

RACAL INSTRUMENTS™ 1260-115A/B MULTIPLEXER PLUG-IN

Publication No.980824-115 Rev. A

Astronics Test Systems Inc.

4 Goodyear, Irvine, CA 92618 Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139

<u>atsinfo@astronics.com</u> <u>atssales@astronics.com</u> <u>atshelpdesk@astronics.com</u> <u>http://www.astronicstestsystems.com</u>

THANK YOU FOR PURCHASING THIS ASTRONICS TEST SYSTEMS PRODUCT

For this product, or any other Astronics Test Systems product that incorporates software drivers, you may access our web site to verify and/or download the latest driver versions. The web address for driver downloads is:

http://www.astronicstestsystems.com/support/downloads

If you have any questions about software driver downloads or our privacy policy, please contact us at:

atsinfo@astronics.com

WARRANTY STATEMENT

All Astronics Test Systems products are designed to exacting standards and manufactured in full compliance to our AS9100 Quality Management System processes.

This warranty does not apply to defects resulting from any modification(s) of any product or part without Astronics Test Systems express written consent, or misuse of any product or part. The warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear, such as mechanical relay life, or failure to follow instructions.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. The remedies provided herein are buyer's sole and exclusive remedies.

For the specific terms of your standard warranty, contact Customer Support. Please have the following information available to facilitate service.

- 1. Product serial number
- 2. Product model number
- 3. Your company and contact information

You may contact Customer Support by:

E-Mail: atshelpdesk@astronics.com

Telephone: +1 800 722 3262 (USA) Fax: +1 949 859 7139 (USA)

RETURN OF PRODUCT

Authorization is required from Astronics Test Systems before you send us your product or sub-assembly for service or calibration. Call or contact Customer Support at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can also be reached at: atshelpdesk@astronics.com.

If the original packing material is unavailable, ship the product or sub-assembly in an ESD shielding bag and use appropriate packing materials to surround and protect the product.

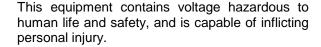
PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to Astronics Test Systems, and shall not, without express written permission of Astronics Test Systems, be used in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than Astronics Test Systems. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from Astronics Test Systems.

TRADEMARKS AND SERVICE MARKS

All trademarks and service marks used in this document are the property of their respective owners.

 Racal Instruments, Talon Instruments, Trig-Tek, ActivATE, Adapt-A-Switch, N-GEN, and PAWS are trademarks of Astronics Test Systems in the United States.


DISCLAIMER

Buyer acknowledges and agrees that it is responsible for the operation of the goods purchased and should ensure that they are used properly and in accordance with this document and any other instructions provided by Seller. Astronics Test Systems products are not specifically designed, manufactured or intended to be used as parts, assemblies or components in planning, construction, maintenance or operation of a nuclear facility, or in life support or safety critical applications in which the failure of the Astronics Test Systems product could create a situation where personal injury or death could occur. Should Buyer purchase Astronics Test Systems product for such unintended application, Buyer shall indemnify and hold Astronics Test Systems, its officers, employees, subsidiaries, affiliates and distributors harmless against all claims arising out of a claim for personal injury or death associated with such unintended use.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the **WARNINGS** and **CAUTION** notices.

If this instrument is to be powered from the AC line (mains) through an autotransformer, ensure the common connector is connected to the neutral (earth pole) of the power supply.

Before operating the unit, ensure the conductor (green wire) is connected to the ground (earth) conductor of the power outlet. Do not use a two-conductor extension cord or a three-prong/two-prong adapter. This will defeat the protective feature of the third conductor in the power cord.

Maintenance and calibration procedures sometimes call for operation of the unit with power applied and protective covers removed. Read the procedures and heed warnings to avoid "live" circuit points.

Before operating this instrument:

- 1. Ensure the proper fuse is in place for the power source to operate.
- 2. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until performance is checked by qualified personnel.

EC Declaration of Conformity

We

Astronics Test Systems 4 Goodyear Irvine, CA 92618

declare under sole responsibility that the

1260-115A, 96CH Relay Driver Module P/N 407924-001 1260-115B, 48CH Relay Driver Module, P/N 407924-002

They conform to the following Product Specifications:

Safety:

EN61010-1:1993+A2:1995

EMC:

EN61326:1997+A1:1998

Supplementary Information:

The above specifications are met when the product is installed in an Astronics Test Systems certified mainframe with faceplates installed over all unused slots, as applicable

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (modified by 93/68/EEC).

Irvine, CA, February 25, 2004 Karen L Evensen Karen L Evensen Karen L Evensen Engineering Director

This page was left intentionally blank.

Table of Contents

Chapter 1	1-1
SPECIFICATIONS	1-1
Introduction - Standard Open-Collector Version	1-1
Specifications - Standard Open Collector	1-2
Power Dissipation - Standard Open-Collector	1-2
Introduction - High Current/Voltage Open-Collector Version	1-3
Specifications - High Current/Voltage Open-Collector	1-4
Power Dissipation - High Current/Voltage Open-Collector	1-5
About MTBF	1-6
Ordering Information	1-7
Chapter 2	2-1
INSTALLATION INSTRUCTIONS	2-1
Unpacking and Inspection	2-1
Installation	2-1
Module Configuration	2-2
Front Panel Connectors	2-2
Mating Connectors	2-5

Chapter 3	3-1
MODULE OPERATION	3-1
Setting the Module Address	3-1
Operating Modes	3-2
Operating in Message-Based Mode	3-4
Channel Descriptors for the 1260-115A/B	3-4
Reply to the MOD:LIST? Command	3-5
Operating the 1260-115A/B in Register-Based Mode	3-5
1260-115 Example Code	3-10
Chapter 4	4-1
OPTIONAL ASSEMBLIES	4-1

List of Figures

Figure 1-1, The 1260-115A	1-1
Figure 1-2, The 1260-115B	1-4
Figure 0.4. From Donal Compositor Pin Novel arise	0.0
Figure 2-1, Front-Panel Connector Pin Numbering	2-3
Figure 2-2, Block Diagram	2-5
Figure 3-1, Front View - Module Addresses for 1 through 6	3-1
Figure 3-2, Front View - Module Addresses for 7 through 12	3-2
Figure 3-3, Message-Based Mode of Operation	3-3
Figure 3-4, Register-Based Mode of Operation	3-3

List of Tables

Table 2-1, 1260-115A/B Front-Panel Connections	2-4
Table 3-1, Register Offset Addresses of the 1260-115A/B Module	3-7
Table 3-2, ID Register Functionality of the 1260-115A/B	3-7
Table 3-3, Ports A-F Register Functionality of the 1260-115A/B Module	3-8
Table 3-4, Ports G-L Register Functionality of the 1260-115A/B Module	3-8
Table 3-5 FPROM Descriptor Functionality	3-9

DOCUMENT CHANGE HISTORY

Revision	Date	Description of Change
А	09/23/09	Revised per EO 29875 Revised format to current standards. Company name revised throughout manual. Manual now revision letter controlled. Added Document Change History Page v. Back of cover sheet. Revised Warranty Statement, Return of Product, Proprietary Notice and Disclaimer to current standards. Removed Reshipment Instructions in (Chap. 2-1) and removed (Chap 5). Information. Now appears in first 2 sheets behind cover sheet. Updated table of contents to reflect changes made Added company name to footer at lower corner opposite of Page no's i thru vi.

This page was left intentionally blank.

Chapter 1 SPECIFICATIONS

Introduction -Standard Open-Collector Version

The 1260-115A is a plug-in switch module developed for the 1260-100 Adapt-a-Switch Carrier. It switches 96 open-collector channels at 200 mA per channel. The 1260-115A includes the following features:

- Standard Adapt-a-Switch™ plug-in design, providing for ease of replacement
- Data-Driven embedded descriptor, allowing immediate use with any Option-01T switch controller, regardless of firmware revision level.

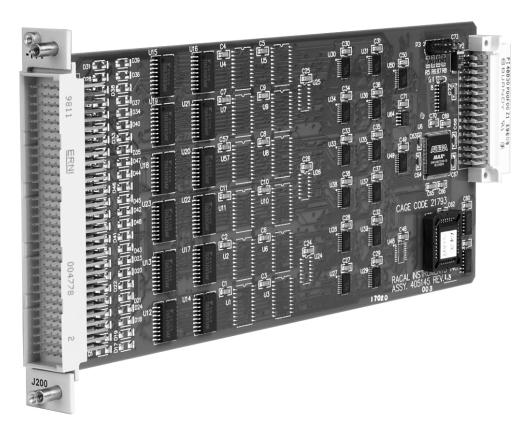


Figure 1-1, The 1260-115A

Specifications -Standard Open Collector

Max. Chan. Input Voltage 32 VDC

Chan. Output Current 200 mA maximum

High Output Voltage $5 \le Voh \le 32 VDC$

Max. Low Output Voltage ≤ 1.5 VDC @ 200 mA

Available I/O Channels 96 open-collector channels

Shock 30g, 11 ms, ½ sine wave

Vibration 0.013 in. P-P, 5-55 Hz

Bench Handling 4 in., 45°

Cooling See 1260-100 cooling data

Temperature

Operating 0°C to $+55^{\circ}\text{C}$ Non-operating -40°C to $+75^{\circ}\text{C}$

Relative Humidity 85% + 5% non-condensing at

< 30°C

Altitude

Operating 10,000 feet Non-operating 15,000 feet

Power Requirements

+5 VDC 0.5 A maximum

Weight 6 oz. (0.21 kg.)

Mean Time Between

Failures (MTBF)

>100,000 hours (MIL-HDBK-217E)

Mean Time to Repair < 5 minutes (MTTR)

Power Dissipation Standard OpenCollector

The cooling of the Adapt-a-Switch carrier is dependent upon the chassis into which it is installed. The carrier can nominally dissipate approximately 100 W. Even with all channels driven to maximum outputs, up to six 1260-115A plug-ins may be used together in a 1260-100 without exceeding the maximum allowable power dissipation of the carrier.

If the 1260-115A will be used in conjunction with other cards, the 1260-115A dissipation should be computed and summed with the total worst-case dissipation of the remaining modules.

For example, a 1260-115A module would dissipate the following energy:

Quiescent power dissipation = 0.75W maximum

Channel dissipation = [(Vol) * current * 96(# channels energized)] + [(current)² * (path resistance) * 96(# channels energized)]

Total Power Dissipation = Quiescent + Channel

Assuming all 96 channels are sinking a maximum current of 200 mA and a path resistance of 0.5 Ω :

```
Total power dissipation = [(1.5) * 0.200 \text{ A} * 96] + [(0.200 \text{ A})^2 * (0.5 \Omega) * 96] + (0.75 \text{ W}) = 31.5 \text{ W} \text{ at } 55^{\circ}\text{C}
```

This exceeds the acceptable power dissipation for an individual plug-in module. If five additional modules are likewise loaded, then the overall carrier dissipation is approximately 188 W, which is above the typical cooling capabilities of the carrier and most chasses in a two slot configuration. Therefore using a fully loaded Adapt-a-Switch carrier with these cards operating at the maximum extreme is not permissible. In practice, however, rarely are more than 25% of the module's channels energized simultaneously, and rarely is full rated current run through every path. In addition, temperatures are typically not run at the rated maximum. Using the 25% rule, the power dissipated by each plug-in should be no more than 8 W. If all six slots are used simultaneously, this would amount to a total dissipation of 48Watts.

Additionally, if fewer plug-in modules are used, more power may be dissipated by the remaining cards. By using a chassis with high cooling capacity, such as the 1261B, almost any configuration may be realized.

Introduction High Current/Voltage Open-Collector Version

The 1260-115B is a plug-in switch module developed for the 1260-100 Adapt-a-Switch Carrier. It switches 48 open-collector channels at 50V and 1.5 A per channel. The 1260-115B includes the following features:

- Standard Adapt-a-Switch™ plug-in design, providing for ease of replacement
- Data-Driven embedded descriptor, allowing immediate use with any Option-01T switch controller, regardless of firmware revision level.

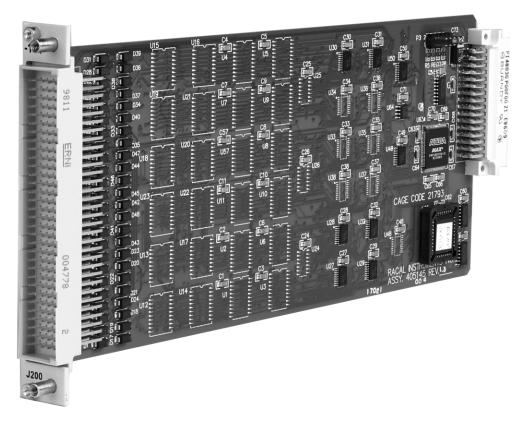


Figure 1-2, The 1260-115B

Specifications -High Current/Voltage Open-Collector Max. Chan. Input Voltage 50 VDC

Chan. Output Current 1.5 A maximum

High Output Voltage $2 \le Voh \le 50 VDC$

Max. Low Output Voltage ≤ 0.5 VDC @ 1.5 A

Available I/O Channels 48 open-collector channels

Shock 30g, 11 ms, ½ sine wave

Vibration 0.013 in. P-P, 5-55 Hz

Bench Handling 4 in., 45°

Cooling See 1260-100 cooling data

Temperature

Operating 0°C to +55°C Non-operating -40°C to +75°C

Relative Humidity 85% + 5% non-condensing at

< 30°C

Altitude

Operating 10,000 feet Non-operating 15,000 feet

Power Requirements

+5 VDC 0.5 A maximum

Weight 6 oz. (0.21 kg.)

Mean Time Between Failures (MTBF)

>100,000 hours (MIL-HDBK-217E)

,

Mean Time to Repair < 5 minutes (MTTR)

Power Dissipation - High Current/Voltage Open-Collector

The cooling of the Adapt-a-Switch carrier is dependent upon the chassis into which it is installed. The carrier can nominally dissipate approximately 100 W. Even with all channels driven to maximum outputs, up to six 1260-115B plug-ins may be used together in a 1260-100 without exceeding the maximum allowable power dissipation of the carrier.

If the 1260-115B will be used in conjunction with other cards, the 1260-115B dissipation should be computed and summed with the total worst-case dissipation of the remaining modules.

For example, a 1260-115B module would dissipate the following energy:

Quiescent power dissipation = 0.75W maximum

Channel dissipation = [(Rds) * (current)² * 48(# channels energized)] + [(current)² * (path resistance) * 48(# channels energized)]

Total Power Dissipation = Quiescent + Channel

Assuming all 48 channels are sinking a maximum current of 1.5 A and a path resistance of 0.030 Ω :

Total power dissipation = $[(1.5 \text{ A})^2 * (0.060 \Omega) * 48] + (0.75 \text{ W}) = 15 \text{ W} \text{ at } 55^{\circ}\text{C}$

This is acceptable power dissipation for an individual plug-in module. If five additional modules are likewise loaded, then the

overall carrier dissipation is approximately 89 W, which is well within the cooling available in most commercial VXIbus chassis. In practice, rarely are more than 25% of the module's channels energized simultaneously, and rarely is full rated current run through every path. Using the 25% rule, the power dissipated by each plug-in should be no more than 3.75 W. If all six slots are used simultaneously, this would amount to a total dissipation of about 23Watts.

Additionally, if fewer plug-in modules are used, more power may be dissipated by the remaining cards. By using a chassis with high cooling capacity, such as the 1261B, almost any configuration may be realized.

About MTBF

The 1260-115 MTBF is 783,668 hours, calculated in accordance with MIL-HDBK-217E.

Ordering Information

Listed below are part numbers for both the 1260-115A/B switch module and available mating connector accessories. Each 1260-115 uses a single mating connector.

ITEM	DESCRIPTION	PART#
1260-115A Switch Module	Switch Module, 96-Channel Standard Open-Collector Output	407924-001
	Consists of: P/N 405145-003 PCB Assy P/N 980824-115 Manual	
1260-115B Switch Module	Switch Module, 48-Channel High Current/Voltage Open-Collector Output	407924-002
	Consists of: P/N 405145-004 PCB Assy P/N 980824-115 Manual	
160-pin Mating Connector	160 Pin Conn. Kit with pins	407664
Cable Assy. 6ft, Sleeved	160 Pin Cable Assy, 6 Ft, 24 AWG	407408-001
Connector Bracket	Bracket, Strain Relief	456673
Additional Manual		980824-115

This page was left intentionally blank.

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

- Remove the 1260-115A/B module and inspect it for damage. If any damage is apparent, inform the carrier immediately. Retain shipping carton and packing material for the carrier's inspection.
- Verify that the pieces in the package you received contain the correct 1260-115 module option and the 1260-115A/B Users Manual. Notify Customer Support if the module appears damaged in any way. Do not attempt to install a damaged module into a VXI chassis.
- The 1260-115A/B module is shipped in an anti-static bag to prevent electrostatic damage to the module. Do not remove the module from the anti-static bag unless it is in a static-controlled area.

Installation

Installation of the 1260-115A/B Switching Module into a 1260-100 Carrier assembly is described in the Installation section of the 1260-100 Adapt-a-Switch Carrier Manual.

Module Configuration

The 1260-115A is a 96-channel standard relay driver. The 1260-115B is a 48 channel high-current relay driver.

Front Panel Connectors

The 1260-115A/B has one front-panel connector, labeled J200. It is a 160-pin, modified DIN style, with 0.025" square posts as pins. It has one pin for each input and one for each output. See **Figure 2-1** for numbering. **Table 2-1** shows the mapping of channel numbers to connector pins. Information about available mating connectors is provided immediately after **Table 2-1**.

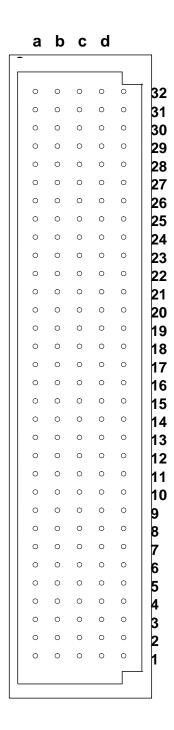


Figure 2-1, Front-Panel Connector Pin Numbering

Table 2-1, 1260-115A/B Front-Panel Connections

	Channel Pin Mapping					
	Row A	Row B	Row C	Row D	Row E	
Pin	Port (Channel #)	Port (Channel #)	Port (Channel #)			
#						
1	Port A (100)	Port C (300)	Port E (500)	Flyback A	Flyback B	
2	Port A (101)	Port C (301)	Port E (501)	GND	GND	
3	Port A (102)	Port C (302)	Port E (502)	GND	GND	
4	Port A (103)	Port C (303)	Port E (503)	GND	GND	
5	Port A (104)	Port C (304)	Port E (504)	Flyback C	Flyback D	
6	Port A (105)	Port C (305)	Port E (505)	GND	GND	
7	Port A (106)	Port C (306)	Port E (506)	GND	GND	
8	Port A (107)	Port C (307)	Port E (507)	GND	GND	
9	Port B (200)	Port D (400)	Port F (600)	Flyback E	Flyback F	
10	Port B (201)	Port D (401)	Port F (601)	GND	GND	
11	Port B (202)	Port D (402)	Port F (602)	GND	GND	
12	Port B (203)	Port D (403)	Port F (603)	GND	GND	
13	Port B (204)	Port D (404)	Port F (604)	Flyback G‡	Flyback H‡	
14	Port B (205)	Port D (405)	Port F (603)	GND	GND	
15	Port B (206)	Port D (406)	Port F (606)	GND	GND	
16	Port B (207)	Port D (407)	Port F (607)	GND	GND	
17	Port G (700)†	Port I (900)†	Port K (1100)†	Flyback I‡	Flyback J‡	
18	Port G (701)†	Port I (901)†	Port K (1101)†	GND	GND	
19	Port G (702)†	Port I (902)†	Port K (1102)†	GND	GND	
20	Port G (703)†	Port I (903)†	Port K (1103)†	GND	GND	
21	Port G (704)†	Port I (904)†	Port K (1104)†	Flyback K‡	Flyback L‡	
22	Port G (705)†	Port I (905)†	Port K (1105)†	GND	GND	
23	Port G (706)†	Port I (906)†	Port K (1106)†	GND	GND	
24	Port G (707)†	Port I (907)†	Port K (1107)†	GND	GND	
25	Port H (800)†	Port J (1000)†	Port L (1200)†	N/C	N/C	
26	Port H (801)†	Port J (1001)†	Port L (1201)†	GND	GND	
27	Port H (802)†	Port J (1002)†	Port L (1202)†	GND	GND	
28	Port H (803)†	Port J (1003)†	Port L (1203)†	GND	GND	
29	Port H (804)†	Port J (1004)†	Port L (1204)†	GND	GND	
30	Port H (805)†	Port J (1005)†	Port L (1205)†	GND	GND	
31	Port H (806)†	Port J (1006)†	Port L (1206)†	GND	GND	
32	Port H (807)†	Port J (1007)†	Port L (1207)†	GND	GND	

[†] For the 1260-115B version these pins are unused and tied to ground.

[‡] For the 1260-115B version these pins are unused and are not connected.

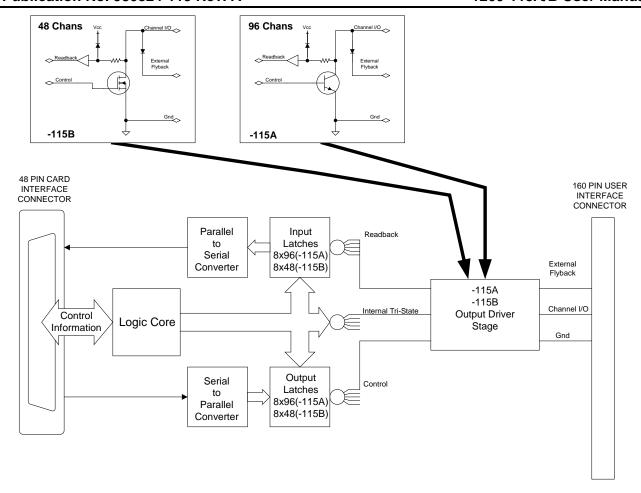


Figure 2-2, Block Diagram

Mating Connectors

Mating connector accessories are available:

160-Pin Connector Kit with backshell and pins, P/N 407664

160-Pin Cable Assembly, 6 Ft., 24 AWG, P/N 407408-001

The 160-Pin Connector Kit consists of a connector housing, and 170 crimp pins. After wire attachment, the pin is inserted into the housing and will snap into place, providing positive retention.

The suggested hand tool for the crimp pins is P/N 990898. The corresponding pin removal tool is P/N 990899.

The 160-Pin Cable Assembly uses 24 AWG cable with crimp pins to mate with the 1260-115A/B. The other cable end is unterminated. Refer to **Table 2-1** for channel-to-pin mapping information.

This page was left intentionally blank.

Chapter 3 MODULE OPERATION

Setting the Module Address

The Option-01T switch controller identifies each Adapt-a-Switch plug-in or conventional 1260-Series module by a *module address* that is unique to that module. The module address is a number from 1 through 12, inclusive.

The module address assigned to the 1260-115A/B is determined by the carrier slot into which the 1260-115A/B is inserted, and by the position of the logical address DIP switch on the carrier side panel. The logical address switch has two settings:

 1-6: When the switch is set to this position, the module addresses of the plug-ins in the 1260-100 Carrier are from 1 through 6. The module with address 1 is in the left slot of the top row. The plug-ins are addressed in the following pattern:

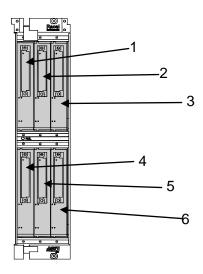


Figure 3-1, Front View - Module Addresses for 1 through 6

• 7-12: When the switch is set to this position, the module addresses of the plug-ins in the 1260-100 Carrier are from 7 through 12, in the following pattern:

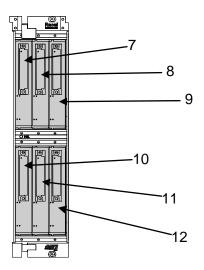


Figure 3-2, Front View - Module Addresses for 7 through 12

When setting module addresses for Adapt-a-Switch Carriers and conventional 1260-Series modules, be sure that no address is used by more than one plug-in or 1260-Series C-Size switching module.

For instructions on setting module addresses for a conventional 1260-Series module, see the label on the side panel of the module.

Operating Modes

The 1260-115A/B may be operated either in *message-based* mode or in *register-based* mode.

In *message-based* mode, the 1260-01T switch controller interprets commands sent by the slot 0 controller, and determines the appropriate data to send to the control registers of the 1260-115A/B module.

A conceptual view of the message-based mode of operation is shown in **Figure 3-3** below.

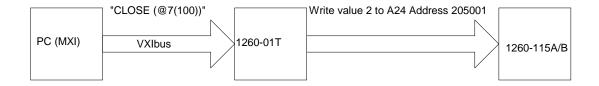


Figure 3-3, Message-Based Mode of Operation

In the *register-based* mode, the user writes directly to the control registers on the 1260-115A/B module. The 1260-01T command module does not monitor these operations, and does not keep track of the relay states on the 1260-115A/B module in this mode.

A conceptual view of the register-based mode is shown in **Figure 3-4** below.

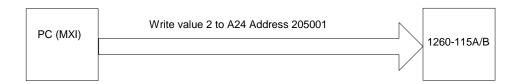


Figure 3-4, Register-Based Mode of Operation

Since the 1260-01T switch controller does not keep track of relay states during the register-based mode, it is advisable to use **either** the message-based or the register-based mode, and continue to use the same mode throughout the application program.

In general, the message-based mode of operation is easier to use with utility software such as the National Instruments VXI Interactive Control (VIC) program. The message-based mode allows the user to send ASCII text commands to the 1260-01T and to read replies from the 1260-01T. In addition, some features, such as the SCAN list, are available only in the message-based mode of operation.

The register-based mode provides faster control of relay channels. In this mode, relay operations are processed in less than 9 microseconds, not counting relay settling time or software overhead inherent in I/O libraries such as VISA. To determine the relay settling time, refer to Relay Settling Time in the Specifications section.

Consult the 1260-01T User's Manual for a comparison of the message-based and register-based modes of operation.

Operating in Message-Based Mode

Channel Descriptors for the 1260-115A/B

The standard 1260-01T commands are used to operate the 1260-115A/B module. These commands are described in the 1260-01T User's Manual.

Each 1260-01T relay command uses a *channel descriptor* to select the channel(s) of interest. The syntax for a channel descriptor is the same for all 1260 series modules. In general, the following syntax is used to select a single channel:

```
(@ <module address> ( <channel> ) )
```

Where:

- <module address> is the address of the 1260-115A/B module. This is a number is in the range from 1 through 12, inclusive.
- <channel> is the 1260-115A/B channel to operate. They are numbers from 100-107, 200-207, 300-307, etc. See Figure 2-1 and Table 2-1.

Multiple individual channels may be specified using the following channel descriptor syntax:

```
@ <module address> ( <chan1> , <chan2>
, . . ., <chanN> ))
```

A range of channels may be specified using the following channel descriptor syntax:

```
@ <module address> ( <first channel> :
    <last channel> ))
```

The following examples illustrate the use of the channel descriptors for the 1260-115A/B:

```
OPEN (@8(100)) Open channel 100 on the 1260-115A/B that has module address 8.

CLOSE (@8(100,300)) Close channels 100 and 300 on the 1260-115A/B that has module address 8.

CLOSE (@2(100:103)) Close channels 100 through 103 inclusive on the 1260-115A/B that
```

has module address 2.

Reply to the MOD:LIST? Command

The 1260-01T returns a reply to the MOD:LIST? command. This reply is unique for each different 1260 series switch module. The syntax for the reply is:

<module address> : <module-specific identification string>

The <module-specific identification string> for the 1260-115A is:

1260-115A 96 CHANNEL RELAY DRIVER

The <module-specific identification string> for the 1260-115B is:

1260-115B 48 CHANNEL RELAY DRIVER

So, for a 1260-115A whose <module address> is set to 8, the reply to this query would be:

8: 1260-115A 96 CHANNEL RELAY DRIVER

Operating the 1260-115A/B in Register-Based Mode

In register-based mode, the 1260-115A/B is operated by directly writing and reading control registers on the 1260-115A/B module. When a control register is written to, all channels controlled by that register are operated simultaneously. For the channel assignments for each control register, see **Table 3-1**.

The control registers are located in the VXIbus A24 Address Space. The A24 address for a control register depends on:

- 1. The A24 Address Offset assigned to the 1260-01T module by the Resource Manager program. The Resource Manager program is provided by the VXIbus slot-0 controller vendor. The A24 Address Offset is placed into the "Offset Register" of the 1260-01T by the Resource Manager.
- 2. The <module address> of the 1260-115A/B module. This is a value in the range from 1 and 12 inclusive.
- 3. The 1260-115A/B control registers to be written to or read from. Each control register on the 1260-115A/B has a unique address.

The base A24 address for the 1260-115A/B module may be calculated by:

(A24 Offset of the 1260-01T) + (1024 x Module Address of 1260-115A/B).

The A24 address offset is usually expressed in hexadecimal. A typical value of 204000_{16} is used in the examples that follow.

A 1260-115A/B with a module address of 7 would have the base A24 address computed as follows:

```
Base A24 Address of 1260-115A/B = 204000_{16} + (400_{16} x 7_{10}) = 205C00_{16}
```

The control registers for Adapt-a-Switch plug-ins and conventional 1260-Series modules are always on odd-numbered A24 addresses. The three control registers for the 1260-115A/B reside at the first three odd-numbered A24 addresses for the module:

(Base A24 Address of 1260-115A/B) + 1 = Control Register 0

(Base A24 Address of 1260-115A/B) + 3 = Control Register 1

(Base A24 Address of 1260-115A/B) + 5 = Control Register 2

So, for our example, the first three control registers are located at:

205C01 Control Register 0

205C03 Control Register 1

205C05 Control Register 2

Table 3-1 shows the channel assignments for each control register.

Table 3-1, Register Offset Addresses of the 1260-115A/B Module

Register	Register Offsets to Add to Base Module Address		
Name	Write Location (hexadecimal)	Read Location (hexadecimal)	
Port A (Port 0)	0x01	0x01	
Port B (Port 1)	0x03	0x03	
Port C (Port 2)	0x05	0x05	
Port D (Port 3)	0x07	0x07	
Port E (Port 4)	0x09	0x09	
Port F (Port 5)	0x0B	0x0B	
Port G (Port 6)	0x0D	0x0D	
Port H (Port 7)	0x0F	0x0F	
Port I (Port 8)	0x11	0x11	
Port J (Port 9)	0x13	0x13	
Port K (Port 10)	0x15	0x15	
Port L (Port 11)	0x17	0x17	
ID	Read Only	0x201	
EPROM Descriptor	Read Only	0x203	

Table 3-2, ID Register Functionality of the 1260-115A/B

Register Table		ID Register
Module Version	Bit	Functionality Description
	0	
	1	
	2	
-115A and -115B	3	Always Reads 0x00
	4	(Read Only)
	5	
	6	
	7	

Table 3-3, Ports A-F Register Functionality of the 1260-115A/B Module

Register Table		Ports A-F	
Module Version	Bit	Functionality Description	
	0	Each port is an 8-bit register where the lowest order	
-115A and -115B	1	bit corresponds to lowest order connector pin of the port group. A '1' written to any bit enables the	
	2	appropriate open-collector output transistor while a '0'	
	3	disables the appropriate open-collector output	
	4	transistor. If a port is read, the data will appear inverted from what was written to the register,	
	5	assuming the external power supply pulls up the	
	6	collector output of the transistor through the external	
	7	load.	

Table 3-4, Ports G-L Register Functionality of the 1260-115A/B Module

Register Table		Ports G-L	
Module Version	Bit	Functionality Description	
-115A	0	Each port is an 8-bit register where the lowest order	
	1	bit corresponds to lowest order connector pin of the	
	2	port group. A '1' written to any bit enables the appropriate open-collector output transistor while a '0'	
	3	disables the appropriate open-collector output	
	4	transistor. If a port is read, the data will appear inverted from what was written to the register,	
		assuming the external power supply pulls up the	
	6	collector output of the transistor through the external	
	7 load.	load.	
	0	Not Used	
	1	Not Used	
	2	Not Used	
-115B	3	Not Used	
	4	Not Used	
	5	Not Used	
	6	Not Used	
	7	Not Used	

Register Table EPROM Descriptor Register Module Version Bit **Functionality Description** 0 This register each time read advances a memory pointer to the next memory location in an EPROM. 1 To reset this pointer to the beginning, simply read the 2 ID register and the memory pointer resets to zero. -115A and -115B 3 The descriptor register contains a long string of data, typically used by the Adapt-a-Switch carrier for 4 configuration purposes. Additionally, this data has the 5 card identification string for the specific type of card (i.e. 1260-115A or 1260-115B). These identification 6 strings are located at EPROM memory locations 7 0x23-0x34.

Table 3-5, EPROM Descriptor Functionality

Setting a control bit to 1 closes the corresponding channel, and clearing the bit to zero opens the corresponding channel.

The present control register value may be read back by reading an 8-bit value from the control register address. **The value is inverted.** In other words, the eight-bit value read back is the one's complement of the value written.

If you want to change the state of a single relay without affecting the present state of the other relays controlled by the control register, you must:

- 1. Read the control register
- 2. Invert the bits (perform a one's complement on the register data)
- 3. Perform a bit-wise AND operation, leaving all but the specific control register bit for the relay to change
- 4. **To open**: continue to step 5. **To close**: OR in the bit for the relay to close.
- 5. Write the modified value back to the control register.

The VISA I/O library may be used to control the module. The VISA function viOut8() is used to write a single 8-bit byte to a control register, while viIn8() is used to read a single 8-bit byte from the control register. The following code example shows the use of viOut8() to update the 1260-115A/B module.

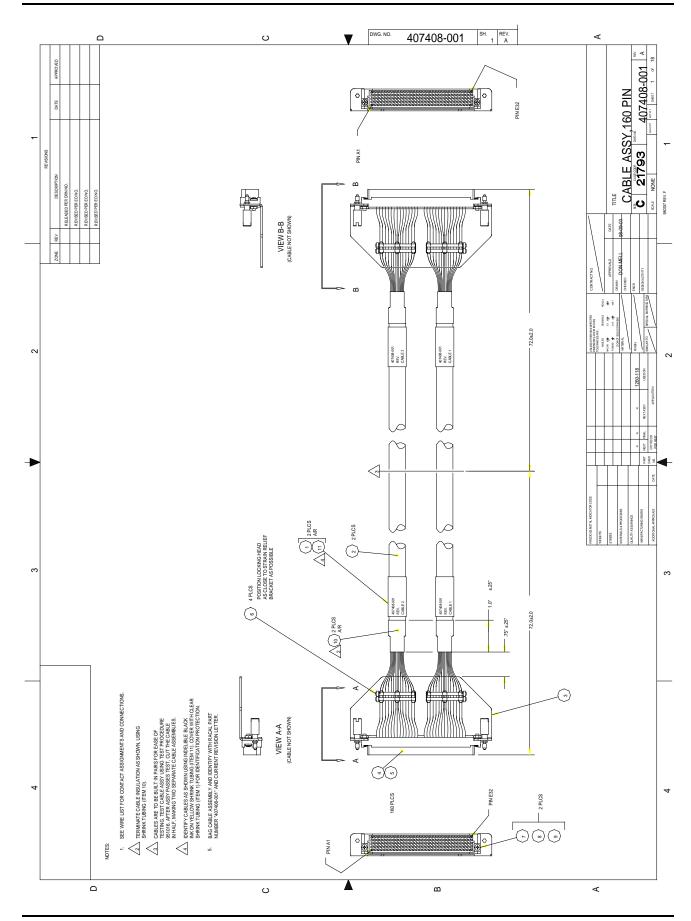
1260-115 Example Code

```
#include <visa.h>
/* This example shows a 1260-01T at logical address 16 and a VXI/MXI */
/* interface */
/* For a GPIB-VXI interface, and a logical address of 77 */
/* the descriptor would be: "GPIB-VXI::77" */
/* this example shows a 1260-115 with module address 7, port 1,
and write data of 0xAA */
#define MOD ADDR 115 7
#define PORT_NUMBER 1
#define DATA_ITEM
                    0xAA
void example operate 1260 115(void)
     ViUInt8 creg_val;
     ViBusAddress portA_addr, offset;
     ViSession hdl1260; /* VISA handle to the 1260-01T */ ViSession hdlRM; /* VISA handle to the resource manager */
     ViStatus error;
                          /* VISA error code */
     /* open the resource manager */
     /* this must be done once in application program */
     error = viOpenDefaultRM (&hdlRM);
     if (error < 0) {
           /* error handling code goes here */
     }
     /* get a handle for the 1260-01T */
     error = viOpen (hdlRM, RI1260_01_DESC, VI_NULL, VI_NULL, &hdl1260);
     if (error < 0) {
           /* error handling code goes here */
     }
     /* form the offset for control register 0 */
     /* note that the base A24 Address for the 1260-01T */
     /* is already accounted for by VISA calls viIn8() and */
```

```
/* viOut8() */
    /* module address shifted 10 places = module address x 1024 */
    portA_addr = (MOD_ADDR_115 << 10) + 1;
    offset = portA_addr + (PORT_NUMBER << 1);
    error = viOut8 (vi, VI_A24_SPACE, offset, DATA_ITEM);

if (error < 0)
    return( error );

/* close the VISA session */
    error = viClose( hdl1260 );
    if (error < 0) {
        /* error handling code goes here */
    }
}</pre>
```


This page was left intentionally blank.

Chapter 4 OPTIONAL ASSEMBLIES

407664	Connector Kit, 160 Pin Crimp	4-2
407408-001	Cable Assy, 160 Pin, 6 ft, 24AWG	4-3

Assembly 407664 Revision A Connector kit, 160 Pin, Crimp

#	Component	Description	U/M	Qty Reqd.	REF
1	602258-116	CON-CAB-RCP160C,100S	-E EA	1.000	
2	602258-900	TRMCRP-SNP-U-F26-20G	-E EA	170.000	

This page was left intentionally blank.