SINITEE

www.sintef.no

Address:

SINTEF group, MARINTEK,
Structural Engineering
Box 4125, Valentinlyst
7450 Trondheim
Norway

Location: Otto Nielsens vei 10

Tel +47 7359 5611
Fax +47 7359 2660

MEMO

FILE CODE CLASSIFICATION

Open

ELECTRONIC FILE CODE

MEMO CONCERNS 8
[= >
Release Notes g2 2.
= 14 =
. w
USFOS Version 7-7 AR1ERE:
Sl 2] z|2
DISTRIBUTION
Members of USFOS user group X

PROJECT NO. DATE PERSON RESPONSIBLE/AUTHOR NUMBER OF PAGES
700030 2000-04-01 Tore Holmés 31
Release notes
USFOS 7-7, April 2000

Contents:

1. N0 10O 1 L0]) SRR 2

2. CONTENTS OF CD-ROM ...ttt ettt ettt tee e e e e e et e e e et e e s s abe e e s abbeeesastesessabeeeesasbeeesanes 2
22 T O 1Y/ = oAV] Y 2
2.2. NEW VERSIONS OF THE PROGRAM CODES........cceeiiutiieiiiteteeiiteeeesitteeesatessssisaessssssesssssssssssssssssssssesessssessssssenes 2
72 TR 1 - N1 Y 4
S N V1= = 4

3. EFFICIENT USE OF USFOS ...ttt ettt sttt e ettt e s et a e s s bt e e s s bt it s s s sab e s e s st be e e sabansesabenas 5
R I €1 =1 [= 2 OO 5
3.2. ADJUSTING THE UNIX KORN SHELL WINDOWuuvviiiieiiiitteiiieeesssiitbsstessessssssssssssesssssssssssssesssssssssssssessssssssnes 6
3.3, SOME UNIX COMMANDS. ... uuttttiiteeiiiittettteeeesiitbrstessessssbbssteasasssaibbasaessesssasbebasssesssassbbbesssesssassbbbsessesssassnrres 9
3.4. EXAMPLE 1, FIXED USFOS INPUT FILE NAMESuttiiiiiiiiiiiiiiiiee e e s iiititsiessessssssssbsesssesssssasbbssssessssssssssssesessns 10
3.5. EXAMPLE 2, VARYING USFOS INPUT FILE NAMEScciiiiiittriiieeeesiiiiitieesesssssssbsssseesssssssbssssssssssssssssesesessns 11
3.6. EXAMPLE 3, ASSEMBLING INPUT FILES BEFORE USFOS ANALYSIS ...uvtiiiiiiiiiiiiiiiiieeeseiiisiieiseessssissssseeseesans 13
3.7. EXAMPLE 4, USING THE SED EDITOR TO MODIFY MASTER INPUT FILEScccovviiiieeiiiiiiiiiie e e e e ssiiinieeee e 15
3.8. EXAMPLE 5, PROCEDURE FOR ELEMENT REMOVAL (REDUNDANCY ANALYSIS)....ccverierierieniesieaieeeseeneene 20

4, NEW FEATURES ...ttt ettt e e et e s st e e e et e e e s eate e e e sab e e e e asbbesesbaeeessbeeessasreneeanes 23
R €1 =T T W= o= =T 1 10 23
R V[0 o =TI == Y [24
4.3. JOINT CLASSIFICATION / MSL JOINT CHARACTERISTICSveiitiiiiteeeiteessteeesteessteeessessssesssresssseesssesssvessssnnas 28

5. NEW/MODIFIED INPUT IDENTIFIERSoo oottt ettt ettt ettt svae e st ba e 31

This memo contains project information and preliminary results as a basis for final report(s).
SINTEF accepts no responsibility of this memo and no part of it may be copied.

(© EINER 2

1. Introduction

The current version of usros (version 7-7, 2000-04-01) is the intermediate release of the 99-
00 user group development period.

The current release with date 2000-04-01 contains following:
o CD-ROM

o Updates of User’s Manual
o Release Notes (this MEMO)

2. Contents of CD-ROM

2.1. Overview

The CD contains documentation, examples and new versions of the program codes, and the
organisation is described in Figure 2.1-1. Both uNix and NT solutions are collected in the
same CD.

Contents of 'Usfos?-7"

I_1 Document

|_1Examples_FC

|0 Examples_LINX

I_1 Programmers_File_Editar_PFE
I_1 Ustos_for_Dec_Alpha

I Usfos_for_HP

20 Usfos_for_|Bh

20 Usfos_far_Linux
I_1Usfos_for_SGI

I Usfos_for Windows_INT4.0

Figure 2.1-1 Contents of CD-ROM

2.2. New versions of the program codes

Under each file folder (f ex “UsrFos_for_Windows_NT4.0”), two folders, (bin and etc) are
located. The “bin” folder contains the program code, while the “etc’ folder contains set up
files.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

SINEE

| Contents of sfos_for_Windows_WNT4.0° | Contents of 'hirt

o . [E= I

et File Folder ﬁ alps.exe E2KE Application
i:j gnuplot. exe 435KE Application
ﬁ gnuplot_=11.exe AYEE Application
-:j mbox. exe 100KE Application
M postfos.exe 1036KE Application
-__':j shiuman. exe 1 268KE Application
E usfoz. exe 2821KB Application
M uzpsene 143KE Application
E wfoz.exe 241KE Application

Figure 2.2-1 Program Code located in “bin” folder

postfos.inca:

usfos. cshre
usfos kshro
wfos

zayas.mom

Figure 2.2-2 Files in “etc” folder. NT (to the left) and uNix (to the right)

Installation on UNIX:

Create a root directory for usros, (the new “UsFos_HOME ” directory)
Copy the actual “bin” and “etc” directories to USFOS_HOME

Copy the “Examples_unix” and “Document” directories to USFOS_HOME.
Define the usros_HOME variable in the usros.cshrc/usrFos.kshrc files

0000

bin
docurnent
etc

examples

Figure 2.2-3 Contents of ""$usFos_HOME" folder after installation

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 4

Installation on Windows NT 4.0

o Copy the new “.exe” files located in the “bin” folder to the existing “UsFos_HoME/bin”
folder

o Copy the new “postfos.inca” file located in the “etc” folder to the existing
“USFOs_HOME/etc” folder
o Copy the “Examples_PC” and “Document” folders to the existing USFOS_HOME.

NOTE ! : If usFos has never been installed on NT before, please contact SINTEF.

For all systems:

o Copy the file: “usrFos.key” (delivered on a separate diskette) to the actual
“USFOS_HOME/etc” directory.

2.3. Manual

The User’s manual is updated, and (paper) copies of the actual pages are delivered. In
addition, the most important part of the manual, the “Input Description” (UsFos_UM_06) is
available for “on-line” reading using f ex. Adobe Acrobat Reader or any other "PDF readers".

|CDntents of 'Document’

MName Sizel Type
1Usfos Warksh. . File Folder
'@F’ielease_NDte... FI7KE Adobe Acrobat .
T Release Mote.. 537KE Adohe Acrobat .
T usfos general 497KB Adobe Acrobat ..
T USFOS Install.. 23KE Adobe Acrobat ..
TUSFOS SERV... 18KE Adobe Acrohat ...
Bustos_benchm. . BEEKE Adohe Acrobat .
'@Usfus_UM_DE 1021KB Adobe Acrobat .
'@Usfus_UM_DE... 33KB Adobe Acrobat .

A free "PDF-reader" is available on www.adobe.com .

2.4. Examples

Approx. 50 examples are given under the “Examples” directories. The contents of the uUNIx
and PC examples are identical, (the only reason for having two folders is due to computer
compatibility, uNix and PC represent the files differently).

The input files are located in separate folders, one example per folder, see Figure 2.4-1. In
each folder, following files are found:
Head.fem : uUsros control parameters

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ SINTER 5

Stru.fem : Structure and load description in either SEsaAm or UFo file format. In some
cases both sesamM and UFo formats are given for the same example, and then
the “stru-file” has a postfix, u for uro and s for Sesam. Any of the two variants
(stru_u.fem or stru_s.fem) should produce the same results. The usros control
parameters are unaffected by the file format used to describe the structure and
loads. (See also Chapter 3).

| Contents of 'Examples_PC'

|1 beam [grup_T [scripts [dwawve_cal
.0 calumn Dqrup_? [small [Owave_jac
|1 coroload A grup_was [ssh_cantilewer [(Awave_rmamway
21 damp_1 [3jaint [ssh_cal_i [Dzayas
_ddamp_2 (23 Joint_API_spari [ssh_col_pipe

20 dyn_drop (3 Joint_API_spri_crack [ssh_jac

.1 dhyn_eig (3 Joint_User_Spri [strain_fract_1

20 dyn_exp (3 jaintt [Otri_shell_1

20 chyr_imp [Djaint2 [tri_shell_2

20 dyn_imp [T pils2 [Otri_shell_jaint

23 dyn_imp2 [psi_t CAtri_shell_load

20 dyn_quak [Dpsi_z [Unit_Check

et [psi_3 A User_Spri

Figure 2.4-1 Example folders available for uNix and NT(PC)

|CDntents of 'scripts'

MName Size | Tvpe
DExampIej_Fixed_Names File Folder
[Example_2_Varahle_MNames File Folder
[:IExample_S_Asseminng_Files File Folder
(A Example_4_Modifying_Master_lnput File Folder
(1 Example_5_Redundancy_Analysis File Folder

Figure 2.4-2 Contents of “Script folder available for unix and NT(PC)

3. Efficient use of USFOS

3.1. General

Seldom, only one usros analysis is performed for a given problem. The more typical use is
repeated runs due to several load cases, parametric (sensibility) study, model change, etc.

In cases where many UsrFos analyses should be performed, well organising of both input and
output files is important. There should be no doubt about “what was the parameters used for

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 6

this particular result plot” and so on. It is highly recommended to not use one input file set,
which is modified over and over again until all cases are run, because:

o Possible confusion about input parameters used
o Difficult to repeat the analyses after a time
o Requires manual editing before each new run, impossible to automate

It’s better to plan and organise the usros analysis in a way that makes it possible to,
ultimately, perform hundreds of analyses using only one, (magic) command. One solution
(among several) is using UNIX scripts, and the following sections will describe this solution.

UsFos (even on Windows NT) runs in a UNIX environment, and all procedures described in
the sections below are running on “all” computer platforms. However, some differences may
occur, (f. ex: C:/TEMP on PC and /tmp on standard UNIX).

The next sections will deal with use of uNIx commands typed in from the keyboard in the
“old fashion way”. It’s therefor worth spending some minutes adjusting the uNix command
prompt window.

3.2. Adjusting the uNnix korn shell window

Before you start using the uNix korn shell, it’s recommended to modify slightly the layout.
Figure 3.2-1 shows the default window with white text an black background and with size 24
lines / 80 columns). To modify the window, point on the (blue) top frame of the window, and
press the right hand button. The menu Figure 3.2-2 appears.

Figure 3.2-1 The default NutCracker Window layout

Eectare

Mowve

Size

Minimize
Maximize
Close

Edit *

Properies.. <:|
Figure 3.2-2 Menu

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ SINTER 7

Select Properties and the “select colors™ menu shown in Figure 3.2-3 appears.

Select screen text and screen background among the indicated colours. The light grey
background together with black text is a good combination.

SHUNIX" Properties '

Opmns' Fant | Layout Calars |

Selected Color Values

Bed 0 3:

Green

" Screen Text

* Sereen Background
" Popup Text

£~ Popup Background Blue:

A o] [

~Selected Screen Color:

C:\WINNT> dir

SYSTEM <DIR> 03-01-92
SYSTFM32 <NTR> A3-A1-92

—Selected Popup Color
C:\WINNT> dir

SYSTEM <DIR> 03-01-92 3:10a
SVETFMR2? <NTR» AR-A1-92 2-10A
OK | Cancel | Help |

Figure 3.2-3 Defining screen- and text colour

The default window has no screen buffer (has no scroll bar), but the buffer sizes in vertical
(number of lines) and horizontal (number of columns) are possible to specify under the layout
menu, see Figure 3.2-4. Type in (or us the arrow) the actual sizes, which here is set to
132/2048. The window size when it pops up is set to 80/40.

When the OK button is pressed, the menu shown in Figure 3.2-5 appears. Select “Modify
Shortcut” to save the settings permanently.

S "UNIX" Propertics — . . — . . — '

Optians | Font Layout | Calors |

‘Window Presview
—Screen Buffer Size
icith: 132 =
Height: m
—Window Size
“icith: a0 3:
Height: Iﬂ
—Window Position
Let LIS =
Top: 28 33
W Let system position window

oK | Cancel | Help |

Figure 3.2-4 Defining window layout

Release Notes USFOS version 7-7 SINTEF 2000-04-01

Figure 3.2-5 Selecting permanent modification of the short cut

The unix window will from now on look like the one in Figure 3.2-6 with two scroll bars
(and it’s resizable) and a comfortable colour.

Figure 3.2-6 The modified NutC window with scroll bar.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER

3.3. Some UNIX commands

The procedures described in the examples below require that the users knows some UNIX
commands, and in the following a brief summary of the commands used in the scripts is
given:

Command / Description Use
Argument
cp | Copy one file into another cp “from file” “to file”
mv Rename a file or directory mv “from name” ““to name”
cat | dump the content of a file to screen cat “file”
cat > dump the content of file_1 into file 2 cat “filel” > “file2”
cat >> dump content of filel behind existing content of cat “filel” >> “file2”
file 2 (append)
mkdir create a directory (folder) mkdir “directory name”
cd | change directory cd “directory name”
. directory path. (one level up) cd ..
e | directory path. (two levels up) cd.. /.
.. /dir_name directory path (one level up and one down) cd .. /case2
cp “filel” .. Icase2/file2”
SNAME | Environmental variable with name NAME cp SMASTER/filel file2
echo SNAME “Show me the content of the environmental Will be used in the examples below
variable whit name NAME”
sed | “Stream Editor” Will be used in the examples below
rm Delete file(s) rm filel
rm filel file2 file3
rmdir | Delete directory rmdir directory_name
Is List files Is
Is *.fem | List all files with extension .fem

Table 3.3-1 UNIX commands overview

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 10

3.4. Example 1, Fixed usFos input file names

The simplest example on a uNix script (which saves you for tediously typing) is a file with
name gol containing following:

$USFCS_HOVE/ bi n/ usfos 15 << ENDI N
head

stru

| oad

res

ENDI N

Table 3.4-1 Content of script file: *"gol" with 3 fixed usrFos input files

Explanation:

The variable usFos_HOME is set during installation of usrFos on both UNIX and NT computers.
It contains the file path of the root of the actual usros version. By prefixing the variable name
with $, the contents of the variable name becomes available for use in connection with any
UNIX command.

“$usrFos_Home/bin/usfos” is the address to the usrFos code, and by adding 15 after the file
name, a workspace of 15 mill is required.

The “<< ENDIN” defines that the usual screen input/output is given between in the lines
between << ENDIN

and

ENDIN

The name “ENDIN” is an arbitrarily chosen name of the label.

In a usual usros run, it’s first asked for the control file name prefix, which here is set to
“head”. Further it’s asked for the structural and load files, which here are “stru” and “load”
respectively.

Finally, usFos asks for the result file prefix, which is set to “res”.

By typing gol usros will start, use the input files head.fem, stru.fem and load.fem, and store
the results in files with prefix: res. All input files must be located on the same directory as the
script file gol , and results are stored in the same directory.

As USFOs accepts input from one, two or 3 files, it’s possible to leave up to two file names
blank as shown in Table 3.4-2, where the ‘load’ file is left out.

$USFOS_HOMVE/ bi n/fusfos 15 << ENDIN
head
stru

res
ENDI N

Table 3.4-2 Content of script file: ""go2' with only “head” and “stru” input files

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 11

It is possible to access files located on other directories than the directory where the script go
is located /and started from). Table 3.4-3 describes the case where some files are located on
different directories:

$USFOS_HOVE/ bi nfusfos 15 << ENDIN
head_i ntact _nw_100yr

../ nodel/intact_stru

../l oads/ nw_100yr

D:/tenp/res_intact _nw_100yr

ENDI N

Table 3.4-3 Content of script file: ""go3™ with input files located on different directories

In this case, the control file (head_intact_nw_100yr.fem) is located on same directory as the
script file (and where the script is started from). The structural file (stru.fem) is located in the
directory model (which is located on same level, besides, the current directory), and the file is
named intact_stru.fem.

The load file is located on an other directory (also on same level as the other two) with name
loads, in a file with name nw_100yr.fem

The results are saved on the D: disc, on a directory named temp, and file res_nw_100.raf.
The third variant of the “fixed name script”: go3 indicates a first try to organise an analysis
series involving several versions of the structural file, (f ex intact and damaged), and several

loads (f ex nw_100yr, nw_1000yr, sw_100yr, sw_1000yr, etc).
This leads to the next example, which will give an example on how a slight modified go3
could be used for many different analyses.

3.5. Example 2, Varying usros input file names

The “fixed name script”, go3 described above is slight modified. Instead of defining the file
names 100%, some of the file name is substituted by the keywords $1 and $2. It’s possible to
give input parameters to UNIX scrips, and $1 is parameter no. 1, $2 is parameter no. 2 etc...

$USFOS_HOVE/ bi nfusfos 15 << ENDIN
head_$1_$%$2

../ model /$1_stru

../l oads/ $2

D./tenp/res_%$1_$2

ENDI N

Table 3.5-1 Content of script file: *"go** with varying input file names

By typing:
go intact nw_100yr
the same analysis as described under example 1, go3 will be performed.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ STNEE 12

The $1 variable will be expanded to intact inside the script, and $2 will be expanded to
nw_100yr, which gives the actual file names:

Control file head_intact_nw_100yr

Struct file : ../model/intact_stru

Load file : ./loads/nw_100_yr

Result file : D:/temp/res_intact_nw_100yr

A

$1

A script file may not only refer to UNIX commands, it’s possible to refer to other script files as
well. This leads to next level in script programming: defining a top level script, which refers
to user defined script(s).

If f ex. one analysis series should consist of a number of different structural conditions,
different load directions and — conditions, the following script named run_all would run
through all 16 cases without need for any human interference.

e
Script for running: - 2 structural conditions, --
- - 4 load directions and

- - 2 load conditions

Total |y 2x4x2=16 cases
e
#

Structure Load

go i ntact nw_100

go i ntact sw_100

go i ntact se_100

go i ntact ne_100

#

go i ntact nw_10000

go i ntact sw_10000

go i ntact se_10000

go i ntact ne_10000

#

go danaged nw_100

go danaged sw_100

go danaged se_100

go danaged ne_100

#

go danaged nw_10000

go danaged sw_10000

go danaged se_10000

go danaged ne_10000

= Fnd of Srint File --c-cccooooooooooo0

Table 3.5-2 Content of level 2 script file: *"run_all**, which refers to “go”.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 13

3.6. Example 3, Assembling input files before usrFos analysis

In the previous examples, all input files were complete before the script was executed. In may
cases, only a small fraction of the entire input is different from one case to another. Instead of
making lots of copies of near 100% equal files, the key in this example is to show how the
input files could be composed by common information + some special information.

Common information:

o Control file, : head.fem
o Main structure located in : str/Main_Strucutre
o Main load located in : loa/Main_Load

Special information:

o Support Structure : str/Spring_Support_1and 2
o Special Load : loa/Nodei_Load

|Cantents of 'Example_3_Assembling_Files'

MName Size | Type

Cdloa File Folder

[str File Faolder

[#] head fem 1KB FEM File

(58] run_al 1KB File

] go 2KB Fils

Figure 3.6-1 Content of file folder before running script *‘run_all™.

The idea is as follows:

o Use the control file head.fem in all cases.

o Compose a structural file consisting of the common Main_Structure and the special
support, and assemble the complete structural model in the file stru.fem.

o Compose a load file, which should consist of the common load file Main_Load and the
special nodal load, and collect all load info in the file load.fem.

o Create a new, unique directory (below current directory) for each case with informative
name reflecting the actual case.

o Run usros an save stru- and load files + result files on the actual directory.

o Create script go for running on case, and run_all for running all 6 combinations

In Table 3.6-1 the script with name go is described in detail as it appears in the example
folder. Lines staring with the sign # is comment lines, and may appear anywhere in the script
file except between << ENDIN and ENDIN. (It is recommended to use comments, both in
scripts and in the usFos input files).

Firstly, the cp command is used to copy the main structure to the file stru.fem. Next, the
selected support structure is appended to the stru.fem using the cat >> command. Similar is
done for the load file assembly.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ STNEE 14

A unique directory for each case is created using the mkdir command, and the directory name
(with prefix Case_) contains information about both support and load. UsFos is started with
15 mill and results are saved in the actual Case directory using the result file prefix res for all
cases (the directory contains information about the different cases). Finally, the actual
stru.fem and load.fem are moved into the actual Case directory using the mv command. (Note
that if only directory name is defined in connection with the mv command, the file name will
be unchanged in the new directory, just moved.)

#

-- Script for assenbling USFOS i nput and run USFOS

-- Usage: go par 1 par 2

-- parl : Support Structure

-- par2 : Load definition
o

- Copy Main Structure into
file stru.femand add

sel ected support:

cp str/Main_Structure stru.fem

cat str/$1 >> stru.fem

- Copy Main Load into

file load. fem and add
sel ected | oad:

cp | oa/ Mai n_Load | oad. fem

cat |oal$2 >> |oad.fem

- Run USFGCS and save results
in unique directories:
#

.. Create Directory

nkdir Case_$1_$2

$USFOS_HOVE/ bi nfusfos 15 << ENDIN

head

stru

| oad

Case_$1_$2/res

ENDI N

.. Myve stru.femand | oad. fem
into actual Case_Dir for
backup purpose.

mv stru.fem Case_$1_$2

mv load.fem Case_$1_$2

Table 3.6-1 Content of script file: *"go™* which assembles input files & runs UsrFos

Support Loa

go Spring_Support_1 Nodel_Load
go Spring_Support_1 Node3_Load
go Spring_Support_1 Node5_Load
#

go Spring_Support_2 Nodel_ Load
go Spring_Support_2 Node3_Load
go Spring_Support_2 Node5_Load
#

Table 3.6-2 Content of script file: *'run_all**, which executes the script “go”.

After the script run_all is completed, 6 new file folders (directories) are created, see Figure
3.6-2. All directories contain the actual, assembled input (stru and load) + the result files
(res.™).

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 15

|Cuntents of 'Example_3_Assembling_Files'

MNarme Size | Type
(o File Falder
[str File Folder
[#] go 2KB File

head farm 1KB FEM File
[3#] run_al 1KB File
[:ICase_Spring_SuppDrt_1_NDde1_LDad File Folder
[Case_Spring_Support_1_MNade3_Load File Folder
[:ICase_Spring_SuppDrt_1_NDdeE_LDad File Folder
[Case_Spring_Support_2_MNadel_Load File Folder
[:ICase_Spring_SuppDrt_Z_NDdeS_LDad File Folder
[Case_Spring_Support_2_MNadeb_Load File Folder

Figure 3.6-2 Content of file folder after running script "'run_all™.

3.7. Example 4, Using the SED editor to modify master input files

In the previous example, the input to usFos was composed by some common files + special
files, and in all cases the content of the files were pre defined.

In the current example, another, and even more flexible solution is chosen. Instead of
assembling “pieces’ of input, the content of the input file(s) are modified prior to the analysis.
As the modification should be performed in a batch run, a batch editor is necessary. The UNIX
shell on both uNix workstations and the “NutCracker” UNix shell on Win-NT offers the SeD
editor, the “Stream EDitor”.

The operation needed from the stream editor is the “REPLACE” or “SUBSTITUTE”
command, where one character string should be replaced by another.

The (cryptic) uNnix command is wrapped into a file, which here is named substitute, Table
3.7-1, and which is used as follows:

Substitute “string_1” “string_2” FileName
In all connections where string_1 occur on the specified file, it’s replaced by string_2. The

SED editor is case sensitive (differs between upper and lower case characters). Quotes must be
used if blank character(s) occur in the strings.

sed "1,$ s/$1/$2/g" $3 > subst_string.tenp
nv subst_string.tenp $3

Table 3.7-1 Script “substitute”, which utilises the SED editor for substituting strings.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 16

With the powerful substitute script available, following operations should be done:

o Create only one master usros control file (which should be used for all cases)
o Use one structural file
o Run usros wave analysis for 8 different wave/current conditions.

As indicated in Figure 3.7-1, some files are present before the analyses are performed, and
some are created during the analysis (executing the scripts defined in this section).

.1 Case_H=20.0_Dir=00.0_T=16.0

.1 Case_H=20.0_Dir=30.0_T=16.0
I_] Case_H=20.0_Dir=E00_T=16.0
.1 Case_H=20.0_Dir=80.0_T=16.0
IZ] Case_H=24.0_Dir=000_T=20.0

.1 Case_H=24.0_Dir=30.0_T=20.0

I_] Case_H=24.0_Dir=500_T=20.0

These files/folders are These files/folders are .1 Case_H=24.0_Dir=90.0_T=20.0
present before running present after running "I model
the scripts “run_all” 4o

run_all

substitute

Figure 3.7-1 Files / Folders before and after running the scripts

Master Headfile, Table 3.7-2.

The file is an ordinary control file for usrFos, but some parameters are not yet set. Instead, the
parameters are represented by arbitrarily chosen key words. In the actual study, the wave
height, direction and period should be varied, and the keyword for the wave height is WAVEH,
the keyword for direction is DIRECT, and the keyword for wave period is PERIOD.

Script file “go”. Table 3.7-3 :

The first operation in the script is creating a directory using the mkdir command, and all 3
parameters (wave- height, direction and period) are included in the directory name.

Next, the nearly complete usros control file (named Master_Headfile and located in directory
model) is copied into the file head.fem on current directory. The script for substituting
(named substitute) is used three times for replacing the keywords with the actual parameter
values.

Then usros is run, and the same structural file (stru.fem) is used for all cases. Results are
saved on the actual Case directory, and result prefix is res. When usros is finished, the
(manipulated) head.fem is moved into the actual Case directory, (see Table 3.7-5 for example
on modified head file).

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ SINTER

HEAD USFOS Extreme Wave. Height: WAVEH, Dir: DIRECT , T : PERI OD
Progressive Col |l apse Analysis [/ JACKET nodel
SI NTEF 2000
' - Define Wave:
' Ildcs <type> H Peri od Direction Phase Surf_Lev Depth
WAVEDATA 2 Stoke WAVEH PERI OD DI RECT 0.0 0.0 100
' Ildcs Speed Direction Surf_Lev Depth [Profile]
CURRENT 2 2 DI RECT 0.0 100 0.0 1.0
-20.0 1.0
-100.0 0.0

Table 3.7-2 “Master_Headfile” with keywords: WAVEH, DIRECT and PERIOD

#
-- Script for assenbling USFCS i nput and run USFOS --
-- Usage: go \Wave_Hei ght Direction Peri od --

< e N N NS

Create Directory
nkdir Case_H=$1_Dir=%$2_T=$3

#

- Copy Master control file
into the current head

file:

cp nodel / Mast er _Headfil e head. fem

Substitute the string
"WAVEH' with the first
script parameter ($1)
#

substitute WAVEH $1 head. fem

.. Simlar for par. 2 & 3:
substitute DI RECT $2 head. fem

substitute PERI OD $3 head. fem

- Run USFGCS and save results
in unique directories:

#

$USFOS_HOVE/ bi n/usfos 15 << ENDIN

head

nodel /stru

Case_H=$1_Dir=$2_T=$3/res

ENDI N

.. Move head.fem

into actual Case Dir for
backup purpose.

nv head.fem Case_H=$1_Dir=%$2_T=$3

#

Table 3.7-3 Script file *“go”

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ SINTER

Script file “run all” Table 3.7-4

The script file run_all starts go 8 times with different input parameters.

#
-- Script for running 8 diffenent USFOS cases
e
#
#
Wave Hei ght Wave/ Curr Direction Peri od
go 20.0 00.0 16.0
go 20.0 30.0 16.0
go 20.0 60.0 16.0
go 20.0 90.0 16.0
#
go 24.0 00.0 20.0
go 24.0 30.0 20.0
go 24.0 60.0 20.0
go 24.0 90.0 20.0
#
#oommmme e End of Script run_all ----------------
Table 3.7-4 Script file “run_all”
HEAD USFOS Extrene Wave. Height: 20.0 , Dir: 00.0, T: 16.0
Progressive Coll apse Analysis [/ JACKET nodel
SI NTEF 2000
- Define Wave:
' Ildcs <type> H Peri od Direction Phase Surf_Lev Depth
WAVEDATA 2 Stoke 20.0 16.0 00.0 0.0 0.0 100
' Ildcs Speed Direction Surf_Lev Depth [Profile]
CURRENT 2 2 00.0 0.0 100 0.0 1.0
-20.0 1.0
-100.0 0.0
-110.0 0.0

Table 3.7-5 usFos control file modified by the SeD editor.

After all 8 cases are run, 8 new directories are created (see Figure 3.7-1) containing the
modified head.fem and the analysis results. Figure 3.7-2 shows results from one of the 8
analyses, and NOTE that the member imperfections (command CINIDEF) are applied
automatically according to the actual wave load direction (which here is 30°).

Release Notes USFOS version 7-7

SINTEF 2000-04-01

19

Figure 3.7-2 Case with H=20m, Dir=30deg and T=16s

Release Notes USFOS version 7-7

SINTEF 2000-04-01

@ STNEE 20

3.8. Example 5, Procedure for element removal (redundancy analysis)

The final example solves following problem:

o Remove the structural members, one by one
o Use the same structural file and control file
o Save the results from the analyses in separate file folders

Figure 3.8-1 shows the content of the example folder before and after running the actual
scripts. The scripts are organised in the etc folder, while the structural model is stored in the
model folder. The content of the script files are described in Table 3.8-1, Table 3.8-2 and
Table 3.8-4.

| Contents of 'Example_5_Element_Remaoval’ | Contents of 'Example_5_Element_Removal
et L1 Elem_01
) rodel I_1Elem_0z
L1 Elem_03
I_1Elem_04
"1 Elem_05
|Cuntents of 't |CDntents of 'model’ (JElem_05_06_and_12
2] elmdel [#] head fem) Elem._ 6
=] run_all] load fern —Elem_07
] run_postios [#] strufem) Elem._ e
run_usfus 1 Elem 19
] subst_one gg:zm_ﬁ
substitute (C1Elem_12_and_13
detc
-1 model

Figure 3.8-1 Files/ Folders before and after running the script

- Define varible SCRATCH
(directory for Raf file storing)
export SCRATCH=/t np/ scratch

#

Local Dir El enent to renove

el ndel El em 01 01

el ndel El em 02 02

el ndel El em 03 03

el ndel El em 04 04

el ndel El em 05 05

el ndel El em 06 06

el ndel El em 07 07

el ndel El em 08 08

el ndel El em 09 09

el ndel El em 10 10

el ndel Elem 11 11

el ndel Elem 12_and_13 12 13

el ndel El em 05_06_and_12 5 6 12

#

Bommmmmm - End of Run_All ------mmmmmmmnnnnn-

Table 3.8-1 Script file “run_all”

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ STNEE 21

The run_postfos script runs POSTFOS and creates the default history table, using the define-
history and print-history commands. (Similar scripts could be created for extracting nodal
displacements of selected nodes, element forces etc.)

$USFOS_HOWE/ bi n/fusfos << ENDIN $USFOS_HOWE bi n/ postfos << ENDIN
head
stru $1
| oad
$SCRATCH r es define-hist,,,,,,
ENDI N
print-hist,,,,,,,
q
ENDI N
Table 3.8-2 Scrips: “run_usfos” and “run_postfos”

Figure 3.8-2 shows the content of one automatically created file folder (named Elem_01),
which contains the global history created by POSTFOS , the log files from the analysis and the
different input and output files. Table 3.8-3 shows the content of the file nonstru_elem.fem,
(which is created by the script), for two cases: To the left the case where element number 1
should become non structural, and to the right the case where elements 5,6 and 12 should be
removed.

|Cantents of 'Elerm_01"

=] Global_Histary
[#] headfem
] load farm

nunstru_elem.fem

=] run

strufem

Figure 3.8-2 Files created automatically in folder Elem_01

' Type
NONSTRU El enent 01

' Type
NONSTRU El ement
NONSTRU El ement
NONSTRU El enent 12

o Ul

Table 3.8-3 Automatically created files containing the NONSTRU comand.

Release Notes USFOS version 7-7

SINTEF 2000-04-01

@ SINTER

22

Aut hor Tore Hol mas, SINTEF Group. Norway
Dat e 2000- 03-18
#
if
test "$#" -1t "2"
then
echo ' LR R SRS E SRR E R SRR RS E SRR R R R R ERREREEEEREEEEESEN
echo ' * *!
echo ' * Creates the directory "../Label" , *!
echo ' * creates a copy of usfos control file and *!
echo ' * adds necessary NONSTRU commands. *!
echo ' * *!
echo ' * Assunes structural file on ../nodel/stru.fem*'
echo ' * *!
echo ' * Results are stored on file "$SCRATCH res" *!
echo ' * *!
echo ' * Usage: el ndel <Label> elenl elen?2 elen8 .. *'
echo ' * *!
echo ' * 2re, March 2000 *'
echo ' EEE SRS S EE R E R R RS RS RS R R R R R ERREREREEEREEEEESEN
el se
echo " "
echo " Creates directory ../$1 "
nkdi r .. 181
cd .. 181
count ="1"
for i do
if (test "$count" -gt "1")
then
echo " Processing El enment T
if (test "$count" -eq "2")
t hen
- Heading
echo "' " > nonstru_el emfem
echo "' s " >> nonstru_el em fem
echo "' -- Nonstructural Menbers - >> nonstru_el emfem
echo "' s " >> nonstru_el emfem
echo "' " >> nonstru_el emfem
echo "' Type " >> nonstru_el em fem
fi
- Add to file :
echo " NONSTRU El enent $i " >> nponstru_el emfem
if (test "$count" -eq "$#")
then
- Tail:
echo "' " >> nonstru_el emfem
echo "' --------- EOF ------n-m-n-- " >> nonstru_el emfem
fi
fi
- Update counter:
count =" expr $count + 1°
done
#
echo " Gabbing USFOS master control file from../nodel "
cp ../ nodel /head. fem .
echo " Adds nonstru commands "
cat nonstru_el emfem >> head. fem
echo " Creates Case identifier : $1 on head.fem "
..letc/substitute CASEID $1 head. f em
echo " Grabbing USFOS stru & load file from ../ model "
cp ../ nmodel/stru.fem .
cp ../ nodel /| oad. fem .
echo " and start USFOS "
..letc/run_usfos > run.|og
echo " and POSTFCS "
..letc/run_postfos $SCRATCH res >> run.|og
echo " "
echo " Saves dobal History on current directory "
echo " "
echo " "
echo " "
echo " "
mv $SCRATCH res. pri G obal _History
mv $SCRATCH/ r es_st at us. t ext
fi

Table 3.8-4 Script file “elmdel”

Release Notes USFOS version 7-7

SINTEF 2000-04-01

(© EINER 23

4. New Features

4.1. Group definition

o Groups are introduced in the latest usFos version (7-7).

A group is identified by its ID, which is a number (up to 8 digits).

o Elements become “members of” groups, and the same element may participate in several
groups.

o The nodal points, to which the elements are attached, becomes “members of” the actual
group.

O

The groups are referred to in connection with assigning properties to elements, which will
ease the input (reduce the amount of input lines). In xfos its possible to include/exclude
groups in the structural image (Edit/Clip/Group).

Elements are defined “members of” a group using the GROUPDEF command. The element may
be identified through:

Element ID

All elements referring to given material ID’s

All elements referring go given cross section geometry ID’s
All elements ‘members of” existing groups

0O 00O

The actual way of defining the elements is specified using the parameters “Elem”, “Mat”,
“Geo” or “Group” as shown in Table 4.1-1.

ID Type { IDList }
G oupDef 888 El em 10 20 30
GroupDef 88881 Mat 1
G oupDef 88 Geo 5
G oupDef 8 G oup 88881 88

Table 4.1-1 Defining element groups using of the GROUPDEF command

If wanted, extra nodes could be defined “members of” an actual group, and the command
“groupnod” is used for this purpose, see Table 4.1-2. This command is used in connection
with ‘guiding’ loads from non structural members towards (kept) structural nodes.

Goup ID Nodes.......

G oupNod 888 70 80 90

Table 4.1-2 Assigning (extra) nodes to a group using the GROUPNOD command

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ STNEE 2

4.2. Model repair

Creating an accurate structural model is
time consuming and costly, and it is
therefor normal to use existing models
rather than create new.

Existing models, in most cases, are created
for linear (design) analysis.

Figure 4.2-1 Large Challange for Non Linear Analysis

Seldom, existing models are created with non linear analysis in mind, and substantial work
has to be done before it’s suited for non linear problems. As computers are getting faster, the
model size may increase correspondingly. But, modification of models means in practice
manual work, and the bigger models, the more man hours have to be spent in order to ‘repair’
the linear model. A few years ago, a typical jacket structural model consisted of 500-1000
members. Today the same structure is represented by 5000-10000 members.

An increasing part of the model is non structural members introduced of different reasons in
the linear analysis, see Figure 4.2-1 for typical example.

If possible, the original structural model should become “read only”, and an “intelligent filter”
should transfer the ‘linear’ model into a model accepted by the non linear tool, see Figure
4.2-2.

Original “Linear” Model |—) “Intelligent” filter '—) | Shrinked, “correct”
(read only) model accepted by
the non linear tool

Figure 4.2-2 Preferred “Model Repair” solution

Often, the original (linear) model will not run at all, the analysis fails due to lack of boundary
conditions, etc. To be able to inspect the structure in XFos, the use of the dynamic load
procedure is a useful intermediate solution, see Table 4.2-1. In an early modelling stage, the
gravity loading is sufficient load to ensure that all elements are connected, boundary
conditions correct, etc.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ STNEE 25

Dynani ¢ 0.1 0.025 0.10.1
LoadHi st 1 1
Ti meHi st 1 Points 00 11 1000 1

Table 4.2-1 Using dynamic load procedure

Table 4.2-2 shows the group definition used on a ‘real’ example, and it’s here defined 5
groups, which all use geometry I1D’s to identify the elements. The general cross sections and
the small diameter pipes (D<300mm) are grouped, because elements referring to those beams
are the typical secondary members, which should be removed from the analysis model.

When the groups are defined, one single NONSTRU command will remove all the “members
of” the actual groups from the analysis model (but loads are kept).

' Specify Groups. (Wich should becone nonstructural)

! Type List......
G oupDef 1000 Geom

' - CenBeans

10101 10228 10229 10230 10231 10251 10252 10352 15198 15199
16106 16129 16193 16194 16195 16196 16197 16198 16199 16206
16229 16293 16294 16295 16296 16297 16298 16299 16306 16329
16393 16394 16395 16396 16397 16398 16399 16406 16429 16493
16494 16495 16496 16497 16498 16499 16506 16529 16593 16594
16595 16596 16597 16598 16599 16606 16629 16693 16694 16695
16696 16697 16698 16699 17529 17592 17593 17594 17597 17598
17606 17629 17693 17694 17695 17696 17697 17698 17535 17600
17634

G oupDef 2000 Geo
! - Pipes 1

19107 19108 16202 16302 10253 16102 16402 17502 17602 16502 16602

10102 10104 15110 19106 15186 10106 10105 10107 19105 15111 15106 19104 20110
10113 10360 10111 15185 15112 15107 10109 10112 19103 20095 20096 20094 15114
15113 20097 15191 20099 20098 16607 10117 16407 16307 16207 16107 16507 10365
10243 17607 10367 10118 10114 10116 10119 20111 10122 20124 16213 16212 16214
16109 16110 16209 16114 16210 16112 16113 17509 17510 17511 16614 16610 16612
16613 17512 17612 17613 17614 17610 17513 17514 17609 16609 16314 16409 16410
16313 16309 16310 16312 16412 16512 16513 16514 16510 16413 16414 16509 10121
10120 19102 16617 16616 15189 17517 17516 15115 16516 16416 16417 16316 16317
16517 15108 16216 10123 10125 10126 16217 17617 17616 16117 16116

16218 16119 16318 16118 16618 20085 16619 17619 17618 16519 20122 16419 16418
20112 16518 17620 16120 16420 16320 16520 16620 16220 10127 19101

G oupDef 3000 Geo
! - Pipes 2

10102 10104 10105 10106 10107 10109 10111 10112 10113

10128 10130 10131 20072 20113 20114 10181 19109

20075 20076 20077 20073 20074 20080 20082 20080

20082 10185 10186 10102 10253 16202 16302 16402 16502 16602
17502 17602 10114 10365 10183

G oupDef 16319 Geo 16319
G oupDef 16219 Geo 16219

NonStru G oup 1000 2000 3000

Table 4.2-2 Shrinking model using the GROUPDEF and NONSTRU commands

If the definition of the bounding surface (the gbound command) is left out for general
sections, default values are used and a warning is printed, see Table 3.5-2. The default values
are shown in the same table.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ STNEE 2

War ni ng. GBOUND i nput not specified for General Beam 10101. Default used.
WArni ng. GBOUND i nput not specified for General Beam 10228. Default used.
War ni ng. GBOUND i nput not specified for General Beam 10229. Default used.
Warni ng. GBOUND i nput not specified for General Beam 10230. Default used.

E R .

GBOUND 10101 0.8 1.0 0.6 1.0

Table 4.2-3 Default “Gbound” data assigned to general beams

When element groups are defined, the contents of the different groups are listed in the .out
file, see Table 4.2-4. In the actual example, group no. 1000 is defined through geometry ID’s,
and the specified ID’s are listed first (similar if the group was defined through material ID’s).

Next, the elements, which are “members of” group no 1000 are listed, and finally, all nodal
point, to which the element are connected to are listed.

————— GROUP DEFI NI TI ONS .-

GROUP |abel : "Geonetry Group no 1000"

Contains follow ng Geonetries
10101 10228 10229 10230 10231 10251
10252 10352 15198 15199 16106 16129

17535 17600 17634

...... elements :
5001 5002 5003 5004 5005 5006
5007 5008 5009 5010 5011 5012
5013 5014 5015 5016 5017 5018
5019 5020 5021 5022 5023 5024
5025 5026 5027 5028 5029 5030
5031 5032 5033 5034 5035 5036
78614 78615 755507 755508 726550 726551
726500 726501
...... and nodes

54531 54834 54935 54930 54535 54536
54837 54938 54936 54538 54539 54841
54942 54939 54542 54543 54844 54950
54943 54550 54856 54957 54557 54558
54859 54961 54958 54561 54562 54863

Table 4.2-4 Print of group data: geometries, elements and nodes on the .out file.

The example shown in Figure 4.2-3, represents a first stage in a model repair procedure. The
entire structure is still “structural”, but members are grouped as specified above. By using the
Edit/Clip/Group command in xfos, it’s possible to visualise the different groups
(include/exclude). The image to the right shows the full model, and by excluding all groups as
seen in the “Specify Clip Group” menu, the image to the right appears.

If the NONSTRU command in Table 4.2-2 is activated (note that the # passives the command)
only the elements in the image to the right remains structural, but loads are attracted on the
full structure (image to the left).

Release Notes USFOS version 7-7 SINTEF 2000-04-01

@ STNEE 27

Specify Clip Group [x]

Geometry Group no 1000
Geometry Group no 2000
Geometry Group no 3000
Geometry Group no 16319
Geometry Group no 16219

" Include matching element{s}

@ Exclude matching element(s)

ok | apply | cance

Specify Clip Group

Geometry Group no 1000
Geometry Group no 2000
Geometry Group no 3000
Geometry Group no 16319
Geometry Group no 16219

¢ Include matching element(s)

@ Exclude matching element(s)

ok | appty | cancer |

Figure 4.2-3 Edit/ Clip / Group

Useful usros commands for the “model repair” work:

O GROUPDEF : Define element groups

O GROUPNOD : Add nodes to groups (guide loads towards nodes)

O NONSTRU : Define elements nonstructural

O STRUCTEL : Define elements structural (override NONSTRU for some elem.)
O LIN_ELEM : Define element linear elastic (with and without elastic buckling)

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER 28

4.3. Joint classification / MSL joint characteristics

This write-up is a preliminary description of the implementation of MSL joint formulation in
USFQOS, for use with the [3-release of the new feature.

The MSL equations are implemented with ductility limits and “post-rupture” unloading for
tension loading, but with no ductility limits for compression loading.

Joint failure in tension invokes the “FRACTURE” option in USFOS.
Joint utilisation will be visualised by colour fringes in Xfos

The following shows the input required to include MSL joint characteristics in the analysis of
a 2D K-frame. The input is described in more detail below.

JINT_FORM 3 I O=beam stub 1=P-delta spring 3=plasticity nodel
JNTCLASS 1 I 0=CFF i>0 : interval for (re)classification

nodex chordl chord2 Can Rul e CaplLevel GammaQ¥
CHJO NT 7 6 7 0 MSL mean 1.0

Table 4.3-1 usFos control input activating MSL joint classification

Comparison between the usros analysis and alternative joint models and tests results are
presented in Figure 4.3-2.

Release Notes USFOS version 7-7 SINTEF 2000-04-01

(© EINER

29

Each time joint (re)classification is performed, the following information is printed to the

. out file.

Load step 1/ 60

======== JOI NT CLASSI FI CAT
2DK-F RAME

Specified capacity

USFCS | oad nbi nati on no

Load step no =
Joint ident. Load evel h

T
! NCDE ! Capacity ! Chord
! I D ! rule ' dianeter
! 7 ' MBL nean ' 1.680E-01
1 [1
! | ST mmmssssmmmmmeoooos !
i Brace Angl é:"'Of)ﬁh'""Ifa'c'i'ﬁg"'Géb"": Axi al
i ID (deg): Type brace ! Cap/ ¢&f
| [!
: 4 6011 97%K 5 .016 | 4. 122E+05
: i 3%Y 1 3.877E+05
! 1 1100% => I 4. 114E+05
: 'l l .93
! 5 60, | K 4 .016 1 3.747E+05
! i | 1. 00
1 [} 1

1 !

ON

O S progressive col |l apse anal ysis
EF div of Structural Engineering

1
60
462. 683

Chord
t hi ckness
4. 500E- 03

M pB

Cap/ 100% Y capacity
2. 584E+0 1. 973E+04
2. 584E+0 1. 973E+04

2. 584E+0 1. 973E+Q4
- 85 Combined,

2. 584E+04
1.00

Chord
yield str.
2. 780E~n2

100% K capacity

Mop |

1. 973E+

1. { 97%K + 3%Y

capacity

Table 4.3-2 Print from the MSL routines on the <res>.out file.

— Qqfactors

Release Notes USFOS version 7-7

SINTEF 2000-04-01

Load [KN]

@ SINTER

30

Figure 4.3-1 2D K-frame

700
600 e
400 ;
0 p—— e *
+
+
200
Rigid joints
Rigid plastic ---------
100 ISO / Ultiguide -+ .
MSL
: Test +
0 1 1
’ » “© 60 80 100

Deformation [mm]

Figure 4.3-2 2D K-frame Load — deformation curves

Load [KN]

500

400

w
o
o

nN
o
o

Rigid‘plastic -
ISO / Ultiguide -
MSL -

100 £

10

20 30
Deformation [mm]

Release Notes USFOS version 7-7

SINTEF 2000-04-01

40

(© EINER

31

5. New/modified input identifiers

Since last main release (7-6), following input identifiers are added/extended:

GROUPDEF : Define Element Group

GROUPNOD : Add nodes to Element group
NONSTRU Nonstructural members Extended input
STRUCTEL : Structrual members (override NONSTRU)
LIN_ ELEM Linear elastic elements

CHJOINT Extended input

Release Notes USFOS version 7-7 SINTEF 2000-04-01

	Introduction
	Contents of CD-ROM
	Overview
	New versions of the program codes
	Manual
	Examples

	Efficient use of usfos
	General
	Adjusting the unix korn shell window
	Some unix commands
	Example 1, Fixed usfos input file names
	Example 2, Varying usfos input file names
	Example 3, Assembling input files before usfos analysis
	Example 4, Using the SED editor to modify master input files
	Example 5, Procedure for element removal (redundancy analysis)

	New Features
	Group definition
	Model repair
	Joint classification / MSL joint characteristics

	New/modified input identifiers

