS

3.1. Start—up procedure

The produced software is a collection of software routines to be used by an application designer. As such it does not
have awell defined and unique start—up procedure per se. It provides only the elements to be used during the start—up
phase othe application developed with the use of this software. The recommended calling sequence for initialisation
of an embedded server application is as follows:

1. |Initialise network interface and system support such as memory management operations.
2. Initialise VFS.

3. Initialise persistence component.

4. Initialise user application interface.
5

Bootstrap the server execution loop.

The server execution loop itself contains an initialisation sequence which is either provided in the standard version
of the loop or should be developed according to the design of the customised version of the server engine.

3.2. Stop procedure

For the reasons evoked in the previous section this software does not provide an explicit stopping procedure. The
other reason for this situation is the fact that the possibility of stopping an embedded server is not a commonly

required feature. However such a possibility exists, since the module providing the server engine routines gives
access tthe variable which controls the server loop (see chapter 3 § 2.1). This design feature provides the possibility

of server stopping and restarting.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 2-5

General information

Page 2-6 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Chapter | Use

1. PACKAGE VFS GENERATION

The package regroups the modules which provide the services linked to the generation and handling of the Virtual
File System. The package is composed of three modules:

® modulecommondefwidely used all over the software, it defines the primitive datagghar widely used in
the whole Field Device Web Server software;

® module data_base_structdefining the fundamental data typdata base_ struct on which the
construction of the VFS is based;

® moduledata_base_processimgoviding the routines which are used in the processing of the elements of VFS.

The relationships between the modules of the package are shown in the diagram in Figure 3.1.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-1

Use

commondef

data_base_structure

~———+init_char()

+ close_char()

+ Makedata_base_struct()
+ Releasedata_base_struct()
+ data_base_struct_IsType()
I
\

|

data_base_processing

+ InitRepository()

+ BuildDirNode()

+ BuildFileNode()

+ BuildScriptNode()

+ InsertNode()

+ AppendNode()

+ FindNode()

+ GetNodeRef()

+ SearchNodelnWidth()
+ ProcessNode()

+ InstallFileContent()
+ InstallAuthorisation()
+ AppendStep()

+ RecoverResName()
+ PathToString()

+ StringToPath()

+ PrintPath()

+ PrintNode()

+ PrintRepository()

Figure 3.1 — Module relationship within the package/FS Generation

1.1. ModuleCommondef

This module groups the data type definitions necessary for other modules from the package in which it is
implemented but also for other packages. It provides directly one data¢ae: which is the pointer to a heap

allocated character string. This type has two operations directly associatediniithcitar
creator and initialiser andose_char

, Which is the string
which is the string destructor. Two other typashar

andushort

are defined by renaming. All other type descriptions are imported from standard definitemsrojariatetinclude
<...>clauses. As far as this operation is concerned the module plays the role of the adapter to different compiler

environments.

Page 3-2 Field Device Web Server Release 1.0 Software User Manual

ALS 53424 a—en

Use

1.1.1. Functionchar * init_char(const char*)

1.1.1.1. Description
This routine implementthe creation of a character string. If the input parameter references an existing string of non
zerolength, the routine attempts to allocate on the system heap a memory zone which has the length of the input string

length +1. If the allocation succeeds, the input string is copied into the zone. If the input parameter is NULL or if
the referenced string has zero length or if the allocation fails, the routine returns NULL.

1.1.1.2. Inputs

The unique input parameter is a pointer referencing an existing non empty character string.

1.1.1.3. Outputs

The routine returns a pointer to the newly created string in the system heap. The string is the clone of the input string
and has the termination character.

1.1.1.4. Fault messages

The routine returns NULL pointer if the input string is NULL or has zero length or if the attempt to allocate the needed
heap frame fails.

1.1.2. Procedurevoid close_char(char*)

1.1.2.1. Description

This routine implements the destruction of the character string created by iniTtehleap region allocated to the
string is freed but not set to zero.

1.1.2.2. Inputs

Pointer referencing the string to be destroyed.

1.1.2.3. Outputs

None.

1.1.2.4. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-3

Use

1.2. Moduledata base_structure

This module defines types and routines on which the Virtual File System is constructed. The most important item
defined by the module is the data tyipata_base_structure . Although the file is written in ANSI C
programming language, its small part is directly coded in C. The vast majority of the code, including the data type
definition is automatically generated bgt, one of the processors which makes up part of the COCKTAIL toolbox
(see chapter 2 § 2). The original specification of the module is done usiagt #ymtax and can be found in the file
data_base.ast

Apartfrom the data type definition the module provides the implementation of three auxiliary functions, as described
below.

1.2.1. Definition oftdata_base_structure data type

The definition of tdata_base_structure follows the regular scheme, as below:

typedef union {
yobj_type name_1 obj_type name_1;
yobj_type name_2 obj_type _name_2;

yobj_type _name_n obj_type_name_n ;} * tdata_base_structure;

The type is then a pointer to a union which groups the structures. Each variant of the union designates the type of
object belonging to the VFS. These types have a very consistent construction as shown in the schematic below:

typedef dll_obj_desc_tKind unsigned char;

typedef {dll_obj_desc_tKind Kind ;
dil_obj_desc_tNodeHead yyHead ;

object attribute fields

} yobject name ;

The first field of each object is the tgnd which identifies the object class. The second field of the record is used
by the VFS internal modules to manage the pool of objects.

The rest of each structure is composed of the series of object attribute definitions. In principle, the user should not
modify these attributes manually and should rely on the set of routines furnished by this module as well as by the
moduledata_base_processing

Page 3-4 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

The type of the first field of the structure is the sub typensfgned char and takes on the values from 1 to 9.
The type values are redefined as a set of symbolic constants according to the following scheme:

Value | Symbolic name attributed Kind of object designated
1 krepository abstract object class from which are inherited| all
others exceppath andaccess_list
kroot root of a Virtual File System tree
knode abstract class from which

embedded_directorgndembedded_active_node
are inherited

kembedded_directory intermediatenode in a VFS, it can group other nodes
kembedded_active_node abstract class of leaf nodes of VRESnbedded_file
andembedded_scripre inherited from it
6 kembedded _file leaf of the VFS which represents a file containing an
html page, an image or an applet
kembedded_script leaf of the VFS designating an executable routine
kpath link to a node in the VFS
kaccess_list list of access control records composed of ppirs
username:password
Table 3.1 — Type values and their mean
In the current version of VFS there are nine types of objects divided into three groups:
® three VFS abstract objectgpository, node andembedded_active_node ; these objects are used
very rarely since they represent the common properties of other objects,
® three classes of VFS concrete objectsmbedded_directory, embedded_file and

embedded_script ; these objects represent the concrete elements of the VFS system corresponding to
directories and files of a regular disk—oriented mass memory system,

® two classes of auxiliary objectsath andaccess_list ; these objects represent respectively a link to a VFS
nodeand the list of access right records (pairs of username + password) used to restrain the navigation in the VFS.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-5

Use

Each object features a number of attributes. The non abstract object attributes are specified and described in the

following table:

Object name

root

the

rees
ided

Attribute name | Attribute type Description

name pchar pointer to aharacter string which stores the name off
whole VFS tree

member_list tdata_base_struct pointer to a list of sub-trees of VFS tree; the sub—
can be either leaves (embedded files or embe
scripts) or sub—tree roots (embedded directories)

access_list tdata_base_struct pointer to a list of access records each storing a p4

character strings username:password; this fea
provides the access control for the whole VFS treq

hir of
\ture

default_obj_name

pchar

character string which contains the name of the de
file served by the server when there is no reso

ault
irce

same level of the VFS

designated by the HTTP service request (URL is
limited to the server TCP/IP address only)
next tdata_base_struct reference oinother tree of the VFS residing in the sgme
server
embedded_directory name pchar pointer to the character string storing the name of| the
directory
member_list tdata_base_struct pointer to a list of sub—trees belonging to the directpry;
the sub-trees can be either leaves (embedded files or
embedded scripts) or sub-tree roots (embedded
directories of lower level)
access_list tdata_base_struct pointer to a list of access records each storing a pair of
character strings username:password; this feature
provides the access control for the directory
next tdata_base_struct reference of an adjacent node (file or directory) at|the
same level of the VFS
embedded_file name pchar pointer to the character string storing the name of| the
file
file_id unsigned short unique file serial number attributed to all VFS leaves
nature unsigned short code describing the file formats; can take on the values:
c_text(1), c_gif(2), c_jpeg(3), c_java(5), c_script(p),
(c_dir(4) corresponds to the directory file)
contents pchar pointer to a chain of bytes which stores the contenfs of
a page, an image or an applet
size unsigned short length of the file expressed in number of bytes; if this
value is equal to 0 this means that the file contaips a
zero—terminated character chain
next tdata_base_struct reference of an adjacent node (file or directory) at{the
same level of the VFS
embedded_script name pchar pointer to the character string storing the name of| the
file
file_id unsigned short | file serial number attributed to all VFS leaves
nature unsigned short code describing the file formats; can take the valpes:
c_text(1), c_gif(2), c_jpeg(3), c_java(5), c_script(p),
(c_dir(4) corresponds to the directory file)
script_exec tscript pointer to a sub routine which corresponds to the sfript
next tdata_base_struct reference to an adjacent node (file or directory) at| the

Page 3-6

Table 3.2 — Non Abstract object attributes

Field Device Web Server Release 1.0 Software User Manual

ALS 53424 a—en

Use

Object name Attribute name | Attribute type Description
path step pchar pointer to the character string storing the name of the
step in the path
next tdata_base_struct reference to the next path record; if this field| is
positioned to NULL the current step is the last
access_list user pchar pointer to the character string storing the name of the
user
password pchar pointer to the character string storing the name of the
password corresponding to the user name
next tdata_base_struct reference to the next access record; if this field is
positioned to NULL this means the end of list

Table 3.2 — Non Abstract object attributes (continued)

As it was stated above, the user of the Field Device Web Server library is not supposed to manipulate directly the
data type specified above. The majority of operations are encapsulated by the programs grouped in the modules of
this package and in the packatga_base_processing

1.2.2. Functiontdata_base_struct Makedata base-struct(unsigned char Kind)
1.2.2.1. Description

This routine creates in the system heap an object of the kind specified by the unique parameter and returns the
reference to this object.

1.2.2.2. Inputs

The input parameter specifies the kind of object to be created; its value should correspond to one of the constants
specified in Table 3.1.

1.2.2.3. Outputs

The returned value is a reference of the newly created object (pointer to the object) if the creation succeeds.

1.2.2.4. Fault messages

In case of failure the procedure returns the NULL pointer. No explicit textual message is generated.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-7

Use

1.2.3. Procedurevoid Releasedata_base—struct(tdata_base_struct obj)

1.2.3.1. Description

This routine destroys the object referenced by the input parameter. The heap area occupied by the object is returned
to the system.

1.2.3.1.1. Inputs

The input parameter references the object to be destroyed.
1.2.3.1.2. Outputs

None.

1.2.3.1.3. Fault messages

None.

1.2.4. Functionrbool data_base_struct_IsType(tdata_base_struct obj, unsigned char
Kind)

1.2.4.1. Description

This routine checks whether the object referenced by its first parameter is of the type designated by the second
parameter. The object is considered to be of the given type in two cases:

® it belongs to a sub type of the specified typgample: roots of typekrepository

® it is strictly of the specified typexample: embedded_file of typekembedded _file.

1.2.4.2. Inputs

The first input parameter references the object, the second provides the type to be checked with.
1.2.4.3. Outputs

The function returns:

1 when the object is of the specified type,
0 whenitis not.

1.2.4.4. Fault messages

None.

Page 3-8 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

1.3. Moduledata_base_ processing

This module is composed of twenty one procedures which allow the user to create and handle the objects of the
Virtual File System without requiring deep insight into its data structures. Although the procedures are compiled from
the text in ANSI C programming language, none of them is directly coded in C. The code is automatically generated
by puma, one of the processors which is part of the Cocktail toolboxs. (see chapter 2 § 2). The original specification
of the module is done using tipema syntax and can be found in the fidata_base.puma . Despite this
programming technique the user interface to the module observes the ANSI C syntax.

Within these nineteen routines, fourteen serve for run time VFS handling while five of them are used mostly in debug
or test mode. Among sixteen directly usable procedures, eleven manipulate Virtual File System nodes (files, scripts,
directories, repositories), one handles authorisation installation and two process file reference elements (access path
and extension string).

Apart from the routines mentioned above the module exports one data type which describes the type used by one of
the exported routinedProcessNodeT he detailed description of this type can be found in the section describing the
routine (Process Node § 1.3.10.).

1.3.1. Functiontdata_base_struct InitRepository(tdata_base_struct node, pchar default,
pchar name

1.3.1.1. Description

Thisroutine creates the root of the new Virtual System Tree in the system heap. It is usually the first operation in the
process of building the server’s repository.

1.3.1.2. Inputs

The routine has three inputs:

® node- reference of an existing node which becomes the first internal node in the repository; if this parameter
has NULL value the newly created tree will be reduced to the root node only;

® default — pointer to a character string which contains the name of the default file, served when the root of the
VFES tree is invoked by the http request; the string should represent the name of an existing file;

® name- pointer to the string which contains the name of the newly created tree; this string van be empty but some
routines of this module write return fault messages.

1.3.1.3. Outputs

The routine returns the pointer to the newly created root node of the VFS tree.

1.3.1.4. Fault messages

If the node creation fails the routine returns NULL.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-9

Use

1.3.2. Functiontdata_base_struct BuildDirNode(pchar name)

1.3.2.1. Description

This routine creates in the system heap a new node of thertymedded_directory

1.3.2.2. Inputs

The only input of the routines is a pointer to a character string which contains the directory’s name.

1.3.2.3. Outputs

The routine returns the pointer to the newly createtdedded_directory object.

1.3.2.4. Fault messages

If the node creation fails the routine returns NULL.

1.3.3. Functiontdata_base_struct BuildFileNode(pchar name, pchar contents, unsigned
short size, unsigned short fid, unsigned short nature)

1.3.3.1. Description

This routine creates in the system heap a new node of thertypedded_file

1.3.3.2. Inputs

The routine has the following inputs:

® name- pointer to a character string which identifies the file within the VFS tree;

® contents— pointer to a contiguous memory area (byte string) containing the file contents;

® size— number of bytes contained in the area; if this parameter is equal to 0 the file contents is considered to be
a zero—terminated character string;

® fid — numeric file identifier — support for fast file referencing;

® nature — code of file contents — it can take on the following values:

c_unknown(0), c_text(1), c_gif(2), c_jpeg(3), c_script(6), c_java(5) and c_dir(4).
1.3.3.3. Outputs

The routine returns the pointer to the newly created embedded_file.

1.3.3.4. Fault messages

When the node creation fails the routine return a NULL pointer.

Page 3-10 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

1.3.4. Functiontdata_base_struct BuildScriptNode(pchar name,tscript exec, unsigned
short fid)

1.3.4.1. Description

This routine creates in the system heap a new node of thertypedded_script.

1.3.4.2. Inputs

® name- pointer to a character string which identifies the file within the VFS tree;

® exec— pointer to a routine which is executed when the node is referenced in a http request this pointer has the
typetscript exported by the data_base_struct module; the type definition is:

typedef void(*tscript)(int,..)

® fid — numeric file identifier — support of the fast means of file referencing.

1.3.4.3. Outputs

The routine returns the pointer to the newly created embedded script.

1.3.4.4. Fault messages

When the node creation fails the routine return a NULL pointer.

1.3.5. Procedurevoid InsertNode(tdata_base_struct dir, tdata_base_struct node)

1.3.5.1. Description

Thisroutine adds the VFS node, referenced by its second parameter, to the directory referenced by its first parameter.

1.3.5.2. Inputs

The two procedure inputs are:
® dir — pointer to an existing directory node; if this pointer is equal to NULL no operation is performed;

® node — pointer referencing an existing VFS node which can be ofemnbedded file , an
embedded_script or anembedded_directory kind; if the pointer does not point to a node of an
appropriate kind, no operation is performed.

1.3.5.3. Outputs

None.

1.3.5.4. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-11

Use

1.3.6. Procedurevoid AppendNode(tdata_base_struct root, tdata_base_struct node)

1.3.6.1. Description

This routine adds the VFS node referenced by the second parameter to the VFS tree, the root of which is referenced
by the first parameter.

1.3.6.2. Inputs

The two procedure inputs are:

® root — pointer to an existing root node of a VFS tree (repository); if this pointer is equal to NULL no operation
is performed,;

® node — pointer referencing an existing VFS node which can be ofewmibedded file , an
embedded_script or anembedded_directory kind; if the pointer does not point to a node of an
appropriate kind, no operation is performed.

1.3.6.3. Outputs

None.

1.3.6.4. Fault messages

None.

Page 3-12 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

1.3.7. Functiontdata_base_struct FindNode(tdata_base_struct root, tdata_base_struct
path, pchar user, pchar password)

1.3.7.1. Description

The role of the routine consists in finding the node, referenced by the object of the path kind (second parameter of
the routine), in a VFS tree referenced by its root (first parameter of the routine). The process follows naturally the
path object structure which is composed of a list of names of intermediary nodesrobttdded _directory

kind, located on the path between the tree root and the searched node. The routine verifies the access rights at every
stage of the search process (i.e. while visiting the intermediary directories). The credentials valid for the search
process are provided by the third and fourth parameters of the routine.

1.3.7.2. Inputs

The four routine inputs are:

® root — pointer to an existing root node of a VFS tree (repository); if this pointer is equal to NULL no search is
initialised;

® path — reference of an object which represents the path to be followed during the search process; the path is
composed of a series of steps which reference by name the directory nodes lying between the tree root and
searched object;

® user— pointer to the string which contains the user name; this parameter represent the credentials to be verified
at every level of the searched tree;

® password- pointer to the string which contains the user password; this parameter completes the user name in
credential verification.

1.3.7.3. Outputs

The routine always returns a reference to an objed¢tiafa_base_struct type or a NULL pointer. If the
search process succeeds the object referenced by the pointer is either the tree root, an embedded file, an embedded
directory or an embedded script.

1.3.7.4. Fault messages

The routine fails when it does not return a reference to an existing tree node. No explicit textual message is generated.
The reason for the failure can be two—fold:

® the node referenced by the path object does not belong to the tree; in this case the routine returns the NULL
pointer;

® the search process was stopped at a stage because the presented credentials were not compatible with the
authorisation required at that stage; in this case the routine returns the pointer to an otijject of
access_list kind.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-13

Use

1.3.8. Functiontdata_base_struct SearchNodelnWidth(tdata_base_struct root, pchar
name)

1.3.8.1. Description

This function looks for the node of a given name (string pointed by the second function parameter), in the VFS tree
referenced by the pointer to its root (first function parameter). The result of the search is either a node reference or
a NULL pointer. The search process is based on a width—first algorithm.

1.3.8.2. Inputs

The routine has two parameters:

® root — pointer to an existing root node of a VFS tree (repository); if this pointer is equal to NULL no search is
initialised;

® name- pointer to a character string which identifies the node within the VFS tree.
1.3.8.3. Outputs

The routine returns NULL pointer if the node corresponding to the name was not found. In case of success the node
reference is returned.

1.3.8.4. Fault messages

NULL pointer signifies the search failure or NULL tree reference.

1.3.9. Functiontdata_base_struct GetNodeRef(tdata_base_struct root, tdata_base_struct
path)

1.3.9.1. Description

This function checks whether a path provided as the second function parameter corresponds to a node in a tree
referenced by the first function parameter.

1.3.9.2. Inputs

The routine has two parameters:

® root — pointer to an existing root node of a VFS tree (repository); if this pointer is equal to NULL no search is
initialised;

® path — reference of an object which represents the path to be followed during the search process.
1.3.9.3. Outputs

The routine returns either the reference to an existing node or a NULL pointer.

1.3.9.4. Fault messages

Routine failures are represented by the NULL pointer returnedNUhé result is returned in two cases: either one
of the input parameters is equal to NULL or the referenced node was not found. No explicit textual message is
generated.

Page 3-14 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

1.3.10. Procedurevoid ProcessNode(tdata base_struct node, thameproc proc)

1.3.10.1. Description

This routine provides the means of applying programmed processing on the node referenced by its first parameter.
The operation to be applied to the node is programmed in a routine which is referenced by the second parameter.

1.3.10.2. Inputs
The routine has two parameters:

® node— pointer to an existing node of a VFS tree (tree root, embedded file, embedded script or embedded
directory); if this pointer is equal to NULL no operation is performed;

® proc — reference of a routine which allows the user to program the operation to be performed on the node; the
data type of this parameter is defined as follows:

typedef int(* thameproc)(pchar,int,int)

No processing is done if this parameter is NULL.

1.3.10.3. Outputs

None.

1.3.10.4. Fault messages

None.

1.3.11. Functionpchar InstallFileContent(tdata_base_struct root, tdata_base_struct path,
pchar contents, unsigned short length)

1.3.11.1. Description

Thisfunction links a memory area to a VFS tree file; the file location in the tree is referenced by the path object passed
by one of the parameters of the routine.

1.3.11.2. Inputs
The routine has four parameters:

® root — pointer to a root of an existing VFS; if this pointer is equal to NULL, the operation has no effect and the
function returns NULL;

® path — path object which localises the node within the VFS tree; if this pointer is equal to NULL, the operation
has no effect and the function returns NULL;

® contents— pointer to a contiguous memory area storing the bytes which form the body of the embedded object
(page, image, Java byte code);

® |ength — parameter which stores the length of the region pointed by contents; this parameter is zero for null
terminated character strings.

1.3.11.3. Outputs

The routine returns the pointer to the region if the installation process was done correctly. In any other case the routine
returns NULL.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-15

Use

1.3.11.4. Fault messages

If the input parameters are incongruent or if the referenced node cannot be found, the routine returns NULL. No
explicit textual message is generated.

1.3.12. Procedurevoid InstallAuthorisation(tdata_base_struct realm, pchar username,
pchar password)

1.3.12.1. Description

This procedure provides the means of configuring access control to a VFS tree or to an embedded directory (VFS
sub-tree). The restricted VFS region is referenced by the first parameter of the routine while the second and third
parameters represent the security attributes stored in a record verified by the Find Node procedure.

1.3.12.2. Inputs

The function has three parameters:

® realm — pointer to a root of an existing VFS or to an existing tree nhode anthedded_directoryind; if this
pointer is equal to NULL, the operation has no effect and the function returns NULL;

® username- pointer to the string which contains the user name; this parameter represent the credentials to be
verified at every level of the searched tree;

® password- pointer to the string which contains the user password; this parameter completes the user name in
credential verification.

1.3.12.3. Outputs

None.

1.3.12.4. Fault messages

None.
1.3.13. Functiontdata_base_struct AppendStep(tdata_base_struct path:, pchar name:)
1.3.13.1. Description

This function is used for the successive construction of path objects. The object stores the access track which leads
from a tree root to a node within this tree. The function implements add the step named by the second parameter to
the path referenced by the first parameter.

1.3.13.2. Inputs
The function has two inputs:

® path — path object which localises the node within the VFS tree; if this pointer is equal to NULL, the operation
has no effect and the function returns NULL;

® name- pointer to the string which contains the name of the step to be appended to the path.

1.3.13.3. Outputs

The function returns the reference of the newly created object having the new step appended to the one provided by
the first parameter.

Page 3-16 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

1.3.13.4. Fault messages

If the function fails to append the new step, NULL pointer is returned. No explicit textual message is generated.

1.3.14. Functionpchar RecoverResName(tdata_base_struct path)

1.3.14.1. Description
This function, used in the process of constructing request environment variables, recovers the last step of the path

objectpassed by the input parameter and considers it as the resource name, i.e. the name of a VFS node to which the
HTTP request in which the path was included applies.

1.3.14.2. Inputs

This function has a single input which contains the reference to a path kind object.

1.3.14.3. Outputs

The function returns the pointer to the storage area in which the name of the last step of the path is stored.

1.3.14.4. Fault messages

When the NULL pointer is provided as the parameter the function returns NULL. No explicit textual message is
generated.

1.3.15. Functionpchar PathToString(tdata _base_struct path)

1.3.15.1. Description

This function is used mostly for debugging purposes. It converts the path object referenced by the first parameter
to a printable character string which has the following syntax:

“stepl_name/step2_name/step_name.../stepn_name”

1.3.15.2. Inputs

The unique input of the function contains the reference of the path object.

1.3.15.3. Outputs

The function returns the pointer to the character string, allocated in the system heap, which contains the printable
representation of the path.

1.3.15.4. Fault messages

The NULL pointer is returned if the reference of the path object is NULL. No explicit textual message is generated.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-17

Use

1.3.16. Functiontdata_base_struct StringToPath(pchar pathstring)

1.3.16.1. Description

This function provides the operation which is the reverse of the furetithiToString It converts the printable
representation of the path to the path object.

1.3.16.2. Inputs

The unique parameter of the function is a pointer to the character string. The contents of this string should strictly
observe the following syntax:

“stepl_name/step2_name/step_name.../stepn_name”

1.3.16.3. Outputs

The function returns the reference of an object of the path kind. The path object is created dynamically on the system
heap.

1.3.16.4. Fault messages

The NULL pointer is returned when the input string is NULL or when it does not observe the imposed syntax. No
explicit textual message is generated.

1.3.17. Procedurevoid PrintPath(tdata_base_struct path):

1.3.17.1. Description

Thisroutine serves to debug server applications. Its role consists in printing on the standard output the character string
which represents the path object provided as input. The printout has the following syntax:

1.3.17.2. Inputs

The unique input of the function is the pointer to the path object.

1.3.17.3. Outputs

None.

1.3.17.4. Fault messages

If the input does not reference a valid object of the path kind, the routine does not print anything.

Page 3-18 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

1.3.18. Procedurevoid PrintNode(tdata base_struct node)

1.3.18.1. Description

This routine serves to debug on server applications. Its role consists in printing the data describing the input object
on the standard output. The format of printed information is as follows:

e if the input is the NULL pointer, the printed message is:

NULL FILE POINTER ;
e f the inputis an embedded file or embedded script node, the printed message is:

FILE file name if the file name is provided (not NULL pointer) or
ANONYMOUS FILE if the file name is not provided (NULL pointer);

e f the inputis an embedded directory node, the printed message is:
DIRECTORMirectory nameif the directory name is provided (not NULL pointer) or

ANONYMOUS DIRECTORIYthe directory name is not provided (NULL pointer);
e f the input is the tree root node, the printed message is:

ROOT
e in any other case no message is printed on the output.

1.3.18.2. Inputs

Reference to the node to be printed out.

1.3.18.3. Outputs

None.

1.3.18.4. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-19

Use

1.3.19. Procedurevoid PrintRepository(tdata_base_struct root)

1.3.19.1. Description

This routine is used for debugging the VFS generated on the server machine. Its role consists in visiting a VFS tree
from the root till leaves and printing out the messages concerning the visited nodes. The tree is visited in the
depth—first order. The messages are printed on the standard output on the server’s platform. This routine calls the
PrintNoderoutine from the same module so it inherits the messages from the latter. These messages are wrapped into
supplementary printouts which are:

® Each repository printout starts with the message:

REPOSITORYepository nam&TARTS if the repository name is known or

REPOSITORY unnamed STARTS if the repository name is not known. This message is followed
by the series of printouts for visited nodes.

® For the repository root and for each embedded directory node the message generated by the PrintNode routine
is completed by the line representing the contents of the access list:

ACCESS LIST IS EMPTY if the access list is empty (pointer set to NULL) or

ACCESS LIST followed bythe series of pairs of identifiers representing the authorised
user and its password if the access list is not empty.

® The repository printout ends with the message:
REPOSITORYepository nam&NDS if the repository name is known or
REPOSITORY unnamed ENDS if the repository name is not known.

1.3.19.2. Inputs

Pointer to the root of a VFS tree.

1.3.19.3. Outputs

None.

1.3.19.4. Fault messages

If the input node is NULL, no message is printed on the output.

Page 3-20 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2. PACKAGE SERVER ENGINE

The package regroups the modules which implement the operation of the server on the global level such as
management aferver’s main loop, adaptation to the network, management of response generation and management
of request’s persistence. It is composed of four modules:

® moduleservengine — regroups the routines implementing the main server loop;

® modulesendback —is in charge of servicing the objects;

® modulesockinterf — adapts the server to the network interface;

® moduledata_base_module — implements the persistence of data sent from the client via the request
PDU.

The mutual relationships are represented by the diagram below.

sockinterf
+ initsockets() data_base_module
v pa§3|vesocket() — search_table : key_type]]
+ waitforconnect() — last_key : int
+ sockprl_ntf() — string_matrix : char*[]
+ vsockbinsend() — last_string
+ sockreadf() — integer_matrix : int[]
+ closestream() _last int
+ peeraddr() — float_matrix : float[]

N —last_float : int

+ init_data_base()
+ get_db_data()
sendback + set_db_data()

+ get_first_key()
+ get_next_key()
+ set_pre_trigger()
+ set_post_trigger()
+ printdb()

+ script_routine : tprocessor
+ page_routine_ptr : tprocessor

+ response_composer()
+ generic_error_report()
+ generic_sendback_routine()
+ typed_server_prompt()

servengine
+ continue_server : unsigned short

+ server_boot()
+ server_loop()
— stop_server()

Figure 3.2 — Module relationships within the packag&ervengine
One can easily observe that only three out of four modules co-opseatback, servengine and

sockinterf . The fourth module which is in charge of implementing the request data persistence, is stand—alone
and does not provide directly any services to the three others. It is put in this package for classification purposes.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-21

Use

2.1. Module Servengine

The moduleservengine implements the driving mechanism of the server. It provides two routines which both
execute the algorithm of the iterative server communicating with the client via a TCP/IP socket. This algorithm is
composed of a four—stage execution loop preceded by an initialisation step (for control flow see Figure 3.3).

Figure 3.3 — Flow diagram of the basic server loop

The operation of the loop is driven by arrivals of request PDUs on the TCP/IP socket. PDUs are recovered from the
socket and passed to a routine which analyses their contents. The role of such a routine consists in verifying the
structure of the PDU and in extracting the information necessary for further server loop operations.

This routine decides if the PDU is well-formed or if there is an error in its structure. In case of error detection, the
second processing stage, reporting the error, is activated. In the case of correct reception the third stage is started.
This stage consists in generation of the server’s response corresponding to the request (correct or erroneous).

The single round of the loop is terminated by a clean—up routine.

Page 3-22 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

The present software provides implementations for each processing stage of the loop described previously. Their
descriptions can be found in § 2.2. and 3.1. The application programmer using this software is free to develop his
own procedures implementing the basic loop stages. The only constraint imposed on this development is the
signature of such routines as described in the following sections.

Both routines provided in the package implement this basic loop with more or less flexibility left to the application
programmer, or in other terms, the application programmer is required to do more or less programming.

2.1.1. Procedurevoid server_loop(unsigned short port_nr, tcallback analyse_routine_ref,
tcallback response_routine_ref, tcallback error_report_ref, tcallback
cleanup_routine_ref)

2.1.1.1. Description

This routine which implements the basic server loop described in the introductory section, provides the application
programmer with the possibility of choosing the implementation details. By an appropriate selection of parameter
values the user can easily modify the behaviour of the server operation and can build his own implementation for
each processing stage of the server.

2.1.1.2. Inputs

The routine has five parameters. The first is of uheigned short type while the others are dife
tcallback type, which is exported by the module. The definition of the type is as follows:

typedef unsigned short tcallback (int)
The semantics of the input parameters are the following:
® unsigned short port_nr— this input provides the value of the TCP port on which the server will operate;

® tcallback analyse_routine_ref- this input parameter provides the reference of a routine implementing the
incoming PDU analysis;

® tcallback response_routine_ref- this input parameter provides the reference of a routine implementing the
generation of server’s response to the request;

® tcallback error_report_ref — this input parameter provides the reference of a routine implementing the server
reaction in case of error detected during the analysis phase;

® tcallback cleanup_routine_ref— this input parameter provides the reference of a routine implementing the
termination phase of the basic loop.

Values passed by the four last input parameters can correspond either to the user programmed routines or to one of
the specialised routines described in this manual. It is important to state that the user—provided routines have to have
the signatures compatible with the tytpallback.

2.1.1.3. Outputs

The routine does not provide any output values.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-23

Use

2.1.1.4. Operational processing

The control flow of the routine follows the diagram in Figure 3.3. In the initialisation phase the routine implements
the following operations:

® attempts to create a TCP type socket and assigns it the TCP port number passed by the first parameter of the
routine; if socket creation fails the routine exits and the server loop is not started,;

® verifies the values of input parameters corresponding to the references of the routine implementing the four
phases oferver operation (parameters 2, 3, 4 and 5 of thddgliback); if a parameter value is set to NULL
the corresponding phase of the server loop is implemented by the predefined routine according to the following
table.

Server loop phase Corresponding Predefined Routine Implemented in module
Analysis ParseFromSocket http_process (§ 3.1.)
Error reporting generic_error_report senback (§ 2.2.)
Response generation generic_sendback_routine sendback (8 2.2.)
Loop closing EndParsing http_process (§ 3.1.)

Table 3.3 — Server loop phase, corresponding routine and module

The loop is started after the successful termination of the initialisation phase and, in principle, never ends without
external intervention. This intervention is possible since the loop is controlled by an exported variable.

unsigned short continue_server.
The application programmer can implement the server stopping routine by setting this variable to 0.
2.1.1.5. Fault messages
None.
2.1.2. Procedurevoid server_boot(unsigned short port_nr)

2.1.2.1. Description
This routine implements the basic server loop without providing the possibility to choose implementation of the

server loop phases. By using this routine the application programmer can only choose the port on which the server
will operate. All server phases are implemented by the predefined routines listed in Table 3.3.

Page 3-24 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.1.2.2. Inputs

The single input parameter of the routine provides the port number on which the server will operate.
2.1.2.3. Outputs

The routine does not provide any output values.

2.1.2.4. Operational processing

This routine calls the routirgerver_loop with the first parameter set to its input parameter and four others set

to NULL. This mode of callingserver_loop will force the operation of the server with the predefined
implementation of the processing phases, and frees the user from the burden of programming. The procedure is a
recommended entry point for software users who wish to concentrate their efforts on application development.

2.1.2.5. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-25

Use

2.2. ModuleSendback

The modulesendback contains the routines provided for the standard implementation of the response composition
phase of server operation. It exports:

® two variables:
e send_script_routine,
e send_page_routine.

® four routines:
® response_composer,
e generic_sendback_routine,
e generic_error_report,
e typed_server_prompt.

The module also exports one type of definition:

typedef int tprocessor(int,.)
The type is used to qualifgsponse_composer input parameters.

These six items provide an interface which allows the user to organise the mechanisms of object handling by the
embedded server.

2.2.1. Variables exported by the module

The two variablessend_script_routine andsend_page_routine , are defined as follows:
int(*send_script_routine)(int,tdata_base_struct)

int(*send_page_routine) (int,tdata_base_struct)

They are references of the routines which will be used by the server loop to implement the two mains operations:
® response to requests of cgi script executisend_script_routine ;

® response to requests for sending internal server objects: pages, images and applets -
send_script_routine;

The user is expected to provide, via these variables, the addresses of the routines specially designed for its application.
By default the variables are set to NULL. They are expected to receive the appropriate values during the initialisation
phase of the server loop. If the initialisation is not done properly, the server will systematically answer any client
request by sending a standard error response described in the following section.

Page 3-26 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.2.2. Procedurent response_composer(int socket_id, tprocessor scrproc, tprocessor
pproc, tprocessor dproc)

2.2.2.1. Description

This routine implements the basic elements of the process ruling the composition of responses to clients’ requests
received bythe server. It provides the application programmer with the possibility of choosing some implementation
details while it sets others. By an appropriate selection of parameter values, the user can easily modify the routine
behaviour and can provide his own implementation of service response operations.

2.2.2.2. Inputs

The routine has three parameters. The first is ointhe type and the two others are of tipeocessor type
defined in § 2.2.

The semantics of the input parameters are the following:

® int socket id— this input provides the identifier of the active socket through which the remote client is connected
to the server;

® tprocessor scrproc— this input parameter provides the reference of a routine implementing the execution
process of CGl scripts;

® tprocessor pproc— this input parameter provides the reference of a routine implementing the generation process
of passive objects (pages, images and applets);

® tprocessor dproc— this input parameter provides the reference of a routine implementing server response when
the requested object is a domain (file directory).

Valuespassed by the second, the third and the fourth input parameters can correspond either to the user programmed
routines or to one of the specialised routines described in this manual. It is important to state that the user—provided
routines must have the signatures compatible with thetpypeessor.

2.2.2.3. Outputs

The output provided by the routine reflects the result of the response generation process. In general a positive,
non-zero result corresponds to a situation in which a server object was correctly sent to the client. Such an object
can correspond to a requested page, image or applet, to an activated script or to an error signalling page. The negative
or zero result means that the response generation was not successful and that nothing was sent back to the client.

2.2.2.4. Operational processing

The operation of the routine follows the flow diagram shown in Figure 3.4.

As it can be seen, the processing is organised in three steps:

1. identification of object processors

First step of the routine consists in choosing between two exclusive processing threads: one for CGI script
activation and one for passive object transmission. The processors are to be used in subsequent steps of the
routine. The choice is based on the values passed via the second and the third input parameter.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-27

Use

If the value of the second parameter is set to NULL, CGI script execution will be realised by the routine whose
address is passed via the external variabtel_script_routine . If this value corresponds to the entry

point of auser—provided routine, it will be used to rule script execution. If the value of the third parameter is set to
NULL, the passive objects service (pages, images, applets) will be performed by the routine whose address is
passed via the external variaskend_page_routine . If this value corresponds to the entry point of a user
provided routine, it will be used to control the response generation.

2. identification of type of object to service

The second step of the routine consists in identifying the type of object, i.e. verifying whether the requested action
consists iractivating a script, sending a passive object or requesting a directory listing. The outcome of this choice
activates an appropriate processor routine.

3. object search and identification of action to be executed.

In the third phase the requested object is searched for. If it is not found, an error page is selected and prepared for
delivery to the client. If the object is found and is not submitted to access authentification, the previously chosen
processor is activated. If the object is submitted to access authentification, the challenge procedure is started by
selection of an appropriate response PDU.

At the end, the selected action is executed and its result is returned as the result of the routine.

Yes

Figure 3.4 — Flow diagram of the response—composing routine

Page 3-28 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.2.2.5. Fault messages

In the case of failure of the last step of the routine’s algorithm, an error message can be sent as a special value of the
return code. This message is produced by the routine which writes the response PDU to the network and is inherited
from the module implementing socket interface to TCP/IP. In the majority of cases a negative or null value
corresponds to a transmission failure.

2.2.3. Procedureunsigned short generic_sendback_routine(int socket _id)

2.2.3.1. Description

Thisroutine serves as a wrapper to the previously desaélspidnse_composer routine, which is invoked with

the second and third parameters set to NULL. By choosing these parameter values, the routine forces the operation
modefor the invokedesponse _composer processor, in which the choice of the object servicing routine is mode

via two pointersend_script_routine andsend_page_routine (see 8.2.1.). This routine is proposed

a priori as an implementation choice for the response composition phase in the server’s basic loop (see § 2.1.2.).

2.2.3.2. Inputs

The only input parameter of the routine corresponds to the identifier of the socket on which the connection with the
client is established. This parameter is passed over to the wnaggpetise _composer routine.

2.2.3.3. Outputs

The routine returns the value which is returned from the wrags@bnse _composer routine. For the meaning
of the returned values refer to § 2.2.2.3.

2.2.3.4. Operational processing

Routine processing is limited to the invocation of theponse_composer routine with the second and third
parameters set to NULL.

2.2.3.5. Fault messages

The routine returns the same condition codes as describedreésfitese_composer routine (see § 2.2.2.5.).

2.2.4. Procedureunsigned short generic_error_report(int socket_id)
2.2.4.1. Description

This routine is provided in order to free the user from the programming burden required for implementation of the
error reporting phase in the basic server loop introduction (see § 2.1.).

2.2.4.2. Inputs

The only input to the routine provides the socket identifier through which the server is communicating with the
remote client.

2.2.4.3. Outputs

The output generated by the routine reflects the result of the sending error page operation to the client. If the operation
is successful the returned value is positive and non—zero. Negative values correspond to transmission errors detected
by the socket interface layer.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-29

Use

2.2.4.4. Operational processing

This procedure prepares a standard error page which informs the client on an internal server malfunction without any
particular problem description.

2.2.4.5. Fault messages

The negative values returned by the routine show the malfunction of the network and mean that the error page has
not attained the client.

2.2.5. Procedurent typed_server_prompt(int socket_id, char* res_type)

2.2.5.1. Description

Thisroutine is used to generate the standard server header string used in the composition of successful response PDUs
returned by the server to its remote clients. It is strongly recommended to use this method of server identification
in any user provided routines.

2.2.5.2. Inputs

The first input parameter provides the identifier of the socket via which the server is communicating with the remote
client. The second input is a character string which identifies the type of resource requested by the client.

2.2.5.3. Outputs

The output generated by the routine reflects the result of the operation of sending the header string to the client. If
the operation is successful the returned value is positive and non—zero. Negative values correspond to transmission
errors detected by the socket interface layer.

2.2.5.4. Operational processing

At first, the routine tests whether the value of the second input parameter is equal to NULL. If this is the case, the
execution terminates and the result —1 is returned to the caller. If the value is different from NULL the execution
continues. The next step consists in analysing the contents of the string passed via the second input parameter. If the
string pointed to by the second parameter is “gif’ of “jpeg”, the generated server header is as follows:

HTTP/1.0 200 OK <cr><If>

Server: FIPWEB /0.9 <cr><If>
Content-type: image/qgif <cr><If>
<cr><If>

If the string pointed to by the second parameter is different from the values indicated above, the server header is as
follows:
HTTP/1.0 200 OK <cr><If>

Server: FIPWEB /0.9 <cr><If>
Content-type: text/html <cr><If>
<cr><If>

2.2.5.5. Fault messages

The negative values returned by the routine show the malfunction of the network and mean that the header string has
not attained the network. The output value set to —1 may also mean that the NULL string was routed via the second
input parameter.

Page 3-30 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.3. Module Sockinterf

The purpose of this module is to provide the routines which directly use network—oriented services with an interface
independent from the type of the stack used on the implementation platform. The interface exported by this module
wraps the basic calls to a socket—type network interface. Providing this interface porting the whole software from
one communication platform to another, requires only re—implementation of this module. The module provides the
following routines:

® initsockets — initialises socket layer,

® passivesocket — creates the passive (server type) socket,

® waitforconnection — waits for incoming connection requests on a secondary socket,
® closestream — closes the passive socket,

® sockprintf — formatted write to socket,

® vysockbinsend — binary write to socket,

® sockreadf — read from socket,

® peeraddrstr — identification of the address of the remote peer.

In its current version the module adapts the rest of the software to three networking packages: the SockApi package
of Alstom, the BSD Sockets implementation of SUN Solaris and the Winsock2 socket implementation of Microsoft.

2.3.1. Procedurent initsockets(void)

2.3.1.1. Description

Some implementations of socket API, like Microsoft's Winsock2, require an explicit initialisation procedure. This
routine provides the wrapper of the initialisation operation for such implementations. For the portability purposes,
it is recommended to call this routine any time when network operation should be restarted.

2.3.1.2. Inputs

None.

2.3.1.3. Outputs

The routine returns an integer type result which can be only one of two values 1 or —1. A successful initialisation
operation corresponds to the value 1.

2.3.1.4. Fault messages

A returned value equal to —1 signifies the routine’s failure.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-31

Use

2.3.2. Procedurent passivesocket(unsigned short port_nr,char* type,int quelen)

2.3.2.1. Description
This routine provides the wrapper for the series of operations which lead to the creation of a server socket bound to

an IP address of the platform, completed by the port number provided via input parameters. When the routine returns
successfully the socket is created and ready to accept the external connections.

2.3.2.2. Inputs

The routine has three inputs which are:

® port_nr — unsigned char type integer signifying the TCP/UDP port number to which the socket is linked;

® type — pointer to character chain holding the protocol designation, it should be &ifhéror “udp ”;

® (uelen — integer number signifying the queue length reserved for buffering the incoming connection
requests.

2.3.2.3. Outputs

The value returned by the routine is either the identifier of the socket bound to the chosen address and ready to accept
the connections or an error condition code which identifies the eason for incorrect network operation. The socket
identifier returned from the routine is always positive. The negative result always means a malfunction.

2.3.2.4. Operational processing

The routine calls the operations on sockets in the following order:

1. Socketreation of a given type; the socket type can be either SOCK_DGRM or SOCK_STREAM,; the first type
is created when the second routine’s parameter contains the string “udp”. In any other case the socket created
is of the SOCK_STREAM, i.e. TCP type. If socket creation fails, the routine exits with an error code which
is a non positive value. An error message accompanies this failure detection.

2. Once the creation of the socket succeeds, one attempts to bind it to a network address; this operation makes a
call to thebind primitive; the part of the address relative to the IP of the network is taken from the platform
while the TCP/UDP port number is passed via the routine’s parameters. If the conditions of address binding are
accepted, the routine continues. In the opposite case an error message is issued and the routine exits.

3. If the socket is of the SOCK_STREAM type and if binding of the socket to an address succeeds, one attempts
to make it listen to incoming connection requests, and this call listibie operation makes use of the third
parameter of the routine which establishes the length of the queue used for buffering the incoming requests for
connection. If this call succeeds, the routine exits leaving the created socket passively waiting for the request
for connections. In case of failure, an error message is produced before the routine’s exit.

Page 3-32 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.3.2.5. Fault messages

In case of negative reaction from the network API, this routine prints messages on the error output. The messages
follow a certain format but their definite shape depends on the implementation platform. There are three types of
messages:

1. socket creation failure:

can'’t create socket —<platform dependent string>

2. bind to address failure:

cant bind the socket to port nr. <port nr> —<platform dependent string>

3. listen activation failure:

can't listen to socket on port nr <port nr> —<platform dependent string>
2.3.3. Procedurant waitforconnect(int main_sock)

2.3.3.1. Description

This routine provides the platform—independent interface tadbept operation on the primary socket followed
by retrieval of the remote peer address.

2.3.3.2. Inputs

The only input parameter is the identifier of the primary server socket which waits for the requests for connections.

2.3.3.3. Outputs

The routine returns either the identifier of a secondary socket created as the result of connection request acceptance,
or an error code.

2.3.3.4. Operational processing

The control flow of the routine makes use of a blocking call taticept primitive to stop the main server loop

while waiting for the connection request from the remote client. Connection acceptance is followed by the creation
of a secondary socket. The identifier of this socket, returned by theaedldpt, is then held to be returned further

on as the routine result. Failure of the calhtoept , which gives the negative or zero result, makes the routine
return immediately. The successtioé accept call provides the retrieval of the remote peer address to a local
data structure. This address can be retrieved by the call pe¢ineameroutine.

2.3.3.5. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-33

Use

2.3.4. Procedurent closestream(int sock_id)

2.3.4.1. Description

This routine is a wrapper of the operation when closing the socket.

2.3.4.2. Inputs

The only input of the routine is the identifier of the socket to be closed.

2.3.4.3. Outputs

The routine transfers the result of the call of¢tusesocket operation.

2.3.4.4. Fault messages

None.

2.3.5. Procedurent sockprintf(int sock_id,char*xtempl,..)

2.3.5.1. Description

Thisroutine is used to send a block of characters to the network via a secondary socket. The transfer mode resembles
a formatted write of a list of items to a file.

2.3.5.2. Inputs
The number of inputs to this routine can vary. There are at least two inputs:
® sock_id — socket identifier;

® xtempl —character string which is constructed according to rules set for the format specificatigriimtthe
fprints, sprintf, etc. routines.

The routine can optionally have a set of inputs corresponding semantically to the items constructing the format string.

2.3.5.3. Outputs

The output from the procedure provides the result of the transmission attempt. It gives either a number of characters
written to the socket or an error code resulting from the operation.

2.3.5.4. Operational processing

The operation of the procedure progresses in many steps. In the first step the format (second input) and the list of
free parametergall the starting parameters remaining from the third input) are used to generate a string which is
stored in an internal buffer. It is important to know that the result of this operation is a string having less than a fixed
number ofcharacters (in this case — less then 32768 characters). After this operation the string is sent via socket and
the transmission result is returned to the caller.

2.3.5.5. Fault messages

Failure ofthe routine’s operation is reflected by the value returned by it. In case of successful transmission the result
should be positive and should correspond to the number of characters sent. Negative or zero values correspond to
transmission errors.

Page 3-34 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.3.6. Procedurent vsockbinsend(int sock_id,char* string,unsigned short length)

2.3.6.1. Description

This routine is used to send a block of bytes of a given length to the network via a secondary socket. The transfer
mode corresponds to a non formatted write of a character stream to a file.

2.3.6.2. Inputs

The routine has three inputs:

® sock_int— socket identifier;

® string — character string written to the socket;

® |ength — length of the string passed by the second parameter.

2.3.6.3. Outputs

The output provides the result of the transmission attempt. It gives either a number of characters written to the socket
or an error code resulting from the operation.

2.3.6.4. Fault messages
The operation failure is reflected by the value returned by it. In the case of successful transmission the result should

be positive and should correspond to the number of bytes sent. Negative or zero values correspond to transmission
errors.

2.3.7. Procedurent sockreadf(int sock_id,char* buffer, int size)
2.3.7.1. Description
This routine is a wrapper of the synchronoersy operation.

2.3.7.2. Inputs

The routine has three inputs:
® sock_id: socket identifier;
® huffer: pointer to the buffer which receives the characters from the socket;

® size: length of the buffer.

2.3.7.3. Outputs

The output provides the result of the reception from the socket. It gives either a number of characters received via
the socket or an error code resulting from the failure of the operation.

2.3.7.4. Fault messages

The operation failure is reported by the value returned by it. In the case of successful reception the result is positive
and corresponds to the number of characters sent. Negative or zero values correspond to the reception anomalies.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-35

Use

2.3.8. Procedurevoid peeraddrstr(char* buffer)

2.3.8.1. Description

This routine recovers the distant peer address retreived previously caNegitfoeconnect routine.

2.3.8.2. Inputs

Reference of an existing character buffer ready to receive the remote user address in the form of a character string.

2.3.8.3. Outputs

None.

2.3.8.4. Fault messages

None.

Page 3-36 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.4. Module data_base_module

This module handles the persistence of data arriving via the request PDUs. The data arriving in the server in HTML
form are structured as a series of name/value pairs. These pairs are extracted from the request PDU by the parsing
procedure and are placed within the table managed by the current module. The extracted data can have one of three
formats: integer numbers, floating point numbers or character strings. The module provides the following routines:

® init_data base — initialises tables which hold the data,

® get db_data — retrieves a value from data tables,

® set db data — sets a value in data tables,

® get first_key — returns the name of the first variable stored in the tables,

® get next_key — returns the name of the next variable following the one passed by the parameter.

These routines provide access to data stored in the table structure which is opaque to the user. The user retrieves and
sets the values of the data record by identifying it vikatavhich is a printable character string. The identification

of a data record via its key is unambiguous since the internal mechanisms of the module guarantee the uniqueness
of the data key value within the tables.

In order to program the retrieval and storage of data in the internal tables the module exports the data type
tdb_result defined as follows:

typedef struct tag db_result {
int result;
union{
char* string;
int integer;
float real } value; }
tdb_result;

This type is used especially bgt db_data andset db_data routines.

2.4.1. Procedurevoid init_data_base(void)
2.4.1.1. Description

Thisroutine resets the internal data store. It clears all internal tables and resets all data records active before this call.

2.4.1.2. Inputs

None.

2.4.1.3. Outputs

None.

2.4.1.4. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-37

Use

2.4.2. Procedurevoid get_db_data(char* name, tdb_result* result)
2.4.2.1. Description

The role of this routine consists in retrieving the data value corresponding to the identification key.

2.4.2.2. Inputs

The only input to the routine is the key identifying the data which is to be retrieved. The key, a string of printable
characters, is furnished via the first parameter of the routine.

2.4.2.3. Outputs

The output is obtained via the second parameter. This parameter is a pointer which should reference an existing
structure of thedb_resul type.

The structure is composed of two fieldssult
It can take the following values:

andvalue . The first field indicates the kind of response obtained.

® unknown — corresponding to the value -1,

® string — corresponding to the value 0 (symbolicallystring),
® integer — corresponding to the value 1 (symbolicalynt),

® floating point — corresponding to the value 2 (symbolicalfloat).

The second field transfers the value retrieved from the tables. Its type depends on the value of the first field according
to the following relationship:

result field value variant name value field type
unknown not concerned undetermined
c_string string char*
c_int integer int
c_float real float

Table 3.4 — Relationship between the first and second field values

The existence of the structure passed as the second parameter is a pre—condition for the routine’s correct operation.
If the user does not follow this condition, the routine fails and the failure mode is unpredictable.

2.4.2.4. Operational processing

The first phase of the routine’s algorithm consists in searching a record identified by the key passed by the routine’s
first parameter. If the search process fails résailt field of the output parameter is set to —1 and the value of the
second parameter is not determined.

If the data record corresponding to the key is found, its type is determined. If the type corresponds to one of three
recognisedypes, theesultand thevaluefield of the output parameter are set to the values stored within the record.
In the opposite case thesultis set to —1ynknown) and thevalue remains undetermined.

Page 3-38 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

2.4.2.5. Fault messages

The routine fails when the second parameter is NULL. No explicit error message is sent and this type of failure can
result in the system exception provoked by access to the illegal memory address.

2.4.3. Procedurent set_db_data(char* name, unsigned char val_type, void* value)

2.4.3.1. Description

The role of this routine consists in modifying the data value which corresponds to the identification key.

2.4.3.2. Inputs

The routine has three input parameters:
® data key — string of printable characters identifying the data record to be modified,
® value type - integer ofunsigned char type determining the type of data modified,

® data value - pointer to anonymous typeid* conveying the data to be set into the record.

2.4.3.3. Outputs

The routine returns the value which identifies the result of the data record modification. If the modification is
successful the routine returns the type equal to its second parameter. In the opposite case the returned value is —1.

2.4.3.4. Operational processing

The first phase of the routine’s algorithm consists in searching a record identified by the key passed by the routine’s
first parameter. If the search process succeeds, the value type of the found record is tested. If the type of the found
record is compatible with the type specified by the second parameter of the routine, the new data value is set. The
value transferred to the data record corresponds to the value referenced by the third input parameter of the routine.
If the types are not compatible, the data is not set and the routine returns the —1 value. In the case of successful value
transfer the routine returns the value corresponding to the type of the record. Type compatibility is determined
according to the following table:

record type vs routine parameter c_int c_float c_string any other
c_int yes yes no no
c_float yes yes no no
c_string no no yes no
any other no no no no

Table 3.5 — Compatibility of the record type and the routine parameter

The value modification changes the type of the data record when compatibility is set to "no”. It is important that the
third routine parameter references an existing variable having the right type. If the user does not respect this
condition,the routine fails and the failure mode is platform—dependent. If the key value does not specify any existing
record, the routine attempts to create the new data record and sets its type and value according to input parameters.
The returned result corresponds to the type of newly created record.

If the attempt to create the new record fails, the routine returns the —1 value.
ALS 53424 a—en

Field Device Web Server Release 1.0 Software User Manual Page 3-39

Use

2.4.3.5. Fault messages

The routine fails when the third parameter is NULL. No explicit error message is sent and this type of failure ends
up with the system exception provoked by the access to an illegal memory address.

2.4.4. Procedurechar* get_first_key(void)

2.4.4.1. Description

The purpose of this routine is the identification of the data record key values in the internal table.
2.4.4.2. Inputs

None.

2.4.4.3. Outputs

The routine returns a reference of a character string. If the data table is not empty, this character string corresponds
to the key value of the first data record. In the case of an empty table, a NULL pointer is returned.

2.4.4.4. Fault messages

None.

2.4.5. Procedurechar* get_next_key(char* ref_name)
2.4.5.1. Description

This procedure, while called repetitively, allows the user to obtain the list of keys of all records stored in the data table.
The single call provides the user with the value of the key immediately following the record whose key is referenced
as the routine parameter.

2.45.2. Inputs
The only input to the routine is the character string corresponding to a key of a record within the data table.

2.4.5.3. Outputs

The routine returns a reference of a character string. If the data table is not empty, this character string corresponds
to the key value of the data record immediately following the record whose key is referenced as the routine parameter.
If the referenced record is not found or if it is the last in the table, a NULL pointer is returned.

2.4.5.4. Fault messages

None.

Page 3-40 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

3. PACKAGE HTTP ANALYSIS

basicencoder Source
+ getkey () + OpenSource (
+ decode () + GetLine ()
+ CloseSource
N
|
\ |
env _var ‘
- Scanner
+ environment [..] : pchar
+ method : unsigned char o
+ major_version : unsigned char * BeglnF!Ie 0
+ CloseFile ()

+ minor _version :

unsigned char

+ resource _category : unsigned shor
+ username : pchar

+ userpass : pchar

+ server _root : tdata _base_ struct

+ cgi _bin : tdata _base_ struct

+ cgi _params [..] : tcgi _par *

+ EntitySize :int

+ BeginScanner (

+ CloseScanner (|
+ GetToken ()

|

|

Parser

+ clean_ env ()
+ init_env ()
+ print_env ()

+ BeginParser (
+ CloseParser (|
+ Parse ()

http_process

S

+ ParseFromSocket ()

+ InitParsing ()
+ EndParsing ()

+ add _cg_par()

+ extract _auth ()

+ decode _url_str()
+ AllocToken ()

+ FreeToken ()

+ search _obiject ()
+ search _script()

Figure 3.5 — Module relationships within the packag&iTTP Analysis

This package is designed in order to provide the support for the analysis of incoming request PDUs. It is composed
of six modules:

® hitp_process — provides the convenient wrap—up of PDU analysers;

® Parser — implements the routine analysing the syntax of incoming PDUs; this module is
constructed with the help of processors from the Cocktail toolbox [5];

® Scanner — implements the routines which co—operate with the syntax analysers; the module
is constructed with the help of processors from the Cocktail toolbox [5];

® Source — implementghe interface between the network and the syntax analyser; the interface
of this module is inherited from the Cocktail toolbox, while the implementation is
totally customised for the needs of this application;

® env var — implements the routines constructing the elements of the so called Common
Gateway Environment (CGl); the routines are mostly used by the Parser module;

® basicencoder — implements the decoding of “basic cookies” (base—64 coded name: password

character chains) in certain kinds of request PDUs.

The user is expected to use only two of thettp_process (fully) andenv_var (marginally). The modules:

Parser, Scanner andSource are thought to be hidden by thdp_process module.Scanner and

Source modules are in principle not expected to be used directly. The advanced user may use the exposed interface
of theParser module.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-41

Use

Among two remaining modulesnv_var is in principle considered as a collection of routines providing services

to theParser module. Some of its interface is used by the modules from other packages. The small module
basicencoder is only used inside the package.

3.1. Modulehttp process

The module implements three basic operations linked to the analysis of incoming request PDUs: initialisation of CGl
environment, active PDU parsing and finalisation of analysis. The routines implementing these operations are
directly accessible to users who are not required to understand the details of parsing operations and environment

construction routines. The routines exported by this module are used within the routinesest/¢ingine
package by default for the parsing and finalisation phases of the main server loop (see the two routines of § 2.1.)

3.1.1. Procedurevoid InitParser(void)

3.1.1.1. Description
This routine initialises the analysing process environment; it activates an isolated operation which prevents the
scanningoutine to crash in case of fatal errors. Although the fatal errors of parsers are extremely improbable, calling

this routine is recommended at the beginning of the analysis phase of the server’s loop (see § 2.1.). The fatal errors
will cause the server to print on error stream a message:

Scanner Exception caught
3.1.1.2. Inputs
None.
3.1.1.3. Outputs
None.
3.1.1.4. Fault messages
None.
3.1.2. Procedureunsigned short EndParsing(int socket_id)

3.1.2.1. Description

This routine finalises the process of PDU analysis. It is proposed as the standard choice for the finalisation phase of
the basic server loop (see § 2.1.).

3.1.2.2. Inputs

The secondary socket is to be closed by the routine.

3.1.2.3. Outputs

The result of a close operation. If this result is positive, the closing operation is successful.

Page 3-42 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

3.1.2.4. Fault messages

None.

3.1.3. Procedureunsigned short ParseFromSocket(int socket_id)

3.1.3.1. Description

Thisroutine organises the correct scheduling of operations during the phase of request PDU analysis. The application
programmer can use this procedure without deep insight into the details of parser operation and environment
construction. This procedure is proposed as a default solution for the phase of request analysis (see § 2.1.).

3.1.3.2. Inputs

The only input is the identifier of the server socket connected to the client. This socket receives the analysed PDU.

3.1.3.3. Outputs

The result returned by the routine reflects the status of the parsing process. If the parsing routine accepts the received
PDU the result is 1; in the opposite case the result is 0.

3.1.3.4. Operational processing

The procedure chains the following operations:

® clean—up of environment variables,

linking the active socket receiving the request to the input of the parsing routine,
® parser initialisation,

® parsing of the request with environment construction,

® parser termination,

® management of authentification.

The parsing process produces the following information, contained in the HTTP of the request PDU:
® requested method,

® protocol version (main version and release number),

® protocol options,

® requested resource name,

® requested resource class,

® authentification data (user name and password),

® request parameters,

® posted data (data sent via post service).

Not all the items listed above are found in each request.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-43

Use

The standard mode of operation for this routine provides the possibility of printing out on the standard output the
results of environment synthesis as well as error messages detected by the parsing routines. This possibility can be
eliminated by an appropriate choice of the compilation option. This option consists in definyygileat

symbol during compilation of the module.

3.1.3.5. Fault messages

In its normal mode of operation the routine signals on its standard output the detection of syntax errors by the
message:

Parser Error count = n

If n is different from 0, syntax errors are detected. If the compilation option enabling the printout of syntax errors
is inhibited, no error messages are generated.

3.2. Syntax Analysing modules

One of the fundamental functions of the server software consists in analysing and extracting information from the
incomingHTTP PDUs, which arrive via network in the form of character streams. The PDUs have a regular structure
which can be described by a context free grammar. The formal description of this structure can be fouffitigl the of
specification10].

The function of analysing character streams is a well known design pattern, implemented for example by the
front—end modules of programming language compilers: scanners and parsers. Producing compiler front—end
modulesalthough based on sophisticated theory, is now a well developed technology. It uses well defined algorithms
easily mastered by the technique of automatic program generators, known as compiler compilers. The same
technology can be adapted to the development of PDU analysing modules in this package.

The technique used here is based on the tools provided by Ciagkt&lompiler Compiler Toolbox Karlsrulehich

is a collection of co—operating software tools aimed at automation of development of high efficiency compilers. The
use of Cocktail tools makes it possible to derive the source code of some server software modules from their formal
specification.

Any Cocktail based front—end is composed of a three stage processing process:

® structure of incoming PDU is analysed Bgrser module which is automatically derived from PDU grammar
following the specification fronfilO];

® operation is facilitated b$cannermodule which transforms the incoming character stream to a stream of
tokens: (groups of characters forming composites such as separators, identifiers, numbers, etc.); the structure
of tokens is also specified by a formal description;

® Scanner is adapted to source of character streg@olmce module; the existence of this module makes the
operation of Scanner and Parser independent of the origin of the character stream — this module, although
furnished by Cocktall in its basic version, has to be implemented in this package.

The three modules listed above are furnished within this package and can even be used separately. In the normal
context this does not make a lot of sense since they are designed to work together and not separately. Their
co—operation is organised automatically by the processors of Cocktail. The full interface is relatively complicated
although each module has a well identified natural entry point.

Page 3-44 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

An advanced user can use the full interface to produce his own wrapper modules organising the PDU analysis
process. For the majority of typical applications it is highly recommended not to use the modules directly but to
activate them via the wrapper modukgp_process described in § 3.1.

3.2.1. ModuleSource

This module plays the role of an adapter operating between Scanner input and the source of the characters. In its
standardapplication the module adapts the Scanner to a file system of the hosting machine. It handles such operations
as opening and closing the files, reading characters, detecting end of file and handling errors. This makes the Scanner
module independent and lets it operate at a high level of abstraction.

In the context of this application the generic version of the Source module furnished with the Cocktail toolbox has
to be rewritten. The stream of characters in this case arrives from a network connection established via a socket
interface, rather then from a disk file.

Despite this fact, the standard interface composed of three routines, is to be maintained in its original form in order
to keep the mode of operation of Scanner and Parser modules unmaodified. The interface functions are, in principle,
never called directly by the software user. Here follows their description:

® int BeginSource(char*filename) — this routine redirects the Scanner input receiving the analysed
character string from the standard input to a different source, in this case to an opened TCP/IP socket; the type
of its input parameter, a character string signifying the stream symbolic hame, is adapted to its original
implementation; in this case the socket identifier (of int type), converted to character string (i.e. to char* type)
is to be used; this parameter is passed from the user application to the routine indirectly, via the call of the Scanner
interface function BeginFile; in the typical application even this call is not provided by the user who activates
it by calling the wrapper routine ParseFromSocket;

® void CloseSource(int file_id) — this routine terminates the analysis from a character stream by
closing it; it is never called directly from the application software; in a standard application the routine is
activatedrom the call to EndParsing routine which calls the Scanner interface function CloseFile; the routine’s
input parameter has meaning only in the context of its calling environment i.e. inside the Scanner;

® int GetLine(int file_id,char* buffer, int buffsize) — this routine fills in the buffer
provided by the analysers, with the characters provided by the input stream; the function is called deep inside
the Scanner’s structure and all its three input parameters have meaning only in the calling context of the Scanner
module; the user only has the possibility of indirectly choosing buffer size (third parameter).

3.2.2. ModuleScanner

This module is automatically derived from a formal specification by the use Biethgrocessof6]. The role of

the Scanner consists in assembling the sequences of characters taken from the input stream intdekeseges of
higherlevel entities which are used by the Parser. The Scanner specification is done in an appropriate language, which
describes token structure in termsrefular expressionsThe equivalent compilable files in C language are
producecdautomatically byRex. The exported interface is relatively complicated,; its role consists in supporting three
phases of analysis operations: initialisation, parsing and termination. None of the interface elements are called
directly by the user. The exhaustive description of the interface is provif@ld in

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-45

Use

3.2.3. ModuleParser

This module is automatically derived from a formal specification by the use batkerocessof7]. The Parser

module is the driving engine of the process of incoming PDU analysis. The Parser specification is done in an
appropriate language, which describes structure of PDUs in termmentéxt free grammarThe equivalent
compilable files in C language are produced automaticallydx. The exported interface is simple but its
comprehensiorequires deeper insight into the theory of compilation. This interface is exhaustively desdithed in

The user of Field Device Web server software is freed from the burden of calling the Parser interface functions by
the wrapper routinarseFromSocket

3.3. Moduleenv_var

Request parameters needed to interpret correctly service requests addressed to the server are embedded within the
structure of incoming PDUs. In order to structure the processing of these requests the server operation is split into
the phases of parameter extraction and request execution. The parameter extraction phase is done during the parsing
processThe parser routine calls the functions from the interface of this module in order to store the values of request
parameters in the appropriate data structures, often called CGI parameters. Processing routines recover data
structures from the created request context and execute programmed operations. The environment data structures
are defined in the following table.

Exported variable Type or type of Description
table elements
method unsigned char access method: POST or GET; possible values: httpGET =1 and
httpPOST =2
major_version unsigned char version of HTTP protocol used (0 or 1)
minor_version unsigned char release of HTTP protocol used (9, 0, 1)
environment* [MaxEnv] | char* table of strings which store the values of options extracted from the

request (see table below)

resource_name[NLEN] char string holding the name of the requested resource; its maximum length
is 80 in this software release

resource_type[NLEN] char string holding the extension (suffix) qualifying the requested object; in
this implementation the following extensions are significétrn,

html for HTML pagesgif, jpeg for imagesiclass for Java
applets anagi for scripts; lack of extensions qualifies the object as

directory

resource category unsigned char numeric coding of object type; can take on values as follpws:
c_unknown=0, c_text = 1, c_gif=2, c_jpeg=3, c_java=4, c_dir|=5,
C_script =6

username char* string extracted fronauthentificationoption field corresponding tp
user name

userpass char* string extracted fromauthentificationoption field corresponding tp
user password

cgi_params[MAXPAR] tcgi_par* table of parameters (managed as stack) extracted from the header line
of the request PDU

EntitySize int value extracted from th@ontent/Lengtloption field; corresponds tp
length of entity appended to body of PDU in the case of POST method

server_root tdata_base_struct | entry point to part of virtual file system containing pages, images and
applets

cgi_bin tdata_base_struct | entry point to part of virtual file system containing cgi scripts

resource_path tdata_base_struct | path to object reference (see § 1.2.1.)

Table 3.6 — Environment data structures

Page 3-46 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

The current version of the module is able to store up to thirty—two option values. The request analyser recognises
and retrieves the values of nineteen types of option fields most frequently found in the request PDUs. These options
are listed in the following table.

Value Option type Symbolic value implemented

implemented
1 Referer optReferer
2 Connection optConnection
3 Host optHost
4 User—-Agent optUserAgent
5 Forwarded optForwarded
6 Accept optAccept
7 Accept-Language optAccepLang
8 Accept—Charset optAcceptChar
9 UA-Pixels OptUAPixels
10 UA—Color optUAColor
11 UA-OS optUAOS
12 UA-CPU OptUACPU
13 Pragma optPragma
14 Accept—Encoding optAccepEnc
15 Content-Type optConType
16 Content-Length optConLen
17 authentification optAuth
18 Via optVia
19 Extension optExtension

Table 3.7 — Common types of option fields

Optionstrings stored in thenvironment table can be used in the user—provided cgi scripts. For the non recognised
options the retrieved values are stored in tfféed@ment of the table. In the case of many non recognised options

in a request PDU, the element 31 stores the last option. Elements 0, 20—30 are not used and reserved for further
extensions.

The module exports two types in order to support the retrieval of values of cgi parameters present in the header line
of the request PDU:

® unionadapted to store the values of one of the recognised types of cgi parameters (integer, float or string), defined
as follows:
typedef union {
pchar string;
int integer;
float real;

} url_val;

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-47

Use

® structure storing values and types of cgi parameters, defined as follows:
typedef struct cgi_par_tag {
unsigned char par_type;

url_val value;

} tcgi_par;

Symbolic values corresponding to the recognised types of parameters are as follows:

c_string =0; c_int = 1; c_real=2.
On these data structures, some routines of this module are run and described in the following sections.
3.3.1. Functionchar*AllocTokenStr(unsigned long length)

3.3.1.1. Description

This routine igprovided in order to create on the system heap a null-ended string. The string thus created can contain
up tolength characters. The string content is not initialised by this routine.

3.3.1.2. Inputs

Number of characters in the string (without terminating null character).

3.3.1.3. Outputs

Pointer to the reserved heap space.

3.3.1.4. Fault messages

If the allocation of heap space fails, the routine returns a NULL pointer.

3.3.2. Procedurevoid FreeTokenStr(char* tokenstr)

3.3.2.1. Description

The routine frees the heap frame occupied by the string allocated Ajati®okenStrroutine.
3.3.2.2. Inputs

Pointer to the heap frame to be freed.

3.3.2.3. Outputs

None.

3.3.2.4. Fault messages

None.

Page 3-48 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

3.3.3. Procedurevoid clean_env(void)

3.3.3.1. Description

This routine empties all the significant environment variables, as follows:

® The heap space occupied by the strings stored entrisonmenttable elements is freed and table elements are
set to NULL,

® The content of thegi_paramstable is emptied (space freed and elements set to NULL),
® username and userpass strings are freed and set to NULL,

® path object is released and its reference set to NULL,

® EntitiySize variable is set to 0,

® resource_category is set to ¢c_unknown.

3.3.3.2. Inputs

None.

3.3.3.3. Outputs

None.

3.3.3.4. Fault messages

None.

3.3.4. Procedurevoid init_env(void)

3.3.4.1. Description

Simplified version of the routinelean_enwvhich set the environment variables to default values without freeing
the heap frames. This procedure is used mostly in the first phase of server operation.

3.3.4.2. Inputs

None.

3.3.4.3. Outputs

None.

3.3.4.4. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-49

Use

3.3.5. Procedurevoid print_env(void)

3.3.5.1. Description

This routine is used only for debugging purposes. It prints on the standard output (server console) the values of all
environment variables in a comprehensive format.

3.3.5.2. Inputs

None.

3.3.5.3. Outputs
None.
3.3.5.4. Fault messages

None.

3.3.6. Procedurevoid extract_auth(void)

3.3.6.1. Description

Thisroutine is used to extract the values of two environment varialdemsname anduserpass from the string

retrieved aghe value of thauthentification option in theenvironment table. The prerequisite for correct
operation of this procedure is that this option be present in the request PDU and that the authentification coding is
of the basic type (base—64 encoding). If these two conditions are not fulfilled, the routine fails and the result of its
operation is unpredictable. In the case of successful operation the routine retrieves the encoded user name and user

password strings and copies them to the previously allocated heap frames as null terminated strings. Heap frame
allocation is performed using tidlocTokenStroutine.

3.3.6.2. Inputs

None.

3.3.6.3. Outputs

None.

3.3.6.4. Fault messages

None.

Page 3-50 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

3.3.7. Procedurevoid add_cgi_par(unsigned char par_type, url_val value)

3.3.7.1. Description

This procedure is called in principle by the PDU parser. It pushes a new cgi parametegorprams stack

if the stack is neither overflowing nor underflowing. The structures storing parameter types and parameter values
are created on the system heap. If the parameter isofstreng type, the corresponding string is first decoded

(by the call to thelecode_url_str routine) and then stored in a frame allocated in the system heap.

3.3.7.2. Inputs

The routine has two inputs: parameter type and parameter value.

3.3.7.3. Outputs

None.

3.3.7.4. Fault messages and failure modes

No explicit message is generated. In the case of stack overflow or underflow, the routine returns withfadtiaey ef
operation. If the creation of the heap frame for the structure fails, the routine returns with a NULL element pushed
on the stack. In the case of thestring type of parameter value, when the allocation of the heap frame fails, the
value of the corresponding parameter pushed on the stack is unknown.

3.3.8. Functionchar* decode_url_str(char* inpstr)

3.3.8.1. Description

This routine implements the decoding of URL—encoded strings recovered as values of cgi parameters of type strings
or as values of data of string types appended to POST service request PDUs. The routine, when successful, returns
a decoded string corresponding to the input string containing URL—coded symbols. The decoding method
implemented here is as follows:

® every ‘+' symbol is replaced by a blank character,

® everygroup of three symbols composed of leading ‘%’ followed by a two—digit hexadecimal number is replaced
by the ASCII character whose code corresponds to the hexadecimal number.

If the input string is NULL the routine returns NULL. In any other case the routine returns a string created on the
system heap.

3.3.8.2. Inputs

The only input is a null terminated string extracted from the request PDU.

3.3.8.3. Outputs

Reference to a heap-allocated string containing the decoded version of the input string.

3.3.8.4. Fault messages

No explicit fault message is generated, however a NULL string is output when the input string is NULL or when heap
frame allocation fails.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-51

Use

3.3.9. Functiontdata_base_struct search_object(void)

3.3.9.1. Description

This routine implements the search for an object in the VFS within the tree containing passive server objects (i.e.
directories, pages, images and applets). The routine has no input parameters and the search process is controlled by
the values of environment variablessource_path, resource_type, username anduserpass .

The search is run by the call to fiadNode routine (see § 1.3.7.) applied to the VFS tree having the root referenced
by theserver_root variable.

3.3.9.2. Inputs

None.

3.3.9.3. Outputs
Reference of the descriptor of the object searched for or a NULL pointer.

3.3.9.4. Fault messages

No explicit fault message is generated. Some failure modes are assimilated to the result of not finding the searched
node. In both cases the output returned is NULL.

3.3.10. Functiontdata_base_struct search_script(void)

3.3.10.1. Description

This routine implements the search for an object in the VFS within the tree containing active server objects (i.e. cgi
scripts). The routine has no input parameters and the search process is controlled by the values of environment

variablesresource_path, resource_type, username anduserpass . The search is done by the call
to theFindNode routine (see § 1.3.7.) applied to the VFS tree having the root referencedgiy ltie variable.

3.3.10.2. Inputs

None.

3.3.10.3. Outputs

Reference of the descriptor of the script object searched for or a NULL pointer.

3.3.10.4. Fault messages

No explicit fault message is generated.

Page 3-52 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

3.4. Modulebasicencoder

This helper module implements the basic functions used to decode the incoming username/password pair coded
according to dase—64 algorithm. The functions of this module are called uniquely within the context of the env_var
module and serve to decode password and username variables arrived in the input Pa¥é-e84eoded string.

Base—64 coding is a process of replacing an ACSII character sentence by a coded character string according to the
following procedure:

1. the original string is divided into a sequence of groups of three characters;

2. the group of three characters is considered to be an entity composed of 24 bits. The last group can have one , two
or three characters. If the last group is incomplete, the corresponding entity is filled with O on its least significant
bits;

3. Each entity is decomposed on 4 nibbles each having 6 bits. The nibbles are interpreted as integers; the values
of these integers lie within the interval [0,63]. At that stage the string on n characters is replaced by the sequence
of k integers where:

k = ((n div 3) +m)*4 ; if(n mod 3 ==0) m =0; else m=1,

4. The sequence of k integers is replaced by the sequence of k characters selected in the cotfiruprgmised
of 64 ASCII characters. In the base—64 standard the coding vector is composed as follows:

e first 26 places (0 — 25) are occupied by the uppercase |at&rs
e next 26 places (26 — 51) are occupied by the lowercase keters
e next 10 places (52 — 62) are occupiediigjits 0-9

e last two places 62 and 63 are occupied by charactens!/

5. Each integex is replaced by the charactix]; trailing zero integers are replaced bycharacter;

6. The algorithm produces the sequence of k ASCII characters.

The most widely implemented authentification procedure uses this coding algorithm to encrypt the user name and
user password sent via the network. The two functions from this package are used to implement the reverse process
i.e. the base—64 decoding algorithm.

3.4.1. Functionint getkey(char k)

3.4.1.1. Description

This function is used to compute the place of a character provided as its input in the base—64 coding vector.

3.4.1.2. Inputs

The only input is the character to be decoded.

3.4.1.3. Outputs

The output corresponds to the place occupied by the character in the coding vector.

3.4.1.4. Fault messages

If the character does not belong to the coding vector, —1 is returned.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-53

Use

3.4.2. Functionunsigned short decode_four(unsigned char inpbuf[4], char* outstr,
unsigned char ptr)

3.4.2.1. Description

This routine produces three ASCII characters corresponding to a 24-bits entity represented by the four elements of
the vector passed via the first routine’s parameter. The ASCII characters are placed in the character string whose
reference is passed via the second parameter. The characters are written into the string starting from the position
indicated by the third routine’s parameter. The result returned corresponds to the next free place within the string,
i.e. its value is equal to the value of the third parameter increased by three.

3.4.2.2. Inputs

The three input parameters are as follows:

® four—element array of integers containing 4 consecutive nibbles of 6 bits each which together form the 24-bit
entity;

® pointer to an existing character string which is supposed to receive the decoded characters;

® offset with respect to the string’s beginning, starting from which the three retrieved characters are to be placed.

3.4.2.3. Outputs

The output corresponds to the first free place within the string from which the subsequent characters can be written;
this value is equal to the value of the third input parameter increased by three.

3.4.2.4. Fault messages
No explicit failure mode is coded. The routine expects that the string referenced by the second parameter exists and

that it has at least three places free in order to receive the decoded parameters. If this precondition is not fulfilled the
result of the procedure operation is not predictable.

Page 3-54 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

4. PACKAGE HTML GENERATION

The package regroups the modules which provide the services related to the on-line generation and handling of the
embedded HTML pages.

commondef
(from VFS Handling)

html_conv_module

+ HtmlPageToString() + init_char()

+ close_char()

html_page_elements

+ Makehtml_page_elements()
+ Releasehtml|_page_elements()
+ html_page_elements_IsType()

gen_tree_module

+ BuildHtmIPage()
+ BuildHtmlimage()

html_gen_hl + BuildHtmITable()
+ BuildHtmITableTitle()
+ create_hyperlink() + BuildHtmIForm()
+ create_paragraph() + BuildPlainText()
+ create_script() + BuildApplet()
+ create_formatted_text() + BuildHtmITableCell()

+ create_table_cell()

+ BuildEmptyLines()
+ create_table_row()

+ BuildSeparator()

+ fs\ppend_rows__to_table() |~ +Builedvaluedinput()
+ insert_empty_lines() + BuildTextInput()
+ _make_htm_l_form()_ + Buildimagelnput()
+ insert_horizontal_line() + BuildButtonInput()
+ !nsert_plam_text() + BuildCheckablelnput()
+ insert_formatted_text() + BuildTextArealnput()
+ !nsert_s_lmple_llnk() + InitHtmIObjectChain()
+ insert_link() + InitTableRow()
+ AppedRowToTable()
+ AppendObjectToPage()
+ AppedObjectToChain()

+ AppendIinputToForm()
+ AppendCellToRow()
+ AppendIinternalObject()

Figure 3.6 — Module relationship within the packagdHTML GENERATION

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-55

Use

The package is composed of the four following modules:

® html_page_elements — defines the fundamental data tythéml_page_elements which is the
basis of all embedded html page constructs;

® gen_tree_module — provides the routines supporting on—line generation of the embedded htm| page
elements;

® html_gen_hl — completes the routines provided by ge:_tree_moduléy some higher level

wrapper routines;

® html_cov_module — provideghe front end routine converting the internal structure of embedded jpages
to a character oriented representation.

The relationships between the modules of the package are showed by the diagram in Figure 3.6.

Page 3-56 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

4.1. Modulehtml _page elements

Thismodule defines data types and routines on which is constructed the internal representation of embedded HTML
pages. The most important item defined by the module is the datttypepage elements . Although the

module is coded in ANSI C programming language, only a small part is directly written in C. The vast majority of
code, including the data type definition, is automatically generatedtbgne of the processors belonging to the
Cocktail toolbox (see chap. 2 § 2). The original specification of the module is done usasgjretax[9].

Apart from the data type the module provides the definition of the three following functions:

4.1.1. Definition of thtml_page_elements data type

The definition of thtml_page_elements follows the regular scheme:
typedef union {
yobj_type_name_1 obj_type name_1;
yobj_type name_2 obj_type name_ 2 ;
yobj_type name_n obj_type _name_n;
} * thtml_page_elements ;

The type is a pointer to a union which groups the structures. Each variant of the union designates the type of object
belonging to the HTML objects belonging to the embedded server pages. These types have a very regular
construction following this schematic:

typedef dll_obj_desc_tKind unsigned char;
typedef {dll_obj_desc_tKind Kind ;
dll_obj_desc_tNodeHead yyHead ;

object attribute fields

} yobject name ;

The first field of each object is the tgnd which identifies the object class. The second field of the record is used
by the internal modules to manage the pool of objects.

The rest of each structure is composed of the series of object attribute definitions. In principle, the user must not
modify these attributes manually and should rely on the set of routines furnished by this module as well as by the
modulesgen_tree_modulandhtml_gen_hl

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-57

Use

The type of the first structure field is the sub typermdigned char

and takes on the values from 1 to 35.

values of this type are redefined as a set of symbolic constants according to the following scheme:

The

other

e, like

ects of

olour,

bset and

Value | Symbolic name attributed Kind of object designated

1 khtml_page representation of an embedded HTML page

2 kobject_list object class which represents collections of HTML objects contained in
structures

knoobjects object marking the end of collection
khtml_objects single element of object list

5 khtml_page_object abstract class representing any element (tag) belonging to the HTML pad
paragraph, form, table, image, etc.

6 kparagraph object representing paragraph tag

7 kscript object representing script tag

8 kbasic_object abstract class which represents any tag except paragraph and script

9 kinsertable_object abstract class representing objects which can be inserted into other obj
basic_object type

10 kformatted_text objects representing pieces of HTML text having such features as, d
alignment style, font size etc.

11 khtml_image object representing image embedding tags

12 kplaintext objects representing plain non formatted text

13 kseparator abstract class grouping empty lines and horizontal lines

14 kemptyline object representing a group of empty line
 tags

15 kline object representing horizontal lines

16 khyperlink object representing hyperlink tag

17 khtml_table object representing HTML table

18 khtml_form object representing HTML form

19 kapplet object representing applet embedding tag

20 ktable_cell object representing a single cell of an HTML table

21 ktable_row object representing a single row of an HTML table

22 ktable_title object representing title of an HTML table

23 kinput_desc abstract class representing tags which are used to build HTML forms

24 kinput any form element except for an image

25 kbutton button form field

26 ksimple_input abstract class representing three types of form element classes: hidden, r
submit

27 khidden object representing form component of hidden type

28 ksubmit object representing form component of submit type

29 kreset object representing form component of reset type

30 ktext object representing form component of one line text type

31 ktextarea object representing form component of long text type

32 kcheckable abstract class representing checkbox and radio button objects

33 kcheckbox object representing a checkbox component

34 kradio object representing a radio button component

35 kimage object representing an image embedded within an HTML form

Table 3.8 — Symbolic name corresponding to the value of the first field

Page 3-58

Field Device Web Server Release 1.0 Software User Manual

ALS 53424 a—

en

Use

In the current version of embedded HTML there exist thirty—five types of objects in three groups:

one high level classtml_page representing complete HTML pages;

one high level abstract classnl_page_object representing any type of HTML tags which can be used
with an embedded page;

seven abstract classes representing types of HTML obledie:_object, insertable_object,
separator, input_desc, input, simple_input and checkable ;these classes of objects are
used very rarely, only when it is necessary to represent the common properties of other classes;

three classes of HTML container objeqiaragraph, html_table, and html_form ; these objects
represent the composite HTML objects which contain simple ones;

nine classes of objects which represent active parts of an HTML form dhjéon, hidden, reset,

submit, text, textarea, radio, checkbox andimage ,

three classes of objects used to form collections)ligibject list, html_objects and
noobject ;

three classes of intermediate level objects forming HTML tatiédde_title, table_cell and
table_row ;

eightclasses of elementary objects representing the most frequently used HTML tags from which the embedded
pages are constructestript, formatted_text, plaintext, html_image, emptyline,
line, applet and hyperlink.

Each class, whether abstract or concrete, has a number of attributes; the attributes for the non abstract classes are
specified and described in the following table:

Object name Attribute Attribute type Description
name
title pchar character string containing html page title
bgimage pchar character string containing background colour referencg for
the page
html_page bgname pchar character string containing background image reference for
the page
meta_refresh unsigned char value of meta refresh parameter in seconds
meta_url pchar character string containing the url of object reference bging
the meta url parameter
objects thtml_page_elements list of elements contained within the page body
paragraph align pchar character string containing paragraph alignment style
objects thtml_page_elements list of elements contained within the paragraph body
title thtml_page_elements pointer to object of title kind
border unsigned char width of table border in pixels
spacing unsigned char value of cell spacing parameter in pixels
html_table padding unsigned char value of cell padding parameter in pixels
width unsigned char table width in %
bgcolor pchar code of background color (i.e. # FFF000)

Table 3.9 — Description of non abstract class attributes

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-59

Use

hen

i on

—

hge

)

Object name Attribute Attribute type Description
name
objects thtml_page_elements list of row objects
method pchar character string containing name of method applied w
form is submitted (POST or GET)
html_form action pchar character string containing the url of the object activate
the server as the result of form submission
objects thtml_page_elements list of objects contained with the form
html_objects object thtml_page_elements pointer to the object in the list head
next thtml_page_elements pointer to the rest (tail) of the list
noobject No parameters
table_title align pchar character string containing title’s alignment style
tobj: thtml_page_elements list of objects included in the title
align pchar character string containing alignment style
table_cell width unsigned char relative cell width in %
colspan unsigned char horizontal cell span in number of columns
rowspan unsigned char vertical cell span in number of rows
objects thtml_page_elements list of objects contained in the cell
table_row objects thtml_page_elements list of cell objects in the row
script language pchar character chain containing script language name
objects thtml_page_elements list of plain text paragraphs contained in the script
color pchar character string containing font color code
size unsigned char font size in points
isbold unsigned char flag set to a non zero value when font is bold
formatted_text | isblinking unsigned char flag set to a non zero value when font is blinking
style unsigned char value ofl to n for stylesH1 to Hn
objects thtml_page_elements pointer to the list of objects contained within this objeq
plaintext text pchar pointer to the chain of characters containing the text
src pchar character string containing url of image source file
alt pchar character string containing the “alternative” string
html_image width unsigned char image maximum width in pixels
height unsigned char image maximum height in pixels
border unsigned char image maximum border width in pixels
emptyline nr unsigned char number of consecutive empty lines within the p
generated by this object
width unsigned char relative line width in %
line size unsigned char line thickness in points
align pchar character string containing line’s align style
applet code pchar character string containing the url of applet’s source fi
codebase pchar character string containing the url of the direct

containing applet’s source file

bry

Page 3-60

Table 3.9 — Description of non abstract class attributes (continued)

Field Device Web Server Release 1.0 Software User Manual

ALS 53424 a—

en

Use

t of

,

ers

and

ink

on

ated

pset

mit

age

age

oup

ular

splay

ular

splay

Object name Attribute Attribute type Description
name
applet alt pchar character string containing the “alternative” string
width unsigned char width of area reserved for applet in pixels
height unsigned char height of area reserved for applet in pixels
ref pchar string of characters containing url of referenced objeq
the link
hyperlink target pchar string of characters containing reference of browsg
object in which the link reference is to be displayed
isref unsigned char flag set to a non zero value when the link is a hyperlink,
set to zero when it is an anchor
objects thtml_page_elements pointer to the list of objects contained within the hyper
name pchar string of characters containing the object’'s name
button value pchar string of characters which will be displayed on the but
onClick pchar string of characters containing the name of script activ
by the click on the button
hidden name pchar string of characters containing the object’'s name
value pchar string of characters attributed as the object’s value
reset name pchar string of characters containing the object's name
value pchar string of characters which will be displayed on the r
button
submit name pchar string of characters containing the object’s name
value pchar string of characters which will be displayed on the sulj
button
name pchar string of characters containing the object’'s name
text value pchar string of characters displayed in the object at p
activation
size unsigned char height of the object
maxlength unsigned char maximum length of the object
name pchar string of characters containing the object's name
textarea value pchar string of characters displayed in the object at p
activation
rows unsigned char height of object in rows
cols unsigned char width of objects in columns
name pchar string of characters containing name of radio button g
radio value pchar string of characters which gives the name of the partig
element of the group
checked unsigned char check flag, when set to a non zero value causes the d
of the button as checked
checkbox name pchar string of characters containing name of checkbox grodip
value pchar string of characters which gives the name of the partig
element of the group
check flag, when set to a non zero value causes the d
of the checkbox as checked
image name pchar string of characters containing the object’'s name
src pchar string of characters containing url of file which stores

the

image

ALS 53424 a—en

Table 3.9 — Description of non abstract class attributes

Field Device Web Server Release 1.0 Software User Manual

Page 3-61

Use

4.1.2. Functionthtml_page_elements Makehtml|_page_elements(uchar Kind)

4.1.2.1. Description

This routine creates an object of the type specified in Table 3.9 and returns the reference to it. The object is created
in the system heap.

4.1.2.2. Inputs

The input parameter specifies the kind of the object to be created; its value should correspond to one of the constants
specified in the Table 3.8.

4.1.2.3. Outputs

The returned value is a reference of the newly created object (pointer to the object) if creation succeeds.
4.1.2.4. Fault messages

In case of failure the procedure returns the NULL pointer.

4.1.3. Procedurevoid Releasehtml_page elements(thtml_page elements object)

4.1.3.1. Description

This routine destroys the object referenced by the input parameter. The heap area occupied by the object is returned
to the system.

4.1.3.2. Inputs

The input parameter references the object to be destroyed.

4.1.3.3. Outputs

None.

4.1.3.4. Fault messages

None.

Page 3-62 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

4.1.4. Functionhtml_page_elements_IsType(thtml_page_elements object, uchar Kind)

4.1.4.1. Description

This routine checks whether the object referenced by its first parameter is of the type referenced by the second
parameter. The object is considered to be of the given type in two cases:

® it belongs to a sub type of the specified type: phaintext is of type kbasic_object and
kinsertable_object ;

® it is strictly of the specified typapplet or is of typekapplet

4.1.4.2. Inputs

The first input parameter references the object, the second provides the type to be checked with.

4.1.4.3. Outputs

The function returns 1 if the object is of the specified type and O if it is not.

4.1.4.4. Fault messages

None.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-63

Use

4.2. Modulehtml_gen_hl

This module groups routines of two types. The first group is composed of eight routines whicharzater

objectsof thethtml|_page_elements type. Container objects are objects which possess a collection of other
objects. @bles, scripts, links, and formatted texts are container objects since they carstoptaiobjecttike plain

text paragraphs, images, or separator lines. They can also contain other containers: a table can contain a link or a form.

The second group is composed of six routines whose role consists in inserting certain objects of the
thtml_page_elements type in thehtml_page object.

The functional similarity between the routines in each group allows us to give their collective, concise description
as provided in the following sections.

4.2.1. Routines generating container objects

The operations of all the routines which belong to this group are similar. They consist of two successive operations:

1. creation of an empty container object featuring the characteristics described by its attributes passed via routine
parameters;

2. filling in of the container with the collection of objects passed via routine parameters.

The signatures of the routines follow a regular scheme:
thtml_page_elementsrgutine name
(<attribute params section unsigned char nr_of objects,...)

One can distinguish three groups of parameters:

® variable number of parametesattribute params section> conveying the values of container
object attributes (object dependent number, order and attribute type);

® parametenr_of objects conveying the number of objects to be inserted in the container (one parameter);

® n parameters, represented in the scheme,by conveying the references of objects inserted in the container.

All the routines return the objects of ttigml_page_elements type.

Page 3-64 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

4.2.1.1. Description

The following table contains the description of the routines.

Routine Description

create_hyperlink creates a hyperlink object and fills it in with a set of n objects passed by the
last n routine parameters

create_paragraph creates a paragraph object and fills it in with a set of n objects passed|by the
last n routine parameters

create_script creates a script object and fills it in with a set of n objects passed by the last
n routine parameters

create_formatted_text creates a formatted text object and fills it in with a set of n objects passed by
the last n routine parameters

make_html_form creates a form object and inserts into it a set of n objects passed by the last n
routine parameters

create_table_cell creates #able_cell object and inserts into it a set of n objects passed by the last
n routine parameters

create_table_row (uchar:, ...:) creates &able_row object and inserts into it a set of n table_cell objects passed
by the last n routine parameters

append_rows_to_table inserts into an existing, empty html table object a collection of n rows passed
by n last parameters

Table 3.10 — Routine description

4.2.1.2. Inputs

The signature of the functions from the first group reveals the regularity of the parameters mentioned in § 4.2.1. The
semantics of the parameters belonging to the second and third gnsignéd char nr_of_obj and...

) is straightforward and common to all routines. On the contrary, the parameters of the first group vary in number
and in significance from one routine to another. For this reason they require a more detailed description, contained
in the following table.

Routine Parameter Parameter types Description
create_hyperlink (pchar ref, pchar target, unsigned char isref, unsigned char nr_of_obj, ...)

ref pchar URL of objects referenced by the link

target pchar target for displaying object referenced by fef
attribute

isref unsigned char flag which when set signifies that the object is
hyperlinkand when reset means that the object is an
anchor

create_paragraph (pchar align,unsigned char nr_of_obj, ...)

‘ align ‘ pchar alignment style of the paragraph

‘ language ‘ pchar ’

create_formatted_text(pchar colour, unsigned char size, unsigned char bold, unsigned char blink, unsigned char style,
unsigned char nr_of_obj, ...:)

colour pchar font colour denomination

size unsigned char font size

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-65

Use

Routine Parameter Parameter types Description
bold unsigned char flag setting the bold font
blink unsigned char flag setting the blink mode of font
style unsigned char number of style defined by HTML (H1-H5)

make_html_form (pchar action, pchar method, unsigned char nr_of_obj, ...)

action pchar URL of an object which will be activated after the
form submission

method pchar method used for the submission (POST or GET)

create_table_cell pchar align, unsigned char width, unsigned char collspan unsigned char rowspan, uchar
char nr_of_obj,.. ..)

align pchar alignment style of the cell
width unsigned char cell width in %

collspan unsigned char cell column span in pixels
rowspan unsigned char cell row span value in pixels

create_table_row (unsigned char nr_of_objects)
No parameters in the first group since row object does not have any particular attribute
append_rows_to_table (thtml_page_elements table: , unsigned char nr_of_objects)

9%
o

table thtml_page_element pointer to a table to which rows will be append
s table

Table 3.11 — Description of first group parameters

4.2.1.3. Outputs

Each function generates an object referenced by the pointertbiitiiepage elements type. The kind of
object corresponds to the routine’s role and is described in the previous table.

4.2.1.4. Fault messages
No fault message is generated. If a routine fails to create an appropriate object, the NULL pointer is returned.
4.2.2. Routines which append simple objects to html pages

4.2.2.1. Description

The role of these routines consists in appending an html object to a page object. The module provides six routines
whose role is described in the following table.

Routine Role
insert_empty_lines Appends a series of empty lines to the page
insert_horizontal_line Appends a horizontal line to the page
insert_plain_text Appends a plain text paragraph to the page
insert_formatted_text Appends a formatted text object to the page
insert_link Appends an html link to the page
insert_simple_link Appends a simplified link (with plain text only) to the page

Table 3.12 — Routine role

Page 3-66 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

4.2.2.2. Inputs

The signatures of the routines follow a regular scheme:
thtml_page_elementsrgutine name (thtml_page_elements pageattribute sectiorr)
The first input parameter of the procedure is always the reference of an HTML page object on which the routine will

operateThis parameter is followed by the object attribute section whose contents varies from one routine to the other.
The following table describes the attribute section for each routine of the group.

Routine Parameter Meaning
insert_empty_lines (thtml_page_elements page, unsigned char nr_of_lines)
unsigned char nr_of _lines number of empty lines to insert
insert_horizontal_line (thtml_page_elements page, unsigned char width, unsigned char height, pchar align)
unsigned char width width of the line in %
unsigned char height height of the line in points
pchar align reference of a string representing line’s alignment mode

insert_plain_text (thtml_page_elements page, pchar text)

pchar text reference of the text to be inserted

insert_formatted_text (thtml_page_elements page, pchar text, pchar colour, unsigned char size, unsigned char,
unsigned char, unsigned char)

pchar *text reference of the contained text of foematted_texbbject
pchar colour denomination of the font colour

unsigned char size font size

unsigned char is Bold when set, this flag formats the text to bold

unsigned char is Blinking when set, this parameter makes the text blink
unsigned char style paragraph style (predefined from H1 to H5)

insert_link (thtml_page_elements page, thtml_page_elements element_list, pchar ref, pchar target, unsigned char
isref)

thtml_page_elements list of elements contained in the link object

element_list

pchar ref URL of objects referenced by the link

pchar target target for displaying the object referenced by ref attribute
unsigned char isref when set, flag signifies that the object is a hyperlink jand

when reset, means that the object is an anchor
insert_simple_link (thtml_page_elements page, pchar text, pchar ref, pchar target, unsigned char isref)

pchar reference of text to be inserted into link

pchar ref URL of objects referenced by the link

pchar target target for displaying the object referenced by ref attribute
unsigned char isref flag which when set signifies that the object is a hyperflink

and when reset means that the object is an anchor

Table 3.13 — Description of the attribute section for the six first group routines

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-67

Use

4.2.2.3. Outputs

All the routines from the group return a reference to an object dfittimé page elements type. The result
is normally the pointer to the page with the appended object.

4.2.2.4. Fault messages

No fault message is generated. If the operation programmed by the routine fails, it returns a NULL pointer.

Page 3-68 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

4.3. Modulegen_tree_module

This module contains the routines which realise two types of functions:
® creation of HTML related objects;

® extension and modification of HTML related objects.
They are described in the following sections:

4.3.1. Routines which generate HTML related objects

The routines from this group are specialised in generation of an object of a given type. Usually the name of the routine
is significant and tells which type of object the routine creates. The following list introduces the routines and their
signatures, i.e. the list of parameter types between brackets.

® BuildHtmIPage (pchar, pchar, pchar, unsigned char, pchar, thtml_page_elements);
® BuildHtmlimage (pchar, pchar, unsigned char, unsigned char, unsigned char);

® BuildHtmITable (thtml_page_elements, thtml_page_elements, unsigned char, unsigned char, unsigned char,
unsigned char, pchar);

® BuildHtmITableTitle (thtml_page_elements:, pchar:);

® BuildHtmIForm (thtml_page_elements:, pchar:, pchar:);

® BuildPlainText (pchar);

® BuildApplet (pchar, pchar:, pchar, unsigned char, unsigned char);
® BuildHtmITableCell (pchar, unsigned char, unsigned char, unsigned char, thtml_page_elements:);
® BuildEmptyLines (unsigned char);

® BuildSeparator (unsigned char, unsigned char, pchar);

® BuiledValuedinput (unsigned char, pchar, pchar);

® BuildTextInput (pchar, pchar, unsigned char, unsigned char);

® Buildimagelnput (pchar, pchar);

® BuildButtonlnput (pchar, pchar, pchar:);

® BuildCheckablelnput (unsigned char, pchar, unsigned char);

® BuildTextArealnput (pchar, unsigned char, unsigned char, pchar).

4.3.1.1. Description

Eachroutine, when successful, generates an object of an appropriate kind on the system heap. To do this the routines
use the functioMakehtml_page_elements from the moduléntml_page_elements.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3—-69

Use

4.3.1.2. Inputs

Input parameters of the functions convey the values of object attributes. Their number and type depend on the kind
of objects constructed by the function. The following table describes the parameters of each group function.

Function name Parameters
name type description
title pchar character string containing page title
bg_image pchar character string containing URL of background image
BuildHtmIPage bg_colour pchar background color code
meta_refresh | unsigned char value of refresh period in seconds
meta_url pchar character string containing url of replacement page
obj_list thtml_page_elements| pointer to the list of objects contained within the page
source pchar character string containing URL designating location
of (virtual) file which stores the image
alt pchar character string which is displayed when image is
pointed to by cursor
BuildHtmlIimage width unsigned char width of the image
height unsigned char height of the image in pixels
border unsigned char width of the image border in pixels
objects thtml_page_elements| pointer to the list of table rows
title thtml_page_elements| pointer to the table title object
border unsigned char width of table’s border in pixels
BuildHtmITable spacing unsigned char cell spacing in pixels
padding unsigned char cell padding in pixels
width unsigned char relative table width in %
bg_color pchar background color code
BuildHtmITableTitle | objects thtml_page_elements| pointer to the list of objects contained in the tftle
(images, plain text or formatted text objects)
align pchar title alignment description
objects thtml_page_elements| pointer to the list of objects contained in the form
BuildHtmIForm method pchar character string designating method used on the form
submission
action pchar character string designating the server object activiated
by the form submission
BuildPlainText text pchar pointer to the character string containing the text
code pchar, name of virtual file containing applet bytecode
codebase pchar:, virtual directory containing applet code
BuildApplet alt pchar, character string which is displayed when image is
pointed to by the applet
width unsigned char width of the applet in pixels
height unsigned char height of the applet in pixels
align pchar, alignment code for objects contained wthin the cel
width unsigned char cell width in % of table width
BuildHtmITableCell | colspan unsigned char nb of columns which span the cell
rowspan unsigned char nb of rows which the cell spans
objects thtml_page_elements| list of objects contained within the cell

Page 3-70

Field Device Web Server Release 1.0 Software User Manual

Table 3.14 — Description of parameters according to function

ALS 53424 a—en

Use

Function name Parameters
name type description
BuildEmptyLines nr_of lines unsigned char nb of empty lines represented by the object
BuildSeparator width unsigned char width of the line in %
height unsigned char thickness of the line in pixels
align pchar alignment code for the line
kind unsigned char this parameter indicates the kind of object; it can fake
only predefined values which arekhidden,
ksubmit orkreset
BuiledValuedinput name pchar character string which contains the input identifier
init_value pchar value given to the object; semantics of this paranjeter
vary from one type of object to another
name pchar character string which contains the input identifier
BuildTextInput value pchar text which is initially displayed in the input
size unsigned char height of the input in pixels
maxlength unsigned char length of the input given in number of characters.
Buildimagelnput name pchar character string which contains the input identifier
source pchar path to the (virtual) file which contains the image
contents
BuildButtonInput name pchar character string which contains the button identifigr
value pchar character string which contains the text which is tg be
displayed on the button
onClick pchar character string which contains the name of the sgript
activated when the button is clicked
BuildCheckablelnput| kind unsigned char this parameter indicates the kind of object; it can fake
on only predefined values which areradio or
kcheckbox
BuildCheckablelnput| name unsigned char character string which contains identifier of groug to
which object belongs
value pchar character string which contains the name of the olpject
checked unsigned char flag which indicates if the object is displayed |as
checked
name pchar character string which contains the input identifier
rows unsigned char control’'s height in rows
BuildTextArealnput | cols unsigned char control’'s width in columns
text pchar text to be displayed initially in the control

Table 3.14 — Description of parameters according to function (continued)

4.3.1.3. Outputs

All the routines return a pointer of tiietml_page_elements

given kind. In case of failure of the routine, a NULL pointer is returned.

4.3.1.4. Fault messages

There is nexplicit fault message. The only reason for a routine to fail is lack of room in the system heap. In this case

a NULL pointer is returned.

ALS 53424 a—en

Field Device Web Server Release 1.0 Software User Manual

type which references the created object of a

Page 3-71

Use

4.3.2. Routines which modify the structure of HTML related objects

This set of routines is designed to complete the generation of objects such as pages, forms, table rows and tables. All

these objects can contain other objects normally attached to them as a chain of objects. The following routines help
to create and handle the chains.

4.3.2.1. Description

This group of functions is composed of seven routines described in the following table.

Routine

Parameters

Description

InitHtmIObjectChain

thtml_page_elements firstobj

this routine initialises a list of objects and attacheg
pointer passed to it by the first parameter

the

AppedObjectToChain

thtml_page_elements chain
thtml_page_elements object

this routine attaches the object pointed to by its se
parameter to the chain pointed to by the sed
parameter

ond
ond

AppendinternalObject

thtml_page_elements int_obj
thtml_page_elements object

this routine attaches the object pointed to by its se
parameter to a container object pointed to by the
parameter; container objects admitted in this rou
are: paragraph, formatted text hyperlink, script a
table cell

ond
first

tine

hd

AppendObjectToPage thtml_page_elements page this routine attaches the object pointed to by its se¢ond
thtml_page_elements object parameter to an HTML page object specified by [the
first parameter
AppedRowToTable thtml_page_elements table this routine attaches the table row object pointed tp by
thtml_page_elements row its second parameter to an HTML table object specffied
by the first parameter
AppendCellToRow thtml_page elements row this routine attaches the table cell object pointed tp by

thtml_page_elements cell

its second parameter to a table row object specifie
the first parameter

AppendinputToForm

thtml_page_elements form
thtml_page_elements input

this routine attachdbe form input object pointed to 4
its second parameter to an HTML form object speci

by the first parameter

4.3.2.2. Inputs

Table 3.15 — Description of routines

The routine signature has a very regular structure, as it can be seen from the previous table. The meaning of both
parametefunctions is always the same: the first means container object and the second means the object to be added
to the list of contained objects.

Only first routine is different from the others since its role consists in preparation of an object chain for further usage.

4.3.2.3. Outputs

thtml_page_elements —pointer to an object of a given type.

4.3.2.4. Fault messages

None.

Page 3-72 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Use

4.4. Modulehtml _conv_module

The role of this module consists in transformation of HTML related objects to character strings ready to be
transported through the network. The module contains many local routines, each specialised in transformation of a
particular type of object. The only routine accessible from the outside of the modulklisitRageToString

function described in the following section.

4.4.1. Functionunsigned short HtmIPageToString (pchar buffer, unsigned char buff_ptr,
thtml_page_elements html_page_obj)

4.4.1.1. Description
This function converts a complete, well formed HTML page object into a zero—ended string of printable characters.
The string is placed in a buffer and can be either processed locally in order to obtain page modifications or can be

sent via the network to an http client (Internet browser). The routine design is based on the principle that a large
enough character buffer is available for the reception of the generated character string.

4.4.1.2. Inputs

The routine has three inputs:
® reference of the memory area (character buffer) which will store the string created by the routine;
® initial offset with respect to the beginning of the area from which the string will be written into the buffer;

® reference of the HTML page object to be converted.

4.4.1.3. Outputs

The routine returns the offset of the first byte immediately after the end of the string, written in the buffer i.e. the
first byte free in the buffer.

4.4.1.4. Fault messages

No error message is generated explicitly. When the routine fails to convert the object, the value returned is equal to
the value of the second input parameter.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page 3-73

Use

Page 3-74 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Appendix HTTP protocol specification for Field
A Device Web Server

This section contains the specification of the subset of the HTTP 1.0 protocol recognised by the analysing package
described in chapter 3 § 3. The most important restrictions with respect to the full specification, degd@ed in
are as follows:

1. Only POST and GET services are recognised,;

2. The object to be served is described by its access path. NULL access path describes server “by default object”
which should be on the server;

3. The access path syntax is as follows:

fident_step_1/ident_step_2/../ident_step_n/object_id[.ext]

4. The type of requested object is identified uniquely by its extension. The extensions recognised by this software
are:

htm, html HTML page
cqi CGl script
gif, jpeg image
class applet

no extension directory

5. The only legal characters in the path elements (identifiers of directories) are upper— and lowercase letters,
figures, underscore, minus and plus;

6. Identifiers in URL—encoded form content can additionally contain periods;

7. The identifiers should be shorter than 80 characters.

1. CONTEXT-FREE GRAMMAR OF HTTP REQUEST

The text which follows represent the listing of the context free grammar describing the operation of the Parser module
(see chap. 3 § 3.2.3.) generated by the Lark procEgsiwom the Cocktail toolbox.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page A-1

HTTP protocol specification for Field Device Web Server

PARSER
EXPORT {
#ifdef __ cplusplus
#include "env_class.h”
#endif
GLOBAL {
#include <stdlib.h>
define yylInitStackSize 20
define NO_RECOVER
#define ERROR printf("Syntax error in request\n”);
#include "commondef.h”
#ifdef __ cplusplus
#define EnvObjectPrefix http_env.
#else
#include "env_var.h”
#define EnvObjectPrefix
#endif

#include "data_base_module.h”

unsigned short
recover_res_category(const char * res_ext)
{
if (strcmp(res_ext, "htm”) == 0 ||
stremp(res_ext, "html”) == 0 ||
stremp(res_ext, "HTM”) == 0 ||
stremp(res_ext, "HTML”) == 0)
return c_text;
else if (strcmp(res_ext, "gif") == 0 ||
stremp(res_ext, "GIF”) == 0)
return c_gif;
else if (stremp(res_ext, "jpeg”) == 0 ||
stremp(res_ext, "JPEG”) == 0)
return c_jpeg;
else if (stremp(res_ext, "class”) == 0 ||
strcmp(res_ext, "CLASS") == 0)
return c_java;
else if (strcmp(res_ext, "cgi”) == 0 ||

strcemp(res_ext, "CGI”) == 0)

Page A-2 Field Device Web Server Release 1.0 Software User Manual

ALS 53424 a—en

HTTP protocol specification for Field Device Web Server

return c_script;
else
return c_unknown;
}

}
PROPERTY INPUT

RULE
http_request = <
=request_header END_MAIN .
=request_header opt_list END_MAIN .
=request_header opt_list END_MAIN urlcoding .
>
request_header =<
= method:ORDER uri version
=>{

EnvObjectPrefix method = method:Value;

I
1.
= method:ORDER uri URLSEP urlcoding version
{=>{
EnvObjectPrefix \method = method:Value;
b
}.
= method:ORDER uri - cgi_params URLSEP urlcoding version
{=>{
EnvObjectPrefix \method = method:Value;
I
1.
= method:ORDER uri '’ cgi_params version
{=>{
EnvObjectPrefix \method = method:Value;
i
}.

version = HTTP SLASH v:FLOAT

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page A-3

HTTP protocol specification for Field Device Web Server

{=>{

EnvObjectPrefix major_version = v:Value;

EnvObjectPrefix minor_version = (v:Value*10-10);

uri=<

= SLASH {=>{
strepy(EnvObjectPrefix resource_name,ROOT);
EnvObjectPrefix resource_category = c_text;
strepy(EnvObjectPrefix resource_type,ROOT);
h
=path {=>{
strcpy(EnvObjectPrefix resource_type,"dir”);

EnvObjectPrefix resource_category =c_dir;

EnvObjectPrefix recover_res_name();

= path POINT ext:IDENT { =>{

strcpy(EnvObjectPrefix resource_type,ext:ldent);

EnvObjectPrefix resource_category =
recover_res_category(ext:ldent);

EnvObjectPrefix recover_res_name();

FreeTokenStr(ext:Ident);

= path SLASH { =>{

EnvObjectPrefix recover_res_name();

Page A-4 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

HTTP protocol specification for Field Device Web Server

EnvObjectPrefix resource_category =c_dir;

strcpy(EnvObjectPrefix resource_type,"dir”);

cgi_params = <
= cgi_param .
= cgi_params '+’ cgi_param .
>
cgi_params_list = <
= cgi_param .
= cgi_params ', cgi_param .
>
cgi_param = <
= id:IDENT {=>{ url_val trpar;

trpar.string=id:ldent;

(void)EnvObjectPrefix add_cgi_par(c_string,trpar);
FreeTokenStr(id:ldent);
h
}.
= nr:NUMBER {=>{ url_val trpar;
trpar.integer =nr:Value;
(void)EnvObjectPrefix add_cgi_par(c_int,trpar);
Ji
}.
= nr:FLOAT {=>{ url_val trpar;

trpar.real =nr:Value;

(void)EnvObjectPrefix add_cgi_par(c_float,trpar);

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page A-5

HTTP protocol specification for Field Device Web Server

step = SLASH name:IDENT {=>{

EnvObjectPrefix resource_path = AppendStep(EnvObjectPrefix
resource_path,name:ldent);

FreeTokenStr(name:ldent);

path = <
= step .
= path step .
>,
opt_list =<
= option .
= opt_list option
>,
option = <
=code:OPTION val: RECUP { =>{

if (EnvODbjectPrefix
environment[code:Value] !=NULL)

FreeTokenStr(EnvObjectPrefix
environment[code:Value));

EnvObjectPrefix environment[code:Value]
=val:String;

if(code:Value ==optContLen)

EntitySize =EntitySize+atoi(EnvObjectPrefix
environment[code:Value]);

}
=alien:IDENT val: RECUP {=>{ /*free(alien:Ident);*/
FreeTokenStr(alien:Ident);
[* free(val:String);*/
FreeTokenStr(val:String);
k)
>,
urlcoding = <
= cgi_params_list .
= assign .

= urlcoding SEP assign .

Page A-6 Field Device Web Server Release 1.0 Software User Manual

ALS 53424 a—en

HTTP protocol specification for Field Device Web Server

>
assign =<
= name:IDENT ASSIGN rhs

{=>{ void* lvaladdr;

if (rhs:type ==c_string && rhs:Name)
Ivaladdr = &rhs:Name;
else if (rhs:type ==c_int)
Ivaladdr = &rhs:lValue;
else lvaladdr = &rhs:RValue;

(void)set_db_data(name:ldent,rhs:type,lvaladdr);

[*free(name:ldent);*/

FreeTokenStr(name:ldent);

if (rhs:type ==c_string && rhs:Name)
[*free(rhs:Name);*/
FreeTokenStr(rhs:Name);
h

}.

= alien:IDENT ASSIGN {=>{/* free(alien:ldent);*/

FreeTokenStr(alien:Ident);

Y}

rhs =<

= id:IDENT { type := c_string;
Name :=id:Ident;
IValue := 0;
RValue:=0;}

= nr:NUMBER {type := c_int;
IValue := nr:Value; } .

= fl:FLOAT { type := c_float;

RValue :=fl:Value; } .

IDENT : [Ident : pchar] { Ident := NULL
NUMBER : [Value (int] { Value =0;}.
FLOAT : [Value : float] { Value =0:}.

ORDER : [Value rint] { Value =0}

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual

Page A-7

HTTP protocol specification for Field Device Web Server

OPTION : [Value ;int] { Value =0;}
RECUP : [String : pchar].

Jx
MODULE tree
DECLARE
step

path = [tree: tTree SYN] .

END tree
*/
MODULE Params

DECLARE
rhs = [type:int SYN] [IValue:int SYN] [RValue:float SYN] [Name:pchar
SYN]
{type :=0; IValue :=0; RValue:=0; Name =
NULL;} .
END Params

Figure A.1 — Context free grammar for Parser module

Page A-8 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

HTTP protocol specification for Field Device Web Server

2. LEXICAL GRAMMAR OF TOKENS OF HTTP REQUEST

The following text represents the listing of lexical specifications of the Scanner module (see chap. 3 § 3.2.2)
generated by the Rex procesfgir

EXPORT {
include "Position.h”
#ifdef __cplusplus

include "env_class.h”
#else

include "env_var.h”
#endif
#include "rMemory.h”
INSERT tScanAttribute
}
GLOBAL {
define yyInitBufferSize 1048

define yylnitFileStackSize 1
#include <string.h>
INSERT ErrorAttribute

#define BUFFLENGTH 50
static char OptBuffer[BUFFLENGTH] =",

static unsigned char RecoverOption(char* InpStr)

{
if(stremp(InpStr,"REFERER")==0) return optReferer;

if(strcmp(InpStr,"CONNECTION")==0) return optConnection;
if(strcmp(InpStr,"HOST” ==0) return optHost;
if(strcmp(InpStr,"FORWARDED")==0) return optForwarded;
if(strcmp(InpStr,”ACCEPT”)==0) return optAccept;

if(stremp(InpStr,”ACCEPT-LANGUAGE")==0) return optAcceptLang;
if(stremp(InpStr,"”ACCEPT-CHARSET”)==0) return optAcceptChar;
if(strcmp(InpStr,”ACCEPT—ENCODING")==0) return optAcceptEnc;

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page A-9

HTTP protocol specification for Field Device Web Server

if(strcmp(InpStr,"USER-AGENT")==0) return optUserAgent;
if(strcmp(InpStr,”"UA-PIXELS”)==0) return optUAPIxels;
if(strcmp(InpStr,"UA-COLOR”)==0)return optUAColor;
if(strcmp(InpStr,”"UA-OS”)==0) return optUAQS;
if(strcmp(InpStr,”"UA-CPU")==0) return optUACPU;
if(strcmp(InpStr,"CONTENT-TYPE")==0) return optContType;
if(strcmp(InpStr,"CONTENT—LENGTH")==0) return optContLen;
if(strcmp(InpStr,”AUTHORIZATION”)==0) return optAuth;
if(strcmp(InpStr,"PRAGMA")==0) return optPragma;
if(strcmp(InpStr,”VIA”)==0) return optVia;
if(stremp(InpStr,"EXTENSION”)==0) return optExtension;
return MAXENV —1;

}
#define yySetPosition

}

DEFAULT { if(EntitySize>0)EntitySize—;printf("Scanner detected error in input,
illegal character code is : %d\n”,*(TokenPtr)); }

*DEFAULT { Messagel ("illegal character”,xxWarning,Attribute.Position,xxCharacter,
TokenPtr); } */
DEFINE

letter = {A-Za-z}.

digit ={0-9}.

id = letter | (letter | digit | _ | \— |\+ | %)(letter | digit | _ | \— |\+ |
%) + .

nr = digit+ .

If =\10.

cr =\13 .

sp =\32.

slash =/.

point =\..

sign = (\H\+) .

commentchar = — {\10 \13 \0}.
NULLCHAR =\0.

hex = (digit | Ala|B|b|C|c|D|d|E|e|FIf) -

flstr = (sign)? nr point nr (E(sign)?nr)? .

Page A-10 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

HTTP protocol specification for Field Device Web Server

START

option optstring ending

RULES

#STD# GET :— {Attribute. ORDER.Value = httpGET; return(ORDER); }

#STD# POST - {Attribute. ORDER.Value = httpPOST; return(ORDER); }

#STD# slash = {return(SLASH);}

#STD# point :— {return(POINT);}

#STD# HTTP - {return(HTTP);}

#STD# sign

#STD# flstr

#STD# id

?nr = { Attribute.NUMBER.Value = (long)atol (TokenPtr);

return (NUMBER); }

— { Attribute.FLOAT .Value = (float)atof (TokenPtr);
return (FLOAT); }
:— { Attribute.IDENT.Ident = (char*)AllocTokenStr(TokenLength);
GetWord(Attribute.IDENT.ldent);

return (IDENT); }

#STD,optstring, option# NULLCHAR :— {}

#STD# \&
#STD# \=

#STD# \?
#STD#\—
#STD#\+
#STD#\,

#STD# cr
#optstring#
#optstring#

:— {return(SEP);}
:— {return(ASSIGN);}

:— {return(URLSEP);}
— {return(’=); }
— {return(’'+); }

—{return(’,); }

If —{ yyStart (option); }
cr If —{ yyStart (option); }

commentchar* -

{Attribute. RECUP.String=(char*)AllocTokenStr(TokenLength);

#option# id

ALS 53424 a—en

GetWord(Attribute. RECUP.String);

return (RECUP); }

— { GetUpper(OptBuffer);

Attribute.OPTION.Value = RecoverOption(OptBuffer);

return(OPTION); }

Field Device Web Server Release 1.0 Software User Manual

HTTP protocol specification for Field Device Web Server

Page A-12

#option# \: — {yyStart (optstring); }
#option# cr If :— { yyStart (ending);return(END_MAIN); }
#ending# sign ? nr — { Attribute. NUMBER.Value = (long)atol (TokenPtr);

[* TestTokensInEnding();*/
EntitySize = EntitySize—TokenLength;
return (NUMBER); }

#ending# flstr :— { Attribute.FLOAT .Value = (float)atof (TokenPtr);
[* TestTokensInEnding(); */
EntitySize = EntitySize—TokenLength;
return (FLOAT); }

#ending# id (point id)* :— { Attribute.IDENT.Ident =
(char*)AllocTokenStr(TokenLength);

GetWord(Attribute.IDENT.Ident);
/¥ TestTokensInEnding(); */
EntitySize = EntitySize—TokenLength;
return (IDENT); }
#ending# \& = { *TestTokensInEnding();*/
EntitySize = EntitySize—TokenLength;return(SEP);}
#ending# \= — {/*TestTokensInEnding();*/
EntitySize = EntitySize—TokenLength;return(ASSIGN);}
#ending# NULLCHAR :— { if(EntitySize==0)return(EofToken); }

#ending# cr If :— {/*printf"AT THIS POINT THE ENTITY LENGTH IS:
%d\n”,EntitySize);*/

if(EntitySize==0)return(EofToken);}

Figure A.2 — Lexical specifications of Scanner module

Field Device Web Server Release 1.0 Software User Manual

ALS 53424 a—en

Appendix Configuration of Repository of Virtual file
B System

Server customisation consists in the design and generation of the Virtual File System of the server. This system
is composed of three basic elements:

® tree-like data structure whose role is equivalent to the role of file system management tables. Through this
data structure, calledkpository skeletonthe user can find, read and modify the files embedded in the host
environment,

® collection of routines which process this data structure,

® collection of memory regions storing the embedded files.

The repository skeleton is implemented as a web of interrelated records linked with the help of pointers. Its
structure is described in the following context free grammar, specified in the languagasifgirecessor.

MODULE AbstractSyntax
/* this is a modified file — uniform processing of objects is implemented */

TREE data_base_struct
EXPORT {

#include "commondef.h”
typedef void(*tscript)(int,...);

/* cleanup of character chains created in the VFS */
/* types of file nodes in VFS */
#define c_unknown 0

#define c_text 1

#define c_gif 2

#define c_jpeg 3

#define c_java 4

#define c_dir 5
#define c_script 6

}

GLOBAL {
#define yyALLOC(s1,s2) (tdata_base_struct)Alloc(s2)

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page B-1

Configuration of Repository of Virtual file System

#define yyFREE(p,s) Free(s,(char*)p);

#define closepchar(a) {if (a) close_char(a);}

}
[reexsrx ABSTRTACT SYNTAX TREE DESCRIBING VIRTUAL FILE SYSTEM STRUCTURE *sters

PROPERTY INPUT
RULE

repository =[name:pchar] <

root = member_list:node access_list [default_obj_name:pchar]
next:root .
node = next:node <
embedded_directory = member_list:node access_list .
embedded_active_node = [file_id:ushort][nature:ushort]<
embedded_file = [content:pchar] [size:ushort]
embedded_script = [script_exec:tscript] .
>,

>,
/* RESOURCE PATH ABSTRACT SYNTAX */
path = [step:pchar] next:path .

/* ACCESS LIST ABSTRACT SYNTAX */

access_list = [user:pchar] [password:pchar] next:access_list .

END AbstractSyntax

Figure B.1 — Structure of the repository skeleton

The ast processd®] transforms this grammar into an abstract data type which is implemented in the module
data_base_structure (see chap. 3 § 1.2). The routines used to generate and process this data structure are placed
in the module data_base_processing (see chap. 3 § 1.3) and generated with the Puma processor of the Cocktalil
toolbox [8]. The routines from these two modules are used to build the VFS repository skeleton. An example of

a skeleton constructing routine is presented in Figure B.1.

tdata_base_struct db_page_repository(void)
{tdata_base_struct Irepository;
tdata_base_struct Iptrstack[10];

Irepository = InitRepository(NULL,”"ROOT”,"page_root");
Iptrstack[0]=BuildFileNode("ROOT",index_str,0,0,1);
AppendNode(Irepository,Iptrstack[0]);
Iptrstack[0]=BuildDirNode("public”);
Iptrstack[1]=BuildFileNode("gaugel”,Hello_page_str,0,1,1);
InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("gauge2”,Hello_page_str,0,2,1);
InsertNode(Iptrstack[0],Iptrstack[1]);

Iptrstack[1]=BuildFileNode("di80_param_form”,di80_param_form_str,0,3,1);

InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("dvc5000_1",dvc5000_str,0,4,1);
InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("dvc5000_2",dvc5000i_str,0,5,1);
InsertNode(Iptrstack[0],Iptrstack[1]);
AppendNode(Irepository,Iptrstack[0]);
Iptrstack[0]=BuildDirNode("images”);

Page B-2 Field Device Web Server Release 1.0 Software User Manual

ALS

53424 a—en

Configuration of Repository of Virtual file System

Iptrstack[1]=BuildFileNode("alstom”,alstom_img,alstom_img_length,6,2);
InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("DI80Mimic”,DI80Mimic_img,DI80Mimic_img_length,7,2);
InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("ccd”,ccd_img,ccd_img_length,8,2);
InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("HartMimic1”,HartMimicl_img,HartMimicl_img_length,9,3);
InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("sensor”,sensor_img,sensor_img_length,10,2);
InsertNode(Iptrstack[0],Iptrstack[1]);
Iptrstack[1]=BuildFileNode("valve”,valve_img,valve_img_length,11,2);
InsertNode(Iptrstack[0],Iptrstack[1]);

AppendNode(Irepository,Iptrstack[0]);

Iptrstack[0]=BuildDirNode("javadir”);

Iptrstack[1]=BuildFileNode("Trend”, Trend_bcode,Trend_bcode_length,12,4);
InsertNode(Iptrstack[0],Iptrstack[1]);

AppendNode(Irepository,Iptrstack[0]);

return Irepository;

Figure B.2 — Example of skeleton constructing routine

This procedure builds the skeleton tree which spans the VFS repository presented as follows:

Repository root

Directory "public” irectory "images” Page by default

Directory javadir

Figure B.3 — Virtual File Tree

The repository skeleton generated by the procedure contains:
e one by default page nam&0DOT,

e directorypublic which contains five HTML pagegfaugel, gauge?2, di80_param_form,
dvc5000_1 anddvc5000_2;

e directoryimages which contains six images in gif and jpeg fornastom, DIB0Mimic, ccd,
HartMimicl, sensor andvalve;

e directorjavadir which contains one fileTrend .

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page B-3

Configuration of Repository of Virtual file System

Page B-4 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Appendix Embedding HTML Pages, Images and
C Applets

Embedded files containing passive server objects like HTML pages (or more precisely page templates),
compressed images and bytecode of Java applets are referenced by the leaves of the skeleton tree which describes
the server repository. These objects should be placed in well defined server memory areas and be efficiently
accessed when the request for service is received by the server engine. Two methods of creation of such objects
can be envisaged:

1. Static the corresponding memory area is reserved and filled in at server build time ; the advantage of such
a solution is its relative simplicity: the embedding process consists in transforming the objects into
correspondinglata structures expressed in C and in linking these objects with the server code; the disadvantage
of such a solution is the rigidity of the server structure which cannot be extended at run time;

2. Dynamic region reservation and filling in is done at run—time of the server program; the advantage of such
a solution is its flexibility — the files can be installed on the running server; the price to pay for this feature
is the increase in complexity of the server program which should support the means of loading files into
memeory regions at run—time (e.g. via TFTP protocol).

The current version of the Field Device Web Server supports only the first method of file installation. The
implementation of the second method can be envisaged without major problems, especially without the
degradation of the currently supported features.

The embedded file can be transformed into a module which is linkable with the server main program. An example
of such a file, embedding an imagegiih format, is shown in the following figure:

extern const unsigned char aautobull2_img[];
extern int aautobull2_img_length;

const unsigned char aautobull2_img[] = {
0x47,0x49,0x46,0x38,0x39,0x61,0x0c,0x00,0x0c,0x00,0xb3,0xff,0x00,0xff,0xff,0x66
,Oxff,0xff,0x33,0xff,0xff,0x00,0xcc,0xff,0x00,0xc0,0xc0,0xc0,0x99,0xff,0x00,0x99
,0xcc,0x00,0x99,0x99,0x00,0x99,0x66,0x00,0x66,0x99,0x00,0x66,0x66,0x00,0x33,0x66
,0x00,0x33,0x33,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x21,0xf9,0x04
,0x01,0x00,0x00,0x04,0x00,0x2¢,0x00,0x00,0x00,0x00,0x0c,0x00,0x0c,0x00,0x00,0x04
,0x42,0%x90,0xc8,0x49,0x6b,0xbb,0xb7,0x92,0x86,0x42,0x10,0x47,0x43,0x35,0x02,0xe0
,0x09,0x83,0x21,0x6e,0x88,0x79,0x0e,0x83,0x22,0x92,0x81,0x39,0x08,0xc6,0x91,0xcc
,0xde,0x57,0x14,0xba,0xdd,0x46,0x40,0x84,0x19,0x14,0x0b,0xd9,0xe6,0x00,0x1b,0x1c
,0x16,0x50,0xc6,0xaa,0x31,0x28,0x18,0x12,0x48,0xe9,0x48,0xal,0x53,0x68,0x2d,0x98
,0x95,0x24,0x02,0x00,0x3b};

int aautobull2_img_length = 149;
[*) */

Figure C.1 — Module representing the code of an embedded image (shown within the comment)

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page C-1

Embedding HTML Pages, Images and Applets

Page C-2 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Appendix Serving dynamic HTML

D

The packages of the Field Device Web Server provide two methods to generate pages whose context depends on the
data retrieved from the basic application called in the selymeimic pagesThe first of them concerns the pages
whichhave only a few variable elements placed within a large body of invariant data. The second concerns genuinely
dynamic pages containing many variable components the parameters of which vary frequently in time.

1. SKELETON BASED DYNAMIC PAGES

The first type of page should be structured into two components:

® page skeletor page invariant frame which can easily be edited using standard tools like MS Frotit Bage
part of the page can represent either the informative part of the page or the basic components of the interactive
part of the page;

® variable components page elements which change page aspect (font colours, parts of text, references to images,
type of interactive controls, applet parameters, etc.) or can change browser behaviour while processing the page
(parameters of page header, applet parameters, hyperlink contents, etc.); variable components are represented
by format expressions in C language (%s for strings, %d for integers, etc.).

The process of placing variable components within the page skeleton can be implemented either by the direct
modification of HTML code of the skeleton or in some cases can be handled during edition of the skeleton on the
specialised tool. The following example shows the piece of HTML code, which represents the page skeleton with
an inserted variable component.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page D-1

Serving dynamic HTML

The HTML page must be generated so as to resemble the page in Figure D.1 with the possibility of varying three

elements:
]”«..‘-IIII TFNIN el bdewed | eplimey bosrs g AL 8T D
Frien [l diehaw Tope Deie [-
e 9D B0 B8
ot e el Tem s e o
[T R R o T | R T N T R T R S TR i
|
PASSWORD ERROR
il
al By eiaw |
Figure D.1- View of the page from the example
1. Error messagé shown by the upper frame;
2. Part of texR on the left button shown by the lower frame;
3. Operation corresponding to a click on the left button (invisible in the figure).

The analysis of the problem shows that it is enough to provide the page template with three variable elements, all
three ofstring type. The page template will be laid out as in Figure 3.6. Three formats corresponding to three variable

parameters are shown in Figure D.2 as white fields.

Page D-2 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

<html>

<head>
<title>PASSWORD TESTS </title>
</head>

<body>
<script Language="JavaScript"><!—
function backhome_onclick() {
location="%s"
}
/l—></script>
<form method="POST" action="/public/di80_param_form.htm">
<div align="center’><center><p>PASSWORD
ERROR</p>
<[center></div>
<p align="center"> %s </p>

<p align="center"><input type="submit” value="BACK %s" name="SendButton">

 <INPUT id=backhome language=javascript name=backhome onclick="return
backhome_onclick()”

type=button value=Home style="font—family: FuturaA Md BT; font-weight: bold"></p>

</form>

</body>

</html>

Figure D.2 — Skeleton of the page from the example

Serving dynamic HTML

The section of program which makes this page resemble Figure D.1 is as follows:

char strlock[10] ;

char strerrmess[40];

char* strbuttext[10];

strepy(strolck, "/");

strcpy(strerrmess, "Your password is
wrong, re—enter it");

strepy(strbuttext, "TO FORM”);

status = sockprintf (sock_id,
page_template,
strlock,strerrmess,strbuttext);

Figure D.3 — Part of Figure D.1 program

This section of the program makes use of the rowowkprintf from the modulesockinterf (see chap. 3
§2.3.5.). It is also assumed that the varigidge template takes on the value of the character string
representing the page template from Figure 3.6.

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page D-3

Serving dynamic HTML

2. ON-LINE GENERATION OF PAGES

Pages of the second category are generated by the programs which make use of routines frorhl Plsitkage
GENERATION (see chap. 3 8§ 4.). These routines generate the structures of data which are the abstract
representations of the HTML pages and convert them to character strings inserted into the server’s response PDUSs.
The method gives more flexibility than the one previously described, since every parameter can be modified from
one procedure call to another. Figure D.4 shows an example of a procedure which constructs the abstract
representation of the page shown in Figure 3.5.

#include "html_gen_hl.h”

#include <malloc.h>

#include <string.h>

thtml_page_elements GenHtmIPage_ PASSWORD_TESTS_0(char* Istrlock, char* Istrmess,
char* Istrbut)

{

thtml_page_elements Ipage;

thtml_page_elements Iptrstack[10];

char* |buff = malloc(100);

sprintf(Ibuff, ("\nfunction backhome_onclick() {location=\"%s\"}", Istrlock);

Ipage = BuildHtmIPage("PASSWORD TESTS ",NULL,NULL,0,NULL,NULL);

Iptrstack[1] =_T(Ibuff);

Iptrstack[0] =create_script(“JavaScript”,1,"Iptrstack[1]);

Ipage = AppendObjectToPage(lpage,Iptrstack[0]);

Iptrstack[5] =create_formatted_text(NULL,5,0,0,0,1, T("PASSWORD ERROR"));

Iptrstack[4] =create_formatted_text(NULL,0,1,0,0,1,Iptrstack[5]);

Iptrstack[3] =create_paragraph(NULL,1,Iptrstack[4]);

Iptrstack[2] =create_paragraph(’"center”,1,Iptrstack[3]);

Iptrstack[1] =create_paragraph(NULL,1,Iptrstack[2]);

Iptrstack[2] =create_paragraph("center”,1, T(Istrmess));

sprintf(Ibuff, “BACK %s" Istrbut);

Iptrstack[4] =BuildValuedinput(28,”SendButton”,Ibuff);

Iptrstack[5] =BuildButtonlnput("backhome”,"Home”,"return backhome_onclick()");
Iptrstack[3] =create_paragraph("center”,2,Iptrstack[4],Iptrstack[5]);

Iptrstack[0] =
make_html_form("POST”,"/public/di80_param_form.htm”,3,Iptrstack[1],Iptrstack[2],
Iptrstack[3]);

Ipage = AppendObjectToPage(Ipage,Iptrstack[0]);

free(Ibuff);

return Ipage;

Figure D.4 — Example of abstract representation procedure

Page D—4 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Serving dynamic HTML

The data structure produced by this routine can be converted to the character string by the call to the procedure
HtmlPageToString (see chap. 3 § 4.4.1.) as in the piece of code below:

char* template_string;
ushort template_length;
thtml_page_elements thepage;

template_string = malloc(4096);
thepage = GenHtmIPage_ PASSWORD_TESTS_0 (“/","Your password is wrong, re—enter it,
"TO FORM™);
template_length =HtmIPageToString(template_string,0,
thepage);

Figure D.5 — Example of HtmIPageToString routine

ALS 53424 a—en Field Device Web Server Release 1.0 Software User Manual Page D-5

Serving dynamic HTML

Page D-6 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

Glossary

Applet

Authentification procedure

Base64 encoding

Basic application

BSD sockets

Cocktail

Embedded image

Embedded server

HTML

HTTP

Internet

ALS 53424 a—en

Selfstanding Java programs whose reference is included in HTML pages; applets are
downloaded from the server and executed within the browser.

Distributed program which implements the access control to server resources based
on the exchange the via network of user name accompanied by its secret password.
Thereare diferent types of authentification procedures; the simplest one, called basic
authentification, consists in transmission of a pair of data (user name + user
password) coded by a widely known 64-base coding algorithm. The basic
authentification offers only rudimentary access control and is a major security
loophole in the protection of INTERNET sites.

Coding algorithm used in the basic authentification procedure to encrypt username
and password sent in HTTP Request PDU; according to this algorithm the characters
of the original string are by the handled elements of the standardised encoding vector.

The application which fulfils the principal mission of Alspa 8000 equipment; e.g.:
FIP/HART protocol conversion is the basic application of DI80.

Berkeley Software Distribution sockets — software component implementing the
standard presentation interface to different transport protocols; sockets are mostly
used on top of the TCP/IP stacks.

Compiler Compiler Toolbox Karlsruhe — a collection of co—operating highly
efficient software tools used to generate compiler modules.

Image coded in one of the well known compact formats (GIF, JPEG) and stored
within the embedded file system of host equipment.

Servers designed to be placed in small devices; their characteristics are: small code
size, nadisk storage and no sophisticated software interfaces such as interface to data
base or interface to script languages.

HyperText Markup Language — a variant of SGML, a meta—language used to
describe the layout of printable documents.

Hypertext Tansfer Protocol — one of Internet's most used application protocols. It is
based on TCP/IP and is used to transport hypertext documents.

Interconnected Networks — a world wide communication infrastructure composed
of many thousands of interconnected Local Area Networks. The networks share the
same communication technology based on the pair of protoEGR: and IP
(Transmissior€Control Potocolandinternet Potoco). INTERNET technology has

its origins in a DOD supported project ARPA. The results of this project were made
public in the 1980s and were followed by the ever growing arrival on the market of
open network applications.

Field Device Web Server Release 1.0 Software User Manual Gloss-1

Glossary

Internet browser

LR(1)

Parser

PDU

Portable TCP/IP stack

Scanner

Token

Virtual File System

WWw

Internet client agent implementing the principle of exploration of hypertext
documentsare document lmwsing by following the hyperlinks that included in the
documents.

Class of abstract grammars easy to parsefioyeet analysers.

Program which analyses a phrase of a text and states whether the structure of this
phrase conforms to the rules of an abstract grammar describing the language of the
phrase; parsers are essential parts of language compilers; parsers are usually hand
generated automatically. In this project the parser verifies the syntax of incoming
HTTP request PDUs and co—operates with programs which compose the response
PDUs.

Exchanging between communicating parties during service implementation; in the
Internet communication model there are exist two classes of R&Ugst PDUs
sent by the client amésponse PDU#&urnished by the server.

Set of co—operating software components which implement the specifications of
TCP and IP protocols in a way making them independent of the underlying data link;
the version of the portable stack used in this project can be used indifferently on
WorldFIP and on Ethernet links; the stack includes also the routing function.

Programwhich preparethe efficient operation of the Parser bganising the input
stream of characters into aggregates called tokens; scanner are rarely hand written; in
the majority of cases they are generated by specialised todidilkem standard

Unix delivery orrex from Cocktail toolbox.

Aggregate of characters representing a lexical atom of a formal language; well
known examples of tokens are keywords, indentifiers, numbers, separators,
commentsetc. The notion of token simplifies and clarifies the description of formal
languages by means of context—free grammars; tokens are generated from the input
character streams by scanner programs.

Internaldata structure of an embedded server implementation installed on a diskless
hardware platform, which lets the server application imitate the file system of a
device with the mass storage; this structure is sometimes referre/ ESas
embeddedile system

(World Wide) Web — the aggregate collection of hypertext documents retrievable via
Internet by means of the HTTP protocol.

Gloss—-2 Field Device Web Server Release 1.0 Software User Manual ALS 53424 a—en

	PRESENTATION
	1. GENERAL DESCRIPTION OF DEVELOPED SOFTWARE

	GENERAL INFORMATION
	1. UTILISATION CONTEXT
	2. RÔLE OF COCKTAIL TOOLBOX
	3. START-UP/STOP FUNCTIONS
	3.1. START-UP PROCEDURE
	3.2. STOP PROCEDURE

	USE
	1. PACKAGE VFS GENERATION
	1.1. MODULE COMMONDEF
	1.1.1. FUNCTION CHAR * INIT_CHAR(CONST CHAR*
	1.1.2. PROCEDURE VOID CLOSE_CHAR(CHAR*

	1.2. MODULE DATA_BASE_STRUCTURE
	1.2.1. DEFINITION OF TDATA_BASE_STRUCTURE DATA TYPE
	1.2.2. FUNCTION TDATA_BASE_STRUCT MAKEDATA_BASE-STRUCT(UNSIGNED CHAR KIND
	1.2.3. PROCEDURE VOID RELEASEDATA_BASE-STRUCT(TDATA_BASE_STRUCT OBJ
	1.2.4. FUNCTION RBOOL DATA_BASE_STRUCT_ISTYPE(TDATA_BASE_STRUCT OBJ, UNSIGNED CHAR KIND

	1.3. MODULE DATA_BASE_PROCESSING
	1.3.1. FUNCTION TDATA_BASE_STRUCT INITREPOSITORY(TDATA_BASE_STRUCT NODE, PCHAR DEFAULT, PCHAR NAME
	1.3.2. FUNCTION TDATA_BASE_STRUCT BUILDDIRNODE(PCHAR NAME
	1.3.3. FUNCTION TDATA_BASE_STRUCT BUILDFILENODE(PCHAR NAME, PCHAR CONTENTS, UNSIGNED SHORT SIZE, UNSIGNED SHORT FID, UNSIGNED SHORT NATURE
	1.3.4. FUNCTION TDATA_BASE_STRUCT BUILDSCRIPTNODE(PCHAR NAME,TSCRIPT EXEC, UNSIGNED SHORT FID
	1.3.5. PROCEDURE VOID INSERTNODE(TDATA_BASE_STRUCT DIR, TDATA_BASE_STRUCT NODE
	1.3.6. PROCEDURE VOID APPENDNODE(TDATA_BASE_STRUCT ROOT, TDATA_BASE_STRUCT NODE
	1.3.7. FUNCTION TDATA_BASE_STRUCT FINDNODE(TDATA_BASE_STRUCT ROOT, TDATA_BASE_STRUCT PATH, PCHAR USER, PCHAR PASSWORD
	1.3.8. FUNCTION TDATA_BASE_STRUCT SEARCHNODEINWIDTH(TDATA_BASE_STRUCT ROOT, PCHAR NAME
	1.3.9. FUNCTION TDATA_BASE_STRUCT GETNODEREF(TDATA_BASE_STRUCT ROOT, TDATA_BASE_STRUCT PATH
	1.3.10. PROCEDURE VOID PROCESSNODE(TDATA_BASE_STRUCT NODE, TNAMEPROC PROC
	1.3.11. FUNCTION PCHAR INSTALLFILECONTENT(TDATA_BASE_STRUCT ROOT, TDATA_BASE_STRUCT PATH, PCHAR CONTENTS, UNSIGNED SHORT LENGTH
	1.3.12. PROCEDURE VOID INSTALLAUTHORISATION(TDATA_BASE_STRUCT REALM, PCHAR USERNAME, PCHAR PASSWORD
	1.3.13. FUNCTION TDATA_BASE_STRUCT APPENDSTEP(TDATA_BASE_STRUCT PATH:, PCHAR NAME:
	1.3.14. FUNCTION PCHAR RECOVERRESNAME(TDATA_BASE_STRUCT PATH
	1.3.15. FUNCTION PCHAR PATHTOSTRING(TDATA_BASE_STRUCT PATH
	1.3.16. FUNCTION TDATA_BASE_STRUCT STRINGTOPATH(PCHAR PATHSTRING
	1.3.17. PROCEDURE VOID PRINTPATH(TDATA_BASE_STRUCT PATH
	1.3.18. PROCEDURE VOID PRINTNODE(TDATA_BASE_STRUCT NODE
	1.3.19. PROCEDURE VOID PRINTREPOSITORY(TDATA_BASE_STRUCT ROOT

	2. PACKAGE SERVER ENGINE
	2.1. MODULE SERVENGINE
	2.1.1. PROCEDURE VOID SERVER_LOOP(UNSIGNED SHORT PORT_NR, TCALLBACK ANALYSE_ROUTINE_REF, TCALLBACK RESPONSE_ROUTINE_REF, TCALLBACK ERROR_REPORT_REF, TCALLBACK CLEANUP_ROUTINE_REF
	2.1.2. PROCEDURE VOID SERVER_BOOT(UNSIGNED SHORT PORT_NR

	2.2. MODULE SENDBACK
	2.2.1. VARIABLES EXPORTED BY THE MODULE
	2.2.2. PROCEDURE INT RESPONSE_COMPOSER(INT SOCKET_ID, TPROCESSOR SCRPROC, TPROCESSOR PPROC, TPROCESSOR DPROC
	2.2.3. PROCEDURE UNSIGNED SHORT GENERIC_SENDBACK_ROUTINE(INT SOCKET_ID
	2.2.4. PROCEDURE UNSIGNED SHORT GENERIC_ERROR_REPORT(INT SOCKET_ID
	2.2.5. PROCEDURE INT TYPED_SERVER_PROMPT(INT SOCKET_ID, CHAR* RES_TYPE

	2.3. MODULE SOCKINTERF
	2.3.1. PROCEDURE INT INITSOCKETS(VOID
	2.3.2. PROCEDURE INT PASSIVESOCKET(UNSIGNED SHORT PORT_NR,CHAR* TYPE,INT QUELEN
	2.3.3. PROCEDURE INT WAITFORCONNECT(INT MAIN_SOCK
	2.3.4. PROCEDURE INT CLOSESTREAM(INT SOCK_ID
	2.3.5. PROCEDURE INT SOCKPRINTF(INT SOCK_ID,CHAR*XTEMPL,0
	2.3.6. PROCEDURE INT VSOCKBINSEND(INT SOCK_ID,CHAR* STRING,UNSIGNED SHORT LENGTH
	2.3.7. PROCEDURE INT SOCKREADF(INT SOCK_ID,CHAR* BUFFER, INT SIZE
	2.3.8. PROCEDURE VOID PEERADDRSTR(CHAR* BUFFER

	2.4. MODULE DATA_BASE_MODULE
	2.4.1. PROCEDURE VOID INIT_DATA_BASE(VOID
	2.4.2. PROCEDURE VOID GET_DB_DATA(CHAR* NAME, TDB_RESULT* RESULT
	2.4.3. PROCEDURE INT SET_DB_DATA(CHAR* NAME, UNSIGNED CHAR VAL_TYPE, VOID* VALUE
	2.4.4. PROCEDURE CHAR* GET_FIRST_KEY(VOID
	2.4.5. PROCEDURE CHAR* GET_NEXT_KEY(CHAR* REF_NAME

	3. PACKAGE HTTP ANALYSIS
	3.1. MODULE HTTP_PROCESS
	3.1.1. PROCEDURE VOID INITPARSER(VOID
	3.1.2. PROCEDURE UNSIGNED SHORT ENDPARSING(INT SOCKET_ID
	3.1.3. PROCEDURE UNSIGNED SHORT PARSEFROMSOCKET(INT SOCKET_ID

	3.2. SYNTAX ANALYSING MODULES
	3.2.1. MODULE SOURCE
	3.2.2. MODULE SCANNER
	3.2.3. MODULE PARSER

	3.3. MODULE ENV_VAR
	3.3.1. FUNCTION CHAR*ALLOCTOKENSTR(UNSIGNED LONG LENGTH
	3.3.2. PROCEDURE VOID FREETOKENSTR(CHAR* TOKENSTR
	3.3.3. PROCEDURE VOID CLEAN_ENV(VOID
	3.3.4. PROCEDURE VOID INIT_ENV(VOID
	3.3.5. PROCEDURE VOID PRINT_ENV(VOID
	3.3.6. PROCEDURE VOID EXTRACT_AUTH(VOID
	3.3.7. PROCEDURE VOID ADD_CGI_PAR(UNSIGNED CHAR PAR_TYPE, URL_VAL VALUE
	3.3.8. FUNCTION CHAR* DECODE_URL_STR(CHAR* INPSTR
	3.3.9. FUNCTION TDATA_BASE_STRUCT SEARCH_OBJECT(VOID
	3.3.10. FUNCTION TDATA_BASE_STRUCT SEARCH_SCRIPT(VOID

	3.4. MODULE BASICENCODER
	3.4.1. FUNCTION INT GETKEY(CHAR K
	3.4.2. FUNCTION UNSIGNED SHORT DECODE_FOUR(UNSIGNED CHAR INPBUF[4], CHAR* OUTSTR, UNSIGNED CHAR PTR

	4. PACKAGE HTML GENERATION
	4.1. MODULE HTML_PAGE_ELEMENTS
	4.1.1. DEFINITION OF THTML_PAGE_ELEMENTS DATA TYPE
	4.1.2. FUNCTION THTML_PAGE_ELEMENTS MAKEHTML_PAGE_ELEMENTS(UCHAR KIND
	4.1.3. PROCEDURE VOID RELEASEHTML_PAGE_ELEMENTS(THTML_PAGE_ELEMENTS OBJECT
	4.1.4. FUNCTION HTML_PAGE_ELEMENTS_ISTYPE(THTML_PAGE_ELEMENTS OBJECT, UCHAR KIND

	4.2. MODULE HTML_GEN_HL
	4.2.1. ROUTINES GENERATING CONTAINER OBJECTS
	4.2.2. ROUTINES WHICH APPEND SIMPLE OBJECTS TO HTML PAGES

	4.3. MODULE GEN_TREE_MODULE
	4.3.1. ROUTINES WHICH GENERATE HTML RELATED OBJECTS
	4.3.2. ROUTINES WHICH MODIFY THE STRUCTURE OF HTML RELATED OBJECTS

	4.4. MODULE HTML_CONV_MODULE
	4.4.1. FUNCTION UNSIGNED SHORT HTMLPAGETOSTRING (PCHAR BUFFER, UNSIGNED CHAR BUFF_PTR, THTML_PAGE_ELEMENTS HTML_PAGE_OBJ

	Appendix A HTTP protocol specification for Field Device Web Server
	1. CONTEXT-FREE GRAMMAR OF HTTP REQUEST
	2. LEXICAL GRAMMAR OF TOKENS OF HTTP REQUEST

	Appendix B Configuration of Repository of Virtual file System
	1. SKELETON BASED DYNAMIC PAGES

