

SMOKE TESTING BENCH FOR FREENEST
SERVICE

Teemu Ojala

Bachelor’s Thesis
May 2012

Degree Programme in Information Technology
Technology, ICT

 OPINNÄYTETYÖN
 KUVAILULEHTI

Tekijä(t)
OJALA, Teemu

Julkaisun laji
Opinnäytetyö

Päivämäärä
02.05.2012

Sivumäärä
61

Julkaisun kieli
Englanti

Luottamuksellisuus

() saakka

Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
SMOKE TESTING BENCH FOR FREENEST SERVICE

Koulutusohjelma
Tietotekniikka

Työn ohjaaja(t)
LEINO, Janne

Toimeksiantaja(t)
RINTAMÄKI, Marko

Tiivistelmä

Opinnäytetyön tarkoituksena oli luoda kolmenkymmenen automaattitestin sarja FreeNEST-
ohjelmiston eri komponenttien testaamiseen. FreeNEST on Jyväskylän ammattikorkeakoulun sisällä
toimivan SkyNEST-projektin kehittämä selainpohjainen projektitöissä käytettävä ohjelmisto, joka
koostuu useista eri avoimen lähdekoodin työkaluista. Työssä luotu testisarja pyrkii korvaamaan
useasti toistettavien testien manuaalisen suorittamisen automatisoiduilla testeillä, jotka voidaan
ajaa käyttäen Robot Framework nimistä testiautomaatiotyökalua.

Testit on tarkoitus ajaa käyttäen hyödyksi SkyNEST-projektin omaa OpenStack-pohjaista
pilvipalvelua, jota myös kehitetään tällä hetkellä projektin sisällä. Työn teoriaosassa on vertailtu
automaattitestauksen ja manuaalitestauksen etuja ja rajoituksia sekä esitelty eri testauskäytäntöjä
ja testien luomisessa ja ajamisessa käytetyt työkalut ja ohjelmat.

Työssä on myös esitelty yhden testitapauksen valmistuminen askelittain käyttäen apuna RIDE-
editoria, joka on Robot Frameworkin oma testienluontityökalu.

Testien luonti onnistui ajallaan ja niiden ajaminen OpenStack-pilveen luoduilla virtuaalikoneilla
voitiin suorittaa. Testien kattavuus kuitenkin jäi tiettyjen testien suorittajaan liittyvien rajoitusten
takia puutteelliseksi ja täten kaikille FreeNEST-ohjelman perustoiminnoille ei saatu vielä luotua
testisarjoja.

Avainsanat (asiasanat)
automaatiotestaus, Robot Framework, RIDE, FreeNEST, SkyNEST, OpenStack

Muut tiedot

 DESCRIPTION

Author(s)
OJALA, Teemu

Type of publication
Bachelor´s / Master’s Thesis

Date
02.05.2012

Pages
61

Language
English

Confidential

() Until

Permission for web
publication
(X)

Title
SMOKE TESTING BENCH FOR FREENEST SERVICE

Degree Programme
Information Technology

Tutor(s)
LEINO, Janne

Assigned by
RINTAMÄKI, Marko

Abstract

The main objective of this study was to create a set of thirty automated tests. These tests verify
some of the basic functionality of different components included in FreeNEST.

FreeNEST is a web based project management tool developed in the SkyNEST project, which is
hosted inside the JAMK University of Applied Sciences. FreeNEST consist of several different open
source based software tools. The set of tests created in this study aims at replacing manual tests
that have to be performed repeatedly with automatic tests executable by using a test automation
framework called Robot Framework.

The tests are meant to be executed using the OpenStack cloud developed and maintained by
SkyNEST project. In the theory part of this study the benefits and restrictions of automated and
manual testing are compared and different methods used in testing are presented.

Additionally, the tools and software used in the creation of the tests are introduced in the text and
the creation of a single test is explained step by step using the RIDE editor, which is the test case
editor of Robot Framework.

The test cases were finished on time and executing them using the virtual machines created in the
OpenStack cloud was successful. The total coverage of the created tests however remained slightly
incomplete, due to certain restrictions in the current test execution system.

Keywords
test automation, Robot Framework, RIDE, FreeNEST, SkyNEST, OpenStack

Miscellaneous

1

CONTENTS

FIGURES .. 2

TABLES .. 3

TERMINOLOGY ... 3

1 INTRODUCTION ... 6

2 BASIS OF THE WORK .. 6

2.1 Assigner of thesis .. 6

2.2 Background for thesis ... 7

2.3 Objectives of the study .. 7

3 THEORY .. 7

3.1 Test Automation ... 7

3.1.1 Benefits of automated testing .. 8

3.1.2 Restrictions in automation .. 9

3.2 Testing Techniques ... 10

3.2.1 Correctness Testing ... 11

3.2.2 Performance Testing ... 12

3.2.3 Reliability testing ... 13

3.2.4 Security testing .. 13

3.3 Cloud Computing .. 13

4 TECHNOLOGIES.. 15

4.1 General ... 15

4.2 TestLink ... 16

4.3 Robot Framework ... 19

4.4 RIDE .. 23

4.5 Selenium ... 24

4.6 OpenStack .. 26

4.7 Firebug .. 27

5 TEST EXECUTION ... 27

5.1 Automated tester ... 27

5.2 Operating the tester ... 29

6 CREATION OF THE SMOKE TEST PLAN .. 31

6.1 Planning .. 31

2

6.2 Creation of a Robot Framework Test Case ... 32

7 RESULTS ... 49

7.1 Discussion on results .. 49

7.2 Future improvements... 52

SOURCES ... 54

APPENDIX 1. TESTCASE THAT VERIFIES ADMIN RIGHTS ON HELPDESK. 56

APPENDIX 2. TESTCASE FOR TESTING PASSWORD CHANGE. 57

APPENDIX 3. TESTCASE TO VERIFY THE FUNCTIONALITY OF SEARCH IN FOSWIKI. 58

APPENDIX 4. TESTCASE THAT NAVIGATES THROUGH DIFFERENT PARTS OF TRAC. 59

APPENDIX 5. TESTCASE TO VERIFY THE IRC LOGIN. ... 61

FIGURES

FIGURE 1. The three cloud service models (Wikipedia 2012). 14

FIGURE 2. A Screenshot of TestLink demo. .. 17

FIGURE 3. Test case in HTML-format (Robot Framework 2012). 20

FIGURE 4. Test case in TSV-format (Robot Framework 2012). 21

FIGURE 5. Test case in plain text; space and pipe formats (Robot Framework 2012). 22

FIGURE 6. Test case in reST-format (Robot Framework 2012). 23

FIGURE 7. Normal Selenium Setup (Selenium Grid 2012). .. 25

FIGURE 8. Selenium Grid Setup (Selenium Grid 2012)... 26

FIGURE 9. The test automation framework created inside the Junkcloud. 30

FIGURE 10. Creating a new project with RIDE. .. 33

FIGURE 11. Adding a library to a test project. .. 34

FIGURE 12. Creating a test case for a test project in RIDE. .. 34

FIGURE 13. Empty test case in RIDE. .. 35

FIGURE 14. Search Keywords window in RIDE. .. 36

FIGURE 15. Missing an argument in keyword. ... 37

FIGURE 16. Filling the required arguments to a keyword. ... 37

FIGURE 17. FreeNEST login screen. .. 38

FIGURE 18. Firebug showing source code of a textbox. .. 39

3

FIGURE 19. Inserting login credentials for test case. ... 39

FIGURE 20. Source code of a log in button. ... 40

FIGURE 21. Usage of the keyword “Click Button” in RIDE. .. 40

FIGURE 22. The front page of FreeNEST. ... 41

FIGURE 23. Identifying the link locator. ... 42

FIGURE 24. Usage of keyword “Click Link” in RIDE. ... 42

FIGURE 25. Login screen of Webmin. ... 43

FIGURE 26. Login information for Webmin in RIDE. .. 43

FIGURE 27. Webmin main menu inside FreeNEST. .. 44

FIGURE 28. Text check in RIDE. .. 45

FIGURE 29. Source code of log out button in FreeNEST. ... 45

FIGURE 30. Completed test case in RIDE. .. 46

FIGURE 31. Executing a test in RIDE. .. 47

FIGURE 32. Log file of a passed test run by Robot Framework. 48

TABLES

TABLE 1. List of created test cases (part 1/2)... 50

TABLE 2. List of created test cases (part 2/2)... 51

TERMINOLOGY

FreeNEST A project management tool developed in the SkyNEST

project.

SkyNEST Name of the project hosted inside JAMK University of

Applied Sciences.

Ad-hoc Software testing that is performed at random without any

 planning or documentation.

Selenium Software testing framework used for web applications.

4

Cloud computing Cloud computing is a general term used when delivering

any locally hosted services over the Internet for external

clients.

TestLink Web based test management program.

Robot Framework A generic test automation framework, which development

is supported by the Nokia Siemens Network.

HTML Hypertext Markup Language is a language mainly used to

 create documents and pages for the World Wide Web.

Python Programming language with a design that emphasizes on

code readability.

Jython Implementation of the Python language written in Java,

which is another programming language.

OpenStack Open source cloud computing platform for creating public

and private clouds.

Junkcloud Unofficial name of the OpenStack cloud developed and

 maintained by the SkyNEST project.

Firebug A plug-in for Firefox to get more information about web

sites. Used as versatile web development tool.

Git Open source version control system.

PHP Programming and scripting language usually used inside

HTML pages.

RIDE Tool for creating test cases for Robot Framework.

5

Functional testing Functional tests validate the proper behavior of a certain

process in precisely described scenarios.

Non-Functional testing Used for estimating the overall performance of a system

under testing.

6

1 INTRODUCTION

Testing has always been a major part of software development and that is a fact that

likely will not change in the future either. Software testing is process a designed to

ensure that a computer code or program does what it is supposed to do and to make

sure that the code does not do anything unintended either. Testing is carried out to

make software reliable and predictable; however, it can never guarantee the total

absence of errors. Creating a clear test plan that includes complete and thought-out

test cases will help in developing software by detecting as high amount of errors as

possible during the production. (Myers 2004, 1-2, 43)

Selecting the amount of testing that should be performed to the software under

development is challenging to estimate. System testing in particular can be

performed until the time or money of the project ends. There should always be some

acceptance criteria concerning testing and after they are reached, it should end the

testing cycle. (Haikala & Märijärvi 2006, 293)

2 BASIS OF THE WORK

2.1 Assigner of thesis

The thesis was assigned by JAMK University of Applied Sciences, more precisely a

cloud software project called SkyNEST that is hosted inside the School of Technology

at JAMK. SkyNEST is a part of TIVIT Cloud Software program, which aims to improve

the competitiveness of Finnish software development.

According to the 2009 survey most significant factors of competitiveness
are: operational efficiency, user experience, web software, open
systems, security engineering and sustainable development. Cloud
software ties these factors together as software increasingly moves to
the web. Cloud Software program especially aims to pioneer in building

7

new cloud business models, lean software enterprise model and open
cloud software infrastructure.(Järvinen 2012.)

2.2 Background for thesis

FreeNEST is developed by using agile software development method and therefore

many builds are made frequently. FreeNEST is a project platform containing many

different open source applications, and they all have to be tested as well individually

as also regarding their performance between each others. Doing hundreds of tests

manually after each build would be time consuming and a waste of personnel

resources. Giving the option for testers to run series of tests automatically and many

times faster than by manual execution, enables the project team to use these

previously wasted personnel resources for developing testing methods even further.

2.3 Objectives of the study

The main objective the thesis is to create an automatic testing environment for the

FreeNEST web service instance and a compact testing plan to execute smoke testing

for its future releases. The smoke test contains thirty relatively quick tests that

confirm the functionality of some of the critical functions of FreeNEST. These tests

are meant to be run as easily and simply as possible by any tester and all the results

from the tests will be reported automatically into a web-based test management

program.

3 THEORY

3.1 Test Automation

The reason for running tests on any software in development is to locate and

eliminate possible errors so they would not appear in the final product. Even if

software development groups are trying their best to test their products, there will

8

always be defects in the delivered software. Testing is performed either manually or

it is automated by using automated software testing tools. By using this automated

method, effectiveness, efficiency and coverage of the testing can be improved and

therefore the number of defects that end up in the final product is minimized.

(Smartbear 2012.)

When the testing is performed manually, a tester simply uses the program normally

with a computer. It includes going through different screens of the application, trying

out versatile sets of usage and input combinations, and then comparing all the

received results to the expected behavior of the software. In addition, the testers

have to record their observations based on the output they get from the program in

different situations. (Smartbear 2012.)

Automated testing tools can perform tests that have been created in advance. They

are able to perform specified actions and compare results of these actions to the

expected behavior of the software. After the tests have been run, the automated

testing tool can report the success of the test or possible errors to a test engineer.

Once created, these automated tests can be repeated easily and can perform actions

faster than any human person ever could. (Smartbear 2012.)

3.1.1 Benefits of automated testing

The usage of some form of fast paced agile development method is very common in

organizations today. Test automation is becoming more of a necessity rather than an

option in the software development, since many upgrades are frequently made to

the product under development.

Between the development cycles of software, many tests have to be repeated often

to ensure quality. Every time the source code is altered, these tests should be

performed on the software. If the software supports different operating systems and

hardware configurations, the amount of tests to be run increases even more.

Running these tests manually would be costly and time consuming; on the other

9

hand, automated tests have to be created only once, and after that can be run over

and over again whenever needed. (Smartbear 2012.)

Some tests are nearly impossible to be run manually. They might be too long or

might require thousands of simultaneous users to test. With test automation, tests

can be run simultaneously on different computers and can simulate as many virtual

users interacting with the software as needed. Automated testing tools are able to

monitor memory contents, data tables, file contents and internal program states

quickly and accurately. Using all this gathered info, they are able to determine if the

product really works as intended. (Smartbear 2012.)

Some tests might require a tester to repeat same lines of commands hundreds of

times. Automated tests can be configured to run the same tests many times

continuously, as many times as needed. Automation will also remove the possibility

of human errors, since automated tests will follow the configured steps precisely

every time and will always record detailed results. It is also exhausting for the

employee in the organization to keep repeating the same tests frequently.

(Smartbear 2012.)

3.1.2 Restrictions in automation

Even though test automation has very noticeable benefits over manual testing, it is

not always a viable option to use it. In certain occasions, it might be too hard or even

impossible to create automated tests for the product. Some parts of the software

may change considerably and therefore the automated tests have to be rewritten,

and if this happens frequently, a great deal of time and effort has to be used

constantly to keep them updated. Creating working test automation will always take

some time, and if there is not enough of it and the project has a very strict deadline,

it is better to stick with manual testing. (Selenium 2012.)

Some tests might require somewhat different user interaction than a machine can

provide and therefore are not possible to be run automatically. For example

10

automated tests might not be able to give feedback on the visual errors in the

program. If the tests do not need to be run very often, it is also better to use manual

testing. Manual testing allows the tester to perform more random testing (ad-hoc)

on the program, which can help discovering errors that have never been considered

even to exist.

For the employees in the organization to use these automated testing tools, it will

always require some knowledge of them. If there is not enough experience currently

available, some time has to be invested in researching these tools. The last thing to

consider is to calculate costs and compare them to possible benefits of the

automation. Setting up an automated tester is always more expensive than using

manual methods in testing, however, in the long term using the automated tester

will be more cost efficient than doing the tests manually over and over again.

(Outsourcebazaar 2006.)

3.2 Testing Techniques

Finding bugs is not the only reason for software testing, since the system in whole

also has to work as intended. Overall quality and the reliability of the developed

software has to be measured, and this is achieved by using a few different types of

testing techniques and they all have their own purpose in the testing process. These

four types of techniques are called Correctness Testing, Performance Testing,

Reliability Testing and Security Testing. (Khan 2010.)

Testing is also divided into three different types of testing depending on their target

part of the software. Unit testing is used to verify the functions of independent

components of the product before they are combined with other components into a

larger unit. In integration testing, the functionality between components is tested.

Units are tested in groups, and their interaction between each other is monitored.

System testing is carried out when the full complexity of the product is assembled.

This is usually the most formal part of testing and it is used to ensure that the

11

product responds correctly in normal situations and handles possible exceptions in a

correct way. (Krishna Training 2011.)

3.2.1 Correctness Testing

The minimum requirement of any produced software is that it behaves as it should.

Correctness testing is used to make sure that the software works as intended and to

discover and remove the incorrect behavior of the system. Correctness testing is

divided into three different types of testing, depending on the type of person

executing the tests and his/her personal knowledge of the software in question.

These three types of testing are white box testing, black box testing and their

combination, grey box testing. (Khan 2010.)

White box testing

White box testing requires the tester to have full knowledge of the software and its

source code under testing. It consists of accurately driven tests, where input is given

to the system and then its effects are inspected inside the system process. After the

system gives the required output, the tester has all the information about the steps

leading from the input to the output. White box testing is used in all types of testing

(integration, unit and system testing). White box testing is the most reliable method

to make sure that all the steps in the test are properly executed. (Khan 2010.)

Black box testing

Black box testing is another type of correctness testing; however, it is not limited to

only be used in it. In Black box testing, the tester has no knowledge of the test

product's internal structure. The test designer simply selects valid and invalid inputs

and determines what should be the expected output, when the input is given. This

method of testing is also usable on all types of testing and it is much simpler than

white box testing, but it does not give as comprehensive results as white box.

(OneStopTesting 2012.)

12

Gray box testing

The combination of white box testing and black box testing is called gray box testing.

In this method, the tester has some knowledge of the internal structure of the

product, but the testing itself is still done at black box level. To create test cases for

gray box testing, the test engineer has access to the internal data structures and

algorithms; however, the resulted tests are still not as accurate as in white box

testing. (Khan 2010.)

3.2.2 Performance Testing

Performance tests are executed to determine the speed and effectiveness of a

system. The performed tests can calculate and monitor the resource usage,

throughput and response time of the system under test. Performance testing can be

executed on any applications to measure their specifications; however, the most

usual targets are web applications, since they require low latency on the website,

high throughput and low utilization. Performance testing can be divided into load

testing and stress testing. (Khan 2010.)

To ensure that a service can handle a set number of users, load tests should be

executed. These tests can be carried out by using virtual users, since they are easy to

administrate. Load testing is also used to observe the performance of applications in

heavy load situations, thus it is easier for web services to find out how many users

the service can hold until the systems start failing or their performance decreases.

When the load placed on the system is intentionally raised above its normal amounts

of usage, the tests are considered as stress tests. Load and stress tests can be done

either manually or automatically; however, manual testing is not nearly as practical

as automated testing, since with automated testing, tests can be easily repeated as

many times as needed. (Khan 2010.)

13

3.2.3 Reliability testing

Reliability testing is used to discover failures in the system, so they can be fixed

before deployment of the system in question. With the help of reliability testing, an

estimation model is created, which is used to estimate the overall reliability of the

system in present and in the future. Developers can then use all the gathered

information from the tests results and this estimation model to decide if the

software is ready for releasing. Stress tests can actually be considered as a variation

of reliability tests, where system reliability is tested in extreme conditions. (Khan

2010.)

3.2.4 Security testing

To make a program not accessible for unauthorized users, security testing should be

performed to the developed system. Finding all the major weaknesses of the system

helps preventing the access of unauthorized users, thus preventing any harm

purposely done to the system. It is also important to secure the information of

authorized users from outsiders. Security testing will not only help against attacks,

but also helps the system to run longer without any major problems. (Khan 2010.)

3.3 Cloud Computing

Cloud computing is a service that consists of a group of computing resources, such as

networks, servers, storages, applications and services. These resources are then

delivered over the web to the customers and typically these services can be divided

into three groups, which are called software as a service (SaaS), platform as a Service

(PaaS) and Infrastructure as a Service (IaaS). These three different types of service

are illustrated in figure 1. Cloud computing can also be divided by its means of use

into four groups, private cloud, community cloud, public cloud and hybrid cloud.

(NIST 2012.)

14

FIGURE 1. The three cloud service models (Wikipedia 2012).

There are many benefits for the clients of cloud compute services, the most

noticeable being the scalability of the service. The client organization can add or

subtract the amount of resources they need, making the service very flexible. These

services are very easy to implement, since the clients do not have to buy their own

hardware, software or implementation services, all is handled by the cloud compute

service provider. Since all the storaging and server managing is outsourced, a

company can lessen the burden on its own IT team, thus the in-house IT department

can focus more on the business-critical tasks rather than increasing manpower with

costly training. Lastly, the provider’s quality of service offers continuous support, and

in cases of emergency situations, an instant response to the fault at question. (Waxer

2012.)

Software as a service (SaaS)

Software as a service allows client organizations to access the provider’s applications

running on a cloud infrastructure. These applications can be anything the client

needs and wants to use. This will remove the need for organizations to handle the

installation, set-up and maintenance of the required applications by themselves;

everything is handled by the service provider. The applications are then accessible

15

through either a client interface, such as a web browser, or a designated program

interface. (Webopedia 2012.)

Platform as a Service (PaaS)

Platform as a service is another service model in cloud computing. It is an

environment that provides the possibility to develop, deploy, manage and integrate

applications inside the cloud using the efficiency, flexibility and speed offered by the

cloud service. SaaS is a service application that is ready to be used, while PaaS is a

platform allowing the client to create their own differentiating and unique

applications for their exact needs. (IBM 2012.)

Infrastructure as a Service (IaaS)

By requesting Infrastructure as a Service, the client has control over the software

environment inside the cloud, but is not required to maintain any of the equipment it

is running on. The client does not have to invest in their own hardware to run the

software on, but can request virtual machines from the IaaS provider. These virtual

machines can then be used to contain any software the client wants and if more

storage or other resources are required, the service provider can easily add more of

them with the help of virtualization technologies. (Caruso 2011.)

4 TECHNOLOGIES

4.1 General

Many programs used to make testing easier on different aspects are being developed

all the time in the web. Some of them are components or complete installments that

allow users to perform automated tests for different software that are in

development. Other programs may be used to help the testers themselves to plan

new tests and keep track on tests that have already been performed for different

16

builds of the target software and even to create vast test plans for the development

project.

All different programs and components used in this study are open source based so

there are no costs using any of them as long as the products made with them are not

used in any commercial way. TestLink is a web based test management system that is

currently included within the default installment of FreeNEST web service platform.

The author was already familiar with TestLink as he had used it previously; therefore

it was an easy choice to select it as the management part for this assembly. Robot

Framework is a test automation framework used to execute the desired tests.

Selenium RC is the component that is required by Robot Framework to understand

and command web-based applications like FreeNEST therefore making automated

tests possible with the assembly used in this work.

4.2 TestLink

TestLink is a free to use web based test management program that helps its users to

create and keep track of tests that have to be performed on the target software

currently being developed. Creating a new project is the first step when using

TestLink. Test Plans are then created along with many singular Test Cases that can

later be assigned into these Test Plans. The same Test Case can be assigned into any

number of Test Plans and one project can consist of many different Test Plans. This

kind of hierarchical system makes it so much easier for the users to manage different

areas of testing in a project. Figure 2 displays the front page of TestLink. (TestLink

2012.)

17

FIGURE 2. A Screenshot of TestLink demo.

TestLink Projects

When creating a new project with TestLink, the user is asked to name the new

project and specify a unique ID for it. This ID is automatically added to the names of

any Test Cases created within the project in question. The user can also write a

description for the project that can explain different aspects in slight detail, such as

the aim of the project or its target group. There are also few settings that can be

turned on for this project. The most important one considering this thesis is to

enable the usage of API keys. Without them the project will not allow users to

execute any automated tests on the project. (TestLink 2012.)

18

Test Cases

After a new project has been created, users can immediately start creating Test

Cases for the project. Test Cases are put inside Test Suites much like files are put

inside folders in a computer, therefore it is recommended to create a number of Test

Suites to help keeping the possibly hundreds of Test Cases inside the project clearly

sorted. One good example is to sort Test Cases by their method of execution, either

manual or automated. (TestLink 2012.)

The first thing to do when creating a Test Case is to give it a title, which can for

example be a short description of the case. There is also a description box to write

more detailed information about the test. All the steps can be written on a textbox

reserved for them and there is also space to write down expected results of the test.

If the settings of the project allow it, test importance and the execution type can also

be selected. Execution type can be either manual or automated. Keywords can be

assigned to the Test Case to help categorizing or filtering different Test Cases in some

other areas of TestLink. (TestLink 2012.)

Test Plans

Before any tests can be executed, at least one Test Plan has to be created for the

project. Additionally the Test Plan itself requires at least one build. A build is a

specific release or a version of software. Each project is usually made up of many

different builds and in TestLink test execution is based on Builds and Test Cases. If

the project has no builds created for it, test execution is disabled. Additionally, test

Cases have to be assigned into Test Plans to enable executing the tests. (TestLink

2012.)

Test Execution

As mentioned above, two methods of execution are available for the user, which are

manual and automated. When executing the tests manually, the user will simply read

the description of the written test and follow the steps as accurately as possible.

19

After all the steps have been performed, the status of the Test Case can be changed

by comparing the perceived results by the tester to the expected results written on

the Test Case itself. The new given status can be failed, passed or blocked.

When TestLink is configured correctly to allow automated test execution, a button

that launches the test run can be found in the Test Case. TestLink itself cannot

perform any automated testing; however, it can send a request into an external

testing framework to perform the test and then report the results back to TestLink.

(TestLink 2012.)

4.3 Robot Framework

Robot Framework is described as a generic test automation framework. It is used for

acceptance testing and acceptance test-driven development (ATDD). It uses simple

keywords that act like commands. By implementing new test libraries, many more

keywords become available to use which allows more complex tests and makes it

possible to run tests on many different kinds of target software. (Robot Framework

2012.)

Tests for the Robot Framework can be made in four different file formats. They can

be written using the hypertext markup language (HTML), tab-separated values (TSV),

plain text or reStructuredText (rest) file format. All of these are somewhat similar to

each other, but have some minor differences and benefits over each other. (Robot

Framework 2012.)

HTML Format

Recognized extensions of files for test cases created in HTML format are .html, .htm

and .xhtml. In these files, all the test data is written inside many separate text tables

as shown in figure 3. The first cell in each test data table is used by Robot Framework

to identify different types of tables inside the test file. If it is not one of the

recognized tables, it will be ignored completely. The tables can be created using any

kind of editor; however, using a graphical editor is more favorable as you can see the

tables while you edit them. (Robot Framework 2012.)

20

FIGURE 3. Test case in HTML-format (Robot Framework 2012).

TSV Format

TSV files are edited very much like files in HTML format. The main difference is that

all the test data is written in one uniform table unlike in the HTML files, where the

different test data tables are separated by completely different tables. The test data

tables in TSV files are separated by inserting one or more asterisks in the cells of the

table and any text that has been written before the first asterisks will be completely

ignored. Figure 4 illustrates this method of dividing the tables inside a TSV file. These

TSV files can be created and edited with different spreadsheet programs, the most

common one being Microsoft Excel. (Robot Framework 2012.)

21

FIGURE 4. Test case in TSV-format (Robot Framework 2012).

Plain Text Format

Plain Text Format uses simple .txt files to create tests for Robot Framework which is

the biggest benefit when comparing this format to the ones mentioned before since

the text editors are very easy to use. When doing tests on plain test format, the

separator between cells is either two or more empty spaces or a pipe character that

is surrounded with spaces. Both of these different ways of cell separation are

displayed in figure 5. Just like in TSV format, asterisks are used to recognize the test

data tables in the text file and all text that is written before the first asterisks will be

ignored. (Robot Framework 2012.)

22

FIGURE 5. Test case in plain text; space and pipe formats (Robot Framework 2012).

ReStructuredText Format

ReStructuredText (reST) also uses plain text as its method of creating test data

tables. This format is commonly used for documentation of Python projects, and is

very similar to the HTML format, since the data is defined in tables in the same way

as in HTML. All the test data and these tables are still edited in a sententious text

format and can be edited using any text editor. The test data tables are identified

based on the text in the first cell, at the same time ignoring all the data that is

outside these recognized tables. An example of a test case in reST format can be

seen in figure 6. (Robot Framework 2012.)

23

FIGURE 6. Test case in reST-format (Robot Framework 2012).

4.4 RIDE

Robot Framework IDE (RIDE) can be used to create and alternate automated tests in

a more graphical and distinct environment. It uses files that are in HTML, TSV or Plain

Text format. In RIDE, keywords can be given to the test case inside a grid regardless

of the file type used. All the usable keywords from the available libraries are listed

inside the search function of RIDE. If more libraries are added later, all the keywords

from those newly added libraries are also found within this search function. RIDE can

also be used to execute the created tests, and overall makes easier to manage test

cases for Robot Framework. (RIDE 2012.)

24

4.5 Selenium

Selenium is a set of tools that can be used to automate browsers. These tools are

primarily intended for testing web applications via automation, although their usage

is not limited in anyway and can be used in any other tasks as well. Selenium can be

used individually, but it can also be controlled by other testing frameworks. It is

supported by multiple browser platforms and all its operations are very flexible, since

many options are given in locating an element in the user interface of the system

under test. There is a number of different ways to compare test results with the

expected results of any driven tests, thus accuracy of these tests is not a problem

either. (SeleniumHQ 2012.)

Selenium RC and WebDriver

There are four different software tools in Selenium. This suite of tools allows testers

to perform automated tests to almost any web application with a vast amount of

testing functions. Selenium Remote Control (Selenium RC) was the first main project

of Selenium and it is still widely supported; however, mainly it has been replaced

with Selenium WebDriver (Selenium 2). Both of these tools are meant for controlling

browsers to perform the tests on web applications. Even if falling into the shadow of

Selenium WebDriver, Selenium RC is still being widely used, having support for many

different languages and internet browsers that the Selenium WebDriver is not

compatible with yet. (Selenium 2012.)

Selenium IDE

Selenium Integrated Development Environment (Selenium IDE) is a Firefox plugin,

which can be used to record user actions on a browser. All the actions are

automatically converted into test script and can, and should be, manually altered by

the user, since the recorder is not capable of adding any conditional statements on

the test script. Selenium IDE is mainly intended just to create a prototype of a test

25

case and it is recommended to use it with either Selenium RC or Selenium

WebDriver. (Selenium 2012.)

Selenium Grid

The last tool in the set is called Selenium-Grid. When tests are normally executed

with the standard Selenium tools, controlling more than six simultaneous browsers

with the Selenium is not recommended, as the Remote Control becomes too

unstable. It is possible to target the tests to run on different Remote Controls at the

same time; this however makes it hard to run specific tests in parallelized fashion. A

set of Remote Controls created in this way is also very hard to manage and alter

later. Figure 7 below illustrates the operation of a single Selenium Remote Control.

(Selenium Grid 2012.)

FIGURE 7. Normal Selenium Setup (Selenium Grid 2012).

Selenium Grid uses a new component that will help to manage a number Remote

Controls at once. The component is called Selenium Hub (illustrated in figure 8). It

can allocate one Selenium Control to execute a certain test, but does not bind the

Selenium Control and the test to each other, which means next time the test is run

again, it can be done by some other Remote Control selected by the Selenium Hub.

This way the Hub can divide the tests that are wanted to be run simultaneously

equally between the Remote Controls that are available to use and more Remote

26

Controls can be assigned for the Hub whenever needed, which makes it largely

scalable. Selenium Hub can also run several Selenium Controls on one host machine.

(Selenium Grid 2012.)

FIGURE 8. Selenium Grid Setup (Selenium Grid 2012).

4.6 OpenStack

OpenStack is an open source cloud computing platform for creating public and

private clouds. It gives the possibility for any organization to create and offer their

own cloud computing services since OpenStack can be implemented on any standard

hardware. The three major components of the OpenStack project are Compute,

Object Storage and Imaging Service. Compute is the controller used to start up virtual

instances and configure the networking. Object Storage is used to store objects in a

system, which is enormously scalable and large by its capacity. The Imaging service is

a system used to lookup and retrieve the virtual machine images inside the

OpenStack cloud. (OpenStack 2012.)

There are also two new noticeable components, and the first one is called Identity,

that provides coherent authentication through all OpenStack projects and is fully

27

capable to be integrated with all existing authentication systems. The second new

component is Dashboard, which allows the users of OpenStack to access and

provision resources in the cloud through a self-service portal. (OpenStack 2012.)

4.7 Firebug

Firebug is a plug-in application for the Mozilla Firefox web browser used as a web

development tool. It can also be used on different web browsers; however, it will

have limited functionality on any other browser than Firefox. It has a wide range of

different features that will benefit any web designer or developer and it is designed

to reduce the amount of guesswork in web page debugging and can also be used to

inspect accurate information about the web page, such as page layout and source

code. (McBlain 2011.)

5 TEST EXECUTION

5.1 Automated tester

The SkyNEST project was in a need of test automation framework to increase the

testing efficiency done to the FreeNEST project platform. Previously all the testing

done after each released build of FreeNEST in development had to be tested

manually, because the project did not yet have enough time or vacant resources to

be used on creating an automated test bench that could be used in the software

testing. The project was moving on fast and the product was tested manually

constantly.

After many members of the project had to leave and the development of the

FreeNEST was decelerated considerably, a good opportunity to plan and design more

efficient and accurate testing method was granted for the project team. When the

development of the FreeNEST starts speeding up again, this automated test bench

28

will allow the future testers to have more time to spend on improving the testing

methods and the test cases, when less time has to be used on manual testing.

SkyNEST project is also developing and maintaining their own OpenStack cloud inside

the project. By setting up the automated tester inside this cloud, many benefits are

gained for the process of test execution, such as easier and faster management of

virtual instances that are needed in the testing. It will also grant higher resources to

perform the tests and more accurate monitoring of the performance of the instances

when they are located inside a cloud.

Junkcloud

Junkcloud is the unofficial name of the project's OpenStack cloud. It is still a relatively

new part of the project; however, it has attracted a great deal of interest from many

different people outside the project. Currently Junkcloud works as an IaaS platform

(see chapter 3.3) for the test execution system developed in the FreeNEST project.

To enable test execution in the cloud, three instances, or virtual machines, were

created inside it. These three machines are called Team Server, Master Tester and

Deep Forest. The first two are the ones that actually host the tools used in the

automated testing. Deep Forest only hosts the target applications of the tests and it

is not always the same instance, as many ”Deep Forest” instances can be created as

needed.

Team Server is the machine hosting the FreeNEST project platform, which in this case

is used for test management and execution. TestLink is one of the applications

installed by default on the FreeNEST, and is also the selected test management

program used in the FreeNEST project to create test cases and execute them to

perform software testing for the development of FreeNEST. TestLink has the option

to execute tests automatically; however, it requires an external automation

framework to do it.

29

Master tester has all the required tools to execute tests requested by the Team

Server. Robot Framework was selected to function as the automated tester, but in

order to perform automated tests on web based applications such as FreeNEST, it

needs the help of Selenium server. Robot Framework also needs commands written

inside test files that it can understand, and these files are also located inside the

Master Tester. The test cases created in this thesis will be added as part of those files

that the Robot Framework will use.

5.2 Operating the tester

When a test has to be run with this set-up, the tester will use the TestLink located

inside FreeNEST in the Team Server. After the desired test, that is configured

correctly to run automatically, is selected, simply a button has to be pressed and the

process starts. TestLink sends information of the test that has to be run into a PHP

script located in the Master Tester. This PHP script then sends the information

forward into another script that is written in Python. The PHP script is working as a

translator for TestLink, since TestLink doesn’t understand Python at all. The Python

script is the one sending the request for Robot Framework to perform the test.

With the information the Robot Framework receives, it is able to select a right test

case file from all the files that are created in advance and stored inside the Master

Tester. These test files contain all the commands the Robot Framework then sends

for the Selenium server that is also running inside the Master Tester. Selenium

performs the commands it receives from Robot Framework to the target application

hosted in the Deep Forest machine. After the test has been run, or if any step of it

has failed, Robot Framework creates a log file, and sends the result of the test back

to the scripts that forwards them to the TestLink. The result of the test is then

automatically updated to the TestLink database about the test in question. The flow

of the process is shown in figure 9; however, the GIT Version control Repository

shown in the figure is not implemented yet.

30

FIGURE 9. The test automation framework created inside the Junkcloud.

There are still some current problems concerning this automated tester. Since the

Junkcloud is a very low-budget cloud, it is not as powerful as desired. There are also

some parts inside the cloud that work as a bottleneck and slow down the testing

process considerably. This set-up is very demanding to maintain and configure

compared to the tests run manually. Still, since this is only the first version of

working test automation in this project and is still heavily under development, all of

the problems should be fixed in the future if wanted and many more features and

improvements are most likely added to it.

31

6 CREATION OF THE SMOKE TEST PLAN

6.1 Planning

The main object of this thesis was to select and write a set of thirty tests that verify

some basic functionality of the FreeNEST service that can then be executed

automatically with the test automation framework built inside junkcloud. The

amount of tests to create was specified when this study was assigned and it was also

decided that the tests should perform functional testing on the system and leave the

non-functional testing outside the assignment. The author had previously been part

of the development of the FreeNEST project as a tester so he already had some

experience about the tests used to verify the functionality of some of its

components. When deciding which tests are suitable to be run with the current test

executioner, many aspects had to be considered to see what tests currently fits into

the smoke test plan.

The first thing to consider is to make sure the test is capable of running automatically

and getting correct results. Creating a test that inspects visual side of the user

interface is not possible with the tools used in the test executioner. Some tests might

have needed deeper knowledge about programming languages that the author did

not have, thus making them impossible for him to create. The length and contents of

each test had to be precisely thought out as well. Creating too long tests that check

the functionality of too many components at one run had to be avoided, because the

test execution is interrupted immediately when an error has occurred. If the test is

used to test multiple components and there is error on the first one, none of the

other components will be tested.

On the other hand, tests should not be too short either. For example, when testing

the user’s accessibility into administration tools, the test should be run with both

admin user account and normal user account, since one of those two is allowed to

access those tools and the other one should not be. Of course this test could be

32

divided into two separate tests, which however would lower the efficiency of the

driven test to half.

One last thing had to be considered while making these tests was the restrictions of

the current test automation framework. None of the tests are allowed to make

permanent changes to the system under test and should return the target

application to the original state that it was in before running the test if possible. The

reason for this is that the current set-up is not yet efficient enough to replace the

target instance with a fresh one instantly whenever needed.

6.2 Creation of a Robot Framework Test Case

This chapter describes the creation of one of the thirty test cases that were added to

the smoke test plan for FreeNEST. This example only describes a small fraction of all

the possible keywords that can be used with Robot Framework. More example test

cases can be seen in the appendices of this thesis. Libraries that the author had in

use were the Robot Frameworks own library called BuiltIn which has basic

commands that can be used in any tests and SeleniumLibrary that enables keywords

which can be used by the test to give commands for web browsers to make certain

actions.

The minimum requirement for creating test cases for Robot Framework is any kind of

text editor, but working without other tools is not recommended. The author used

RIDE editor to create the test case files, and saved them in .txt format. Additionally,

the help of Firefox plug-in called firebug was used, which makes it much easier to

find certain identifiers from the source code of the web application. To verify that

the commands are correctly written in the test file, Robot Framework was used to

execute the tests after every set of several commands. To use the keywords from

SeleniumLibrary, Selenium Server has to be running or the test will not work. Robot

Framework uses Python, Jython and IronPython programming languages and

requires atleast one of them installed on the operating system. The one selected to

33

execute the tests here is Python. All these tools were used on Windows 7 operating

system.

To start creating the test file, RIDE has to be launched first. This is done by writing

ride.py into the Windows command console. The instructions are given below as

follows. The user is instructed to create a new project and it can be simply selected

from the dropdown list under “file” or by pressing key combination ctrl+N. This will

cause a new window, presented in figure 10, to open. User is then asked to give a

name for the project. Since the author is making a project that will just have one test

in it, it is named after the test. One project can contain multiple test cases, and they

can all be run one after another with a click of a button, so if for example you wanted

to create a series of test cases that will test the login instead of just one, you could

give it a name such as “Login Tests”.

 This test will verify the login to Webmin, an administrative application that is one of

the applications installed with FreeNEST package. You can also select the location

where to save the test file and the format it will be created with. The user decided to

use the plain text format.

FIGURE 10. Creating a new project with RIDE.

After the new project is created, SeleniumLibrary has to be added to the used

Libraries list by using the “Add Library” button located on the right side of the user

interface while the newly created project is selected. The library has to be named

exactly as SeleniumLibrary for it to be recognized correctly inside the test file. There

are also options to insert arguments, an alias and comments for the Library;

however, they are not unnecessary for this case, so they are left blank. These options

can be seen in figure 11.

34

FIGURE 11. Adding a library to a test project.

To add a test case for the project, simply right clicking the WebminLogin project

found at the left side of the user interface, where all the components of the project

are listed, opens up a list with an option to create one or by using key combination

ctrl+shift+N. The program will ask a name for the new test case (illustrated in figure

12) and again it will be WebminLogin.

FIGURE 12. Creating a test case for a test project in RIDE.

Keywords to the grid found inside the WebminLogin test case can now be added.

There are also some extra settings on top of the grid as shown in figure 13, but filling

them is not required so they are left empty for now. By clicking the “settings” button,

they can be minimized.

35

FIGURE 13. Empty test case in RIDE.

Keywords are added to the leftmost cells of the rows. Usually only one keyword is in

one row, but there are some exceptions, such as when using keywords that add

certain conditions to another keyword. For example a keyword “Run Keyword and

Expect Error” can be inserted in front of a normal keyword such as “Click Link”. The

list of all the keywords and their explanation can be found in the internet sites of the

Libraries or by opening the Search Keywords window (visualized in figure 14) from

the dropdown lists located on the top of RIDE.

36

FIGURE 14. Search Keywords window in RIDE.

The first command to perform is to open up an internet browser. This is done by

using the keyword “Open Browser”, so it has to be inserted into the first row of the

grid. After the keyword is written the cell next to it will turn in color red (see FIGURE

15). This means that the cell requires some information inside it to make the

keyword work. By moving the mouse cursor over the red cell, it can be seen that the

cell is missing an argument. In this case URL (Uniform Recource Locator) has to be

given that is wanted the browser to open into.

37

FIGURE 15. Missing an argument in keyword.

This test was meant to verify the login in Webmin, but first the browser has to be

navigated there through FreeNEST. FreeNEST is installed with default settings so its

address will be the URL used in this cell. It can also be specified in the cell next to the

red cell, which internet browser we want the test to be run in. By writing “ff” in it,

Robot Framework will understand to execute the test in Firefox browser. The missing

arguments have been inserted for the test case in figure 16.

FIGURE 16. Filling the required arguments to a keyword.

38

If run the test were now run, a browser would open into the FreeNEST login screen.

Next the test should insert the login credentials of the FreeNEST admin into this login

screen. For that the keywords that are called “Input Text” and “Input Password” are

used here. These keywords require an argument called locator inserted to the cell to

the right of them. First, however, the IDs of the text boxes in the login screen have to

be known and this can be done by inspecting the source code of the page. One way is

to just right click anywhere on the page and from the list that opens, select the “View

Page Source”. Using this method is not recommended, since the source codes of

some sites are very complicated and finding certain information from them can be

difficult this way. By installing a plug-in for the Firefox called firebug and activating it,

another option appears in the list when right clicking the page. This option is “Inspect

Element” and should be found at the bottom of the list, which is shown in figure 17.

FIGURE 17. FreeNEST login screen.

By directly right clicking on the textbox wanted to be filled and selecting the “Inspect

Element” option, the firebug will automatically show information from the source

39

code related to the textbox as shown in figure 18. A text field for the firebug should

be found on the bottom of the internet browser.

FIGURE 18. Firebug showing source code of a textbox.

From the source code can be seen that the name of the username textbox is

“uname”. Since a password needs to be inserted also, the name of that textbox is

also required and by inspecting the source code again, can be seen that the name of

it is “password”. Now that the names of those two textboxes are known, the “Input

Text” and “Input Password” can be instructed to fill them with login credentials.

Default username and password for the admin in FreeNEST is AdminUser, so they can

be added to the next cell from the locator cell. In figure 19, the required user

information has been added to the grid.

FIGURE 19. Inserting login credentials for test case.

40

In order to get the user logged in, login button has to be pressed. The “Click Button”

keyword can be used to do it, but again the ID of the button is needed. Right clicking

on that button and selecting the inspect element again will show the part in the

source code needed to be inspected. Key attributes for buttons are id, name and

value. Since the value is the only one given here (see figure 20), it can be used with

the “Click Button” keyword to carry out the login. Figure 21 demonstrates the usage

of the keyword in this test case.

FIGURE 20. Source code of a log in button.

FIGURE 21. Usage of the keyword “Click Button” in RIDE.

After the login, the FreeNEST will open up on the front page (see figure 22). To get

into the Webmin login, the browser has to be navigated through the top bar located

41

in the upper part of the screen. Webmin can be found under the “Administration”

tab and the link to it is called “Nest Server Administration”.

FIGURE 22. The front page of FreeNEST.

In order to navigate through these two links, the keyword “Click Link” can be used.

This keyword also requires a locator, which can be found in the source code and is

marked with the ID, name or href of the link. Figure 23 illustrates the required part of

the source code. In this case the links are identified with href and they are both

named as they are seen in the top bar. As shown in figure 24, the first click of a link

requires an extra argument called “dont_wait” after the locator. Inserting arguments

will add additional rules to the keywords that are driven. Whenever a click link

keyword is run, the test will wait until current page has loaded in the browser. Since

clicking the upper tabs of this top bar in FreeNEST does not result in a page load, this

“dont_wait” argument has to be inserted or the test will wait for the page load

forever and will fail in a timeout.

42

FIGURE 23. Identifying the link locator.

FIGURE 24. Usage of keyword “Click Link” in RIDE.

After these navigation steps, the test should now end in the login screen of Webmin,

which presented in figure 25. The same method used before to log into FreeNEST can

be used here. By inspecting the source code with firebug can be seen that the locator

for username field is “user” and for the password field it is “pass”. The default

username and password for Webmin administrator in FreeNEST is “admin”, and like

before, the login button has to be pressed again. The name for it is “Login” in this

case. The required keywords and their arguments have been added to the grid in

figure 26.

43

FIGURE 25. Login screen of Webmin.

FIGURE 26. Login information for Webmin in RIDE.

Next it should be verified that the browser is currently in the front page of Webmin

(see figure 27) to confirm if the test is successful or if it has failed. There are several

methods of doing this and one of them is to make the test check if certain text is

found on the page. Other ways are such as checking the source code for certain

elements or verifying that the current address of the internet browser is in the right

place. These all can be used as subsequent set of keywords; however, for this case,

verifying some text from webmin should be sufficient.

44

FIGURE 27. Webmin main menu inside FreeNEST.

The keyword to check if certain text is found is called “Page Should Contain”. In the

cell next to this keyword, a string of text has to be inserted, and this is the exact text

the test will try to find on the current page. The text selected should be something

that is not too common and should be found only on that certain page or the text

might give a false pass status if it finds the text even if it is in a completely different

site. Of course, this is a good example why multiple checks should be performed

when not being sure if one is sufficient. For this text check the author has selected

the “Webmin version” text string found in the main page of Webmin and it has been

added to the test grid as seen in figure 28.

45

FIGURE 28. Text check in RIDE.

The current test technically ends in here, but few more keywords should be inserted

in to make it more complete. The first step that should be added is to log out the

user from FreeNEST to make sure it does not affect other tests run after this one.

This can be done by using the log out button located in the upper right corner of

FreeNEST. Again the firebug can be used to get information about the button.

FIGURE 29. Source code of log out button in FreeNEST.

As seen in figure 29, the button is not actually classified as “button”, therefore using

the keyword “Click Button” cannot be used this time. Instead another one called

46

“Click Element” has to be used, which works very much like the “Click Button”

keyword. The ID of the button can be seen in the source code and it can be added as

the locator for the keyword. The last keyword to add into the test is “Close Browser”.

This is not unnecessary to do, but running hundreds of tests and not closing any of

the browsers will cause complications on the machine doing the test, such as

decrease in performance. The finished test case can be seen in figure 30.

FIGURE 30. Completed test case in RIDE.

Now that the test is completed, it can be executed to make sure there are no errors

found in the steps. It is also recommendable to run the test after adding few

keywords while still designing it. The test can be executed by selecting on the “run”

tab above the test grid and clicking on the “start” button, which is shown in figure 31.

Before running the test, it needs to be made sure the execution profile is correct

depending on what programming language is used. In this case it is Python so

“pybot” is selected from the dropdown list.

47

FIGURE 31. Executing a test in RIDE.

After the test has been executed, the result is immediately shown in the run screen.

If everything is done right while creating the test and the target application is not

defective either, the result should be “pass”. More information about the test run

can be found by clicking on the “Report” and “log” buttons found next to the “Start”

button. These logs can give more precise information about the test and if the test

failed, it will show where and why it failed. The generated log file from this test case

can be seen in figure 32.

48

FIGURE 32. Log file of a passed test run by Robot Framework.

Normally, when one step in a test fails, the steps after that are not executed. This will

cause the “Close Browser” keyword to be ignored too, thus adding this keyword to

the teardown arguments in the test case settings mentioned before, will cause the

browser to shut down even after the test fails. Another issue to note is that this test

was designed to run on a test machine that has Selenium server running all the time.

To make sure it runs in other environments too, adding the keyword “Start Selenium

Server” to the first row of the test grid will launch the server every time the test is

run. Additionally inserting the keyword “Stop Selenium Server” at the very last row

will ensure that the server is not left running when it is not needed.

49

7 RESULTS

7.1 Discussion on results

The creation of the whole set of thirty smoke tests was finished in time for the

completion of this thesis and for the most part, it fulfills the expectations given at the

beginning of this project and all the tests are done as variably as possible for the

current test execution engine. There were still some factors that dropped the

possible amount of different types of tests and therefore the overall coverage of the

written smoke tests and leave some areas of the different testing techniques almost

completely untouched that should be used in smoke testing every new version of the

FreeNEST.

Most of the tests that were included in the smoke test plan, are either navigational

tests that verify that it is possible to access all the different applications and services

provided by FreeNEST, or they are tests to perform authorization tests in the forms

of login tests or verifying that only authorized users have access into administrative

tools found in several places inside FreeNEST project platform. The minor part of the

tests consists of search tests, simple integration tests and tests that edit user

information. Full list of all the created test cases can be seen in tables 1 and 2.

50

TABLE 1. List of created test cases (part 1/2).

Test Case name Test usage Test type/Notes

BugzillaAdminRights Verifies that only FreeNEST
admin has access to
administrative tools in Bugzilla.

Security testing, correctness
testing.

BugzillaLogin Verifies that users logged in
FreeNEST are also logged into
Bugzilla.

Correctness testing.

BugzillaSearch Performs a search action in
Bugzilla and verifies that results
are found.

Correctness testing.

CactiLogin Log in test for Cacti tool inside
FreeNEST with correct user
credentials.

Correctness testing.

ChangePassword Changes the password of a user,
confirms the change and then
changes it back to the default.

Correctness testing.
See appendix 2 for more
information.

ChangezillaAdminRights Verifies that only FreeNEST
admin has access to admin tools
in Changezilla.

Security testing, correctness
testing.

ChangezillaLogin Verifies that users logged in
FreeNEST are also logged into
Changezilla.

Correctness testing.

ChangezillaSearch Performs a search action in
Changezilla and verifies that
results are found.

Correctness testing.

CheckTabs Navigates through all the front
pages of every component
installed within FreeNEST.

Correctness testing.

CreateProfilePage Creates a profile page in Foswiki
for a user and removes it
afterwards.

Correctness testing.

CreateWikiTopic Creates a normal topic in
Foswiki and removes it
afterwards.

Correctness testing.

EditUser Edits user information, confirms
the change and restores the
user to default state.

Correctness testing.

ForumAdminRights Verifies that only admins have
access to administrative tools in
the forum.

Security testing, correctness
testing.

HelpdeskAdminRights Verifies that only FreeNEST
admin access to administrative
tools in Helpdesk.

Security testing, correctness
testing. See appendix 1 for
more information.

IrcLogin Logs in user to IRC chat and
confirms that the user can
connect to the chat server.

Correctness testing.
See appendix 5 for more
information.

51

TABLE 2. List of created test cases (part 2/2).

Test Case name Test usage Test type/Notes

LoginAdminUser Normally logs in the
administrator of FreeNEST.

Correctness testing.

LoginLowercase Tries to log in the user by using
lowercase letters only and
verifies that the log in will fail.

Security testing, correctness
testing.

LoginRecentlyLoggedOut
UserNoPW

Tries to log in recently logged
out user without password and
verifies that the log in will fail.

Security testing, correctness
testing.

LoginRecentlyLoggedOut
UserNoPWSameBrowser

Same as above, but without
restarting the browser.

Security testing, correctness
testing.

LoginWrongPassword Tries to log in user to FreeNEST
with incorrect password and
verifies that the log in will fail.

Security testing, correctness
testing.

TestLinkNavigation Navigates trough links found in
different pages of TestLink.

Correctness testing.

TracAdminRights Verifies that only FreeNEST
admin has access to
administrative tools in Trac.

Security testing, correctness
testing.

TracNavigation Navigates trough links found in
different pages of Trac.

Correctness testing.
See appendix 4 for more
information.

UserControlAdminRights Verifies that only FreeNEST
admin has rights to manage
other users of FreeNEST.

Security testing, correctness
testing.

Web2ProjectLogin Log in test for Web2Project
inside FreeNEST with correct
user credentials.

Correctness testing.

WebminLogin Log in test for Webmin inside
FreeNEST with correct user
credentials.

Correctness testing.
Creation of the test case
explained in chapter 6.2

WikiAdminRights Verifies that only FreeNEST
admin has access to
administrative tools in Foswiki.

Security testing, correctness
testing.

WikiNavigation Navigates trough links found in
different pages of Foswiki.

Correctness testing.

WikiSearch Performs a search action in
Foswiki and verifies that results
are found.

Correctness testing. See
appendix 3 for more
information.

WikiwordDashboard Confirms the Foswiki links
created in front page of
FreeNEST are working.

Correctness testing

52

The factors that prevented the creation of more perfect smoke test plan were the

restrictions in the current test execution engine and my personal knowledge

regarding automated testing. For example creating tests that repeat endlessly in a

loop would have required some more know-how about programming, since the tests

created for robot framework can be improved by using Python program language

inside the test cases and to create new test libraries. In addition getting more precise

and profound information about all the different ways Robot Framework is possible

to create and perform tests would have required a great deal more time that I simply

did not have anymore. In the end, what I managed to create was a guideline for the

future automated tests that will be created in the future by new members in the

project.

7.2 Future improvements

Since the current smoke tests mostly test the correctness and the security areas of

the four different possible methods of testing mentioned in chapter 3.2 (Testing

Techniques), including tests that concentrate on testing the performance and

reliability of the target software would make the smoke test plan more complete.

When the OpenStack cloud the project uses gets improved both technically and

materially, the limits of the test performance can be minimized. Getting new

hardware on the OpenStack cloud and optimizing it to its fullest will increase the

overall performance of the cloud, giving the option to replace the target machine as

quickly and as often as needed. This will allow the adding of tests that make

permanent changes on the target machine, such as create thousands of users to the

database to see the limits of the system.

Additionally implementing the Selenium Grid (see chapter 4.5) makes it possible to

uphold multiple test executors at once. Each one of them can perform tests on

different target machines at the same time, adding some flexibility and efficiency to

the automated testing; however, this too requires more performance from the cloud

it is executed on. On top of these, adding automated and more precise test log

reporting back to the test management machine and implementing a way to handle

53

test case updates more efficiently when needed with the help of the Git version

control system, the test automation engine will be in near perfect state. Some of

these improvements are already being researched by other thesis workers and

members of the project and will be implemented gradually in the future into the test

execution machines.

54

SOURCES

Caruso, J. 2011. IaaS vs PaaS vs SaaS. Article about cloud computing in Network
World. Referred on April 29, 2012.
http://www.networkworld.com/news/2011/102511-tech-argument-iaas-paas-saas-
252357.html

Haikala, I & Märijärvi, J. 2006. Ohjelmistotuotanto. Helsinki: Talentum.

IBM. n.d. Platform as a service (PaaS). Referred on April 28, 2012.
http://www.ibm.com/cloud-computing/us/en/paas.html

Järvinen, J. n.d. Cloud Software Program. Referred on May 4, 2012.
http://www.cloudsoftwareprogram.org/cloud-software-program

Khan, E. 2010. Different Forms of Software Testing Techniques for Finding Errors.
Referred on April 26, 2012. http://www.ijcsi.org/papers/7-3-1-11-16.pdf

Krishna Training. 2011. Unit, Integration and System testing. Referred on April 26,
2012. http://www.krishnatraining.com/unit-integration-and-system-testing/

McBlain, A. 2011. Firebug Guide for Web Designers. Referred on May 04, 2012.
http://sixrevisions.com/tools/firebug-guide-web-designers/

Myers, G. 2004. The Art of Software Testing, Second Edition. Hoboken, N.J: John
Wiley & Sons.

NIST. n.d. Cloud Computing Program. Article by National Institute of Standards and
Technology. Referred on April 25, 2012. http://nist.gov/itl/cloud/

OneStopTesting. n.d. Black Box Testing. Referred on April 26, 2012.
http://www.onestoptesting.com/blackbox-testing/

OpenStack. n.d. OpenStack: The Open Source Cloud Operating System. Referred on
April 29, 2012. http://openstack.org/projects/

Outsourcebazaar. 2006. Automated vs Manual testing. Referred on April 17, 2012.
http://www.outsourcebazaar.com/index_Article_AutomatedVsManualTesing.html

RIDE. n.d. How To guide for RIDE. Referred on May 04, 2012.
https://github.com/robotframework/RIDE/wiki/How-To

Robot Framework. 2012. Robot Framework User Guide. Referred on April 11, 2012.
http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGu
ide.html?r=2.7.1

http://www.networkworld.com/news/2011/102511-tech-argument-iaas-paas-saas-252357.html
http://www.networkworld.com/news/2011/102511-tech-argument-iaas-paas-saas-252357.html
http://www.ibm.com/cloud-computing/us/en/paas.html
http://www.cloudsoftwareprogram.org/cloud-software-program
http://www.ijcsi.org/papers/7-3-1-11-16.pdf
http://www.krishnatraining.com/unit-integration-and-system-testing/
http://sixrevisions.com/tools/firebug-guide-web-designers/
http://nist.gov/itl/cloud/
http://www.onestoptesting.com/blackbox-testing/
http://openstack.org/projects/
http://www.outsourcebazaar.com/index_Article_AutomatedVsManualTesing.html
https://github.com/robotframework/RIDE/wiki/How-To
http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.1
http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.1

55

Selenium. 2012. Introduction to Selenium. Referred on April 24, 2012.
http://seleniumhq.org/docs/01_introducing_selenium.html

Selenium Grid. n.d. How it Works. Referred on April 30, 2012. http://selenium-
grid.seleniumhq.org/how_it_works.html

SeleniumHQ. n.d. What is Selenium? Referred on April 24, 2012.
http://seleniumhq.org

Smartbear. n.d. Why Automated Testing? Referred on April 25, 2012.
http://support.smartbear.com/articles/testcomplete/manager-overview/

TestLink. 2012. TestLink User Manual. Referred on April 5, 2012.
http://www.teamst.org/_tldoc/1.9/testlink_user_manual.pdf

Waxer, C. n.d. The Benefits of Cloud Computing. Referred on April 25, 2012.
http://www.webhostingunleashed.com/features/cloud-computing-benefits/

Webopedia. n.d. Saas – Software as a Service, Storage as a Service. Referred on April
25, 2012. http://www.webopedia.com/TERM/S/SaaS.html

Wikipedia. n.d. Cloud Computing. Referred on April 28, 2012.
http://en.wikipedia.org/wiki/Cloud_computing

http://seleniumhq.org/docs/01_introducing_selenium.html
http://selenium-grid.seleniumhq.org/how_it_works.html
http://selenium-grid.seleniumhq.org/how_it_works.html
http://seleniumhq.org/
http://support.smartbear.com/articles/testcomplete/manager-overview/
http://www.teamst.org/_tldoc/1.9/testlink_user_manual.pdf
http://www.webhostingunleashed.com/features/cloud-computing-benefits/
http://www.webopedia.com/TERM/S/SaaS.html
http://en.wikipedia.org/wiki/Cloud_computing

56

APPENDIX 1. TESTCASE THAT VERIFIES ADMIN RIGHTS ON

HELPDESK.

This test case will verify that only user with administrator

rights will have access to the administrative tools in

Helpdesk. AdminUser should be automatically recognized as

administrator in Helpdesk immediately after logging into

FreeNEST and DemoUser should have access only to the normal

users section.

*** Settings ***

Library SeleniumLibrary

*** Test Cases ***

HelpdeskAdminRights

 Open Browser http://freenestdemoserver.localdomain/ ff

 Input Text uname AdminUser

 Input Password password AdminUser

 Click Button Login

 Click Link Helpdesk

 Page Should Contain Welcome AdminUser Admin

 Click Link Setup

 Page Should Contain Select the category to configure

 Click Element logoutBtn

 Close browser

 Open Browser http://freenestdemoserver.localdomain/ ff

 Input Text uname DemoUser

 Input Password password DemoUser

 Click Button Login

 Click Link Helpdesk

 Page Should Contain Describe the Problem/Action

 Page Should Not Contain Welcome DemoUser Admin

 Click Element logoutBtn

 Close All Browsers

57

APPENDIX 2. TESTCASE FOR TESTING PASSWORD CHANGE.

This test case will change the password of DemoUser, one of the

default users in FreeNEST. It will then verify the change by

logging in again with the new password and in the end will

change the password back to the original, thus making the test

executable multiple times.

*** Settings ***

Library SeleniumLibrary

*** Test Cases ***

ChangePassword

 Open Browser http://freenestdemoserver.localdomain/ ff

 Input Text uname DemoUser

 Input Password password DemoUser

 Click Button Login

 Click Link Change password

 Input Text current_passwd DemoUser

 Input Password new_passwd demo

 Input Password verify_new_passwd demo

 Click Button btnChange dont_wait

 Run Keyword And Ignore Error Confirm Action

 Run Keyword And Ignore Error Click Element logoutBtn

 Close Browser

 Open Browser http://freenestdemoserver.localdomain/ ff

 Input Text uname DemoUser

 Input Password password demo

 Click Button Login

 Click Link Change password

 Input Text current_passwd demo

 Input Password new_passwd DemoUser

 Input Password verify_new_passwd DemoUser

 Click Button btnChange dont_wait

 Click Element logoutBtn

 Close Browser

58

APPENDIX 3. TESTCASE TO VERIFY THE FUNCTIONALITY OF

SEARCH IN FOSWIKI.

This test case performs a simple search with the search

function of FosWiki. The search function does not have a button

to launch the search, therefore “Press Key” keyword has to be

used to launch it. 13 is the id cumber for “Enter”.

*** Settings ***

Library SeleniumLibrary

*** Test Cases ***

WikiSearch

 Open Browser http://freenestdemoserver.localdomain/ ff

 Input Text uname AdminUser

 Input Password password AdminUser

 Click Button Login

 Click Link Knowledge Sharing dont_wait

 Click Link Wiki

 Input Text quickSearchBox Example

 Press Key quickSearchBox 13

 Sleep 2 Seconds

 Page Should Contain FaqExample

 Click Element logoutBtn

 Close All Browsers

59

APPENDIX 4. TESTCASE THAT NAVIGATES THROUGH DIFFERENT

PARTS OF TRAC.

This relatively long test case will navigate in Trac project

management service and verify that all the links in the main

menu are working.

*** Settings ***

Library SeleniumLibrary

*** Test Cases ***

TracNavigation

 Open Browser http://freenestdemoserver.localdomain/ ff

 Input Text uname AdminUser

 Input Password password AdminUser

 Click Button Login

 Click Link Work Collaboration dont_wait

 Click Link Tickets & Tasking

 Click Link New Requirement

 Set Selenium Speed 0.2 seconds

 Page Should Contain Create New Requirement

 Click Link New Task

 Page Should Contain Create New Task

 Click Link New User Story

 Page Should Contain Create New User Story

 Click Link New Bug

 Page Should Contain Create New Bug

 Click Link Product Backlog

 Page Should Contain Product Backlog

 Page Should Contain Business Value

 Click Link 2

 Page Should Contain This is example of traceable object

 Click Link Active Tickets

 Page Should Contain List all active tickets by priority.

 Click Link Active Tickets by Version

 Page Should Contain grouping results by version

60

 Click Link Active Tickets by Milestone

 Page Should Contain grouping results by milestone

 Click Link Accepted, Active Tickets by Owner

 Page Should Contain List accepted tickets

 Click Link Accepted, Active Tickets by Owner (Full

Description)

 Page Should Contain demonstrates the use of full-row

display

 Click Link All Tickets By Milestone (Including closed)

 Page Should Contain complex example to show how to make

advanced reports

 Click Link My Tickets

 Page Should Contain This report demonstrates the use of

the automatically set USER dynamic variable

 Click Link Active Tickets, Mine first

 Page Should Contain List all active tickets by priority

 Click Link Index by Title

 Page Should Contain Index by Title | Index by Date

 Click Link WikiStart

 Page Should Contain Welcome to FreeNEST TRAC

 Click Link TracGuide

 Page Should Contain The Trac User and Administration Guide

 Click Link WikiPageNames

 Page Should Contain Wiki Page Names

 Click Link TracPermissions

 Page Should Contain Trac Permissions

 Click Link TracWiki

 Page Should Contain The Trac Wiki Engine

 Click Element logoutBtn

 Close All Browsers

61

APPENDIX 5. TESTCASE TO VERIFY THE IRC LOGIN.

This test case will log user into IRC chat and verify the

connection is successful. Since the IRC opens up in a pop-up

window, the active window has to be switched twice and a

certain frame has to be selected in the IRC window.

Furthermore, during the log in, it is recommendable to use the

“sleep” keyword to pause the test to make sure that the user

has enough time to connect to the IRC chat room before

executing the “Current Frame Should Contain” keyword.

*** Settings ***

Library SeleniumLibrary

*** Test Cases ***

IrcLogin

 Open Browser http://freenestdemoserver.localdomain/ ff

 Input Text uname AdminUser

 Input Password password AdminUser

 Click Button Login

 Click Link Communication dont_wait

 Click Link IRC Chat dont_wait

 Get Window Names

 Select Window popUpProjectIRC

 Click Button Login dont_wait

 Wait Until Page Contains Element fmain timeout=20

 Select Frame fmain

 Sleep 10 seconds

 current frame should contain has joined

 Close Window

 Select Window main

 Click Element logoutBtn

 Close All Browsers

