Rex
A Scanner Generator

J. Grosch

DR. JOSEF GROSCH
COCOLAB - DATENVERARBEITUNG

ACHERN, GERMANY

Cocktall

Toolbox for Compiler Construction

Rex - A Scanner Generator

Josef Grosch

Aug. 01, 2006

Document No. 5

Copyright © 2006 Dr. Josef Grosch

Dr. Josef Grosch
CoColLab - Datenverarbeitung
Hohenweg 6
77855 Achern
Germany

Phone: +49-7841-669144
Fax: +49-7841-669145
Email: grosch@cocolab.com

Rex 1

1. Introduction

Rex generates program code to be used in lexical analysis of text. A typical application is the
generation of scanners for compilers. The generated scanners can handle single byte input as well
as Unicode input. Rex stands for Regular EXpression tool. In principle it is a remake of LEX
[Les75].

Rex processes a specification containing regular expressions to be searched for, and actions
written in one of the target languages (C, C++, Modula-2, Ada, Eiffel or Java) to be executed when
regular expressions are matching. Unrecognized portions of the input are copied by default to stan-
dard output. Rex generates a table-driven scanner consisting of a scanner routine and control tables.
The scanner routine implements a tunnel automaton [Gro89] and contains a copy of the specified
actions.

The scanners generated by Rex are 5 times faster and up to 5 times smaller than those gener-
ated by LEX. It is possible to reach a speed of 1.5 million lines per minute on a SPARC station
ELC. (including input from file). If, additionally, hashing of identifiers is performed the speed is
around 1.25 million lines per minute. The generator Rex itself is 10 to 20 times faster than LEX in
typical cases. Like LEX, Rex has all the features necessary to scan contemporary languages: that is
the left and the right context can be taken into account to identify a token. The left context is han-
dled by so-called start states and the right context by additional regular expressions. The source
coordinates (line and column number) of recognized words are calculated automatically. Scanners
can be generated in the languages C, C++, Modula-2, Ada, Eiffel or Java. Rex itself is implemented
originally in Modula-2.

The following chapters constitute the user manual of Rex. Chapter 2 gives an overview of the
operation of Rex and how its output is to be integrated in e. g. compilers. Chapter 3 describes the
specification language. Chapter 4 summarizes the predefined items of the specification language.
Chapter 5 contains the specification of the interface of the generated scanners. Chapter 6 shows
how to invoke and use Rex. Chapter 7 contains some details of the implementation. Chapter 8
describes the differences between Rex and LEX for those already familiar with LEX. The appen-
dices contain a grammar for the input language and some examples.

2. Overview

Figure 1 gives an overview of the observable behaviour of Rex. It takes as input a specifica-
tion of a lexical analyser written in the language described in the next chapter. The output is the
source text of a scanner. The source text consists of a specification and a body part. These parts are
files with the suffixes ’h” and ’c’ if C is the target language. In the case of Modula-2 the parts are a
definition and an implementation module. The scanner requires a source module to get blocks of
characters e. g. by input from file. Rex can be asked to provide a prototype source module which
performs input from the UNIX standard input file. Additionally Rex can be asked to provide a main
program to serve as test driver of the scanner. This main program calls the scanner routine until the
end of the input is reached.

The above mentioned source programs constitute the minimum configuration to run the gener-
ated scanner. What is happening after the compilation of the program modules is shown in the "run
time" half of Fig. 1. Then the scanner driver starts calling the scanner routine which in turn some-
times calls the source module routines to get characters. The data flow is in the opposite direction.
The source module returns blocks of characters to the scanner. The scanner analyzes the character
stream, executes the associated actions upon finding character sequences matched by regular
expressions, and eventually returns tokens to the scanner driver. In general the scanner driver can be

Rex 2

generation time : run time

Scanner Scanner
driver driver
L}
|
o |
HN v
Specifi- 3 e
Rex it » Scanner
cation 3
L}
|
o |
L {
— » data flow e ———_Z_____3 Source

- - - » compilation
— - invocation / use

program / executable module

| Input
E file / memory area § / Pu /

Fig. 1: Rex Overview

replaced by any other main program or subroutine like e. g. a parser.

3. Specification Language
The input of Rex consists mainly of three parts:

- code written in the target language to be copied unchanged to the output (see 3.7.)
- definitions of named regular expressions and start states (see 3.4. + 3.5.)
- a set of regular expressions with associated actions written in the target language (see 3.2.)

The first two parts are optional. We discuss the three parts in reverse order after introducing some
lexical conventions.

3.1. Lexical Conventions

The specification can be written in unformatted manner. That means white space in the form of
blanks, tab characters, and newline characters has no meaning except to separate other items. [J

Rex 3

Comments are written in the styles of C or C++: Text included in’/*’ and '*/" or from’//’ totheend [
of line is ignored. Comments may not be nested. The specifi cation uses a few keywords which
should be escaped if needed as identifi ers (see below):

BEG N CHARACTER_SET CLOSE DEFAULT DEFI NE
ECF EXPORT GLOBAL LOCAL NOT
RULE RULES SCANNER START
The following special characters are used as operators, delimiters, or escape characters:
= ., -+ - 02 () [{) < >0

Besides keywords and the above special characters a scanner specifi cation is composed of
characters, numbers, identifi ers, strings, and actions.

A character denotes itself. Special characters have to be escaped using a preceding escape
character. The escape character is a backslash: '\'. For certain non-graphic characters the same
escape sequences asin C are available:

bell BEL \a
backspace BS \b
character tabulation HT \t
line feed LF \n
line tabulation VT \v
form feed FF \f
carriage return CR \r

Other unprintable characters are represented by the escape character followed either by an integer
decimal number or by a hexadecima number giving the internal encoding. These escape sequences
can be used to denote Unicode characters whose representation can take up to 4 bytes.

\+ \\V \n \10 \OXAC \Oxabcd \uabcdefO1

Numbers denote numerical integer values. They consist of a sequence of digits.
8 12 0

Identifi ers are used to refer to named entities. They consist of a letter followed by letters, dig-
its, or underscore characters’ . Lower case as well as upper case letters are possible. If an identi-
fi er is not defi ned its character sequence is treated as a string. |dentifi ers that are keywords have to
be escaped by a preceding escape character.

letter HexDigit wunder_score \BEG N END

Strings denote a sequence of characters. They consist of a sequence of characters enclosed in
double quotes '™’ It is not possible to include a double quote or an newline character into a string.
No escape is heeded within strings. It is a shorthand for escaping a whole sequence of characters.

"BEG N* "=t "\

Actions are statements to be copied unchanged into the generated code. The statements have
to be written in the desired target language. The actions have to be enclosed in braces’{’ ’}’. The
characters '{’ and '}’ can be used within the actions as long as they are either properly nested or
contained in strings or in character constants. Otherwise they have to be escaped by a backslash
character '\'. The escape character '\' has to be escaped by itself if it is used outside of strings or
character constants: ’\\'. In general, a backslash character *\' can be used to escape any character

Rex 4

outside of strings or character constants. Within those tokens the escape conventions are disabled
and the tokens are left unchanged. There are additionally statements available to aid in scanning
(seesection 4.4.).

{ printf ("BEG N recognized\n"); }

{ return tBegin; }

{ if (level > 0) { GetWord (String); Concatenate (Word, String); } }
{ printf ("} recognized\n"); }

3.2. Regular Expressions

In general the specifi cation of a scanner consists of the keyword RULE or RULES followed by
alist of regular expressions each one associated with an action.

RULE
BEAN : { printf ("BEA N recogni zed"); }
END : { printf ("END recognized"); }

{ printf ("; recogni zed"); }

The scanner generated from the above example specifi cation would print an appropriate message
upon fi nding one of the character sequences 'BEGIN’, 'END’, or ’;" in the input whenever they
appear. We say a character sequence and aregular expression match if the character sequence has a
structure according to the regular expression.

In general the input of the scanner is searched for character sequences which match one of the
specifi ed regular expressions and the associated action is executed. Input characters which are not
matched by any regular expression are copied by default to standard output.

The syntax to write regular expressions is as follows (see Appendix 1 for a complete defi nition
of the syntax). The productions are given in increasing precedence:

Reg_Expr: Reg_Expr '|’' Reg_Expr
Reg_Expr Reg_Expr
Reg_Expr '+
Reg_Expr ' *’
Reg_Expr ' 7
Reg Expr '[’ Nunber ']’

(" Reg_Expr ')’
Char act er _Set
Char acter
Identifier

I
I
I
I
I
| Reg_Expr '[’' Nunber -’ Nunber ']’
I
I
I
I
| String

- A character ismatched by asingle identical character.

a mat ches the character 'a’

\t mat ches a tab character

\n mat ches a new i ne character

\10 mat ches a newl ine character (only if ASCII is used)
\\ mat ches the character '\’

\ Oxabcd mat ches a Uni code character

\uabcdef 01 mat ches a Uni code character

A strlng is matched by a character sequence identical to the characters that make up the string.

o= mat ches t he character sequence
A mat ches the character '\’

Rex 5

An identifier may be defined to refer to a regular expression. In this case it matches the same
characters as the regular expression. An undefined identifier is treated like a string, it matches
its own character sequence.

END mat ches t he character sequence ' END
\ NOT mat ches t he character sequence ' NOT’

A number is treated like a string, it matches its own character sequence.
007 mat ches the character sequence ' 007

A character set matches one arbitrary character contained in the set. It is written as a sequence
of characters enclosed in braces. Ranges may be used to include intervals of characters. The
same escapes as described for characters may be used. Unprintable characters and the follow-
ing ones have to be escaped within character sets:

L] - L] L] }! L] L] L] \ L]
The predefined identifier ANY stands for a character set containing every character except the

newline character. If a character set is preceded by the operator *-’ it matches one arbitrary
character except the ones contained in the set.

{ H\-*/} mat ches the arithmetic operators + - * /

{ AZ a-z 0-9} matches all letters and digits

{ \Oxabcd-\uabcdef 0l }matches a set of Unicode characters

- {} mat ches all characters

- {\n} mat ches all characters except the newl ine character
ANY mat ches all characters except the newl ine character

Two regular expressions separated by the operator ’|” match characters that are matched by the
first or by the second regular expressions.

al| b mat ches the characters

a or 'b’

Two regular expressions following each other with no operator in between match the concate-
nation of character sequences matched by the single regular expressions.

ab mat ches the character sequence 'ab

The operator *?” matches a character sequence matched by the preceding regular expression or
the empty character sequence. In other words, the specified characters are optional.

ab? mat ches the character sequences 'a' and 'ab

The operator ’+’ matches a character sequence which can be matched by the repetition of the
preceding regular expression 1 or more times.

a + nmat ches the character sequences 'a', 'aa', 'aaa’

The operator **’ matches a character sequence which can be matched by the repetition of the
preceding regular expression zero or more times.

ab~* mat ches t he character sequences
" abbb’,

a , 'ab’', 'abb’

A regular expression followed by a number in brackets matches a character sequence which
can be matched by the repetition of the preceding regular expression exactly the times speci-
fied by the number.

a [4] mat ches the character sequence 'aaaa’

Rex 6

- A regular expression followed by arange in brackets matches a character sequence which can
be matched by the repetition of the preceding regular expression a number of times lying in
between of the two given numbers.

a [2-4] mat ches the character sequences 'aa', 'aaa', and 'aaaa

- Parentheses’(’ ’)’ can be used for grouping in more complex regular expressions.
(a] b+)? (c d)* mat ches strings |ike "acdcd' , 'cdcded , 'bed', or ’bbb’;
but not 'ab’, 'abb’, or ’abcd'.

A complete regular expression which is not part of any other regular expression is called a pat-
tern. A pattern is matched exactly in the same way as regular expressions. It can be augmented by
the following specifi cations.

- A pattern preceded by the operator <’ matches a character sequence only if it appears at the
beginning of aline.
< {a-z} + mat ches identifiers only at the beginning of |ines

- A pattern followed by the operator '>" matches a character sequence only if it appears at the

end of aline.
> mat ches trailing spaces
< C ANY * > mat ches FORTRAN comment | i nes

- A pattern followed by the operator '/’ and a regular expression matches a character sequence
only if it is followed by a character sequence that is matched by the regular expression behind
the operator '/’

{0-9} +/ ".." mat ches nunbers, but only if followed by two dots

- Severd patterns that share a common action can be given in a comma separated list, thus the
action has to be specifi ed only once.

- {\n} * A" - {\n"} *\"
mat ches both possible forms of Mdul a-2 strings
3.3. Ambiguous Specifications

Rex can handle ambiguous specifi cations. When more than one expression can match the cur-
rent input, Rex chooses as follows:

- Thelongest match is preferred.
- Among rules which match the same number of characters, the rule given fi rst is preferred.

The length of a match is the number of matched characters plus the number of characters
matched by the regular expression following the "right context” operator '/* if applicable.

Example:

{0-9} + { return tDecinal; }

{0-9} +/ " . { return tDecinal; }

{0-9} + "." {0-9} * : { return tReal ;)

. { return tRange }
{ return tDot }

Suppose the right context of thefi rst rule above is missing. The input
1..

would be recognized as tReal and tDot because tReal matches two characters. To get the right

Rex 7

solution the right context is necessary. Now the input is recognized as tDecimal and tRange because
the second rule for tDecimal matches 3 characters.

Example:
BEAN : { return tBegin; }
END : { return tebnd ; }

{A-Z} + : { return tldent; }

The rules for keywords should be given before the rule for identifi ers. Otherwise the keywords
would be recognized as identifi ers.

An analysis that checks a scanner specifi cation for ambiguous rules can be requested with
option -p. The result of thisanalysisis alist of pairs of patterns that are ambiguous with respect to
each other.

3.4. Definitions

Regular expressions can be given names. This serves to avoid duplication of regular expres-
sions or to increase the expressive power of a specifi cation. After the keyword DEFINE a list of
identifi ers can be associated with regular expressions. Defi ned identifi ers appearing within regular
expressions are replaced by the regular expression given in the defi nition. Identifi ers have to be
declared before use. Undefi ned identifi ers are treated as strings, by default and reported as errors
when option -x is set. The identifi er ANY is predefi ned to match any character except newline.

Example:

letter ={ AZaz} .
digit ={ 0-9} .
string_character = - { " \n }
ANY =-{\n}

3.5. Start States

For complex tasks Rex offers a facility called "start states'. Usually the generated scanner is
aways in the standard state called STD and all specifi ed patterns are recognized. In genera the
scanner is alowed to change its state between an arbitrary number of user defi ned states. The pat-
terns can be specifi ed to be recognized only in certain states. Initially the scanner isin the standard
start state STD. There are special statements to change the state of the scanner (see section 4.4.).
They can be used in the actions of the rules.

Two kinds of start states are distinguished: "inclusive" start states and "exclusive" start states. [
This distinction is relevant for patterns given without start states. [

Start states have to be defi ned by giving a list of identifi ers after the keyword START. Two [
groups of identifi ers can be separated by the character ’-’. The identifi ers in the first group are O
treated as inclusive start states while the identifi ers in the second group are treated as exclusive start [
states. The identifi ersin every group may be separated by commas. The standard state STD ispre- [
defi ned as an inclusive start state. 0

- A pattern given without start states is recognized when the scanner is in any inclusive start [
state. The exclusive start states are not considered. [

- A pattern preceded by the characters '#*#' is recognized when the scanner isin any start state. [
Both, inclusive and exclusive start states are considered.

Rex 8

A pattern preceded by alist of start states (enclosed in’# characters) is recognized only if the [
scanner is in one of the listed start states. Again the listed start states may be separated by
commeas.

A pattern preceded by the keyword NOT and a list of start states (enclosed in’# characters) is
recognized only if the scanner isin a start state not listed. Instead of the keyword NOT the [

character '-' can be used aswell.

Example:
START conment
RULE
(R : {++ level; yyStart (conment);}
#comment # "*)" : {-- level; if (level == 0) yyStart (STD);}
#coment# (" | "t | - {*(} + {}
#STD# {0-9} + : {return tNunber;}

The above example shows how to handle nested comments in a Modula-2 scanner. The rule [
for opening comment brackets is recognized in all inclusive start states. The nesting level is [
increased and we change the start state to the inclusive start state comment with the predefi ned state-
ment yyStart. Closing comment brackets are recognized only if the scanner is in start state com-
ment. Upon their recognition the nesting level is decreased. Should the nesting level reach zero the
comment is fi nished and we change the state back to STD using yyStart again. While the scanner is
In start state comment everything except opening and closing comment brackets is skipped by speci-
fying an empty action. The last rule specifying the structure of decimal numbers is recognized only
in the start state STD.

The problem of how to declare the variable for counting the nesting level of comments is
solved in section 3.7. [
Example: 0
START S - T U O
RULE O

A {} 0
#H # B: {} O
#STDH# c: {} O
#SH D: {} O
#HTH# E: {} O
#S, T# F: {} O
-#S, T# G: {} O
NOT #U# H: {} O

This example declares one inclusive start state S and two exclusive start states T and U. The [

following table gives for every rule the set of start states where theruleis active.

N

Rex 9

Table: Start States O

Py
=
@

Start States
STD, S
STD,S, T,U
STD

S

T

ST
STD, U
STD,S T

TOTMOO®®>

3.6. Scanner Name
A specifi cation may be optionally headed by a name for the scanner to be generated:
Example:
SCANNER | exer

The identifi er is used to derive the names of the scanner and source modules and, if the target lan-
guage requires it, a prefi x for the objects exported by the scanner. If the name is missing it defaults
to Scanner. In the following we refer to this name by <Scanner>. The prefi xes <Scanner> and
<Scanner>_ are generated only if this clause is present. Otherwise they are omitted in order to be
compatible with former versions of Rex.

If the target language is Java, this name may include a package name:
Example:
SCANNER mnydomai n. nypackage. Lexer

Here the scanner name is Lexer and the generated class will include a package declaration placing it
in mydomain.mypackage.

3.7. Target Code

The actions associated with regular expressions may need variables or in general arbitrary dec-
larations to perform their task. A scanner specifi cation may be preceded by several kinds of sec-
tions written in the target language. The syntax rules for actions apply to these sections, too. These
sections are copied unchanged and unchecked to the generated scanner at the following places:

- ThelIMPORT section is used to declare use of other modules by the scanner.
For Ada, target code after the keyword IMPORT is included in the specifi cation part of the
generated scanner before the package header. It can be used to introduce WITH and USE
clauses.
For Java, target code after the keyword IMPORT is included at the head of the class fi le (after
the package declaration if thereisone). It may be used to add import statements.
For other languages an IMPORT section is treated like an EXPORT section.

- Target code after the keyword EXPORT is included in the specifi cation part (defi nition mod-
ule) of the generated scanner. It allows to extend the set of objects exported by the scanner
module. If not given it is predefi ned as described bel ow.

OooOooOoooooao

|

Rex 10

- Target code after the keyword GLOBAL is included in the scanner module at level O, that is
the extent of variables given in this section is the run time of the whole program. If not given
it is predefi ned as described below.

- Target code after the keyword LOCAL is included in the scanner routine called <Scan-
ner>_GetToken (at level 1), that is the extent of variables given in this section is one invocation
of thisroutine.

- Target code after the keyword BEGIN is included in the routine <Scanner>_BeginScanner
which may be called in order to initialize the data structures declared in the sections EXPORT
and GLOBAL.

- Target code after the keyword CLOSE is included in the routine <Scanner>_CloseScanner
which may be called after scanning is fi nished. This statements can be used to fi nalize the data
structures declared in the sections EXPORT and GLOBAL.

- Target code after the keyword DEFAULT is included in the scanner routine to be executed
whenever a character is not matched by one of the regular expressions. It can be used to detect
illegal characters for example. If not given it is predefi ned as described bel ow.

- Target code after the keyword EOF is included in the scanner routine to be executed upon
reaching the end of the input. It can be used to return avalue different from the predefi ned one
(<Scanner>_EofToken = 0) or to check for unclosed comments or strings for example.

If the IMPORT, EXPORT, GLOBAL, or DEFAULT sections are not used then the following
predefi ned declarations are included:

If the target language is C:

EXPORT {
include "Position.h"
typedef struct { tPosition Position; } <Scanner>_tScanAttri bute;
extern void <Scanner> ErrorAttribute (int Token,
<Scanner>_t ScanAttri bute * Attribute);

}
GLOBAL {
voi d <Scanner> ErrorAttribute (Token, Attribute)
i nt Token;
<Scanner>_t ScanAttribute * Attribute;
{}
}
DEFAULT {
yyEcho;

}

Rex 11

If the target language is C++:

EXPORT {
include "Position.h"

typedef struct { tPosition Position; } <Scanner>_t ScanAttri bute;

}

GLOBAL {

voi d <Scanner>::ErrorAttribute (int Token, <Scanner>_tScanAttribute * Attribute)
{1}

}

DEFAULT {
yyEcho;

}
If the target language is Modula-2:

EXPORT {

| MPORT Position;

TYPE t ScanAttri bute = RECORD Position: Position.tPosition; END,

PROCEDURE ErrorAttribute (Token: | NTEGER, VAR Attribute: tScanAttribute);

}

GLOBAL {

PROCEDURE ErrorAttribute (Token: | NTEGER, VAR Attribute: tScanAttribute);
BEGA N
END ErrorAttri bute;

}

DEFAULT {
yyEcho;

}

If the target language is Ada:

EXPORT {
type tScanAttribute is record Position: tPosition; end record;
procedure ErrorAttribute (Token: Integer; Attribute: out tScanAttribute);

}

GLOBAL {
procedure ErrorAttribute (Token: Integer; Attribute: out tScanAttribute) is
begi n
nul | ;
end ErrorAttribute;

}

DEFAULT {
Text _lo.Put (Text_lo. Standard_Qutput, yyChBufferPtr (yyChBufferlndex-1));

}

Rex 12

If the target language is Eiffel:

GLOBAL {
ErrorAttribute (Token: INTEGER): ScanAttribute is
do
Result := Attribute;
end;

}

DEFAULT {
yyEcho;

}

If the target language is Java:

| MPORT {
i mport de. cocol ab. reuse. *;

}

EXPORT {
cl ass ScanAttribute extends Position {
public ScanAttribute (int line, int colum) {
super (line, columm);

}

public ScanAttribute (Position other) {
super (other.line, other.colum);

}
}

public ScanAttribute errorAttribute (int token) {
return new ScanAttribute (Position.NoPosition);

}

}

DEFAULT {
yyEcho ();

These sections import the type tPosition from a module named Position and they declare the
type <Scanner>_tScanAttribute as well as the procedure <Scanner>_ErrorAttribute. These items are
needed in combination with parser generators. A variable called <Scanner>_Attribute of type
<Scanner>_tScanAttribute is used to communicate additional properties of the tokens from the
scanner to the parser. The type <Scanner>_tScanAttribute has to be a struct (record) type with at
least one member (fi eld) called Position of type tPosition. tPosition has to be a struct (record) type
with at least two members (fi elds) called Line and Column (see section 3.8.). It can be imported
from the predefi ned module Position or from a user modifi ed version of it.

During automatic error repair a parser may insert tokens. In this case the parser calls the proce-
dure <Scanner>_ErrorAttribute in order to ask for the additional properties of an inserted token
which is given by the parameter Token. The types tPosition and <Scanner>_tScanAttribute are pre-
defi ned as given above and the procedure <Scanner>_ErrorAttribute is empty. If only one of the
sections IMPORT, EXPORT, or GLOBAL is used, it has to contain declarations consistent with the
remaining predefi ned ones.

3.8. Source Position

The generated scanners automatically compute the line and column position of every token.
This position can be accessed via the fi elds Position.Line and Position.Column of the global

Rex 13

variable <Scanner>_Attribute as described in the section about the Scanner Interface. The source
position is computed automatically if the action of aruleis preceded by a colon likein all the exam-
ples so far. However, if the character -’ is appended to the colon, the calculation of the source posi-
tion can be disabled for arule.

There are mainly two reasons for not to compute the position. First, some "compound” tokens
have to be recognized by the combination of several rules (usualy in connection with a start state).
In order to get the correct position, which is the position yielded by the fi rst rule, the calculation of
the position has to be disabled for the following rules.

Example (Pascal strings):

START string

RULE

#STD# ' : {yyStart (string);}

#string# - {"\t\n} + - {}

#string# '’ - {}

#string# ’ :- {yyStart (STD); return tString;}

Second, there is no need to calculate the source position in rules that skip input characters
without returning a token. In this case disabling the computation of the position yields an increase
in run time effi ciency. The typical examples are comments. The example given in the chapter about
Start States should be rewritten as follows:

Example (Modula-2 comments):
START comment

RULE

G :- {++ level; yyStart (coment);}
#comment# "*)" - {-- level; if (level == 0) yyStart (STD);}
#coment# (" | "*" | - {*(\t\n} + :- {}

The automatic computation of the line and column position for every token is the default
behaviour of a generated scanner. This mechanism can be changed. It is implemented using three
cpp macros which are predefi ned as follows:

If the target languageis C:

define yyColum(Ptr) ((int) ((Ptr) - (char *) yyLineStart))

define yyOfset(Ptr) (yyFileOfset + ((Ptr) - yyChBufferStart2))

define yySet Position <Scanner>_Attribute.Position.Line = yyLineCount; \
<Scanner >_Attri bute. Posi tion. Colum = yyCol uim (<Scanner>_TokenPtr);

If the target language is C++:

define yyColum(Ptr) ((int) ((Ptr) - (char *) yyLineStart))

define yyOfset(Ptr) (yyFileOfset + ((Ptr) - (char *) yyChBufferStart))

define yySetPosition Attribute. Position.Line yyLi neCount ; \
Attribute.Position. Col um yyCol um (TokenPtr);

If the target language is Modul a-2:

define yyColum(Index) ((lndex) - yyLineStart)

define yyOfset(Index) (yyFileOfset + ((lndex) - yyChBufferStart))

define yySetPosition Attribute. Position.Line : = yyLi neCount; \
Attribute.Position.Colum := yyColum (Tokenl ndex);

Rex 14

If the target language is Ada:

define yyColum(Index) ((lndex) - yyLineStart)

define yyOfset(Index) (yyFileOfset + ((lIndex) - yyChBufferStart))

define yySetPosition Attribute. Position.Line yyLi neCount ; \
Attribute.Position.Colum := yyColum (Tokenl ndex);

If the target language is Java:

define yyColum(Index) ((lndex) - yyLineStart)
define yyOfset(Index) (yyFileOfset + ((lIndex) - yyChBufferStart))
define yySet Position \
attribute = new ScanAttribute (yyLi neCount, tokenlndex - yyLineStart);

The macro yyColumn determines the column number for a given buffer location (TokenPtr in
C and C++, Tokenlndex in Modula-2, Java, and Ada). The macro yySetPosition is used by the gen-
erated scanner in order to assign the position data to the variable Attribute. It can be redefi ned by
the user in the GLOBAL section. This allows for example for the following:

It is possible to get rid of the fi elds Line and Column.
Thefi elds Line and Column can be named differently.

It is possible to implement a completely different representation for source positions such as e. g.
the absolute character offset in afile (asis used by fseek of Unix). This is achieved by using the
macro yyOffset which determines the offset value for a given buffer location. In the following
example the fi elds Offset and End receive the absolute character positions of the beginning and the
end of atoken.

define yySetPosition Attribute.Position. Ofset = yyOfset (TokenPtr); \
Attribute.Position. End = yyO fset (TokenPtr + TokenLength - 1);

3.9. Character Set

Scanners generated by Rex depend on the internal representation of the character set. The rea
son originates from the implementation of the fi nite automaton which uses in principal a two-
dimensional array that maps a state and a character to a new state:

State := Table [State] [Character];

The internal representation of the charactersis used for the array access during run time of the scan-
ner as well as during generation time of the table. In order to make a scanner work, these two inter-
nal representations have to agree. Thisis no problem as long as a scanner is generated on a machine
with the same encoding of characters as the machine where the scanner is supposed to run on. For
example, if both machines use ASCII everything is fi ne. However, if the encoding of charactersis
different, then Rex has to know about the internal representation of the character set on the target
machine. This can be done by a specifi cation like the following:

Rex 15

CHARACTER_SET {

0 0xf O

1 Oxf1

9 0xf 9

A Oxcl

B 0Oxc2

Z Oxe9

a 0x81

b 0x82

Z Oxa9

0x09 0x05 /* tab */
\n 0x25 /* newine */
32 0x40 /* space */
\\ 0Oxe0 /* back slash */
{ 0xcO

| Ox6a

} 0xdo

}

The curly brackets after the keyword CHARACTER_SET contain alist of pairs. A pair describes a
trandation and it consists of a character and its internal code. A character is given by a printable
character, a C escape sequence (\n, \t, \v, \b, \r, \f), or a number and a code is given by a number.
The numbers can be either decimal, octal, or hexadecimal numbers. Like in C, octal numbers start
with the digit 'O’ and hexadecimal numbers with 'Ox’. While the character refers to the representa-
tion on the host machine the code refers to the representation on the target machine. If no tranda-
tion is given for a character, then the internal representation of the host machine will be used.

The following should be noted if a character set is specifi ed: The option -i might be necessary
If codes greater than 127 are used. (Option -i selects an 8 bit representation for characters.) The
action statements <Scanner>_GetL ower and <Scanner>_GetUpper (see section 4.4.) may not work
because they rely on ASCII. The operator '<’ for matching the beginning of lines may cause trou-
bles. This feature is implemented by a test whether the character before a line is an end of line
character. The end of line character is predefi ned as the ASCII newline character or whatever this
character istrandated to by the specifi cation of the character set:

define yyEol Ch (unsigned char) '\12

For C and C++ scanners this defi nition can be overwritten by supplying an appropriate preprocessor
directivein the GLOBAL section.

4. Predefined Items
Rex knows several predefi ned items described in the next sections.

4.1. Definitions

Theidentifi er ANY is predefi ned to match one arbitrary character except newline.
DEFINE ANY = - { \n } .

4.2. Start States

The identifi er STD is predefi ned to denote the standard start state of Rex. The generated scan-
nersareinitially in this state.

Rex 16

START STD

4.3. Rules

The 4 for rules given below are predefi ned after the user specifi ed rules, by default. By giving
own rules the user can overwrite these because of the strategy to solve ambiguities. The predefi ned
rules help to calculate the line and column positions and to skip blanks effi ciently. The implicit def-
inition of the first 3 rules can be switched off with option -v. The fourth rule can be overwritten
using the DEFAULT section.

RULE

o - {1}

\t .- {yyTab;}

\n :- {yyEol (0):}
ANY .- {yyEcho;}

4.4. Action Statements

The following statements can be used within the actions associated with regular expressions.
The exact syntax varies according to the target language, for example GetWord may be a function
returning a value; see the next section for details.

<Scanner>_GetWord (v);
This statement gives access to the matched character sequence.
In C or C++ the sequence is returned in the variable v which must be of type char
v []orwchar_tv[]. Additionally the length of the sequence is returned as result
of the function.
In Modula-2 the sequence is returned in the variable v which must be of type
Strings.tString.

<Scanner>_GetLower (V);

Like <Scanner>_GetWord, except that every letter is normalized to lower case.
<Scanner>_GetUpper (V);

Like <Scanner>_GetWord, except that every letter is normalized to upper case.

yyEcho; The matched character sequence is printed on standard output.

yyLess (n); The matched character sequence is truncated to the fi rst n characters. The other
characters are rescanned for the next character sequence.

yyStart (s); The start state is changed to state s.

yyPush (s); The current start state is pushed on a stack and the start state is changed to state s;

yyPop (); The start state is changed to the state popped from a stack.

yyPrevious, The start state is changed to the state valid before the last execution of yyStart,
yyPush, yyPop, or yyPrevious.

yyStartState This is not a statement but an expression of type short or SHORTCARD, respec-
tively, whose value is the current start state. It can be used to execute different
statements in one action depending on the current start state.

yyTab; This statement should be used if a regular expression is specifi ed by the user to
process tab characters. Its purpose is to update the internal variable to calculate
the column position of tokens. yyTab works only if the tab character exclusively is
specifi ed by arule.

Rex 17

yyTabl (a); Like yyTab this statement should be used if a regular expression is specifi ed by
the user to process tab characters. Its purpose is to update the internal variable to
calculate the column position of tokens. yyTabl works if the tab character is em-
bedded in other characters. The parameter a must specify the number of characters
before the tab character.

yyEoal (n); This statement should be used if a regular expression is specifi ed by the user to
process newline characters. Its purpose is to update the internal variables to calcu-
late the line and column position of tokens. yyEol should be executed once for
every newline character matched. The parameter n should specify the number of
characters matched after the last newline character. In simple cases where the pat-
tern consists only of a newline character one invocation of yyEol (0); is suffi cient.

input (); Thisisafunction call returning the next character from the input. It is used where
regular expressions alone are not able to describe the input language, for example
Fortran style constants.

unput (c); This pushes the character ¢ back into the input, to be considered when scanning
for the next token.

5. Interface of the Generated Scanners

The scanners generated by Rex offer an interface to be used by a main program like e. g. a
parser and they require a source module for blocked input of characters to obey a certain interface.
The structure of these two interfaces is independent from a specifi ¢ target language. The interfaces
are discussed in language specifi ¢ chapters because the syntactic details vary from one target lan-
guage to another.

51. C

The option -c selects the generation of a scanner in C that can be translated by compilers for
ANSI-C, K&R-C, or C++. This is accomplished by appropriate preprocessor directives. It has
been already mentioned that the prefi xes <Scanner> and <Scanner>_ are generated only if the
keyword SCANNER is present. Otherwise they are omitted in order to be compatible with former
versions of Rex.

5.1.1. Scanner Interface

The scanner interface consists of two parts: While the objects specifi ed in the external interface
can be used from outside the scanner, the objects of the internal interface can be used only within a
scanner description. The external scanner interface in the fi le <Scanner>.h has the following con-
tents:

Rex 18

include "Position.h"
typedef struct { tPosition Position; } <Scanner>_t ScanAttri bute;
extern void <Scanner>_ErrorAttribute (int Token
<Scanner>_t ScanAttri bute * Attribute);

define <Scanner >_Eof Token 0

define <Scanner > xxMaxCharacter 255

if xxMaxCharacter < 256

define <Scanner >_xxt Char char

el se

define <Scanner >_xxt Char wchar _t
endi f

extern <Scanner>_ xxtChar * <Scanner>_TokenPtr;
extern int <Scanner >_TokenlLengt h

extern <Scanner>_tScanAttribute <Scanner>_ Attri bute;
extern void (* <Scanner>_Exit) (void)

extern void <Scanner >_Begi nScanner (void);

extern void <Scanner >_Begi nFi |l e (char * Fil eNane);

extern void <Scanner >_Begi nFi | eW (wchar _t * Fil eNane);
extern void <Scanner >_Begi nMenory (void * Inputhtr);

extern void <Scanner >_Begi nMenor yN (void * InputPtr, int Length);
extern void <Scanner >_Begi nGeneri c (void * Inputhtr);

extern int <Scanner >_Get Token (void);

extern int <Scanner >_Get Wr d (<Scanner >_xxt Char * Word);
extern int <Scanner >_Get Lower (<Scanner >_xxt Char * Word);
extern int <Scanner >_Get Upper (<Scanner >_xxt Char * Word);
extern void <Scanner>_Cl oseFil e (void);

extern void <Scanner >_Cl oseScanner (void);

extern void <Scanner >_Reset Scanner (void);

The procedure <Scanner>_GetToken is the central scanning routine. It returns the next token
found in the input or whatever is specifi ed in the actions associated with the regular expres-
sions.

The procedure <Scanner>_BeginFile may be called in order to open an input fi le or a nested
include fi le. It has one parameter of type ’char *’ (string) which specifi es the fi le name. The
value NULL indicates input from standard input. If not called input is read from standard in-
put. Include fi les may be nested to arbitrary depth.

The procedure <Scanner>_BeginFileW does the same as <Scanner>_BeginFile for fi le names
given by wide character strings.

The procedure <Scanner>_BeginMemory may be called in order to indicate that input should
be read from the null terminated string of input items at location InputPtr. The input string may
not contain null characters. The contents of the string may not be changed until it has been
processed compl etely.

The procedure <Scanner>_ BeginMemoryN may be called in order to indicate that that the in-
put should be Length input items at location InputPtr. The input may contain null characters.
The contents of the input may not be changed until it has been processed completely.

The procedure <Scanner>_BeginGeneric may be called in order to indicate that the input is
user-defi ned at location InputPtr. The source module (see below) has to be extended by the us-
er in order to implement this feature.

Rex 19

The procedure <Scanner>_CloseFile may be called in order to close the current input stream
(before reaching end of fi le or end of input). <Scanner>_CloseFile is called automatically by
the scanner upon reaching end of fi le or end of input.

The procedure <Scanner>_BeginScanner may be called in order to initialize user data. The
contents of the target code section named BEGIN isincluded in the body of this procedure.

The procedure <Scanner>_CloseScanner may be called in order to fi nalize user data. The con-
tents of the target code section named CLOSE isincluded in the body of this procedure.

If the scanner reaches the end of the input it returns the special token called <Scanner>_Eof To-
ken which is encoded by O.

The preprocessor symbol <Scanner>_xxMaxCharacter is used to describe the range of the
character set.

The preprocessor symbol <Scanner>_xxtChar is defi ned to be either char or wchar_t. It de-
scribes the type used as representation of a character. Note, the size of wchar_t can be 2 or 4
bytes, depending on the compiler.

The procedures <Scanner>_GetWord, <Scanner>_GetL ower, and <Scanner>_ GetUpper allow
access to the matched character sequence as described in section 4.4.

Alternatively, the matched character sequence can be accessed using the variables <Scan-
ner>_TokenPtr and <Scanner>_TokenLength. <Scanner>_TokenPtr points to the beginning of
the matched character sequence. <Scanner>_TokenLength specifi es the number of matched
characters. Note, the matched character sequence is not terminated by a’\O’ character.

The variable <Scanner>_Attribute is supposed to communicate additional properties of the

current token. The value must be provided by appropriate action statements. This variable is

of type <Scanner>_tScanAttribute which has to be a struct type with at least one member

called Position of type tPosition. tPosition has to be a struct type with at least two members

called Line and Column. The values of Line and Column are computed by the scanner, auto-

matically. They indicate the source position of the current token. The position of a token is the

position of the fi rst character of the token. For exceptions see section 3.8. The types <Scan-
ner>_tScanAttribute and tPosition are predefi ned as given above. The defi nitions of these
types can be changed as described in section 3.7.

During automatic error repair a parser may insert tokens. In this case the parser calls the proce-
dure <Scanner>_ErrorAttribute in order to ask for the additional properties of an inserted to-
ken which is given by the parameter Token. The procedure should return in the second argu-
ment called Attribute a default value for the additional properties of the token Token.

The variable <Scanner>_EXxit refers to a procedure which is called upon an internal error in the
scanner. The default procedure terminates the program execution. The variable can be changed
in order to achieve a different behaviour.

The internal scanner interface consists of the following objects:

The initial size of the scanner input buffer is defi ned by the value of the preprocessor symbol
yylnitBufferSize with a default of 8448. The buffer size is increased automatically when nec-
essary. The initial buffer size can be changed by including a preprocessor directive in the
GLOBAL section such as:

define yylnitBufferSize 562
For best results, the value should be a power of two plus a constant between 50 and 256.

Rex 20

Theinitial size of the stack for include fi les is defi ned by the value of the preprocessor symbol
yylnitFileStackSize with a default of 8. The stack size is increased automatically when neces-
sary. Theinitial stack size can be changed by including a preprocessor directive in the GLOB-
AL section such as:

define yylnitFil eStackSi ze 16

The value for tab stops is defi ned by the preprocessor symbol yyTabSpace with a default of 8.
This value can be changed by including a preprocessor directive in the GLOBAL section such
as.

define yyTabSpace 4

5.1.2. Source Interface

The scanners generated by Rex need a source module that provides blocked input of charac-

ters. Rex can provide a prototype source module which can read from standard input, from any fi le,
or from memory. It is contained in the fi les <Scanner>Source.h and <Scanner>Source.c. The speci-
fi cation fi le <Scanner>Source.h consists of something like:

extern voi d <Scanner>_Set Encodi ng (int Encoding, int Endian);
extern int <Scanner>_Begi nSourceFil e (char * Fil eNane);

extern int <Scanner> Begi nSourceFileW (wchar_t * FileNange);

extern voi d <Scanner>_Begi nSourceMenory (void * InputPtr);

extern voi d <Scanner>_Begi nSourceMenoryN (void * InputPtr, int Length);
extern voi d <Scanner>_Begi nSourceGeneric (void * InputPtr);

extern int <Scanner>_GetlLine (int File, char * Buffer, int Size);
extern int <Scanner>_GetW.i ne (int File, wchar _t * Buffer, int Size);
extern void <Scanner>_C oseSource (int File);

<Scanner>_BeginSourceFileis called from the scanner function <Scanner>_BeginFile indicat-
ing that input should be read from a file. The fi le specifi ed by the parameter FileName is
opened and used as input fi le. If not called input is read from standard input. The function
should return an integer fi le descriptor as provided by the system call open or any other handle
understood by the function <Scanner>_GetL ine.

<Scanner>_BeginSourceFileW is called from the scanner function <Scanner>_BeginFileW. It
does the same as <Scanner>_BeginSourceFile for fi le names given by wide character strings.
The source module has to be extended by the user in order to implement this feature.

<Scanner>_BeginSourceMemory is called from the scanner function <Scanner>_BeginMemo-
ry indicating that input should be read from the null terminated string of input items at location
InputPtr. The input string may not contain null characters. The contents of the string may not
be changed until it has been processed completely.

<Scanner>_BeginSourceMemoryN is caled from the scanner function <Scanner> Begin-
MemoryN indicating that the input should be Length input items at location InputPtr. The in-
put may contain null characters. The contents of the input may not be changed until it has been
processed completely.

<Scanner>_BeginSourceGeneric is called from the scanner function <Scanner>_BeginGeneric
indicating that the input is user-defi ned at location InputPtr. The source module has to be ex-
tended by the user in order to implement this feature.

<Scanner>_GetLine is called from the scanner in order to fi |l a buffer at address Buffer with a
block of maximal Size characters. Input should be read from afi le specifi ed by the integer fi le
descriptor File if the current input stream comes from a fi le. Otherwise input comes from

Rex 21

memory and the parameter File can be ignored. Lines are terminated by newline characters
(ASCIl = 0xa). The function returns the number of characters transferred. Reasonable block
sizes are between 128 and 8192 or the length of aline. Smaller block sizes - especialy block
size 1 - will drastically slow down the scanner. The end of fi le or end of input isindicated by a
return value <= 0.

- <Scanner>_GetWLine is the same as <Scanner>_GetLine for type wchar_t instead of type
char.

- <Scanner>_CloseSource is called from the scanner function <Scanner>_CloseFile at end of
fi le or at end of input, respectively. It can be used to closefi les. The functions <Scanner>_Be-
ginSource... and <Scanner>_CloseSource can be called in a nested way, for example in order
to handle include fi les. The encoding and the endian property of the input stream are stacked.
Therefore after a call of <Scanner>_CloseSource the properties of the previous input stream
arerestored.

- Thefunction <Scanner>_SetEncoding can be called by the user in order to specify the encod-
ing and the endian property of the input stream. The arguments have to be values as defi ned
below. Thisfunction has to be called after the function <Scanner>_BeginSource... . If neither
little-endian nor big-endian is specifi ed then the endian property of the current system is as-
sumed to hold for the input. The function <Scanner>_GetWLine will convert the input stream
to astream of type wchar_t.

The following constants describe the encoding of the input stream:

defi ne CODE_NONE 0

define CODE_BYTE 1 /* 1 byte */
define CODE WCHAR T 2 [* 2 or 4 bytes */
define CODE_UCS2 3 /[* 2 bytes */
defi ne CODE_UCS4 4 /* 4 bytes */
define CODE_UTF8 5 /* seq of 1 byte */
define CODE_UTF16 6 /* seq of 2 bytes */

The above comments give the size of an input stream item in bytes. All input stream items (or
sequences of input stream items in the cases of UTF8 and UTF16) represent Unicode charac-
ters. The encodings BYTE, UCS2, and UTF16, and possibly WCHAR _T can represent sub-
sets of the full Unicode character set, only. A Unicode character will be stored in variables of
type wchar_t. Note, the size of wchar_t can be 2 or 4 bytes, depending on the compiler.
Therefore, if the size of wchar_t is 2 then characters encoded by UCS4, UTF8, and UTF16
will be truncated to two bytes.

The following constants describe the endian property of the input stream:

defi ne END AN_NONE 0 /* no endian property specified */
define ENDIAN LITTLE 1 /[* little-endian */
define ENDI AN _BI G 2 /* bi g-endi an */

5.1.3. Scanner Driver

A main program is necessary for the test of a generated scanner. Rex can provide a minimal
main program in the fi le <Scanner>Drv.c which can serve as test driver. It counts the tokens and
looks like the following:

Rex 22

include "Position.h"
i nclude "<Scanner>. h"

int main (void)

{
i nt Token, Count = O;
char Word [2048];

<Scanner >_Begi nScanner ();
do {
Token = <Scanner>_GCet Token ();
Count ++;
i fdef Debug
i f (Token != <Scanner>_Eof Token) <Scanner>_CetWrd (Wrd);
el se Word [0] ="'\0";
WitePosition (stdout, <Scanner>_Attribute. Position);
printf ("%d %\n", Token, Word);
endif
} while (Token != <Scanner>_Eof Token);
<Scanner >_Cl oseScanner ();
printf ("%\n", Count);
return O;

52. C++
5.2.1. Scanner Interface

The scanner interface consists of two parts. While the objects specifi ed in the external interface
can be used from outside the scanner, the objects of the internal interface can be used only within a
scanner description. The external scanner interface is described by a class named <Scanner>. The
name <Scanner> may be specifi ed after the keyword SCANNER. It defaults to Scanner. The class
defi nition is contained in afi le named <Scanner>.h which has the following contents:

#

Rex 23

include "Position.h"

typedef struct { tPosition Position; } <Scanner>_tScanAttribute;

define <Scanner>_xxMaxCharacter 255
1T xxMaxCharacter < 256
define <Scanner>_xxtChar char
else
define <Scanner>_xxtChar wchar_t
endif
define <Scanner> BASE_CLASS
class <Scanner> <Scanner>_BASE_CLASS {
public:
define <Scanner>_EofToken 0O
<Scanner>_xxtChar * TokenPtr ;
int TokenLength
<Scanner>_tScanAttribute Attribute
void (* Exit) (void) ;
<Scanner> (void);
void BeginFile (char * FileName);
void BeginFileWw (wchar_t * FileName);
void BeginMemory (void * InpuPtr);
void BeginMemoryN (void * InpuPtr, int Length);
void BeginGeneric (void * InpuPtr);
int GetToken (void);
int GetWord (<Scanner>_xxtChar * Word);
int GetLower (<Scanner>_xxtChar * Word);
int GetUpper (<Scanner>_xxtChar * Word);
void CloseFile (void);
~<Scanner> (void);
void ErrorAttribute (int Token,
<Scanner>_tScanAttribute * Attribute);
Errors * ErrorsObj
}:

The method GetToken is the central scanning routine. It returns the next token found in the in-
put or whatever is specifi ed in the actions associated with the regular expressions.

The method BeginFile may be called in order to open an input fi le or a nested include fi le. It
has one parameter of type ’char *’ (string) which specifi es the fi le name. The vaue NULL in-
dicates input from standard input. If not called input is read from standard input. Include fi les
may be nested to arbitrary depth.

The method BeginFilew does the same as BeginFile for fi le names given by wide character
strings.

The method BeginMemory may be called in order to indicate that input should be read from
the null terminated string of input items at location InputPtr. The input string may not contain
null characters. The contents of the string may not be changed until it has been processed com-
pletely.

The method BeginMemoryN may be called in order to indicate that that the input should be
Length input items at location InputPtr. The input may contain null characters. The contents
of the input may not be changed until it has been processed compl etely.

Rex 24

The method BeginGeneric may be called in order to indicate that the input is user-defined at
location InputPtr. The source module (see below) has to be extended by the user in order to
implement this feature.

The method CloseFile may be called in order to close the current input file (before reaching
end of file or end of input). CloseFile is called automatically by the scanner upon reaching end
of file or end of input.

The constructor <Scanner> is called automatically in order to initialize a scanner object. The
contents of the target code section named BEGIN is included in the body of this method.

The destructor "<Scanner> is called automatically in order to finalize a scanner object. The
contents of the target code section named CLOSE is included in the body of this method.

If the scanner reaches the end of the input it returns the special token called <Scanner>_EofTo-
ken which is encoded by 0.

The preprocessor symbol <Scanner>_xxMaxCharacter is used to describe the range of the
character set.

The preprocessor symbol <Scanner>_xxtChar is defined to be either char or wchar_t. It de-
scribes the type used as representation of a character. Note, the size of wchar_t can be 2 or 4
bytes, depending on the compiler.

The methods GetWord, GetLower, and GetUpper allow access to the matched character se-
quence as described in section 4.4.

Alternatively, the matched character sequence can be accessed using the member variables To-
kenPtr and TokenLength. TokenPtr points to the beginning of the matched character sequence.
TokenLength specifies the number of matched characters. Note, the matched character se-
guence is not terminated by a *\0’ character.

The member variable Attribute is supposed to communicate additional properties of the current

token. The value must be provided by appropriate action statements. This variable is of type

<Scanner>_tScanAttribute which has to be a struct type with at least one member called Posi-

tion of type tPosition. tPosition has to be a struct type with at least two members called Line

and Column. The values of Line and Column are computed by the scanner, automatically.

They indicate the source position of the current token. The position of a token is the position of

the first character of the token. For exceptions see section 3.8. The types <Scanner>_tScanAt-
tribute and tPosition are predefined as given above. The definitions of these types can be
changed as described in section 3.7.

During automatic error repair a parser may insert tokens. In this case the parser calls the
method ErrorAttribute in order to ask for the additional properties of an inserted token which
is given by the parameter Token. The method should return in the second argument called At-
tribute a default value for the additional properties of the token Token.

The variable Exit refers to a procedure which is called upon an internal error in the scanner.
The default procedure terminates the program execution. The variable can be changed in order
to achieve a different behaviour.

The preprocessor symbol <Scanner> BASE_CLASS can be used to specify a base class for
the class <Scanner> using a #define directive in the EXPORT section of a scanner description.
Example:

Rex 25

EXPORT {
define Scanner BASE CLASS : public Based ass
}

The internal scanner interface consists of the following objects:

The initial size of the scanner input buffer is defi ned by the value of the preprocessor symbol
yylnitBufferSize with a default of 8448. The buffer size is increased automatically when nec-
essary. The initial buffer size can be changed by including a preprocessor directive in the
GLOBAL section such as:

define yylnitBufferSize 562
For best results, the value should be a power of two plus a constant between 50 and 256.

Theinitial size of the stack for include fi les is defi ned by the value of the preprocessor symbol
yylnitFileStackSize with a default of 8. The stack size is increased automatically when neces-
sary. Theinitial stack size can be changed by including a preprocessor directive in the GLOB-
AL section such as:

define yylnitFil eStackSi ze 16

The value for tab stops is defi ned by the preprocessor symbol yyTabSpace with a default of 8.
This value can be changed by including a preprocessor directive in the GLOBAL section such
as.

define yyTabSpace 4

5.2.2. SourceInterface

The scanners generated by Rex need a source module that provides blocked input of charac-

ters. Rex can provide a prototype source module which can read from standard input, from any fi le,
or from memory. It is contained in the fi les <Scanner>Source.h and <Scanner>Source.cxx. The
specifi cation fi le <Scanner>Source.h consists of something like:

extern voi d <Scanner>_Set Encodi ng (int Encoding, int Endian);
extern int <Scanner>_Begi nSourceFil e (char * Fil eNane);

extern int <Scanner> Begi nSourceFileW (wchar_t * FileNange);

extern voi d <Scanner>_ Begi nSourceMenory (void * InputPtr);

extern voi d <Scanner>_Begi nSourceMenoryN (void * InputPtr, int Length);
extern voi d <Scanner>_Begi nSourceGeneric (void * InputPtr);

extern int <Scanner>_GetlLine (int File, char * Buffer, int Size);
extern int <Scanner>_GetW.i ne (int File, wchar _t * Buffer, int Size);
extern void <Scanner>_C oseSource (int File);

<Scanner>_BeginSourceFile is called from the scanner method BeginFile indicating that input
should be read from afi le. The fi le specifi ed by the parameter FileName is opened and used as
input fi le. If not called input is read from standard input. The function should return an integer
fi le descriptor as provided by the system call open or any other handle understood by the func-
tion <Scanner>_GetLine.

<Scanner>_BeginSourceFileW is called from the scanner method BeginFileW. It does the
same as <Scanner>_BeginSourceFile for fi le names given by wide character strings. The
source module has to be extended by the user in order to implement this feature.

<Scanner>_BeginSourceMemory is called from the scanner method BeginMemory indicating
that input should be read from the null terminated string of input items at location InputPtr.
The input string may not contain null characters. The contents of the string may not be

Rex 26

changed until it has been processed completely.

<Scanner>_BeginSourceMemoryN is called from the scanner method BeginMemoryN indicat-

ing that the input should be Length input items at location InputPtr. The input may contain null

characters. The contents of the input may not be changed until it has been processed complete-

ly.

<Scanner>_BeginSourceGeneric is called from the scanner method BeginGeneric indicating

that the input is user-defi ned at location InputPtr. The source module has to be extended by the
user in order to implement this feature.

<Scanner>_GetLine is called from the scanner in order to fi Il a buffer at address Buffer with a
block of maximal Size characters. Input should be read from afi le specifi ed by the integer fi le
descriptor File if the current input stream comes from a fi le. Otherwise input comes from
memory and the parameter File can be ignored. Lines are terminated by newline characters
(ASCIl = 0xa). The function returns the number of characters transferred. Reasonable block
sizes are between 128 and 8192 or the length of aline. Smaller block sizes - especialy block
size 1 - will drastically slow down the scanner. The end of fi le or end of input isindicated by a
return value <= 0.

<Scanner>_GetWLine is the same as <Scanner>_GetLine for type wchar_t instead of type
char.

<Scanner>_CloseSource is called from the scanner method CloseFile at end of fi le or at end of
input, respectively. It can be used to close fi les. The functions <Scanner>_BeginSource... and
<Scanner>_CloseSource can be called in a nested way, for example in order to handle include
fi les. The encoding and the endian property of the input stream are stacked. Therefore after a
call of <Scanner>_CloseSource the properties of the previous input stream are restored.

The function <Scanner>_SetEncoding can be called by the user in order to specify the encod-
ing and the endian property of the input stream. The arguments have to be values as defi ned
below. Thisfunction has to be called after the function <Scanner>_BeginSource... . If neither
little-endian nor big-endian is specifi ed then the endian property of the current system is as-
sumed to hold for the input. The function <Scanner>_GetWLine will convert the input stream
to astream of type wchar_t.

The following constants describe the encoding of the input stream:

defi ne CODE_NONE 0

define CODE_BYTE 1 /* 1 byte */
define CODE WCHAR T 2 [* 2 or 4 bytes */
define CODE_UCS2 3 /* 2 bytes */
defi ne CODE_UCS4 4 /* 4 bytes */
define CODE_UTF8 5 /* seq of 1 byte */
define CODE_UTF16 6 /* seq of 2 bytes */

The above comments give the size of an input stream item in bytes. All input stream items (or
sequences of input stream items in the cases of UTF8 and UTF16) represent Unicode charac-
ters. The encodings BYTE, UCS2, and UTF16, and possibly WCHAR_T can represent sub-
sets of the full Unicode character set, only. A Unicode character will be stored in variables of
type wchar_t. Note, the size of wchar_t can be 2 or 4 bytes, depending on the compiler.
Therefore, if the size of wchar_t is 2 then characters encoded by UCH4, UTFS8, and UTF16
will be truncated to two bytes.

The following constants describe the endian property of the input stream:

Rex 27

define END AN_NONE 0 /* no endian property specified */
define ENDIAN LITTLE 1 /[* little-endian */
define ENDI AN _BI G 2 /* bi g-endi an */

5.2.3. Scanner Driver

A main program is necessary for the test of a generated scanner. Rex can provide a minimal
main program in the fi le <Scanner>Drv.cxx which can serve as test driver. It counts the tokens and
looks like the following:

include <stdio. h>
include "Position.h"
include "<Scanner>. h"

int main (void)

{
i nt Token, Count = O;
<Scahner > Scanner ;

do {
Token = Scanner. Get Token ();
Count ++;
i fdef Debug
char Word [2048];
i f (Token != <Scanner>_ Eof Token) Scanner. GetWrd (Word);
el se Word [0] ="\0O’
WitePosition (stdout, Scanner.Attribute.Position);
printf ("%d %\n", Token, Word);
endif
} while (Token != <Scanner>_Eof Token);
printf ("%l\n", Count);
return O;

5.3. Modula-2

5.3.1. Scanner Interface

The scanners generated by Rex offer an interface given by the following defi nition module
named <Scanner>.md:

Rex 28

DEFI NI TI ON MODULE <Scanner >;
| MPORT Position, Strings;

TYPE t ScanAttribute = RECORD Position: Position.tPosition; END
PROCEDURE ErrorAttribute (Token: | NTEGER, VAR Attribute: tScanAttribute);

CONST Eof Token = 0;
VAR TokenLength : | NTEGER,

VAR Tokenl ndex : | NTEGER;

VAR Attribute : tScanAttribute;

VAR Exi t . PRCC

PROCEDURE Begi nScanner

PROCEDURE Begi nFi |l e (Fil eNane: ARRAY OF CHAR);
PROCEDURE Get Token (): | NTEGER;

PROCEDURE Get Word (VAR Word: Strings.tString);
PROCEDURE Cet Lower (VAR Word: Strings.tString);
PROCEDURE CGet Upper (VAR Word: Strings.tString);

PROCEDURE C oseFil e
PROCEDURE Cl oseScanner

END <Scanner >.

The procedure GetToken is the central scanning routine. It returns the next token found in the
input or whatever is specifi ed in the actions associated with the regular expressions.

The procedure BeginFile may be called in order to open an input fi le or a nested include fi le.
The parameter FileName specifi es the fi le name. The value "" (empty string) denotes input
from standard input. If not called input is read from standard input. Include fi les up to a nest-
ing depth of 15 can be processed.

The procedure CloseFile may be called in order to close the current input fi le (before reaching
end of file). CloseFileis called automatically by the scanner upon reaching end of fi le.

The procedure BeginScanner may be called in order to initialize user data. The contents of the
target code section named BEGIN isincluded in the body of this procedure.

The procedure CloseScanner may be called in order to fi nalize user data. The contents of the
target code section named CLOSE isincluded in the body of this procedure.

The procedures GetWord, GetL ower, and GetUpper allow access to the matched character se-
guence as described in section 4.4.

The variable TokenL ength specifi es the number of matched characters.

The variable Tokenlndex is an array index of the internal buffer, an array of characters, which
specifi es the location where the matched character sequence starts. It can be used as argument
for the macros that compute source positions.

The variable Attribute is supposed to communicate additional properties of the current token.

The value must be provided by appropriate action statements. This variable is of type

tScanAttribute which has to be a record type with at least one fi eld called Position of type tPo-
sition. tPosition has to be a record type with at least two fi elds called Line and Column. The
values of Line and Column are computed by the scanner, automatically. They indicate the

source position of the current token. The position of atoken is the position of the fi rst charac-
ter of the token. For exceptions see section 3.8. The types tScanAttribute and tPosition are
predefi ned as given above. The defi nitions of these types can be changed as described in sec-
tion 3.7.

Rex 29

- During automatic error repair a parser may insert tokens. In this case the parser calls the proce-
dure ErrorAttribute in order to ask for the additional properties of an inserted token which is
given by the parameter Token. The procedure should return in the second argument called At-
tribute a default value for the additional properties of the token Token.

- The variable Exit refers to a procedure which is called upon an internal error in the scanner.
The default procedure terminates the program execution. The variable can be changed in order
to achieve a different behaviour.

- If the scanner reaches the end of the input it returns the special token called Eof Token which is
encoded by 0.

5.3.2. Sourcelnterface

The scanners generated by Rex need a source module for blocked input of characters. Rex can
provide a prototype source module which reads from standard input. It is contained in the fi les
<Scanner>Sourcemd and <Scanner>Sourcemi. The defi nition module in the file <Scan-
ner>Source.md has the following contents:

DEFI NI TI ON MODULE <Scanner >Sour ce;

FROM SYSTEM | MPORT ADDRESS;
FROM Syst em | MPORT tFile;

PROCEDURE Begi nSource (FileNane: ARRAY OF CHAR): tFile;
PROCEDURE CetlLine (File: tFile; Buffer: ADDRESS; Size: CARDI NAL): | NTEGER;
PROCEDURE C oseSource (File: tFile);

END <Scanner >Sour ce.

- BeginSource is called from the scanner in order to open fi les or to initialize any other source of
input. If not called input is read from standard inpui.

- GetLineiscaled in order to fi Il a buffer starting at address ’ Buffer’ with a block of maximal
'Size' characters. Lines are terminated by newline characters (ASCII = 12C). GetLine returns
the number of characters transferred. Reasonable block sizes are between 128 and 2048 or the
length of aline. Smaller block sizes - especially block size 1 - will drastically slow down the
scanner.

- CloseSourceis called from the scanner at end of fi le respectively at end of input. It can be used
to closefi les.

The implementation module in the fi le <Scanner>Source.mi has the following contents:
| MPLEMENTATI ON MODULE <Scanner >Sour ce;

FROM SYSTEM | MPORT ADDRESS;

FROM Syst em | MPORT tFile, Openlnput, Read, C ose;

PROCEDURE Begi nSource (FileNane: ARRAY OF CHAR): tFile;
BEGA N

RETURN Openl nput (Fil eNane);
END Begi nSour ce;

PROCEDURE CetlLine (File: tFile; Buffer: ADDRESS; Size: CARDI NAL): | NTEGER;
CONST I gnoreChar ="' ';

VAR n © I NTEGER;
VAR BufferPtr: PO NTER TO ARRAY [O0..30000] OF CHAR
BEG N

(* # ifdef Dialog

Rex 30

n = Read (File, Buffer, Size);
(* Add dummy after newline character in order to supply a lookahead for rex. *)
(* This way newline tokens are recognized without typing an extra line. *)
BufferPtr := Buffer;
IF (n > 0) AND (BufferPtr"[n - 1] = 012C) THEN
BufferPtr [n] := IgnoreChar; INC (n); END;
RETURN n;
else *)
RETURN Read (File, Buffer, Size);
¢ # endif *)
END GetLine;
PROCEDURE CloseSource (File: tFile);
BEGIN
Close (File);
END CloseSource;

END <Scanner>Source.

The newline character may constitute a token of its own in applications such as dialog pro-
grams. Like for every other token, Rex needs at least a look-ahead of one character to recognize this
token. Therefore the user has to type not only one extra character but a complete extra input line be-
cause usualy input is line buffered by the operating system. This behaviour is undesirable. The
problem can be solved by modifying the procedure GetLine in the fi le <Scanner>Source.mi. The
variant in the comment (* # ifdef Dialog ... # else *) adds a dummy character after the newline char-
acter to serve as lookahead. The dummy character should be a character that isignored such as e. g.
ablank.

5.3.3. Scanner Driver
A main program is necessary for the test of a generated scanner. Rex can provide a minimal
main program in the fi le <Scanner>Drv.mi which can serve as test driver. It counts the tokens and
looks like the following:
MODULE <Scanner>Drv;

FROM <Scanner> IMPORT BeginScanner, GetToken, GetWord, Attribute, EofToken,
TokenLength, CloseScanner;

FROM Strings IMPORT tString, ArrayToString, Writel;
FROM 10 IMPORT StdOutput, Writel, WriteC, WriteNl, CloselO;
FROM Position IMPORT WritePosition;
FROM System IMPORT EXIit;
VAR Token : INTEGER;
Word > tString;
Debug - BOOLEAN;
Count : INTEGER;
BEGIN
Debug := FALSE;
Count := O;
BeginScanner;
REPEAT
Token := GetToken ();
INC (Count);

IF Debug THEN
GetWord (Word);
WritePosition (StdOutput, Attribute.Position);
Writel (StdOutput, Token, 5);

Rex

WiteC (StdQutput, ' ');
WiteL (StdQutput, Wrd);

END;

UNTI L Token = Eof Token;

Cl oseScanner;

Witel (StdQutput,

Count, 0);

WiteN (StdQutput);

Cl osel G
rexit (0);
END <Scanner >Drv.

5.4. Ada

5.4.1. Scanner Interface

31

The scanners generated by Rex offer an interface given by the following package contained in

the fi le <Scanner>.ads:
with Position, Strings;

package <Scanner> is

type tScanAttribute is record Position: tPosition; end record;
procedure ErrorAttribute (Token: Integer; Attribute: out tScanAttribute);

Eof Token . constant Integer := 0;

TokenLengt h . I nteger;

Tokenl ndex . I nteger;

Attribute . tScanAttribute;

procedur e Begi nScanner ;

procedure BeginFile (Fil eNane: String);

function GCetToken return I nteger;

procedure GetWrd (Word: out Strings.tString);
procedure GetLower (Word: out Strings.tString);
procedure Get Upper (Word: out Strings.tString);

procedure C oseFile ;
procedure Cl oseScanner ;

end <Scanner >;

The procedure GetToken is the central scanning routine. It returns the next token found in the
input or whatever is specifi ed in the actions associated with the regular expressions.

The procedure BeginFile may be called in order to open an input fi le or a nested include fi le.
The parameter FileName specifi es the fi le name. The value "" (empty string) denotes input
from standard input. If not called input is read from standard input. Include fi les up to a nest-
ing depth of 15 can be processed.

The procedure CloseFile may be called in order to close the current input fi le (before reaching
end of fi le). CloseFileis called automatically by the scanner upon reaching end of fi le.

The procedure BeginScanner may be called in order to initialize user data. The contents of the
target code section named BEGIN isincluded in the body of this procedure.

The procedure CloseScanner may be called in order to fi nalize user data. The contents of the
target code section named CLOSE isincluded in the body of this procedure.

The procedures GetWord, GetL ower, and GetUpper alow access to the matched character se-
guence as described in section 4.4.

Rex 32

- Thevariable TokenLength specifi es the number of matched characters.

- Thevariable Tokenlndex is an array index of the internal buffer, an array of characters, which
specifi es the location where the matched character sequence starts. It can be used as argument
for the macros that compute source positions.

- Thevariable Attribute is supposed to communicate additional properties of the current token.
The value must be provided by appropriate action statements. This variable is of type
tScanAttribute which has to be a record type with at least one fi eld called Position of type tPo-
sition. tPosition has to be a record type with at least two fi elds called Line and Column. The
values of Line and Column are computed by the scanner, automatically. They indicate the
source position of the current token. The position of atoken is the position of the fi rst charac-
ter of the token. For exceptions see section 3.8. The types tScanAttribute and tPosition are
predefi ned as given above. The defi nitions of these types can be changed as described in sec-
tion 3.7.

- During automatic error repair a parser may insert tokens. In this case the parser calls the proce-
dure ErrorAttribute in order to ask for the additional properties of an inserted token which is
given by the parameter Token. The procedure should return in the second argument called At-
tribute a default value for the additional properties of the token Token.

- If the scanner reaches the end of the input it returns the special token called Eof Token which is
encoded by 0.

5.4.2. Sourcelnterface

The scanners generated by Rex need a source module for blocked input of characters. Rex can
provide a prototype source module which reads from standard input. It is contained in the fi les
<Scanner>source.ads and <Scanner>source.adb. The package module in the file <Scan-
ner>source.ads has the following contents:
package <Scanner>Source is
function BeginSource (FileNane: String) return Integer
procedure GetlLine (File: Integer; Buffer: out String; Size: |nteger

Last: out Integer);
procedure Cl oseSource (File: Integer);

end <Scanner >Sour ce;

- BeginSource is called from the scanner in order to open fi les or to initialize any other source of
input. If not called input is read from standard inpui.

- GetLineiscaled in order to fi Il a buffer starting at address ’ Buffer’ with a block of maximal
'Size' characters. Lines are terminated by newline characters (ASCII = 12C). GetLine returns
the number of characters transferred. Reasonable block sizes are between 128 and 2048 or the
length of aline. Smaller block sizes - especially block size 1 - will drastically slow down the
scanner.

- CloseSourceis called from the scanner at end of fi le respectively at end of input. It can be used
to closefi les.

The implementation module in the fi |le <Scanner>source.adb has the following contents:
with System Use System

package body <Scanner>Source is

Rex 33

function Begi nSource (FileNanme: String) return Integer is

function Openlnput (FileName: Address) return Integer;
pragma Interface (C, Openlnput);
pragma I nterface_Nanme (Openl nput, "Openlnput");
C_Nane : String (1 .. 256);

begi n
C Nane (1 .. FileNane’ Last) := Fil eNane;
C Nane (FileNane’ Last + 1) = Character’Val (0);
return Openl nput (C_Nane' Address);

end Begi nSour ce;

procedure GetlLine (File: Integer; Buffer: out String; Size: Integer;
Last: out Integer) is
function rRead (File: Integer; Buffer: Address; Size: |nteger)
return I nteger;

pragma Interface (C, rRead);
pragma I nterface_Nane (rRead, "rRead");

begi n
Last := rRead (File, Buffer’ Address, Size);

end GetLine;

procedure Cl oseSource (File: Integer) is
procedure rCl ose (File: Integer);
pragma Interface (C, rd ose);
pragma Interface_Nanme (rd ose, "rd ose");
begi n
rcClose (File);
end Cl oseSour ce;

end <Scanner >Sour ce;

5.4.3. Scanner Driver

A main program is necessary for the test of a generated scanner. Rex can provide a minimal
main program in the fi le <Scanner>drv.adb which can serve as test driver. It counts the tokens and
looks like the following:

wi th <Scanner>, Text lo, Position, Strings;
use <Scanner>, Text _lo, Position, Strings;

procedure <Scanner>Drv is

package Int _lo is new Text _lo.Integer IO (Integer); use Int_lo;

Token . I nteger = 1;

Wor d ;. tString;

Debug . Bool ean = Fal se;

Count . Integer = 0;
begi n

Begi nScanner ;
whi | e Token /= Eof Token | oop
Token : = Get Token;
Count := Count + 1;
i f Debug then
WitePosition (Standard _Qutput, Attribute.Position);
Put (Standard_Qut put, Token, 5);
i f TokenLength > 0 then
Put (Standard_Qutput, ' ');
CGetWord (Word);
WiteS (Standard_Qut put, Wrd);

Rex 34

end if;
New Li ne (Standard_Qutput);
end if;
end | oop;
O oseScanner ;
Put (Standard_Qutput, Count, 0);
New Li ne (Standard_Qutput);
end <Scanner >Drv;

5.5. Eiffel

5.5.1. Scanner Interface

The fi le <Scanner>.e contains the class <Scanner> which offers the following features:
cl ass <Scanner >

creati on Begi nScanner

feature

Eof Token . INTEGER is O
TokenLengt h . I NTEGER
Attribute . ScanAttribute
Begi nScanner is

Begi nFil e (FileNane: STRING is
Cet Token . INTEGER i s
Cet WOrd . STRING is

Cet Lower . STRING is

Get Upper . STRINGis

Cl oseFil e is

Cl oseScanner is

ErrorAttribute (Token: INTEGER): ScanAttribute is
Set Attribute (Val ue: ScanAttribute) is

- The procedure GetToken is the central scanning routine. It returns the next token found in the
input or whatever is specifi ed in the actions associated with the regular expressions.

- The procedure BeginFile may be called in order to open an input fi le or a nested include fi le.
The parameter FileName specifi es the fi le name. The value "" (empty string) denotes input
from standard input. If not called input is read from standard input. Include fi les may be nest-
ed to arbitrary depth.

- The procedure CloseFile may be called in order to close the current input fi le (before reaching
end of fi le). CloseFileis called automatically by the scanner upon reaching end of fi le.

- The procedure BeginScanner instantiates a scanner object and performs the necessary initial-
izations. For example, the tables are read in from a fi le named <scanner>.txt. The contents of
the target code section named BEGIN isincluded in the body of this procedure.

- The procedure CloseScanner may be called in order to fi nalize user data. The contents of the
target code section named CLOSE isincluded in the body of this procedure.

- The procedures GetWord, GetL ower, and GetUpper allow access to the matched character se-
guence as described in section 4.4.

- Thevariable TokenLength specifi es the number of matched characters.

Rex 35

- The variable Attribute is supposed to communicate additional properties of the current token.
The value must be provided by appropriate action statements. The class of this feature has to
be a subclass of the predefined support class ScanAttribute. This class has one feature called
Position of type Position. The class Position has two features called Line and Column. The
values of Line and Column are computed automatically by the scanner. They indicate the
source position of the current token. The position of a token is the position of the first charac-
ter of the token. For exceptions see section 3.8. The classes ScanAttribute and Position are
predefined in the library reuse/eiffel. Subclasses of these classes can be defined in order reflect
application specific needs.

- During automatic error repair a parser may insert tokens. In this case the parser calls the proce-
dure ErrorAttribute in order to ask for the additional properties of an inserted token which is
given by the parameter Token. The procedure should return a default value for the additional
properties of the token Token.

- The procedure SetAttribute can be used to store values in the variable Attribute.

- If the scanner reaches the end of the input it returns the special token called EofToken which is
encoded by 0.

5.5.2. SourceInterface

The scanners generated by Rex need a source class for blocked input of characters. Rex can
provide a prototype source module which reads from standard input. It is contained in the file
source.e and has the following interface:

cl ass Source
creati on Open
feature

Open (filenanme: STRING is
CGetLine (wanted: INTEGER): STRING is
Close is

- Openis called from the scanner in order to open files or to initialize any other source of input.
If not called input is read from standard input.
- GetLine is called in order to return a block of maximal "wanted’ characters.

- Close is called from the scanner at end of file respectively at end of input. It can be used to
close files.

5.5.3. Scanner Driver

A main program is necessary for the test of a generated scanner. Rex can provide a minimal
main program in the file <Scanner>drv.e which can serve as test driver. It counts the tokens and
looks as follows:

cl ass <Scanner >Drv
creation main
feature
mainis

| ocal

Token . | NTEGER
Count . | NTEGER

Rex 36

Scanner . <Scanner >
f : rFILE
Attribute : ScanAttribute
do
't f.make_wite fromfp (f.stdout fp)
I'l Scanner. Begi nScanner
from
Token :
Count
debug
Scanner . Attribute. Position. WitePosition (f)
f.putint2 (Token, 5)
f.putchar (')
f.putstring (Scanner. Get \Wrd)
f.new |ine
end
until Token

Scanner . Get Token
1

Scanner . Eof Token | oop
canner . Get Token

wn

debug
Scanner. Attribute. Position. WitePosition (f)
f.putint2 (Token, 5)
f.putchar (')
f.putstring (Scanner. Get \Wrd)
f.new |ine
end
end
Scanner . C oseScanner
f.putint (Count)
f.new |ine
f.cl ose
end

end

5.6. Java

5.6.1. Scanner Interface

The fi le <Scanner>.java contains the class <Scanner> which offers the following features as
default:

i mport de. cocol ab. reuse. *;
public class <Scanner> {

class ScanAttribute inplenents HasPosition {

}

public ScanAttribute errorAttribute (int token) {
}

public static final int eofToken = 0;

public int t okenLengt h;

public ScanAttribute attribute;

public <Scanner > () throws java.io. | OException
public void begi nFil e (java.io. |l nput Stream strean)
throws java.io.| OException

Rex 37

public int get Token () throws java.io.| OException;
public String get Word 0);
public String get Lower 0);
public String get Upper 0);
public void closeFile () throws java.io.| OException;
public void finalize 0);

The procedure getToken is the central scanning routine. It returns the next token found in the
input or whatever is specifi ed in the actions associated with the regular expressions.

The procedure beginFile may be called in order to open an input fi le or a nested include fi le.
The parameter stream specifi es the input source. If not called input is read from standard in-
put. Include fi les may be nested to arbitrary depth.

The procedure closeFile may be called in order to close the current input fi le (before reaching
end of file). closeFile is called automatically by the scanner upon reaching end of fi le.

The contents of the target code section named BEGIN is included in the contructor <Scan-
ner>(), and is executed whenever a new scanner object is created.

The procedure finalize may be called in order to fi nalize user data. The contents of the target
code section named CLOSE is included in the body of this procedure. A good VM will call
this procedure when the scanner object is garbage collected, or it may be called explicitly.

The procedures getWord, getLower, and getUpper allow access to the matched character se-
guence as described in section 4.4.

The variable tokenLength specifi es the number of matched characters.

The variable attribute is supposed to communicate additional properties of the current token.
The value must be provided by appropriate action statements. This variable is of type ScanAt-
tribute which has to be a class which implements the interface HasPosition, i.e. it has a method
position () which returns an instance of Position. Position has to be a class with at least two
fi elds called line and column. This arrangment leaves the user free to decide whether to have a
fi eld of type Position or to inherit directly from Position. The default defi nition of the macro
yySetPosition assumes the latter; this minimises the number of objects created. The values of
line and column are computed by the scanner, automatically. They indicate the source position
of the current token. The position of a token is the position of the fi rst character of the token.
For exceptions see section 3.8.

During automatic error repair a parser may insert tokens. In this case the parser calls the proce-
dure errorAttribute in order to ask for the additional properties of an inserted token which is
given by the parameter token. The procedure should return default values for the additional
properties of the token.

In the event of an internal error in the scanner an exception de.cocolab.reuse.Fatal Error will be
thrown. It is not required to catch this exception.

If the scanner reaches the end of the input it returns the special token called eofToken which is
encoded by 0.

The internal scanner interface consists of the following objects:

The initial size of the scanner input buffer is defi ned by the value of the preprocessor symbol
yylnitBufferSize with a default of 8448. The buffer size is increased automatically when nec-
essary. The initial buffer size can be changed by including a C preprocessor directive in the
GLOBAL section such as:

Rex 38

define yylnitBufferSize 562
For best results, the value should be a power of two plus a constant between 50 and 256.

The stack for include fi lesis supplied by default with unlimited size. If nested include fi les are
not required the size of the generated scanner can be reduced by including a preprocessor di-
rective in the GLOBAL section such as:

define yylnitFileStackSize 0

The value for tab stops is defi ned by the preprocessor symbol yyTabSpace with a default of 8.
This value can be changed by including a preprocessor directive in the GLOBAL section such
as.

define yyTabSpace 4

The stack used by yyPush and yyPop isinitially 16 elements, and will grow as required. A dif-
ferent initial size can be specifi ed by including a preprocessor directive in the GLOBAL sec-
tion such as:

define yylnitStStStackSi ze 32

If the initial size is given as zero then there is no start state stack, and yyPush/yyPop may not
be used. This feature may be used to obtain the smallest possible scanner.

5.6.2. Tuningthe Scanner Interface

It is not possible to design one interface to the scanner that is optimal in al circumstances.

Thisis because different cases will require different emphasis on the following characteristics:

the number of objects created per token; there will always be an object representing source lo-
cation (Position) and there will often be an additional object ecapsulating this together with
other information about the token, for example a coded identifi er. Thisisimportant where the
input is large and run time is to be minimized.

memory usage; the size of an instance of ScanAttribute is important if it is to be stored in an
abstract syntax tree and the size of the input may be large.

the number of classes generated; the time to load a Java applet over the WWW increases with
the number of classes. For small input load time is the most signifi cant factor.

A scanner generated for Java may be tuned in a number of ways using macros defi ned in the

GLOBAL section and by proper choice of design for the ScanAttribute class. These facilities are
introduced here: more details may be found by examining the skeleton from which Rex generates a
Java scanner, i.e. the fi le Scanner.javafound in the lib/rex directory within the Cocktail installation.

The name ScanAttribute may be defi ned to Position so that attributes consist directly of an in-
stance of Position (this being the minimum requirement of a lark generated parser). Thisis
suitable for asmall, fast scanner which does not have to deliver additional attributes.

ScanAttribute may extend Position instead of having a fi eld of type Position. This avoids an
additional object creation at the cost of having some information in the ScanAttribute class
about the implementation of Position. Specifi cally, there needs to be a constructor which mir-
rors that of Position and a decision must be made as to what toString () should return - just the
position or some representation of any additional attributes. For an example of this technique
see the default EXPORT section in the skeleton.

Another way of achieving the same end is to have ScanAttribute implement HasPosition. The
values of line and column are stored as fi elds and used to create an instance of Position only

Rex 39

when the position () method is called, that is only if a syntax error is detected. This achieves
the aim of creating only one object per token for correct input while avoiding the issue of what
toString () should return.

By default the macro yySetPosition is defi ned to create an instance of ScanAttribute from the
position information. This macro is called whenever a pattern is matched and position calcula

tion has not been suppressed (see section 3.8) but before any user action code is entered. If the
user action code may create some subclass of ScanAttribute in order to include attributes spe-

cifi c to the type of token (the value of a numeric literal for example) then either yySetPosition
must be redefi ned or position calculation must be suppressed for those rules which will instan-
tiate some descendant of ScanAttribute.

The macro yyGetTokenBegin may be used to execute code at the beginning of getToken (), that
isfor every token read. By default this macro is empty.

The macro yyAttributePosition (attribute) may be used to change how position information is
obtained from an instance of ScanAttribute. Thisis only of signifi cance when the scanner is
reporting some internal error such as misuse of the yyPush/yyPop methods. A scanner to be
used by alark generated parser has other requirements.

5.6.3. SourceInterface

The scanners generated by Rex need a source module for blocked input of characters. For Java

thisis any class which descends from java.io.lnputStream.

5.6.4. Scanner Driver

A main program is necessary for the test of a generated scanner. Rex can provide a minimal

main program in the fi le <Scanner>Drv.java which can serve as test driver. It counts the tokens and
looks like the following:

i mport java.io.*;
/**

* Sinmple class for driving a generated scanner.
*/

cl ass <Scanner>Drv {

public static void main (String argv []) throws java.io. | OException {
<Scanner > scanner = new <Scanner> ();
i nt token;
bool ean debug = fal se;
String filename = null
int count = O;

for (int i =0; i < argv.length; i ++) {
if (argv [i].equals ("-D')) debug = true;
el se filename = argv [i];

}

if (filenane !'= null)
scanner. beginFile (new FilelnputStream (fil enane));

do {
t oken = scanner. get Token ();
count ++;
i f (debug) {
String word = scanner.getWrd ();

Rex 40

Systemerr.println (scanner.attribute.position () + " " +
token + " " + word);
}
} while (token != <Scanner>. eof Token);
scanner.finalize ();
Systemout.println (count);

6. Usage
NAME

rex — generator of lexical analyzers

SYNOPSIS

rex [-options] [-k{124}][-ffile] [-Idirectory] [file]

DESCRIPTION

Rex generates program code to be used in lexical analysis of text. A typical application is

the generation of scanners for compilers. The generated scanners can handle single byte in-

put as well as Unicode input. The input file contains regular expressions to be searched for,

and actions written in the implementation language to be executed when strings according to

the expressions are found. Unrecognized portions of the input are copied to standard output.

In order to be able to recognize tokens depending on their context, Rex provides start states

to handle left context and the right context can be specified by an additional regular expres-
sion. If several regular expressions match the input characters, the longest match is pre-

ferred. If there are still several possibilities, the regular expression given first in the specifi-
cation is chosen.

Rex generated scanners automatically provide the line and column position of every token.
For languages like Pascal and Ada where the case of letters is insignificant tokens can be
normalized to lower or upper case. There are predefined rules to skip white space such as
blanks, tabs, or newlines and there is a mechanism to handle include files. The generated
scanners are implemented as table-driven deterministic finite automatons.

OPTIONS

® © 3 4+ O o

(S

generate all (= ds)

generate a lexical analyzer in C

generate a lexical analyzer in C++

generate a lexical analyzer in Modula-2 (default)
generate a lexical analyzer in Ada

generate a lexical analyzer in Eiffel

generate a lexical analyzer in Java

generate a header file or definition module

generate support modules:
- a source module for input
- a main program to be used as test driver

Rex 41

do not predefi ne rules for skipping of white space

require explicit defi nitions for used identifi ers
(default: undefi ned identifi ers are treated as strings)

do not generate dummy labels (might cause compiler messages such as ’statement not
reached’) (default: generate dummy labels, might cause compiler messages such as ’label not
used'.)

reduce the number of generated case/switch labels, might be necessary due to compiler restric-
tions. Effects. slower scanner (2-4%), larger tables, same scanner size

use 1SO 8 hit code (default: ASCII 7 bit code)

k<n>

generate scanner for characters having n bytes (default: 1) (n > 1 implies -z and disables
CHARACTER_SET)

Z[<n>]

> T * TQ S

map characters to classes at run time, use an array of n elements, n >= 256 (default: 16384)

optimize table size. Effects. slower scanner (0-15%), small tables, long generation time (factor
1-10).

do not optimize table size. Effects. fast scanner, large tables (factor 1-10), short generation
time.

default: improve table size. Effects: slower scanner (0-5%), medium size tables (factor 1-2),
medium generation time (factor 1-2).

suppress warnings

generate # line directives

do not partition character set into blocks during generation (implies-k1)
touch output fi lesonly if necessary

print information about ambiguous rules

print statistics about the generated lexical analyzer

print help information

-ffi le specify afi le to be used as skeleton for the scanner

-Idir specify the directory dir where rex fi nds its datafi les
FILES

if output isin C:

<Scanner>.h header fi le of the generated scanner
<Scanner>.c body of the generated scanner
<Scanner>Source.h header fi le of support module source
<Scanner>Source.c body of support module source
<Scanner>Drv.c body of the scanner driver (main program)

If output isin C++:

<Scanner>.h header fi le of the generated scanner
<Scanner>.cxx body of the generated scanner
<Scanner>Source.h header fi le of support module source

<Scanner>Source.cxx
<Scanner>Drv.cxx

if output isin Modula-2:

<Scanner>.md
<Scanner>.mi
<Scanner>Source.md
<Scanner>Source.mi
<Scanner>Drv.mi

if output isin Ada:

<Scanner>.ads
<Scanner>.adb
<Scanner>source.ads
<Scanner>source.adb
<Scanner>drv.adb

if output isin Eiffel:

<Scanner>.e
<Scanner>buffer.e
<Scanner>drv.e
<Scanner>.txt
source.e
attribute.e
scanattribute.e
position.e

rfi le.e

rsystem.e

If output isin Java:

<Scanner>.java
<Scanner>Drv.java

SEE ALSO

Rex

body of support module source
body of the scanner driver (main program)

defi nition module of the generated scanner
implementation module of the generated scanner
defi nition module of support module source
implementation module of support module source
implementation module of the scanner driver

package of the generated scanner
package body of the generated scanner
package of support module source
package body of support module source
package body of the scanner driver

class of the generated scanner
class of the character buffer for the scanner
class of the scanner driver (main program)

tables controlling the generated scanner (ASCII format)

support class for input

42

support class for the description of properties of nonterminals

support class for the description of properties of tokens
support class for the representation of source positions

support class extending the class FILE
support class for system specifi ¢ properties

class of the generated scanner
class of the scanner driver (main program)

J. Grosch: "Rex - A Scanner Generator”, CoCoL ab Germany, Document No. 5

J. Grosch: "Effi cient Generation of Lexical Analyzers', Software - Practice & Experience,
19 (11), 1089-1103, Nov. 1989

J. Grosch: "Effi cient Generation of Table-Driven Scanners', CoColL ab Germany, Document

No. 2

7. Implementation

Rex is implemented by a 12,000 line Modula-2 program. The program makes heavy use of a

library of reusable Modula-2 modules currently comprising 9,000 lines of code [Groa, Grob]. Of
the 12,000 lines of Rex around 4,900 lines are generated by tools:

2100 lines for the scanner are generated by Rex itself.

Rex 43

- 1500 lines for the parser are generated by the LALR(1) parser generator lark.
- 1100 lines for a tree data structure are generated by the abstract syntax tree tool ast.
- 250 lines for an attribute evaluator are generated by the attribute evaluator generator ag.

How can Rex generate a part of itself before its existence? Well, the scanner has been boot-
strapped using LEX. The first version of the scanner was a separate C program generated by LEX
which wrote the internal representation of the tokens on a file. A simple hand written scanner read
the tokens from this file during construction of Rex. After Rex was operational it could generate its
own scanner in Modula-2.

And how is Rex working? It differentiates between constant regular expressions and non-con-
stant ones as defined in [Gro89]. The non-constant regular expressions constitute a nondeterminis-
tic finite automaton. The so-called subset construction algorithm is used for conversion into a deter-
ministic finite automaton. Then an algorithm to minimize the number of states is applied. After ex-
tending the automaton to a tunnel automaton the constant regular expressions are added in linear
time using the algorithm described in [Gro89]. The sparse matrix to control the automaton is com-
pressed into a data structure called "comb vector” [ASU86] to save space.

The key to the performance of scanners generated by Rex lies in the following facts:
- access to the "comb vector" table is fast
- input happens rarely because blocks of characters are transferred
- no check for the last character of a block is necessary because of the sentinel technique used
- the same holds for the check of stack underflow for the stack to record the passed states

- the treatment of right context is efficient and only necessary in a few cases because partial
evaluation has been applied

8. Differencesto LEX

Some specialists might want to know about the differences between Rex and LEX [Les75] (see
Table):

Advantages of Rex:
+ Rex can generate scanners for Unicode.
+ The standard or initial start state has a documented name: STD.

+ The list of start states can be inverted using the operator NOT to specify that a rule is valid in
all states except the listed ones.

+ The specifications can be written unformatted - white space in the form of blanks, tabs, and
newlines is skipped.

+ Identifiers used to refer to named regular expressions are written without enclosing braces *{’
e

+ Rex automatically calculates the source position of the tokens in the fields Line and Column of
the variable <Scanner>_Attribute.

+ There are predefined rules to skip the white space characters.

+ Include files with an unlimited nesting depth can be processed.

+ Routines are provided to normalize tokens to upper or lower case characters.

Rex

Table: Syntactical differences between Rex and LEX:

Meaning LEX Rex

delimiter for character classes [] {}

complement of character classes] -{}

any character : ANY

left justification - <

right justification $ >

replicator {n} [n]

replicator {m,n} [m-n]

delimiter for start states <> H#

escape representation for characters \octal \decimal

scanner routine yylex <Scanner>_GetToken
access to matched string yytext <Scanner>_GetWord ()
length of matched string yyleng result of <Scanner>_GetWord ()
output of matched string ECHO yyEcho

retain part of matched string yyless yyLess

initial start state INITIAL STD

change of start state BEGIN yyStart ()

character set %T CHARACTER_SET
action at end of input yywrap EOF section

+ No adjustment of the internal data structures are necessary to be able to process large specifi-

cations.
Disadvantages of Rex:

— The action statement yymore is not available.
— The action statement REJECT is not available - Rex can only find one solution and not all like

LEX.

Rex

Appendix 1: Syntax of the Specifi cation L anguage

speci fication

decl s

nane

code

char act er Set
defi ne
start

rul es

char Def

definition

i dent Li st

rul e

patternLi st

pattern

start St ates

regExpr

decls rul es

decl s nane

decl s code

decl s char act er Set
decl s define
decls start

SCANNER [| dent]

SCANNER Dottedldent /* Java only */

| MPORT Tar get Code
EXPORT Tar get Code
GLOBAL Tar get Code
LOCAL Tar get Code
BEA N Target Code
CLOSE Tar get Code
DEFAULT Tar get Code
EOF Tar get Code

CHARACTER _SET ' {' charDef * '}’
DEFI NE definition *
START [identList] ['-' identList]

RULE rule *
RULES rule *

CsChar CsNunber
CsNunber CsNunber

Ident '=" regExpr .’

| dent

i dent Li st | dent

identList ',’ Ildent
patternList ':' Target Code
patternList ':-' Target Code
pattern

patternList ',’ pattern

[startStates] ['<'] regExpr ['/’

"# identList '#

vy e g

NOT ' # identList '#
- '# identList '#

regExpr |’ regTerm
regTerm

regExpr] ['>"]

O

I I |

regTerm

regFact or

char Set

range

Char

| dent

Dot t edl dent

letter_or_digit

String

Nunber

Tar get _code

CsChar

CsNunber

Rex

regTerm r egFact or
regFact or

regFactor '+

regFactor '*’

regFactor ' ?’

regFactor '[’ Nunber ']’
regFactor '[’ Number '-' Nunber
"(7 regExpr ')’

char Set

Char

| dent

String

Nurber

"-' char Set
"{" range * '}’
Char

Char '-' Char

CsChar

"\’ deci mal _nunber

"\’ hex_nunber

"\ (x| 'X) hex_digit *
"\ ("u | 'U) hex_digit *

letter letter_or _digit *

| dent
Dottedl dent '.’' Ident

letter
digit

character * ' "’
deci mal _nunber

"{" character * '}’

character
"\" a
"\ n
"\t
"\ v
"\ b
N
\f

"\’ character

octal nunber
deci mal _nunber
hex_nunber

3K

46

Ooooooooo

octal nunber
deci mal _nunber

hex_nunber

Rex

0" octal _digit *
digit +
0" (x| 'X) hex_digit *

a7

Rex

Appendix 2: Example Specifi cation of a M odula-2-Scanner in C

GLOBAL {

include "Menory. h"
include "StringMh"
include "ldents. h"

int level = 0;
void ErrorAttribute (Token, Attribute)
i nt Token;
t ScanAttribute Attribute;
{
}
}
LOCAL {
char Word [256];
t I dent i dent ;
t Stri ngRef r ef ;
i nt length ;
}
DEFAULT {
printf ("illegal character: "); yyEcho; printf ("\n");
}
DEFI NE
digit = {0-9}
letter ={a-z A Z}
cnt = - {*(\t\n}
START conmment
RULE
(" :- {++ level; yyStart (coment);}
#comment# "*)" i- {-- level; if (level == 0) yyStart (STD);}
#coment# "(" | "*" | cm + - {}
/* The procedure PutString is inported fromthe nodule StringMenory).
It is used to store the string representation of sone tokens. */
#STD# digit + ,
#STD# digit +/ ".." . {length = GetWord (Word);
ref = PutString (Wrd, |ength);
return 1;}
#STD# {0-7} + B . {length = GetWord (Word);
ref = PutString (Wrd, |ength);
return 2;}
#STD# {0-7} + C . {length = GetWord (Word);
ref = PutString (Wrd, |ength);
return 3;}

#STD# digit {0-9 AAF} * H: {
length = GetWord (Word);
ref = PutString (Wrd, |ength);
return 4;}

#STD# digit + "." digit * (E {+\-} ?2 digit +) ?: {
length = GetWord (Word);
ref = PutString (Wrd, |ength);
return 5;}

#STD#

#STD#
#STD#

#STD# "'
#STD# "'

#STD#

#STD# "'

#STD#
#STD#
#STD#
#STD#

#STD# "'

#STD#
#STD#
#STD#

#STD# "'

#STD#
#STD#
#STD#

#STD# "'

#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#

#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#

ARty <
\" - \n"} < \"

S
oo
[
.
e
i
2.
AND
ARRAY
BEGIN
BY
CASE
CONST
DEFINITION
DIV

DO
ELSE
ELSIF
END
EXIT
EXPORT
FOR
FROM
IF
IMPLEMENTATION
IMPORT
IN
LOOP
MOD
MODULE
\NOT
OF

Rex

{length = GetWord (Word);

ref = PutString (Word,

return

{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return

{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return

6;}

7:}

8}

9;}

10;}
11;}
12;}
13;}
143}
15;}
16;}
17}
18;}
19;}
20;}
21;}
22;}
23;}
24;}
25;}
26;}
27}
28;}
29;}
30;}
31;}
32;}
33;}

34;%}
35;}
36;}
37;}
38;}
39;}
40;}
41;%
42;%
43;}

agooguauaagoauabbbhbdbhD

O~NOUOBDWNPEPOOONO O
S S o e S e e e e e e e o

length);

49

#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH

#STDH

R

PO NTER
PROCEDURE
QUALI FI ED
RECORD
REPEAT
RETURN
SET

THEN

TO

TYPE
UNTI L
VAR

VWH LE

W TH

letter (letter

{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
{return
digit) * :
i dent

Rex

59;}
60; }
61;}
62;}
63;}
64;}
65; }
66; }
67;}
68;}
69;}
70;}
71;}
72;}
73;}

{
Makel dent (TokenPtr,

return 74;}

TokenLengt h) ;

50

Rex 51

Appendix 3: Example Specifi cation of a Modula-2-Scanner in M odula-2

GLOBAL {
FROM Strings | MPORT tString ;
FROM Stri ngM | MPORT t Stri ngRef , PutString ;
FROM | dent s | MPORT t | dent , Makel dent ;
VAR | evel : CARDI NAL;
PROCEDURE ErrorAttribute (Token: |NTEGER, VAR Attribute: tScanAttribute);
BEG N
END ErrorAttribute;
}
LOCAL {
VAR
Wor d ;. tString
i dent : tldent;
r ef : tStringRef;
}
BEGN { level :=0; }
DEFAULT {
IOWiteS (10 StdQutput, "illegal character: "); yyEcho; 1O WiteN (1O StdQutput);
}
DEFI NE
digit = {0-9}
letter ={a-z A Z}
cnt = - {*(\t\n}
START conmment
RULE
(" - {INC (level); yyStart (coment);}
#comment# "*)" .- {DEC (level); IF level = 0 THEN yyStart (STD); END;}
#coment# "(" | "*" | cm + - {}
#STD# digit + ,
#STD# digit +/ ".." ;o {GetWord (Word)
ref := PutString (Wrd);
RETURN 1;}
#STD# {0-7} + B {GetWord (Word);
ref := PutString (Wrd);
RETURN 2;}
#STD# {0-7} + C {GetWord (Word);

ref := PutString (Wrd);
RETURN 3;}

#STD# digit {0-9 AAF} * H: {
CGetWord (Word);
ref := PutString (Wrd);
RETURN 4;}

#STD# digit + "." digit * (E {+\-} ?2 digit +) ?: {
CGetWord (Word);
ref := PutString (Wrd);
RETURN 5; }

#STD# ' - {\n '} * |
\" - {\n"} * \" ;o {GetWord (Word)
ref := PutString (Wrd);

#STD#
#STD#

#STD# "'
#STD# "'

#STD#

#STD# "'

#STD#
#STD#
#STD#
#STD#

#STD# "'

#STD#
#STD#
#STD#

#STD# "'

#STD#
#STD#
#STD#

#STD# "'

#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#

#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#
#STD#

S
[y

[

.

e

i

2.

AND

ARRAY
BEGIN

BY

CASE
CONST
DEFINITION
DIV

DO

ELSE
ELSIF

END

EXIT
EXPORT
FOR

FROM

IF
IMPLEMENTATION
IMPORT

IN

LOOP

MOD
MODULE
\NOT

OF

OR
POINTER
PROCEDURE

RETURN

{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN

{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN
{RETURN

11;}

14;%

17}

20;}

23;}

26;}

29;}

32;}

36;}

39;}

425}
43}

oo oaabshbhbbdbDdDdDN

P OOO~NOOODRARWNPEPOOONO O
S S e o e e e S e e e e e o e

Rex

52

#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH
#STDH

#STDH

QUALI FI ED
RECORD
REPEAT
RETURN
SET
THEN
TO
TYPE
UNTI L
VAR
VWH LE
W TH

letter (letter

{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN
{ RETURN

digit) * :

Rex

62;
63;
64;
65;
66;
67;
68;
69;
70;
71;
72;}
73;}

{

CGetWord (Word);

i dent
RETURN

: = Makel dent (Word);

74;}

53

Rex 54

Appendix 4: Example Specifi cation of a Scanner for Rex

EXPORT {
FROM | dent s | MPORT t | dent ;
FROM StringM | MPORT t StringRef;
FROM Text s I MPORT t Text ;
FROM Posi ti on | MPORT t Posi tion;
FROM Uni Code | MPORT UCHAR ;
TYPE
t ScanAttribute = RECORD
Position : tPosition ;
CASE : | NTEGER OF
| 1. Ident . tldent ;
| 2: Number . SHORTCARD ;
| 3: String : tStringRef ;
| 4: Ch : UCHAR ;
| 5: Text . tText ;
END;
END;

VAR ErrorCount : CARDI NAL;

PROCEDURE ErrorAttribute (Token: | NTEGER, VAR Attribute: tScanAttribute);
PROCEDURE st art Code ;
PROCEDURE st art Charset ;
PROCEDURE st art Set ;
PROCEDURE st art Rul es ;

}

GLOBAL {

FROM Strings | MPORT tString, Concatenate, Char, SubString, cMaxStrlLength,
StringTolnt, StringToNunber, AssignEnpty, Length,
ArrayToString, IntToString;

FROM Text s | MPORT MakeText, Append;

FROM StringM | MPORT tStringRef, PutString;

FROM | dent s | MPORT tldent, Makeldent, Noldent, GetString;

FROM Errors | MPORT Message, Error, Restriction;

FROM ScanGen | MPORT Language, tLanguage, Procedures, AppendLine,

pCet Wrd, pGetLower, pCGetUpper, pinput, pyyPush, pyyPop;
FROM Posi tion | MPORT t Posi tion;

FROM Uni Code | MPORT MaxUCHAR;

CONST
Syl dent =1 ;
SymNunber =2 ;
SynString =3 ;
SyntChar =4 ;
Synirar get code =5 ;
SynfScanner = 37 ;
Sym nport = 39 ;
SynmExport = 32 ;
Synd obal =6 ;

Syniocal 31 ;

I I |

[y

I I |

O

Rex

SynBegi n =7 ;
SynCl ose =8 ;
Sy nEof = 34 ;
SynDef aul t = 36 ;
SyntChar Set = 38 ;
SynmDef i ne =9 ;
Synft art = 10 ;
SynRul es =11 ;
SynDot = 12 ;
SymConmma = 13 ;
SynEqual =14 ;
SyntCol on = 15 ;
SyntCol onM nus = 35 ;
Sym\r Si gn = 33 ;
Synsl ash = 16 ;
SynBar = 17 ;
SynPl us = 18 ;
SynmM nus = 19 ;
SymAst eri sk = 20 ;
Synmuest i on =21 ;
SynmiPar en = 22 ;
SynRPar en = 23 ;
SymlLBr acket =24 ;
SynRBr acket =25 ;
SynLBrace = 26 ;
SynRBr ace = 27 ;
Symniess = 28 ;
Synm(3 eat er = 29 ;
SynRul e = 30 ;
VAR

| evel : | NTEGER ;
string, Target Code © tString ;
NoSt ri ng : tStringRef ;
StartPosition, StringPosition: tPosition ;
PrevState : SHORTCARD ;
| sChar : BOOLEAN ;

PROCEDURE ErrorAttribute (Token: CARDI NAL; VAR Attribute: tScanAttribute);
BEGA N
pAttribute.Position := Attribute. Position;
CASE Token OF

| Sym dent : Attribute.ldent = Nol dent ;

| SymNunber : Attribute. Number := 0;

| Synftring : Attribute.String := NoString;
| SyntChar : Attribute.Ch = ORD ("?");
| SynTargetcode : MakeText (Attribute. Text);
ELSE

END;

END ErrorAttri bute;

PROCEDURE st art Code;
BEGA N
yyStart (targetcode);
MakeText (Attribute. Text);
Assi gnEnpty (Tar get Code) ;
level := 1;

OooOo

Ooooood

END st art Code;

Rex

PROCEDURE st art Char set ;

BEG N

yyStart (charset);
| sChar : = TRUE;
END st art Char set;

PRCCEDURE st art Set ;

BEG N
yyStart (set);
END start Set;

PROCEDURE st art Rul es;

BEG N

yyStart (rules);

END st art Rul es;
}

LOCAL {

VAR
String, Wrd :
n, PPLi ne

tString;

LONGCARD;

PROCEDURE AppendCode;

BEG N

CetWord (Word);

Concat enat e
END AppendCode;

}

BEGA N {
| evel = 0O;

(Tar get Code, Word);

Assi gnEnpty (string);
NoString := PutString (string);
Error Count := O;

}

DEFAULT {

Message ("illegal character", Error, Attribute.Position);
I NC (ErrorCount);

}

EOF {

CASE yyStartState OF

| targetcode ,
set :

| comment

| CStrl, CStr2,
AStrl1, AStr2,
Strl, Str2 :

ELSE
END;
yyStart (STD);

Message ("terminating '}’ m ssing”,

I NC (ErrorCount);

Message ("unterm nated coment",

I NC (ErrorCount);

Message ("unterm nated string",
I NC (ErrorCount);

Error,

Error,

Error,

Start Position);

StringPosition);

Start Position);

56

O

[y | [y | [y | Oooooo

Ooooood

OooOo

[y |

OooOo

}

DEFINE
letter
digit
octdigit
hexdigit
string
cmtch
code
StrChl
StrCh2
CStrChl
CStrCh2
AStrCh

Rex

{A-Z a-z} -
{0-9} .
{0-7} .
{0-9 A-F a-f} .
- {'""\n} .
- {*\t\n} .
{O\IN\E\N\N\\""gGiy#} .
{’\t\n} .
{"\t\n} .
{7\t\n\\} .
- {""\t\n\\} .

0\ 153]

START targetcode, set, rules, comment,

Strl, Str2,

RULES

#targetcode#

#targetcode#

#targetcode#

#targetcode#

#targetcode#

#targetcode#

#targetcode#

#targetcode#

#targetcode#

R SR
AppendCode;
INC (level);

e
DEC (level);
IF level = O THEN
yyStart (PrevState);

Append (Attribute.Text, TargetCode);
Attribute_Position := Position;

RETURN SymTargetcode;
ELSE
AppendCode;
END;

}
code + | {gGiy\r#} :- { AppendCode; }

GetWord :- {IF Language # Java THEN
INCL (Procedures, pGetWord);
END; AppendCode; }
getWord :- {IF Language = Java THEN
INCL (Procedures, pGetWord);
END; AppendCode; }
GetLower:- {IF Language # Java THEN
INCL (Procedures, pGetLower);
END; AppendCode; }
getLower:- {IF Language = Java THEN
INCL (Procedures, pGetLower);
END; AppendCode; }
GetUpper:- {IF Language # Java THEN
INCL (Procedures, pGetUpper);
END; AppendCode; }
getUpper:- {IF Language = Java THEN
INCL (Procedures, pGetUpper);

CStrl, CStr2, AStrl, AStr2, charset, PPline

57

O

OoOoooooooooooooagano

Rex

END; AppendCode; }

#targetcode# input :- { INCL (Procedures, pinput); AppendCode; }
#targetcode# yyPush - { INCL (Procedures, pyyPush); AppendCode; }
#targetcode# yyPop :- { INCL (Procedures, pyyPop); AppendCode; }

#targetcode# \t - {
Strings.Append (TargetCode, 11C);
yyTab;

#targetcode# \r 2 \n :- {
Append (Attribute.Text, TargetCode);
AssignEmpty (TargetCode);

yyEol (0);
}
#targetcode# \\ ANY :- {
GetWord (Word);
Strings.Append (TargetCode, Char (Word, 2));
}
#targetcode# \\ /7 \r ? \n,
#targetcode# \\ - { Strings.Append (TargetCode, *\”); }
#targetcode# 7 - {

GetWord (String);

IF (Language = C) OR (Language = Cpp) THEN yyStart (CStrl);
ELSIF Language = Ada THEN yyStart (AStrl);

ELSE yyStart (Strl);

END;

StringPosition := Attribute_Position;

}

#targetcode# \" - {
GetWord (String);
IF (Language = C) OR (Language = Cpp) THEN yyStart (CStr2);
ELSIF Language = Ada THEN yyStart (AStr2);
ELSE yyStart (Str2);
END;
StringPosition := Attribute_Position;

}

#Stri# StrChl + .

#Str2# StrCh2 + .

#CStri# CStrChl + | \\ ANY ? ,

#CStr2# CStrCh2 + | \\ ANY ? ,

#AStr2# AStrCh + - {GetWord (Word); Concatenate (String, Word);}

#CStrl, CStr2# \\ \r ? \n:- {Strings.Append (String, *7);
Strings.Append (String, 12C); yyEol (0);}

#Strl, CStrl# ~ ,

#Str2, CStr2, AStr2# \" ,

H#AStr1# ANY ~ ? - {GetWord (Word); Concatenate (String, Word);
yyPrevious; Concatenate (TargetCode, String);

}

58

OooOo

59

[y |

OooOo

O

Rex
#Str1, Str2, CStrl, CStr2# \t {Strings. Append (String, 11C); yyTab;}
#Str1, Str2, CStrl1, CStr2, AStr2# \r ? \n :- {
(* Message ("unterminated string", Error, Attribute.Position);
I NC (ErrorCount); *)
Strings. Append (String, 120);
yyEol (0); yyPrevious; Concatenate (TargetCode, String);
}
#Str1, Str2, CStrl, CStr2# \r {Strings. Append (String, 150C);}
#STD, rul es, charset#
T {yyStart (commrent);
StartPosition := Attribute. Position; }
#coment# "*" | cmtch + :- {}
#comment # "*/" {yyPrevious;}
#STD, rules, charset# "//" ANY * :- {}
#STD# | MPORT {PrevState := STD, RETURN Sym nport i}
#STD# EXPORT {PrevState := STD, RETURN SymExport i}
#STD# GLOBAL {PrevState : = STD, RETURN Synd obal i}
#STD# LOCAL {PrevState := STD, RETURN SynlLocal i}
#STD# BEG N {PrevState : = STD, RETURN SynBegi n i}
#STD# CLOSE {PrevState : = STD, RETURN Syn(Cl ose i}
#STD# DEFAULT {PrevState := STD, RETURN SymDefault ;}
#STD# EOF {PrevState : = STD, RETURN SynEof i}
#STD# SCANNER { RETURN SyrrScanner i}
#STD# CHARACTER_SET { RETURN SynChar Set i}
#STD# DEFI NE { RETURN SymDefi ne i}
#STD# START { RETURN Syntt art i}
#STD# RULE { RETURN SynRul e i}
#STD# RULES { RETURN SyrRul es i}
#STD, rul es# letter (letter | digit |) * : {
CetWord (Word);
Attribute.ldent := Makeldent (Word);
RETURN Syml dent ;
}
#STD, rul es# digit +: {
CetWord (Word);
Attribute.Nunber := StringTolnt (Wrd);
RETURN SymNumber ;
}
#STD, rul es# \" string * \" : {
| F TokenLength > cMaxStrlLength THEN

Message ("string too |ong (mex. Restriction,
I NC (ErrorCount);
ArrayToString (" ", Target Code);
ELSI F TokenLength = 2 THEN
Message ("string length > 0 required",
I NC (ErrorCount);
ArrayToString (" ",
ELSE

GetWord (Word);

255) ", Attribute. Position);

Error, Attribute.Position);

Tar get Code) ;

Ooooooooo

O

Oooooooood

SubString (Wrd, 2,

END;

Attribute. String :

RETURN SynStri ng;

Rex

Length (Wbrd) -

Put String (Target Code);

60

1, Target Code);

}
#STD# " { RETURN SynDot i}
#STD# =" { RETURN SynEqual i}
#STD, set# " {yyPrevi ous; ETURN SynRBrace i}
#STD, set, rules# "-" {RETURN SymM nus i}
#STD, rul es# . {RETURN SynmComma i}
#STD, rul es# " { RETURN SynBar i}
#STD, rul es# e {RETURN SynPI us i}
#STD, rul es# e {RETURN SymAst eri sk i}
#STD, rul es# e {RETURN SymQuesti on i}
#STD, rul es# (" {RETURN SyniPar en i}
#STD, rul es# ") { RETURN SynRPar en i}
#STD, rul es# " {RETURN SynLBr acket i}
#STD, rul es# " { RETURN SynRBr acket i}
#STD, rul es# " {StartPosition := Attribute.Position;
RETURN SymlLBrace i}
#rul es# - {RETURN SymNr Si gn i}
#rul es# " {RETURN Syntl ash i}
#rul es# "<t {RETURN SynlLess i}
#rul es# "> {RETURN SynGr eat er i}
#rul es# o {PrevState := rules; RETURN SyntCol on i}
#rul es# RN {PrevState : = rules; RETURN SynCol onM nus ;}
#STD, set, rules# \\ a {Attribute. Ch := 012C;, RETURN Synthar;}
#STD, set, rules# \\ b {Attribute. Ch := 010C;, RETURN Synthar;}
#STD, set, rules# \\ t {Attribute. Ch := 011C;, RETURN Synthar;}
#STD, set, rules# \\ n {Attribute. Ch := 012C;, RETURN Synthar;}
#STD, set, rules# \\ v {Attribute. Ch := 013C; RETURN Synthar;}
#STD, set, rules# \\ f {Attribute. Ch := 014C;, RETURN Synthar;}
#STD, set, rules# \\ r {Attribute. Ch := 015C;, RETURN Synthar;}
#STD, set, rules# \\ digit + : {
CetWord (Word);
SubString (Wrd, 2, Length (Word), TargetCode);
n := LONGCARD (StringTol nt (TargetCode));
I F n <= MaxUCHAR THEN
Attribute.Ch : = n;
ELSE
Message (" nunmber out of range", Error, Attribute.Position);
I NC (ErrorCount);
Attribute.Ch := 0;
END;
RETURN SyntChar ;
}
#STD, set, rules# \\ "0" {xX} hexdigit + : {

CGetWord (Word);

SubString (Wrd, 4, Length (Wrd),
n := StringToNunber
IF n <=

Max UCHAR THEN
Attribute. Ch n;

ELSE

(Tar get Code,

Tar get Code) ;
16);

OooOo

OooOoooooooo

I o o

Rex 61

Message ("nunmber out of range", Error, Attribute.Position);
I NC (ErrorCount);
Attribute.Ch := 0;

END;

RETURN SyntChar ;

}

#STD, set, rules# \\ {xXuU} hexdigit + : {
CetWord (Word);
SubString (Wrd, 3, Length (Word), TargetCode);
n := StringToNunber (TargetCode, 16);
| F n <= MaxUCHAR THEN
Attribute.Ch : = n;
ELSE
Message (" nunmber out of range", Error, Attribute.Position);
I NC (ErrorCount);
Attribute.Ch := 0;
END;
RETURN SyntChar ;

}

#STD, set, rules# \\ ANY : {
CetWord (Word);
Attribute.Ch := ORD (Char (Wrd, 2));
RETURN SyntChar ;

}

#STD, set, rules# \\ / \r \n : {
Attribute.Ch := ORD ("\");
RETURN SyntChar ;
}

#STD, set, rules# - {\ \t\n\f\r\26} : {
CetWord (Word);
Attribute.Ch := ORD (Char (Wrd, 1));
RETURN SyntChar ;

\f, \r, V26 - {1}

#charset# digit A

I sChar := NOT |sChar;

CetWord (Word);

| F NOT | sChar THEN
Attribute.Ch := ORD (Char (Wrd, 1));
RETURN SyntChar ;

ELSE
Attribute. Nunber := StringTolnt (Wrd);
RETURN SymNumber ;

END;

#charset# "0" octdigit *: {
I sChar := NOT |sChar;
CGetWord (Word);
Attribute. Nunber := StringToNunber (Word, 8);
RETURN SymNumber ;

Ooooood

OooOooooooood

[y |

O

O

OooOooooooood

Oooooo

#charset# digit +

#charset# "0" {xX} hexdigit + :

#charset #
#charset #
#charset #
#charset #
#charset #
#charset #
#charset #

#char set #

\\
\\
\\
\\
\\
\\
\\

\\

I i B © gl o)

ANY

}

}

{Attribute.
{Attribute.
{Attribute.
{Attribute.
{Attribute.
{Attribute.
{Attribute.

{

}

| sChar

Attri bute. Nunber

Rex

:= NOT | sChar;
CetWord (Word);

RETURN SymNumber ;

{

| sChar

Attri bute. Nunber

:= NOT I sChar;
CGetWord (Word);
SubString (Wrd, 3, Length (Wrd),

RETURN SymNumber ;

QQQQQQQ

| sChar
CetWord (Word);

Attribute. Ch

RETURN SyntChar ;

#charset# - {\ \t\n\f\r\26\}}
| sChar
CetWord (Word);

}

#charset# "}" [/ {\ \t\n} *

#charset# "}"

< "#@ " "

* nI | nen

#PPl i ne# {0-9} +

#PPline# \" -{\n"} +\"

{yyStart (STD);

Attribute. Ch

{

RETURN SyntChar ;

digi t

| sChar

Attribute. Ch

ORD (007C); I1sChar
ORD (010C); 1sChar
ORD (011Q); 1sChar
ORD (012C); 1sChar
ORD (013C); IsChar
ORD (014C); 1sChar
ORD (015C); IsChar
: = FALSE;

:= ORD (Char
: = FALSE;

:= ORD (Char

{

: = FALSE;

:= ORD ("}7);

RETURN SyntChar ;

+: {yyPush (PPline);}

i {CGetWord (Word);

}

PPLi ne

:= StringTolnt (Wrd)
(* -1 to conpensate for the follow ng

i {CGetWord (Word);
SubString (Wrd, 2,
yyLi neCount : =

:= StringToNunber

FALSE;
FALSE;
FALSE;
FALSE;
FALSE;
FALSE;
FALSE;

RETURN SynRBr ace; }

_1,

Length (Wbrd)
PPLi ne;

:= StringTolnt (Wbrd);

62

Tar get Code) ;

(Tar get Code,

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

(Word, 2));

(Word, 1));

yyEol

16);

SyntChar ; }
SyntChar ; }
SyntChar ; }
SyntChar ; }
SyntChar ; }
SyntChar ; }
SyntChar ; }

0O ")

- 1, Wrd);

O

Oooooo Ooooood Ooooood I o o I o o Ooooood

O

[y | O

OooOo

Rex 63

(* change the line only if there is a file name *)
Attribute.Position.File := Makel dent (Wrd);

}
#PPline# " " * \r 2 \n :- {yyPop ();
CASE yyStartState OF
| targetcode
AppendLi ne (Tar get Code, yyLi neCount,
Attribute.Position.File);
ELSE
END;
yyEol (0); (* don’t nove yyEol before CASE *)
}

References

[ASU86] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison Wesley, Reading, MA, 1986.

[Gro89] J. Grosch, Efficient Generation of Lexical Analysers, Software—Practice & Experience
19, 11 (Nov. 1989), 1089-1103.

[Groa] J. Grosch, Reusable Software - A Collection of Modula-Modules, Cocktail Document
No. 4, CoColLab Germany.

[Grob] J. Grosch, Reusable Software - A Collection of C-Modules, Cocktail Document No. 30,
CoCoLab Germany.

[Les75] M. E. Lesk, LEX — A Lexical Analyzer Generator, Computing Science Technical
Report 39, Bell Telephone Laboratories, Murray Hill, NJ, 1975.

OooOo

Oooooooood

Rex 1

Contents

1. (T 100 (1o i (oo HR SRR 1
2. OVEIVIEI ...ttt et e et e et e e e at e e e ae e e e beeesbeeesaseeesabeeeeateeessseesanseesseeesnnes 1
3. SPECifi CalION LANQUAGEooveeieeiiniiesieeie ettt e 2
3.1 LeXiCal CONVENLIONSccuveeeiiee ettt ettt et ete e e et e e sare e e eaae e e enseeeeareesnneeennneas 2
3.2. REQUIAr EXPIESSIONScveiiiiieiiieieeie sttt st nne e 4
3.3. AMDIgUOUS SPECITI CALIONSoiveeeiiiieie et et 6
3.4. DEfI NITIONS ...ttt et be e e et e e ebe e e eane e e eabeeesnseeeenreeennns 7
3.5. 2 S = (- TSR 7
3.6. o= 0] 01 g = T SRR 9
3.7. L (0 = 5o 0[PSR 9
3.8. SOUICE POSITION ...ttt ettt e e e et e et e e st e e enbe e e enteeesareeeenneeenaeeennns 12
3.9. (O g T T Toi (= g = A SRRSO 14
4. Predefi NEA TTEIMS ...ttt ae e e are e e nes 15
4.1. DEFI NITIONS ...ttt e e et e e eabe e e eaae e e esteeeenseeeenreeennns 15
4.2. = S = (- TSR 15
4.3. RUIES ..t ettt et e et e e et e e e e abe e e eabe e e eaaeeeenbeeeaneeesneeesnnneas 16
4.4, ACHON SEALEMENLSeeiiiiee ettt et re e e rbee e e re e e s be e e eabe e e easeeeesneesaneeeans 16
5. Interface of the Generated SCANNELSooouvieeiiii e 17
51 e e e e—e e e a—e e e aa—eeaaheeeaabeeeabeeeabeeeateeeaareeeaaaeeeanreeannes 17
511 SCANNEY INLEITACE ...ttt e e aae e e aaeeennes 17
512 SOUICE INLEITACE ...ttt e et e e eaae e e aneeennes 20
513 SCANNEY DIIVEY .ottt et e e b e e e b e e s be e e eabe e e eateeesateeeeaaeeeneeeennes 21
5.2 O TSRS 22
521 SCANNEY INLEITACE ...ttt e e aae e e na e e ennes 22
522 SOUICE INLEITACE ...ttt et e et e e aae e e neeeennes 25
523 SCANNEY DIIVEY .ottt e e e et e e et e e s be e e eabe e e eate e e sateeeeaseeeneeeennes 27
53. 1Yo (U1 = SRRSO 27
53.1L SCANNEY INLEITACE ..ot e e aae e e aaeeennes 27
53.2 SOUICE INLEITACE ...ttt e e aae e e neeeennes 29
53.3. SCANNEY DIIVEY .ottt e et e e e e e b e e s be e e sabe e e sateeesareeeeaaeeeneeesnnes 30
5.4. 7o = SRRSO 31
54.1. SCANNEY INLEITACE ..ot e e aae e e aaeeennes 31
54.2. SOUICE INLEITACE ...t ettt e e aae e e naeeennes 32
54.3. SCANNEY DIIVEY .ottt e et e e tee e et e e s be e e et e e e eateeesateeeenaeeeneeeennes 33
55. TN = TSSOSO 34
55.1. o= 101 g1 (= = o = SRRSO 34
55.2. SOUICE INLEITACE ...ttt et e e eaae e e nneeennes 35
55.3. SCANNEY DIIVEY .ottt e e e et e e et e e s be e e eabe e e eate e e sateeeeaseeeneeeennes 35
5.6. N - 7= LSRR RRRURTRRR 36

5.6.1.
5.6.2.
5.6.3.
5.6.4.

Rex
SCANNEY INLEITACE ... e s eas
Tuning the Scanner INLEITace ..o
SOUICE INLEITACE ..o et eas
o 01 gl 1Y SRR
L0 L o U
IMPIEMENTALION ..ottt saeesre e
DIffErenCeS IO LEX ...t
Appendix 1: Syntax of the Specifi cation Languageccoceveevererieenieniennennens
Appendix 2: Example Specifi cation of aModula-2-Scanner inCccccoeceveenene
Appendix 3: Example Specifi cation of a Modula-2-Scanner in Modula-2
Appendix 4: Example Specifi cation of a Scanner for ReXccccvevveeveniiineennns

References

36
38
39
39
42
45

51

63

