

For Macromedia® Director®

Version 3.4

User Manual

© Integration New Media, Inc. 1995–2005 | Version 3.4 | 2005-11-07

 INM V12 Database for Director - User Manual 2

Contents

Contents ii

License Agreement ix

Introduction 11
INM V12 Database for Director 11
INM V12 Database Online Companion 11
INM V12 Database for Flash 12
About This Manual 12
Where to start 12
Do I really need to master Lingo to use INM V12 Database? 12
You’re not alone! 13

V12-L discussion list 13
Tech notes 13
Other online resources 13
Customer support and developer assistance 14

Typographic conventions in this manual 14

Welcome to INM V12 Database 16
System requirements for running INM V12 Database 16

Macintosh version 16
Windows version 16
Macromedia Director 17

Installing INM V12 Database 17
Version history 17

Release notes from previous versions 17
How to register your INM V12 Database license 18
Additional Tools for Working with INM V12 Database 18

INM V12 Database Editor 19
INM V12 Database Behaviors Library 19
INM V12 Database Help Files 19

Using Xtras 20
What is an Xtra? 20
Making the INM V12 Database Xtra available in authoring and runtime modes 20
Checking for available Xtras 20
Creating an instance of the INM V12 Database Xtra 21
Checking if New was successful 21
Using the Xtra instance 21
Closing the Xtra Instance 21

 INM V12 Database for Director - User Manual 3

Dealing with pathnames 22
Passing parameters to the INM V12 Database Xtra 22
Basic documentation 23
Using INM V12 Database with Shockwave 24

Verisign 24

Database Basics 25
Overview 25
What is a database? 25

Records, Fields and Tables 25
Indexes 26
Compound indexes 26
Full-text indexing 27
Database 28

Flat and relational databases 28
Field types 30

Typecasting 31
International support 31
Selection, current record, search criteria 32

Using INM V12 Database- Step by Step 34
Overview 34
INM V12 Database basics 34
The main Ssteps 34

Step 1: Decide on a Data Model 36
Defining identifiers 36

Step 2: Prepare the Data 37
TEXT file formats 37

Field descriptors 37
Dealing with delimiter ambiguity 38
Character Sets 39
Dealing with dates 40
Exporting a FileMaker Pro database to text 40
Exporting a MS Access Database to text 40

DBF file formats 41
Field buffer size 42

Step 3: Create a Database 43
Database descriptors 43

Defining both an index and a full-index on a field 45
Alternate syntax for creating indexes 45
Compound indexes 46

 INM V12 Database for Director - User Manual 4

Adding comments to database descriptors 46
Multiple tables in a descriptor 47

Using the INM V12 Database Editor 47
Loading a descriptor from a source file 47

Script the database creation 48
Step 3a: Create a database Xtra instance 49
Step 3b: Define the database structure 49
Step 3c: Build the database 50

View the structure of a database 51

Step 4: Import Data into a V12 Database 53
Import data with the INM V12 Database Editor 53
Script the data importing 54

Import data with mImport 55
Using media with V12 Databases 55

Advantages to referencing external media 55
When to store media in a V12 Database 56
Examples of embedded and linked media 56

Step 5: Implementing the User Interface 57
Using the INM V12 Database Behaviors library 57
Using Lingo 59

Open and close a database, a table 59
Selection and current record 61
Selection at startup 61
Select all the records of a table 61
Browse a selection 61
Read data from a database 64
Add records to a database 69
Update data in a database 70
Delete a record 71
Delete all the records of a selection 71
Search data with mSetCriteria 71
Styled text management 77
Exporting Data 78
Cloning a Database 80
Freeing up Disk Space (packing) 80
Fixing Corrupted Database Files 81
Checking the Version of the Xtra 81
Changing a Password 81
Dynamically Downloading Databases via the Internet 82

Errors and Defensive Programming 83

 INM V12 Database for Director - User Manual 5

Error Management in Applications 83
Checking the Status of the Last Method Called 83

CheckV12Error 84
Errors and Warnings 84

Using the Verbose Property 85
Preventing Data Corruption Due to Script Errors 85

Delivering to the End User 87
Standalone Projectors 87
Shockwave Projectors and Movies 87

Delivering a Shockwave Projector 87
Delivering a Shockwave Movie 88
Auto-installation 88

Testing for end-users 89
Portability issues 90

Customizing INM V12 Database 91
Progress Indicators 91

Options of the ProgressIndicator Property 91
User Defined Progress Indicators 92

Properties of Databases 93
Predefined Properties 94
The String Property 97
Custom Properties (Advanced Users) 99

Capacities and Limits 100
Database 100
Creation 100
Selection 100
Importing 100
Table 101
Field 101
Index 101

V12 Database Methods 103
mAddRecord (T) 103
mBuild (DB) 104
mCloneDatabase (DB) 105
mDataFormat (T) 105
mDeleteRecord (T) 107
mDumpStructure (DB) 107
mExportSelection (T) 108
mEditRecord (T) 109

 INM V12 Database for Director - User Manual 6

mFind (T) 109
mFixDatabase (S) 111
mFlushToDisk (DB) 111
mGetField (T) 112
mGetMedia (T) 112
mGetPosition (T) 113
mGetPropertyNames (DB) 113
mGetProperty (DB) 114
mGetSelection (T) 115
mGetUnique (T) 116
mGo (T) 117
mGoFirst (T) 117
mGoLast (T) 118
mGoNext (T) 118
mGoPrevious (T) 118
mImport (T) 119
mNeedSelect (T) 121
mOrderBy (T) 122
mPackDatabase (DB) 122
mReadDBStructure (DB) 123
mSelDelete (T) 123
mSelect (T) 124
mSelectAll (T) 124
mSelectCount (T) 125
mSetCriteria (T) 125
mSetField (T) 126
mSetIndex (T) 127
mSetMedia (T) 127
mSetPassword (DB) 128
mSetProperty (DB) 128
mUpdateRecord (T) 130
new (DB) 131
new (T) 131
mClose (DB) 132
mClose (T) 132
V12Download (G) 133
V12DownloadInfo (G) 134
V12Error (G) 135
V12Status (G) 136
mXtraVersion (S) 136

INM V12 Database Error Codes 138

 INM V12 Database for Director - User Manual 7

Warnings 146

Appendix 1: Database Creation and Data Importing Rules 147
Text Files 147
Literals 149
Lingo Lists or Property Lists 150
V12 DBE files 151
DBF (Database Format) 152
Microsoft FoxPro 156
Microsoft Access 158
Microsoft Excel 159
Microsoft SQL Server 161
Importing Media into a V12 Database 164

Appendix 2: mGetSelection Examples 166
Read an Entire Selection 166
Read a Range of Records in a String variable 166
Read a Range of Records in a Lingo List 166
Read a Range of Records in a Property List 167
Read the Entire Content of the Current Record 167
Read a Record without Setting it as the Current Record 167
Read the Entire Selection with Special Delimiters 167
Read Selected Fields in a Selection 168
Read Records with a Determined Order of Fields 168

Appendix 3: String and Custom String Types 170
The Default String 171
Predefined Custom String Types 172

Appendix 4: Character sets 177
Windows-ANSI Character Set 177
Mac-Standard Character Set 180
MS-DOS Character Set 181

Appendix 5: Japanese support 183
New field types 183

Field of type SJIS 183
Field of type Yomi (Yomigana) 183

Data Importation 192

Index 194

 INM V12 Database for Director - User Manual 8

Apple, Mac and Macintosh are trademarks or registered trademarks of Apple Computer, Inc. FileMaker is
a trademark of FileMaker, Inc., registered in the U.S. and other countries. Macromedia, Authorware,
Director, Flash and Xtra are trademarks or registered trademarks of Macromedia, Inc. in the United
States and/or other countries. Microsoft, Windows and Windows NT are trademarks or registered
trademarks of Microsoft Corporation, registered in the U.S. and/or other countries.

Other trademarks, trade names and product names contained in this manual may be the trademarks or
registered trademarks of their respective owners, and are hereby acknowledged.

 INM V12 Database for Director - User Manual 9

License Agreement

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING INM V12 DATABASE. BY USING
INM V12 DATABASE, YOU AGREE TO BECOME BOUND BY THE TERMS OF THIS LICENSE AGREEMENT.

The enclosed computer program(s), license file and data (collectively, "Software") are licensed, not sold,
to you by Integration New Media, Inc. ("Integration") for the purpose of using it for the development of
your own products ("Products") only under the terms of this Agreement, and Integration reserves any
rights not expressly granted to you. Integration grants you no right, title or interest in or to the
Software. The Software is owned by Integration and is protected by International copyright laws and
international treaties.

1. License.

(a) You may install one copy of the Software on a single computer. To "install" the Software means that
the Software is either loaded or installed on the permanent memory of a computer (i.e., hard disk).
This installed copy of the Software may be accessible by multiple computers; however, the Software
cannot be installed on more than one computer at any time. You may only install the Software on
another computer if you first remove the Software from the computer on which it was previously
installed. You may not sublease, rent, loan or lease the Software.

(b) You may make one copy of the Software in Machine-readable form solely for backup purposes. As an
express condition of this Agreement, you must reproduce on each copy any copyright notice or other
proprietary notice that is on the original copy supplied by Integration.

(c) You may permanently transfer all your rights under this Agreement to another party by providing to
such party all copies of the Software licensed under this Agreement together with a copy of this
Agreement and the accompanying written materials, provided that the other party reads and agrees
to accept the terms and conditions of this Agreement and that you keep no copy of the Software. If
the Software is an update, any transfer must include the update and all prior versions.

(d) Your license is limited to the particular version (collectively "Version") of the Software you have
purchased. Therefore, use of a Version other than the one encompassed by this License Agreement
requires a separate license.

(e) The Software contains a license file (.LIC) which is subject to the restrictions set forth above and may
not be distributed by you in any way. However, Integration grants you a royalty-free right to
reproduce and distribute the files named "V12-Database.XTR" and "V12-Database.X32" (collectively,
"Runtime Kit") provided that (i) you distribute the Runtime Kit only in conjunction with and as part of
your own Products; (ii) own a license for the specific Version of the Software that contains the
Runtime Kit; (iii) agree to indemnify, hold harmless and defend Integration from and against any
claims or lawsuits, including attorney's fees, that arise or result from the use or distribution of your
Products with the Runtime Kit.

(f) Any third party who may distribute or otherwise make available a product containing the INM V12
Database Runtime Kit must purchase its own INM V12 Database license.

(g) Any third party who will use the INM V12 Database Runtime Kit in an authoring environment must
purchase his own INM V12 Database license.

2. Restrictions. The Software contains trade secrets in its human perceivable form and, to protect them,
you may not MODIFY, TRANSLATE, REVERSE ENGINEER, REVERSE ASSEMBLE, DECOMPILE,
DISASSEMBLE OR OTHERWISE REDUCE THE SOFTWARE TO ANY HUMAN PERCEIVABLE FORM. YOU MAY
NOT MODIFY, ADAPT, TRANSLATE, RENT, LEASE, LOAN OR CREATE DERIVATIVE WORKS BASED UPON
THE SOFTWARE OR ANY PART THEREOF.

3. Copyright notices. You may not alter or change Integration's copyright notices as contained in INM
V12 Database. You must include (a) a copyright notice, in direct proximity to your own copyright notice,
in substantially the following form "Portions of code are Copyright (c)1995-2005 Integration New Media,
Inc."; and (b) place the "Powered by V12" logo on the packaging of your Products; or (c) place the
"Powered by V12" logo within your Products in the credits section.

4. Acceptance. INM V12 Database shall be deemed accepted by you upon delivery unless you provide
Integration, within two (2) weeks therein, with a written description of any bona fide defects in material
or workmanship.

5. Termination. This Agreement is effective until terminated. This Agreement will terminate immediately
without notice from Integration or judicial resolution if you fail to comply with any provision of this

 INM V12 Database for Director - User Manual 10

Agreement. Upon such termination you must destroy the Software, all accompanying written materials
and all copies thereof, and Sections 7 and 8 will survive any termination.

6. Limited Warranty. Integration warrants for a period of ninety (90) days from your date of purchase (as
evidenced by a copy of your receipt) that the media on which the Software is recorded will be free from
defects in materials and workmanship under normal use and the Software will perform substantially in
accordance with the manual. Integration's entire liability and your sole and exclusive remedy for any
breach of the foregoing limited warranty will be, at Integration's option, replacement of the disk, refund
of the purchase price or repair or replacement of the Software.

7. Limitation of Remedies and Damages. In no event will Integration, its parent or subsidiaries or any of
the licensers, directors, officers, employees or affiliates of any of the foregoing be liable to you for any
consequential, incidental, indirect or special damages whatsoever (including, without limitation, damages
for loss of profits, business interruption, loss of business information and the like), whether foreseeable
or not, arising out of the use of or inability to use the Software or accompanying written materials,
regardless of the basis of the claim and even if Integration or an Integration representative has been
advised of the possibility of such damage. Integration's liability to you for direct damages for any cause
whatsoever, and regardless of the form of the action, will be limited to the greater of US $350.00 or the
money paid for the Software that caused the damages.

THIS LIMITATION WILL NOT APPLY IN CASE OF PERSONAL INJURY ONLY WHERE AND TO THE EXTENT
THAT APPLICABLE LAW REQUIRES SUCH LIABILITY. BECAUSE SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE
ABOVE LIMITATION MAY NOT APPLY TO YOU.

8. General. This Agreement will be construed under the laws of the Province of Quebec, except for that
body of law dealing with conflicts of law. If any provision of this Agreement shall be held by a court of
competent jurisdiction to be contrary to law, that provision will be enforced to the maximum extent
permissible, and the remaining provisions of this Agreement will remain in full force and effect.

9. The parties acknowledge having requested and being satisfied that this Agreement and its accessories
be drawn in English. Les parties reconnaissent avoir demandé que cette entente et ses documents
connexes soient rédigés en anglais et s'en déclarent satisfaits.

 INM V12 Database® for Director - User Manual page 11

Introduction

Welcome to INM V12 Database (INM V12 Database), the most versatile and user-
friendly cross-platform database management Xtra for Macromedia Director®,
Authorware® and now available for Flash®.

INM V12 Database for Director
INM V12 Database was originally designed in 1996 to be used specifically with Director.
It extends Director’s features and helps you speed up the development of your
multimedia titles. You will discover many benefits in using INM V12 Database to create
interactive applications such as electronic catalogs, storybooks, kiosks, training
material, sales material, games, and more. Used as a back-end to your multimedia
projects, INM V12 Database lets you efficiently manage text, numeric data, dates,
images, sound clips as well as any type of media that Director can store in its members.

INM V12 Database enables you to provide advanced functionality to your end-users
while bringing down your development and maintenance costs.

INM V12 Database is very flexible and scalable. It can be used in a wide range of
applications, from simple projects where Lingo Lists and FileIO have become difficult to
manage, to true database-driven applications.

INM V12 Database for Director is available in Light and Regular editions. Both Regular
and Light Editions are fully compatible with each other, so you can start using INM V12
Database Light Edition, and later easily upgrade to INM V12 Database Regular Edition.
For limitations on the Light Version, see Capacities and Limits. A comparison chart for
INM V12 Database Regular vs. Light is available on Integration New Media’s web site at:
http://www.INM.com/products/v12director/info/.

INM V12 Database Online Companion
INM V12 Database Online Companion (available for Director only) is a powerful add-on
that extends INM V12 Database’s capabilities, allowing your applications to dynamically
connect to V12 databases via any TCP/IP network, be it intranet, extranet or the
Internet. Applications that use INM V12 Database Online can be packaged as either
Director Projectors or Shockwave movies.

Lingo programmers will find the INM V12 Database Online Companion easy to learn and
use, especially if they have previously experimented with alternatives such as
interfacing custom CGIs to an HTTP server and/or dealing with databases through third
party middleware. Also, since the Online Companion is a natural extension to INM V12
Database, projects that already use INM V12 Database can be very easily converted to
take advantage of the Online Companion.

To learn more about the INM V12 Database Online Companion or get a free evaluation
version, visit the product website at:
http://www.INM.com/products/v12online/

http://www.integrationnewmedia.com/products/v12director/info/
http://www.integrationnewmedia.com/products/v12online/

 INM V12 Database® for Director - User Manual page 12

INM V12 Database for Flash
Thanks to the capabilities of Macromedia Flash and Director to communicate and
exchange data, INM V12 Database can now be used by Flash developers via a projector.
This projector wraps a Flash .SWF file so that Flash developers do not need Director,
and they can access a V12 Database via a very similar API as Director users. For more
information and to download a trial version visit:

http://www.INM.com/products/v12Flash/

About This Manual
This manual is organized to help you get the information you need efficiently. The Using
Xtras section deals with basics concerning Xtras and the Database Basics gives an
overview of databases. Using INM V12 Database outlines the process of creating a V12
database-driven project. In subsequent sections you will learn how to prepare data,
create a database and import data. The section entitled “Step 5: Implementing the User
Interface” shows you how to use the methods available in INM V12 Database.

The next sections cover the integration of INM V12 Database with Macromedia Director
—here you can get a sense of how INM V12 Database can be helpful to your projects.
The Appendices deal with very specific issues such as capacities and limitations, end-
user delivery, portability, and special features.

For a complete description of all the INM V12 Database methods consult the sections
named V12 Database Methods and V12 Database Error Codes in this manual.

Where to start
Before browsing through this User Manual we recommend that you look at the First
Steps tutorial. This introductory tutorial contains example scripts, and sample projects
to help you get started using INM V12 Database both using Lingo and Behaviors. After
completing the tutorial you will have a better basis for using this manual, while planning
your own V12 project. Download the First Steps for INM V12 Database from our website
at:
http://www.INM.com/products/v12director/first-steps/.

You may also benefit from browsing through the V12 Sample movies, available for FREE
on INM’s website at: http://www.INM.com/products/v12director/demos/.

Please make sure you understand INM V12 Database's license agreement before
proceeding. The full license agreement is at the beginning of this user manual (see
License Agreement).

Do I really need to master Lingo to use INM V12 Database?
How comfortable do you need to be with Lingo to use INM V12 Database efficiently? The
answer varies according to the complexity of your projects.

Simple projects require no knowledge of Lingo at all. If your project uses a single
database and shows one record at a time on Director's stage, chances are that you can
implement it using the freely available INM V12 Database Behaviors Library only. If you

http://www.inm.com/products/v12Flash/
http://www.inm.com/products/v12director/first-steps/
http://www.integrationnewmedia.com/products/v12director/demos/

don’t need any more functionality than the Behavior Library provides, then no Lingo
programming will be required.

For more advanced projects, INM V12 Database's comprehensive Lingo interface
requires knowledge of Lingo. However, programming guidance, such as checking the
number and type of parameters, is provided wherever possible.

In a nutshell, before coding your project using INM V12 Database, you need to know
the following basic Lingo concepts:

• Local and global variables,

• Control structures (if statements, repeat loops, etc.),

• Handlers

• Object instances (this is covered in detail later in the Using Xtras
section of this manual)

The INM V12 Database Behaviors library features only the basic essential features of INM V12
Database's functionality. Before you commit yourself to using the INM V12 Database
Behaviors library in your project, you may first want to ask Support@INM.com or other INM
V12 Database users on V12-L (http://www.INM.com/support/list) for advice.

You’re not alone!
Whether you are looking for a quick answer or in-depth information, there are many
resources available online and offline to help you. There are many, many registered
owners of INM V12 Database that are sharing concepts and strategies online. And, you
can also call INM’s customer support, developer assistance or advanced services team
to help you with any specific problems you may have. The following resources may be
very helpful:

V12-L discussion list
On the V12-L Discussion List you will find developers at every level of expertise, and in
a wide variety of specialties in the multimedia arena. This friendly group is the perfect
place to bounce ideas around with other INM V12 Database developers. Sign up at
http://www.INM.com/support/list/

Tech notes
Tech Notes discuss issues asked by INM V12 Database users that are too specialized or
specific to be detailed in this user manual. Many of the Tech Notes are accompanied by
open-source Director movies that you can download and experiment with. Check them
out at: http://www.INM.com/support/v12director/technotes/

Other online resources
Macromedia’s web site, at http://www.macromedia.com/support, is also a possible
source of information. It contains, among other things, directions on how to subscribe

 INM V12 Database® for Director - User Manual page 13

http://www.integrationnewmedia.com/support/list/
http://www.integrationnewmedia.com/support/v12director/technotes/
http://www.macromedia.com/support
mailto:Support@IntegrationNewMedia.com
http://www.integrationnewmedia.com/support/list

 INM V12 Database® for Director - User Manual page 14

to Macromedia's support Newsgroups (the NNTP, or “news” server is
"forums.macromedia.com").

You may want to check alternate Internet resources such as

Director-online-User Group (http://www.director-online.com/),

UpdateStage (http://www.updatestage.com/),

Maricopa (http://www.mcli.dist.maricopa.edu/director),

and the Lingo User Journal (http://www.penworks.com/).

Customer support and developer assistance
If you need additional assistance, INM’s experienced team will be happy to help.

Customer support is available from 9:00 am to 5:00 pm EST, Monday through Friday by
email to support@INM.com or by phone at:

+1 514 871 1333, Option 6.

Priority will be given to registered INM V12 Database users. Customer support covers:

• Helping you to understand INM V12 Database, clarifying
specifications.

• Supplying you with sample scripts for generic concepts.

• Providing useful tips.

Where Customer Support stops, Developer Assistance begins. If you are familiar
enough with INM V12 Database, but want to take your project to a more sophisticated
level, Developer Assistance is for you. Our team of programmers can help you discover
easier ways to take advantage of databases in your multimedia projects. Here are just
some of the services we offer:

• Project design, data structure analysis, planning

• Technical guidance throughout the various steps of your project

• Troubleshooting and debugging your scripts

• Optimization (how to obtain superior performance)

• Assistance with other Xtras, custom development of Xtras

You can think of Developer Assistance as an additional team member, or members that
you can add on to your project team. They can fulfill a small or large role on your
team, depending on your needs.

Typographic conventions in this manual
Important terms, such as the names of methods, are in bold.

Sample code is indented and printed in this font.

Although the sample scripts throughout this manual contain both upper and lower case
characters, INM V12 Database is not case sensitive. This applies to the methods names,
the parameters as well as to the actual data. They are described using mixed case in
order to improve readability and facilitate debugging, and we recommend you adopt a
similar strategy in your Lingo programming. It really does help to improve the
readability of your Lingo scripts!

http://www.director-online.com/
http://www.updatestage.com/
http://www.mcli.dist.maricopa.edu/director
http://www.penworks.com/
mailto:support@IntegrationNewMedia.com

Note: Special annotations and tips are enclosed in the sidebar, like this one.

 INM V12 Database® for Director - User Manual page 15

 INM V12 Database® for Director - User Manual page 16

Welcome to INM V12 Database

Welcome to INM V12 Database, the most powerful and user-friendly cross-platform
database management Xtra for Macromedia Director on Mac OS 9, Mac OS X and
Windows.

If you are familiar with other database management systems, you will find INM V12
Database very easy to use. If you are only vaguely familiar with database management
systems, the next few sections will give you an overview of what you need to know to
help you get started with INM V12 Database.

System requirements for running INM V12 Database

Macintosh version
• Mac Classic version 8.x+

• Mac OS X version 10.2 +

On the Macintosh, INM V12 Database (and any other Xtra) will share the same memory
partition as Macromedia Director.

For simple database applications, you probably do not need to change the memory
partition allocated to Director or to projectors generated by Director. For more
advanced development, you may need to increase the memory partition. See your
operating system manual for details.

In general, we recommend that your Director application’s memory partition be set at
the maximum you can afford to give to it, with enough RAM memory reserved for any
other applications you may need to run at the same time as Director.

We also recommend that you allocate an absolute minimum of 8 megabytes of RAM to
the projector’s minimum RAM requirements. You may also want to ensure that
Director’s preference for “Use Temporary Memory” setting is set before creating your
projector (this will ensure that if the projector does run out of memory, it will start
using free System memory and dynamically increase the memory allocated to the
application.

Tip: INM recommends that you always thoroughly test your final project using the
minimum standard equipment you have determined for your application, on all
supported operating system platforms.

This process will also help you confirm that your product functions correctly within
the minimum memory requirement you have recommended to your users.

Windows version
• Windows 95, 98, Me, NT4, 2000 and XP

Windows uses a Virtual Memory scheme, which dynamically allocates memory to
applications. This means that an application can "borrow" as much memory as needed
from the Operating System. It also means that Windows shows unpredictable behaviors

 INM V12 Database® for Director - User Manual page 17

when it is short of memory. Try to establish the minimum equipment requirements of
your project as conservatively as possible.

Always thoroughly test your project on the minimum required equipment you have
determined for your application.

Macromedia Director
Macromedia Director version 8, 8.5, MX or MX 2004 is required.

Installing INM V12 Database
The name of this Xtra is V12-Database.X32 on Windows, and V12-Database.XTR on
the Mac (the files are named the same for Mac OS 9 and Mac OS X, but they are
different Xtras and are located in separate folders within the Mac download package).

To install the INM V12 Database Xtra in your authoring environment:

• Make sure that Director is closed.

• Move the INM V12 Database Xtra to the Xtras folder located in the
same folder as Director (for Director MX 2004 the Xtras folder is in the
folder named Configuration).

• Start Director.

To confirm that INM V12 Database is properly installed, check the Xtras menu in
Director. You should see "INM V12 Database" in the Xtras menu.

Version history
INM V12 Database version 1.0 was released in 1996 as both a XObject and Xtra for
Macromedia Director 4 and 5. It was essentially meant to serve as an advanced data
management system for Director titles with elaborate user interfaces delivered on CD-
ROM, such as games and virtual workshops.

INM V12 Database Xtra version 2.0 was released in early 1998. It focused on making
database technology easier to learn and use by Director users. It added features that
better suit projects such as electronic catalogs, electronic books, template-based
movies, etc. Some of these features are: full-text indexing, simplified database
creation, data binding, styled text management, a Behaviors library, etc.

INM V12 Database Xtra version 3.0 was released in July 1999. It focused on extending
INM V12 Database to multi-user environments and to better serve Internet applications.
Minor releases since version 3.0 have, for the most part, addressed bugs and
compatibility issues between different versions of Director.

Release notes from previous versions
For details on what changed in previous releases of INM V12 Database, please visit the
Release-History pages in the support section of Integration New Media’s web site:
http://www.INM.com/support/v12director/release-history/

http://www.integrationnewmedia.com/support/v12director/release-history/

How to register your INM V12 Database license
Free evaluation copies of INM V12 Database are available on Integration New Media's
web site (http://www.INM.com/V12director/) along with full documentation and sample
movies. You can download those files today and evaluate them in your project without
purchasing an INM V12 Database license.

The evaluation copy of INM V12 Database is not limited in any way; it only displays a
splash screen upon startup. To avoid seeing the splash screen, you must purchase an
INM V12 Database license (or as many as required by the INM V12 Database license
agreement). As a licensee, you are given a license key that you must enter into the
Enter Key dialog box, from within Director.

Click Xtras > INM V12 Database > Enter Key… from Director’s menu.

Enter your name, company name and the license key you received by e-mail upon
purchasing your license. Once your license key is entered, all new databases you create
are automatically licensed and do not show a splash screen. Existing databases created
in trial mode are licensed as soon as they are opened in ReadWrite mode on that
machine.

Note: Existing V12 databases must be opened once in ReadWrite mode to be
licensed. If you open them in ReadOnly mode only or from a CD-ROM, they cannot
be licensed and the splash screen will continue to appear on computers that do not
have the license file, even if you purchased a license. INM V12 Database returns a
warning when opening unlicensed databases in such circumstances.

The only way to test if your V12 Database file is licensed for playback and distribution
is to test it on a machine that does not contain the license key.

Additional Tools for Working with INM V12 Database
To assist you in developing your V12 Database projects, Integration New Media has
developed some productivity tools that are available Free from the Free Tools section of
our website:
http://www.INM.com/products/v12director/tools/.

 INM V12 Database® for Director - User Manual page 18

http://www.inm.com/V12director/
http://www.integrationnewmedia.com/products/v12director/tools/

 INM V12 Database® for Director - User Manual page 19

INM V12 Database Editor
The INM V12 Database Editor is an application that helps you create, edit and browse
the contents of V12 databases. It also comes with a variety of predefined V12 database
templates to help you get started quickly. The INM V12 Database Editor is discussed in
this manual in the section entitled, Using the INM V12 Database Editor, a sub-heading
of Step 3: Create a Database.

INM V12 Database Behaviors Library
The INM V12 Database Behaviors Library is set of Behaviors that allow you to quickly
implement a simple application interface using a V12 database. If your project uses a
single database and shows one record at a time on Director's stage, chances are that
you can implement it using the INM V12 Database Behaviors Library only. You can read
more on the INM V12 Database Behaviors Library in it’s accompanying manual.

INM V12 Database Help Files
Integrated help files are available to assist you while working in Director. These files
are accessed from Director’s Xtras menu to provide quick reference for the INM V12
Database methods, error codes and Behaviors. Download the Help MIAW (movie in a
window) from: http://www.INM.com/support/v12director/manuals/.

http://www.integrationnewmedia.com/support/v12director/manuals/

 INM V12 Database® for Director - User Manual page 20

Using Xtras

This section deals with Xtras and how they are used in Macromedia Director. The INM
V12 Database Xtra is used as an example throughout the manual. You will be
introduced to the basic steps involved in using INM V12 Database successfully before
you actually begin to work with INM V12 Database.

This section covers:

• Making an Xtra available to Director

• Creating an Xtra instance

• Verifying whether the instance was successfully created

• Using the Xtra instance

• Closing the Xtra instance

• Where to get additional Documentation

• Using Xtras with Shockwave

What is an Xtra?
Xtras are components (alternatively know as extensions, add-ons, or plug-ins) that add
new features to Macromedia Director. Many of Director's own functions are implemented
as Xtras. Xtras for Windows must have an .X32 file extension, as in "V12-
Database.X32".

Making the INM V12 Database Xtra available in authoring and
runtime modes
Xtras are designed to be opened automatically by Director (in authoring mode) or by
your Projector (in runtime mode, also called playback mode). The INM V12 Database
Xtra must be placed in the Xtras folder, located either in Director's folder or the same
folder as your Projector.

If you are delivering an end-product using Shockwave, then the way Xtras are installed
and located is a bit different than with Projectors and in the authoring environment. See
Using INM V12 Database with Shockwave for more information.

Checking for available Xtras
You can learn which Xtras are available in your copy of Director by typing the following
command in the Message Window:

ShowXlib

If INM V12 Database is installed, you should see V12dbe and V12table listed in
ShowXlib's output, as well as all other available Lingo Xtras.

Creating an instance of the INM V12 Database Xtra
A mandatory first step before using a Lingo Xtra is to create an instance of it. This is
how a Lingo Xtra comes to life and, from then on, you can use its methods.

Call New to create an instance of the INM V12 Database Xtra. Generally, you store a
newly created Xtra instance in a global variable for future use. The following example
uses the New method of the database Xtra.

Example:
gDB = New(Xtra"V12dbe", the MoviePath&"myBase.V12", "Create",

"myPassword")

Checking if New was successful
You should always ensure that the Xtra was created successfully immediately after
calling New. New can fail for many reasons, such as a lack of free memory or as a result
of misplaced files.

Example:
if NOT ObjectP(gDB) then alert "Could not create Xtra instance"

 INM V12 Database® for Director - User Manual page 21

Using the Xtra instance
Once the preliminary steps have been executed, you can start using the Xtra instance of
your database for creating tables, fields and indexes, or for using an existing database.
Methods of the Xtra need to be called to perform these operations. By convention,
INM V12 Database method names begin with the letter m such as mGetfield and
mSelect (with a few exceptions such as New, V12Error and V12status).

This example shows the structure of the database referred to by gDB in the message
window:

put mDumpStructure(gDB)

Note: In order to learn which methods are supported by an Xtra, use the Xtra's
built-in documentation. See Basic documentation below.

Note: This is a generic approach and works with all Xtras. In INM V12
Database, the preferred way to check for errors is the V12Status() method. See
Checking the Status of the Last Method Called in this manual.

Closing the Xtra Instance
When the Xtra instance has completed its function and is no longer required, close it by
calling the mClose() method and then setting the variable that refers to it to 0. Closing
an Xtra performs mandatory housekeeping tasks and closes unneeded files. It also
frees the memory occupied by the Xtra. All Xtra instances created with New must be
ultimately destroyed using mClose() and set to 0 once they are no longer needed.

Example:
gDB.mClose()

gDB = 0

Note: If a INM V12 Database Xtra instance is not properly closed, the file it refers to
remains open and cannot be re-opened unless the computer is restarted. In some
cases, the database could become corrupted.

Note: Up until Director MX 2004, simply setting the database variable to zero would
close the database instance. However, with Director MX 2004, you must explicitly
close the table and database instances using the mClose() method.

Dealing with pathnames
The New method in V12dbe requires that you specify the name of the INM V12 Database
file you want to create or open. If only a file name is specified, the file is assumed to be
located in the same folder as Director or the Projector.

If you are using Shockwave, INM V12 Database is limited to looking for the database in
the standard application cache folder. Example:

gDB = New(Xtra"V12dbe", "myBase.V12", "Create", "myPassword")

assumes that "myBase.V12" is in the same folder as Director or the Projector. This is
equivalent to:

gDB = New(Xtra"V12dbe", the applicationPath & "myBase.V12", "Create",
"myPassword")

Most of the time, however, placing the database file in the same folder as the movie
that uses it is more convenient. Use the MoviePath Lingo function to get the current
movie's folder.

Example:
gDB = New(Xtra"V12dbe", the MoviePath & "myBase.V12", "Create",

"myPassword")

Passing parameters to the INM V12 Database Xtra
As in any programming language (including Lingo), functions, commands and methods
require a certain number of parameters. For example, in Lingo, the Go to frame
command expects one parameter: the destination frame identifier. Likewise, the
getAt(theList, pos) function expects two parameters: list and position.

While the two aforementioned examples require exactly one and two parameters
respectively, some commands and functions offer more flexibility by accepting optional
parameters. For example, in Lingo, the Beep command requires one parameter: the
number of beeps. However, if that parameter is omitted, Lingo assumes that one beep
is required.

Xtras offer the same mechanism: some methods require an exact number of
parameters (fixed number of parameters), others assume default values if parameters
are omitted (variable number of parameters). Each of these methods can be easily
identified in the Xtras built-in documentation explained below (see Basic
documentation).

 INM V12 Database® for Director - User Manual page 22

 INM V12 Database® for Director - User Manual page 23

Basic documentation
In Director, Xtras contain a built-in mechanism that provides documentation for Lingo
developers. In the Message Window, type:

put interface(Xtra "V12dbe")

where Xtra "V12dbe" is the name of the Xtra library, not of an instance of the Xtra.

The above command returns the following Xtra description:
-- part of INM V12 Database

-- ©Integration New Media, Inc. 1995-2005

-- Please check the on-line help in the Xtras/INM V12 Database menu

new object me, string databasename, string openmode, *

 mBuild object me, *

mCloneDatabase object me, string databasename

mClose object me

mCreateField object me, string tablename, string fieldname, *

mCreateFullIndex object me, string tablename, string fieldname, *

mCreateIndex object me, string tablename, string indexname, string isunique,
string fieldname, string order, *

mCreateTable object me, string tablename

mCustom object me, *

mDeleteTable object me, string tablename

mDumpStructure object me, *

mEditDBStructure object me

+ mError object xtraRef, *

+ mFixDatabase object xtraRef, string databasename, string newdatabasename

mFlushToDisk object me

mGetPropertyNames object me, *

mGetProperty object me, string property

mGetRef object me

mPackDatabase object me, string newdatabasename

mReadDBStructure object me, string inputtype, string source, *

mRenameField object me, string tablename, string oldfieldname, string newfieldname

mSetPassword object me, string oldpassword, string newpassword

mSetProperty object me, string property, string value

+ mStatus object xtraRef

mUpdateDBStructure object me

* V12Download string url, string dest, string password, string
completion_callback_handler, string status_callback_handler, any ref

* V12DownloadInfo string url, any info, string callback_handler, any ref

* V12Error *

* V12ErrorReset

* V12Status

+ mXtraVersion object xtraRef

Methods that expect a fixed number of parameters are those for which each parameter
is listed. Methods that accept a variable number of parameters are those followed by a
*.

Following are a few examples:
mFlushToDisk object me

 INM V12 Database® for Director - User Manual page 24

means that the mFlushToDisk method requires exactly one parameter: the database
instance.

mSetProperty object me, string property, string value

means that mSetProperty requires three parameters: the database instance, the
property (a string) and the value of the property (a string).

mDumpStructure object me, *

means that mDumpStructure requires at least one parameter, and possibly more
(indicated by the asterisk). You must refer to the documentation of this method to know
what additional parameters are accepted, and when.

+ mXtraVersion object xtraRef

the leading "+" sign means that mXtraVersion is a static method - a method that can be
used with a database instance (i.e. mXtraVersion(gDB)) and a database library instance
(i.e. mXtraVersion(Xtra "V12dbe")). Static methods are seldom used in INM V12
Database.

* V12Status

the leading "*" means that V12status is a global method - a method that can be used
at any time, regardless of Xtra instances. It only requires that the Xtra be present when
that function is called.

For a complete listing of the INM V12 Database methods, see V12 Database Methods
section of this manual.

Using INM V12 Database with Shockwave
Director 7 and greater have the ability to automatically download Xtras via the Internet,
if they are not present in the user’s computer. This functionality is open to use in
Shockwave Projectors and Shockwave movies.

Due to the fact that you are using INM V12 Database in your project, you need to
ensure that all users of your project have the Xtras properly installed and running
before executing any of the INM V12 Database functions.

Macromedia has implemented an auto-downloading functionality into Shockwave, which
utilizes the Verisign secure download process.

If you want to use Shockwave as your delivery platform, you should plan your project’s
implementation with this in mind. Be prepared to address the auto-installation issue for
the V12 Database Xtra and any other third party or custom Xtras you may be using in
your project.

More detailed information on using Xtras with Shockwave is described in this manual in
the section entitled Shockwave Projectors and Movies.

Verisign
Auto-downloading Xtras use the Verisign secure download certificate to ensure the least
amount of risk to the end user’s computer. INM V12 Database is digitally "shrink-
wrapped" to let your customers know that it is safe to install it on their computers. For
mote details, see http://www.verisign.com.

http://www.verisign.com/

 INM V12 Database® for Director - User Manual page 25

Database Basics

Overview
If you want a clearer understanding of what a database is and does, we recommend
that you read this section. The following sections deal with database basics:

• what is a database,

• records, fields and tables,

• indexes and full-text indexes, keen

• flat and relational databases,

• field types,

• selection, current record, and search criteria.

What is a database?
A database is a collection of information that can be structured and sorted. A telephone
book is an example of a hardcopy database, and government statistical records are
examples of electronic databases. Database management programs such as INM V12
Database provide many advantages over hardcopy databases. Unlike a telephone
directory, where you can look up data that is sorted in alphabetical order only, database
management programs allow you to change the way you sort and view information.
Moreover, you can find, modify and update information quickly and easily.

Records, Fields and Tables
An entry in a database is called a record.

Each record consists of pieces of information called fields.

All records are stored in a table.

Note: Some database management systems refer to fields as columns and to records as
lines or rows. In INM V12 Database, the terms remain fields and records.

For example, data entry in an address book typically consists of seven pieces of
information called fields: last name, first name, street address, city, state, zip code
and phone number. All the information relevant to one person makes up one record.
The collected records make up the table and are contained in a database file. Entries
below are typical of those found in an address book:

This is an example of a table:

Last Name First Name Address City State Zip Phone <-- These are fields

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 <-- 1st record

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 <-- 2nd record

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 <-- 3rd record

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 <-- 4th record

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 <-- etc…

 INM V12 Database® for Director - User Manual page 26

Indexes
In a telephone directory, information is indexed by last name - a typical way to search
for a telephone number. There are directories that index information by order of phone
number or address, but such static directories sort information in only one specific
predetermined order.

INM V12 Database, by contrast, allows you to determine how you want to sort
information by defining one or more indexes in a table. When a field is indexed, INM
V12 Database creates an internal list that can be used to sort and search quickly the
data it contains. Non-indexed fields can also be searched and sorted, but at a slower
speed.

In this example, the address book entries are listed according to an index of the first
name field and sorted in ascending order (A to Z), thus appearing in alphabetical order
by first name.

Last Name First Name Address City State Zip Phone

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267

Compound indexes
A compound index — or complex index —organizes entries composed of two or more
fields, as opposed to simple indexes — or indexes, for short — which organize single-
field entries. Compound indexes are useful to determine the sorting order of records
when some fields contain identical values.

In this example, three records share the same last names (Cartman). Indexing the field
LastName alone would certainly force Last Names to be properly ordered. But this would
not determine the order in which the Cartman’s are sorted.

Last Name First Name City State Zip

Brown Charles San Francisco CA 94115

Cartman Wendy San Mateo CA 94403

Cartman Lucy Richmond VA 23233

Cartman Eric Lebanon MO 92023

Pintado Jack Bowie MD 20712

If you want your records sorted by Last Name, and by First Name in case of identical
Last Names, you define a compound index on the fields LastName and FirstName. The
sorted result would then be:

Last Name First Name City State Zip

Brown Charles San Francisco CA 94115

Cartman Eric Lebanon MO 92023

Cartman Lucy Richmond VA 23233

Cartman Wendy San Mateo CA 94403

Pintado Jack Bowie MD 20712

If you want them sorted by Last Name, and then by State in case of identical Last
Names you define a compound index on the fields LastName and State. The sorted
result would then be:
Last Name First Name City State Zip

Brown Charles San Francisco CA 94115

Cartman Wendy San Mateo CA 94403

Cartman Eric Lebanon MO 92023

Cartman Lucy Richmond VA 23233

Pintado Jack Bowie MD 20712

Up to twelve fields can be declared in a single compound index in INM V12 Database.

Full-text indexing
Defining an index on a field allows for quick sorting and searching of the first few
characters of a field. In some applications – typically when fields contain extensive
information – you need to search for words that appear anywhere in a field efficiently.
This is where you need to define a full-text index, or full-index for short, on that field.
A full-index is an index defined on every single word of a field.
Last Name First Name Publication Title

Jordan Ann Soups and Salads for Dummies

Brown Charles The Hunchback of the Empire State Building

Pintado Jack Bounds on Branching Programs

Van Damme Lucie Natural and Artificial Intelligence

Peppermint Patty Mastering Soups in 32,767 Easy Lessons

In this example, looking for the word "Soup" in the Publication Title field requires a full-
index for optimal search performance. If no index is defined on the Publication Title
field, the same result can be achieved, but with a slower performance. If a regular index
is defined on the Publication Title field, publications that start with the word "Soup" can
be quickly located, but publications that contain that word somewhere in the middle of
the field require more time. Full-indexes apply only to fields of type string, including
those that contain styled text (see Field types, International support and Styled text).

Note: Each index takes up disk space, so it is not recommended that all fields be indexed.
Full-indexes require much more space than regular indexes. Indexed fields should be limited to
those most likely to be searched and/or sorted.

 INM V12 Database® for Director - User Manual page 27

Defining full-text indexing options

For optimal full-text search efficiency, some level of control is required on the way it is
performed. For example, indexing trivial words such as "and", "or", "the", etc. (or
equivalent words that appear frequently in your application's language) is useless as
most records would contain one or more occurrences of those words.

Likewise, some applications or languages require that digits be full-indexed whereas
others would prefer to ignore them. INM V12 Database enables you to fine-tune the
behavior of the full-indexes by allowing for the definition of Stop Words (words that
must be ignored), Delimiters (characters that delimit word boundaries) and
MinWordLength (the size of the shortest word that must be considered for full-
indexing). These values must be defined before the structure of the database is
created.

Database
A table, its fields and the indexes defined are stored in a database. A database can
contain one or more such tables.

Flat and relational databases
A flat database usually consists of one table. In flat database management systems
such as FileMaker Pro, the terms table and database are interchangeable.

A relational database presents a more sophisticated use of information. In relational
database management systems, two or more tables are contained in the database.
Therefore, you can store as many tables as you need in a single database file and each
table could have one or more indexes. Tables can be linked so that information can be
shared, saving you the trouble of copying the same information into several locations
and eliminating the maintenance of duplicate information. Linking is important if there
are relationships between the various pieces of information.

 INM V12 Database® for Director - User Manual page 28

For example, if you want to add information to the entries contained in the address
book in our first example, such as the company address and phone number, one way to
do this would be to add them to the table:

Last Name First Name Address City State Zip Phone Company CoPhone

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 Rocco & Co. 526-2342

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 National Laundry 982-9400

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 Rocco & Co. 526-2342

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 Presto Clean 751-5290

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 Presto Clean 751-5290

However, adding this information might lead to duplication of information, given that
some people might be working for the same company. To prevent duplication and to
save on disk space and time required to update, you could create a new table
containing only the business information. For example, the new table could be called:
Companies. Each record of that new table would have a unique ID number, Company
Ref, which would also be stored in the first table.

The database now contains two related tables, each having a field containing the
common information, named “Company Ref”:

Table 1: containing information about each person:

Last Name First Name Address City State Zip Phone Company Ref

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 RO

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 NA

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 RO

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 PR

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 PR

Table 2: containing information about the companies:

Company ref Company Phone

NA National Laundry 982-9400

PR Presto Cleaning 751-5290

RO Rocco & Co. 526-2342

The two databases could also be compared as follows:

The relational database is smaller because it avoids useless data duplication. In order
to retrieve full information about any given individual in your address book, you would
perform a search in your first table, retrieve the company reference, and then perform a

 INM V12 Database® for Director - User Manual page 29

search in the second table. The flat model may be easier to manage when retrieving
data given that only one search is required. However it tends to consume valuable disk
space. The flat model also introduces the risk of data discrepancies due to the
duplication of data.

Note: Relational Database Management Systems (RDBMS) are usually programmed with SQL (System
Query Language) statements, which have the ability to automatically resolve relations between related
tables.

Although INM V12 Database can store multiple tables per database, it relies on Lingo scripts to resolve
relations. It cannot automatically resolve such relations.

Field types
For optimal data sorting and searching, you can specify the kind of information to be
stored in each field. In INM V12 Database, fields can be designated to contain strings,
integers, floating-point numbers, dates, pictures, sounds, palettes, etc. A field would
then be of type string, integer, float, date, or media. Fields of type Media can
accommodate any media that can be stored in a cast member. The known exceptions
are Film Loops and QuickTime movies. See the section named Capacities and Limits for
a formal definition of each field type.

For example, if you wanted to organize a contest where each person listed in your
address book were collecting points, you would need to keep track of the number of
points accumulated by each person. Therefore, you would update your address book to
include a new field: number of points. Since you would want to search and sort this new
field quickly, you would need to define an index. This new field could be one of two
types: string or integer.

If you define the new field as type string, you might end up with the following listing
when the table is sorted by ascending order of points:

Jordan Ann 1

Brown Charles 12

Peppermint Patty 127

Pintado Jack 6

Van Damme Lucie 64

This order occurs because the string "12" is alphabetically lower than the string "6"
given that the ASCII code for "1" is 49 which is smaller than the ASCII code for "6", 54.
To sort the list in the expected ascending order, you must define the field number of
points to be of type integer to get this result:

Jordan Ann 1

Pintado Jack 6

Brown Charles 12

Van Damme Lucie 64

Peppermint Patty 127

 INM V12 Database® for Director - User Manual page 30

Typecasting
Typecasting (or casting, for short) is the process of converting a piece of data from one
type to another. This is a common mechanism to most programming languages,
including Lingo.

For example, the integer 234 can be casted to the string "234". Conversely, the string
"3.1416" can be casted to the float 3.1416.

Typecasting can be performed explicitly in Lingo using the Integer, String and Float
functions (i.e., String(234) returns the string "234") or automatically (i.e., 12&34
returns the string "1234").

INM V12 Database has the same ability as Lingo to typecast data when it is required by
the context. However, some borderline conditions can lead to ambiguous results such as
trying to store the value " 123" in a field of type Integer (note the leading space).

You must always make sure that the data supplied to INM V12 Database does not
contain spurious characters, otherwise typecasting will not be performed properly.

International support
Although the 26 basic letters of the Roman alphabet sort in the same order in all roman
languages, the position of accented characters (also called mutated characters) varies
from one language to another. For example, the letter ä sorts as a regular a in German
whereas it sorts after z in Swedish. Likewise, in Spanish, ch sorts after cz and ll sorts
after lz.

Note: Everything that applies to the type string also applies to custom string types.
Throughout this manual, the term string is used to designate both the default INM V12
Database string and custom string types.

INM V12 Database's default string was designed to satisfy as many languages as
possible. It can sort and search texts in English, French, Italian, Dutch, German,
Norwegian, etc.

INM V12 Database also offers the option of defining fields of type Swedish, Spanish,
Hebrew, etc. that index and sort data in a way that is compliant with these languages.

The Regular Edition of INM V12 Database allows you to create custom string types,
where you define a sort/search description table for each. Therefore, you can define
your own string type for any language supported by single-byte characters, including
Klingon.

For details on various character sets and custom string types, please see Appendix 3:
String and Custom String Types.

 INM V12 Database® for Director - User Manual page 31

Selection, current record, search criteria
Besides sorting a table through indexes, you can find information based on search
criteria. You can define simple search criteria, also called simple queries, such as:

• First name is Jack

• State is California

• Number of points is less than 30

• Last name begins with P

Or you can define complex search criteria, also called Boolean queries using and/or,
such as:

• First name is Jack or Last name begins with P

• State is California and Number of points is less than 30

• State is California and Number of points is less than 30 and
Last name contains "pe"

Note: Database Management Systems that use SQL as their programming language can define
search criteria such as: (Dish is soup or appetizer) and (Main Ingredient is celery or eggplant or
pumpkin). INM V12 Database does not support alternating uses of ANDs and ORs.

See technical notes on http://www.INM.com/support/v12director/technotes for possible workarounds.

The selection is a set of records currently available in the table. When a table is
opened the selection contains all the records of the table. If you search through a table
after having defined search criteria, the resulting set of records that satisfy the search is
the new selection. When a selection is first defined, the current record is the first
record of that selection.

• If exactly one record satisfies the search criteria, the selection
contains only that record, which automatically becomes the current
record.

• If two or more records satisfy the search criteria, the selection is the
set of those records, and the first record of the selection becomes the
current record.

• If no record satisfies the search criteria, then the selection is empty
and the current record is undefined. Any attempt to read or write in a
field will result in an error.

This figure illustrates the idea of searching a table for records satisfying a certain
criteria. The result is placed in a selection, the first record of which becomes the
current record.

All operations on any fields (such as reading and writing data) are done on the current
record. Therefore, before performing these operations, you must designate the record

 INM V12 Database® for Director - User Manual page 32

http://www.integrationnewmedia.com/support/v12director/technotes

 INM V12 Database® for Director - User Manual page 33

on which you wish to work as the current record by selecting it, and by using methods
such as mGoFirst, mGoLast, mGoNext, mGoPrevious and mGo.

You can read the contents of a field in the current record, modify its contents or delete
the entire record. When you move from one record to then next in the selection, the
current record pointer changes. Note that if you modify the fields of the current record,
you must call mUpdateRecord to save your changes to the database before moving to
another record, otherwise your changes will be lost.

 INM V12 Database® for Director - User Manual page 34

Using INM V12 Database- Step by Step

Overview
This section covers the main steps in using INM V12 Database. If you have looked at
the First Steps tutorial (highly recommended), you should already be familiar with these
five steps.

INM V12 Database basics
INM V12 Database is a powerful database management tool, composed of two Xtras
libraries: a database Xtra named "V12dbe" and a table Xtra named "V12table". The
database Xtra is used to create a new database or to open an existing database in a
given mode (Read Only, ReadWrite or Create). The table Xtra is used to manage the
content of the table in your database.

The main Ssteps
The First Steps tutorial described a typical step-by-step use of INM V12 Database. In
this section those individual steps are explored in greater detail.

Step 1: Decide on a Data Model: Before you create your database, decide which
fields are needed, the type of those fields, how they should be grouped in the tables
and which fields should be indexed. This is a design effort that does not require a
special tool (with the possible exception of a word processor to help you edit your
ideas). If your original data is managed in FileMaker Pro, MS Access, or a similar
database management product, that database's model is probably the best starting
point for your V12 database model.

Step 2: Prepare the Data: If your original data is managed in FileMaker Pro, MS
Access, or a similar database management product, in step 2, you make sure that your
data is properly entered and that it is in a format readable by INM V12 Database (Text
file, DBF file or one of INM V12 Database's ODBC-compliant formats).

Step 3: Create a Database: Use the INM V12 Database Editor to create the V12
database you designed at Step 1. Alternatively, you can use the database Xtra's (i.e.
Xtra V12dbe's) methods to write an automated database creation script in Lingo. (See
the First Steps tutorial for sample code:
http://www.INM.com/products/v12director/first-steps/)

Note: Although steps 1 and 2 do not involve any production work or programming, they are the
most critical ones to the success of your project.

A well-designed project will yield high-quality results, on time, on budget. Similarly, failing to lay
solid foundations at steps 1 and 2 will lead to an unmanageable project with fragile results. If you
don't feel comfortable with steps 1 and 2, we recommend that you seek advice or hire professional
help.
 (See You’re not alone!)

http://www.integrationnewmedia.com/products/v12director/first-steps/

 INM V12 Database® for Director - User Manual page 35

Step 4: Import Data into a V12 Database : Use the INM V12 Database Editor to
import the Text or DBF file exported at Step 2. Alternatively, you can write Lingo scripts
to automate the process of importing data into your INM V12 databases.

Step 5: Implementing the User Interface: In this step you develop the means by
which users will search for, retrieve and modify data at runtime. This interaction with
the database can be developed either using Behaviors attached to Director sprites, or as
Lingo handlers in Director script members. Sample movies are available on Integration
New Media's web site, at:
http://www.INM.com/support/v12director/technotes/. These movies each demonstrate
specific techniques commonly used in database-driven applications and can be used to
inspire the development of your projects.

Each of the aforementioned steps is discussed more in depth in subsequent sections.
Since INM V12 Database offers more than one way to attain a goal, the simplest
approach is explained first; then alternate and more powerful or versatile approaches
are discussed.

http://www.inm.com/support/v12director/technotes/

 INM V12 Database® for Director - User Manual page 36

Step 1: Decide on a Data Model

Before creating a database file, you need to decide how you want to organize your data.
If your original data is managed in FileMaker Pro, MS Access, or a similar database
management product, that database's model is probably the best starting point for your
V12 database model. The questions you need to address are:

• which fields are required and what are their respective types?

• which fields should be indexed for quick searching and sorting?

• how many tables are required to group the fields?

• are there any relationships between the various tables?

In the stationary catalog example below, only one table is needed. It is called
"Articles". The seven fields you need are :

• Field "ItemName" of type String

• Field "Category" of type String

• Field "Description" of type String

• Field "Price" of type Float

• Field "CatalogNumber" of type Integer

• Field "Photo" of type Media

• Field "Date" of type Date

Since only the fields "ItemName", "Price" and "CatalogNumber" will be searchable, only
they are indexed.

Defining identifiers
Tables, fields and indexes are given names called identifiers, and INM V12 Database
makes reference to them by use of these identifiers. An identifier must start with a low-
ASCII alphabetic character (a..z, A..Z) and can be followed by any combination of
alphanumeric characters (0..9, a..z, A..Z, à, é, ö, …). The maximum length for an
identifier is 32 characters. No two fields or indexes of a table can have the same name.

INM V12 Database is not case-sensitive. That is, upper cases and lower cases are
identical. These identifiers are considered identical in INM V12 Database: "articles",
"ARTICLES", "Articles", "aRtICleS".

 INM V12 Database® for Director - User Manual page 37

Step 2: Prepare the Data

Step 2 is relevant only if your original data is managed in FileMaker Pro, 4th Dimension,
DBase or any other database management system that has the ability to export TEXT or
DBF files.

If you plan to use an ODBC driver to import your data from MS Access, MS FoxPro, MS
Excel or MS SQL Server, or if the records must be keyed-in by the user, skip to Step 3.

In brief, Step 2 consists in making sure that your original data is properly structured
and in exporting it as Text or DBF files. Those files are then imported to V12 databases
at Step 4: Import Data into a V12 Database .

TEXT file formats
Text files are the most popular data interchange file formats. Usually, TAB-delimited
Text files are used to exchange data between database management systems.

A typical TAB-delimited file is in this format:
Field_A1 TAB Field_A2 TAB Field_A3 TAB ... TAB Field_An CR

Field_B1 TAB Field_B2 TAB Field_B3 TAB ... TAB Field_Bn CR
Field_C1 TAB Field_C2 TAB Field_C3 TAB ... TAB Field_Cn CR

where Field_A1, Field_A2, etc. represent the actual data in those fields. TAB is the
ASCII character 9, indicating the end of a field.

On the Mac, CR is the ASCII character 13, indicating the end of a record. On Windows,
CR is the ASCII character 13 followed by the ASCII character 10 (Line Feed). Since INM
V12 Database always ignores Line Feed characters, you need not worry about
exceptional cases between the Mac and Windows with respect to Record Delimiters.

Generally, using the INM V12 Database Editor or the mImport method to import a text
file into a V12 Database file is a straightforward process, unless your fields contain TAB
or CR characters. In such cases, INM V12 Database confuses the real delimiter with the
legitimate content of your field. See Dealing with delimiter ambiguity below.

Field descriptors
INM V12 Database requires a special type of Delimited Text file format. The file's first
line must contain field descriptors, or the names of the fields into which the data that
follow must be imported. This file format is sometimes referred to as mail merge
format. This is an example of such a file:

Name Price CatNumber

Ruler 1.99 1431

Labels 1.19 1743

Tags 6.19 …

 INM V12 Database® for Director - User Manual page 38

You can easily have FileMaker Pro and MS Access export those field names before
exporting the records data (See Exporting a MS Access Database to text).

Dealing with delimiter ambiguity
Most of the time, TABs are used to delimit fields in a Text file, and CRs to delimit
records. If your fields contain TABs or CRs as part of their actual data, the legitimate
content of your fields would be confused with those delimiters once exported in a text
file. There is more than one way to deal with this problem. Choose the one — or
combination — that best fit your project's needs in the list below.

Virtual carriage returns

Some database management systems (e.g., FileMaker Pro) export a special character
other than ASCII #13 instead of the CRs that appear in your fields. For example,
FileMaker Pro exports ASCII #11 (Vertical Tab) instead of ASCII #13. Those characters
are called Virtual Carriage Returns or VirtualCR for short.

INM V12 Database can recognize those characters and convert them to real Carriage
Returns (ASCII #13) once they are imported. See Step 4: Import Data into a V12
Database, Import data with mImport and VirtualCR in Properties of Databases.

Text qualifiers

A text qualifier is a special character used to begin and end each Text field. In most
database management systems, the quotation mark (") is the default text qualifier. Its
main purpose is to group a field's content between two identical marks so as to enable
the occurrence of field and record delimiters without the risk of confusion.

Example:
"Name","Description" CR

"Hat","high-quality, excellent fabric, available in:CRRedCRGreenCRBlue"

"Shoe","this description, field, contains, commas, and, CarriageCRReturns"

Text qualifiers are automatically placed in text files exported from MS Access, FileMaker
Pro (Mail Merge format) and MS Excel (only for fields that contain commas).

Text files containing Text Qualifiers are easily imported to V12 databases by setting the
mImport method's TextQualifier property to the right character. See Step 4: Import
Data into a V12 Database, Import data with mImport.

Custom delimiters

Another way to avoid delimiter ambiguity is to choose delimiters other than TAB and CR.
Some database management systems allow you to select appropriate delimiters before
exporting to a TEXT file (e.g., 4th Dimension). Some others allow only the selection of a
custom field delimiter and always use CRs as record delimiters (e.g., MS Access).
FileMaker Pro and MS Excel do not allow for any customization.

INM V12 Database's mImport method assumes, by default, that the field and record
delimiters are TAB and CR. However, other delimiters can be specified. See Step 4:
Import Data into a V12 Database, Import data with mImport.

 INM V12 Database® for Director - User Manual page 39

Calculated fields

If your database management system does not support alternative delimiters you can
nonetheless force it to export your own delimiters by creating an additional field and
setting it as the result of the concatenation of all the other fields with the desired
delimiter in between each two fields. Then, export only the new field in a text file.

Processing the exported text file

If the database management system used to store your data is not flexible enough, or if
the data themselves are not properly structured, you can export them in a text file and
use Third Party tools to search and replace sequences — or patterns — of characters.

Below is a non-exhaustive list of helpful tools:

• BBEdit from Bare Bones Software (http://www.BareBones.com/) For
MacOS.

• TextPad from Helios Software Solutions (http://www.Textpad.com/).
For Windows.

• UltraEdit from IDM Computer Solutions (http://www.Ultraedit.com/).
For Windows.

• Microsoft Excel from Microsoft Corp. (http://www.Microsoft.com/. For
MacOS and Windows.

BBEdit, TextPad and UltraEdit feature GREPs (General Regular Expression Parsers),
which are very convenient to reorganize unstructured data.

Character Sets
Character sets are not standard across operating systems and file formats. For
example, the letter "é" is the 233rd on Windows, whereas it is the 142nd on Macintosh
and the 130th on MS-DOS.

Although all three operating systems use the ASCII characters set, only low-ASCII
characters (i.e., those below #127) are common to the many variants of the ASCII set.
Therefore, the rest of this topic is of interest to you only if you deal with high-ASCII
characters (such as €, å, æ, ß, ê, ï, ø, ž, ‰, §, ¥, etc.)

Note: Most applications import/export DBF files using the MS-DOS character set.

Note: Since INM V12 Database always ignores Line Feed characters (ASCII Character
10) they cannot be used as field or record delimiters.

INM V12 Database's CharacterSet property can be set to translate Windows, Macintosh
or MS-DOS character sets when importing or exporting Text or DBF files. Optionally,
mImport accepts the CharacterSet property to use only once to import a single file (as
opposed to the CharacterSet property which permanently affects mImport and
mExportSelection, or until it is set to another value).

MS Word documents, V12 databases as well as many other proprietary file formats are
cross-platform compatible. You should not worry about this portability issue if your data
contains only low-ASCII characters (e.g. English alphabet).

http://www.barebones.com/
http://www.textpad.com/
http://www.ultraedit.com/
http://www.microsoft.com/

Dealing with dates
Although INM V12 Database can output dates in highly customizable formats, it requires
that they be input in a single unambiguous format called the raw format: YYYY/MM/DD.

• YYYY: year in 4 digits (e.g., 1901, 1997, 2002)

• MM: month in 1 or 2 digits (e.g., 01 or 1 for January)

• DD: day in 1 or 2 digits (e.g., 04 or 4 for the 4th day of the
month)

The separator between the three chunks of values can be any non-numeric character,
although slash (/), hyphen (-) and period (.) are most commonly used.

Any date, that needs to be imported in a INM V12 Database field of type date, needs to
be in this raw format. This rule applies to the INM V12 Database Editor as well as to
INM V12 Database's Lingo methods that accept dates as input parameters (e.g.,
mImport, mSetField and mSetCriteria).

 INM V12 Database® for Director - User Manual page 40

Exporting a FileMaker Pro database to text
In FileMaker Pro, choose File > Import/Export > Export Records and select "Merge
(*.MER)" in the Save as Type menu. As a side effect, FileMaker Pro exports your data
with quotation marks surrounding each field and a comma as field separator. Your file
can easily be imported to the V12 database with quotation marks as Text Qualifiers (see
Text qualifiers) and commas as field delimiters (see Custom delimiters).

Exporting a MS Access Database to text
In MS Access, choose File > Export, to an external file or database. Then, select Text
Files in the Save as Type menu. Click Export or Save. Make sure that Delimited is
selected and click Next. Choose an appropriate field delimiter for your data (see Dealing
with delimiter ambiguity), choose a Text Qualifier from the list (see Text qualifiers), and
check "Include Field Names in First Row"; then click Next.

Note: MS Access databases can be imported directly to V12 databases either by using the INM
V12 Database Editor, or through Lingo. See Loading a descriptor from a source file.

Note: If you fail to initialize a field of type Date in a new record, or try to store an invalid
date in it, it is automatically set to 1900/01/01 (January 1st, 1900).

DBF file formats
INM V12 Database can import DBF files two ways:

• on both MacOS and Windows, it can read DBF files of type Dbase III,
Dbase IV, Dbase V, FoxPro 2.0, FoxPro 2.5, FoxPro 2.6, FoxPro 3.0
and FoxPro 5.0.

• on Windows only, DBF files can be imported using the FoxPro ODBC
driver.

You may want to export your data as DBF files, if that format is supported by your
database management system.

DBF is an old file format. It was enhanced over the years but most common applications
still use the popular Dbase III format whose features are common to all other DBF file
variants. Limitations include:

• Field names are limited to ten characters, all in upper case,

• The number of fields per DBF file is limited to 128,

• Records are of fixed length, determined upon the creation of the DBF
file,

• There is more than one way to deal with high-ASCII characters
(accented characters) with DBF files. This depends on the operating
system and application used to manage the DBF file,

• Indexes are saved in separate files with extensions such as IDX, MDX,
NDX or CDX (depends on the managing application),

• DBF files cannot be password-protected. However, some applications
protect DBF files by encrypting/decrypting them,

• Character fields (roughly, the equivalent of INM V12 Database's string
fields) are limited to 255 characters. Any text longer than 255
characters, must be stored in separate files called DBT files and
referred to by Memo fields,

• Media (either Binary or Text) are stored in external DBT files pointed
to by Memo fields in the DBF file. Media fields are limited to 32K of
size. DBF fields of type Media are not supported by INM V12
Database.

Various flavors of the DBF file format were introduced over the years, such as DBase IV,
DBase V, FoxPro 2.0, FoxPro 2.5, FoxPro 2.6, FoxPro 3.0 and FoxPro 5.0. They all
include DBase III's features as core specifications and add new data types or extend
certain limits. See Appendix 1: Database Creation and Data Importing Rules for more
details.

In summary, the exact structure and limitations of your DBF files largely depend on how
your database management system deals with them.

Note: Years ago, DBF files were convenient, given that they contained fewer variants than TEXT
files. However, since the introduction of Windows and the popularization of DBF to other Operating
Systems, DBF files now contain many categories and have become difficult to manage. INM V12
Database’s preferred file importing format is Text.

 INM V12 Database® for Director - User Manual page 41

Field buffer size
Prior to creating your database structures, you need to determine the size of the largest
chunk of data for each field of type string or media in your database. This helps you
optimize the size of the buffers needed to manage INM V12 Database's internal data
structures for each of those fields.

If you are confident that your strings will not exceed 256 bytes, or your media 64K,
you do not need to worry about the buffer size. Default buffers are set to 256 bytes for
strings and to 64K for media.

Note: Database management systems that use a fixed-length record format (such as the DBF file
format) use this maximum value to allocate data space on disk. Consequently, that amount of
space is lost for each record of the database regardless of the actual data stored in it.

INM V12 Database uses a variable-length record format. This means that it uses the exact amount
of space needed for the storage of a record on disk, with no space loss at all. The Field Buffer Size
refers to the RAM buffer, used while transferring data between Director and the V12 database files.

 INM V12 Database® for Director - User Manual page 42

 INM V12 Database® for Director - User Manual page 43

Step 3: Create a Database

At Step 3, you formalize the database you designed at Step 1: Decide on a Data Model
into a database descriptor. Then, you provide that descriptor to the INM V12
Database Editor (if you choose to use the INM V12 Database Editor), or to INM V12
Database's mReadDBstructure method (if you decided to script the database creation
process).

The INM V12 Database Editor is a convenient point-and-click environment for small
projects. Scripting the database creation process with Lingo requires a little more effort
upfront but may end up saving you a lot of time, if you need to experiment with your
database structure or data before committing to a final form. It enables you to
automate the database creation process.

If you are going to use the INM V12 Database Editor, just read through the next two
sections (Database descriptors and Using the INM V12 Database Editor) and skip to
Step 4: Import Data into a V12 Database. If you wish to script the database creation
process, read through Script the database creation as well.

Database descriptors
Following is the format of text (and literal) database descriptors required by both the
INM V12 Database Editor and the mReadDBstructure method. It is used to build a
database structure from scratch.

If you build your V12 databases from other databases (e.g., MS Access, MS Excel, etc.),
you can directly skip to Using the INM V12 Database Editor or Script the database
creation.

The desired V12 Database file structure is stored in a text file (or Director member)
called the database descriptor in this format:

[TABLE]

NameOfTable

[FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

FieldName3 FieldType3 BufferSize3 IndexType3

(* if there are more than one table, their descriptors follow each

other *)

[Table]

NameOfTable2
[FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

etc.

[END]

The [TABLE] tag is followed by one parameter: the name of the table. This is an
identifier (see Defining identifiers).

The [FIELDS] tag is followed by as many lines as you need to define fields in the above
defined table. The syntax of each line is as follows (see Database Basics for a thorough
explanation of these concepts):

• FieldName: the name given to the field to be created. This is
an identifier (see Defining identifiers),

• FieldType: string, integer, float, date, media or a custom
string type (see Field typesField types),

• BufferSize: the amount of RAM to allocate for the internal
management of the field's content. This parameter is relevant
only for fields of type string and media. If omitted, fields of
type string are created with a default buffer size of 255
characters and fields of type media are created with a default
buffer size of 64K. See Field buffer size in Step 2: Prepare the
Data,

 INM V12 Database® for Director - User Manual page 44

• IndexType: the word "indexed" if the field must be indexed, or

the word "full-indexed" if the field must be full-indexed, or
nothing if no indexing is required. If you need to both index
and full-index a field, see Defining both an index and a full-
index on a field.

The [END] tag indicates the end of the descriptor. It is a mandatory tag.

In each line of the descriptor file, tokens (i.e. field name, index name, value, etc.) must
be separated by one or multiple Tabs and/or Space characters.

Example:
[TABLE]

Recipes

[FIELDS]

NameOfRecipe string indexed

Calories integer indexed

CookingTime integer

TextOfRecipe string 5000 full-indexed

Photo media 300000

[END]

Note: If you try to store text longer than the size of the buffer allocated for
the field type string, INM V12 Database signals a warning and stores the
truncated text into the field. Media that are larger than the maximum buffer
size of a field are not stored at all.

Note: A convenient way to build a Descriptor File for a database containing a large number of tables,
fields or indexes is to type it into a spreadsheet thus taking advantage of advanced editing functions.
The results can then be saved into a TAB-delimited file or Copied and Pasted into a Director field for
processing by mReadDBStructure.

Note: A valid database needs at least one table, and each table requires at least one field and at
least one index.

 INM V12 Database® for Director - User Manual page 45

Defining both an index and a full-index on a field
In exceptional cases, you would need to define both an index and a full-index on a
field. Since the IndexType parameter defined above can represent only one of
"indexed" or "full-indexed", you would need to set it to "indexed" and define the full-
index separately under an additional tag named [FULL-INDEXES].

The [FULL-INDEXES] tag must follow the [FIELDS] section and must be followed by a
list of fields to be full-indexed, one per line.

Example:
[TABLE]

Recipes

[FIELDS]

NameOfRecipe string indexed

Calories integer indexed

CookingTime integer

TextOfRecipe string 5000 indexed

Photo media 300000

[FULL-INDEXES]

TextOfRecipe

[END]

Alternate syntax for creating indexes
Database descriptors support an alternate syntax for the creation of indexes. The
[INDEXES] tag can be used right after the field definitions to explicitly name and define
the desired indexes.

This alternate syntax is used by mDumpStructure for clarity (see View the structure of a
databaseView the structure of a database). It also allows the definition of unique-
valued indexes and descending indexes which are used only in exceptional cases (in
summary, if you don't know what they mean, you probably don't need them).

This database descriptor example is equivalent to the one above:
[TABLE]

Recipes

[FIELDS]

NameOfRecipe string

Calories integer

CookingTime integer

TextOfRecipe string 5000

Photo media 300000

[INDEXES]

NameOfRecipeNdx duplicate NameOfRecipe ascending

CaloriesNdx duplicate Calories ascending

TextOfRecipeNdx duplicate TextOfRecipe ascending

[FULL-INDEXES]

TextOfRecipe

[END]

 INM V12 Database® for Director - User Manual page 46

Compound indexes
Compound indexes are indexes defined on two or more fields (see Database Basics /
Compound indexes). Compound indexes can be defined after the [INDEXES] tag, as in:

[TABLE]

Students

[FIELDS]

LastName string

FirstName string

Age integer

[INDEXES]

CompoundNdx duplicate LastName ascending FirstName ascending

[END]

The general syntax of a compound index definition is
[INDEXES]

Indx1 UniqueOrDup [FieldName AscOrDesc]1..10

where:

• Indx1 is the name of the compound index

• UniqueOrDup is either "unique" or "duplicate", depending upon
whether or not you allow duplicate entries for that index

• FieldName is the name of a field defined under the [FIELDS] tag

• AscOrDesc is "ascending" if you want that field sorted low-to-high, or
"descending" otherwise.

Up to ten FieldName AscOrDesc couples can be defined for a single compound index.

Adding comments to database descriptors
Database descriptors can also contain comments in much the same way Lingo scripts
do. In Lingo, comments are preceded by double hyphens ("--") and must be followed
by a CARRIAGE_RETURN. In database descriptors, comments must be preceded by (*
and be followed by *). They can include any sequences of characters, including
CARRIAGE_RETURNs.

Example:
(*

 description of the Mega-Cookbook recipes table version 1.1

 by Bill Gatezky, 14-Feb-99

 This is a valid comment despite the fact that it contains

 Carriage Returns

*)

[TABLE]

Recipes

(* this is also a valid comment *)

[FIELDS]

NameOfRecipe string indexed

...

[END]

The comment opening tag for database descriptors must be followed by a blank
character such as a space, tab or CARRIAGE_RETURN. Likewise, a comment closing tag
must be preceded by a blank character. Thus,

 INM V12 Database® for Director - User Manual page 47

(*invalid comment: will generate an error*)

is an invalid comment, whereas
(* valid comment *)

is valid.

Multiple tables in a descriptor
If your database has more than one table, each new table follows the description for the
previous table, before the [END] tag.

Example:

[TABLE]

NameOfTable1

[FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

FieldName3 FieldType3 BufferSize3

[Full-INDEXES]

FieldName3Ndx duplicate ascending

[TABLE]

NameOfTable2

[FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

etc.

[END]

Using the INM V12 Database Editor
To create a V12 database using the INM V12 Database Editor:

1 Choose File > New…

2 Fill out the Database Descriptor field according to the syntax
described in Database descriptors, or load a descriptor from an
existing file (see Loading a descriptor from a source file),

3 Provide a name, and optionally a password, for your new V12
database,

4 Click the Create button

Loading a descriptor from a source file
Instead of filling out the Database Descriptor field manually in the INM V12 Database
Editor, you can load one from an external file. Click the Source list to select the type
of the file that contains the descriptor information. File types that are supported by the
INM V12 Database Editor include:

 INM V12 Database® for Director - User Manual page 48

• Text

• DBF file

• V12 file

• Template

• FoxPro file

• Access file

• Excel file

• SQL Server Database

If your data is already in one of the database file formats listed here, you can simply
use that database to retrieve the descriptor information. Click the Load… button and
browse to the file that contains the descriptor information.

Once the descriptor information appears in the Descriptor box, you may edit it. For
instance, your source database may contain several tables, and you may only want to
include a subset of these in your V12 database.

For more information, see the user manual for the INM V12 Database Editor. The INM
V12 Database Editor and User Manual are available for download from the Free Tools
section of Integration New Media’s web site.

http://www.INM.com/products/v12director/tools/

Script the database creation
Automating the creation a V12 Database file through Lingo with INM V12 Database
consists of three steps:

• Create an Xtra instance of the database with New

• Define its structure with mReadDBstructure

• Build the database with mBuild

The general form of a database creation Lingo handler is:

on CreateDatabase

 gDB = New(Xtra "V12dbe", FileName, "create", Password)

 CheckV12Error()

 mReadDBStructure(gDB, InputType, other params)

 CheckV12Error()

 mBuild(gDB)

 CheckV12Error()

 gDB.mClose()

 gDB=0

end CreateDatabase

where:

• FileName is the full pathname of the V12 database to create

• Password is the password to protect FileName

• InputType is one of "Text", "Literal", "DBF", "V12", "FoxPro",
"Access", "Excel" or "SQL Server".

http://www.inm.com/products/v12director/tools/

• other params are one or more parameters depending on the selected
InputType.

• The resulting INM V12 Database file can be immediately verified with
mDumpStructure (see View the structure of a database).

mReadDBStructure reads the structure of a database file, not its content. To import the
content of a database file, see Appendix 1: Database Creation and Data Importing
Rules.

See CheckV12Error in Errors and Defensive Programming for a definition of the
CheckV12Error() handler used throughout this section.

Step 3a: Create a database Xtra instance
Use the New method to create a database Xtra instance.

Syntax:
gDB = New(Xtra "V12dbe", Name, "create", Password)

The parameters you provide are:

• Name: the name of the new database file, including its path if needed
(see Dealing with pathnames in Using Xtras).

• "Create" or the Mode: the mode in which the Xtra instance is defined.
In this case, the mode is Create (create a new database file). Other
possible modes are ReadOnly and ReadWrite. See Open an existing
database.

• Password: the password is required if you wish to protect your
database against tampering and/or data theft. You can lock the
database with a password, but make sure to record it in a safe place.
If you forget it, you will not be able to open your database again.

Example:
gDB = New(Xtra "V12dbe", "Catalog.V12", "Create", "top secret")

Note: For a number of reasons, the creation of an Xtra instance can fail (insufficient
memory, invalid file path, etc.) Always make sure that your database instance is valid
by checking V12Error (see CheckV12Error) or ObjectP (see Checking if New was
successful in Using Xtras) before pursuing the database creation process.

Step 3b: Define the database structure
The next method, after successfully creating a database Xtra instance, is to call
mReadDBstructure to read in the database structure you designed at Step 1: Decide on
a Data Model.

mReadDBstructure requires one the following inputs:

• a database descriptor as defined in Database descriptors. Such a
descriptor is supplied either as a text file or as a literal (i.e. a Director
field or variable),

• a DBF file (DBase) which serves as a table template,

• a V12 database which serves as a database template,

 INM V12 Database® for Director - User Manual page 49

• a directory containing one or more MS FoxPro files which serve
collectively as a database template (Windows only, requires the
FoxPro ODBC driver),

• a MS Access database which serves as a database template (Windows
only, requires the Access ODBC driver),

• a MS Excel workbook which serves as a database template (Windows
only, requires the Excel ODBC driver),

• an MS SQL Server data source, which serves as a database template
(Windows only, requires the MS SQL Server ODBC driver).

See Appendix 1: Database Creation and Data Importing Rules for complete examples of
each of the above variations of mReadDBStructure.

 INM V12 Database® for Director - User Manual page 50

It is always a good practice to check the value returned by V12Error() or V12Status()
after calling mReadDBstructure (see Errors and Defensive Programming) to find out if
an error occurred. You may also call mDumpStructure right after calling
mReadDBstructure to check the actual database structure INM V12 Database will build
once mBuild is called.

Database structure translation rules from the above ODBC-compliant databases to V12
Databases vary according to the specific ODBC driver installed on your computer.

Step 3c: Build the database
Once the database structure is read by mReadDBstructure, whether from a text file, a
DBF file or otherwise, build the database by calling mBuild. mBuild checks if the
database is well defined and creates the file on your disk.

Syntax:
mBuild(gDB)

mBuild optionally accepts a second parameter, "online", that makes the created file
compatible with the INM V12 Database Online companion. In this case, two additional
fields, named _uID and _timeStamp are created for INM V12 Database Online to
manage internally. Both fields are hidden and do not appear in mDumpStructure's
result.

Note: For mBuild to create a licensed database (that is, one that does not display a Demo dialog
when opened), a INM V12 Database license file must be present on your Mac or PC. Since the INM
V12 Database license file cannot be delivered to the end-user, mBuild cannot be used to create
new databases at runtime. If your application needs to create new databases at runtime, use
mCloneDatabase

(see Cloning a Database).

Note: A valid database needs at least one table, and each table must contain at least one field and at
least one index.

Note: mReadDBStructure reads the structure of a DBF file, not its content.
Use mImport to import the content of a database file.

 INM V12 Database® for Director - User Manual page 51

Syntax:
mBuild(gDB, "online")

Example:
mBuild(gDB)

-- since mBuild does a lot of validations, checking

-- for errors/warnings is HIGHLY recommended

if V12Status() then

 Alert "mBuild failed with error code" & V12Error()

end if

Once the database file is built, the database instance remains valid and data can be
immediately imported into the file. It is as if the database was opened in ReadWrite
mode.

View the structure of a database
You can view the structure of a database with mDumpStructure.

Syntax:
mDumpStructure(gDB)

Example:
put mDumpStructure(gDB) into field "myDBstructure"

The above example places the structure of the database referred by gDB in the member
named "myDBstructure".

(*

 Structure of file 'HardDisk:myDatabase.V12'

 created on Thu Apr 04 15:55:07 2020,

 last modified on Tue Apr 09 15:31:53 2020,

 file format version = V12,3.3.0,Multi-User

*)

[TABLE]

Articles

[FIELDS]

name string 256

category string 256

price Float

catalognumber Integer

description string 600

[INDEXES]

nameNdx duplicate name ascending (* Default index *)

categoryNdx duplicate category ascending

priceNdx duplicate price ascending

cat#Ndx unique catalognumber ascending

catNameNdx duplicate category ascending name descending

[FULL-INDEXES]

description

[END]"

 INM V12 Database® for Director - User Manual page 52

Note that the date/hour of the last modification mentioned in the header of the above
output is provided by the Operating System. Therefore, it reflects the date/hour at
which the V12 database was closed regardless of when the modification occurred.

This output is fully compatible with the database descriptors discussed in Database
descriptors and thus, can be used as is with mReadDBstructure.

 INM V12 Database® for Director - User Manual page 53

Step 4: Import Data into a V12 Database

In Step 3: Create a Database, you created a properly structured (although empty) V12
database. Step 4 explains how to import the data prepared at Step 2: Prepare the Data
into your V12 database.

You can import data into a V12 database through one of the two following methods:

• using the INM V12 Database Editor. This is a convenient point-and-
click environment for small projects.

• using INM V12 Database's mImport method in a Lingo handler. This
approach is efficient when you need to experiment with your database
structure or data before committing to a final form. However, it
requires a bit more up-front effort to write/adapt Lingo handlers than
simply using the INM V12 Database Editor.

• For extensive examples on how to import databases from a variety of
sources, including Microsoft Access, Microsoft Excel, MS SQL, FoxPro,
DBF and Text, see Appendix 1: Database Creation and Data Importing
Rules.

Import data with the INM V12 Database Editor
To import data using the INM V12 Database Editor:

1 Choose File > Open… to open the V12 database you want to
import data to. A newly created V12 database automatically
opens and data can be immediately imported to it.

2 In the File menu, you will see the following options for
importing data:

• Import Text File…

• Import DBF File…

• Import from V12…

• Import from FoxPro…

• Import from Excel…

• Import from Access…

• Import from SQL Server…

Choose the appropriate option for the format for your data.

3 Browse through your disk to locate the file containing the data
to import and fill in any other information necessary to open the
file. For some formats you may also need to specify a table
name. Click Import.

If the source data is in more than one file, you can successively import them by
repeating the above steps.

 INM V12 Database® for Director - User Manual page 54

Script the data importing
mImport imports data to a INM V12 Database table both at authoring time (i.e., in
Director's development environment) and at runtime (i.e., from a Projector or
Shockwave movie).

mImport is very flexible and can be adapted to a large number of situations. It can
import data from:

• a Text file

• a literal value, such as a string, a Director member, etc.

• a DBF file

• a V12 database

• a Lingo list or Lingo property list

• an MS Access database through an ODBC driver (Windows only)

• a FoxPro file through an ODBC driver (Windows only)

• an MS Excel file through an ODBC driver (Windows only)

• an MS SQL data source through an ODBC driver (Windows only)

Data type translation rules from the above ODBC-compliant databases to V12
Databases vary according to the specific ODBC driver installed on your computer.

The general form of a table importing script is:
-- create a V12dbe instance

gDB = New(Xtra"V12dbe", database_filename, mode, password)

CheckV12Error()

-- create a V12table instance

gTable = New(Xtra "V12table", mGetRef(gDB), TableName)

CheckV12Error()

-- import data

mImport(gTable, InputType, InputSource, other params)
CheckV12Error()

-- free the V12table and V12dbe instances

gTable.mClose()

gTable = 0

gDB.mClose()

gDB = 0

As with any V12table method, valid instances of V12dbe and V12table must exist before
the method is invoked. This is explained in detail in Creating an instance of the INM V12
Database Xtra.

mImport's syntax varies significantly according to the selected input source. This is
explained in details in Import data with mImport below.

Setting Xtra instances to 0 when they are no longer needed is mandatory, as explained
in Closing the Xtra Instance, so to make sure that the imported data is secured on hard
disk.

CheckV12Error is a generic error management handler explained in Errors and
Defensive Programming.

 INM V12 Database® for Director - User Manual page 55

Import data with mImport
The general syntax for mImport is:

mImport(gTable, InputType, InputSource, other params)

where:

• InputType is one of "Text", "DBF", "literal", "list",
"propertyList", "V12", "Access", "FoxPro", "Excel" or
"SQLserver".

• InputSource is the data to import or a reference to the data to
import. It varies according to the selected InputType.

• other params are parameters that depend upon the selected
InputType. For example, if InputType is "text", other params
is an optional property list that specifies the source text file's
field delimiter, record delimiter, etc. If InputType is "Access",
other params are the user name, password and table to
import. The details are explained below.

See Appendix 1: Database Creation and Data Importing Rules for complete examples of
each of the above variations of mImport.

Using media with V12 Databases
Although INM V12 Database files can store different types of media there are
alternatives to storing media directly in the database.

Instead of storing media in INM V12 Database files, they can be stored in Director cast
members or as external files, which are assigned to members at run time.

In addition, these members' names or numbers can be stored in INM V12 Database
tables to maintain their relationships to other data.

Advantages to referencing external media
• If your original media are already located in Director members,

keeping just a reference to the media in your V12 database yields
faster access times given that it avoids unnecessary memory
allocations and re-allocations in transferring data between Director
and INM V12 Database.

• If you need to make changes to your media, you don’t have to do any
scripting to reimport the changed elements into your V12 database.

• If your media files are large (over 50Kb each), it takes longer to each
edit record if the media is stored within the database. Note that the
maximum size allowed for a field of type Media is 1Mb.

 INM V12 Database® for Director - User Manual page 56

When to store media in a V12 Database
Sometimes storing media directly in INM V12 Database files has its advantages.

• Your data becomes completely independent of your Director projector
and it may be easier to update.

• Bitmaps that are small, such as thumbnail images, can be stored in
the database with no adverse effects on speed.

• A V12 database can be password protected; therefore everything that
is stored in the database is secure from accidental or illegal
modification. Note that this protection might be insufficient for
sensitive or confidential data.

Examples of embedded and linked media
The NetCat demo, which can be downloaded from:

http://www.INM.com/products/v12director/demos/
is available in two versions, one with images embedded in the database and the other
with links to the images. Through this demo you can see for yourself the differences in
space requirements and performance.

The First Steps tutorial shows an example of how to store a reference to a media file
within a V12 database, and use that field to insert media into your project. Download
the First Steps tutorial from Integration New Media’s web site:

http://www.INM.com/products/v12director/first-steps/

There is also a detailed example of how to use the INM V12 Database Lingo methods to
import media into a V12 database in Appendix 1: Database Creation and Data
Importing Rules/ Importing Media into a V12 Database.

http://www.inm.com/products/v12director/demos/
http://www.integrationnewmedia.com/products/v12director/first-steps/

 INM V12 Database® for Director - User Manual page 57

Step 5: Implementing the User Interface

Steps 1 through 4 (Step 1: Decide on a Data Model through Step 4: Import Data into a
V12 Database) explain how to design, build and import data into a V12 Database file.

This section discusses the elements needed to manage your INM V12 Database files at
runtime.

There are two basic strategies you can follow when creating your Macromedia Director
front-end to your data:

1

2

Using the INM V12 Database Behaviors Library

Using Lingo

Tip: If you chose to script the database creation and importing processes, once the database file
is ready, you do not need those Lingo scripts any longer. Moreover, they do not necessarily need
to be delivered to the end-user.

At this point, you may want to consider removing those scripts, or storing them in an appropriate
place. You may also want to keep all the scripts related to database creation in a separate
Director movie.

Using the INM V12 Database Behaviors library

The fastest and easiest way to implement INM V12 Database into your project's user
interface is to use the INM V12 Database Behaviors Library. See the First Steps manual
and the INM V12 Database Behaviors Library manual for an overview of INM V12
Database Behaviors.

The V12 Behaviors Library is a free set of tools that allows you to quickly implement a
user interface to the data, but is not as flexible as the Lingo approach. It may not have
all of the functionality that you may require for your data model, or may not be able to
present the data to the end-user the way you would like. The Behaviors allow you to
implement the most commonly requested features, but at the sacrifice of high-end
features and flexibility. Before you begin using the INM V12 Database Behaviors,
analyze your needs and determine the functionalities your project requires. Once you
start to implement your user interface with the standard V12 Behaviors, if there are a
few features missing, you may find that it takes more work to modify the Behaviors to
add the functionality you need, than to use the Lingo-based approach from the
beginning.

The INM V12 Database Behaviors Library contains the following Action Behaviors (see
the separate INM V12 Database Behaviors Manual for detailed information on these
Behaviors and how to implement them in your project):

• Open Database

• Close Database

• Browse

• Go to Record

• Search All

• Search with one criterion

• Search with two criteria

• Search with three criteria

• Add Record

• Delete Record

• Delete Selection

• Import DBF File

• Export DBF File

• Import INM V12 Database File

• Import Text File

• Export Text File

If your project’s user interface needs are met by the above list, then you may benefit
from using the INM V12 Database Behavior Library, but if you need to implement
features that aren’t on this list, you may want to investigate further.

For instance, if your user interface requires that your users be able to specify nine
search criteria for a search, then the Behaviors will not do what you want. Your only
recourse at this stage would be to modify the Behaviors (requiring an advanced
knowledge of Lingo), or to start using the Lingo approach. We recommend that you
carefully investigate both options before committing to one or the other. You may find
that Behaviors save you a lot of time in implementing user interfaces for your projects.
You can also use Behaviors and custom Lingo scripts in the same project.

You can download the INM V12 Database Behavior Library and User Manual from the
Free Tools section of Integration New Media’s web site:

http://www.INM.com/products/v12director/tools/

The Lingo methods are much more flexible and powerful, but they may also take longer
to implement in the beginning. The Lingo methods expose every feature of V12 to your
projects, and will allow you to implement every data model and feature that V12
supports.

Tip: Before you commit yourself to using the INM V12 Database Behaviors Library in your
project, you may want to ask Support@INM.com or other INM V12 Database users on V12-L
<http://www.INM.com/support/list/> for advice.

 INM V12 Database® for Director - User Manual page 58

http://www.integrationnewmedia.com/products/v12director/tools/
mailto:Support@IntegrationNewMedia.com
http://www.integrationnewmedia.com/support/list/

 INM V12 Database® for Director - User Manual page 59

Using Lingo
As for any INM V12 Database method, a valid V12dbe or V12table Xtra instance
(depending on which Xtra the method belongs to) must exist before the method is
invoked.

Generally, you create instances of V12dbe and V12table on StartMovie, store their
references in global variables and use those instances throughout your project.

Likewise, on StopMovie, you set those global variables to 0 thus disposing of the Xtra
instances and closing the V12 database file.

The creation of such Xtra instances is often referred to as Opening a Database and
Opening a Table. Disposing of the Xtra instances is often referred to as Closing the
Database and Closing the Table instances.

Open and close a database, a table

Open an existing database

Use the New(Xtra "V12dbe"…) method to open an existing V12 database. If your V12
database is not created yet, see Step 3: Create a Database to learn how to create it.

Syntax:
gDB = New(Xtra "V12dbe", database_filename, mode, password)

Opening a database means creating a V12dbe Xtra instance with the following
parameters:

• database_Filename: the name of the database file. This is usually a
filename preceded by the Lingo function the MoviePath & to indicate
that the file is located in the same folder as the current movie (see
Dealing with pathnames).

• mode: the mode in which the Xtra instance is opened. To allow for
modifications to the database, open it in "ReadWrite" mode. If you
open it in "ReadWrite" mode, only one user at a time can access your
database. If you do not allow modifications to your database, open it
in "ReadOnly" mode.

• password: the password. If you do not use the correct password, the
database cannot be opened.

Example:
gDB = New(Xtra "V12dbe", the MoviePath & "Catalog.V12", "ReadWrite",

"top secret")

Always make sure that the New method has succeeded by checking the validity of the
returned reference with ObjectP. Example:

gDB = New(Xtra"V12dbe", the MoviePath & "Catalog.V12", "ReadWrite",
"top secret")

if NOT (ObjectP(gDB)) then alert "New V12dbe failed"

Open a table

Records belong to tables. Creating new records, reading the contents of records, and
searching and sorting records are all operations that are performed on tables. Prior to
performing any of these operations, you must create a table Xtra instance.

 INM V12 Database® for Director - User Manual page 60

Syntax:
gTable = New(Xtra "V12table", mGetRef(gDB), TableName)

To create a table Xtra instance, use the New method with the following parameters:

• gDB: the database Xtra instance to which the current table belongs

• TableName: the name of the table to open

Example:
gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

mGetRef is a standard Xtra method that returns the exact reference of an Xtra instance.

Always make sure that the New method has succeeded by checking the validity of the
returned reference with ObjectP.

Example:
gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

if NOT (ObjectP(gTable)) then alert "New V12table failed"

This is a complete example of a script that would run on StartMovie:
on StartMovie

 global gDB, gTable

 gDB = New(Xtra "V12dbe", the MoviePath&"Catalog.V12", "ReadWrite",
"pwd")

 CheckV12Error()

 gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

 CheckV12Error()

 -- other init instructions

end StartMovie

Close a table

To close a table, first call the mClose() method with the table variable as a parameter.
Then set the table reference variable to 0.
Example:

gTable.mClose()

gTable = 0

Close a database

To close a V12 database, first call the mClose() method with the database variable that
refers to it as a parameter. Then set the database reference variable to 0.
Example:

gDB.mClose()

gDB = 0

Always make sure to dispose of all V12table instances before you dispose of the V12dbe
instance that contains them.

This is a complete example of a script that would run on StopMovie:
on StopMovie

 global gDB, gTable

 gTable.mClose()

 gTable = 0

 gDB.mClose()

 gDB = 0

end StopMovie

Selection and current record
To read or write data to a record, set it as the current record. The current record
concept is strongly related to the concept of selection. Both concepts are fundamental
to this section. See Database Basics earlier in this manual for more details.

At any time, the selection is sorted according to one of its fields. You can enforce that
sorting order with mOrderBy (see Sort a selection (mOrderBy)). Otherwise, the
selection's sorting order would be defined by the index chosen by INM V12 Database for
its last search. The field that determines the selection's sorting order is called the
master field.

Selection at startup
When a table is first opened, its selection is the entire content of that table sorted by
the field that is indexed by the default index. The first record of that selection – which is
also the first record of the table – is the current record. The default index is the first
index that was defined for the table in the database descriptor. You can use
mDumpStructure to verify which of the table's indexes is the default index (see View the
structure of a database).

You never need to explicitly manage indexes in INM V12 Database. The best index is
always chosen by INM V12 Database to perform a search.

Select all the records of a table
Call mSelectAll at any time to set the selection to the whole table.

Syntax:
mSelectAll(gTable)

Example:
mOrderBy(gTable, "price", "ascending")

mSelectAll(gTable)

This example sets the selection to the whole table as referred to by gTable, in
ascending order of prices (least to most expensive). The field "price" must be indexed
for mSelectAll to work efficiently. Otherwise, it would be very slow.

Note: If you want the results of your query to be sorted, always call mOrderBy
before calling mSelectAll. See Sort a selection (mOrderBy)

Browse a selection
Browsing a selection means changing the position of the current record. The following
methods enable you to change the current record in a selection (to set the current
record to various values related to a given selection).

mGetPosition

mGetPositionchecks the position of the current record in a table and returns an integer
between one and the total number of records in the selection.

Example:

 INM V12 Database® for Director - User Manual page 61

 INM V12 Database® for Director - User Manual page 62

currRec = mGetPosition(gTable)

put "the current record is:" & currRec

-- returns the current record's position in the Message Window.

mGoNext

mGoNext sets the current record to the record following the current record.

Example:
mGoNext(gTable)

Suppose that the current record is the tenth item in the selection. After calling
mGoNext, the current record becomes the eleventh. If the selection contains only ten
records, the current record does not change and a warning is reported by INM V12
Database (see Errors and Defensive Programming).

mGoPrevious

mGoPrevious sets the current record to the record preceding the current record.

Example:
mGoPrevious(gTable)

Suppose that the current record is the tenth item in the selection. Upon calling
mGoPrevious, the current record becomes the ninth. If the current record is the first
record of the selection, upon calling mGoPrevious the current record does not change
and a warning is reported by INM V12 Database (see Errors and Defensive
Programming).

mGoFirst

mGoFirst sets the current record to the first record of the selection.

Example:
mGoFirst(gTable)

mGoLast

mGoLastsets the current record to the last record of the selection.

Example:
mGoLast(gTable)

mGo

mGo takes an integer parameter (call it n) and sets the current record to the nth item of
the selection.

Example:
mGo(gTable, 11)

This example sets the current record to the eleventh record of the selection. If no such
record exists, mGo signals a warning.

mFind

mFind sets the current record to one, in the selection, whose Master Field equals or
starts with the keyword provided as a parameter (see definition of Master Field in
Selection and current record).

mFind is a great complement to mGo, which can set the current record only based on its
position in the selection.

The syntax is:
mFind(gTable, "First", Keyword)

mFind(gTable, "Next")

mFind(gTable, "Previous")

where Keyword is the value to look for in the Master Field. If the Master Field is of type
String, the matching record's content must start with Keyword. If it is of type Integer,
Float or Date, it must equal Keyword.

Use the first form (with the "First" parameter), if you want the new current record to be
the first one of the selection that matches Keyword

Use the second form (with the "Next" parameter) if you want it to be the next record in
the selection relative to the present current record. Use the third form ("Previous") if
you want it to be the previous record in the selection relative to the present current
record.

Note: Because mFind uses the selection's Master Field, it is advised that you call mOrderBy with
the appropriate field before calling mSelect and mFind. (see Search data with mSetCriteria).
If you don't call mOrderBy, mFind sets the current record based on the Master Field chosen by
default by INM V12 Database, which is either the one indexed by the default index (if the table was
just opened), or the one indexed by the best index chosen by INM V12 Database during the last
search.

If, for example, you run this script:

mSetCriteria(gTable, "Age", ">", 30)

mOrderBy(gTable, "LastName")

mSelect(gTable)

and get this selection:
FirstName LastName Age

Marie Curie 39

Albert Einstein 75

Kurt Gödel 36

Mona Karp 53

Joe Karp 31

Richard Karp 62

Eric Kartman 31

Marshall McLuhan 48

Claude Shannon 33

Alan Turing 36

John Von Neumann 51

The selection's Master Field is "LastName". Thus, a call to mFind would automatically
look for values in this field. For example:

mFind(gTable, "First", "Kar") -- current rec becomes Mona Karp's

mFind(gTable, "Next") -- current rec becomes Joe Karp's

mFind(gTable, "Next") -- current rec becomes Richard Karp's

mFind(gTable, "Next") -- current rec becomes Eric Kartman's

mFind(gTable, "Next") -- current rec remains Eric Kartman's

mFind(gTable, "Previous") -- current rec becomes Richard Karp's

 INM V12 Database® for Director - User Manual page 63

mFind can be used to quickly locate one occurrence of a keyword in a selection where
many duplicate values exist, as opposed to mSetCriteria and mSelect, which find all
occurrences but need more time.

Read data from a database
In order to read or write the content of a record, you must first set it as the current
record. Setting the appropriate current record is accomplished by use of the mGoNext,
mGoPrevious, mGoFirst, mGoLast, mGo and mFind methods (see Browse a selection).

Read Fields of Type String, Integer, Float and Date

Once the current record is properly set, mGetField retrieves the data from a specific
field. mGetField retrieves data from all field types except Media.

Syntax:
var = mGetField(gTable, fieldName[, dataFormat])

Example:
cost = mGetField(gTable, "price")

This example stores the content of the price field from the current record in the
variable cost. You do not need to specify the type of field you are reading. The Lingo
variable is automatically set to the appropriate type after a successful call to mGetField
(see Typecasting in Database Basics).

Example:
cost = mGetField(gTable, "price", "9,999.99")

This example retrieves the formatted content of the price field to the cost variable.
The formatting is according to the pattern "9,999.99". That is, if the field price contains
the value 1245.5, the string "1,245.50" is returned by mGetField. Note that the result
of a formatted value is always a string.

Data formatting applies to mGetField the same way it does to mDataFormat. If two
distinct formatting patterns are applied to a field with the mGetField option and
mDataFormat, the mGetField option overrides mDataFormat. See Data formatting for a
complete explanation on formatting patterns.

Note: mGetField retrieves only unformatted text. If you store styled text in a V12 record, you
can retrieve the text without the style formatting using mGetField and you can retrieve the styled
text with mGetMedia
(See Styled text.)

Read one or more entire records

mGetSelection allows for the retrieval of one or more fields in one or more records of
the selection. The result type is one of the following:

• "Literal" - a string where fields are delimited by TABs and records by
CARRIAGE_RETURNs (the default delimiters), or by any other custom
delimiters you specify.

• "List" - a Lingo list of lists, where each sub-list represents a record
and each item of each sub-list is the data contained in the
corresponding field

 INM V12 Database® for Director - User Manual page 64

• "PropertyList" - a Lingo list of property lists, where each sub-list
represents a record and each item is a property/value pair: the
property is the name of the field and the value is the data contained
in it.

mGetSelection is powerful and flexible. Its behavior depends on the syntax used to call
it. The syntax for mGetSelection to return a result of type String is:

mGetSelection(gTable, "Literal", [From [, #recs [, FieldDelimiter [,
RecordDelimiter [, FieldNames]*]]]])

The syntax for mGetSelection to return a Lingo list is:
mGetSelection(gTable, "List" [, From [, #recs [, FieldNames]*]])

The syntax for mGetSelection to return a Lingo property list is:
mGetSelection(gTable, "PropertyList" [, From [, #recs [, FieldNames

]*]])

where:

• gTable is the instance of the table from which records must be
retrieved (mandatory parameter),

• From is the number of the first record to retrieve data from. It is
optional. The default value is 1.

• #recs is the number of records to retrieve starting from record
number From. It is optional. The default value is the number of
records between From and the end of the selection plus 1 (convenient
to retrieve all the records of a selection starting from record number
From).

• FieldDelimiter is the character to use as the field delimiter. It is
optional. The default field delimiter is a TAB.

• RecordDelimiter is the character to use as the record delimiter. It is
optional. The default field delimiter is a CARRIAGE_RETURN.

• FieldNames are the names of the fields to retrieve, in the specified
order. If the field names are omitted, mGetSelection returns the
contents of all the fields of gTable, in their order of creation. Fields of
type Media are ignored by mGetSelection.

Besides gTable, all other parameters are optional. However, if a parameter is present,
all its preceding ones must also be present. For example, if #recs is present, the
result type and From parameters must also be present.

mGetField requires that you set the current record to the record you need to retrieve
data from. mGetSelection does not.

See Appendix 2: mGetSelection Examples for complete examples of each of the above
variations of mGetSelection.

Note Because it uses the selection's Master Field, it is recommended that you call mOrderBy with
the appropriate field before calling mSelect and mGetUnique.
If you don't call mOrderBy, mGetUnique returns unique values from the Master Field chosen by default
by INM V12 Database, which is either the one indexed by the default index (if the table was just
opened), or the one indexed by the best index chosen by INM V12 Database for the last selection.
(See Selection and current record.)

 INM V12 Database® for Director - User Manual page 65

 INM V12 Database® for Director - User Manual page 66

Read unique values of a field

mGetUnique returns unique values of the Master Field in a string or a Lingo list (See
Selection and current record above for a definition of Master Field).

Syntax:
a = mGetUnique(gTable, "literal")

b = mGetUnique(gTable, "list")

mGetUnique is very convenient to populate a user interface element (such as scrolling
list or pull-down menu) with search values that are relevant only for a specific database
and context.

Example: In a clothing catalog, you want to display only the available colors for a
specific category and size of product (e.g., T-shirt and XXL). You run this script:

mSetCriteria(gTable, "category", "=", "T-shirt")

mSetCriteria(gTable, "and", "size", "=", "XXL")

mOrderBy(gTable, "color")

mSelect(gTable)

put mGetUnique(gTable, "literal") into field "ScrollList"

This script retrieves unique values of the "color" field (which is the Master Field) to the
field "ScrollList". Assuming that your selection contains 30 records (10 with Color =
"Red", 10 with Color = "Green" and 10 with Color = "Blue"), the above script puts the
string:

Blue

Green

Red

in field "ScrollList".

Running this script:
mSetCriteria(gTable, "category", "=", "T-shirt")

mSetCriteria(gTable, "and", "size", "=", "XXL")

mOrderBy(gTable, "color")

mSelect(gTable)

put mGetUnique(gTable, "list") into field "ScrollList"

returns the list:
["Blue", "Green", "Red"]

Data formatting

mDataFormat assigns a display pattern to a field so that all data read from that field are
formatted according to that pattern. All INM V12 Database methods that read data from
a formatted field are affected. These include mGetField and mGetSelection

Syntax:
mDataFormat(gTable, FieldName, Pattern)

This example forces all data retrieved from the field price to be formatted with 3
integral digits and 2 decimal places.

Example:
mDataFormat(gTable, "price", "999.99")

mDataFormat can be applied to fields of type float, integer and date. Media and
string fields cannot be formatted.

To reset the formatting of a pattern to its original value, call mDataFormat with an
empty string.

 INM V12 Database® for Director - User Manual page 67

Example:
mDataFormat(gTable, "price", "")

Format integers and floats

Valid patterns for fields of type integer and float contain:

• 9 designates a digit at that position (possibly 0),

• # designates a digit or a space at that position,

• . (period) designates the decimal point,

• any other character is interpreted literally.

This example forces the output of the field ratio to 2 integral digits, 2 decimal places
and a trailing "%" sign:

mDataFormat(gTable, "ratio", "99.99%")

put mGetField(gTable, "ratio")

If the value in field ratio is 34.567, the displayed string is "34.57%".

The pattern "###9999" forces the output of an integer field to be formatted with no less
than four digits and with three leading spaces, if necessary. Thus:

4 is formatted as " 0004"

123 is formatted as " 0123"

314159 is formatted as " 314159"

3141592 is formatted as "3141592"

31415926 is formatted as "#######"

The last formatting in the above example fails because an eight-digit integer does not fit
in a seven-digit pattern.

The pattern "(999) 999-9999" is convenient for formatting phone numbers stored as
integers. For example:

mDataFormat(gTable, "phone", "(999) 999-9999")

put mGetField(gTable, "phone")

 returns something formatted as "(514) 871-1333"

Format dates

Valid patterns for fields of type date are combinations of:

• D for days,

• M for months,

• Y for years,

• any other character is interpreted literally.

This example formats the date in the "Year-Month-Day" numerical format:
mDataFormat(gTable, "TheDate", "YY-MM-DD")

put mGetField(gTable, "TheDate")

Assume the content of field TheDate for the current record is April 30, 1945 – the
returned string is "45-04-30".

Ds, Ms and Ys can be combined in the following way:

To format Use this

 INM V12 Database® for Director - User Manual page 68

sequence

Days as 1-31 D

Days as 01-31 DD

Weekdays as Sun-
Sat

DDD

Weekdays as
Sunday-Saturday

DDDD

Months as 1-12 M

Months as 01-12 MM

Months as Jan-Dec MMM

Months as January-
December

MMMM

Years as 00-99 Y or YY

Years as 1900-
9999

YYY or YYYY

Examples:

The pattern Formats 5 January 1995
as

D 5

DDDD Thursday

MM 01

DD-MM 05-01

MMM DD, YY Jan 05, 95

On D MMMM, YYYY On 5 January, 1995

'Weekday='DDDD;
'Month=' MMMM

Weekday=Thursday;
Month=January

In this last example, apostrophes around 'Weekday' and 'Month' are mandatory,
otherwise the "d" in Weekday and the "m" in Month would interfere with the pattern
itself. To specify real apostrophes within date patterns, use two consecutive
apostrophes.

When a table is first opened, the default format of all its Date fields is set to
"YYYY/MM/DD".

By default, the names for the months in INM V12 Database are (MMMM)
January, February, March, April, May, June, July, August, September,

October, November, December

The short names for the months are (MMM)
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

The names for the weekdays are (DDDD)
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

The short names of the weekdays are (DDD)
Sun, Mon, Tue, Wed, Thu, Fri, Sat

All of these names can be replaced by custom names through the properties of the
database (see Properties of Databases).

 INM V12 Database® for Director - User Manual page 69

Read fields of type media

mGetMedia retrieves data from fields of type media and stores them directly in the
designated Director member.

Syntax:
mGetMedia(gTable, fieldName, DirMember)

Example:
mGetMedia(gTable, "photo", member "PhotoMember")

This example stores the content of the field "photo" from the current record into the
member named "PhotoMember" in Director's internal castlib. If more than one castlib is
used in a project, mGetMedia can also retrieve media to any castlib through this syntax:

Example:
mGetMedia(gTable, "photo", member 28 of castlib "album")

Add records to a database
To add a new record to a INM V12 Database table, use mAddRecord, then call
mSetField as many times as needed (typically once for each field of your table) and
finally call mUpdateRecord.

In this example, a new record is created for the item "goggles" and its price is set to
$158.99:

mAddRecord(gTable)

mSetField(gTable, "ItemName", "Goggles")

mSetField(gTable, "Price", 158.99)

mUpdateRecord(gTable)

If mUpdateRecord is not called, the record created with mAddRecord is not saved to the
database. After calling mUpdateRecord, the record is created and kept in a cache: it is
not immediately written to disk. Thus, if the computer crashes or a power failure occurs,
the database file on disk may become corrupt. To ensure that the newly added records
are saved onto the hard disk, Flush the database to the disk (see FlushToDisk).

New records are always added to the end of the selection regardless of the criteria used
to form the selection.

Note: Only mSetField and mSetMedia can be called after mAddRecord and before
mUpdateRecord. Calling any other method aborts the new record adding process and sets the
current record to the previous current record.
Thus, if you started to add a record and wish to abort the operation, simply call mGetField instead
of calling mUpdateRecord.

Note: If a formatting pattern is assigned to a field, all values retrieved from that field become
strings (see Typecasting in Database Basics).

Update data in a database
Writing data is very similar to reading data. Writing data is accomplished with
mSetField. Prior to updating a field, you must set the current record, and your
intentions must be indicated in INM V12 Database with mEditRecord. Once this is
completed, INM V12 Database will update your database with mUpdateRecord.

After calling mUpdateRecord, the modified record is kept in a cache: it is not
immediately written to disk. Thus, if the computer crashes or a power failure occurs, the
database file on disk may become corrupt. To ensure that the newly added records are
saved onto the hard disk, Flush the database to the disk (see FlushToDisk).

Note: Updating the contents of fields that have a full-index may take more time to write to the
database than equivalent fields without full-indexes.

Write to fields of type Integer, Float and String

In this example, the name of the current record is changed to "funnel" and its price to
$2.95:

mEditRecord(gTable)

mSetField(gTable, "name", "funnel")

mSetField(gTable, "price", 2.95)

mSetField(gTable, "CatalogNumber", 1234)

mUpdateRecord(gTable)

As with mAddRecord, every call to mEditRecord must be balanced with a call to
mUpdateRecord and the only methods that should be used in between are mSetField and
mSetMedia. Calls to mSetField will result in an error if not preceded by mEditRecord.
Calling mGetField after mEditRecord and before mUpdateRecord will abort any changes made
to the record.

If an error occurs when updating a record (e.g. Duplicate Key error in a given field),
none of the preceding calls to mSetField are taken into consideration.

When writing to a field whose type is not the same as the supplied parameter, INM V12
Database tries to cast the parameter to the appropriate type and to interpret it as
accurately as possible (see Typecasting).

Example:
mSetField(gTable, "price", "3.14") -– stores the value 3.14

mSetField(gTable, "price", "xyz") -– stores the value 0.00

mSetField(gTable, "name", 1234) -– stores the string "1234"

Write to fields of type Date

Writing to a field of type Date is similar to writing to field of type Integer, Float or
String, except that INM V12 Database requires the date to be supplied in raw format
(YYYY/MM/DD).

Example
mSetField(gTable, "BirthDate", "1993/02/22") –- is valid

mSetField(gTable, "BirthDate", "02/22/1993") –- is not valid

Storing the current date in Raw format may be difficult as Lingo's the Date function
returns the current date as formatted in the Control Panel settings of the computer it is

 INM V12 Database® for Director - User Manual page 70

running on. In this case, use mGetProperty(gDB, "CurrentDate") to retrieve the
current date in raw format (see CurrentDate in Properties of Databases).

Write to fields of type Media

To write any media type, call:
mSetMedia(gTable, MediaField, DirMember)

This example copies the content of member "Yeti" of castlib "photo_album" to the field
photo:

mEditRecord(gTable)

mSetMedia(gTable, "photo", member "Yeti" of Castlib "photo_album")

mUpdateRecord(gTable)

Delete a record
Call mDeleteRecord to delete the current record.

Syntax:
mDeleteRecord(gTable_instance)

Example:
mDeleteRecord(gTable)

After calling mDeleteRecord, the record that follows the record being deleted becomes
the new current record. If no record follows the deleted record, the preceding record
becomes the new current record. If no record precedes the deleted record, the
selection is then empty and the current record is not defined.

Note: Use this method with caution. There is no way to undelete records in INM V12 Database.
As a general rule, avoid giving direct access of this method to the end-user through your user
interface.

Delete all the records of a selection
Call mSelDelete to delete all the records of a selection at once.

Syntax:
mSelDelete(gTable)

After mSelDelete has been completed, the selection is empty and the current record is
undefined.

Search data with mSetCriteria
When searching data, you often need to isolate a specific group of records that satisfy a
common condition in a table. These conditions are called search criteria and the
subset of isolated records is the selection (see Database Basics for an explanation of
selections and current records). mSetCriteria is the method used to specify search
criteria, followed by mSelect to trigger the search process.

Syntax:
mSetCriteria(gTable, FieldName, operator, Value)

mSelect(gTable)

 INM V12 Database® for Director - User Manual page 71

 INM V12 Database® for Director - User Manual page 72

Simple search criteria

A search criterion has at least three characteristics:

• FieldName: this is a valid field name in the table instance,

• operator: this is a comparison keyword. Valid operators are =, <,
<=, >, >=, <>, starts, contains, wordStarts and wordEquals.

• value: this is the value to which the field contents must be
compared, in order to be selected.

This example selects all items that are cheaper that $12.
mSetCriteria(gTable, "price", "<", 12)

mSelect(gTable)

Upon completion of mSelect, the resulting selection contains the set of records that
satisfy the defined criteria. In the above example, all records that contain a price field
with a value that is strictly smaller than 12 are selected. In addition, the selection is
sorted with an increasing order of prices given that a search with a defined ascending
index was performed on that field.

The current record is the first record of that selection. In our example, it is the least
expensive item.

If you want the selection sorted in an order other than the one proposed by mSelect,
you can do so by calling mOrderBy right before calling mSelect. However, keep in mind
that this may cost some additional processing time.

Values provided to mSetCriteria need to be in the same type as FieldName. As
discussed in Database Basics / Typecasting, INM V12 Database tries to automatically
typecast value to the proper type. Borderline conditions such as criteria containing
extra spaces, carriage returns or other unwanted characters must be avoided.

Example:
mSetCriteria(gTable, "price", "<", "100")

is strictly equivalent to
mSetCriteria(gTable, "price", "<", 100.00)

but beware of the unpredictable results of
mSetCriteria(gTable, "price", "<", "..100.00..")

Operations on fields of type Date require that Value be supplied in raw format (see Step
2: Prepare the Data / Dealing with dates). This example locates all records where field
theDate contains a date occurring before May 21st, 1997.

mSetCriteria(gTable, "theDate", "<", "1997/05/21")

Sort a selection (mOrderBy)

You can define a sort order on a selection by calling the mOrderBy method prior to
calling mSelect. Specify the sorting order (whether ascending or descending) and the
field upon which the sort is performed.

Example:
mSetCriteria(gTable, "ItemName", "contains", "hat")

mOrderBy(gTable, "price", "descending")

mSelect(gTable)

The above example selects all hats in gTable and returns a selection sorted by a
descending order of prices (most expensive to least expensive).

 INM V12 Database® for Director - User Manual page 73

If mOrderBy is not called before calling mSelect, the sort order of the selection depends
on the index used to perform the search. That index is automatically chosen by INM V12
Database to optimize the search time. See the V12 Methods Reference manual:
mOrderBy.

Operators

Following is a list of valid operators and their meanings. Although comparisons of
integers, floats and dates are straightforward, comparing strings and custom string
types depends on how those comparison rules are defined. For details on various
character sets and custom string types, please see the appendices in this manual.

Media fields cannot be compared.

Equal (=)

The "=" operator is used to locate data that exactly match the specified value.

Example:
mSetCriteria(gTable, "price", "=", 3.14)

specifies a search for items that cost exactly $3.14 .

Example:
mSetCriteria(gTable, "ItemName", "=", "hat")

specifies a search for items named "hat". Items named "hats" or "hatchet" will not be
selected. Since INM V12 Database does not differentiate upper case and lower case
characters, items named "HAT" or "Hat" will be selected.

Not Equal (<>)

The "<>" operator has the opposite effect of the "=" operator. It is used to locate data
that are different than the specified value.

Example:
mSetCriteria(gTable, "price", "<>", 9.99)

specifies a search for all items except those that cost $9.99.

Less than (<)

The "<" operator is used to locate data that are strictly smaller that the specified value.

Example:
mSetCriteria(gTable, "price", "<", 10)

specifies a search for items that cost less than $10. Items that cost exactly $10 are not
selected.

Example:
mSetCriteria(gTable, "ItemName", "<", "hat")

specifies an alphabetical search for items with names that precede the letter “h” in
"hat". This includes "cap", "bonnet" but excludes "hat".

Less or equal (<=)

The "<=" operator is used to locate data that are smaller or equal to the specified
value.

Example:
mSetCriteria(gTable, "price", "<=", 10)

 INM V12 Database® for Director - User Manual page 74

specifies a search for items that cost no more than $10.

Example:
mSetCriteria(gTable, "ItemName", "<=", "hat")

specifies an alphabetical search for items with names that precede equal “h” in "hat".
This includes "cap", "bonnet" and "hat".

Greater than (>)

The ">" operator is used to locate data that are strictly larger than the specified value.

Example:
mSetCriteria(gTable, "CatalogNumber", ">", 1000)

This example specifies a search for items with catalog numbers larger than 1000.
Catalog number 1000 will not be selected.

Example:
mSetCriteria(gTable, "birth date", ">", "1961/12/31")

This example specifies a search for records with a "birth date" field occurring after Dec
31st, 1961, (excluding that date). The earliest birth date in the selection should be Jan
1st, 1962 or later.

Greater or equal (>=)

The ">=" operator is used to locate data that are larger or equal to the specified value.

Example:
mSetCriteria(gTable, "CatalogNumber", ">=", 1000)

This example specifies a search for items with catalog numbers larger or equal to 1000.
Catalog number 1000 will be selected.

Example:
mSetCriteria(gTable, "birth date", ">=", "1961/12/31")

This example specifies a search for records with a "birth date" field occurring on or after
Dec 31st, 1961. Therefore, the earliest birth date in the selection may be Dec 31st,
1961.

Starts

The "starts" operator can be used with fields of type string only (including custom
string types). It locates records that start with a given sub-string in the specified field.

Example:
mSetCriteria(gTable, "description", "starts", "hat")

This example identifies items for selection with descriptions such as "Hat with two
propellers" and "Hatchet for heavy-duty applications".

If an index is defined on the field description, the search process is very fast. If not,
the search takes more time but can be performed nonetheless.

Contains

The "contains" operator can be used with fields of type string only (including custom
string types). It locates records that contain a given sub-string in the specified field.

Example:
mSetCriteria(gTable, "description", "contains", "hammer")

sets records for selection containing descriptions such as "the greatest hammer in the
world" and "casing for hammers of all sizes".

Searches using the "contains" operator are inherently sequential. They cannot take
advantage of any index definition and can be very slow.

WordStarts

The "wordStarts" operator can be used only with fields of type string (including custom
string types) with defined full-indexes. It locates records that contain words that fully
or partially match the value specified to mSetCriteria.

Example:
mSetCriteria(gTable, "description", "wordStarts", "ham")

This example would identify records containing descriptions such as "Gigantic
hamburger with fries" and "The greatest hammer in the world". It would not find
records containing descriptions such as "Champion" or "Gotham City" because the
words in these records don't start with the sub-string "ham".

Since "wordStarts" operates on full-indexes, searching is performed very quickly.

Note: Although words such as "hamburger" and "hammer" can be quickly found by the example
query, the word "ham" will never be found because it is shorter than the minimum word length set
for full-indexing, and therefore is not stored in the index.

WordEquals

The "wordEquals" operator can be used only with fields of type string with defined full-
indexes. It locates records that contain words that fully match the value specified to
mSetCriteria.

Example:
mSetCriteria(gTable, "description", "wordEquals", "form")

This example identifies records containing descriptions such as "claim form". Records
containing words such as "forms" or "formalism" would not be selected.

Since "wordEquals" operates on full-indexes, searching is performed very quickly.

Difference between ‘Contains’ and ‘WordStarts'

Why should you bother using the slow "contains" operator if "wordStarts" does the job
faster?

Because "wordStarts" requires that a full-index be defined on a field. Full-indexes allow
for quick searches, but require more disk space and more time when updating data.

Another reason is that "wordStarts" can only search for words that match or begin with
a given string. For example, if the description field of a certain record contains the text
"Dark chocolate with hazelnuts":

mSetCriteria(gTable, "description", "contains", "cola")

would locate that record ("chocolate" contains the sub-string "cola"), whereas
mSetCriteria(gTable, "description", "wordStarts", "cola")

would not. This is because no word in the description field starts with the string "cola".

 INM V12 Database® for Director - User Manual page 75

 INM V12 Database® for Director - User Manual page 76

Complex search criteria

mSetCriteria can also be called with four parameters. The additional parameter is the
Boolean operator "AND" or "OR". It is added to the second call to mSetCriteria and
inserted before the field to be searched.

Example:
mSetCriteria(gTable, "name", "contains", "hat")

mSetCriteria(gTable, "and", "price", "<=", 50)

mSelect(gTable)

The above example selects all hats up to $50.00 in the table referred to by gTable.

The first call to mSetCriteria should use three parameters, and it can be chained with
as many four-parameter calls as needed to specify your query. Using mSetCriteria
with three parameters will reset and ignore the preceding search criteria.

Another example, using the Boolean "OR" operator is:
mSetCriteria(gTable, "name", "contains", "hat")

mSetCriteria(gTable, "or", "name", "contains", "helmet")

mSetCriteria(gTable, "or", "name", "contains", "cap")

mSelect(gTable)

It selects all records whose "name" fields contain either "hat" or "helmet" or "cap".

Complex criteria are very powerful but can be tricky to use. This example illustrates
complex criteria.

mSetCriteria(gTable, "name", "=", "hat")

mSetCriteria(gTable, "or", "name", "=", "helmet")

mSetCriteria(gTable, "and", "price", "<=", 50)

mSelect(gTable)

This section of script selects all hats priced under $50.00 and all helmets under $50.00.
This is very different from:

mSetCriteria(gTable, "name", "=", "hat")

mSetCriteria(gTable, "and", "price", "<=", 50)

mSetCriteria(gTable, "or", "name", "=", "helmet")

mSelect(gTable)

where the selection consists of all hats under $50.00 and all helmets listed at any price.

To illustrate the semantic difference between the two requests, we could express the
first as:

(name = "hat" or name = "helmet") and price <= 50

whereas the second could be written as:
(name = "hat" and price <= 50) or name = "helmet"

Note: Complex searches that use the OR operator are always slower than those that use the AND
operator. This is true with INM V12 Database as well as with most other database management
systems.

Note: Words shorter than the minimum word length set for full-indexing cannot be looked for with
the "wordEquals" or "wordStarts" operators. In such cases, you must use the "contains" operator
instead.

Important: The current version of INM V12 Database does not have the ability to
perform searches such as

 name = "hat" or (name="helmet" and price<=50)

 (note the parentheses).

 The first two criteria are always grouped first and the third criterion is added to
the result.

Partial Selections

The selection process can be time-consuming if a large number of records match the
criteria you specify. The worst-case scenario is when all the records of a table match the
specified criteria. This can handicap your project if you have no control over the queries
the end-user can express.

To speed up the selection process, you can limit the number of records INM V12
Database places in the selection with this syntax of mSelect.

mSelect(gTable, from, #recs)

Example:
mSetCriteria(gT, "LastName", "=", "Smith")

mSelect(gT, 1, 100)

The above example returns up to a maximum of 100 records in the selection, regardless
of the total number of Smith’s in the database. If less than 100 Smith’s exist, all of
them are selected.

To retrieve the next 100 records that contain "Smith" in the "LastName" field, call:
mSelect(gT, 101, 100)

Note Partial selections also work with complex searches, but not all of them. They are only
accepted for complex searches that do not use full-text indexes (i.e., WordStarts or WordEquals).

Check the size of a selection

It is sometimes useful to know the number of items localized in a selection. This is the
purpose of the mSelectCount method.

Example:
mSetCriteria(gTable, "name", "=", "hat")

mSelect(gTable)

selSize = mSelectCount(gTable)

In this example, the number of records in the selection (the number of items named
"hat") is stored in selSize.

Styled text management
Cast members of type Text keep all the formatting styles assigned to their content
(including fonts, colors, margins, etc.) and can be anti-aliased. They can be styled and
edited both at authoring time and runtime.

INM V12 Database manages Director Text members through fields of type String,
Integer, Float and Date. Both types of Text members are split in two parts: the text of
the member is stored in the V12 field itself. The media component — whether bitmap or

 INM V12 Database® for Director - User Manual page 77

 INM V12 Database® for Director - User Manual page 78

binary representation of styled text — is stored in a hidden field of type media. The text
component is used to searching and sorting, whereas the media component is used for
storage and retrieval.

Any INM V12 Database field of type integer, float, date or string can be used to
store a text member through this syntax:

mSetField(gTable, fieldName, member)

For example, assume that gTable contains a field of type string named "Banner" and
that member 28 is a Text member containing the anti-aliased text "The Tiger in your
Engine",

mSetField(gTable, "banner", member 28)

stores the styled Text member 28 in the field "Banner". Technically, the string "The
Tiger in your Engine" is stored in the field "Banner" and the media component of the
Text member is stored in a hidden Media field.

To retrieve styled text, call mGetMedia as follows:
mGetMedia(gTable, "Banner", member "myBanner")

This instruction retrieves the banner image from the V12 Database file and places it in
the member named "myBanner". Note that the V12 Database field "Banner" mentioned
above is of type string and not media.

Alternatively, you can retrieve the content (the individual characters) of the data
contained in the field "Banner" as follows:

aText = mGetfield(gTable, "Banner")

-- assigns "The Tiger in your Engine" to aText

If, for some reason, your script does the following:
mSetField(gTable, "banner", member 28)

mSetField(gTable, "banner", the text of member 28)

the second call to mSetField would replace the content of the field "Banner" with the
unformatted text contained in member 28. This would replace any image associated
with that specific record/field by an empty image. A subsequent call to mGetMedia
would then return the placeholder.

Searching and Sorting Styled Text Fields

As a result of this technique, it is possible to search and sort fields that contain styled
text based on the content component of the fields. Since the fields used to store styled
text are of type string, integer, float or date, operations such as indexing, sorting,
searching, etc. all remain valid.

Exporting Data
mExportSelection allows exporting of data from a INM V12 Database table to TEXT or
DBF files (DBase III). Only the selected records are exported (i.e. those in the
selection). To export a complete table, make sure it is entirely selected first (see
Selection and current record and Select all the records of a table).

 INM V12 Database® for Director - User Manual page 79

Exporting in TEXT Format

The syntax for exporting all the fields of a table's selection is:
mExportSelection(table_instance, "TEXT", FileName)

The above instruction exports all the fields of the selection to the file named FileName.
The field and record delimiters are TAB and CARRIAGE_RETURN respectively.

To specify custom field and record delimiters, use:
mExportSelection(table_instance, "TEXT", FileName, FldDelimiter,

RecDelimiter)

Example:
mExportSelection(gTable, "TEXT", the moviePath&"Output.txt", "~",

"%")

This example exports the selection in a text file named "Output.txt" with the field
delimiter "~" and the record delimiter "%".

mExportSelection can also export only selected fields in the following way:
mExportSelection(table_instance, the moviePath&"TEXT", FileName,

FldDelimiter, RecDelimiter, Field1, Field2, ...)

Example:
mExportSelection(gTable, "TEXT", "Data.TXT", TAB, RETURN, "ItemName",

"catalog number", "price")

This example exports the selection in a text file named "Data.TXT" with TAB and
RETURN delimiters. The only exported fields are ItemName, catalog number and price,
in that order.

The first line in the exported file contains the names of the exported fields separated by
the selected field delimiter. The resulting text file is in the character set of the current
Operating System (this is relevant only if accented characters are present in the
exported data).

mExportSelection takes the format patterns specified in mDataFormat into account.
The sorting order of the exported records is identical to the one set on the selection.
Media fields are ignored during the exporting process.

Exporting in DBF Format

The parameters for exporting DBF files are identical to those of exporting text, without
the field and record delimiters.

Example:
mExportSelection(gTable, "DBF", "Goliath.DBF")

-- exports all fields of gTable

Or:
mExportSelection(gTable, "DBF", "Goliath.DBF", "ItemName", "catalog

number", "price")

-- exports only fields ItemName, catalog number and price.

These rules apply when exporting to a DBF file format

• String fields are exported to fields of type Character, if the buffer
size of the string field is declared to be no larger than 255 characters.
Otherwise, they are exported to field of type Memo.

• Integer fields are exported to fields of type Numeric.

• Float fields are exported to fields of type Numeric with 10 digits after
the fixed point.

• Date fields are exported to fields of type Date.

• Media fields are ignored.

Note: Although INM V12 Database can read all kinds of DBF file variants, it exports data only in the
popular DBase III format. This is mainly because Dbase III is universally read by all DBF-compliant
systems whereas other more recent formats are not.

Cloning a Database
Cloning a database makes a copy of an existing database file, with all the table, field
and index definitions but with none of the data. This is similar to creating a database file
from a template rather than starting a new project. Contrary to creating a database
with mReadDBstructure (which requires an INM V12 Database license to create legal
INM V12 Database files) this method can be used at runtime.

Syntax:
mCloneDatabase(db_instance, new_pathname)

Example
mCloneDatabase(gDB, the MoviePath & "myClone.V12")

if CheckV12Error() then exit -- don't continue if clone failed

gDB_cloned = New(Xtra "V12dbe", the MoviePath & "myClone.V12",
"ReadWrite", "pwd")

In this example, a new database file named "myClone.V12" is created using the same
tables, fields and index definitions, as well as the same password as the database file
designated by the global variable gDB. This implies that the original database file,
designated by the variable gDB, must be opened with the appropriate password before
cloning. After the new database has been cloned, you need to create an instance of it,
gDB_cloned, using the New method.

Freeing up Disk Space (packing)
Most database management systems, including INM V12 Database, do not reclaim the
space freed by deleted records, for the sake of performance. Consequently, as records
are created and deleted, the size of the database grows continuously. mPackDatabase
can be used periodically to reclaim lost bytes.

Syntax:
mPackDatabase(database_instance, NewFilePathName)

Example:
mPackDatabase(gDB, the MoviePath & "Packed_DB.V12")

This example compresses gDB into a new file named Packed_DB.V12 located in the
same folder as the current Director movie.

At the end of the operation, database_instance stays valid (referring to the non-
packed database) and NewFilePathName is a new file that can be opened with INM V12
Database.

If you just need to compress your current database without creating a new file, you can
do so by compressing it into a new temporary database, deleting your initial database
and renaming the temporary database to your initial database's name. FileXtra, a free

 INM V12 Database® for Director - User Manual page 80

Xtra delivered with recent versions of Director (also available for download at
http://www.kblab.net/xtras/), comes in handy as shown below:

-- let fName be your V12 database's name

-- first make sure to close all table instances

gT.mClose()

gT = 0

mPackDatabase(gDB, the MoviePath&"temp.V12")

if CheckV12Error() then exit -- don't continue if pack failed

DeleteFile(the MoviePath&fName)

RenameFile(the MoviePath&"temp.V12", the MoviePath&fName)

Fixing Corrupted Database Files
Databases may become corrupt if a power failure or system crash occurs while updating
records. Therefore, INM V12 Database is unable to reopen the database and returns an
explicit error code when trying to create a database instance.

Some of these corrupt databases can be fixed with mFixDatabase. The syntax for
mFixDatabase is:

mFixDatabase(Xtra "V12dbe", pathname, new_pathname)

pathname is the name of the database to fix and new_pathname is the name of the fixed
database, which may reside on a different volume.

mFixDatabase is a static method (its first parameter is the Xtra library itself, not on an
instance of V12dbe). In this example:

mFixDatabase(Xtra "V12dbe", "Crash.V12", "Recovered.V12")

mFixDatabase tries to read data from "Crash.V12" and saves the data to
"Recovered.V12".

Note: mFixDatabase attempts to save a corrupted file as much as possible, but
there is no guarantee on the result. mFixDatabase essentially attempts to rebuild
the indexes of a damaged INM V12 Database file, but if the file's headers or data
clusters are damaged, chances are that the recovery process will fail.

Checking the Version of the Xtra
At authoring time, you check the INM V12 Database Xtra's version by opening its Get
Info window in the MacOS Finder, or by checking its Properties in Windows' Explorer.

Both at authoring time and runtime, you can call mXtraVersion to retrieve the version
of the Xtra. Example:

v = mXtraVersion(xtra "v12dbe")

put v -- puts "V12,3.3,Multi-User" in message window

if (char 1 of item 2 of v) <> 3 then Alert "not version 3"

Changing a Password
You can change the password assigned to a database by using the mSetPassword
method. The new password can be an empty string. The syntax is as follows:

mSetPassword(gDB, oldPassword, newPassword)

Example:

 INM V12 Database® for Director - User Manual page 81

http://www.kblab.net/xtras/

mSetPassword(gDB, "houdini", "ali baba")

Dynamically Downloading Databases via the Internet
V12 has the ability to dynamically download an updated database via the Internet to a
local storage device. V12Download is the method that you use to replace a database on
a user’s local drive.

The syntax is as follows:
V12Download(url, local_file, password, completion_handler,

status_handler, ref)

V12download resumes and returns control to Director immediately after initiating the
download query. It calls status_handler as frequently as possible during download
(generally used to display the download status in the user interface) and ends-up calling
completion_handler when the download is complete (generally used to open the
database and start working with it).

If a local V12 database of the same name already exists, the downloaded file replaces
it. The Xtra automatically ensures that it is a valid V12 database and its password is
supplied and correct.

For an example of its use, see the V12 Methods Reference: V12Download.

V12DownloadInfo is a method that you can use to determine the size of the database to
be downloaded. This can be useful in determining whether or not the database has
changed since the last time it was downloaded. Due to the fact that not all HTTP
servers support time and date stamps on files, this method helps you diagnose the
status of the database files.

 INM V12 Database® for Director - User Manual page 82

Both V12download and V12DownloadInfo require that the Director Networking Xtras be
installed (namely InetURL, Netfile and NetLingo). To do so, in Director, choose MODIFY-
>MOVIE->XTRAS... Add Network.

Tip: If you need to download a V12 Database from a URL that is behind a proxy server or via
Secure HTTP, use INM SecureNet Xtra, which contains a method named snxDownloadNetThing and
supports proxy servers and Secure HTTP from Projectors. The snxDownloadNetThing method is not
supported in Shockwave movies:

http://www.INM.com/products/snxdirector/ .

Tip: V12 Online Companion is an optional add-on set of Xtras for V12 that allows you to
dynamically query databases on remote servers via the Internet.

The major difference between the V12Download functionality and V12 Online is that V12 Online
allows you to execute queries on a database residing on a remote host. V12Download must
download the complete database and store it for use on the user’s local hard drive.

Tip: You may also want to consider having an associated text file or a separate database with a
time stamp or other important information within it, which you can use to determine whether or not
the database has changed or needs to be downloaded.

http://www.inm.com/products/snxdirector/

 INM V12 Database® for Director - User Manual page 83

Errors and Defensive Programming

Error Management in Applications
Effective error management is a key to any reliable script or program. If you choose to
implement your project with the INM V12 Database Behaviors Library, you
automatically take advantage of this Library's efficient built-in error management. You
just need to make sure that the "Show Alert on Error" check box is checked when
dragging/dropping a Behavior.

INM V12 Database's Lingo interface provides methods that allow you to keep a close
check on your programming. Use the global functions V12Status() and V12Error(), to
confirm each step of database creation and handling.

As well, Director has two interesting tools to help you detect your Lingo scripting errors:
the Watcher and the Debugger, both available in the Windows menu. INM V12
Database's error detecting functions, the Watcher and the Debugger can be used
together to efficiently debug your scripts. Look for "debugging" in Director's Help files or
User Manual's index for details.

Also, a good tool to take advantage of, in database projects that write data to a storage
device, is FlushToDisk. It will help you ensure that all of your data is written to the
storage device at important intervals, flushing the disk cache.

Checking the Status of the Last Method Called
Call V12Status() after each call to a INM V12 Database method (both V12dbe and
V12table methods) to check its outcome. V12Status() returns 0 if no error occurred
during the execution of that method. Otherwise, it returns a non-zero error code.

Example:
aPrice = mGetField(gTable, "price")

errCode = V12Status()

if errCode <> 0 then

 Alert("Mayday! Mayday! mGetField returned error code" && errCode)

end if

If V12Status() returns a non-zero result, you can call V12Error() to get the details of
the error. When called with no parameter – as in V12Error()- this global function
returns a plain-English explanation of the outcome of the last called method. If an error
occurred in that last call to INM V12 Database, V12Error() provides a detailed
contextual report on it.

Example:
aPrice = mGetField(gTable, "price")

errCode = V12Status()

if errCode <> 0 then

 Alert (V12Error())

end if

CheckV12Error
The CheckV12Error() Lingo handler is often used throughout this manual and in
sample projects. It is a generic error handling routine that centralizes all the error
management logic in a single handler. That way, it can more easily be adapted from
one project to the other, or from a debugging mode to a delivery mode (e.g. the
debugging mode would display alerts, whereas the delivery mode would, in addition,
write an error log to an external file with the FileIO Xtra).

on CheckV12Error

 if V12Status() then

 alert V12Error()

 return TRUE

 end if

 return FALSE

end CheckV12Error

Note: Usually, you call V12Status() to get an error or warning code, then V12Error() to get a full
explanation of that error or warning. Alternatively, your application can choose to handle specific error
codes uniquely.

Example:

mSetCriteria(gT, "City", "=", "Paris")

CheckV12Error()

mSelect(gT)

CheckV12Error()

Optionally, you can take advantage of CheckV12Error's return value to decide how to
continue the execution of your handler.

Example:
gDB = new (Xtra "V12dbe", the moviePath&"myDatabase.V12",

"ReadWrite", "secret password")

if NOT CheckV12Error() then -- only create the table if the DB
exists

 gT = new (Xtra "V12table", mGetRef(gDB), "myTable")

end if

This script attempts to create a table instance only if the database instance was
successfully created.

Errors and Warnings
Typically, two types of faults can occur in using INM V12 Database:

• Errors, which lead to major problems that require that you, stop the
execution of your script.

• Warnings, which happen while executing certain instructions partially
or in borderline conditions that you need to be aware of.

An example of an error is File not found, when trying to import data. When a file is not
found, it does not make sense to continue the importing operation until the problem is
solved.

An example of a warning is No previous record, when trying to go to the previous record
from the first record of the selection. In such a case, the current record remains valid
(although unchanged).

 INM V12 Database® for Director - User Manual page 84

 INM V12 Database® for Director - User Manual page 85

V12Status() returns negative codes for errors and positive codes for warnings. Often,
the term error is used to designate faults of both types (i.e. errors and warnings).

Based on the value returned from V12Status() you can display specific messages to
your end-users.

Example:
mSetCriteria(gTable,fName, "contains", fMyWord)

errCode = V12Status()

if errCode = -8690 then -- empty field name

 Alert(“You must choose a field to search”)

Else if errCode <> 0 then

 Alert("msetCriteria returned error code: " && errCode)

Else mSelect(gTable)

End if

In this example the application advises the user to select a field before doing the search
operation.

For a complete listing of all V12 error codes, consult the sections named V12 Database
Methods and V12 Database Error Codes.

Using the Verbose Property
The verbose property offers a convenient way to monitor and debug your application’s
interactions with a V12 database during the testing phase. When verbose is turned
“on”, both successful v12 method calls and errors are reported to Director’s message
window. Turn verbose “on” at the beginning of a script segment that includes several
INM V12 Database method calls; then turn it “off” at the end of that section of code.
Although verbose allows you to monitor database activity while in authoring and testing
mode, it should not substitute for checking V12Status and handling runtime errors.

Make sure all calls to mSetProperty(gDB, "verbose", "on") are deleted or commented
out before distributing your application. For more information on the verbose property
see Verbose in Properties of Databases.

Preventing Data Corruption Due to Script Errors
When a scripting error occurs (e.g. Lingo syntax error), Macromedia Director displays
an error message and aborts the execution of the current handler. This can be annoying
in cases where local database and table instance variables are defined in your handler.

Example:
on doSomethingCritical

 gDB = New(Xtra "V12dbe", the MoviePath&"catalog.V12", "ReadWrite",
"top top top")

 gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

 -- other Lingo statements

 -- with a syntax error somewhere which

 -- causes the handler to abort

 gTable.mClose()

 gTable = 0

 gDB.mClose()

 INM V12 Database® for Director - User Manual page 86

 gDB = 0

end doSomethingCritical

In this example, a Lingo error is detected and the database remains open. If the
database was opened in ReadWrite mode and changes were made, the database file
might become corrupted.

You can prevent this problem by declaring the instance variables as global variables.

Example:
on doSomethingCritical

 global gDB, gTable

 gDB = New(Xtra "V12dbe", the MoviePath&"catalog.V12", "ReadWrite",
"top top top")

 gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

 -- other Lingo statements

 -- with a syntax error somewhere which causes the handler to abort

 gTable.mClose()

 gTable = 0

 gDB.mClose()

 gDB = 0

end doSomethingCritical

When a Lingo syntax error is detected and the handler aborts, you can still type
 gTable.mClose()

 gTable = 0

 gDB.mClose()

 gDB = 0

in the Message Window to close your database file.

 INM V12 Database® for Director - User Manual page 87

Delivering to the End User

INM V12 Database is designed in a way that minimizes any last minute changes needed
before delivery to the end-user. Unlike other database management systems where
you need to swap the development version of certain files with the runtime versions, no
swapping is required with INM V12 Database. (For security and usability reasons,
Macromedia has developed a different process for locating and installing, over the
Internet, for Shockwave applications – See Shockwave Projectors and Movies below).

Standalone Projectors
For an Xtra to be available to a Director projector, you must to place it in a folder
named "Xtras" located in the same folder as the projector itself. The only files you need
to deliver for INM V12 Database are V12-Database.X32 (on Windows), V12-
Database.XTR (on Mac OS X), and V12-Database.XTR (on Mac OS 9). If you are
using Director on Mac OS X to publish projectors for both Mac OS X and OS 9, check the
technote on our site called “How to publish projectors for cross-platform distribution”.

Alternately, you can package the required Xtras into your Director projector itself.
Before creating the projector click Modify > Movie > Xtras window and select the INM
V12 Database Xtra to include it with your projector. (See Auto-installation below for
important details.)

As stated in the licensing agreement, you DO NOT deliver the license file "V12-30.LIC",
which is in the System:Preferences folder of your Macintosh, or the Windows\System32
folder of your PC. It is not needed, nor is it recommended that you distribute this file to
end users, due to the fact that it contains your personal licensing information.

Shockwave Projectors and Movies

Delivering a Shockwave Projector
A Shockwave Projector is very similar to a Director Projector, except that the file you
deliver is very tiny; it contains no Xtras and no Director playback engine. See Auto-
installation below for information on how to make sure that the appropriate v12
Database Xtra will download to the user's computer when needed.

To create a Shockwave Projector, select File > Create Projector > Options > Player >
Shockwave.

Note: There are known problems with using external Director cast libraries in Shockwave on the
Macintosh. Always test your projects thoroughly on both Macintosh and Windows platforms if you
intend to deliver Shockwave applications.

Delivering a Shockwave Movie
The INM V12 Database Xtra cannot be included in Shockwave movies. Instead it is
automatically downloaded to the end-user's computer, if required (i.e., if it is not
already installed).

See Auto-installation below for information on how to make sure that the appropriate
INM V12 Database Xtra will download to the user's computer when needed.

To test the resulting Shockwave movie locally on your computer, create a folder named
DSWMEDIA anywhere on your hard disk and move the deliverable files into it (i.e., the
Shockwave movie, the external castlibs, the HTML file, etc.)

Auto-installation
Whether you deliver your project as a Shockwave movie or projector, the INM V12
Database Xtras can be automatically installed to your end-users computers via the
Internet. To instruct your movie to auto-install V12 when needed:

1

2

3

4

Make sure (or add) the following lines are in the "xtrainfo.txt" file located in
your Director folder.
Important: Everything in square brackets must be on a single line without
line breaks. Note that the corresponding Carbon version is automatically
downloaded on Mac OS X, and the Classic version is downloaded on Mac OS
9.

; INM V12 Database for Director by Integration New Media, Inc.

; http://www.INM.com/

[#namePPC:"V12-Database.XTR", #nameW32:"V12-Database.X32",
#package:"http://www.INM.com/downloads/products/v12director/verisi
gn/3.4/v12",#info:"http://www.INM.com/products/v12director"]

Note: The link to the Xtra's package follows the #package property. It
contains the Xtra's version number (3.4 in the example).

You should copy the exact text from the Xtra's Release Notes and paste it into
your "Xtrainfo.txt" file, as this information changes with every release.

Launch Director and open your movie.

Choose Modify > Movie > Xtras.

If "INM V12 Database for Director" is not in the list, click Add. Choose "V12-
Database.X32" (Windows) or "V12-Database.XTR" (Mac) and click OK.

 INM V12 Database® for Director - User Manual page 88

http://www.inm.com/support/v12director/release-history/

5

6

7

Click "V12-Database.X32" (Windows) or "V12-Database.XTR" (Macintosh) in
the Xtras list.

Make sure “Download if Needed” is checked.

Now, save your movie, or publish your Shockwave

At this point, Director tries to validate INM V12 Database Xtra's URL and reports any
possible errors.

Users who access Shockwave movies that automatically download the INM V12
Database Xtra will get a Verisign certificate with the Xtra's credentials. Verisign is a
standard means of downloading software from secure sources. Users have the choice of
allowing or refusing the installation of the Xtras.

The appropriate Xtras for their operating system will be downloaded into a standard
location on the hard drive, in a sub-folder of the Director Shockwave Player, and will
then be accessible to any Shockwave movie thereafter.

Note: If the user refuses to download the Xtras, your application will not work correctly. You may
want to use some defensive programming techniques to recover from such a situation.

Testing for end-users
It is always a good idea to thoroughly test the product before delivering it to the end-
user. Tests must be performed on computers with configurations very similar to those
of end-users. However, if you need to perform end-user tests on the computer that
contains the INM V12 Database license, you can reproduce an end-user environment by
proceeding as follows:

• Make sure Director or a Director Projector is not running,

 INM V12 Database® for Director - User Manual page 89

• Open the System:Preferences folder of your Macintosh, or the
(Windows\System folder) of your PC,

• Move the V12*.LIC file out of that folder to the destination of your
choice, except of course, the trash can or the recycle bin,

• Open your project either with a Projector or Macromedia Director and
perform the tests.

• Once the tests are completed, close the Projector or Macromedia
Director and put the license file back into its original folder.

Note: DO NOT attempt to rename or tamper with the license file. If you do, you may
need to re-register INM V12 Database.

Portability issues
Some files are cross-platform compatible and others are not. As a general rule,
everything that can be executed is NOT cross-platform compatible. Applications, DLLs,
Xtras, and EXE files are all executable and include the following:

• Macromedia Director

• Projectors generated by Macromedia Director

• the INM V12 Database Xtras

Everything that is a static document is cross-platform compatible. This includes:

• Director movies (either protected or not)

• INM V12 Database files

This figure identifies which files are specific to Macintosh or Windows, and which files
are compatible with both Macintosh and Windows.

Windows only
Macintosh and
Windows

Macintosh
only

Director for
Windows

Director for
Macintosh

Director movies (.DIR,
.DXR)
Shockwave movies
(.DCR)

Projector for
Windows

Projector for
Macintosh

INM V12 Database
Xtras for Windows

INM V12
Database Xtras
for Macintosh

INM V12 Database files
(.V12)

 INM V12 Database® for Director - User Manual page 90

 INM V12 Database® for Director - User Manual page 91

Customizing INM V12 Database

Progress Indicators
INM V12 Database can display a progress indicator to the user when performing time-
consuming tasks such as mImport, mExportFile, mGetSelection, mSelect,
mSelDelete, mFixDatabase and mPackDatabase. Such a progress indicator can
optionally feature a Cancel button to enable users to interrupt the current task. You can
also replace the standard INM V12 Database progress bar by any custom progress
indicator you provide via Director and Lingo.

To activate the progress indicator, set the ProgressIndicator property to
With_Cancel, Without_Cancel or UserDefined. To deactivate it, set it to None.

Note: mSelect preceded by mSetCriteria with simple or complex criteria enables the display of a
single progress indicator for the selection task, except if the criteria contain wordStarts or
wordEquals operators. In that case, as many progress indicators as criteria are displayed.

Options of the ProgressIndicator Property

With_Cancel

INM V12 Database displays its own progress bar when performing one of the above-
mentioned tasks. The user can click on the Cancel button to abort it. You can set the
ProgressIndicator.Message property to whatever message you wish to display in the
upper part of the progress window. If you set the ProgressIndicator.Message
property to an empty string, INM V12 Database displays its own context-dependant
message.

Without_Cancel

Without_Cancel: INM V12 Database displays its own progress bar when performing
one of the above-mentioned tasks. No "Cancel" button is shown and the current task
cannot be interrupted. You can set the ProgressIndicator.Message property to
whatever message you wish to display in the upper part of the progress window. If you
set the ProgressIndicator.Message property to an empty string, INM V12 Database
displays its own context-dependant message.

UserDefined

INM V12 Database does not display a progress bar of its own. Instead, it calls three
Lingo handlers that must be defined in your movie: V12BeginProgress, V12Progress
and V12EndProgress. See User Defined Progress Indicators.

None

No Progress Indicator is shown and no callbacks are performed to Lingo handlers. None
is the default value of the property.

See also Properties of Databases / ProgressIndicator.

User Defined Progress Indicators
If you wish to display your own progress indicator to the user, you must set the
ProgressIndicator property to UserDefined and define three Lingo handlers in your
movie: V12BeginProgress, V12Progress and V12EndProgress.

• The V12BeginProgress handler is called when the task starts, to allow
you to initialize or open whatever progress indicator you want to
show. One parameter is supplied to V12BeginProgress: it is either 100
(which is the upper bound that is eventually reached by the
“progress” parameter, passed to the V12Progress handler, at the end
of the operation), or -1 if no such upper bound is known up front.

• The V12Progress handler is repetitively called as long as the task is
performed. Two parameters are supplied to V12Progress. The first
parameter is the actual progress made so far and thus increases at
every call. The second one is either 100 (which is the upper bound
that is eventually reached by the first parameter at the end of the
operation), or -1 if no such upper bound is known up front.
V12Progress must return FALSE to keep INM V12 Database
performing the current task or TRUE to abort it. See the example
below.

• The V12EndProgress handler is called at the end of the task, to allow
you to cleanup or close your progress indicator.

Warning: V12 methods must not be called from V12BeginProgress, V12Progress or V12EndProgress.
This would create an infinite loop. Make sure to avoid this situation.

Example: spinning a custom cursor

If you want to spin a custom cursor while INM V12 Database is performing time-
consuming tasks, you need to define the following three handlers:

on V12BeginProgress

 -- this is an empty handler. Spinning a cursor does not

 -- require intialization.

end V12BeginProgress

on V12Progress prog, limit

 -- rotate cursor cast members. limit is ignored because spinning

 -- a cursor does not need to reach an upper bound.

 -- cast 27=first of series 4 cursors, cast 31=mask (empty)

 cursor [27 + (prog mod 4), 31]

 return FALSE

end V12Progress

on V12EndProgress

 cursor -1 -- restore pointer cursor

 INM V12 Database® for Director - User Manual page 92

end V12EndProgress

In this example, V12BeginProgress is an empty handler, but it must be present.
V12Progress only uses the prog parameter because it indefinitely rotates among four
cursors (which are one-bit depth members defined in members 27, 28, 29 and 30).
V12EndProgress is responsible for restoring the standard pointer cursor.

The "Progress" V12 Sample (available at:
http://www.INM.com/support/v12director/technotes/) demonstrates several ways to
implement progress indicators, including user-defined ones.

Properties of Databases
INM V12 Database files contain generic properties that provide for technical information
on the current INM V12 Database environment (such as the number of available indexes
and the state of the active debugger) and allow for the control of the INM V12 Database
environment (such as custom string types and custom weekday names).

mSetProperty and mGetProperty are used to assign and read these generic database
properties. Certain properties can only be read, not written (i.e. the number of available
indexes) while others can be read and written (i.e. custom string types)

Certain properties are persistent (i.e. saved to the database and recovered when the
database is reopened), others are not.

The syntax for mGetProperty is:
val = mGetProperty(gDB, PropertyName)

The syntax for mSetProperty is:
mSetProperty(gDB, PropertyName, Value)

PropertyName is a valid identifier (see Capacities and Limits for the definition of a valid
identifier).

Value is always a string, even if PropertyName refers to a number.

 INM V12 Database® for Director - User Manual page 93

mSetProperty can be used to define a new property or to change an existing one. Using
mSetProperty with a value of EMPTY deletes that property. Properties pertaining to
Strings (see The String Property below) cannot be deleted.

Valid PropertyNames and Values are listed below. Both parameters must be of type
String. Both are case insensitive (hence "resources", "Resources" and "RESOURCES" are
all equivalent).

Note: Value is limited to 4096 characters.

Note: mSetProperty is a very powerful tool. If you are unsure about what you’re doing, always
work on a copy of your original database.

You can retrieve the list of all the properties of a database by calling
mGetPropertyNames, as in

props = mGetPropertyNames(gDB)

http://www.integrationnewmedia.com/support/v12director/technotes/

 INM V12 Database® for Director - User Manual page 94

Predefined Properties

ProgressIndicator

ReadWrite, persistent. Valid values are "None", "With_Cancel", "Without_Cancel",
"UserDefined". Default value is "None".

x = mGetProperty(gDB, "ProgressIndicator")

mSetProperty(gDB, "ProgressIndicator", "With_Cancel")

Enables INM V12 Database to show a progress indicator while performing time-
consuming tasks, or calls back Lingo handlers to enable custom progress indicator
implementations. See Progress Indicators.

ProgressIndicator.Message

ReadWrite, persistent.
msg = mGetProperty(gDB, "ProgressIndicator.Message")

mSetProperty(gDB, "ProgressIndicator.Message", "Exporting records.
Please be patient…")

This property sets the text that is displayed in the upper part of INM V12 Database's
progress window. If you set it to an empty string, INM V12 Database displays a
message that depends on the current operation. See Progress Indicators.

VirtualCR

ReadWrite, persistent. Valid values: any ASCII character.

When importing or exporting data, convert Carriage Returns (ASCII #13) to this ASCII
character. This is convenient to avoid the confusion of real Carriage Returns with Record
Delimiters. This property can be overridden by a specific VirtualCR character passed as
parameter to mImport.

Example:
c = mGetProperty(gDB, "VirtualCR")

put CharToNum(c) – show ASCII number in message window

--

mSetProperty(gDB, "VirtualCR", NumToChar(10)) -- define ASCII
character #10 as virtual CR

See Step 2: Prepare the Data / Virtual carriage returns.

Note: INM V12 Database properties can only be accessed by the mSetProperty and mGetProperty
methods. They are totally unrelated to Windows file properties.

Note: The VirtualCR property requires an ASCII character as a parameter, not an ASCII number.

To convert an ASCII number to a character, use the example provided here.

CharacterSet

ReadWrite, persistent. Valid values: "Windows-ANSI", "Mac-Standard", and "MS-DOS".
Default: "Windows-ANSI" on the Windows version of INM V12 Database and "Mac-
Standard" on the Macintosh version of INM V12 Database. This property affects all of

INM V12 Database's import and export functions. It can be overridden by a specific
character set passed as a parameter to mImport.

Translates imported and exported files (whether Text or DBF) with the "Windows-ANSI",
"Mac-Standard" or "MS-DOS" character set tables.

mSetProperty(gDB, "CharacterSet", "Mac-Standard")

See Step 2: Prepare the Data / Character Sets.

Resources

ReadOnly, non-persistent.
put mGetProperty(gDB, "resources")

Returns information on the number of available indexes and the index used by the last
call to mSelect.

Example:
-- Number of indexes used: 6

-- Current index in table 'articles': 'nameNdx', using field 'name'

INM V12 Database resources should not be confused with the MacOS resources (those
normally edited with ResEdit) - they are completely unrelated.

CurrentDate

ReadOnly, non-persistent.

mGetProperty returns the current date in INM V12 Database's raw format
(YYYY/MM/DD) regardless of the Control Panel settings of the Mac or PC.

Example
aDate = mGetProperty (gDB, "CurrentDate")

put aDate

-- "2004/05/31"

Verbose

ReadWrite, non-persistent. Valid values are "on" and "off".

When Verbose is set to "on", INM V12 Database constantly displays a detailed feedback
on the tasks it is performing in Director's Message Window,

Example:
mSetProperty(gDB, "verbose", "on")

mGetProperty(gDB, "verbose")

This property is extremely useful for debugging database errors, during testing. Turn
verbose “on” at the beginning of a script segment that includes several INM V12
Database method calls; then turn it “off” at the end of that section of code. Although
verbose is convenient for authoring and testing purposes, you should not use it in place
of CheckV12Error to trap potential runtime errors and to display feedback appropriate
for your application’s end-users. See Errors and Defensive Programming.

Warning: If you put calls to set the verbose property on in your script, you must remember to
remove them before distributing your application.

 INM V12 Database® for Director - User Manual page 95

 INM V12 Database® for Director - User Manual page 96

Months

ReadWrite, persistent. Valid values: any 12-word string.

The Month property contains the names of the months used by mDataFormat to format
dates (the MMMM pattern in mDataFormat). The Value parameter is any 12-word string.
Words must be separated by spaces. Names of months that contain spaces themselves
must be enclosed between apostrophes.

Example:
mSetProperty (gDB, "Months", "Gennaio Febbraio Marzo Aprile Maggio

Giugno Luglio Agosto Settembre Ottobre Novembre Dicembre")

ShortMonths

ReadWrite, persistent. Valid values: any 12-word string.

The ShortMonth property contains the short names of the months used by mDataFormat
to format dates (the MMM pattern in mDataFormat). The Value parameter is any 12-word
string. Words must be separated by spaces. Short names of months that contain spaces
themselves must be enclosed between apostrophes.

Example:
mSetProperty (gDB, "ShortMonths", "Jan Fév Mar Avr Mai Juin Juil Août

Sep Oct Nov Déc")

Weekdays

ReadWrite, persistent. Valid values: any 12-word string.

The Weekdays property contains the names of the weekdays used by mDataFormat to
format dates (the DDDD pattern in mDataFormat). The Value parameter is any 12-word
string. Words must be separated by spaces. Names of weekdays that contain spaces
themselves must be enclosed between apostrophes.

Example
mSetProperty (gDB, "Weekdays", "Montag Dienstag Mittwoch Donnerstag

Freitag Samstag Sonntag")

ShortWeekdays

ReadWrite, persistent. Valid values: any 12-word string.

The ShortWeekdays property contains the short names of the weekdays used by
mDataFormat to format dates (the DDD pattern in mDataFormat). The Value parameter
is any 12-word string. Words must be separated by spaces. Short names of weekdays
that contain spaces themselves must be enclosed between apostrophes.

Example
mSetProperty (gDB, "ShortWeekdays", "Lun Mar Mie Jue Vie Sab Dom")

DBversion

ReadOnly, non-persistent. Returns the version of the INM V12 Database Xtra used to
create the database.

Example:
v = mGetProperty(gDB, "DBversion")

put v

The above example puts "V12,3.4, Multi-User" in the message window.

FlushToDisk

If set to "true", this property will set the database to automatically flush the data to disk
after every write operation.

V12 uses a disk cache system in order to speed up write operations, and normally
flushes to disk on an irregular basis, as needed. This method is useful when you have
an application running on a user’s machine that may be prone to power failures, or
when you want to be absolutely sure that you have stored a write operation to the hard
drive.

If you prefer to manually control when the database is flushed to disk, use the
mFlushToDisk method.

Tip: A common use for the FlushToDisk property is in a kiosk situation where you store information
into a database, and you want to increase the odds that a power-failure will not affect the database.
Power failures may still cause problems with the operating system and/or database, but this
command will ensure that the data has been written to the hard drive or storage device.

The String Property
The String property is covered in a separate section because other sub-properties
(Delimiters, StopWords and MinWordLength) depend on it. The properties discussed
below must be defined before fields of the corresponding string types are created in the
database.

String.Language

ReadWrite, persistent. Valid values: any valid search/sort table.

The String property defines or modifies custom string types (i.e. string fields that obey
specific searching and sorting rules). To define a new string type, or modify an existing
one, you append its name to "String.". The chosen name must be a valid identifier and
cannot contain periods (".").

Example:
mSetProperty (gDB, "String.Klingon", field "CompTable")

In this example, field "CompTable" contains the search/sort descriptor for Klingon. Once
this property is defined, you can use the type "Klingon" to define new fields with
mCreateField or mReadDBstructure. You also need to define this property first before
modifying other string properties such as Delimiters, StopWords and MinWordLength.

To modify the sort order of the default string, just omit the Language identifier:
mSetProperty (gDB, "String", field "NewCompTable")

For details on various character sets and custom string types, please see Appendix 3:
String and Custom String Types.

String.Language.Delimiters

ReadWrite, persistent. Valid values: any valid delimiters descriptor.

Delimiters defines, for an existing string type, the list of characters that are acceptable
as word delimiters for full-text indexing. By default, word delimiters for the predefined

 INM V12 Database® for Director - User Manual page 97

 INM V12 Database® for Director - User Manual page 98

types are all non-alphanumeric characters (everything except 0-9, A-Z, a-z and
accented characters).

Example:
mSetProperty (gDB, "String.Spanish.Delimiters",

"!?@$%?&*()[]^®{}£¢§¨¶≤≥º=+-,./\|")

In the above example, the punctuation characters indicated as the Value parameter are
considered as delimiters.

If you need to specify the double-quote as part of the delimiters, either use the Lingo
constant QUOTE, or place the delimiters in a Director member of type Field and use that
field as a Value parameter as follows:

mSetProperty(gDB, "String.Spanish.Delimiters", field "myDelimiters")

All non-printing characters such as TAB, Space, CTRL+J, etc. (i.e. characters lower than
ASCII 32) are always considered as delimiters.

To modify the delimiters of the default string, just omit the Language identifier:
mSetProperty(gDB, "String.Delimiters", field "newDelimiters")

String.Language.MinWordLength

ReadWrite, persistent. Valid values: an integer in the range 2..8 passed as a String
parameter.

MinWordLength determines the size of the shortest word that must be considered for
full-indexing. All words shorter than MinWordLength are ignored and hence refused by
the mSetCriteria method when used with the operator "WordEquals".

Example:
mSetProperty (gDB, "String.Spanish.MinWordLength", "3")

Note that the Value parameter is "3" (with quotation marks). This is because
mSetProperty expects a Value parameter of type String only. The following is also a
valid formulation:

mSetProperty(gDB, "String.Spanish.MinWordLength", String(3))

To modify the MinWordLength of the default string, just omit the Language identifier:
mSetProperty(gDB, "String.MinWordLength", "2")

The default value for MinWordLength is 4. The MinWordLength property must be
defined before creating fields of type String, in the database, so that the full-index is
created accordingly.

String.Language.StopWords

ReadWrite, persistent. Valid values: a string no longer than 32K.

StopWords allows for the definition of a list of words that must be ignored in the full-
indexing process. The Value parameter is a string containing the stop words in any
order separated by spaces, TABs or Carriage Returns).

Example:
mSetProperty (gDB, "String.Spanish.StopWords", "el está en la de ")

To modify the stop words list of the default string, just omit the Language identifier:
mSetProperty(gDB, "String.StopWords","a the on for in by as")

By default, the StopWords property is empty. A typical list of stop words in English is:
 “a by in the an for is this and from it to are had not was as have

of with at he on which be her or you but his that”

Note: Remember that at most 4096 characters can be stored in individual properties.

Custom Properties (Advanced Users)
Advanced users may want to define their own properties and make them persistent to a
database. This is a convenient way to store preferences in your database and it
eliminates the trouble of having to create a table that includes only one record.

For example, if you need to save the frame last visited by the user prior to leaving your
application (possibly to bring him/her back to that same frame next time):

on StopMovie

 global gDB

 mSetProperty(gDB, "LastVisited", string(the frame))

 -- Typcasting to string is mandatory here.

 -- Some other housekeeping tasks...

end StopMovie

The startup handler of your movie would contain:

on StartMovie

 global gDB

 -- create database instance, etc.

 myLastVisit = integer(mGetProperty(gDB, "LastVisited"))

 if (myLastVisit)>0) then go to frame myLastVisit

 -- other housekeeping tasks...

end StartMovie

Custom properties are always read-write and persistent.

 INM V12 Database® for Director - User Manual page 99

 INM V12 Database® for Director - User Manual page 100

Capacities and Limits

Database
• The size of an INM V12 Database file is limited by disk space.

See Table Index and Field capacities for limitations when using
the Light Edition of INM V12 Database.

• The number of database instances and table instances is
limited by RAM. Each executable is entitled to only one
database instance of a given database (although, you may
create as many instances of distinct databases as you wish in a
single executable). Multiple instances of a table can be created
on a single computer. Note that you may run into significant
performance issues as the number of open databases
increases.

• A valid INM V12 Database file contains at least one table, and
each table requires at least one field and one index.

Note: Previous versions of INM V12 Database supported a Shared ReadWrite mode
for multi-user access to V12 Databases over a network. If you wish to use this
functionality we can supply you with the necessary information to do so. However, this
feature is no longer supported.

Creation
• In order to create licensed V12 database structures at runtime, you

must have a registered INM V12 Database license file on your
workstation. If you do not have a licensed INM V12 Database on the
workstation, your databases will be unlicensed and will display a
splash screen each time they are opened. The best approach is often
to clone new databases from existing databases.

Selection
• With INM V12 Database Regular Edition, up to 100 criteria can be

chained with sequences of mSetCriteria separated by Boolean
operators.

• With INM V12 Database Light Edition, up to 3 criteria can be chained
with sequences of mSetCriteria separated by Boolean operators.

Importing
• DBF files of type DBase III, DBase IV, DBase V, FoxPro 2.0, FoxPro

2.5, FoxPro 2.6, FoxPro 3.0 and FoxPro 5.0 can be imported, exported
and used as templates for the definition of V12 databases. Fields of
type DateTime are not supported. The following DBF data types are
ignored: General, Character-Binary, Memo-Binary.

• On Windows, MS Access databases, MS FoxPro files, MS Excel
workbooks and MS SQL Server data sources can be used as templates

 INM V12 Database® for Director - User Manual page 101

for creating new V12 databases and as sources of data for importing
records through ODBC drivers. The exact database translation/data
importing rules varies among ODBC drivers and versions of ODBC
drivers.

Table
• The maximum number of tables in an INM V12 Database file, using

INM V12 Database Regular Edition is 128.

• Only one table can be handled by the Light Edition of INM V12
Database.

• Identifiers (names of fields, tables and indexes) are limited to 32
characters. They must start with a low-ASCII alphabetic character
(a..z, A..Z), which can be followed by any alphanumeric character
(0..9, a..z, A..Z, à, é, ö). Keywords such as NOT, AND, OR, String,
Integer, Float, Date or Media are not suitable for use as identifiers.

Field
• With the Regular Edition of INM V12 Database there is no limit on the

number of fields permitted in a database.

• With the Light Edition of INM V12 Database, up to 16 fields can be
defined (in a single table).

• No two fields or indexes can have the same name in the same table.
However, two fields or two indexes might have the same name in
different tables.

• All records are of variable length. Fields of type media are limited to
1Mb. Fields of type string are limited to 64K.

• The range of the type Integer is -231 to 231-1 (-2147483648 to
2147483647).

• The range of the type Float is ±1.79769313486232E+308 to
±2.22507385850720E-308.

• Any date later than January 1st, 1600 can be compared, retrieved and
stored to fields of type Date. However, date formatting is limited to
the range Jan 1st 1904 through Dec 31st 2037.

• Fields of type media can hold almost any type of media that can be
stored in a Director member, such as vector shapes, animated GIFs,
Flash movies, sound files, etc. The known exceptions are Film Loops
and QuickTime movies.

Index
• A maximum of 128 indexes can be defined on an INM V12 Database

file using the Regular Edition of INM V12 Database. Each index can
operate on up to 12 fields.

• With the Light Edition of INM V12 Database, A maximum of 12
indexes can be defined on a V12 Database file and only one field can
be use by an index.

• Up to 32 custom string types can be defined.

 INM V12 Database® for Director - User Manual page 102

• When indexing fields of type String, up to the 251 first characters of
each string are actually entered in the index. The remaining
characters are ignored.

• Full-indexes are built with words not exceeding 31 characters. Words
longer than 31 characters are truncated to 31 characters for the
purpose of indexing (this does not affect the actual data).

 INM V12 Database® for Director - User Manual page 103

V12 Database Methods

Initialization and closing

mAddRecord (T)
Syntax

mAddRecord(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Adds a new record to table whichTable and sets it as the current record.

Calls to mAddRecord are generally followed by calls to mSetField or mSetMedia and
must end with a call to mUpdateRecord. If you call any method other than
mSetField or mSetMedia before calling mUpdateRecord, no record is added to
whichTable.

If the database to which whichTable belongs is open in "ReadOnly" mode,
mAddRecord signals an error. Errors can be retrieved with V12Error or V12Status.

Example

This script adds a record, puts the value "funnel" in field "name", the value 2.95 in
field "price" and updates the record:

new (DB)

new (T)

mClose (DB)

mClose (T)

Retrieving Data
mGetField (T)

mGetMedia (T)

mGetSelection (T)

mGetUnique (T)

mDataFormat (T)

Modifying Data
mAddRecord (T)

mDeleteRecord (T)

mEditRecord (T)

mSelDelete (T)

mSetField (T)

mSetMedia (T)

mUpdateRecord (T)

Browsing through Data
mFind (T)

mGetPosition (T)

mSelectCount (T)

mGo (T)

mGoFirst (T)

mGoLast (T)

mGoNext (T)

mGoPrevious (T)

Searching and Sorting
mOrderBy (T)

mSelect (T)

mSelectAll (T)

mSetCriteria (T)

mSetIndex (T)

Importing\ Exporting Data
mImport (T)

mExportSelection (T)

Error Management
V12Error (G)

V12Status (G)

Database Structures
mBuild (DB)

mCloneDatabase (DB)

mDumpStructure (DB)

mReadDBStructure (DB)

Database Utilities
mFixDatabase (S)

mGetProperty (DB)

mGetPropertyNames (DB)

mNeedSelect (T)

mSetProperty (DB)

mSetPassword (DB)

Network Utilities
V12Download (G)

V12DownloadInfo (G)

mXtraVersion (S)

G = Global Method
DB = Database Method
T = Table Method
S = Static Method

 INM V12 Database® for Director - User Manual page 104

mAddRecord(gTable)

CheckV12Error() –- this handler needs to be defined by you

mSetField(gTable, "name", "funnel")

CheckV12Error()

mSetField(gTable, "price", 2.95)

CheckV12Error()

mUpdateRecord(gTable)

CheckV12Error()

See Also
mEditRecord (T), mSetField (T), mSetMedia (T),mUpdateRecord (T)

mBuild (DB)
Syntax

mBuild(whichDatabase [, onlineDB])

Parameters

whichDatabase = Instance of a V12 Database.
onlineDB = Pass "Online" to create a V12Online compatible database. Optional
parameter.
Description

Verifies the validity of the database structure defined by mReadDBstructure and
writes the database structure to the file.

After successfully calling mBuild, the database remains open in "ReadWrite" mode.
Data can be immediately imported to it. It is very important to check for possible
errors via V12Error or V12Status after calling mBuild.

Example

These statements read the database definition contained in the Director cast
member of type Field named "DBstruct" and create a V12 database named
"myBase.V12" with password "very secret password":

set gDB = New(Xtra "V12DBE", the moviePath & "myBase.V12", "Create", "very secret
password")

CheckV12Error() –- this handler needs to be defined by you

mReadDBStructure(gDB, "Literal", field "DBstruct")

CheckV12Error()

mBuild(gDB)

CheckV12Error()

See Also
new (DB), mReadDBStructure (DB)

 INM V12 Database® for Director - User Manual page 105

mCloneDatabase (DB)
Syntax

mCloneDataBase(whichDatabase, pathName)

Parameters

whichDatabase = Instance of INM V12 Database.
pathName = Pathname of the new V12 Database file.

Description

Create a clone of the V12 database referred by whichDatabase (an identical copy,
with the same structure but no records).

Example
mCloneDataBase (gDB, The MoviePath & "Clone.V12")

CheckV12Error() –- this handler needs to be defined by you

See Also
new (DB)

mDataFormat (T)
Syntax

mDataFormat(whichTable, fieldName, format)

Parameters

whichTable = Instance of a V12 Table.
fieldName = The name of a field in whichTable.
format = The data format that will be applied to fieldName.

Description

Associates a formatting pattern to the data retrieved from fieldName. Data formats
can be applied to fields of type Float, Integer and Date. If the retrieved data are
longer than the formatting pattern, V12 returns the corresponding number of "#"s
(see Example 1).

When a table is first opened, the default format of all its Date fields is set to
"yyyy/mm/dd". Float and Integer fields return as many digits as required by the
data.

Valid patterns for fields of type Integer and Float contain the following:

9 A zero at that position if no digit is present

A space at that position if no digit is present

. (period) decimal point

other other characters are literally reproduced.

Valid patterns for fields of type Date are combinations of:

D day

M month

Y year

other other characters are literally reproduced.

By default, the names for the months in INM V12 Database are (MMMM)
January, February, March, April, May, June, July, August, September, October,
November, December

 INM V12 Database® for Director - User Manual page 106

The short names for the months are (MMM)
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

The names for the weekdays are (DDDD)
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

The short names of the weekdays are (DDD)
Sun, Mon, Tue, Wed, Thu, Fri, Sat

All of these names can be replaced by custom names through the properties Months,
ShortMonths, Weekdays and ShortWeekdays (see mGetProperty and mSetProperty)

Example 1

The pattern "###9999" forces the output of an integer field to be formatted within no
less than four digits and with three leading spaces if necessary. Thus:

4 is formatted as " 0004"

123 is formatted as " 0123"

314159 is formatted as " 314159"

3141592 is formatted as "3141592"

31415926 is formatted as "#######"

Example 2

This example forces the output of the field ratio to 2 integral digits, 2 decimal
places and a trailing "%" sign. If the value in field ratio is 12.3489, the output is
formatted as "12.35%"

mDataFormat(gTable, "ratio", "99.99%")

put mGetField(gTable, "ratio")

Example 3

The pattern "(999) 999-9999" can format phone numbers stored as integers. The
following statements return a string formatted as "(514) 871-1333".

mDataFormat(gTable, "phone", "(999) 999-9999")

put mGetField(gTable, "phone")

Example 4

The following statements retrieve the formatted content of field "Birthday" of the
current record and put it in the Director field "BD". The result is formatted as
"29/01/95".

mDataFormat(gTable,"Birthday","dd/mm/yy")

put mGetField(gTable, "Birthday") into field "BD"

Example 5

The pattern Formats 29 January 1995 as

D 29

DDDD Thursday

MM 01

DD-MM 29-01

MMM DD, YY Jan 29, 95

On D MMMM, YYYY On 29 January, 1995

See Also
mGetField (T), mGetSelection (T), mGetProperty (DB), mSetProperty (DB)

 INM V12 Database® for Director - User Manual page 107

mDeleteRecord (T)
Syntax

mDeleteRecord(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Deletes the current record from table whichTable .

After calling mDeleteRecord, the record following the current record becomes the
new current record. If no record follows the deleted record, the preceding record
becomes the new current record. If no record precedes the deleted record, the
current record is not defined.

The database must be open in "ReadWrite" or "Shared ReadWrite" mode for
mDeleteRecord to succeed. Otherwise, mDeleteRecord fails (no record is deleted)
and an error is signaled by V12Error and V12Status.

Example
mDeleteRecord(gTable)

See Also
mSelDelete (T)

mDumpStructure (DB)
Syntax

mDumpStructure(whichDatabase, dumpMode*)

Parameters

whichDatabase = Instance of a V12 Database.
dumpMode = What information is to be retrieved about whichDatabase's structure
* Some dumpModes can require more parameters

Description

Retrieves information on the structure of database whichDatabase.
mDumpStructure's output is typically put in the Message Window or in a field
member. mDumpStructure is very convenient for debugging.

The possibilities for dumpMode are:

extended: Returns each table of your database with all fields by type, size and index
information.

put mDumpStructure(gdb, "Extended")

formal: Returns the standard format used in creating a database.
put mDumpStructure(gdb, "Formal")

tableCount: Returns the number of tables in the database.
put mDumpStructure(gdb, "tableCount")

tableNames: Returns the names of all tables in the database.
put mDumpStructure(gdb, "tableNames")

fieldCount: Outputs the number of fields in a specific table.
put mDumpStructure(gdb, "FieldCount", tableName)

 INM V12 Database® for Director - User Manual page 108

fieldNames: Returns the names of the fields in a specific table.

put mDumpStructure(gdb, "FieldNames", tableName)

fieldType: Returns the type of a field in a specific table.
put mDumpStructure(gdb, "fieldType", tableName, fieldName)

fieldSize: Returns the size of a field in a specific table (field of type string or media
only).

put mDumpStructure(gdb, "fieldSize", tableName, fieldName)

indexCount: Returns the number of indexes in a specific table.
put mDumpStructure(gdb, "indexCount", tableName)

indexNames: Returns the indexed fields in a specific table.
put mDumpStructure(gdb, "indexNames", tableName)

full-Indexes: Returns the fully indexed fields in a specific table.

put mDumpStructure(gdb, "full-indexes", tableName)

defaultIndex: Returns the default index for a specific table
put mDumpStructure(gdb, "defaultIndex", tableName)

Example
The following line puts the structure of your database into the message window

put mDumpStructure(gDB)

The following line puts the structure of your database into field dummy using
-- the Extended dumpMode.
put mDumpStructure(gDB, "Extended") into field "dummy"

mExportSelection (T)
Syntax

mExportSelection(whichTable, exportType, pathName [, fieldDelimiter [, recordDelimiter [,
fieldName]*]])

Parameters

whichTable = Instance of a V12 Database.
exportType = "TEXT" or "DBF"
pathName = Pathname of exported file.
fieldDelimiter = One or multiple character delimiters (valid for "TEXT" exportType
only). Optional parameter.
recordDelimiter = One or multiple character delimiters (valid for "TEXT" exportType
only). Optional parameter.
fieldName* = Name(s) of field(s) to export, in that order. Optional parameter.

Description

Export the selection as currently sorted taking each field’s mDataFormat setting and
the CharacterSet property into consideration. To export the whole table, make sure
to call mSelectAll first. The first line of the exported file contains the names of the
exported fields (to remain compatible with mImport).

Example
-- Export the data of all the fields of the current table:
put mExportSelection(gTable, "TEXT", the moviePath & "selection.txt", TAB, RETURN)

-- Export data of field 'price' of the current table:

 INM V12 Database® for Director - User Manual page 109

put mExportSelection(gTable, "TEXT", the moviePath & "selection.txt", TAB, RETURN,
"price")

-- Export in the file "Export.dbf" the data of all fields of the current table:
mExportSelection(gTable, "DBF", the moviePath & "Export.dbf")

-- Export in the file "Export.dbf" the data of fields field1 and field2:
mExportSelection(gTable, "DBF", the moviePath & "Export.dbf", "field1", "field2")

See Also
mDataFormat (T), mSetProperty (DB), mImport (T)

mEditRecord (T)
Syntax

mEditRecord(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Enables the modification of the current record.

A normal record modification sequence consists of a call to mEditRecord, a
sequence of calls to mSetField or mSetMedia, followed by a call to
mUpdateRecord.

If you call any method other than mSetField or mSetMedia before calling
mUpdateRecord, the record modification process is aborted.

If there is no current record, or if the database to which whichTable belongs is open
in "ReadOnly" mode, mEditRecord signals an error that can be checked with
V12Error or V12Status.

Example

The following script enables the modification of the current record. It then puts the
value "funnel" in field "name", the value 2.95 in field "price" and updates the record:

mEditRecord(gTable)

CheckV12Error() –- this handler needs to be defined by you
mSetField(gTable, "name", "funnel")

CheckV12Error()
mSetField(gTable, "price", 2.95)

CheckV12Error()
mUpdateRecord(gTable)

CheckV12Error()

See Also
mSetField (T), mSetMedia (T), mUpdateRecord (T)

mFind (T)
Syntax

mFind(whichTable, direction, keyword)

 INM V12 Database® for Director - User Manual page 110

Parameters

whichTable = Instance of a V12 Table.
direction = "FIRST", "NEXT" or "PREVIOUS"
keyword = What you want to search for. This is used only when the direction

parameter is “First”.

Description

Sets the current record to one, in whichTable's selection, whose Master Field equals
or starts with keyword. The Master Field is the one that determines the sorting order
of the selection.

When the "First" parameter is used, the first matching occurrence is found. Any
sequence of calls to mFind must first start with one that uses the "First" parameter
and includes the keyword.

When the "Next" parameter is used, the record following the current matching
record is found.

When the "Previous" parameter is used, the record preceding the current matching
record is found.

If no records match keyword, the current record remains unchanged and an error is
signaled. It can be checked with V12Error or V12Status.

Example 1

The following statement sets the current record to the first one in the selection that
starts with the letter "s":

mFind(gTable, "First", "S")

Example 2

The following statements output up to the first five occurrences of "Gonzales"
without affecting the selection (ie, the same could be achieved using mSetCriteria
/ mSelect, to the cost of modifying the selection):

mFind(gTable, "First", "Gonzales")

CheckV12Error() –- this handler needs to be defined by you

if V12Status() then exit

put mGetField(gTable, "name")

CheckV12Error()

Set flag = TRUE

repeat while flag = TRUE

mFind(gTable, "Next")

if V12Status() then

 set flag = FALSE

else

 put mGetField(gTable, "name")

 CheckV12Error()

End if

end repeat

See Also
mGo (T), mGoFirst (T), mGoLast (T), mGoPrevious (T),
mGoNext (T), mSetCriteria (T), mOrderBy (T), mSelect (T), mSelectAll (T)

 INM V12 Database® for Director - User Manual page 111

mFixDatabase (S)
Syntax

mFixDatabase(Xtra "V12DBE", databaseName, newDatabaseName)

Parameters

databaseName = The pathname to the file you want to fix.
newDatabaseName = The new pathname of the fixed file.

Description

Fixes a corrupted database. To be fixed, a database must first be closed.
mFixDatabase is a static method (ie, it operates on Xtra "V12DBE", not an instance
of Xtra "V12DBE")

Example
mFixDatabase(Xtra "V12DBE", the moviePath & "DatabaseName.v12", the moviePath &
"FixedDatabase.V12")

See Also
mPackDatabase (DB)Error! Reference source not found.

mFlushToDisk (DB)
Syntax

mFlushToDisk(whichDatabase)

Parameters

whichDatabase = Instance of a V12 Database.

Description

Flushes to disk what is presently in the users cache. This method is useful when you
have an application running on a user’s machine that may be prone to power
failures, or when you want to be absolutely sure that you have stored a write
operation to the hard drive. V12 uses a disk cache system in order to speed up
operations, and normally flushes to disk on an irregular basis, as needed.

This method should be used when you are constantly writing to a V12 database.

Note: Flushing to Disk can be performed automatically by using the mSetProperty
command to set the "FlushToDisk" property to True. That property will set the
database to automatically flush the data to disk after every write operation. If you
set the FlushToDisk property to True, then the mFlushToDisk method is not
necessary. Flushing to disk is only useful in "ReadWrite" databases. Also, if this
property is set to TRUE, it will take additional CPU time and can slow down database
response.

Example
repeat with i = 1 to 1000

 mAddRecord(gTable)

 CheckV12Error() –- this handler needs to be defined by you

 mSetField(gTable, "UniqueID", i)

 CheckV12Error()

 mUpdateRecord(gTable)

 CheckV12Error()

end repeat

 INM V12 Database® for Director - User Manual page 112

mFlushToDisk(gdb)

See Also
mSetProperty (DB)

mGetField (T)
Syntax

mGetField(whichTable, fieldName [, dataFormat])

Parameters

whichTable = Instance of a V12 Table.
fieldName = Name of the field to read in whichTable.
dataFormat = Pattern for Integer, Float and Date formatting. Optional parameter.

Description

Retrieves the content of field fieldName of the current record.

If the current record is not defined (i.e., the selection is empty), mGetField returns
<Void>.

If dataFormat is specified, the retrieved data is formatted accordingly (see
mDataFormat for a list of valid patterns). Otherwise, if a formatting pattern is
assigned to fieldName with mDataFormat, that format is used. mGetField’s
dataFormat parameter overrides mDataFormat’s setting.

Example
set name = mGetField(gTable, "theName")

CheckV12Error() –- this handler needs to be defined by you
set date = mGetField(gTable, "theDate", "YY-MM-DD")

CheckV12Error()

See Also
mDataFormat (T), mGetSelection (T), mGetMedia (T), mSetField (T)

mGetMedia (T)
Syntax

mGetMedia(whichTable, fieldName, memberRef)

Parameters

whichTable = Instance of a V12 Table.
fieldName = Name of the field to read in whichTable.
memberRef = The Director member that will store the retrieved media.

Description

Retrieves the media contained in field fieldName of the current record and stores it
in memberRef .

If fieldName is a V12 field of type String, mGetMedia attempts to retrieve the styled
text associated with it. If no styled text was stored in fieldName, memberRef is
emptied.

Examples
--The following lines are equivalent; they retrieve the media

--from field “Photo” in current record, and store it in cast member “Image”

 INM V12 Database® for Director - User Manual page 113

mGetMedia(gTable, "photo", member "Image")
mGetMedia(gTable, "photo", member "Image" of castlib 1)

See Also
mGetSelection (T), mGetField (T), mSetMedia (T), mSetField (T)

mGetPosition (T)
Syntax

mGetPosition(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Returns the position of the current record in the selection. If the selection is empty,
mGetPosition returns 0.

Example
set p = mGetPosition(gTable)

CheckV12Error() –- this handler needs to be defined by you

set n = mSelectCount(gTable)

CheckV12Error()

put "Showing record " & p & " out of " & n

See Also
mGo (T), mGoPrevious (T), mGoNext (T), mGoFirst (T),
mGoLast (T), mSelectCount (T)

mGetPropertyNames (DB)
Syntax

mGetPropertyNames(whichDatabase)

 Parameters

whichDatabase = Instance of a V12 Database.

Description

Returns the names of all the properties defined. The result is a string with one
property name per line.

Example
put mGetPropertyNames(gDB)

Returns the following text in the Message Window with any Custom properties:

creation-date

DBE-NAME

dbversion

LogError

MaxLoggedErrors

modification-date

months

myOwnProp

ProgressIndicator

 INM V12 Database® for Director - User Manual page 114

shortmonths

shortweekdays

tbl$lastmodified

weekdays

See Also

mSetProperty (DB), mGetProperty (DB)

mGetProperty (DB)
Syntax

mGetProperty(whichDatabase, propertyName)

Parameters

whichDatabase = Instance of a V12 Database.
propertyName = The property in whichDatabase.

Description

Retrieves the value of property propertyName. The result is a string.

Possible values of propertyName are custom properties or:
ProgressIndicator

ProgressIndicator.Message

VirtualCR

CharacterSet

Resources

CurrentDate

Verbose

Months

ShortMonths

Weekdays

ShortWeekdays

ErrorLog

MaxLoggedErrors

SharedRWcount

DBversion

String.Language

String.Language.Delimiters

String.Language.MinWordLength

String.Language.StopWords

FlushToDisk

Example

This statement returns the character set to be used when importing and exporting
records:

put mGetProperty(gDB, "characterSet")

Example

This statement assigns the string "January February March April May June July
August September October November" to the variable theMonths.

set theMonths = mGetProperty(gDB, "months")

 INM V12 Database® for Director - User Manual page 115

See Also
mSetProperty (DB)

mGetSelection (T)
Syntax
mGetSelection(whichTable, [outputType [, from [, #recs [, fieldDelimiter] [,

recordDelimiter] [, fieldNames]*]]])

Parameters

whichTable = Instance of a V12 Table.
outputType = "LITERAL", "LIST" or "PROPERTYLIST". Optional parameter.
from = The first record to be retrieved. Optional parameter.
#recs = The number of records to retrieve. Optional parameter.
fieldDelimiter = The field delimiter of the records returned. Optional parameter.
recordDelimiter = The record delimiter of the records returned. Optional parameter.
fieldNames = The fieldname(s) in whichTable to be returned. Optional parameter.

Description

Retrieves one or more fields, within one or more records of the selection in
whichTable.

mGetSelection is convenient for populating scrolling lists or popup menus in the
user interface.

If outputType is omitted, "LITERAL" is assumed.
"LITERAL" returns a string formatted as specified by fieldDelimiter and
recordDelimiter.
"LIST" returns a Lingo list containing as many lists as records in the selection (a list
of lists).
"PROPERTYLIST" returns a Lingo property list.

If the selection contains one record, the "LIST" and "PROPERTYLIST" output types
return a list containing one list.

If the selection is empty, mGetSelection returns an empty string ("LITERAL") or an
empty list ("LIST" or "PROPERTYLIST").

from is the number of the first record to retrieve. If omitted, the first record in the
selection is used.

#recs is the number of records to retrieve. It is optional. If omitted, all records up
until the end of the selection are retrieved.

fieldDelimiter is the delimiter to insert between each field. It can only be used with
the "LITERAL" output type. Even then, it is optional. If omitted, TAB is used.

recordDelimiter is the delimiter to insert at the end of each record. It can only be
used with the "LITERAL" output type. Even then, it is optional. If omitted, RETURN is
used.

fieldNames are as many field names as required in the output. Invalid field names are
ignored. If omitted, all fields in the current table are returned.

Call V12Status or V12Error to check if mGetSelection succeeded.

 INM V12 Database® for Director - User Manual page 116

Example 1

This statement retrieves the entire selection to a Lingo list and places it in a variable
named myList. All fields and all records are retrieved for further operation on the
variable myList.

set myList = mGetSelection(gTable, "LIST")

Example 2

This statement retrieves the values of the fields LastName and FirstName of the
entire selection to the field PickList. LastName and FirstName are separated by a
comma.

mSelectAll(gTable)

-- mSelectCount(gTable) is used to know exactly how many records are returned

put mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable), ", ", RETURN,
"LastName", "FirstName") into field "PickList"

See Also
mGetField (T), mGetUnique (T), mSetField (T), mDataFormat (T)

mGetUnique (T)
Syntax

mGetUnique(whichTable, outputType)

Parameters

whichTable = Instance of a V12 Table.
outputType = "LITERAL" or "LIST"

Description

Retrieves unique values from the master field. The master field is the one that
determines the selection's sorting order.

mGetUnique is convenient for populating scrolling lists or popup menus with unique
values of the sorted field of a selection.

outputType is either "LITERAL" or "LIST". It is mandatory. "LITERAL" retrieves a string
with one value per line. "LIST" retrieves a list of single-item lists (for consistency
with mGetSelection).

If the selection is empty, mGetUnique returns an empty string ("LITERAL") or an
empty list ("LIST").

Example

These statements retrieve the unique values in field "color" and place them in field
"PopMenu". It is important to call mOrderBy in order to set "color" as the master
field. For faster processing, "color" must be an indexed field.

mSetCriteria(gTable, "model", "=", "python")

CheckV12Error() –- this handler needs to be defined by you

mOrderBy(gTable, "color")

CheckV12Error()

mSelect(gTable)

CheckV12Error()

if (mSelectCount(gTable) = 0) then

 alert "No item matches your choice"

 INM V12 Database® for Director - User Manual page 117

else

 put mGetUnique(gTable, "literal") into field "PopMenu"

end if

See Also
mSetField (T), mDataFormat (T), mSetCriteria (T), mOrderBy (T), mSelect (T)

mGo (T)
Syntax

mGo(whichTable, toPosition)

Parameters

whichTable = Instance of a V12 Table.
toPosition = The record number to go to in whichTable .

Description

Sets the current record to the toPositionth record of the selection.

If toPosition is not within the selection's range, the statement is ignored and the
position of the current record remains unchanged. V12Error and V12Status report
an error code.

Example

These statements set the current record to the selected line in a list of records
previously retrieved with mGetSelection:

set userChoice = the mouseLine

if (userChoice > 1) then

mGo(gTable, userChoice)

UpdateDisplay()

end if

See Also
mGoFirst (T), mGoLast (T), mGoNext (T), mGoPrevious (T), mGetPosition (T),
mSelectCount (T)

mGoFirst (T)
Syntax

mGoFirst(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Sets the current record to the first record of the selection.

Example
mGoFirst(gTable)

See Also
mGoLast (T), mGoPrevious (T), mGoNext (T), mGo (T), mGetPosition (T), mSelectCount
(T)

 INM V12 Database® for Director - User Manual page 118

mGoLast (T)
Syntax

mGoLast(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Sets the current record to the last record of the selection.

Example
mGoLast(gTable)

See Also
mGoFirst (T), mGoPrevious (T), mGoNext (T), mGo (T), mGetPosition (T), mSelectCount
(T)

mGoNext (T)
Syntax

mGoNext(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Sets the current record to the record following the actual current record in the
selection.

If the current record is already the last record of the selection, mGoNext is ignored
and an error code is signaled by V12Error and V12Status.

Example
mGoNext(gTable)

See Also
mGoFirst (T), mGoLast (T), mGoPrevious (T), mGo (T), mGetPosition (T), mSelectCount
(T)

mGoPrevious (T)
Syntax

mGoPrevious(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Sets the current record to the record preceding the actual current record in the
selection.

 INM V12 Database® for Director - User Manual page 119

If the current record is already the first one in the selection, mGoPrevious is ignored
and an error code is signaled by V12Error and V12Status.

Example
mGoPrevious(gTable)

See Also
mGoFirst (T), mGoLast (T), mGoNext (T), mGo (T), mGetPosition (T), mSelectCount (T)

mImport (T)
Syntax

mImport(gTable, "Text", fileToImport [, optionsList])

mImport(gTable, "Literal", stringToImport [, optionsList])

mImport(gTable, "DBF", fileToImport [, optionsList])

mImport(gTable, "List", listToImport)

mImport(gTable, "PropertyList", listToImport)

mImport(gTable, "V12", fileToImport, password, tableName)

mImport(gTable, "Access", fileToImport, userName, password, tableName) –- Win only

mImport(gTable, "FoxPro", path) –- Windows only

mImport(gTable, "Excel", fileToImport, tableName) –- Windows only

mImport(gTable, "SQLserver", DSN, userName, password, tableName) –- Windows only

Description

Imports data from a file or data source into the current table. Possible input types
are:

• "Text": A text file (*.txt).

• "Literal": A Director field, text member or expression.

• "DBF": A dbf file (*.dbf).

• "List": A Lingo list.

• "PropertyList": A Lingo property list.

• "V12": A V12 database (*.v12).

• "Access": An MS Access file (*.mdb).

• "FoxPro": An MS FoxPro file (*.dbf).

• "Excel": An MS Excel file (*.xls).

• "SQLserver": An MS-SQL Data Source Name (DSN).

Input type Parameters
TEXT fileToImport = Pathname of the text file to import. The file's first line must

contain field descriptors.
optionsList = Lingo property list containing the following properties (all
optional):
#FieldDelimiter character. Default: TAB.
#RecordDelimiter character. Default: RETURN.
#CharacterSet "Windows-ANSI", "Mac-Standard" or "MS-DOS".
Default: Matches current OS.
#VirtualCR character: Default: NumToChar(11).
#TextQualifier character. Default: "|"

 INM V12 Database® for Director - User Manual page 120

Examples:
This example imports a text file with the default options:
mImport(gTable, "Text", the moviePath & "test.txt")
This example imports a text file with hyphens as field delimiter and
ASCII #14 as record delimiter:

mImport(gTable, "Text", the moviePath & "test.txt",
[#FieldDelimiter:"-", #RecordDelimiter:NumToChar(14)])
This example imports a text file with "%" as field delimiter, "¬" as
record delimiter, "\" as virtual carriage return and "+" as text
qualifier. The character set is considered to be "MS-DOS":

mImport(gTable, "Text", the moviePath & "test.txt",
[#FieldDelimiter:"%", #RecordDelimiter:"¬", #CharacterSet:"MS-
DOS", #VirtualCR:"\", #TextQualifier:"+"])

Literal stringToImport = A Lingo string or expression that resolves to a string.
optionsList = Lingo property list containing the following properties (all
optional):
#FieldDelimiter character. Default: TAB.
#RecordDelimiter character. Default: RETURN.
#CharacterSet "Windows-ANSI", "Mac-Standard" or "MS-DOS".
Default: Matches current OS.
#VirtualCR character: Default: NumToChar(11).
#TextQualifier character. Default: "|"

DBF fileToImport = Pathname of the dbf file to import.
optionsList = Optional parameter. Lingo property list containing the
following properties:
#CharacterSet "Windows-ANSI", "Mac-Standard" or "MS-DOS".
Default: Matches current OS.
Example
This statement, run on Windows, imports a DBF file containing MS-
DOS characters. V12 converts the MS-DOS character set to Windows
character set.

Example
-- This statement imports a DBF file.
mImport(gTable, "DBF", the moviePath & "sourceData.DBF",
[#CharacterSet:"MS-DOS"])

List listToImport = Lingo list of lists. Each sub-list is equivalent to one record
in your table. The first sub-list must contain your field descriptors.

Example
-- This statement imports a record from a list.
mImport(gTable, "List",[["name", "price"], ["spoon", 1.9]])

PropertyList listToImport = Lingo property list containing the data to import. Each sub-
list represents a record and each item is a property/value pair: the
property is the name of the field and the value is the data contained
in it.
Example
-- This statement imports a record from a propertylist.
mImport(gTable, "Propertylist",[[#name: "spoon", #price, 1.9]])

V12 fileToImport = The pathname of the V12 file to import.

 INM V12 Database® for Director - User Manual page 121

password = Password to unlock the database to import from.
tableName = Name of the table to import.
Example
-- This statement imports the contents of a table named “articles”.
mImport(gTable, "V12", the moviePath & "catalog.v12", "top secret",
"articles"])

Access
(Windows
only)

fileToImport = The pathname of the Access file to import.
userName = Valid username to access the MDB file, or EMPTY if the
MDB file is not protected.
password = Username's matching password, or EMPTY if the MDB file
is not protected.
tablename = Name of the table to import.

Example
-- This statement imports the contents of a table named “articles”.
mImport(gTable, "Access", the moviePath & "catalog.mdb", "", "",
"articles"])

FoxPro
(Windows
only)

path = Path to the source *.DBF file(s).

Example
mImport(gTable, "FoxPro", the moviePath & "dbfs")

Excel
(Windows
only)

fileToImport = The pathname of the Excel file to import.
tablename = Name of the table to import.
Example
mImport(gTable, "Excel", the moviePath & "catalog.xls", "articles")

SQLserver
(Windows
only)

DSN = Valid Data Source Name.
userName = Valid username to access the SQL Server database.
password = Username's matching password.
tablename = Name of the table to import.
Example
mImport(gTable, "SQLServer", "CatalogDSN", "Admin", "XBF48",
"articles")

mNeedSelect (T)
Syntax

mNeedSelect(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Checks the content of whichTable to see if another user in "Shared ReadWrite" mode
has modified it. The method will return TRUE or FALSE.
 mNeedSelect returns TRUE if records were added, deleted or modified since the
current instance last called mSelect. In some cases, it is a good idea to check for
mNeedSelect on idle and refresh the displayed records when signaled to do so.

Example
if mNeedSelect(gTable) then

 mSelect(gTable)

 -- do whatever necessary to refresh the display

end if

 INM V12 Database® for Director - User Manual page 122

See Also
mSelect (T), mSelectAll (T)

mOrderBy (T)
Syntax

mOrderBy(whichTable, fieldName [, sortOrder])

Parameters

whichTable = Instance of a V12 Table.
fieldName = Name of field to use as the sorting key.
sortOrder = "ascending" or "descending", Default = "ascending". Optional
parameter.

Description

Sort the selection according to field fieldName. This method is normally called just
before the mSelect method is used.
NOTE: when mOrderBy is used before mSelectAll, fieldName must be indexed.

Example
mOrderBy(gTable, "lastName") -- ascending by default.

CheckV12Error() –- this handler needs to be defined by you
mSelect(gTable)
CheckV12Error()

mOrderBy(gTable, "lastName", "ascending")
CheckV12Error()

mSelect(gTable)
CheckV12Error()

mOrderBy(gTable, "lastName", "descending")

CheckV12Error()
mSelect(gTable)

CheckV12Error()

See Also
mSelectAll (T), mSelect (T), mSetIndex (T)

mPackDatabase (DB)
Syntax

mPackDatabase(whichDatabase, pathname)

Parameters

whichDatabase = Instance of a V12 Database.
pathName = Pathname of the new V12 Database compact file.

Description

Reclaims the space lost because of deleted records by creating a new compact file.

Example
mPackDatabase (gDB, the moviePath & “PackMan.V12”)

 INM V12 Database® for Director - User Manual page 123

mReadDBStructure (DB)
Syntax

mReadDBStructure(whichDatabase, inputType, inputData [, password])

Parameters

whichDatabase = Instance of a V12 Database.
inputType = "LITERAL", "TEXT", "V12", "DBF"

Windows only: "FoxPro", "Access", "Excel" or "SQLServer"
inputData = Pathname of template file or database descriptor expression (if inputType =

"LITERAL”)
password = Relevant only if inputType is "V12".

Description

Creates a new database or modifies an existing one. mReadDBstructure can read a
definition from a string, field or variable ("LITERAL"), from a text file ("TEXT"), from
another V12 database file ("V12"), from a DBF file ("DBF") or from ODBC sources on
Windows.

Example
-- read a definition from a Director field member:
mReadDBStructure(gDB,"LITERAL",field "definition")

-- read a definition from a TEXT file:
mReadDBStructure(gDB,"TEXT", the moviePath & "definition.txt")

-- read a definition from a V12 database file:
mReadDBStructure(gDB,"V12", the moviePath & "definition.v12", "top secret")

-- read a definition from a DBF database file:
mReadDBStructure(gDB,"DBF", the moviePath & "definition.dbf")

See Also
new (DB), mBuild (DB)

mSelDelete (T)
Syntax

mSelDelete(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Deletes all the records of a selection. At the end of the operation, the selection is
empty.

Example
-- the following will delete the current selection:
mSelDelete(gTable)

See Also
mDeleteRecord (T)

 INM V12 Database® for Director - User Manual page 124

mSelect (T)
Syntax

mSelect(whichTable[, from [, #recs]])

Parameters

whichTable = Instance of a V12 Table.
from = The first record to be selected. Optional parameter.
#recs = The number of records to select. Optional parameter.

Description

Triggers the selection process. This is required after calls to mSetIndex,
mSetCriteria and/or mOrderBy. If no record satisfies the search criteria, mSelect
returns an empty selection and sets the current record to an undefined value. If the
from and #recs parameters are omitted, the whole selection is obtained.

Example
-- select all records of the table and sort them by order of catalog number:
mSetIndex(gTable, "CatNumberNdx")

CheckV12Error() –- this handler needs to be defined by you
mSelect(gTable)

CheckV12Error()

-- select all items that cost at least $20,
-- and at most $40:
mSetCriteria(gTable, "price", ">=", 20)

CheckV12Error()
mSetCriteria(gTable, "and", "price", "<=", 40)

CheckV12Error()
mSelect(gTable)

CheckV12Error()

 -- select all items that cost at most $40
 -- and sort them by alphabetic order:
mSetCriteria(gTable, "price", "<=", 40)

CheckV12Error()
mOrderBy(gTable, "name")

CheckV12Error()
mSelect(gTable)

CheckV12Error()

See Also
mSetIndex (T), mSetCriteria (T), mOrderBy (T)

mSelectAll (T)
Syntax

mSelectAll(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Selects all the records of a table. The sorting order for the selection is the same as
the most recently chosen index unless it is preceded by mOrderby. That index is

 INM V12 Database® for Director - User Manual page 125

either explicitly chosen by you (mSetIndex) or automatically chosen by
mSetCriteria and/or mOrderBy.

Example
mOrderby(gTable,"price")

CheckV12Error() –- this handler needs to be defined by you

mSelectAll(gTable)

CheckV12Error()

See Also
mOrderBy (T)

mSelectCount (T)
Syntax

mSelectCount(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Returns the number of records in the selection. If the selection is empty, this
method returns 0.

Example
put mSelectCount(gTable) into field "TotalHits"

See Also
mGetPosition (T)

mSetCriteria (T)
Syntax

mSetCriteria(whichTable [,boolOp], fieldName, operator, value)

Parameters

whichTable = Instance of a V12 Table.
boolOp = "and" or "or".
fieldName = field which value is searched in whichTable.
Operator = "=", "<>", "<", ">", "<=", ">=", "starts", "contains", "wordEquals",
"wordStarts".
value = the value to look for.

Description

Specifies a search criteria. A call or sequence of calls to mSetCriteria must be
followed by a call to mSelect to trigger the search process. If more than one
criterion is used, subsequent criteria must use the Boolean operator “and” or “or”.

Example
-- finds all records where the field "muffin"
-- contains "chocolate". Note that the field muffin is full-indexed.
mSetCriteria(gTable, "muffin", "wordEquals", "chocolate")

-- This instruction combines a full text search
-- in two fields with an ordinary search
mSetCriteria(gTable, "muffin", "wordEquals", "chocolate")

 INM V12 Database® for Director - User Manual page 126

mSetCriteria(gTable, "or", "donut","contains", "chocolate")
mSetCriteria(gTable, "and", "name", "starts", "Shlomo")
mOrderBy(gTable, "price")--selection doesn't apply to full Index
mSelect(gTable)

See Also
mSelect (T), mOrderBy (T), mFind (T)

mSetField (T)
Syntax

mSetField(whichTable, fieldName, value)

Parameters

whichTable = Instance of a V12 Table.
fieldName = Name of the field who's content is modified in the current record in
whichTable.
value = Value to assign to the field fieldName of the current record in whichTable.

Description

Sets the content of field fieldName, of the current record, to value. If value is not of
the same type as fieldName, INM V12 Database casts it to the appropriate type. If
fieldName is a date, the value must be a valid date in V12 Database’s raw format
(YYYY/MM/DD). Calls to mSetField must be preceded by a call to mEditRecord or to
mAddRecord, and must be followed by a call to mUpdateRecord.

Example
-- editing an existing record:
mEditRecord(gTable)

CheckV12Error() –- this handler needs to be defined by you
mSetField(gTable, "description", field "myDescription")

CheckV12Error()
mSetField(gTable, "height", integer(field "height"))

CheckV12Error()
mUpdateRecord(gTable)

CheckV12Error()

-- adding a new record to the table gTable:
mAddRecord(gTable)

CheckV12Error()
mSetField(gTable, "name", "hot dog")

CheckV12Error()
mSetField(gTable, "length", 2)

CheckV12Error()
mSetField(gTable, "price", 1.95)

CheckV12Error()
mUpdateRecord(gTable)

CheckV12Error()

See Also
mGetMedia (T), mSetMedia (T), mGetMedia (T), mEditRecord (T), mUpdateRecord (T)

 INM V12 Database® for Director - User Manual page 127

mSetIndex (T)
Syntax

mSetIndex(whichTable, indexName)

Parameters

whichTable = Instance of a V12 Table.
indexName = Name of the index to set as current index.

Description

Sets the index indexName as the current index.
A call to mSetIndex must be followed by a call to mSelect.
It is useless to call mSetIndex before setting search criteria as mSetCriteria selects
the most appropriate index for a given query.

Example
-- select all records of the table and sort them by order of price:
mSetIndex(gTable, "priceNdx")
mSelect(gTable)

See Also
mSelectAll (T), mOrderBy (T)

mSetMedia (T)
Syntax

mSetMedia(whichTable, fieldName, memberRef)

Parameters

whichTable = Instance of a V12 Table.
fieldName = Name of the field in which media is to be stored in whichTable.
memberRef = Director cast member from which media is retrieved.
Description

Replaces the contents of the field fieldName of the current record with the cast
member memberRef.

Example
-- get the media from the cast member named "Image"
-- in cast 1 and store it in the field "photo", of the current record:

mEditRecord(gTable)

mSetMedia(gTable, "photo", member "Image")

mUpdateRecord(gTable)

-- or

mEditRecord(gTable)

mSetMedia(gTable, "photo", member "Image" of CastLib "internal")

mUpdateRecord(gTable)

See Also
mSetField (T), mGetMedia (T)

 INM V12 Database® for Director - User Manual page 128

mSetPassword (DB)
Syntax

mSetPassword(whichDatabase, oldPassword, newPassword)

Parameters

whichDatabase = Instance of a V12 Database
oldPassword = Current password of whichDatabase.
newPassword = New password of whichDatabase.

Description

Changes the current password (oldPassword) to a new one (newPassword). Either
oldPassword and/or newPassword can be empty strings.

Example
-- change the password "very secret" to "even more secret":
mSetPassword(gDB, "very secret", "even more secret")
-- change from an empty password to "my new password":
mSetPassword(gDB, "", "my new password")

mSetProperty (DB)
Syntax

mSetProperty(whichDatabase, propertyName, value)

Parameters

whichDatabase = Instance of a V12 Database.
propertyName = Custom or predefined property names.
value = Value will vary depending on property being modified. (See Chart Below)

Description

Changes an existing property, or creates a new property. Special rules apply to
properties that start with "string." (see manual)

Property Type Valid values

ProgressIndicator Persistent,
ReadWrite

"None"

"With_Cancel"

"Without_Cancel"

"UserDefined"

ProgressIndicator
.Message

Persistent,
ReadWrite

A string

VirtualCR Persistent,
ReadWrite

Character to treat as
virtual CR (the character
itself, not the ASCII
code)

CharacterSet Persistent,
ReadWrite

"Windows-ANSI"

"Mac-Standard"

"MS-DOS"

Resources non-
persistent,
ReadOnly

None

CurrentDate non-
persistent,

None

 INM V12 Database® for Director - User Manual page 129

ReadOnly

Verbose non-
persistent,
ReadOnly

"on"

"off"

Months Persistent,
ReadWrite

A 12-word string, one for
each month of the year.
Words are separated by
spaces.

ShortMonths Persistent,
ReadWrite

A 12-word string, one for
each month of the year.
Words are separated by
spaces.

Weekdays Persistent,
ReadWrite

A 12-word string, one for
each month of the year.
Words are separated by
spaces.

ShortWeekdays Persistent,
ReadWrite

A 12-word string, one for
each month of the year.
Words are separated by
spaces.

ErrorLog Persistent,
ReadWrite

"on"

"off"

MaxLoggedErrors Persistent,
ReadWrite

"1".."100"

Default: "32"

SharedRWcount non-
persistent,
ReadOnly

None

Dbversion non-
persistent,
ReadOnly

None

String.Language non-
persistent,
ReadOnly

A Search/sort table

String.Language.D
elimiters

non-
persistent,
ReadOnly

A string containing
individual characters to
be treated as delimiters.

String.Language.M
inWordLength

non-
persistent,
ReadOnly

"2".."8"

Default: "4"

String.Language.S
topWords

non-
persistent,
ReadOnly

A string containing
individual words to be
treated as Stop Words.
Words are separated by
spaces.

FlushToDisk ReadWrite "true"

"false"

Example 1

--This line sets the “months” property to a string containing

-- the month names in English

mSetProperty (gDB, "months", "January February March April May June July
August September October November December")

 INM V12 Database® for Director - User Manual page 130

Example 2
-- This line sets the size of the shortest word to be

-- considered for full-indexing to 5 characters

mSetProperty (gDB, "string.MinWordLength", String(5))

Note: See the V12 User Manual for additional information.

Example 3
-- Turn on the FlushToDisk property for one set of write operations:

mSetProperty(gdb, "flushtodisk", "true")

CheckV12Error()

 repeat with i = 1 to 1000

 mAddRecord(gTable)

 CheckV12Error()

 mSetField(gTable, "field1", i)

 CheckV12Error()

 mUpdateRecord(gTable)

 CheckV12Error()

 end repeat

mSetProperty(gdb, "flushtodisk", "false")

CheckV12Error()

See Also
mGetProperty (DB)

mUpdateRecord (T)
Syntax

mUpdateRecord(whichTable)

Parameters

whichTable = Instance of a V12 Table.

Description

Saves modifications of the current record to the database file. A call to
mUpdateRecord must be preceded by a call to mEditRecord or mAddRecord.

Example
mEditRecord(gTable)

CheckV12Error()
mSetField(gTable, "name", field "name")

CheckV12Error()
mUpdateRecord(gTable)

CheckV12Error()

 INM V12 Database® for Director - User Manual page 131

See Also
mEditRecord (T), mSetField (T), mSetMedia (T)

new (DB)
Syntax

new(Xtra "V12DBE", databaseName, openMode, password)

Parameters

databaseName = Name of the database file to create or open
openMode = The mode in which the database will be opened. Valid Values are
"Create", "ReadWrite", "ReadOnly", "Shared ReadWrite" and "Shared ReadOnly". If
openMode is "create", the third parameter is a password and it is stored in the
database file for later reference. If openMode is "ReadOnly", "ReadWrite", "Shared
ReadWrite" or "Shared ReadOnly", the third parameter is a password and it is
checked against the one provided with "Create".
password = The password of your database. If no password is required, pass an
empty string.

Description

Creates a database Xtra instance and returns a reference to it. Usually, that
reference is assigned to a global variable and used throughout the Lingo script to
refer to that database.
If openMode is "create" and new database file is created, table, field and index
definitions must follow. That process must be terminated by a call to mBuild.
If openMode is "ReadOnly", data can be read but not written to the database.
If openMode is "ReadWrite", data can be read and written to the database.
If openMode is "Shared ReadWrite", data can be read and written to the database
across a network by multiple users.

Examples
create a new database named "myBase"
-- and lock it with password "very secret":
set gDB = new(Xtra "V12DBE", "myBase", "Create", "very secret")

-- open an existing database file named "myBase" in read-only mode:
-- (i.e. the database cannot be modified).
set gDB = new(Xtra "V12DBE", "myBase", "ReadOnly", "very secret")

-- open an existing database (FirstDB.v12) and
-- clone it in the directory of the current movie:
set gDB1 = new(Xtra "V12DBE", the moviePath & "FirstDB.v12", "ReadOnly", "top
secret")

new (T)
Syntax

new(Xtra "V12Table", mGetRef(whichDatabase), tableName)

Parameters

whichDatabase = Reference to the V12 Database that contains tableName.
tableName = Name of table to open.

 INM V12 Database® for Director - User Manual page 132

Description

Creates a table Xtra instance and opens the table tableName. New returns a
reference to that Xtra instance, which is normally assigned to a global variable for
later reference.

Example
set gDB = new(Xtra "V12DBE", the moviePath & "myBase", "ReadOnly", "very secret")
set gTable = new(Xtra "V12Table", mGetRef(gDB), "MegaTable")

See Also
new (DB)

mClose (DB)
Syntax

whichDatabase.mClose()

Parameters

whichDatabase = Reference to the V12 Database you are closing

Description

Closes a V12 database Xtra instance. After calling mClose(), the global database
variable that refers to the database should be set to zero.

 Before closing the database instance, all related table instances should be closed.

Examples

-- Close all table instances first
gTable1.mClose()

gTable1 = 0

gTable2.mClose()

gTable2 = 0

-- now close the database and set its reference variable to zero

gDB.mClose()

gBD = 0

mClose (T)
Syntax

whichTable.mClose()

Parameters

whichTable = Reference to the V12 table instance you are closing

Description

Closes a V12 table instance instance. After calling mClose(), the global variable that
refers to the table should be set to zero.

 Before closing a V12 database instance, all related table instances should be closed.

 INM V12 Database® for Director - User Manual page 133

Examples

-- Close all table instances first
gTable1.mClose()

gTable1 = 0

gTable2.mClose()

gTable2 = 0

-- now close the database and set its reference variable to zero

gDB.mClose()

gBD = 0

V12Download (G)
Syntax

 V12Download(url, localFile, password, completionHandler, statusHandler, reference)

Parameters

url = URL of file to download.
E.g.: “http://www.IntegrationNewMedia.com/test.v12”.

localFile = Full pathname of the destination file. If the movie is playing in Director's
authoring mode, as a projector, or as a local shockwave movie (specified by a local
file name), the V12 database is downloaded to the specified location. If the movie is
running as a remote shockwave movie (a shockwave movie specified by its URL),
only the file name is used. The full path, if specified, is ignored and the local file is
created in the Temp folder. In that case, the downloaded database is erased when
the movie is closed. If the local file exists and it is not a V12 database or if its
password is not supplied, V12Download fails and signals an errorcode.
The local file must be closed when V12Download is invoked.

password = Password of the database to download. If localFile exists, password
must also be able to unlock it.

completionHandler = Lingo handler to call when download is complete. If reference
is zero, completionHandler accepts a single parameter: V12Download's error code. If
reference is an actual reference to a parent script or behavior, that reference is also
returned to completionHandler.

statusHandler = Lingo handler to call repeatedly as the download progresses. If
reference is zero, statusHandler accepts a single parameter: the number of bytes
downloaded so far. If reference is an actual reference to a parent script or behavior,
that reference is also returned to completionHandler.

reference = reference of parent script or behavior, or zero if none is used.

Description

Downloads the remote V12 database specified by its url to the local hard drive. If a
local V12 database of the same name already exists it is replaced by the
downloaded file. The Xtra automatically ensures that it is a valid V12 database and
its password is supplied.

 INM V12 Database® for Director - User Manual page 134

V12download resumes and returns control to Director immediately after initiating
the download query. It calls statusHandler as frequently as possible during download
(generally used to display the download status in the user interface) and ends-up
calling completionHandler when the download is completed (generally used to open
the database and start working with it).

Note: This method requires that the Director Networking Xtras be installed. In
Director, check the following: MODIFY->MOVIE->XTRAS... Add Network.
Example

on doDownloadDB

 V12Download("http://www.tagada.com/myDB.V12", the moviePath & "myDB.V12",
"very secret password", "whenDownloadComplete", "asDownloadProgresses", 0)

-- will periodically call asDownloadProgresses

-- will resume execution in whenDownloadComplete

V12CheckError() -- if error occurred (wrong password, non-V12 local file...),
download is aborted

end doDownloadDB

on asDownloadProgresses b

global gDBsize -- already initialized with actual size of file to download

if (gDBsize>0) then put (100*b/gDBsize) & "% complete" into field "Feedback"

end asDownloadProgresses

on whenDownloadComplete err

if (err) then

 alert "Download error " & V12Error(err)

exit

end if

-- start normal use of local V12 database

set gDB = new(Xtra "V12DBE", the moviePath&"myDB.V12", "ReadOnly", "passw")

V12CheckError()

-- etc.

end whenDownloadComplete

See Also
V12DownloadInfo (G)

V12DownloadInfo (G)
Syntax

V12DownloadInfo(url, infoType, completionHandler, reference)

Parameters

url = URL of file to get information on.
E.g.: “http://www.IntegrationNewMedia.com/test.v12”.

infoType = Type of information required. Currently, only file size is supported, #size.
This parameter is therefore necessary.

 INM V12 Database® for Director - User Manual page 135

completionHandler = Lingo handler to call when the required information is received
on the client side. If reference is zero, completionHandler accepts two parameters:
V12DownloadInfo's error code and the required data (in this case, file size). If
reference is an actual reference to a parent script or behavior, that reference is also
returned to completionHandler.

reference = Reference to parent script or behavior, or zero if none is used.

Description

Gets information about url before actually downloading it. At the present time, only
url's file size can be returned, although other attributes (such as creation date,
modification date, etc.) may be supported in a future release. This feature largely
depends upon the HTTP server's ability to provide the required information.

V12downloadInfo resumes and returns control to Director immediately after
initiating the network query. It eventually calls completionHandler when the required
information is received.

Note: This method requires that the Director Networking Xtras be installed. Go to
Director and check the following: MODIFY->MOVIE->XTRAS... Add Network.

Example
on getRemoteDBsize

V12DownloadInfo("http://www.tagada.com/myDB.V12", #size, "whenInfoReceived", 0)

-- will resume execution in whenInfoReceived

end GetRemoteDBsize

on whenInfoReceived err, s -- called back from getRemoteDBsize

global gDBsize

if (err) then

 alert "Network error " & V12Error(err) & ". Please make sure that" & "your
network connection is up and that the requested URL exists."

exit

end if

gDBsize = s

-- can download file now with V12Dwnload

end whenInfoReceived

See Also
V12Download (G)

V12Error (G)
Syntax

V12Error([errorNumber])

Parameters

errorNumber = Error number of the error to retrieve. Optional parameter.

 INM V12 Database® for Director - User Manual page 136

Description

If you call V12Error without the errorNumber parameter and right after calling a
V12 method, it returns an accurate and contextual description of the result. When
called with the errorNumber parameter, a generic explanation of that error code is
provided. V12Error is global method. It is an alternate syntax to mError.

Example
set errMsg = V12Error()
set errMsg = V12Error(-30000)

See Also
V12Status (G)

V12Status (G)
Syntax

 V12Status()

Parameters

 none

Description

Returns the error code of the last INM V12 Database method called. An error code of
0 means no error occurred. A positive code signals a warning. A negative code
signals an error. Call V12Error to get a complete explanation of the problem(s) that
occurred in the last method.

Example
mSetCriteria(gTable,"name","=","buzzlightyear")
if V12Status() then Alert V12Error()

See Also
V12Error (G)

mXtraVersion (S)
Syntax

mXtraVersion(xtra "V12DBE")

Parameters

None

Description

Returns the version of the INM V12 Database xtra in Director's Xtra folder. This
method only works for INM V12 Database and it must be invoked as in the example
below.

Example
put mXtraVersion(xtra "V12DBE")

-- "V12,3.4,Multi-User"

 INM V12 Database® for Director - User Manual page 137

 INM V12 Database® for Director - User Manual page 138

INM V12 Database Error Codes

-1: Selection empty

-2: Not initialized
properly

-3: Internal error

-4: Bad global area

-5: Disk read error

-6: Disk Write Error

-7: Header Read Error

-8: Header Write Error

-9: The file does not exist
or is already open

-10: Not closed properly

-11: No Space

-12: File already exists

-13: Not created properly

-14: Incomplete Data

-15: Bad Header

-16: Bad Node

-17: Bad Split Entry

-18: File Not Open

-19: File Not Closed

-20: No Root Node

-21: No Current

-22: Bad Index Number

-23: Bad data length

-24: Bad reference type

-25: Bad field reference

-26: Bad field pointer

-27: Bad field handle

-28: Bad field type

-29: Bad Sequence type

-30: Bad key length

-31: Bad key type

-32: Bad Duplicate type

-33: Buffer overflow

-34: Bad file specification

-35: Bad minimum
extend

-36: Over demo limit

-37: File seek

-38: Log record number
not used

-39: Double lock current
info

-40: Double unlock
current info

-41: Entry has bad data
length

-42: Bad segment
number

-44: Memory allocation
error

-45: Data checksum
error

-46: Data definition
checksum error

-47: Unable to open
database. The maximum
of users as been reached

-48: Bad build key

-49: Duplicate key

-50: Invalid number of
buffers

-51: Key too big

-52: Too many segments

-53: Bad lock current info

-81: Bad load shared
library

-82: Function not loaded

-83: Function not found

-101: File locked

-102: File mode error

-103: Not enough
memory or not multiuser
OS

-104: Not locked

-105: Current record
locked by other user

-106: Locked by self

-107: Reset error

-108: Clear schema error

-109: Bad clear byte

-110: Bad set byte

-111: Current Record
already locked

-201: Bad select position
number

-202: Bad field number

-203: Bad select type

-204: Bad select Op

-205: User abort

-206: Bad key number

-207: Different select
types

-520: Invalid open mode

-530: Invalid parameter

-540: Bad edit mode

-550: Unknown error

-560: Invalid identifier.
Valid identifiers must
have at least one
character

-570: Invalid identifier.
First character must be
alphabetic

-580: Invalid
character(s) in identifier

-590: Invalid identifier
length. Valid identifiers
have at most 32
characters

-600: Table '%s' does
not exist

-610: Field '%s' does not
exist in table '%s'

-620: Field '%s' of type
'%s' of table '%s' is of a
type that cannot be full-
indexed

-630: Invalid field type

-640: Invalid parameter.
The parameter must be a
valid V12base component

-650: Invalid parameter.
The parameter must be a
valid V12table
component

-660: The database used
by the table is not open

-1010: Bad table
instance. Check current
instance

-1030: Too many records

-1050: Invalid object

-1060: Invalid database
structure

-1070: Memory allocation
error

-1080: Field does not
exist

-1090: Unable to read
structure from database

-1100: Structure not
initialized properly

 INM V12 Database® for Director - User Manual page 139

-1110: Corrupted DBF
file

-1120: Field does not
exist. Please contact tech
support

-1130: Cannot modify
table

-1140: Invalid database
structure. Please contact
tech support

-1150: Invalid identifier

-1160: Cannot create
text file. Maybe the file
already exists

-1170: Cannot create
DBF file. Maybe the file
already exists

-1180: Cannot create
DBT file. Maybe the file
already exists

-1250: Field does not
exist

-1260: Invalid field data.
Please contact tech
support

-1270: Invalid field type

-1280: Invalid field size
in table

-1290: No table defined

-1330: Unable to set
password

-1370: Duplicate key

-1380: Unable to create
or modify a database on
a locked file/volume

-1400: Database not
initialized properly.
Please contact tech
support

-1410: Unable to pack
database. File name
already exists

-1420: Table already in
use. Set all instances of a
table to zero

-1430: MOA error in V12-
DBE. Please contact Tech
Support

-1440: Cannot set a void
value

-1460: Cannot bind
multiple fields with the
same member name

-1480: Item not found in
table

-1500: The current
record is locked by
another user

-1530: Cannot open
database. This database
structure is not
supported by the current
version of V12

-1540: One or more
users opened this V12
database in Shared
Read/Write mode. All
Read-Only operations are
suspended until the
Read/Write client(s) close
the database

-1810: Low-level engine
not initialized

-1820: Wrong number of
parameters

-1830: Invalid file name

-1840: Invalid open
mode. Please consult the
manual to get a
description of the
different open mode

-1841: '%s' is an invalid
open mode. Please
consult the manual to get
a description of the
different open mode

-1850: V12-DBE instance
was not opened properly

-1860: Corrupted
variables. Reboot the
computer

-1870: Invalid pathname

-1880: File already exists

-1890: Cannot create
database file. File already
exists and is open

-1900: Error while
writing header files

-1910: File does not exist
or is already open

-1920: Not enough disk
space

-1930: Wrong password

-1940: Cannot get
password. Please contact
tech support

-1960: Invalid password.
Check if the password is
not VOID

-1980: Cannot delete
database file. Make sure
the database file is not
open

-2210: Invalid object

-2410: Unable to edit
database structure.
Database must be
opened in ReadWrite
mode

-2810: Unable to update
database structure.
Database must be
opened in ReadWrite
mode

-2820: Not in database
structure edition mode.
Call mEditDBstructure
before modifying
database structure

-3010: Wrong number of
parameters

-3020: Invalid pathname

-3030: Empty pathname

-3210: Wrong number of
parameters

-3220: Invalid descriptor
type. Please consult the
manual to get a
description of the
different descriptor type

-3230: Invalid database
descriptor. Check
descriptor's syntax

-3240: Unable to
locate/decode password

-3250: Unable to read
database structure

-3260: Field '%s' of table
'%s' has an invalid index
order. Valid orders are
Ascending and
Descending

-3270: Missing '(*' or '*)'

-3280: Unable to open
TEXT file. Make sure the
file is in the specified
path and not used by
another application

-3290: Unable to open
V12 file. Make sure the
file is in the specified
path and not used by
another application

-3300: Unable to open
DBF file. Make sure the
file is in the specified
path and not used by
another application

-3310: Unable to modify
database structure. Call
mEditDBstructure first

-3320: Empty file name

 INM V12 Database® for Director - User Manual page 140

-3330: Missing [END] tag
in database descriptor

-3340: Missing field
name in table '%s'

-3350: Field '%s' of type
Media cannot be indexed

-3360: Missing [TABLE]
tag in database
descriptor

-3370: Missing table
name in database
descriptor

-3380: Invalid field name
in table '%s'

-3390: Field '%s' already
exists in table '%s'

-3400: Field '%s' of type
'%s' of table '%s' is of a
type that cannot be full-
indexed

-3410: Invalid field type
in table '%s'

-3420: Maximum number
of indexes reached. The
maximum is %ld

-3430: Index '%s'
already exists in table
'%s'

-3440: Invalid index type
in index '%s' of table
'%s'

-3450: Missing field
name for index '%s' in
table '%s'

-3460: Field '%s' set in
index '%s' of table '%s'
does not exist

-3470: Missing order for
index '%s' of table '%s'.
Valid orders are
Ascending and
Descending

-3480: Invalid field
name. '%s' is a reserved
word

-3490: Field '%s' of table
'%s' has an invalid field
type

-3500: Invalid descriptor
type. Please consult the
manual to get a
description of the
different descriptor type

-3510: Empty database
descriptor

-3520: Table '%s'
already exists

-3530: Field '%s' does
not exist in table '%s'

-3540: Unable to edit
database structure.
Database must be
opened in Create or
ReadWrite mode

-3550: Not in database
structure edition mode.
Call mEditDBstructure
first

-3570: Invalid DBF file
format

-3580: Buffer size must
be omitted for fields of
type '%s'

-3590: Invalid field size
in table '%s'

-3600: First character of
table '%s' must be
alphabetic

-3610: Unable to modify
database structure.
Database must be
opened in Create or
ReadWrite mode

-3630: Invalid table
identifier. Verify database
descriptor

-3640: %s

-3810: Wrong number of
parameters

-3820: Invalid table
name

-3830: Table '%s'
already exists

-3840: Unable to create
new table. Call
mEditDBstructure before
creating new tables

-3850: Empty table name

-3860: Unable to edit
database structure. Open
database in Create or
ReadWrite mode

-3870: Table '%s'
contains invalid
characters

-3880: First character of
table '%s' must be
alphabetic

-3890: Table '%s' has an
invalid identifier length.
Valid identifiers have at
most 32 characters

-3900: Cannot create
table '%s'. The maximum

number of table(s) is
'%ld'

-4010: Wrong number of
parameters

-4020: Invalid table
name

-4030: Invalid field name

-4040: Invalid field type

-4050: Invalid buffer size

-4060: Table '%s' does
not exist

-4070: Database
structure not created
properly

-4080: Field '%s' already
exists in table '%s'

-4090: Unable to create
new field. Call
mEditDBstructure and
mCreateTable before
creating new fields

-4100: Empty table name

-4110: Empty field name

-4120: Invalid buffer
size. Buffer size must be
greater than zero

-4140: Buffer size not
required for fields of type
'%s'

-4160: Unable to use
'%s' as a field name. This
is a reserved word

-4170: Invalid index
type. Valid index types
are indexed and full-
indexed

-4180: Unable to edit
structure of table '%s'.
Table already built

-4190: Unable to edit
database structure. Open
database in Create or
ReadWrite mode

-4200: Field '%s' of table
'%s' contains invalid
characters

-4210: First character of
field '%s' in table '%s'
must be alphabetic

-4220: Field '%s' of table
'%s' has an invalid
identifier length. Valid
identifiers have at most
32 characters

-4230: Field '%s' of table
'%s' cannot be indexed.
It must have at most 29
characters to be indexed

 INM V12 Database® for Director - User Manual page 141

-4240: Cannot create
field '%s'. The maximum
number of field(s) is
'%ld'

-4510: Wrong number of
parameters

-4520: Table '%s' does
not exist

-4530: Field '%s' does
not exist in table '%s'

-4540: Database
structure not created
properly

-4550: Invalid table
name

-4560: Invalid field name

-4570: Invalid index
name

-4580: Invalid index
type. Valid types are
Duplicate and Unique

-4590: Invalid index
order. Valid orders are
Ascending and
Descending

-4591: '%s' is an invalid
index order. Valid orders
are Ascending and
Descending

-4600: Unable to create
index. Call
mEditDBstructure, then
create new tables and
new fields before creating
new indexes

-4610: Maximum number
of indexes reached. The
maximum is %ld

-4620: Empty table name

-4630: Empty index
name

-4640: Empty field name

-4650: Empty index type.
Valid types are Unique
and Duplicate

-4660: Empty index
order. Valid orders are
Ascending and
Descending

-4670: Field '%s' already
used in index '%s' of
table '%s'

-4680: Unable to edit
database structure.
Database must be
opened in Create or
ReadWrite mode

-4690: Field '%s' of type
Media specified in table
'%s' cannot be indexed

-4700: Unable to edit
structure of table '%s'.
Table already built

-4710: Cannot create
compound index '%s'.
Limited to '%ld' field(s)
per index

-4910: Unable to delete
table. Database must be
opened in Create or
ReadWrite mode

-4920: Unable to edit
database structure. Call
mEditDBstructure first

-4930: Table '%s' does
not exist

-4940: Unable to open
table

-4950: Empty table name

-4960: Table already in
use. Set all instances of a
table to zero before
deleting it

-4970: Cannot delete
table. Database must be
opened in Create or
ReadWrite mode

-5110: Database
structure not created
properly

-5120: Missing index.
Table '%s' must contain
at least one index

-5130: Unable to edit
database structure

-5140: Unable to modify
database structure. Use
mEditDBStructure and
mUpdateDBStructure to
change a database
structure

-5150: Unable to build
database. Database must
be opened in Create or
ReadWrite mode

-5160: Unable to update
database structure. At
least one index per table
is required

-5170: Unable to build
database structure. At
least one index per table
is required

-5180: Invalid build
option. Please consult the

manual to get a
description of the

-5410: Wrong number of
parameters

-5420: Invalid password.
Password should not
exceed 32 characters

-5430: Invalid
character(s) in password

-5440: Wrong password.
'%s' does not match with
the current password

-5450: Unable to write to
database. Database must
be opened in ReadWrite
mode

-5610: Wrong number of
parameters

-5620: Database
structure not created
properly

-5630: Invalid output
format. Please consult
the manual to get a
description of the
different output formats

-5640: Table '%s' does
not exist

-5650: Field '%s' does
not exist in table '%s'

-5660: Can only get size
information on fields of
type Media or String

-5670: Invalid table
name

-5680: Invalid field name

-5690: Empty table name

-5700: Empty field name

-5810: Property does not
exist

-5820: Invalid property
value. Please consult the
manual to get a
description of the
property values

-5830: Missing
apostrophe. A sub-string
was left open-ended

-5840: Unable to write to
database. Database must
be opened in ReadWrite
mode

-5850: Cannot delete or
set the property value to
blank

-5860: Cannot modify
the property value

 INM V12 Database® for Director - User Manual page 142

-5870: Cannot change
verbose value. Invalid
verbose type

-5880: Cannot set
weekdays. Invalid
number of days.

-5890: Cannot set
months. Invalid number
of months

-5900: Cannot modify
property. The string type
associated does not exist

-5910: Cannot modify
property. The string type
associated is already
used

-5920: Cannot modify
MinWordLength property.
This property must be
greater than 0 and
smaller than 100

-5930: Cannot define
new string type. String
type names cannot
contains periods (dots)

-5940: Cannot set
property name. Too
many characters

-5950: Cannot set new
string type. The
maximum number of
custom string types is
reached

-5960: Invalid log value.
Must be set to 'on' or 'off'

-5970: Invalid maximum
value. Must be a number
between 1 and 1000

-5980: Invalid progress
indicator value

-5990: Invalid Character
Set value. Must be: Ms-
Dos, Mac-Standard,
Windows-ANSI

-6000: Invalid time
stamp value

-6010: Property does not
exist

-6110: Memory allocation
error

-6120: Wrong number of
parameters

-6130: V12base instance
not properly opened

-6140: Invalid table
name

-6150: Missing table
definition in database. At

least one table must be
defined in a V12
database

-6160: No such table in
database

-6170: Failed to open
table. Database file not
open.

-6180: Table was defined
but not written to
database

-6190: Table not found

-6200: Invalid object

-6210: Empty table name

-6220: Cannot create
table instance. Only one
table instance can be
created.

-6230: The V12 database
you are trying to access
has been closed.

-6240: The V12 table you
are trying to access has
been closed."

-6410: Wrong number of
parameters

-6420: Invalid export
type

-6430: Invalid pathname

-6440: Invalid field
delimiter

-6450: Invalid record
delimiter

-6460: Invalid field name

-6470: Field '%s' does
not exist

-6480: Invalid record
delimiter length

-6490: Invalid field
delimiter length

-6810: Wrong number of
parameters

-6820: Wrong number of
parameters

-6830: Wrong number of
parameters

-6840: Parameter #2
should be either a valid
pathname or a valid
source type

-6850: Invalid pathname

-6860: Invalid record
delimiter

-6870: Invalid field
delimiter

-6880: Invalid import
type. Please consult the
manual to get a
description of the
different import type

-6890: Import error

-6900: Unable to open
DBF file. Check
pathname

-6910: Unable to open
TEXT file. Check
pathname

-6920: Empty file name

-6931: Field %ld does
not exist

-6940: Empty table name

-6950: Database not
properly initialized

-6970: Invalid DBF file
format

-6980: Field and record
delimiters must be
different

-6990: Unable to import
data. Database must be
opened in ReadWrite
mode

-7050: Cannot use line
feed (LF) as field
delimiter

-7070: Duplicate key
occurred at line '%ld'

-7090: Cannot delete
record of line '%ld'

-7100: %s

-7110: Data of field '%s',
record '%ld', is longer
than the '%ld' allocated
for it and was truncated

-8410: Index '%s' does
not exist

-8420: Invalid index
name

-8430: Empty index
name

-8610: Wrong number of
parameters

-8620: Invalid field name

-8630: Invalid operator

-8640: Invalid field type

-8650: Invalid operator

-8660: Invalid operator

-8670: Field does not
exist

-8680: No memory
available

 INM V12 Database® for Director - User Manual page 143

-8690: Empty field name

-8700: Operator not
allowed for this type of
field

-8710: Field '%s' is not
full-indexed

-8720: Field '%s' does
not exist

-8730: Word length is
smaller than the
minimum of indexed
words (%ld)

-8740: Cannot specify
boolean operator in first
criteria

-8750: String must have
at least one character

-8760: Maximum number
of criteria reached

-9010: Wrong number of
parameters

-9020: Field '%s' does
not exist

-9030: Invalid index
order

-9050: Empty index
name

-9410: Wrong number of
parameters

-9430: Outside of
selection range

-9440: Invalid
parameter(s). Please
consult the manual to get
a description of the
different parameters

-9450: Cannot limit
selection. Cannot used
WordEquals or
WordStarts twice

-9610: Unable to delete
selection. Database must
be opened in ReadWrite
mode

-9620: Unable to delete
record #%ld. This record
is locked by another user

-9810: Invalid result

-9820: Selection empty

-10010: Field does not
exist

-10020: Invalid field
name

-10030: Empty field
name

-10040: Field '%s' does
not exist

-10060: Wrong number
of parameters

-10410: Invalid value.
Please contact tech
support

-10440: Parameter
incompatible with type of
destination field

-10450: Invalid field
name

-10460: Unable to
modify data. Call
mEditRecord first

-10470: Media exceeds
buffer size declared upon
database creation

-10480: Empty field
name

-10490: '%s' is an invalid
date

-10500: Field '%s' does
not exist

-10510: Media of field
'%s' cannot be saved.
The media is too big.

-10810: Wrong number
of parameters

-10820: Empty media
field

-10830: Empty field
name

-10840: Field '%s' does
not exist

-10850: CastLib %ld
does not exist

-10860: Unable to find
member '%s'

-10870: The parameter
must be a (cast) member

-10890: Cannot
download media file

-11010: Wrong number
of parameters

-11020: Cast member
empty

-11030: Invalid field
name

-11040: Empty field
name

-11050: Empty media
field

-11060: Field '%s' does
not exist

-11070: Unable to
modify data. Call
mEditRecord first

-11080: Unable to import
this kind of media

-11710: Unable to edit
record. Database must
be opened in ReadWrite
mode

-11910: Cannot write
data. Call mEditRecord
first

-11920: Duplicate key
'%s'. Check the following
field(s): %s

-12130: Unable to delete
record. Database must
be opened in ReadWrite
mode

-12710: Wrong number
of parameters

-12730: Cast '%s' does
not exist

-12731: Cast %ld does
not exist

-12740: Cast member
%s does not exist

-12741: Cast member
%ld does not exist

-12750: Invalid member
identifier

-13010: Wrong number
of parameters

-13025: Field '%s' is not
bound. Call mBindField
first

-13030: Cast '%s' does
not exist

-13035: Cast %ld does
not exist

-13045: Cast member
%s %ld does not exist

-13050: Field '%s' does
not exist

-13410: Wrong number
of parameters

-13420: Invalid member
identifier

-13610: Wrong number
of parameters

-13630: Unable to find
Field '%s'

-13640: Cast '%s' does
not exist

-13650: Cast %ld does
not exist

-13660: Cast member
'%s' does not exist

-13670: Cast member
%ld does not exist

 INM V12 Database® for Director - User Manual page 144

-13680: Unable to
update record. Database
must be opened in
ReadWrite mode

-14010: Wrong number
of parameters

-14020: Field '%s' does
not exist

-14030: Cast '%s' does
not exist

-14040: Cast member
%s does not exist

-14041: Cast member
%ld does not exist

-14050: Wrong number
of parameters. Please
consult the manual

-14060: You must specify
a CastLib

-14070: Cast member
'%s' not found

-14080: Invalid CastLib
identifier

-14410: Wrong number
of parameters

-14420: Field '%s' does
not exist

-14430: Invalid
parameter. Third
parameter cannot be of
type String

-14440: Invalid member
identifier

-14450: Invalid
parameter 3, attempt to
get the binding type

-14460: Cannot bind
field. The member '%ld'
is already bound

-14810: Wrong number
of parameters

-14850: Database
structure not created
properly

-14860: Invalid table
name

-14870: Invalid field
name

-14890: Field '%s' does
not exist in table '%s'

-14910: Unable to create
full-index. Call
mEditDBstructure first

-14920: Empty table
name

-14930: Empty field
name

-14940: Field '%s' of
type '%s' specified in
table '%s' cannot be full-
indexed

-14950: Unable to edit
database structure.
Database must be
opened in Create or
ReadWrite mode

-14960: Unable to edit
structure of table '%s'.
Table already built

-15210: Conflicting
Add/Edit mode. Call
mUpdateRecord before
creating a new record

-15230: Unable to add
record. Database must
be opened in ReadWrite
mode

-15610: Wrong number
of parameters

-15620: Only fields type
Integer, Float, and Date
can be formatted

-15630: Invalid data
format

-15650: Missing
apostrophe. A sub-string
was left open-ended

-15660: Too may periods
(.) in format specifier. At
most one period is
allowed

-15670: Empty field
name

-15680: Cannot set field
format. 200 is the
maximum format length

-15810: Wrong number
of parameters

-15820: Invalid output
format. Please consult
the manual to get a
description of the
different output formats

-15830: Error number
required

-16010: Wrong number
of parameters

-16020: Invalid
pathname

-16030: Empty
pathname

-16040: Invalid new
pathname

-16050: Empty new
pathname

-16410: Wrong number
of parameters

-16420: Invalid table
name

-16430: Empty table
name

-16440: Invalid old field
name

-16450: Empty old field
name

-16460: Cannot rename
field. Database must be
opened in Create or
ReadWrite mode

-16470: Table '%s' does
not exist

-16480: Field '%s' does
not exist in table '%s'

-16490: Unable to
rename field '%s' of table
'%s'. Table already built

-16500: Unable to
modify database
structure. Call
mEditDBstructure first

-16510: Cannot rename
field. Field '%s' already
exist in table '%s'

-16810: Field '%s' does
not exist

-16820: Invalid output
format. Please consult
the manual to get a
description of the
different output formats

-16830: Invalid start
position. Must be a
number greater than
zero (0) and smaller than
the number of records in
the selection

-16850: Invalid field
delimiter

-16860: Invalid record
delimiter

-16870: Invalid field
name

-17210: Invalid merge
type

-17220: Invalid merge
option

-17230: Cannot merge
data. Data transfer not
complete yet

-17240: Cannot merge
data. Data was not
properly download

 INM V12 Database® for Director - User Manual page 145

-17410: Invalid output
format. Check manual for
possible output formats

-17420: Field '%s' does
not exist

-17430: Field '%s' of
type Media cannot be
retrieved with
mGetUnique

-17440: Invalid field
name

-17810: Wrong number
of parameters

-17820: No record found

-17860: Invalid search
option. Check manual for
possible search options

-18010: Wrong number
of parameters

-18020: Cannot
download V12 file:
Download not supported

-18030: Cannot
download V12 file.
Cannot initialize network
services

-18040: Cannot
download V12 file. Check
URL or network
connection

-18050: The downloaded
file was not a valid V12
database, or you did not
provide the right
password. It was deleted

-18060: Cannot
overwrite local file.
Wrong password or
invalid V12 database

 INM V12 Database® for Director - User Manual page 146

Warnings

1390: File is open in ReadOnly mode. Check if
file/volume is read-only

1450: Cannot update bound fields. Not in ReadWrite
mode

1470: No field match. Data was not copied

1510: File is open in ReadOnly mode. Cannot open in
Shared ReadOnly mode

1520: File is open in ReadWrite mode. Cannot open
in Shared ReadWrite mode

1550: File is open in Shared ReadOnly mode. Check
if file/volume is read-only

1950: Old database format. Opened it in ReadOnly
mode

1970: This database is still in demo mode. To
legalize it, please open it once in ReadWrite mode

2420: Already in database structure edition mode.
Call mUpdateDBstructure before calling
mEditDBstructure again

3620: Unsupported dbf field type

4130: Fields of type media cannot be indexed

4150: Fields of type '%s' cannot be full-indexed

6500: Unable to export binary field type. Field '%s'
not exported in DBF file

6510: Field '%s' has been truncated to ten
characters

6520: Selection empty. No current record

6530: Field '%s' of type Media cannot be export

6930: Field '%s' does not exist

6960: '%s' is an invalid date. Default date has been
set

7000: Field '%s' at line '%ld' is longer than the '%ld'
allocated for it and was truncated

7010: Too many field delimiters at line '%ld'. The
extra data was ignored

7020: Missing field delimiter(s) at line '%ld'. Some
fields were set to default data

7030: Field '%s' is defined of type media in your
database. Use mSetMedia to store data in it

7040: The field '%ld' of your definition has been
truncated. Exceed the maximum number of
characters for a field (32)

7060: DBF field '%s' of type '%s' does not match the
V12 type '%s'

7080: Unsupported dbf field type7210: Selection
empty. No current record

7410: Selection empty. No current record

7610: Unable to select records beyond end of
selection. %ld record(s) in selection

7620: Selection empty. No current record

7810: Unable to select records preceding first
record of selection

7820: Selection empty. No current record

9420: Selection empty. No current record

 INM V12 Database – Custom Strings and Character Sets 147

Appendix 1: Database Creation and Data Importing Rules

Following are examples of how to work with existing databases from a variety of
vendors, in order to use them in INM V12 Database.

As well, we have outlined standard Rules that can be referenced when you are
trying to import the structures or the data from a specific database format.

The basic steps for converting a database from another database format into V12
are as follows:

8

9

10

Determine and/or Import the structure of the original database(s) into a
readable format (using mReadDBStructure).

Create the V12 database and indexes, based on the structure of the
original database(s).

Import the data from the original database(s) into the V12 databases you
created in Step 2 (using mImport).

Below are examples of how to read the database structure and import files from the
following text or database formats, as well as rules for each:

Database Format Page

Text Files ...147

Literals ..149

Lingo Lists or Property Lists ..150

V12 DBE ..151

DBF (Database Format)..152

Microsoft FoxPro..156

Microsoft Access..158

Microsoft Excel ..159

Microsoft SQL Server ...161

Text Files

mReadDBstructure from a Text File

To read a database descriptor into INM V12 Database, use the following Lingo
statement:

mReadDBStructure(gDB, "TEXT", File_Pathname)

 INM V12 Database – Custom Strings and Character Sets 148

Assuming that the name of the database descriptor's filename is "Def.txt", the
following Lingo code creates a new INM V12 Database file named "Catalog.V12" and
structures it as described in "Def.txt".

on CreateDatabase

gDB = New(Xtra "V12dbe", the MoviePath &
"Catalog.V12", "create", "top secret")

 CheckV12Error()

 mReadDBStructure(gDB, "TEXT", the MoviePath & "Def.txt")

 CheckV12Error()

 mBuild(gDB)

 CheckV12Error()

 gDB.mClose()

 gDB=0

end CreateDatabase

Importing a Text File

The imported text file must begin with a field descriptor line. A field descriptor is a
sample record that contains the names of the fields in which subsequent rows of
data must be formatted (see Field descriptors in Step 2: Prepare the Data). The
field names used in the field descriptor line must match those supplied to the
mReadStructure method. However, these fields can be listed in any order. Some of
them can even be omitted.

Syntax:
mImport(gTable, "TEXT", FileName [, Options])

where FileName is the pathname of the text file to import, and Options is an
optional Lingo Property list such as:

 [#FieldDelimiter:TAB, #RecordDelimiter:RETURN,
#CharacterSet:"Windows-ANSI", #VirtualCR:NumToChar(11),
#TextQualifier:QUOTE]

Options may contain some or all of the properties below, or can even be empty:

• #FieldDelimiter determines which character is used to delimit
fields in the text file. The default character is TAB (ASCII #9).

• #RecordDelimiter determines which character is used to delimit
records in the text file. The default character is RETURN (ASCII
#13). If the Text file contains Carriage Returns (ASCII #13)
followed by Line Feeds (ASCII #10) as records delimiters, Line
Feeds are automatically ignored.

• #CharacterSet is one of "Mac-Standard", "Windows-ANSI" or
"MS-DOS". It determines which character set the Text file is
encoded in. Usually, Text files exported on MacOS are encoded in
the Mac-Standard character set, and Text files exported on
Windows are encoded in the Windows-ANSI character set. See
Character Sets in Step 2: Prepare the Data. The default character
set is the one defined by the CharacterSet property (see
CharacterSet in Properties of Databases).

 INM V12 Database – Custom Strings and Character Sets 149

• #VirtualCR determines which character is used as a Virtual
Carriage Return, and thus must be converted to ASCII #13 after
importing (see Virtual carriage returns in Step 2: Prepare the
Data). The default character is the one defined by the VirtualCR
property, which is usually ASCII #11 (see VirtualCR in Properties
of Databases).

• #TextQualifier determines which character is used to begin and
end each Text field. Those qualifiers delimit the field so to allow it
to contain special characters, including those used as field and
record delimiters. Text qualifiers are removed after importing the
file. See Text qualifiers in Step 2: Prepare the Data. The default
text qualifier is "⏐"

For example, this instruction imports the Text file "myTextData.txt" located in the
same folder as the current movie into gTable with all the default options (field
delimiter = TAB, records delimiter = RETURN, Character set = the current operating
system's, virtual CR = ASCII #11, Text Qualifier = "⏐").

mImport(gTable, "TEXT", the MoviePath & "myTextData.txt")

This example imports the Text file "myFile.txt" where "%" is used as a field
delimiter and "\" as a record delimiter.

mImport(gTable, "TEXT", the MoviePath & "myTextData.txt",
[#FieldDelimiter:"%", #RecordDelimiter:"\"])

Literals

mReadDBstructure from a Literal

A literal is either a Director member of type Field or a Lingo variable that actually
contains the database descriptor (as opposed to containing the pathname of the
descriptor Text file). Building a database from a literal description is very similar to
the building it from a text file. The literal must contain the database descriptor as
defined in Database descriptor. The Lingo script to build the database is:

mReadDBStructure(gDB, "LITERAL", Variable_or_Field_Name)

For example, assume that the Director member of type Field and named
"descriptor" contains a database descriptor; this example creates an INM V12
Database file compliant to that description.

on CreateDatabase

 gDB = New(Xtra "V12dbe", the MoviePath&"Catalog.V12",
"create", "top secret")

 CheckV12Error()

 mReadDBStructure(gDB, "LITERAL", field "Descriptor")

 CheckV12Error()

 mBuild(gDB)

 CheckV12Error()

 gDB.mClose()

 INM V12 Database – Custom Strings and Character Sets 150

 gDB=0

end CreateDatabase

Import from a Literal

Sometimes, you need to process data with Lingo before importing it into a INM V12
Database table. A convenient place to store such data is a Director member of type
Field. mImport allows you to import the content of such a field through this syntax:

mImport(gTable, "LITERAL", DirMemberName_or_variable, [,
Options])

where DirMemberName_or_variable is an expression of type Text, as in:

Field "myData"

the text of member "yada yada"

"Field-1,Field-2,Field-3" &RETURN& "12,14,16"&RETURN& "54,12,89"

and Options is a property list identical to the one used for importing Text files (see
Importing a Text File above).

Following is an example of a Director field containing data to split into INM V12
Database fields and records (assume the name of the field is "Discounts"):

Level-1,Level-2,Level-3

12,14,16

45,58,72

33,56,68

224,301,451

This instruction imports the above Director field to gTable:

mImport(gTable, "LITERAL", field "Discounts", ",", RETURN)

Lingo Lists or Property Lists

Importing from a Lingo List or Property List

Lingo list, or a Lingo Property List can easily be imported to V12 tables through
mImport. This is very convenient for the conversion of projects that use Lingo lists
to manage data and that have become difficult to debug and maintain.

It is also convenient to import XML documents into V12 tables.

Syntax:
mImport(gTable, "List", theList)

mImport(gTable, "PropertyList", thePropertyList)

where:

• theList is a Lingo list of lists. The first element is a list containing
the names of the V12 fields to which subsequent items must be

 INM V12 Database – Custom Strings and Character Sets 151

imported, in the right order. If the first item of the list contains
field names that are not present in the current V12 table, the
corresponding data is ignored.

• thePropertyList is a Lingo list of property lists, where properties
have the same names as the V12 fields into which the
corresponding data must be imported.

Examples of valid Lingo lists:

[["LastName", "FirstName", "Age"], ["Cartman", "Eric", 8],
["Testaburger", "Wendy", 9], ["Einstein", "Albert", 75]]

[["CatalogNumber"], [8724], [9825], [1745]]

Examples of valid Property lists:

[[#LastName:"Cartman", #FirstName:"Eric", #Age:8],

 [#FirstName:"Wendy", #LastName:"Testaburger", #Age:9]

 [#LastName:"Einstein", #FirstName:"Albert"]]

[[#CatalogNumber:8724], [#CatalogNumber:9825],
[#CatalogNumber:1745]]

V12 DBE files

mReadDBstructure from INM V12 Database

Any INM V12 Database file can be used as a template for the creation of a new INM
V12 Database file, provided you know the password to unlock it. The syntax is as
follows:

mReadDBStructure(gDB, "V12", FileName, Password)

This example uses the database "Catalog.V12" as a template for a new database
named "Specials.V12".

on CreateDatabase

gDB = New(Xtra "V12dbe", the MoviePath&"Specials.V12",
"create", "MyNewPassword")

 CheckV12Error()

mReadDBStructure(gDB, "V12", the
MoviePath&"Catalog.V12", "top secret")

 CheckV12Error()

 mBuild(gDB)

 CheckV12Error()

 gDB.mClose()

 gDB=0

end CreateDatabase

mReadDBStructure reads the structure of a INM V12 Database file, not its content.
To import the content of a INM V12 Database file, see Importing from another INM
V12 Database and Add records to a database.

 INM V12 Database – Custom Strings and Character Sets 152

Importing from another INM V12 Database file

Data can be imported from one V12 table into another. The name of the source
table need not necessarily match the name of the destination table. However, field
names must match. Non-matching field names are ignored. If the source and
destination tables have different indexes, the destination table's indexes are used.

Syntax:
mImport(gTable, "V12", FileName, password, TableName)

where FileName is the pathname of the V12 database to import from, password is
the password to unlock it and TableName is the name of the table to import.

Example:
mImport(gTable, "V12", the MoviePath & "Catalog.V12", "top

secret", "articles")

If two fields have the same name but are of different types when importing data
from a INM V12 Database file, mImport tries to typecast the data fields.

DBF (Database Format)

mReadDBstructure from a DBF File

A DBF file alone represents a flat file, thus a single INM V12 Database table. A DBF
file can be used as a template for an INM V12 Database table in much the same
way as a text file or literal can. The name of the created INM V12 Database table is
identical to the DBF filename without the ".DBF" extension. The syntax is:

mReadDBStructure(gDB, "DBF", File_Pathname)

For a DBF file to be used as a complete and valid INM V12 Database table
descriptor, at least one index must be defined. If that index is defined by an IDX or
NDX file located in the same folder as the DBF file, mReadDBstructure detects its
presence and automatically defines an index for that field in the current table.

This example uses the file VIDEO.DBF as a template to build a table named "video"
in the V12 Database file named "VideoStore.V12". The structure of the file
VIDEO.DBF is as follows:

Field Type Width

TITLE Character 30

DESCRIPT Memo 10

RATING Character 4

TYPE Character 10

DATE_ARRIV Date 8

AVAILABLE Logical 1

TIMES_RENT Numeric 5

NUM_SOLD Numeric 5

Two index files named TITLE.IDX and TYPE.IDX are available in the same folder as
VIDEO.DBF.

The Lingo script is as follows:

on CreateDatabase

 gDB = New(Xtra "V12dbe", the MoviePath&"VideoStore.V12",
"create", "")

 CheckV12Error()

 mReadDBStructure(gDB, "DBF", the MoviePath & "Video.DBF")

 CheckV12Error()

 mBuild(gDB)

 CheckV12Error()

 put mDumpStructure(gDB)

 gDB.mClose()

 gDB=0

end CreateDatabase

Tip: INM V12 Database does not check the validity of the content of the index file;
therefore you can fool it into creating an index for a field named "MyField" by
creating an empty file named "MyField.IDX" in the same folder as your DBF file.

The resulting V12 Database file can be verified immediately with mDumpStructure
(see View the structure of a database). The following is a sample output from
mDumpStructure:

[TABLE]

Video

[FIELDS]

TITLE String 30

DESCRIPT String 30000

RATING String 4

TYPE String 10

DATE_ARRIV Date

AVAILABLE Integer

TIMES_RENT Integer

NUM_SOLD Integer

[INDEXES]

TitleNdx duplicate TITLE ascending (* Default Index *)

TypeNdx duplicate TYPE ascending

[END]

Importing from a DBF File

Importing a DBF file is similar to importing text files, except that you cannot specify
a subset of fields to import: all the fields in the DBF file must be imported. The field
names of the DBF file must match those in the destination INM V12 Database table.
Non-matching field names are ignored during the importing process and a warning
is reported by V12Error (see Errors and Defensive Programming).

 INM V12 Database – Custom Strings and Character Sets 153

Note: DBF is an antiquated file format. It is always assumed to be encoded in the
MS-DOS character set. When importing DBF files, make sure to assign the right
Character Set. See CharacterSet in Properties of Databases.

Syntax:

mImport(gTable, "DBF", FileName [, Options])

where FileName is the pathname of the DBF file to import, and Options is an
optional Lingo Property list containing the #CharacterSet property:

• #CharacterSet is one of "Mac-Standard", "Windows-ANSI" or
"MS-DOS". It determines which character set the DBF file is
encoded in. Most systems automatically encode DBF file in the
MS-DOS character set. See Character Sets in Step 2: Prepare the
Data. The default character set the one defined by the
CharacterSet property (see CharacterSet in Properties of
Databases). It is normally "Windows-ANSI" on the Windows
version of INM V12 Database and "Mac-Standard" on the
Macintosh version of INM V12 Database.

Example:

mImport(gTable, "DBF", the MoviePath&"Pier1-Import.DBF",
[#CharacterSet:"MS-DOS"])

If a field in the destination table has the same name as a field in the source DBF
file, but is of a different type, mImport tries to typecast the data to match the
destination field type. When importing data from a DBF file that contains Memo
fields, the corresponding DBT files are automatically processed and imported by INM
V12 Database. See Dealing with dates and DBF (Database Format) Rules below for
more details on DBF files and data importing rules.

 INM V12 Database – Custom Strings and Character Sets 154

 INM V12 Database – Custom Strings and Character Sets 155

DBF (Database Format) Rules

The following rules apply to the translation of DBF file structures:

DBF
field type

Translated to
V12 field type Notes

Character String
Buffer size = size of
field in DBF file

Integer Integer

Numeric with no digit
after fixed point

Integer

Numeric with one or
more digits after
fixed point

Float

Float Float

Double Float

Currency Float

On Windows 3.1 and
Mac68K, acceptable
values are in the
range -2k to 2k-1,
where k = 31 minus
the number of decimal
places.

Date Date

DateTime Date

Data cannot be
converted from fields
of type DateTime.
Only the default date
(1900/01/01) is
imported.

Logical Integer

FALSE values are
translated to 0s, TRUE
values to 1s and
undefined values
(represented by "?" in
the DBF file) to -1s

Media String Buffer size = 32K

General Ignored

Character-Binary Ignored

Memo-Binary Ignored

 INM V12 Database – Custom Strings and Character Sets 156

Memo fields are those typically used to store text longer than 255 characters. Memo
fields can also store binary data of arbitrary formats: Binary formatted memo fields
cannot be imported directly into INM V12 Database files. When importing standard
ASCII data from a DBF file that contains Memo fields, the corresponding DBT files
are automatically processed by INM V12 Database.

Microsoft FoxPro

mReadDBstructure from FoxPro (Windows Only)

A FoxPro database is a directory containing a collection of DBF files along with their
index files. A directory containing one or more MS FoxPro files can be collectively
used as a template for a V12 database. The FoxPro ODBC driver is required to
perform this operation. The names of your FoxPro files and their field names must
be valid V2-DBE identifiers (see Defining identifiers in Step 1: Decide on a Data
Model).

Syntax:
mReadDBStructure(gDB, "FoxPro", DirectoryPath)

where DirectoryPath is the path to a directory — not a file. Thus, it must
necessarily end with a "\".

Example:
on CreateDatabase

 gDB = New(Xtra "V12dbe", the MoviePath&"myDB.V12", "create",
"secret")

 CheckV12Error()

 mReadDBStructure(gDB, "FoxPro", the MoviePath&"FoxDB\")

 CheckV12Error()

 mBuild(gDB)

 CheckV12Error()

 gDB.mClose()

 gDB=0

end CreateDatabase

Once the corresponding V12 database structure is created, with mReadDBStructure,
the data from your FoxPro tables can be imported.

Importing from Microsoft FoxPro (Windows only)

Fox Pro (*.DBF) files can be imported to V12 tables provided a MS FoxPro ODBC
driver is present on your PC. No DSN (Data Source Name) is required.

Syntax:
mImport(gTable, "FoxPro", FileName)

where FileName is the path to the source *.DBF file. Always make sure to set INM
V12 Database's CharacterSet property to the encoding that matches your DBF file's
(see CharacterSet in Properties of Databases).

 INM V12 Database – Custom Strings and Character Sets 157

Example:
mImport(gTable, "FoxPro", the pahtname&"Results.dbf", TableName)

Converting a FoxPro database into a V12 database is a two-step process: First,
create the V12 database, and then import data to each of its tables with mImport,
as explained above.

FoxPro (Microsoft Fox Professional Format) Rules

The following rules apply to the translation of FoxPro databases to V12 databases:

FoxPro
field type

Translated to
V12 field type

Notes

Character String
Buffer size is the size of
the field in the DBF file

Integer Float

Numeric Float

Float Float

Double Float

Currency Float

Date Date

DateTime Date

Data cannot be converted
from fields of type
DateTime. Only the default
date (1900/01/01) is
imported.

Logical Integer

Memo String Buffer size = 32K

General String
Buffer size is the size of
the field in the DBF file

Character-
Binary

String Buffer size is 32K

Memo-Binary String Buffer size is 32K

 INM V12 Database – Custom Strings and Character Sets 158

Microsoft Access

mReadDBstructure from MS Access (Windows Only)

MS Access databases can be used as templates to V12 databases. Like INM V12
Database, MS Access can store multiple tables per database. mReadDBstructure
imports the structure of all such tables to INM V12 Database. The MS Access ODBC
driver is required to perform this operation.

The names of the tables and fields of your MS Access file must be valid INM V12
Database identifiers (see Defining identifiers in Step 1: Decide on a Data Model).

Syntax:

mReadDBStructure(gDB, "Access", FileName, Username, Password)

where:

• FileName is the path to the *.MDB file,

• Username is a valid user name to access the MDB file, or
EMPTY if the MDB file is not protected,

• Password is Username's matching password, or EMPTY if
the MDB file is not protected.

Once the corresponding V12 database structure is created, the data from your MS
Access tables can be imported.

Import from Microsoft Access (Windows only)

MS Access (*.MDB) files can be imported to V12 databases, one table at a time. A
MS Access ODBC driver must be present but no DSN (Data Source Name) is
required.

Syntax:
mImport(gTable, "Access", FileName, UserName, Password,

TableName)

where:

• FileName is the path to the source *.MDB file,

• Username is a valid user name to access the MDB file, or
EMPTY if the MDB file is not protected,

• Password is Username's matching password, or EMPTY if
the MDB file is not protected.

• TableName is the name of the table to import.

Converting an MS Access database into a V12 database is a two-step process: First,
create the V12 database (see mReadDBstructure from MS Access). Then, import
data to each of its tables with mImport, as explained above.

Generally, MS Access databases are encoded in the Windows ANSI character set.
Thus, you must make sure that the CharacterSet Property is properly set to
"Windows-ANSI" before importing the data. ("Windows-ANSI" is the default setting
for the CharacterSet property. See CharacterSet in Properties of Databases).

 INM V12 Database – Custom Strings and Character Sets 159

Microsoft Access Rules

The following rules apply to the translation of MS Access file structures to V12
databases:

MS Access
field type

Translated to
V12 field type

Notes

Text String
Buffer size is same as
Access field size

Number (byte) Integer

Number
(integer)

Integer

Number
(long integer)

Integer

Number (single) Float

Number
(double)

Float

Number
(replication ID)

Ignored

Currency Integer

Date / Time Ignored

Autonumber Integer

Yes/No Integer

OLE Object Ignored

HyperLink String URL imported as text

Memo String Buffer size is 32K

MS Access unique and duplicate indexes are properly converted to unique and
duplicate INM V12 Database indexes with ascending field values.

Microsoft Excel

mReadDBstructure from MS Excel (Windows Only)

MS Excel workbooks can be used as templates to V12 databases. MS Excel
workbooks can contain one or more worksheets, with each worksheet corresponding
to a V12 table and each column to a V12 field. The resulting V12 database contains
as many tables as there are worksheets in the Excel file. The MS Excel ODBC driver
is required to perform this operation.

The names of the worksheets and columns of your MS Excel file must be valid V2-
DBE identifiers (see Defining identifiers in Step 1: Decide on a Data Model).

The types of the field defined in the new V12 database depend on the format of the
corresponding MS Excel columns. To change the format of a entire column in MS
Excel, select it by clicking in its heading, choose Format > Cells… and select the
Number tab. It may be necessary to Save As… your workbook with a new name to
force MS Excel to commit to the new column's format (depends on version of
Excel).

Syntax:
mReadDBStructure(gDB, "Excel", FileName)

where FileName is the path to the *.XLS file.

Importing from Microsoft Excel (Windows only)

MS Excel workbooks (*.XLS) can be imported to V12 databases, one table at a
time, through a PC's ODBC driver. No DSN (Data Source Name) is required.

Syntax:
mImport(gTable, "Excel", FileName, TableName)

where:

• FileName is the path to the source *.XLS file. It is
assumed to be encoded in the Windows ANSI character set
(default encoding on Windows).

• TableName is the name of the table to import.

Example:
mImport(gTable, "Excel", the pahtname&"Results.XLS")

Protected MS Excel workbooks cannot be imported

Converting a MS Excel workbook into a V12 database is a two-step process: First,
create the V12 database (see Importing from Microsoft Excel (Windows only)).
Then, import data to each of its tables with mImport, as explained above.

Note: It is important that the first row contains the field names. This way, INM V12
Database can associate an Excel column to a INM V12 Database field.

 INM V12 Database – Custom Strings and Character Sets 160

 INM V12 Database – Custom Strings and Character Sets 161

Microsoft Excel Rules

The following rules apply to the translation of MS Excel file structures to V12
databases:

MS Excel
field type

Translated to
V12 field type

Notes

General Float

Number Float

Currency Integer

Accounting Integer

Date Ignored
Convert to text first if
importing to INM V12
Database is needed

Time Ignored
Convert to text first if
importing to INM V12
Database is needed

Percentage Float

Fraction Float

Scientific Float

Text String Buffer size = 255 bytes

Special Float

Custom Float

MS Excel cannot define indexes on its fields, when reading an Excel workbook; INM
V12 Database automatically indexes the leftmost field of each worksheet.

Microsoft SQL Server

mReadDBstructure from MS SQL Server (Windows Only)

A MS SQL Server version 6 or 7 data source can be used as a template to a V12
database. In contrast to MS Access, MS FoxPro and MS Excel files,
mReadDBstructure requires a DSN (Data Source Name) to be supplied instead of a
pathname. The MS SQL Server ODBC driver is required to perform this operation.

Syntax:

mReadDBStructure(gDB, "SQLserver", DSN, Username, Password)

where

 INM V12 Database – Custom Strings and Character Sets 162

• DSN is the name of a valid User DSN, System DSN or File DSN
(see Window's Control Panel),

• Username is a valid user name to access the DSN,

• Password is Username's matching password.

Importing from MS SQL (Windows only)

MS SQL Server data sources can be imported to V12 databases, one table at a time,
through a PC's ODBC driver and a valid DSN (Data Source Name). Data sources can
be created through Window's ODBC Data Sources Control Panel which is accessible
from Start > Settings > Control Panel menu.

Syntax:
mImport(gTable, "SQLserver", DSN, Username, Password, TableName)

where:

• DSN is a valid Data Source Name.

• Username is a valid user name to access the SQL Server.

• Password is Username's matching password.

• TableName is the name of the table to import.

Example:
mImport(gTable, "SQLserver", "InventoryDSN", "Admin", "XBF48",

"Products")

Converting an MS SQL Server data source into a V12 database is a two-step
process: First, create the V12 database (see mReadDBstructure from MS SQL
Server (Windows Only). Then, import data to each of its tables with mImport, as
explained above.

 INM V12 Database – Custom Strings and Character Sets 163

Microsoft SQL format Rules

The following rules apply to the translation of MS SQL Server data sources to V12
databases:

MS SQL Server
field type

Translated to
V12 field type

Notes

Binary Ignored

Bit Integer

Char String
Buffer size is same as MS
SQL Server field size

DateTime Ignored

Decimal Float

Float Float

Image String
Buffer size = 32K. Data
cannot be imported from
Image fields.

Int Integer

Money Float

Numeric Integer

Real Float

SmallDateSize Ignored

SmallInt Integer

SmallMoney Float

SysName String
Buffer size is same as MS
SQL Server field size

Text String Buffer size = 32K

TimeStamp Ignored

TinyInt Integer

VarBinary String
Buffer size is same as MS
SQL Server field size

VarChar String
Buffer size is same as MS
SQL Server field size

 INM V12 Database – Custom Strings and Character Sets 164

Note that V12 does not support unicode SQL data type such as nchar, nvarchar and
ntext.

Importing Media into a V12 Database
Before importing media into a V12 database, be sure to read the section on Using
media with V12 Databases, which discusses alternative ways of dealing with media
files.

You can import media to INM V12 Database fields of type media, one at a time,
using the INM V12 Database Editor (see the INM V12 Database Editor User Manual).

You can also automate and customize the media importing process through Lingo
scripting. Assume your database contains one table and five fields:

• Field ItemName of type String,

• Field Description of type String,

• Field Price of type Float,

• Field CatalogNumber of type Integer,

• Field Photo of type Media.

In addition, assume that the first four fields are in a TAB-delimited file format
named "Data.txt", and that all photos (5th field) are in PICT format. Each photo is
located in the same folder as "Data.txt" with each image file bearing the catalog
number of the item with which it corresponds.

This example illustrates how to import the text file in a V12 Database file, and then
how to review each imported record in order to import the corresponding image file.

Example:
-- some database creation preliminaries here

-- this is a purely academic example: no error trapping is
performed

gDB = New(Xtra "V12dbe", the MoviePath&"Catalog.V12",
"ReadWrite", "top secret")

gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

-- import the text data

mImport(gTable, "TEXT", the MoviePath&"Data.txt")

-- loop on each record and import the matching image

repeat with i = 1 to mSelectCount(gTable)

 -- record i becomes the current record

 mGo(gTable, i)

 -- get the photo's filename and import it in a member

 catNbr = mGetField(gTable, "catalogNumber")

 member("DummyMember").filename = (the MoviePath&catNbr)

 -- assign the photo to the appropriate INM V12 Database field

 mEditRecord(gTable)

 INM V12 Database – Custom Strings and Character Sets 165

 CheckV12Error()

 mSetMedia(gTable, "photo", member "DummyMember")

 CheckV12Error ()

 mUpdateRecord(gTable)

 CheckV12Error()

end repeat

gTable.mClose() -- close the table instance

gTable = 0

gDB.mClose()-- close the database instance

gDB = 0

The mAddRecord, mSetField, mGetField and mUpdateRecord methods are
explained in greater detail in Using Lingo. Refer to the INM V12 Database Methods
Reference for explicit examples.

 INM V12 Database – Custom Strings and Character Sets 166

Appendix 2: mGetSelection Examples

The examples below show various ways of using mGetSelection. All examples
assume that the table gTable contains 3 fields ("name", "price" and "number",
declared in that order when creating the table), and that the selection contains 6
records.

Read an Entire Selection
This example retrieves the entire content of each record of the selection with TABs
as field delimiters and CARRIAGE_RETURNs (CRs) as record delimiters. Fields are
sorted in their order of creation. The records' sort order is the one defined by the
selection.

x = mGetSelection(gTable)

sets the variable x to the following string:

Batteries TAB 9.20 TAB 6780 CR

Floppies TAB 1.89 TAB 9401 CR

Labels TAB 1.19 TAB 1743 CR

Pencils TAB 5.55 TAB 6251 CR

Ruler TAB 1.99 TAB 1431 CR

Tags TAB 6.19 TAB 7519 CR

Read a Range of Records in a String variable
This example retrieves the content of 3 successive records in the selection, starting
with record #2, with TABs as field delimiters and CARRIAGE_RETURNs (CRs) as record
delimiters.

x = mGetSelection(gTable, "LITERAL", 2, 3)

sets the variable x to the following string:

Floppies TAB 1.89 TAB 9401 CR

Labels TAB 1.19 TAB 1743 CR

Pencils TAB 5.55 TAB 6251 CR

Read a Range of Records in a Lingo List
This is identical to the previous example, except that the result is returned in a
Lingo list:

x = mGetSelection(gTable, "LIST", 2, 3)

sets the variable x to the following list:
[["Floppies", 1.89, 9401], ["Labels", 1.19, 1743], ["Pencils",

5.55, 6251]]

 INM V12 Database – Custom Strings and Character Sets 167

Read a Range of Records in a Property List
Same as the two previous examples, except that the result is returned in a Lingo
property list:

x = mGetSelection(gTable, "PropertyList", 2, 3)

sets the variable x to the following list:
[[#name:"Floppies", #price:1.89, #number:9401], [#name:"Labels",

#price:1.19, #number:1743], [#name:"Pencils", #price:5.55,
#number:6251]]

Read the Entire Content of the Current Record
This example retrieves the entire content of the current record in a single call to
INM V12 Database.

x = mGetSelection(gTable, "LITERAL", mGetPosition(gTable), 1)

sets the variable x to the following string:

Batteries TAB 9.20 TAB 6780 CR

The "List" and "ProperyList" would respectively return:
[["Batteries", 9.20, 6780]]

and
[[#name:"Batteries", #price:9.20, #number:6780]]

Read a Record without Setting it as the Current Record
This example retrieves the content of record #4 without setting it as the current
record.

x = mGetSelection(gTable, "LITERAL", 4, 1)

sets the variable x to the following string:

Pencils TAB 5.55 TAB 6251 CR

The "List" and "ProperyList" would respectively return:
[["Pencils", 5.55, 6251]]

and
[[#name:"Pencils", #price:5.55, #number:6251]]

Read the Entire Selection with Special Delimiters
This example retrieves the entire content of each record of the selection with
commas (",") as field delimiters and slashes ("/") as record delimiters.

x = mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable), ","
, "/")

sets the variable x to the following string:

Batteries , 9.20 , 6780 / Floppies , 1.89 , 9401 / Labels , 1.19 ,
1743 / Pencils , 5.55 , 6251 / Ruler , 1.99 , 1431 / Tags , 6.19 ,
7519 /

 INM V12 Database – Custom Strings and Character Sets 168

Read Selected Fields in a Selection
This example retrieves the content of a single field ("name") for all the records of
the selection. Note that the TAB parameter is unused in the result, but it should
nonetheless be present.

x = mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable), TAB
, RETURN, "name")

sets the variable x to the following string:

Batteries CR

Floppies CR

Labels CR

Pencils CR

Ruler CR

Tags CR

The syntax for the Lingo List result would be:
x = mGetSelection(gTable, "List", 1, mSelectCount(gTable), "name"

)

and the result would be
[["Batteries"],["Floppies"],["Labels"],["Pencils"],["Ruler"],

["Tags"]]

(Note: This is a list where each element is itself a single element list).

The syntax for the Property List result would be:
x = mGetSelection(gTable, "PropertyList", 1,

mSelectCount(gTable), "name")

and the result would be
[[#name:"Batteries"],[#name:"Floppies"],[#name:"Labels"],

[#name:"Pencils"],[#name:"Ruler"],[#name:"Tags"]]

Read Records with a Determined Order of Fields
This example retrieves the content of all the records of the selection with TABs as
field delimiters and CARRIAGE_RETURNs (CRs) as record delimiters, with fields
ordered in the sequence "number", "name", and "price".

x = mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable),
TAB, RETURN, "number", "name", "price")

sets the variable x to the following string:

6780 TAB Batteries TAB 9.20 CR

9401 TAB Floppies TAB 1.89 CR

1743 TAB Labels TAB 1.19 CR

6251 TAB Pencils TAB 5.55 CR

1431 TAB Ruler TAB 1.99 CR

7519 TAB Tags TAB 6.19 CR

The syntax for the Lingo List result would be:
x = mGetSelection(gTable, "List", 1, mSelectCount(gTable),

"number", "name", "price")

and the result would be

 INM V12 Database – Custom Strings and Character Sets 169

[[6780, "Batteries", 9.20], [9401, "Floppies", 1.89], [1743,
"Labels", 1.19], [6251, "Pencils", 5.55], [1431, "Ruler",
1.99], [7519, "Tags", 6.19]]

The syntax for the Property List result would be:
x = mGetSelection(gTable, "PropertyList", 1,

mSelectCount(gTable), "number", "name", "price")

and the result would be
[[#number:6780, #name:"Batteries", #price:9.20], [#number:9401,

#name:"Floppies", #price:1.89], [#number:1743, #name:"Labels",
#price:1.19], [#number:6251, #name:"Pencils", #price:5.55],
[#number:1431, #name:"Ruler", #price:1.99], [#number:7519,
#name:"Tags", #price:6.19]]

Although, this latter request would not be of much interest because property lists
are parsed by property names, not item positions.

 INM V12 Database – Custom Strings and Character Sets 170

Appendix 3: String and Custom String Types

INM V12 Database enables you to develop applications containing different types of
strings such as English, German, Swedish and Spanish. Basically, each INM V12
Database table can contain any combination of those string types.

String comparisons depend on how special characters are defined in their
corresponding languages. For example, the letters a and ä may be considered
identical in some languages but different in others. This behavior is determined by
the sorting and searching rules attached to each type of string.

INM V12 Database's default and custom String types' sorting and searching rules
are defined by the following tables where equivalent characters are listed on the
same line separated by one or more spaces and strict precedence is indicated by
characters on successive lines. For example:

j J

k K

l L

means that:

• K sorts after J and before L,

• j and J are equivalent (likewise, k and K are equivalent,
and l and L are equivalent too)

Characters omitted from a sorting and searching rules table are considered to sort
after those listed in the table, except for Control characters (such as Carriage
Return, Horizontal Tab, Vertical Tab, etc.), which are considered to sort before
those listed in the table.

 INM V12 Database – Custom Strings and Character Sets 171

The Default String
The default string type has predefined rules that accommodate a large number of
languages (English, French, German, Italian, Dutch, Portuguese, Norwegian, etc.).

(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

Sorting and searching rules table for the default string type:
1. ' ‘ ’

2. " « » “ ”

3. ! ¡

4. ? ¿

5. .

6. ,

7. :

8. ;

9. …

10. #

11. $

12. ¢

13. £

14. ¥

15. % ‰

16. °

17. |

18. † ‡

19. []

20. { }

21. ()

22. < >

23. *

24. +

25. -

26. /

27. \

28. =

29. ~

30. ¬ - – —

31. §

32. µ

33. &

34. @

35. ©

36. ƒ

37. ®

38. 0

39. 1

40. 2

41. 3

42. 4

43. 5

44. 6

45. 7

46. 8

47. 9

48. a à á â ã ä A
À Á Â Ã Ä

49. b B

50. c ç C Ç

51. d D

52. e è é ê ë E È É
Ê Ë

53. f F

54. g G

55. h H

56. i ì í î ï I Ì Í Î Ï

57. j J

58. k K

59. l L

60. m M

61. n ñ N Ñ

62. o ò ó ô õ ö œ
O Ò Ó Ô Õ Ö Œ

63. p P

64. q Q

65. r R

66. s ß S

67. t T

68. u ù ú û ü U Ù
Ú Û Ü

69. v V

70. w W

71. x X

72. y ÿ Y Ÿ

73. z Z

 INM V12 Database – Custom Strings and Character Sets 172

74. æ Æ

75. ø Ø

76. å Å

Predefined Custom String Types
Along with the standard string type, INM V12 Database contains a number of
predefined custom string types. They include Swedish, Spanish and Hebrew.

Searching and Sorting rules for Strings of Type Swedish

(If the tables below are not properly formatted in this version of this manual, please
refer to the PDF version)

1. ' ‘ ’

2. " « » “ ”

3. ! ¡

4. ? ¿

5. .

6. ,

7. :

8. ;

9. …

10. #

11. $

12. ¢

13. £

14. ¥

15. % ‰

16. °

17. |

18. † ‡

19. []

20. { }

21. ()

22. < >

23. *

24. +

25. -

26. /

27. \

28. =

29. ~

30. ¬ - – —

31. §

32. µ

33. &

34. @

35. ©

40. 2

41. 3

42. 4

43. 5

44. 6

45. 7

46. 8

47. 9

48. a à á â ã A À Á Â Ã

49. b B

50. c ç C Ç

51. d D

52. e è é ê ë E È É Ê Ë

53. f F

54. g G

55. h H

56. i ì í î ï I Ì Í Î Ï

57. j J

58. k K

59. l L

60. m M

61. n ñ N Ñ

62. o ò ó ô õ œ O Ò Ó Ô Õ Œ

63. p P

64. q Q

65. r R

66. s ß S

67. t T

68. u ù ú û ü U Ù Ú Û Ü

69. v V

70. w W

71. x X

72. y ÿ Y Ÿ

73. z Z

74. æ Æ

 INM V12 Database – Custom Strings and Character Sets 173

36. ƒ

37. ®

38. 0

39. 1

75. ø Ø

76. å Å

77. ä Ä

78. ö Ö

 INM V12 Database – Custom Strings and Character Sets 174

Searching and Sorting rules for Strings of Type Spanish

(If the tables below are not properly formatted in this version of this manual, please
refer to the PDF version)
1. ' ‘ ’

2. " « » “ ”

3. ! ¡

4. ? ¿

5. .

6. ,

7. :

8. ;

9. …

10. #

11. $

12. ¢

13. £

14. ¥

15. % ‰

16. °

17. |

18. † ‡

19. []

20. { }

21. ()

22. < >

23. *

24. +

25. -

26. /

27. \

28. =

29. ~

30. ¬ - – —

31. §

32. µ

33. &

34. @

35. ©

36. ƒ

37. ®

38. 0

39. 1

40. 2

41. 3

42. 4

43. 5

44. 6

45. 7

46. 8

47. 9

48. a à á â ã ä A À Á Â Ã Ä

49. b B

50. c ç C Ç

51. d D

52. e è é ê ë E È É Ê Ë

53. f F

54. g G

55. h H

56. i ì í î ï I Ì Í Î Ï

57. j J

58. k K

59. l L

60. m M

61. n N

62. ñ Ñ

63. o ò ó ô õ ö œ O Ò Ó Ô Õ Ö Œ

64. p P

65. q Q

66. r R

67. s ß S

68. t T

69. u ù ú û ü U Ù Ú Û Ü

70. v V

71. w W

72. x X

73. y ÿ Y Ÿ

74. z Z

75. æ Æ

76. ø Ø

77. å Å

 INM V12 Database – Custom Strings and Character Sets 175

Searching and Sorting rules for Strings of Type Hebrew

(requires a Hebrew font such as "Web Hebrew")

1. ' ’ ‘
2. " « » ” “
3. ! ¡
4. ? ¿
5. .
6. ,
7. :
8. ;
9. …
10. #
11. $
12. ¢
13. £
14. ¥
15. % ‰
16. °
17. |
18. † ‡
19. []
20. { }
21. ()
22. < >
23. *
24. +
25. -
26. /
27. \
28. =
29. ~
30. - – ¬
31. §
32. µ
33. &
34. @
35. ©
36. ƒ
37. ®
38. à (aleph)
39. á (beth)
40. â (ghimel)
41. ã (daleth)
42. ä (he)
43. å (vau)

50. í î (mem)
51. ï ð (nun)
52. ñ (samech)
53. ò (ain)
54. ó ô (phe)
55. õ ö (sadi)
56. ÷ (koph)
57. ø (resch)
58. ù (sin)
59. ú (tau)
60. 0
61. 1
62. 2
63. 3
64. 4
65. 5
66. 6
67. 7
68. 8
69. 9
70. a A À Á Â Ã Ä
71. b B
72. c C Ç
73. d D
74. e E È É Ê Ë
75. f F
76. g G
77. h H
78. i I Ì Í Î Ï
79. j J
80. k K
81. l L
82. m M
83. n N Ñ
84. o O Ò Ó Ô Õ Ö
85. p P
86. q Q
87. r R
88. s ß S
89. t T
90. u û ü U Ù Ú Û Ü
91. v V
92. w W

 INM V12 Database – Custom Strings and Character Sets 176

44. æ (zain)
45. ç (heth)
46. è (teth)
47. é (iod)
48. ê ë (caph)
49. ì (lamed)

93. x X
94. y ÿ Y Ÿ
95. z Z
96. Æ
97. Ø
98. Å

 INM V12 Database – Custom Strings and Character Sets 177

Appendix 4: Character sets

Windows-ANSI Character Set
3
2

3
3

!
3
4

"
3
5

3
6

$
3
7

%
3
8

&
3
9

'
4
0

(
4
1

)
4
2

*
4
3

+
4
4

,

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 �
129 �
130 ‚
131 ƒ
132 „
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141 �
142 �
143 �
144 �
145 ‘

146 ’
147 “
148 ”
149 •
150 –
151 —
152 ˜
153 ™
154 š
155 ›
156 œ
157 �
158 �
159 Ÿ
160
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·

184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð
209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý

222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ÿ

 INM V12 Database – Custom Strings and Character Sets 178

4
5

-
4
6

.
4
7

/
4
8

0
4
9

1
5
0

2
5
1

3
5
2

4
5
3

5
5
4

6
5
5

7
5
6

8
5
7

9
5
8

:
5
9

 INM V12 Database – Custom Strings and Character Sets 179

;
6
0

<
6
1

=
6
2

>
6
3

?
6
4

@
6
5

A
6
6

B
67 C
68 D
69 E

 INM V12 Database – Custom Strings and Character Sets 180

Mac-Standard Character Set
32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 Ä
129 Å
130 Ç
131 É
132 Ñ
133 Ö
134 Ü
135 á
136 à
137 â
138 ä
139 ã
140 å
141 ç
142 é
143 è
144 ê
145 ë

146 í
147 ì
148 î
149 ï
150 ñ
151 ó
152 ò
153 ô
154 ö
155 õ
156 ú
157 ù
158 û
159 ü
160 †
161 °
162 ¢
163 £
164 §
165 •
166 ¶
167 ß
168 ®
169 ©
170 ™
171 ´
172 ¨
173 �
174 Æ
175 Ø
176 �
177 ±
178 �
179 �
180 ¥
181 µ
182 ð
183 Ý

184 Þ
185 þ
186 Š
187 ª
188 º
189 ý
190 æ
191 ø
192 ¿
193 ¡
194 ¬
195 ¯
196 ƒ
197 ¼
198 Ð
199 «
200 »
201 …
202
203 À
204 Ã
205 Õ
206 Œ
207 œ
208 -
209 —
210 “
211 ”
212 ‘
213 ’
214 ÷
215 ×
216 ÿ
217 Ÿ
218 �
219 ¤
220 ‹
221 ›

222 �
223 �
224 ‡
225 ·
226 ‚
227 „
228 ‰
229 Â
230 Ê
231 Á
232 Ë
233 È
234 Í
235 Î
236 Ï
237 Ì
238 Ó
239 Ô
240 �
241 Ò
242 Ú
243 Û
244 Ù
245 ¦
246 ˆ
247 ˜
248 –
249 š
250 ²
251 ¾
252 ¸
253 ½
254 ³
255 ¹

 INM V12 Database – Custom Strings and Character Sets 181

MS-DOS Character Set
32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 Ç
129 ü
130 é
131 â
132 ä
133 à
134 å
135 ç
136 ê
137 ë
138 è
139 ï
140 î
141 ì
142 Ä
143 Å
144 É
145 æ

146 Æ
147 ô
148 ö
149 ò
150 û
151 ù
152 ÿ
153 Ö
154 Ü
155 ø
156 £
157 Ø
158 ×
159 ƒ
160 á
161 í
162 ó
163 ú
164 ñ
165 Ñ
166 ª
167 º
168 ¿
169 ®
170 ¬
171 ½
172 ¼
173 ¡
174 «
175 »
176 _
177 _
178 _
179 ¦
180 ¦
181 Á
182 Â
183 À

184 ©
185 ¦
186 ¦
187 +
188 +
189 ¢
190 ¥
191 +
192 +
193 -
194 -
195 +
196 -
197 +
198 ã
199 Ã
200 +
201 +
202 -
203 -
204 ¦
205 -
206 +
207 ¤
208 ð
209 Ð
210 Ê
211 Ë
212 È
213 i
214 Í
215 Î
216 Ï
217 +
218 +
219 _
220 _
221 ¦

222 Ì
223 _
224 Ó
225 ß
226 Ô
227 Ò
228 õ
229 Õ
230 µ
231 þ
232 Þ
233 Ú
234 Û
235 Ù
236 ý
237 Ý
238 ¯
239 ´
240 -
241 ±
242 _
243 ¾
244 ¶
245 §
246 ÷
247 ¸
248 °
249 ¨
250 ·
251 ¹
252 ³
253 ²
254 _
255

 INM V12 Database – Custom Strings and Character Sets 182

Appendix 5: Japanese support

New field types
INM V12 Database supports Japanese text by adding two new field types:
String.SJIS and String.YOMI. The mReadDBStructure method must be used to
create those two new fields.

Example:

[TABLE]

NameOfTable

[FIELDS]

sjisfield string.SJIS

yomifield string.YOMI

[INDEXES]

sjisfieldndx duplicate sjisfield ascending

yomifieldndx duplicate yomifield ascending

[END]

Field of type SJIS
SJIS fields can hold Japanese text in the Shift-JIS format. Katakana, Hiragana,
English alphabets, punctuation, numerals and Kanji are available in this
representation.

Sorting

A SJIS sort will order the fields (thus the records) according to the Shift-JIS
numerical code of the characters (1 or 2 bytes) in it. There is no strict equivalence
of characters in this sort order. This means that each character has a distinct
location in the table and will always sort the same way in a similar sort operation.

Note: The SJIS field does not support full text indexing. The following operators are
not supported: wordStarts and wordEquals.

Searching

All operators are supported and Boolean set operators AND and OR are also
supported.

Field of type Yomi (Yomigana)
This field can hold a subset of Shift-JIS character. This subset is restricted to the full
range of Katakana, hiragana including those with voiced diacritic marks (nigori,
maru) and small characters (contracted sounds). It can also contain punctuation
characters. This field doesn’t contain kanji.

 INM V12 Database – Custom Strings and Character Sets 183

Sorting

The exact sorting order of the syllabaries is given by the following table:

Phonetic characters (hiragana
and katakana)

Pronunciation (each sounds corresponds
to 2 characters in the left column)

(a) a (i) i (u) u (e) e (o) o ぁァあアぃィいイぅゥうウぇェ

えエぉォおオ

ka ga ki gi ku gu ke ge ko go かカがガきキぎギくクぐグけケ

げゲこコごゴ

sa za shi ji su zu se ze so zo さサざザしシじジすスずズせセ

ぜゼそソぞゾ

ta da chi dzi (tsu) tsu dzu te de to
do

たタだダちチぢヂっッつツづヅ

てテでデとトどド

na ni nu ne no なナにニぬヌねネのノ

ha ba pa hi bi pi fu bu pu he be pe
ho bo po

はハばバぱパひヒべビぴピふフ

ぶブぷプへヘべベぺペほホぼボ

ぽポ

ma mi mu me mo まマみミむムめメもモ

(ya) ya (yu) yu (yo) yo ゃャやヤゅュゆユょョよヨ

ra ri ru re ro らラりリるルれレろロ

wa wo n わワをヲんン

Dash symbol

Note: requires a Japanese font such as "MS Mincho".

The dash symbol has a special meaning in Yomigana. This special treatment breaks
the uniformity of the comparison method of the sorting procedure. To remove this
problem, the dash symbol should be replaced by its respective vowel in the input
data. In other words, the compare method does not take into account the semantic
of the dash symbol. The mSetCriteria method translates the dash symbol to the
correct (preceding) vowel. The translation is defined in the following table.

 INM V12 Database – Custom Strings and Character Sets 184

 INM V12 Database – Custom Strings and Character Sets 185

Reading Kana Dashed

1/2 a (hiragana) ぁ ぁあ

1/2 a (katakana) ァ ァア

a (hiragana) あ ああ

a (katakana) ア アア

1/2 i (hiragana) ぃ ぃい

1/2 i (katakana) ィ ィイ

i (hiragana) い いい

i (katakana) イ イイ

1/2 u (hiragana) ぅ ぅう

1/2 u (katakana) ゥ ゥウ

u (hiragana) う うう

u (katakana) ウ ウウ

1/2 e (hiragana) ぇ ぇえ

1/2 e (katakana) ェ ェエ

e (hiragana) え ええ

e (katakana) エ エエ

1/2 o (hiragana) ぉ ぉお

1/2 o (katakana) ォ ォオ

o (hiragana) お おお

o (katakana) オ オオ

 INM V12 Database – Custom Strings and Character Sets 186

ka (hiragana) か かあ

ka (katakana) カ カア

ga (hiragana) が があ

ga (katakana) ガ ガア

ki (hiragana) き きい

ki (katakana) キ キイ

gi (hiragana) ぎ ぎい

gi (katakana) ギ ギイ

ku (hiragana) く くう

ku (katakana) ク クウ

gu (hiragana) ぐ ぐう

gu (katakana) グ グウ

ke (hiragana) け けえ

ke (katakana) ケ ケエ

ge (hiragana) げ げえ

ge (katakana) ゲ ゲエ

ko (hiragana) こ こお

ko (katakana) コ コオ

go (hiragana) ご ごお

go (katakana) ゴ ゴオ

sa (hiragana) さ さあ

 INM V12 Database – Custom Strings and Character Sets 187

sa (katakana) サ サア

za (hiragana) ざ ざあ

za (katakana) ザ ザア

shi (hiragana) し しい

shi (katakana) シ シイ

ji (hiragana) じ じい

ji (katakana) ジ ジイ

su (hiragana) す すう

su (katakana) ス スウ

zu (hiragana) ず ずう

zu (katakana) ズ ズウ

se (hiragana) せ せえ

se (katakana) セ セエ

ze (hiragana) ぜ ぜえ

ze (katakana) ゼ ゼエ

so (hiragana) そ そお

so (katakana) ソ ソオ

zo (hiragana) ぞ ぞお

zo (katakana) ゾ ゾオ

ta (hiragana) た たあ

ta (katakana) タ タア

 INM V12 Database – Custom Strings and Character Sets 188

da (hiragana) だ だあ

da (katakana) ダ ダア

chi (hiragana) ち ちい

chi (katakana) チ チイ

dzi (hiragana) ぢ ぢい

dzi (katakana) ヂ ヂイ

1/2 tsu (hiragana) っ っう

1/2 tsu (katakana) ッ ッウ

tsu (hiragana) つ つう

tsu (katakana) ツ ツウ

dzu (hiragana) づ づう

dzu (katakana) ヅ ヅウ

te (hiragana) て てえ

te (katakana) テ テエ

de (hiragana) で でえ

de (katakana) デ デエ

to (hiragana) と とお

to (katakana) ト トオ

do (hiragana) ど どお

do (katakana) ド ドオ

na (hiragana) な なあ

 INM V12 Database – Custom Strings and Character Sets 189

na (katakana) ナ ナア

ni (hiragana) に にい

ni (katakana) ニ ニイ

nu (hiragana) ぬ ぬう

nu (katakana) ヌ ヌウ

ne (hiragana) ね ねえ

ne (katakana) ネ ネエ

no (hiragana) の のお

no (katakana) ノ ノオ

ha (hiragana) は はあ

ha (katakana) ハ ハア

ba (hiragana) ば ばあ

ba (katakana) バ バア

pa (hiragana) ぱ ぱあ

pa (katakana) パ パア

hi (hiragana) ひ ひい

hi (katakana) ヒ ヒイ

bi (hiragana) び びい

bi (katakana) ビ ビイ

pi (hiragana) ぴ ぴい

pi (katakana) ピ ピイ

 INM V12 Database – Custom Strings and Character Sets 190

fu (hiragana) ふ ふう

fu (katakana) フ フウ

bu (hiragana) ぶ ぶう

bu (katakana) ブ ブウ

pu (hiragana) ぷ ぷう

pu (katakana) プ プウ

he (hiragana) へ へえ

he (katakana) ヘ ヘエ

be (hiragana) べ べえ

be (katakana) ベ ベエ

pe (hiragana) ぺ ぺえ

pe (katakana) ペ ペエ

ho (hiragana) ほ ほお

ho (katakana) ホ ホオ

bo (hiragana) ぼ ぼお

bo (katakana) ボ ボオ

po (hiragana) ぽ ぽお

po (katakana) ポ ポオ

ma (hiragana) ま まあ

ma (katakana) マ マア

mi (hiragana) み みい

 INM V12 Database – Custom Strings and Character Sets 191

mi (katakana) ミ ミイ

mu (hiragana) む むう

mu (katakana) ム ムウ

me (hiragana) め めえ

me (katakana) メ メエ

mo (hiragana) も もお

mo (katakana) モ モオ

1/2 ya (hiragana) ゃ ゃあ

1/2 ya (katakana) ャ ャア

ya (hiragana) や やあ

ya (katakana) ヤ ヤア

1/2 yu (hiragana) ゅ ゅう

1/2 yu (katakana) ュ ュウ

yu (hiragana) ゆ ゆう

yu (katakana) ユ ユウ

1/2 yo (hiragana) ょ ょお

1/2 yo (katakana) ョ ョオ

yo (hiragana) よ よお

yo (katakana) ヨ ヨオ

ra (hiragana) ら らあ

ra (katakana) ラ ラア

ri (hiragana) り りい

ri (katakana) リ リイ

ru (hiragana) る るう

ru (katakana) ル ルウ

re (hiragana) れ れえ

re (katakana) レ レエ

ro (hiragana) ろ ろお

ro (katakana) ロ ロオ

wa (hiragana) わ わあ

wa (katakana) ワ ワア

wo (hiragana) を をお

wo (katakana) ヲ ヲオ

n (hiragana) ん n/a

n (katakana) ン n/a

ー n/a dash

Note: The last 3 entries (n, n, dash) wouldn't be followed by a dash in Japanese text, so those
can be ignored for the purposes of dash-ing

Searching

The Yomi field has exactly the same search characteristics as the SJIS field. See the
details under Fields of Type SJIS, Searching.

Data Importation
V12-J import Japanese text through the mImport method. No validation is done on
the incoming data. It is up to the user to ensure that the text is valid. Fields and
record delimiters remain 1-byte characters.

 INM V12 Database – Custom Strings and Character Sets 192

 INM V12 Database – Custom Strings and Character Sets 193

 INM V12 Database – Custom Strings and Character Sets 194

Index

A
Adding Records to a Database,

69
Ascending, 72
ASCII Character Set, 39
Auto-installation, 88

B
Basics

Documentation, 23
Behaviors Library, 57
Boolean operator, 76
Buffer size, 44

C
Calculated Fields, 39
Capacities, 100
Character Set, 31, 39, 95, 170
CharacterSet, 94
CheckV12Error, 84
Cloning, 80
Closing a Database, 60
Closing a Table, 60
Closing an Xtra, 21
Comments (in database

descriptors), 46
Compound Indexes, 46
Compressing a Database file,

80
Corrupted Database Files, 81
Creating

Database, 48
Xtra-Instance, 21, 49

Creating a Database, 43
Current Record, 32, 61
CurrentDate, 95
Custom Delimiters, 38

Customer Support, 14

D
Data Formatting, 64, 66
Data Model, 36
Database Descriptor, 43
Date, 80

raw format, 40, 70, 72
Dates, 40
DBF File Formats, 41, 152
DBversion, 96
Debugger, 83
Defensive Programming, 83
Deleting a Record, 71
Delimiter Ambiguity, 38
Delimiters, 38
Delimiters (Full-Text), 28
Delivering to the End User, 87
Descending, 72
Downloading Databases via the

Internet, 82

E
Error codes, 138
Error Codes, 85
Error detection, 21
Errors, 83, 84, 85
Exporting

Data, 78
DBF Format, 79
Text Format, 79

Exporting Data, 78

F
Field Buffer Size, 42
Field Delimiter, 64
Field Descriptor, 148
Field Descriptors, 37

 INM V12 Database® for Director - User Manual page 195

Field Types, 30
Fixing a Database file, 81
Flat database, 28
Float, 79
FlushToDisk, 97
Formatting

Dates, 67
Integers and Floats, 67

Freeing up Disk Space, 80
Full-index, 45
Full-text Indexing, 27

Delimiters, 97
Shortest words, 98
Stop words, 98

G
Global functions, 24

I
Identifiers, 36
Importation Examples and

Rules, 147
Importing

A text File, 148
Data, 59
DBF files, 152
Director Fields, 149
Director Members, 149
Director Variables, 149
FoxPro, 156
From a DBF File, 153
From a Literal, 150
Lingo Lists, 150
Literals, 149
Microsoft Access, 158
Microsoft Excel, 159
Property Lists, 150
SQL, 147, 161
Text Files, 147
V12 DBE files, 151

Importing Data, 35, 37, 53,
55

Index, 45

Indexes, 26
Installing V12 Database, 17
Integer, 79
International, 170

Character Sets, 31

L
Languages, 31, 170
License Agreement, ix
Limits, 100

M
Master Field, 61
Media, 55, 56, 80, 164

Linked, 55, 56
memory partition, 16
Methods, 21

interface, 23
mAddRecord, 103
mAddRecord, 69
mBuild, 104
mBuild, 50
mCloneDatabase, 105
mCloneDatabase, 80
mClose (DB), 132
mClose (T), 132
mDataFormat, 105
mDataFormat, 66, 79
mDeleteRecord, 107
mDeleteRecord, 71
mDumpStructure, 107
mDumpStructure, 51
mEditRecord, 109
mEditRecord, 70
mExportSelection, 108
mExportSelection, 79
mFind, 109
mFind, 62
mFixDatabase, 111
mFixDatabase, 81
mFlushToDisk, 111
mGetField, 112
mGetField, 64

 INM V12 Database® for Director - User Manual page 196

mGetMedia, 112
mGetMedia, 69, 78
mGetPosition, 113
mGetPosition, 61
mGetProperty, 114
mGetProperty, 93

CurrentDate, 95
DBversion, 96
Delimiters, 98
MinWordLength, 98
Months, 96
ProgressIndicator, 91, 94
ProgressIndicator.Message,

94
Resources, 95
ShortMonths, 96
ShortWeekDays, 96
StopWords, 98
String, 97
Verbose, 95
VirtualCR, 94
Weekdays, 96

mGetPropertyNames, 113
mGetPropertyNames, 93
mGetRef, 60
mGetSelection, 115
mGetSelection, 64
mGetSelection examples, 166
mGetUnique, 116
mGetUnique, 66
mGo, 117
mGo, 62
mGoFirst, 117
mGoFirst, 62
mGoLast, 118
mGoLast, 62
mGoNext, 118
mGoNext, 62
mGoPrevious, 118
mGoPrevious, 62
mImport, 119
mImport, 148
mImport, 149
mImport, 149
mImport, 150
mImport, 150
mImport, 150

mImport, 150
mImport, 152
mImport, 154
mImport, 156
mImport, 157
mImport, 158
mImport, 160
mImport, 160
mImport, 162
mImport, 162
mNeedSelect, 121
mNew (DB), 131
mNew (T), 131
mOrderBy, 122
mPackDatabase, 122
mPackDatabase, 80
mReadDBstructure, 49, 147,

149, 151, 152
mReadDBStructure, 123
mSelDelete, 123
mSelDelete, 71
mSelect, 124
mSelect, 71
mSelectAll, 124
mSelectAll, 61
mSelectCount, 125
mSelectCount, 77
mSetCriteria, 125
mSetCriteria, 71, 72, 75, 77
mSetField, 126
mSetField, 69, 70, 78
mSetIndex, 127
mSetMedia, 127
mSetPassword, 128
mSetPassword, 81
mSetProperty, 128
mSetProperty, 93

CharacterSet, 95
Delimiters, 98
MinWordLength, 98
Months, 96
ProgressIndicator, 91, 94
ProgressIndicator.Message,

94
ShortMonths, 96
ShortWeekDays, 96
StopWords, 98

 INM V12 Database® for Director - User Manual page 197

String, 97
Verbose, 85, 95
VirtualCR, 94
Weekdays, 96

mUpdateRecord, 130
mUpdateRecord, 70
mXtraVersion, 136
mXtraVersion, 81
new, 21, 22, 49, 59, 60
V12Download, 133
V12DownloadInfo, 134
V12Error, 135
V12Error, 83
V12Status, 136
V12Status, 83

Microsoft Access, 158
Microsoft Excel, 159
Microsoft SQL, 147, 161
Mode, 49
Months, 96

O
Online Resources, 13
Opening a Table, 59
Operators

Greater than (>), 74
Operators, 73

Equal (=), 73
Less or Equal (<=), 73
Less Than (<), 73
Not Equal (<>), 73

Operators
Greater or equal (>=), 74

Operators
Starts, 74

Operators
Contains, 74

Operators
WordStarts, 75

Operators
WordEquals, 75

Operators searching, 73
Overview

INM V12 Database for
Director, 11

P
Packing a Database file, 80
Parameters, 22
Partial Selections, 77
Password, 49, 81
Pathnames, 22
Portability Issues, 90
Progress Indicator, 91, 94
ProgressIndicator, 91, 94
ProgressIndicator.Message, 94
Properties

Custom, 99
of Databases, 91, 93
Predefined, 94
String, 97

Properties, Custom, 99

Q
Queries

Boolean, 32
Complex, 32
Simple, 32

R
RAM buffer, 44
Reading a record, 64
Reading an entire selection, 64
Reading data, 64
Reading fields

of type date, 64
of type float, 64
of type integer, 64
of type media, 69
of type string, 64

Record Delimiter, 64
Relational database, 28
Resources, 95

S
Search Criteria, 32

 INM V12 Database® for Director - User Manual page 198

Complex, 32, 76
Contains, 74
Simple, 32, 72
Starts, 74
WordEquals, 75
WordStarts, 75

Selection, 32, 61
Records, 61
Size, 77

Shockwave, 24, 87
Delivering a Stand-alone, 87

Shortest word (Full-Index), 98,
130

ShortMonths, 96
ShortWeekdays, 96
ShowXlib, 20
Sorting Styled Text Fields, 78
SQL, 147, 161
Standalone Projectors, 87
Stop Words, 28
String, 79, 170, 172
String Property, 97
String Types (Custom), 170,

172
String.Language, 97
String.Language.Delimiters, 97
String.Language.MinWordLengt

h, 98
String.Language.StopWords, 98
Strings

Hebrew, 175
Japanese, 183
Spanish, 174
Swedish, 172

Structure
Database, 49

Syntax Errors
Lingo, 85

System Requirements, 16

T
TAB-delimited file, 37
Tech Notes, 13
Testing, 89
Text files, 37

Text Qualifiers, 38
Typecasting, 31

U
Using

Xtra Instances, 21

V
V12 Database Editor, 53
V12 Database Editor, 47
V12 Database Methods, 103
V12 Database Online

Companion, 11
V12BeginProgress (handler), 92
V12Download, 82
V12DownloadInfo, 82
V12Error (method), 83
V12Progress (handler), 92
V12Status, 83
V12Status (method), 83
Verbose, 95
Verisign, 24
Version

Determining, 81
Virtual Carriage Returns, 38
Virtual CR, 38, 94
VirtualCR, 94

W
Warnings, 84, 146
Watcher, 83
Weekdays, 96
What is ?

A database, 25
A field, 25
A record, 25
A search criterion, 32
A selection, 32
An index, 26
The current record, 32

Writing Data, 70
of type Date, 70

 INM V12 Database® for Director - User Manual page 199

of type Float, 70
of type Integer, 70
of type Media, 71
of type String, 70

X
Xtra Instance, 21

	Contents
	License Agreement
	Introduction
	INM V12 Database for Director
	INM V12 Database Online Companion
	INM V12 Database for Flash
	About This Manual
	Where to start
	Do I really need to master Lingo to use INM V12 Database?
	You’re not alone!
	V12-L discussion list
	Tech notes
	Other online resources
	Customer support and developer assistance

	Typographic conventions in this manual

	Welcome to INM V12 Database
	System requirements for running INM V12 Database
	Macintosh version
	Windows version
	Macromedia Director

	Installing INM V12 Database
	Version history
	Release notes from previous versions

	How to register your INM V12 Database license
	Additional Tools for Working with INM V12 Database
	INM V12 Database Editor
	INM V12 Database Behaviors Library
	INM V12 Database Help Files

	Using Xtras
	What is an Xtra?
	Making the INM V12 Database Xtra available in authoring and runtime modes
	Checking for available Xtras
	Creating an instance of the INM V12 Database Xtra
	Checking if New was successful
	Using the Xtra instance
	Closing the Xtra Instance
	Dealing with pathnames
	Passing parameters to the INM V12 Database Xtra
	Basic documentation
	Using INM V12 Database with Shockwave
	Verisign

	Database Basics
	Overview
	What is a database?
	Records, Fields and Tables
	Indexes
	Compound indexes
	Full-text indexing
	Database

	Flat and relational databases
	Field types
	Typecasting

	International support
	Selection, current record, search criteria

	Using INM V12 Database- Step by Step
	Overview
	INM V12 Database basics
	The main Ssteps

	Step 1: Decide on a Data Model
	Defining identifiers

	Step 2: Prepare the Data
	TEXT file formats
	Field descriptors
	Dealing with delimiter ambiguity
	Character Sets
	Dealing with dates
	Exporting a FileMaker Pro database to text
	Exporting a MS Access Database to text

	DBF file formats
	Field buffer size

	Step 3: Create a Database
	Database descriptors
	Defining both an index and a full-index on a field
	Alternate syntax for creating indexes
	Compound indexes
	Adding comments to database descriptors
	Multiple tables in a descriptor

	Using the INM V12 Database Editor
	Loading a descriptor from a source file

	Script the database creation
	Step 3a: Create a database Xtra instance
	Step 3b: Define the database structure
	Step 3c: Build the database

	View the structure of a database

	Step 4: Import Data into a V12 Database
	Import data with the INM V12 Database Editor
	Script the data importing
	Import data with mImport

	Using media with V12 Databases
	Advantages to referencing external media
	When to store media in a V12 Database
	Examples of embedded and linked media

	Step 5: Implementing the User Interface
	Using the INM V12 Database Behaviors library
	Using Lingo
	Open and close a database, a table
	Selection and current record
	Selection at startup
	Select all the records of a table
	Browse a selection
	Read data from a database
	Add records to a database
	Update data in a database
	Delete a record
	Delete all the records of a selection
	Search data with mSetCriteria
	Styled text management
	Exporting Data
	Cloning a Database
	Freeing up Disk Space (packing)
	Fixing Corrupted Database Files
	Checking the Version of the Xtra
	Changing a Password
	Dynamically Downloading Databases via the Internet

	Errors and Defensive Programming
	Error Management in Applications
	Checking the Status of the Last Method Called
	CheckV12Error
	Errors and Warnings

	Using the Verbose Property
	Preventing Data Corruption Due to Script Errors

	Delivering to the End User
	Standalone Projectors
	Shockwave Projectors and Movies
	Delivering a Shockwave Projector
	Delivering a Shockwave Movie
	Auto-installation

	Testing for end-users
	Portability issues

	Customizing INM V12 Database
	Progress Indicators
	Options of the ProgressIndicator Property
	User Defined Progress Indicators

	Properties of Databases
	Predefined Properties
	The String Property
	Custom Properties (Advanced Users)

	Capacities and Limits
	Database
	Creation
	Selection
	Importing
	Table
	Field
	Index

	V12 Database Methods
	mAddRecord (T)
	mBuild (DB)
	mCloneDatabase (DB)
	mDataFormat (T)
	mDeleteRecord (T)
	mDumpStructure (DB)
	mExportSelection (T)
	mEditRecord (T)
	mFind (T)
	mFixDatabase (S)
	mFlushToDisk (DB)
	mGetField (T)
	mGetMedia (T)
	mGetPosition (T)
	mGetPropertyNames (DB)
	mGetProperty (DB)
	mGetSelection (T)
	mGetUnique (T)
	mGo (T)
	mGoFirst (T)
	mGoLast (T)
	mGoNext (T)
	mGoPrevious (T)
	mImport (T)
	mNeedSelect (T)
	mOrderBy (T)
	mPackDatabase (DB)
	mReadDBStructure (DB)
	mSelDelete (T)
	mSelect (T)
	mSelectAll (T)
	mSelectCount (T)
	mSetCriteria (T)
	mSetField (T)
	mSetIndex (T)
	mSetMedia (T)
	mSetPassword (DB)
	mSetProperty (DB)
	mUpdateRecord (T)
	new (DB)
	new (T)
	mClose (DB)
	mClose (T)
	V12Download (G)
	V12DownloadInfo (G)
	V12Error (G)
	V12Status (G)
	mXtraVersion (S)

	INM V12 Database Error Codes
	Warnings

	Appendix 1: Database Creation and Data Importing Rules
	Text Files
	Literals
	Lingo Lists or Property Lists
	V12 DBE files
	DBF (Database Format)
	Microsoft FoxPro
	Microsoft Access
	Microsoft Excel
	Microsoft SQL Server
	Importing Media into a V12 Database

	Appendix 2: mGetSelection Examples
	Read an Entire Selection
	Read a Range of Records in a String variable
	Read a Range of Records in a Lingo List
	Read a Range of Records in a Property List
	Read the Entire Content of the Current Record
	Read a Record without Setting it as the Current Record
	Read the Entire Selection with Special Delimiters
	Read Selected Fields in a Selection
	Read Records with a Determined Order of Fields

	Appendix 3: String and Custom String Types
	 The Default String
	Predefined Custom String Types

	Appendix 4: Character sets
	Windows-ANSI Character Set
	Mac-Standard Character Set
	MS-DOS Character Set

	Appendix 5: Japanese support
	New field types
	Field of type SJIS
	Field of type Yomi (Yomigana)

	Data Importation

	Index

