LA System user manual — version 2009-08-18

]

LA System User Manual

H.A. van der Meiden, W. Pasman, F.W. Jansen
Delft University of Technology

This project was made possible by the support of the SURF Foundation, the higher education and
research partnership organisation for Information and Communications Technology (ICT). For more
information about SUREF, please visit www.surf.nl

http://www.surf.nl/

LA System user manual — version 2009-08-18

Table of Contents

LINEEOAUCTION ...ttt ettt e b e et e bt e e st e e bt e e ab e e sbbeeabeeebbesabeenabbeeessbbeeeanneee 4
2 (1T 71 5 0 o VPSPPI 4
B0 5 7 13 (o | TSP UUPPPRRRR 5
Starting the LA SYSIEIM......ccccuiiiiiieeeiieeeiee ettt ee sttt e ettt e st e e sbeeesbeeesateeessseeensnsbaeeeessannnsseeeeeens 5
DOINE EXOICISES . ..veeeutrieeiiieeeiieeeiteeetteestiteesiteeettee e taeesataeesaseesanseeennseeensseesasseesnsseesnsaeesaseeennsaeessnnnssenes 5
FEEADACK ...eeeeee e e et e et e e e e e et te e e e e e e e e e aaaaaaaaeaaens 7

) 1 Te 0] 0 S (3 1 TSP PUPR 8

4 SYSTEIM OVEIVIEW...ceuutiieiiieeriiteeiteeentteeestteeetteeetteestteesssseesasseesssaeessseeesaseeensseeesseessseesnseesnnseessseesnsseesnses 9
5.AddING aNd ©ItING EXETCISES.cervreerurireriieertteeriteesteeestteesstteesstteesatteeesaeessaeesseeesnseeesnsaeesssaeessnnnssnees 11
Editing fOrMIULAS.cooitiiiiieee ettt ettt st sbe e st esbeeebee e 14
FOTMULA TBTINS. ...ttt e e et e e st e e e s sttt e e essaaeeesnasteeesennnnnnnnnnes 15
6.Adding and editing TEWITLE TULES.ccoouiiiiiiiiiiie ittt ettt e e et e e st e e e e e eaaeeees 17
REWTIIEE TULES. ...t ettt ettt b e sttt e s e e saneeeenaee 17
ATTTDULEA NAINES.teeitieiieeieeei ettt ettt e bt et e bt e eab e e bt e sab e e bt e sab e e bt e sateenbeeeeanneee 17
PALIOTTI. ..ottt ettt ettt e ettt e e ittt et e bt s bt e e e e e aae s 18
(0TS 18 10§ PSSR 18
RESULL .t e et e e ettt e e e e ba e e e e s atbaee e e nsaaeeeentaeaeeeeeeeaaaaaannnnnnnnnae 19

User interface defiNItiONcocuiiiiiiiiiiieeiie ettt et e et st e e s tee e s e eabteeeeesennnes 20
7.Adding and €ditiNg STIALEEIES.....eeeeureeriieeriieertieeriteerteeeriteeeiteeetteeetteesseeesaseeesaseessasnsseeaesssssnssseeeeeens 21
GIAMMAT TUIBS. ...eeeieiiiiie ettt eet ettt e ettt e e e ettt e e ettt e e e sabteeeessbaeeeeaasbeaeeanssaaeaseessesssssssnnnnnnnnnnes 21

The meaning of @ Grammar TUIE..........cooiiiiiiiiii ettt ettt e s baee e 22
Attributes and $-Variables..........coeviririiiiieieee et 24
WITHNE SITALEZICS. ¢ uvvteeniiieeiieeeitte ettt e ettt e et e e et e et ee sttt e sbteesabteesabteesabeeesaaeeesateessbeeesaeesssaeeeessnnns 25
AdAING FEEADACK. ... etiieiiieeiieece ettt ettt e ettt e et e e st e e e bt e e s baeesbae e e eenntbaaeeeeannns 28
Example strategy: SoIveLinearEqNS.cccviiiiiiiiiiiiiiecieeeiee et ae s 28
FOTMULA TBTINIS.veiei et e e e e e e et e e e e e e e e esssaeeeeessaeeeesnnsaeeeessseaaaaeeens 28
REWTIEE TULES.....eeieeeiiiiee ettt e e et e e e et e e e e et e e e e ssaeeeeessaeeesenssaeeeennsaaaaaeeeeeeennn 28
GIaAMIMAT TUIES. ...coutiiiitiiiieet ettt et b e et esat e et e sabe e beesateesabbeeesanbaeeens 29
BUFEEADACK ...ttt e h e et b e sttt 32
AAING RINTS. .ottt ettt e ettt e et e e bt e e sabee e ettt e e e e eeabbaaeeeens 32
APPENAIX A DASIC TEIIMS. ...eeiuiitieiiieiiite ettt ettt ettt e et e ettt e et e e st e e e sabteesabeeesabeessabeesbbeesbbeesanbeesnneeeee 33
Appendix B: Dasic TEWIIE TUIES......ccccuiiiiiiiiiiieeie ettt et e et e s tae e st e e sbreeeeeennas 34
APPENAIX C: DASIC STTALEZIES. ..eeeeuvrieeurieeiiieiiieeeiteesiteesiteesteeesteeesbeeesateeessteessaseessseessseesnsseessssneeessennns 34

LA System user manual — version 2009-08-18

1. Introduction

The linear algebra training system (LA system) is a software tool for helping students improve their
competence in linear algebra. It enables students to do exercises on the computer, e.g. solving a system
of equations or proving a theorem, and gives intelligent feedback while the student is working on an
exercise.

The student works on an exercise by applying rewrite rules to a given formula. A rewrite rule makes a
calculation, based on the formula and input from the student, and replaces (part of) the formula with the
result. For example, a rewrite rule may swap two rows in a matrix, or compute the Eigenvalues of a
matrix. This way, the student can not make any calculation errors and saves a lot of time on tedious
calculations. Thus, the student can now focus on deciding which rules to apply.

Furthermore, because the student can only use a predefined set of rewrite rules, the system can track the
students actions, and give feedback during the exercise, i.e. whether the student is on the right track or
hints on how to continue the exercise. To be able to give feedback, for each exercise a strategy should be
defined, which describes the possible paths to the solution, i.e. sequences of rewrite rule applications,
in a generic way.

LA System user manual — version 2009-08-18

2. Installation

The LA system requires Mathematica version 6 or later to run. Mathematica is available for various
versions of Windows, Linux and OS X. For more information on Mathematica, see
[www.wolfram.com].

The LA system software is a set of Mathematica packages (.m files) which should be installed in a
directory that is in the Mathematica search path for packages. For more information about installing
packages, see See Mathematica documentation.

Exercises are specified in Mathematica notebooks (.nb files). A set of exercises is provided with the
LA system and should be installed in a single directory, and the name of this directory should be
specified in the LA system configuration file.

The configuration file:

The LAsystem reads configuration setting from file LAconfig.m. Some configuration settings that
can be edited are:

ExercisesDirectory: the directory where exercise notebooks can be found
SolutionsDirectory: the directory where student results (finished exercise notebooks) are saved.
LogsDirectory: the directory where log files (unfinished exercise notebooks) are saved.
HintButton: set StepButton = True to show Hint button in main menu.

StepButton: set StepButton = True to show Step button in main menu.

SolutionButton: set SolutionButton = True to show Solution button in main menu.
DevelopmentButton: set DevelopmentButton = True to show Dev button in main menu.
AutoSelectAll: if AutoSelectAll = True then, when user does not make a selection, select
complete formula when apply is pressed.

PunishHint: if True, then if hint button pressed, exercise will not be marked as finished.
PunishStep: if True, then if step button pressed, exercise will not be marked as finished.
PunishSolution: If True, then if solution button pressed, exercise will not be marked as finished.

http://www.wolfram.com/

LA System user manual — version 2009-08-18

3. Basic use

Starting the LA system
To start the LA system:
— start Mathematica
- open the file LAstart.nb (using the menu File—=Open)
— This notebook contains a button that starts the LA System.
Alternatively, first start Mathematica, and in a new notebook, type:

<< LAsystem”
and execute this command by pressing Shift+Enter (don't forget the back quote (*) at the end of
the line).

Two new notebook windows will pop up: the Working Notebook and the Button Notebook.
The working notebook shows a textual description of the exercise and a formula in which the user can
make selections. The button notebook contains buttons that allow the student to manipulate the formula
in the working notebook.

Doing exercises.

An exercise can be loaded by pressing the Exercises button. Whenever a user finishes an exercise,
quites or loads a new exercise, the current working notebook is saved so it can be inspected later (by a
teacher). Finished notebooks are saved in the SolutionsDirectory setin the configuration file.
Unfinished notebooks are saved in the LogsDirectory setin the configuration file. Exercises that
have been finished will be marked “Finished” in the list of exercises shown in the LA system.

A student works on an exercise by applying rewrite rules to a formula. By doing so, the formula is
transformed into one that answers a problem stated in the description of the exercise. For example, if an
exercise asks for a student to solve a system of equations, then the formula is a system of equations, e.g.
{ x1 +3x,=4, 2 x; — X, =0}, and this formula should be transformed by the student into a set of trivial
equations, i.e. of the form {x; = ..., x, =}.

To apply a rewrite rule, first a selection must be made in the working notebook. Then, in the button
notebook, the Apply button should be pressed and a list of applicable rewrite rules will appear.
Typically, a rewrite rule transforms the selected part of the formula, or manipulates a larger part of the
formula using the selection as a parameter of the rewrite rules. The user may also be asked to enter
parameters in a dialog that appears when a rewrite rule is selected.

Selections can be made with the mouse (or a similar input device). A selection is the entire formula or a
part of the formula, e.g. a single equation or a row in a matrix. The formula is a nested expression,

LA System user manual — version 2009-08-18

containing numbers, variables, functions, matrices, definitions and other constructions. A selection is
the entire formula or a part of the formula that is a proper sub-expression, i.e. it can not contain an
unbalanced set of brackets.

When a rewrite rule has been applied, the description of the rule application is printed in the notebook,
below the formula. A new formula, the result of the rewrite rule on the previous formula, is then printed
below that. Selections can now be made in and rewrite rules can be applied to the new formula, and in
general, only the bottom formula of the working notebook. Thus, a complete transcript of the students
actions to solve a problem is created in the working notebook.

Consider the following example of a rewrite rule application. Figure 1 shows the working notebook
with an exercise. The user has selected a set of equations, marked in black.
E& LAsystem working MNotebook - O x

Exercise 1.1.2:

Solve the system

{ K1+ 5xg ==7
—23{]—?3{2==—

by using elementary row operations on the augmented
matrix. Follow the svstematicelimination

procedure described in 1 .1 of the book.

M1+ bHg =7
—2x1 —THg=-5

Figure 1: working notebook

In the button notebook, shown in Figure 2, after the Apply rule button is pressed, a number of
applicable rewrite rules are shown.

E8 Lasystem Button MNotebook _ O

(v Apply rue] [t [Step | [Undo | [Exerses] [qu]

I convert set of equations to augmented matrix]

’convert set ofequationsto parameterrepresentationl

Cancel

Lt Lo M

Figure 2: button notebook

LA System user manual — version 2009-08-18

Clicking on the rule: “convert set of equations to augmented matrix”, results in an updated working
notebook, show in Figure 3.

E& LAasystem Working Netebook

Exercise 1.1.2:
Solve the system

{ H1 + 5xg==T7
—2x) —Txg==-5

by using elementary row operations on the augmented
matrix. Follow the systematicelimination

procedure described in §1 .1 of the book.

X1+ 5xg =7
—2x) - TxHg=—

| I— |

[N |

| convert set of equations to augmented matrix
.‘1'-3":2
[1 5 T]
-2 -7 -5 s

Figure 3: updated working notebook

To undo a rewrite-rule applications, use the Undo button.

Feedback

The LA system tracks the progress of the student during the exercise. The progress of the student is
compared to a strategy that is defined with the exercise. The system determines when the student has
finished the exercise, i.e. arrived at a correct answer. In that case, the system prints a message at the
bottom of the working notebook stating that the exercise is finished, and no more selections can be
made to apply rewrite rules. Note that there may be several answers, and several ways to arrive at an
answer.

When the step taken by the student does not match the strategy, the system will inform the student that
the step is not correct, and back-track by undoing the last performed step. It will however still show the
result of the last step, so the user can (hopefully) see why the result is not correct.

When the student gets stuck, he or she may ask the system for a hint by pressing the Hint button. A
dialog will be presented with a description of how to arrive at the answer. The hint system determines
the hint from the exercise strategy and the previous rewrite rule applications. If more hints are
requested, progressively more specific hints will be given.

LA System user manual — version 2009-08-18

The user can also ask the system to do the next step, by pressing the Step button. This may be
repeated until the exercise is finished (and the student can try the next exercise on his/her own).
Alternatively, pressing the Solution button will present a complete solution for the exercise, i.e. all
steps are executed automatically.

LA System user manual — version 2009-08-18

4. System overview

To be able to create new exercises for the LA system, some knowledge of the design and
implementation of LA system is needed. An overview of the system is provided here that will help the
reader understand the following sections.

The LA system is a Mathematica application. It uses the Mathematica front-end to create a user
interface and it uses Mathematica's pattern matching capabilities to implement rewrite operations on
formulas in exercises.

The formulas manipulated by the rewrite rules are not expressed using the standard mathematical
symbols and definitions supplied by Mathematica. In Mathematica, the expression Plus[3,4]
automatically evaluates to 7. This is not desirable for formulas in the LA system, because formulas
should be changed only by applying rewrite rules. Therefore, formulas are written using so-called LA
symbols, e.g. instead of Plus[3,4], we write LAPlus[3.,4].

LA symbols are defined in the file LAterms.nb. For most Linear Algebra exercises these symbols
are sufficient, but for different domains, new symbols will have to be defined. Also, for displaying and
reading these symbols in the Mathematica front end, definitions will need to be added to
LAconvert.nb.

One part of the LAsystem that may need to be customized for new exercises is the set of rewrite rules
available in the LAsystem. The current rule set contains rules for linear algebra, but other domains can
also be added. Rewrite rules are defined in the file basicrules.nb.

Another important part of the LA system are the strategy definitions . A strategy language allows for a
compact description of all possible solution paths for a type of exercise. This description is read and
interpreted by the strategy parser, which is part of the system. When the user works on an exercise, the
parser follows the steps taken and compares these steps with the strategy. The parser can decide
whether the user is following the strategy, or not, and when the user deviates from the strategy, the
system can provide a hint to guide the user in the right direction.

A solution path can be described as a sequence of rewrite steps. However, many different solutions
paths may exist for a given exercise, €.g. some rewrite steps can be executed in any order. The strategy
description should therefore be powerful enough to describe all solutions paths, in a compact way. The
strategy language is based on a context-free grammar, extended with special control structures (the not
and parallel operator). Strategies can also be re-used as sub-strategies for complex exercises.

All strategies available to the LA system are defined in the file basicstrat.nb. The current set of
strategies is for linear algebra, but other domains can also be added.

The LA system source code consists of the following .nb files:

Site customisation:
LAconfig.nb
LAstart.nb

LA System user manual — version 2009-08-18

Configuration options
Simple start-up notebook

Definitions specific for Linear Algebra.

basicrules.nb
basicstrat.nb
LAterms.nb
LAconvert.nb

LA system source code:
LAsystem.nb
LAtools.nb
ReadNotebook.nb
SimpleMatrixSelection.nb
Tools.nb

common.nb

hint.nb

interfaces.nb
strategy.nb

wraprule.nb

Strategy language and parser:

parstratparser.nb
code.nb
unification.nb

Rewrite rule definitions

Strategy definitions

Formula symbol definitions

Convert Mathematica expressions to LA system formula symbols

LAsystem main code, mostly user-interface stuff
Functions for doing Linear Algebra

Functions for doing selection in workingnotebook
Functions for selecting parts of matrices in formulas

Misc functions

Functions that are used everywhere, e.g. for error handling
Functions for generating hints

Functions for showing dialogs used by some rewrite rules
Functions for managing database of strategies

Functions for managing database of rewrite rules

Implements strategy language and parser
Implements Code blocks for use in rewrite rules and strategies
Implements unification of attributed names and $variables

A lot of extra documentation can be found in the .nb files, and it is recommended to edit these files
when modifying the LA system, instead of the .m files. After editing a .nb file, a new .m file is
automatically created (Mathematica is set up to do this automatically by default). To see changes in the
LAsystem, all definitions in the file need to be re-evaluated. The safest way to re-evaluate the
definitions is by restarting the Mathematica kernel and re-leading the LAsystem package. However, in
most cases it is sufficient to evaluate the modified notebook, or to re-load the modified package.

10

LA System user manual — version 2009-08-18

5. Adding and editing exercises

Exercises are specified in notebook files and can be edited using Mathematica. Exercises are defined by
notebooks (.nb files) found in ExecisesDirectory (setin LAconfig.m). An exercises can be
dynamic, i.e. have different numbers each time it is loaded, if the cells in the notebook use the 'code’
style. The style of a cell can be set via the Mathematica front-end. A 'code' style cell will be displayed
with a gray background.

An exercise notebook should contain two, three or four cells:

e The first cell contains a textual description of the exercise, which is copied to the working
notebook when an exercise is loaded. If the cell uses the 'code’ style, it will be evaluated and
should yield a box representation of the description to be displayed.

e The second cell contains the formula, which is also copied to the working notebook. If the cell
uses the 'code’ style, it will be evaluated and should yield an LA expression

e The third cell is evaluated by Mathematica and should yield a list of rewrite rule names, which
can be used by the student for this exercise. If this cell contains the symbol A11 or
AllwrapRules, oris left empty, or does not exist, then all rewrite rules defined in the LA
system will be available. This cell is evaluated by Mathematica so it can be used to define
rewrite rules or to include files with rewrite rule definitions (see Section 6).

e The fourth cell is evaluated by Mathematica and should yield the start symbol of the strategy
that is used for this exercise. This is generally of the form: gterm[name, args...].fthis
cell s left empty (or does not exist) then no strategy is defined and no tracking and feedback
will be available. This cell is also evaluated by Mathematica so it can be used to define
grammars for strategies or to include files (see Section 7).

An example exercise notebook is shown in Figure 4. This example does not use the 'code’ style.

11

LA System user manual — version 2009-08-18

File Edit Insert Format Cell Graphics Ewvaluation Palettes Window Help

Solve the system described by the following augmented matrix in =y and x;:

ESRE]

=] A= =
L Iy)
oo W

ESRET]

StudSolwve { [4 5 6

: Vars|[x,, xz]
7829

Alll j

gterm["Solvelug", {}] j

(] [+]»)

Figure 4: exercise notebook

Editing formulas graphically

Formulas in an exercise can be edited graphically (WYSIWYG) using the Mathematica front-end. In
particular, for changing numbers in the formula around, this is easy.

For some mathematical constructs the notation used by the LA system is different from the notation
used by Mathematica. In particular, a matrix in Mathematica can be represented simply by a block of
numbers, but in the LA system, high round brackets are required around a matrix for it to be correctly
recognized. A matrix with the names of variables above it is called an augmented matrix, and this
notation is also frequently used in the LA system (e.g. in Figure 4).

Editing variables in a formula by hand is possible but tricky. In Mathematica, any symbol that is not
defined can be used as a free variable. However, in the LA system, a real valued variable must be
represented by RealVar [name], where name is any string. To create variables with a subscript is a
bit tricky; we need to use special string layout control characters: a variable x, is represented as:
RealVar["\!\(x_1}1)"]. Or, alternatively, we can use RealVar[Subscript[“x”, 1]]. In the exercise
notebook, however, we can not see the RealVar notation, because it is encapsulated in a so called
InterpretationBox, which allows Mathematica to maintain a separate representation and interpretation.
To see the complete contents of the cell without formatting, press Ctrl+Shift+E (and again to switch

back to normal view). Now, both the representation and interpretation of an InterpretationBox can be
edited.

To make entering and editing formulas easier, two palettes are bundelled with the LA system, called LA

system variables and LA system matrices, which provide buttons for entering variables
with subscripts, special symbols and matrices. These palettes can be installed from Mathematica, or by

12

LA System user manual — version 2009-08-18

placing them in a special directory (see Mathematica documentation on Installing Palettes).

LA symbols and LA expressions

Instead of graphically entering or editing formulas in the exercise notebook, as described above, it is
also possible to enter a formula using the formal notation used internally in the LA system, i.e. using
LA symbols, to construct an LA expression. This also allow us to create exercises with generated
content, such as exercises of the same type but with different numbers.

For example, the formula in Figure 4, is represented internally by the following LA expression:

AugmentedMatrix|
LAMatrix([{1l, 2, 3}, {4, 5, 6}, {7,8,9}1],
{RealVar[Subscript[“x"”,1]], RealVar[Subscript[“x”,1]1]}
]

This expression can be entered in the second cell of a Mathematica notebook, if this cell uses the 'code’
style. These cells are displayed with a gray background. (Press Ctrl+8 to change a cell to the 'code’
style).

Most mathematical symbols defined in Mathematica, cannot be used to represent formulas in the LA
system, because Mathematica will evaluate those expressions. For example, the symbol Plus is already
defined in Mathematica, and Plus[1,1] would instantly be rewritten to 2. Instead, use the term

LAPlus[1,1], which will appear in the LA system as 1+1.

The terms defined by the LA system are described in Appendix A. New terms can also be defined, in
the file LaAterms.m, and conversion rules for displaying LA expressions re defined in LAconvert.m.

To convert between regular Mathematica expressions and LA expressions, use the Exp2L and L2Exp
functions, e.g.:

Exp2L[Plus[1,1]] - LAPlus[1,1]
L2Exp[LAPlus[1,1]] -» Plus[1l,1] - 2

For creating variables and parameters with subscripts, use the Subscript symbol:

RealVar[Subscript[“x”,2]] will display as x,

13

LA System user manual — version 2009-08-18

6. Adding and editing rewrite rules

The LA system defines a standard set of rewrite rules in the file basicrules .m. This file is loaded
when the LA system is loaded. An overview of the basic rules implemented in the LA system is given
in Appendix B.

New rules may also be defined in a exercise notebook, in the 3™ cell, which is also used to specify the
rule set that should be available for the specific exercise. This cell is evaluated by Mathematica, and can
therefore contain a complete program that defines new rules and eventually returns a list of rule names.

Rewrite rules

A rewrite rule consists of two parts:
1. An attributed name (gterm), used to refer to the rule
2. A rule with a position (RuleAtPos), consisting of a pattern, a position and a result.

In Mathematica, a rewrite rule is represented as:

RewriteRule][
gterm["name", attributes...],
RuleAtPos[pattern, position, result]

A pretty notation for the rule is:

name (attributes...): pattern @position — result

This pretty notation can be generated by the LA system, but currently can not be used to define rules.

Attributed names

An attributed name is a structure of the form: name]attributes...], which is used to refer to a rewrite
rule or a grammar rule (see Section 7). An attributed name is represented internally (in Mathematica
code) by a gterm structure: gterm[name, attributes...].

The name of a rewrite rule must be a lower case string (as opposed to names of grammar rules, which
must start with a capital letter). Attributes of a rule may be $-variables, i.e. symbols starting with a $
and that do not contain any upper case characters, e.g. Srow and $x are valid attribute names, but
$Row and x are not (these symbols are treated as constants). A rewrite rule can be instantiated by
referring to the attributed name, where $-variables are replaced by values. Rewrite rules may be
completely instantiated (e.g. somerulename[2, 2]), may be left uninstantiated (e.g.
somerulename[$x, $y]) or instantiated partially (e.g. somerulename[1l,$z]).

14

LA System user manual — version 2009-08-18

The same $-variable can be used more than once in the attributed name of a rewrite rule, e.g. we can
define somerulename[$x, $x]. Attributes are unified with the 'function call'. For instance, if
somerulename[1l,Sy] is called, $x would be set to 1, and if the rule can be applied, on return Sy
would also be set to 1.

Pattern

A rewrite rule is applicable to any expression that matches the specified pattern. The pattern is a
Mathematica expression with blanks and pattern variables, and is matched with the expression by
Mathematica.

Basically, a pattern is an expression that contains so called blanks and pattern variables. A blank is
represented by an underscore (_) and can match any expression. A pattern variable is a symbol ending
with an underscore (e.g. x_) and when matching the variable is assigned a value corresponding to the
matched expression. The pattern variable can be reused (without the underscore) in the result of the
rewrite rule. A blank followed by a symbol (e.g. _LLAMatrix) matches only expressions with a given
head. A sequence of two blanks (__) matches any sequence of 1 or more expressions and a sequence of
three blanks (___) matches any sequence of zero or more expressions (see Mathematica documentation
for more details on matching).

Consider the following rewrite rule:

myrule:x LAMatrix — Transpose[x]

This rule matches only with expressions of the form LAMatrix[...] and assigns the matched expression
to the variable x. When the rule is applied, it replaces the matched expression with the result of
Transpose[X].

Position

The position argument of a rule specifies to which subterm of the current term (in the
formula/expression workingnotebook) the rule should be applied. Positions are specified using the
conventions of Mathematica (see Mathematica documentation on Position). The pos argument can be a
$-variable. If no value is associated with the pos argument, then the LA system will search for a
matching subexpression in the current term. If a position is given (by the user or the strategy parser)
then the rule is applied only if the specified subterm matches the pattern. If an explicit position (instead
of a $-attribute) is given in the definition of the rule, then the rule is always applied at the same position
in the current term, if that subterm matches the pattern.

Result

The result of a rule is a term that replaces the term on which the rule was applied (a subterm of the

15

LA System user manual — version 2009-08-18

current term, specified by the position argument). The result may be any Mathematica expression
(although, in the LAsystem, it is typically an LA expression) and it may refer to the variables specified
in the pattern. The expression will be evaluated only when the rule matches.

Also, the result may be Code block. A code block may contain arbitrary Mathematica code, which will
be evaluated when the rewrite rule is applied, and only inside the code block will $-variables be
evaluated, i.e. the $-variables specified in the gterm and the $-variables that specifies the position. For
example, Code [$x] returns the value of $x (if a value is defined for $x, otherwise the symbol $x is
returned).

When the result of a rewrite rule is the special value $Failure, the rewrite rule is not applied, i.e. the
term is not replaced. Also, if an error occurs in a Code block, $Failure is returned and thus the rule is
not applied. It is recommended to always use a Code block to specify the result of a rule (except
perhaps for very simple rules) because it guarantees that Mathematica functions are not evaluated
before rule application and any errors that may occur during rule application are correctly handled.

Here is an example of a rewrite rule implemented in the LA system:

RewriteRule[gterm["swaprows", $rl, $r2],
RuleAtPos|
AugmentedMatrix[mat LAMatrix, vars],
$pos,
Code[AugmentedMatrix[SwapRows[mat, $rl, $r2], vars]]

]

This rule, named “swaprows” swaps two rows in an augmented matrix. Its attributes are the row
numbers of the rows to be swapped. The pattern specifies that the rule is applicable to a term that is an
AugmentedMatrix containing an LAMatrix (assigned to a variable mat), and a list of variables
(assigned to variable vars). The position in the current term where the rule is applied is automatically
determined, as $pos is not an attribute of the gterm. The result is a Code block, in which $r1 and $r2
will be replaced by values when the rule is applied, and these values are passed to the function
swapRows (defined by the LA system). A new AugmentedMatrix is constructed with a new LaAMatrix,
the result of swapRows, and the same variables as the original term.

User interface definition

For the user to be able to apply rules, a user interface must be created for each rule. This is done with
the WrapRule function. Calling wrapRule[rule, description] creates a basic user-interface for a
rule: When a selection is made in the working notebook that matches the pattern defined in the rule,
then the rule becomes available in the button notebook (after the user has pressed the apply button).

Many rules require additional parameters to be specified by the user. When a rule is applied, it calls the
function AskParameters[rulename, currentterm], where rulename is the name of the applied rule

16

LA System user manual — version 2009-08-18

and currentterm is the term in the working notebook, including the selection. The selection is a subterm
of the current term, represented as Focus[selection] where, selection is the subterm that was
selected. For example. if the current term is: LAPlus[Focus[LATimes[3,4]],5], then the complete
formula is 3*4+5 and the selection is 3*4.

The AskpParameters function can be redefined for each rule, and can determine parameter values by
asking the user for input (via dialogs) or determine parameter values from the current term (the context
of the rule application). The AskParameters function should return a list of parameter values, for
subsequent attributes specified in the gterm of a rewrite rule. If it returns anything other than a list, the
rule application is canceled.

For example, for the “swaprows” rule, the following AskParameters function is defined as:

AskParameters["swaprows", mat_ LAMatrix] := Module[{oldrow, newrow, matlen},
oldrow = Position[mat, Focus][[1l, 111;
newrow = AskRowNumber [
"swap row number " <> ToString[oldrow] <> " with row number:",
Length[mat]];
If[newrow === Null || oldrow == newrow, Null, {oldrow, newrow}]

17

By default, a rule is applicable only if the selection matches the pattern specified in the rewrite rule. It
is possible to activate rules with other selections, for example, a swap rows operation in a matrix can be
applied when selecting a row in the matrix (note: the rule rewrites the whole matrix). For such rules, we
can redefine the wrapPattern[rulename] function. This function should return a pattern containing
an Focus term. If a match is found, then the rule is applied to the matching subterm of the current term.

The “swaprows” rule can be applied when a row in a matrix is selected instead of the entire matrix.
Therefore, the wrapPattern for this rule is defined as :

WrapPattern["swaprows"] := LAMatrix| , Focus[_1, 1;

Automatic rules

These rules are special in that it is automatically executed when specified by a strategy, or, if no
strategy is specified, then it is automatically executed whenever a term can be simplified. Thus, the user
of the LA system never explicitly applies these rules. If the rule is properly defined, it should not be
applicable when it has already been applied once, and thus should not visible in the list of applicable
rules. The LA system will execute automatic rules only once, even if applicable several times, thus
preventing infinite repetition.

Automatic rules can be defined by evaluating

IsAutomaticRule[name_]=True

17

18

LA System user manual — version 2009-08-18

LA System user manual — version 2009-08-18

7. Adding and editing strategies

A strategy is a set of permissible rewrite sequences on a given term. A strategy is described in a
strategy language, consisting of grammar rules, which describe how to generate such sequences. The
strategy language is based on a context free grammar (CFG), where the terminals of the CFG refer to
the available rewrite rules, and a "string" produced by the CFG is a rewrite sequence. This basic CFG
was extended with attributes, with a not operator and with a parallel operator, to fill in the need for
more powerful notations to enable compact notation of strategies.

To set the strategy that should be followed for a given exercise, a single gterm is specified in the 4™ cell
of the corresponding exercise notebook. This gterm is the start-symbol of the strategy, typically its
name describes the strategy and its attributes specify details, such as the sub-term on which the strategy
is to be applied, or a variant of the strategy, e.g2. SolveLinearEgs[$pos, $vars]. The start-symbol
should be a gterm that appears (or can be unified by variable substitution with a gterm that appears) on
the left-hand side of a grammar rule.

The grammar rules of the strategy can be specified in the file basicstart.m orin the 4" cell of the
exercise notebook (note that the cell should still evaluate to a gterm, to be used as the start-symbol of
the strategy for that exercise).

Grammar rules

A grammar rule defines a grammar term, specified by an attributed name (gterm) on the left hand side,
and a sequence of terms on the right hand side. Each term on the right hand side (rhs-term) can be one
of:
e An attributed name (gterm[Name, . . .]) that matches a grammar rule or rewrite rule
definition;
A Code block: Code[...];
A not operator: not[gterm[...]] where again the gterm matches with some rule;
A parallel operator: par[gterm[...], gterm[...]] where both gterms match with
some rule;
e (experimental!) A finish operator: finish[gterm[...]] where gterm matches a grammar
rule

The attributed name (gterm) at the left-hand side of a grammar rule must be a string that starts with a
capital letter, e.g. “SolveLinearEqs”. On the right hand-side, attributed names (gterms) may appear that
refer to other grammar rules (names starting with the first letter capitalized) or rewrite rules (lowercase
names).

19

LA System user manual — version 2009-08-18

The notation for a grammer rule used in this document is as follows:

Name(args...) := rhs-terms...

The pretty notation can be generated by the strategy module, but cannot (currently) be used to input
grammar rules; instead, a grammar rule is represented in Mathematica as:

GrammerRule[gterm[“Name”, ..], { rhs-terms.. }]
where rhs-term is one of: gterm[...], not[gterm[...]] or par[gterm[...], gterm[..]].

To add a grammar rule to the rule set that is kept by the LA system, use the following Mathematica
expression (which takes the same arguments as a GrammarRule definition):

AddGrammerRule[gterm[“Name”, ..], { rhs-terms.. }]

The meaning of a grammar rule

In short, a grammar rule specifies a strategy that corresponds to a sequence of sub-strategies and/or
rewrite rule applications.

More precisely, a grammar rule specifies that the attributed name on the left-hand-side (a strategy), is
applicable if all the terms in the sequence on the right-hand-side are applicable, in the given order.

Note that 'applicable' has a different meaning for grammar rules (strategies) then for rewrite rules: a
grammar rule is applicable to a sequence of grammar terms, and rewrite rule is applicable to a formula
term. A grammar term that refers to a rewrite rule is applicable when the rewrite rule has been applied
by the user. (It would perhaps be better to say that a grammar rule is recognized by a sequence of terms,
instead of applicable to a sequence of terms). To apply a strategy means to apply some sequence of
rewrite rules such that the strategy is applicable. There may be many such sequences, or none.

When a rewrite rule is applied by the user, the attributed name of the rule (with any $variables replaced
by values set by the user) is sent to the strategy parser that is part of the LA system. The parser then
determines which strategies are applicable to the current sequence of rewrite rule applications, i.e. if all
the terms on the right hand side of a grammar rule are applicable, then the grammer term on the right
hand side is applicable.

The applicable grammar terms are stored in a parse state, which is incrementally updated every time a
rewrite rule is applied. If the start-symbol (the strategy specified for the exercise) is applicable, then the
parse state is finished. The parser can also determine whether it is still possible to finish the parse, by
trying all possible rewrite rule applications specified by the strategy. If so, then the parse is on-track,
otherwise the parse is dead,

20

LA System user manual — version 2009-08-18

To give an example, consider the following strategy:
S:=rl r2

Strategy S is applicable if the sequence r1 r2 is applicable. The terms rl and r2 refer to rewrite rules,
and therefore, for s to be applicable, the user must first apply rule r1 and then apply rule r2.

Several grammar rules with the same left-hand-side are interpreted as alternative strategies.
For example:

S:=rl
S:=r2

This means that the strategy S is applicable if r1 is applicable or r2 is applicable. Thus, for S to be
applicable, the user must apply rule r1 or rule r2, but not both, because then sequence the sequence r1
r2 is applicable, not the sequence r1 or the sequence r2).

A Code block in a grammar rule is applicable if it does not return $Failure. A Code block is
immediately executed by the parser as soon as it needs it to recognize a strategy. If the Code block
returns $Failure, the associated parse attempt fails and the corresponding strategy is not applicable. But
all other return values are ignored. A Code block can be used for its side effects: setting and clearing
attribute values, or for letting a strategy fail.

The not[X] operator checks that a attributed name X can not be applied, i.e. not[X] can be applied if X
can not be applied. The not operator is slightly special: whenever the parser is testing a not, rewrite
rules can be called without having the $pos variable being set. If it is not set, the parser will try all
potential positions where the rule can be applied. For each applicable position, $pos will be set
accordingly' and further parsing is tried.

The par[X,Y] operator checks that attributed name X and Y can be applied in parallel (in other words,
interleaved). Either X or Y can "eat" the the next rewrite actions of the user. It is possible to share
attributes between X and Y. Shared attributes are those attributes that occur in both X and Y within the
par[]. So in the call par(T($x,5,aap($w),$z), U($z,ga($w),S$c)) the attributes $z and $w occur
in both heads and thus are shared between T and U. This way, the parsers for X and Y can
"communicate" about their progress and influence the other parser.

Note: The parser internally needs to keep track of all possible in-between results of X and Y. With
excessive ambiguity, the parser may run out of memory. Therefore it is important to minimize
ambiguity of X and Y. This problem can also occur if one parser makes multiple assignments to a
variable. As with ambiguity, all these possible assignments have to be tracked separately and excessive

' This is not possible during normal parsing, as each different application position requires a separate parser.

21

LA System user manual — version 2009-08-18
occurrences may cause excessive memory and CPU usage.

(experimental!) The finish[X] operator shortcuts a strategy by asserting that is is applicable. It is
assumed that finish[X] occurs only inside strategy of X. When finish[X] is encountered by the parser,
any remaining, not yet applied sub-strategies of X are skipped, and X is marked as if it had been
completely applied. Thus any strategy depending on X can be continued. This operator is useful to
'split' a strategy during its execution.

Note: the finish operator is a bit of a hack, and has not been fully tested. It may cause problems when
encountered during a parallel parsing situation. It does not fit well in concept of a context-free
grammar; rather it is something that is possible because the strategy parser is a so-called chart parser
(see strategy parser manuals).

Attributes and $-variables

A term referring to a rewrite rule is applicable if the rewrite rule has been succesfully applied, and if all
$-variable attributes have a value, However, terms referring to grammar rules (strategies) can be
applicable even with uninstantiated $-variable attributes. A grammar term with uninstantiated $-
variables is applicable if there is an applicable grammar term that can be unified with it, i.e. if there is
an assignment for the variables such that the terms is equal to an applicable term.

For example, consider the following strategy:

S:=T[$x]
T[$y]:=Code[S$y=1]

Strategy S is applicable if T[$x] is applicable. T[$y] is applicable if the Code block is applicable. The
Code block is in fact applicable, because it does not return $Fail, Also, the code block sets $y=1 and the
parser determines that therefore T[1] is applicable. T[$x] can be unified with T[1] by unification, i.e. by
assigning $x=1, and therefore S is applicable.

A special variable $CurrentTerm can be used in Code blocks that refers to the formula term at the
appropriate point in the rewriting sequence as recognized by the stategy. So, for example, given the
following strategy:

S:=Code[Print[$CurrentTerm]], addl, Code[Print[$CurrentTerm]]

Starting a parse with a formula term “100”, the parser first prints “100” and then waits for the user to
apply the rule add1. After the user has applied the correct rule, the parser prints “101”.

22

LA System user manual — version 2009-08-18

Writing strategies

With only basic operators (par and not) it is somewhat difficult to write complex strategies; strategies
can become long and difficult to read. Strategy descriptions are not always intuitive because they
specify not 'how' to apply a strategy, but 'when' a strategy can be applied. Also, there are difficulties due
to the syntax of the strategy language. This results in strategies containing many sub-strategies that do
very little actual 'computation’, but are needed for appropriate handling of conditions on attribute
values.

Therefore, some commonly used control-structures from other programming languages have been
implemented as strategies that can be used to write more easily readable strategies (see also Appendix
O).

RepExh
RepExh[$s] repeatedly applies the strategy $s, until it fails.

For example, consider the following strategy:

subl: x -> x-1
DoSubl: {Code[If[x>0, S$Failure]], subl}
T:=RepExh[DoSubl]

With $currentTerm = 3, T can be applied if the following sequence of rewrite rule has been
applied: {subl,subl,subl}.

The implementation of RepExh is simple and instructive:

RepExh[$s] :
RepExh[$s] :

$s RepExh[$s]
not[$s]

The first line states that RepExh[$s] can be applied if $s can be applied, and subsequently RepExh[$s]
can be applied recursively. The second line states that when $s fails, not[$s] must be applicable, and
therefore RepExh[$s] can be successfully applied. Effectively, RepExh[$s] repeatedly applies $s until
application of $s fails (RepExh[$s] does not fail, even if $s cannot be applied even once).

If

If[$condition, $s1, $s2] applies strategy $s1 if condition evaluates to True or else applies strategy $s2.
Note: $condition must be a Code block (or any other holded expression, e.g. Hold or HoldComplete).

For example: consider the following stategy:

T:=If[Code[$CurrentTerm>1], GoDown, GoUp]

Suppose that $CurrentTerm == 2, then to apply T, the user must apply strategy GoDown. Suppose that
$CurrentTerm == 0, then the user must apply strategy GoUp.

23

LA System user manual — version 2009-08-18

The If strategy does away with the need for several grammar rules to describe a conditional strategy.
The If strategy is defined as:

If[Scondition, $sl, $s2]:=Code[If[S$condition[[l]]]===True, $Failure]], $s2]

If[Scondition, $sl, $s2]:=Code[If[S$Scondition[[l]]]=!=True, S$Failure]], $sl]

The first line states that If[condition, $s1, $s2] can be applied if the condition is not True (because then
the code block returns $Failure) and $s2 can be applied. The second line states that If[condition, $s1,
$s2] can be applied if the condition is not False (because then the code block would return $Failure)
and $s1 can be applied. So, if the condition is True, then $s1 must be applicable (or the whole strategy
will fail), and if the condition is False, then $2 must be applicable (or the whole strategy will fail). If
the condition is neither True nor False, then also $s2 should be applicable, or the whole strategy will
fail. In other words, when an exercise specifies this strategy, the user must apply $s1 if the condition is
True, or $2 otherwise.

There is also a shorter form of the If strategy, where it is not explicitly specified what to do if condition
is is False:

If[$condition, $s] := If[S$Scondition, $s, Pass]

While
While[$condition, $s] applies strategy $s while $condition is True.

Attribute $condition must be a Code block (or any other holded expression, e.g. Hold or
HoldComplete).

The $condition is typically a condition on the $CurrentTerm, modified by a rewrite rule. For example,
consider:

addl: x-> x+1
DoAddl: {addl}
T:=While[Hold[$CurrenTerm < 5], DoAddl]

Given $CurrentTerm=1, T is applicable if {addl, addl, addl, addl} has been applied.

The While strategy is defined as follows:

While[$condition, $s] := RepExh[If[S$Scondition, $s, Fail]]

24

LA System user manual — version 2009-08-18

ForSeq

ForAll[$var, $values, $s] repeatedly applies $s for all values in $values, assigned to $var, in sequential
order. Here, $var is a $-variable, $values is a list of values for $var and $s is a strategy using $var as an
attribute.

ForAll
ForAll[$var, $values, $s] applies $s for all values in $values, assigned to $var, in any order order. Here,
$var is a $-variable, $values is a list of values for $var and $s is a strategy using $var as an attribute.

ForOne

ForOne[$var, $values, $s]: applies strategy $s for any one (and only one!) value in $values, assigned to
$var. Here $var is a $-variable, $values is a list of values for $var and $s is a strategy using $var as an
attribute.

Pass

The strategy Pass applies no rewrite rules but never fails. This is sometimes handy to make a strategy
more readable.

Fail
The strategy Fail always fails, i.e. the opposite of Pass. In fact, it is defined as: Fail:=not(Pass).

Note: For technical reasons (this is a limitation of the current parser implementation) any sub-strategies
called by the constructions above (i.e. the strategies assigned to $s, $s1, $2 etc) cannot refer to rewrite
rules. Instead, the attribute should be a simple strategy that applies the rewrite rule, e.g. instead of
While[Code[...], makezero] we should write while[Code[...], MakeZero] and
MakeZero:=makezero.

Example strategy: SolveLinearEqns

In this section a strategy is presented for solving a system of m linear equations in n variables, where
the coefficient for each variable must be a numerical value (no parameters are allowed in the equation).
The strategy is basically to first rewrite the set of equations to a matrix, which is then row-reduced
using Gaussian elimination, and finally converted back to a set of equations, which should then be
trivial and is considered the solution to the system.

Note that Gaussian elimination is a strict procedure; there is only one correct sequence of rewrite steps
that satisfies this strategy. It is not really a desirable strategy for use in the LA system, because the user
will be forced to apply rules in a fixed order even it is obvious that some steps are independent and can
be applied in any order.

25

LA System user manual — version 2009-08-18

Formula terms

The initial formula that is given in the exercise is a LAEqnsSet. This term should contain a list of
equations, each equation constructed by nested LaP1us and LATimes terms. At deepest level in the
expression are either numbers or Realvar terms.

The LAEgnSet should be rewritten to an AugmentedMatrix. The AugmentedMatrix term contains an
LAMatrix term and a list of variables (Realvar terms).

The strategy for Guassian elimination actually works on the LaAMatrix term (not on the
AugmentedMatrix term). The LaMatrix term consists of a list of rows and each row is a list of
numbers. To retrieve a row $i from a matrix $mat, in a Code block, we write: $row = $mat[[$i]]. To
retrieve an element of the matrix at row $i, column $7j, we write: $element = $mat[[$i, $3j]] Or

Srow[[$]]1].
Rewrite rules
To solve a system of linear equations, we need the following rewrite rules:

eqns2aug[$solvevars]: convert a set of equations to an augmented matrix, where $solvevars is
the list of variables associated with the matrix.

aug2eqns: convert an augmented matrix to a set of equations
swaprows[$rl, $Sr]: swap rows $rl and $r2 in a matrix
mulrow[$r, $k]:multiply row $rin a matrix with factor $k

muladdrow([$rl, $r2, $k]: multiply row $rl in a matrix with a factor $k and add the result to
row $r2.

Grammar rules

The start term for the strategy is SolveLinearEqgs[$eqgnpos, $solvevars]. Here $eqnpos is the
position of the equation set in the exercise term that should be solved, and $solvevars is a list of the
variable names for which the system is to be solved.

To apply the solveLinearEqgns strategy, the user must first transform a system of equations to an
augmented matrix (rule egns2aug). The variables in which the system is to be solved ($solvevars) are
used as the variables above the matrix. Next, the matrix should be transformed to reduced echelon form
(GaussElim) and finally the system is converted back to a system of equations, which will be a set of
trivial equations if the matrix could be completely reduced.

26

LA System user manual — version 2009-08-18

SolveLinearEqns[$eqnspos, $solvevars]:=
egns2aug[$solvevars]
(* matrix is one level deeper than result of eqns2aug *)
Code[$matpos = Append[S$eqnspos, 1]]
GuassElim[$matpos]
aug2eqns

GuassElim consists of a forward pass and a backward pass.

GaussElim[$matpos]:=
ForwardPass|[$matpos],
BackwardPass[$matpos]

The forward pass repeats a number of steps (Forwardsteps), and for each step one more row is covered
up ($coveredrows) at the top of the matrix. Each iteration will create a column with a pivot with value

1 in the top row (the first un-covered row) and zeroes below it.

ForwardPass|[$matpos] :=

Code|[
Smat=Extract[$CurrentTerm, $matpos];

$range=Range[0, Length[S$mat]-1]
]

ForAll[$coveredrows, Srange,ForwardSteps, Smatpos, $coveredrows]]

ForwardSteps[$matpos, Scoveredrows] :=
FindColumnJ|[$matpos, Scoveredrows,$j],
ExchangeNonZero[$matpos, $coveredrows,$j],
ScaleToOne[$matpos, $Scoveredrows, $Jj],
MakeZeroesFP[$matpos, $coveredrows, $J]

FindColumnJ determines the value of $3 such that column $7 is the first column with a non-zero value
in it, or fails if no such column exists.

FindColumnJ[$matpos, S$coveredrows,$j]:=
Code[$mat=Extract[$CurrentTerm, S$Smatpos];
If[$coveredrows>=Length[$mat], $Failure,
$m=Transpose[Drop[List@@$mat, Scoveredrows]];
$j=SelectIndex[$m, ! zerovector[#]&];
If[$j==={},SFailure,$Jj=$J[[1]]]

]

If column $3 has a zero in the first uncovered row, ExchangeNonZero swaps that row (using rewrite
rule swaprows) with the next row that has a non-zero entry, if possible. In the implementation, if entry
in the first uncovered row is non-zero, then $rowl==$row2 and no swap is applied.

27

LA System user manual — version 2009-08-18

ExchangeNonZero[$matpos, $coveredrows, $j]:=
Code[
$Smat=Extract[$CurrentTerm, $matpos];
$cols=Transpose[Drop[List@@$mat, Scoveredrows]];
$Srowl=$coveredrows+SelectIndex[$cols[[$j]],#=!=0&][[111;
Srow2=S$coveredrows+1
1

If[Code[$rowl!=$row2],swaprows[$rowl,$Srow2]]

ScaleToOne scales the pivot (the entry in the first uncovered row in column $3) to one if necessary,
using the rewrite rule mulrow.

ScaleToOne[$matpos, Scoveredrows,$j]:=
Code[
$m=Transpose[Drop[List@@S$mat, Scoveredrows]];
$firstuncoveredrow=$coveredrows+1
$k = Smat[[Sfirstuncoveredrow,$j]1];
1,
If[Code[$k!=1 && $k!=0], mulrow[$firstuncoveredrow, $k]]

MakeZeroesFP (FP stands for forward pass) makes zeroes in column $j by adding a multiple of the first
uncovered row to the rows below it.

MakeZeroesFP[$matpos, $coveredrows,$j] :=
Code[$mat = Extract[$CurrentTerm, S$matpos];
$pivotrow = $coveredrows+1;
$range = Range[$pivotrow+l, Length[$mat]-1]
|

ForAll[Srow, SSrange, MakeZero[S$matpos, S$pivotrow, $row, $j]]

MakeZero makes a zero in column $7j of row $torow, by adding $k times row $fromrow, where $k is
the value in row $torow, column $j ($mat[[$torow, $3j11). Only if $k != 0, then rewrite rule
muladdrow is applied.

MakeZero[$matpos, S$fromrow, S$torow, $j]:=
Code[$k = -$mat[[S$torow,$j]] 1
If[Code[$k != 0], muladdrow[$fromrow, $torow,$k]]

The backwards pass works from the bottom up. For each row ($ fromrow) with a pivot (implemented by
the select function), we make zeroes above the pivot, using sub-strategy MakeZeroesBP.

BackwardPass[$matpos]:=
Code[$mat = Extract[$CurrentTerm, S$matpos];
$range = Select[Range[Length[$mat],2,-1],
Not[zerovector[Smat[[#]]]&
1i
1

ForAll[$fromrow, S$range, MakeZeroesBP[$matpos,S$Sfromrow]]

28

LA System user manual — version 2009-08-18

MakeZeroesBP (BP stands for backwards pass) makes zeroes above a given row ($fromrow) in the pivot
column (%7 is the first column with a non-zero entry in row $fromrow). MakeZeroesBP makes use of
MakeZeroes, defined earlier.

(* make zeroes above row $fromrow *)
MakeZeroesBP[$matpos, $fromrow] :=
Code[$mat = Extract[$CurrentTerm, S$matpos];
$range = Range[$fromrow-1,1,-11];
$j = SelectIndex[$Smat[[$fromrow]],notzero[#]&];
1,

ForAll[$torow, Srange, MakeZero[$matpos,S$fromrow, $torow, $j1]

29

LA System user manual — version 2009-08-18

8. Feedback

The LAsystem can give feedback to students making an exercise, based on their progress. The actions
of the student are compared to the strategy defined for the exercise and the following situations can
occur:

- the student is on track: no feedback necessary.
- the student is not on track: the system will undo the last step.

— the student has finished the exercise. The student will be informed and no more rewrite rules can be
applied.

Also, the student can explicitly ask for a help:

— The student asks for a hint. Each time the student ask for a hint, a progressively more specific hint
will be given.

— The student ask the system to do one step. This can be repeated until the whole exercise is finished.

- The student ask the system for the complete solution to the exercise.

For each gterm (grammar rule or rewrite rule) a hint can be programmed. The first hint that is given by
the system is the hint associated with the highest level sub-strategy, leading to the next to-be-applied
rewrite rule. A subsequent hint will be the hint associated with a highest level sub-strategy below the
previous one. The last hint that can be given, and will be repeated if more hints are requested, is the hint
associated with the lowest level sub-strategy, just above the next rewrite-rule-application.

Adding hints
Hints can be programmed alongside a strategy, by defining extra patterns for the Hint function, as
follows:

Hint[gterm[name, attributes...]] := “text”

If the user must visit some sub-strategy, matching the attributed name in the definition above, then the
hint text, given on the right-hand side of the definition, can be given if a hint is requested.

The name and attributes should, in most cases, be Mathematica patterns (using blanks etc, see Section
6), such that the hint will match for any attribute values. Pattern variables can be used in the hint text
also, for example:

Hint[gterm["Strat25c", matpos_, coveredrows_ , j_]] :=

"Create zeroes under the pivot in column " <> ToString[j] <>
" by adding multiples of the pivot row to other rows."

30

LA System user manual — version 2009-08-18

In general, hints should describe a sub-strategy in general terms, for example, the type of operations
needed, and the goal of the sub-strategy.

31

LA System user manual — version 2009-08-18

Appendix A: formula terms

This appendix describes the basic Mathematica symbols that represent LA system terms. For more
information and functions to manipulate terms, see LAterms .nb.

AugmentedMatrix[LAMatrix, _List]

represents a augmented matrix, i.e. a matrix with an associated set of variables printed above it,
equivalent to a system of linear equations in those variables. The matrix is represented by a LAMatrix
term. The set of variables is represented by a list.

Example term:

AugmentedMatrix|
LAMatrix[{1l, 2, 3}, {4, 5, 6}, {7,8,9}1,
{RealvVar[x;], RealvVar[x,]}
1
Represented formula:

X1, X2
1 2 3
4 5 6
7 8 9

LAEqgnSet[LAInequality]

represents a set of equations. Each elements of the term should be an LAInequality, representing an
equation.

Example term:
LAEgnSet|
LAInequality[LAPlus[RealVar[x;], LATimes[5, RealvVar[x,]]1]], Equal, 1],
LAInequality]
LAPlus[
LATimes[-2, RealVar([x;]],
LATimes[-1, 7, RealVar([x,]]
1,
Equal,
-5

]
Represented formula:

X, +5x,=1
—2x, = 7x,=—5|

LAInequality[lhs_, comp , rhs_]
represents an equation lhs comp rhs, where comp 1s one or Equal, Less, LessEqual, Greater Or

32

LA System user manual — version 2009-08-18

GreaterEqual, and 1hs_ and rhs_ can be any terms.

Example term:
ILAInequality[LAPlus[RealVar[x;], LATimes[5, RealVar([x,]1]1], Equal, 11,

Represented formula:
X;+5%,=1

LAMatrix[_List]
represents a matrix, where each element in the list represents a row, and each row is represented by a
list of numbers (or other symbols or terms).

Example:
LAMatrix[{1, 2, 3}, {4, 5, 6}, {7,8,9}1,
Represented formula:

X1, X2
1 2 3
4 5 6
7 8 9

LAPlus[a_, b]
Represents a+b, where a and b can be any term.

LATimes[a_,b]
Represents a*b, where a and b can be any term.

LADivide[a_,b]
Represents a/b, where a and b can be any term.

LAPower[a_,b_]
Represents a”b, where a and b can be any term.

RealVar[“name”]
Represents a real valued variable, displayed as name. The name argument must be a string. To represent
a variable with a subscript, a special notation is used.

example:
RealVar["\!\(x_1\)"]

33

LA System user manual — version 2009-08-18

represented formula:
X1

RealPar|[“name”]

Represents a real valued parameter, displayed as name. The name argument must be a string.
Parameters are treated differently from variables when displaying formulas and and converting between
different equation forms.

LAImaginary
Represents the imaginary number i (the number i such that i*i=-1)

LAEmptySet
Represents the empty set &.

34

LA System user manual — version 2009-08-18

Appendix B: rewrite rules

This appendix describes some basic rewrite rules implemented in the LA system. For more information
and rewrite rules, see basicrules.nb

eqns2aug[$pos, Susevars]

Convert set of equations (LAEqnSet) at position $pos to an augmented matrix, separating coefficients
of variables $usevars into columns, and using the last column for all constants)

aug2eqns|[$pos]

Convert augmented matrix (AugmentedMatrix) at $pos to a set of equations.

swaprows [$matpos, $rowl, Srow2]

Swap row number $row1 with row number $row?2 in the matrix (LAMatrix) at position $matpos.

mulrow[$matpos, S$row, $k]

Multiply row number $row with a factor $k in the matrix (LAMatrix) at position $matpos.

muladdrow[$matpos, S$rowl, Srow2, S$k]

Multiply row number $row1 with a factor $k and add the result to row number $row?2 in the matrix
(LAMatrix) at position $matpos.

rowreduce|[$pos]

Row reduce the matix (LAMatrix) at position $pos.

eqns2empty[$pos]

If the set of equations (LAEqnSet) at $pos contains (0=1) or a similarly inconsistent equation, replace it
by LAEmptySet.

var2par[pos, Svar, $par]

In the equation set (LAEgnSet) at position $pos, add an equation $var=S$par, and replace all other
occurrences of $var with $par, where $var should be a RealVar and $par should be a RealPar.

35

LA System user manual — version 2009-08-18

eqns2pareq[$pos]

Convert the equation set (LAEqnSet) at position $pos with a paramter representation, i.e. an equivalent
single equation (LAlInequality), where variables are represented in a single vector on the left-hand-side
and all parameters are separated on the right hand side.

delrow[$pos, Srow]

In the matrix (LAMatrix) at position $pos, delete row numbered $row.

rowspace[$pos]

Replace the matrix at position $pos with its row-space (LASpan)

colspace[$pos]

Replace the matrix at position $pos with its column-space (LASpan)

addident[$pos]

If the matrix (LAMatrix) at position $pos is NxN, then add the NxN identity matrix on the right to the
martrix.

delident[$pos]

If the matrix (LAMatrix) contains the NxN idenity matrix in the first N columns on the left, then
remove those N columns.

noinverse[$pos]

Replace the 2NxN matrix (LAMatrix, used for constructing an inverse) at position $pos with the
message “matrix has no inverse” .

mateqO[$pos]

Replace the matrix A (LAMatrix) at position $pos with the equation (LAlInequality) Ax = 0, where X is
a vector (LAMatrix) containing an appropriate number of variables, and O is the 0-vector (LAMatrix).

36

LA System user manual — version 2009-08-18

eq2aug[$pos]

Convert a single (vector-) equation to an augmented matrix (AugmentedMatrix).

Automatic rules

These rules are special in that it is automatically executed when specified by a strategy, or, if no
strategy is specified, then it is automatically executed whenever a term can be simplified. Thus, the user
of the LAsystem never explicitly applies these rules, and they are not visible in the list of applicable
rules.

simplify[$pos]

Simplify the expression at given position. Simple arithmetic expressions that evaluate to a constant are
simplified, and any constant factor 1 before or after a variable/parameter is removed. Attribute $pos is
always set to { } when the rule is applied by the LAsystem.

substituteknown[$pos]

Substitutes known parameters in the formula. Parameters are known if there is an equation
LAEqual[par, value] in the system, where par is either a RealPar, VectorVar or MatrixPar. If the known
parameter occurs on the left-hand side of an equation that contain no variables, then the substitution is
not done, so that equations that are used as definitions are not affected. Attribute $pos is always set to
{} when the rule is applied by the LAsystem.

distribute[$pos]

Distributes LAUnion over LAEquationSet. So, when an LAUnion occurs in a LAEqnset, the formula is
rewritten such that it is a LAUnion of LAEqnsSets. Attribute $pos is always set to {} when the rule is
applied by the LAsystem.

37

LA System user manual — version 2009-08-18

Appendix C: strategies

This appendix describes some basic strategies implemented in the LA system. For more information
and strategies, see basicstrat.nb

High level strategies
SolvelLinearEqns|[$pos, $vars]

Strategy for solving the system of equations (LAEqnSet, LAEqual or AugmentedMatrix) at position
$pos for variables in the list $vars (List). The system is solved by converting it to an augmented matrix,
row-reducing it and formulating the solution as a parameter representation, if possible.

GaussEchelon[$pos]

Strategy for Gaussian elimination, up to echelon form, applied to matrix (LAMatrix) at $pos.
Implements part of Strategy 2.5 from Hans Cuypers “Strategies for Linear Algebra”.

GuassElim[$pos]

Strategy for Gaussian elimination, to reduced echelon form, applied to matrix (LAMatrix) at $pos.
Implements Strategy 2.5 from Hans Cuypers “Strategies for Linear Algebra”.

RowEchelon|[$pos]

Strategy for reducing a matrix at $pos to echelon form, with more freedom than GuassEchelon

RowReduce[$pos]

Strategy for reducing a matrix at $pos to reduced echelon form, with more freedom than GaussElim

Low-level strategies

RepExh[S$s]
Repeatedly applies the strategy $s, until it fails.

If[Scondition, sl, Ss2]
Applies strategy $s1 if condition evaluates to True or else applies strategy $s2.
Note: $condition must be a Code block (or any other holded expression, e.g. Hold or HoldComplete).

While[$Scondition, $s]

38

LA System user manual — version 2009-08-18

Applies strategy $s while $condition is True.
Attribute $condition must be a Code block (or any other holded expression, e.g. Hold or
HoldComplete).

ForSeq[var, Svalues, $s]

Repeatedly applies $s for all values in $values, assigned to $var, in sequential order. Here, $var is a $-
variable, $values is a list of values for $var and $s is a strategy using $var as an attribute.

ForAll[S$Svar, S$values, $s]

Applies $s for all values in $values, assigned to $var, in any order. Here, $var is a $-variable, $values is
a list of values for $var and $s is a strategy using $var as an attribute.

ForOne[Svar, Svalues, $s]

ForOne[$var, $values, $s]: applies strategy $s for any one (and only one!) value in $values, assigned to
$var. Here $var is a $-variable, $values is a list of values for $var and $s is a strategy using $var as an
attribute.

Pass

Can always be applied successfully. Sometimes useful as attribute to other strategy.

Fail

Can never be applied (always fails) . Sometimes useful as attribute to other strategy.

TryAutomatricRules

99 ¢

Will try to apply the automatic rules “simplify”, “substituteknown” and “ distribute”.

39

